prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
""" Calculation of Earth layers and electron densities. """ from __future__ import division import numpy as np try: import numba except ImportError: numba = None from pisa import FTYPE from pisa.utils.fileio import from_file from pisa.utils.log import logging, set_verbosity __all__ = ['extCalcLayers', 'Layers'] __author__ = '<NAME>' __license__ = '''Copyright (c) 2014-2017, The IceCube Collaboration Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.''' if numba is None: class jit(object): """Decorator class to mimic Numba's `jit` when Numba is missing""" def __init__(self, *args, **kwargs): pass def __call__(self, *args): return args[0] else: jit = numba.jit ftype = numba.typeof(FTYPE(1)) @jit(nopython=True, nogil=True, cache=True) def extCalcLayers( cz, r_detector, prop_height, detector_depth, max_layers, min_detector_depth, rhos, YeFrac, YeOuterRadius, default_elec_frac, coszen_limit, radii): """Layer density/distance calculator for each coszen specified. Accelerated with Numba if present. Parameters ---------- cz r_detector prop_height detector_depth max_layers min_detector_depth rhos YeFrac YeOuterRadius default_elec_frac coszen_limit Returns ------- n_layers : int number of layers density : array of densities, flattened from (cz, max_layers) distance : array of distances per layer, flattened from (cz, max_layers) """ # Something to store the final results in shape = (np.int64(len(cz)), np.int64(max_layers)) n_layers = np.zeros(shape[0], dtype=np.int32) distance = np.zeros(shape=shape, dtype=FTYPE) density = np.zeros(shape=shape, dtype=FTYPE) # Loop over all CZ values for k, coszen in enumerate(cz): tot_earth_len = -2 * coszen * r_detector # To store results traverse_rhos = np.zeros(max_layers, dtype=FTYPE) traverse_dist =
np.zeros(max_layers, dtype=FTYPE)
numpy.zeros
import gzip import os import pickle import numpy as np from PIL import Image __all__ = [ '_shuffle', 'DSBuilder' ] def _shuffle(inputs, islist=True): """ Shuffle the datas/labels Argu: inputs: np.array/list, or list/tuple of np.array/list. In the latter case, the corresponding elements for each item in the list are shuffled together as a whole. islist: Boolean. The latter case is enabled when the value is True. Default is True. Return: A shuffled np.array/list(depend on argus) """ from random import shuffle if islist: len_ = len(inputs[0]) index = list(range(len_)) shuffle(index) outputs = [[i[index[j]] for j in range(len_)] for i in inputs] else: len_ = len(inputs) index = list(range(len_)) shuffle(index) outputs = [inputs[i] for i in index] return outputs class DSBuilder(object): """ Data Set Builder Argu: dsdir: Str. Path of Dataset. """ def __init__(self, dsdir, size:list, shuffle=False, pklen=None, pklname='filelist.txt'): self.dsdir = dsdir self.size = size self.shuffle = shuffle self.pklen = pklen or self._cpklen(size) self.pklname = pklname self.classes_dict = {} self.get_classes_dict() def _cpklen(self, size): """ Compute pkl lenth Max Byte is 2GiB(2^31). """ maxbyte = 2 ** 31 if len(size) == 2: photo = size[0] * size[1] * 3 else: photo = size[0] * size[1] * size[2] return maxbyte // photo def get_classes_dict(self, filename='classes.txt'): """ Get Classes Dict Argu: filename: Str. File name of the file that stores the classified information. Return: Dict. """ if not self.classes_dict: with open(f"{self.dsdir}/{filename}", 'r') as f: temp = [i.strip() for i in f.readlines()] self.classes_dict = dict(zip(range(len(temp)), temp)) return self.classes_dict def get_all(self, mode): """ mode: ignore fill0 fillx stretch crop """ train, val, test = self.load() if any([train, val, test]): train_x, train_y = train val_x, val_y = val test_x = test else: train_x, train_y = self.get_data('train', mode) val_x, val_y = self.get_data('val', mode) test_x = self.get_data('test', mode) self.save( [train_x, train_y], [val_x, val_y], test_x) return [train_x, train_y], [val_x, val_y], test_x def get_data(self, name, img_mode, suffix='.jpg'): if name != 'test': images, labels = [], [] for item in self.classes_dict: _dir = f"{self.dsdir}/{name}/{self.classes_dict[item]}/" for i in range(len(os.listdir(_dir))): img = self.img_func(_dir + f'{i}{suffix}', img_mode) images.append(img) labels.append(item) if self.shuffle: images, labels = _shuffle([images, labels]) return np.array(images), np.array(labels) else: images = [] _dir = f"{self.dsdir}/{name}/" if not os.path.exists(_dir): return None for files in os.listdir(_dir): img = self.img_func(_dir + files, img_mode) images.append(img) return np.array(images) def save(self, train, val, test=None, suffix='.gz'): file_list = [] num_train = len(train[0]) for i in range((num_train + self.pklen - 1) // self.pklen): if (i + 1) * self.pklen <= num_train: dtrain = { 'train_x': train[0][i*self.pklen:(i + 1)*self.pklen], 'train_y': train[1][i*self.pklen:(i + 1)*self.pklen], } else: dtrain = { 'train_x': train[0][i*self.pklen:], 'train_y': train[1][i*self.pklen:], } with gzip.open(f"{self.dsdir}/train{i}{suffix}", 'wb') as f: pickle.dump(dtrain, f) file_list.append(f'train{i}{suffix}\n') num_val = len(val[0]) for i in range((num_val + self.pklen - 1) // self.pklen): if (i + 1) * self.pklen <= num_val: dval = { 'val_x': val[0][i*self.pklen:(i + 1)*self.pklen], 'val_y': val[1][i*self.pklen:(i + 1)*self.pklen], } else: dval = { 'val_x': val[0][i*self.pklen:], 'val_y': val[1][i*self.pklen:], } with gzip.open(f"{self.dsdir}/val{i}{suffix}", 'wb') as f: pickle.dump(dval, f) file_list.append(f'val{i}{suffix}\n') if test != None: num_test = len(test) for i in range((num_test + self.pklen - 1) // self.pklen): if (i + 1) * self.pklen <= num_test: dtest = { 'test_x': test[i*self.pklen:(i + 1)*self.pklen], } else: dtest = { 'test_x': test[i*self.pklen:], } with gzip.open(f"{self.dsdir}/test{i}{suffix}", 'wb') as f: pickle.dump(dtest, f) file_list.append(f'test{i}{suffix}\n') with open(f"{self.dsdir}/{self.pklname}", 'w') as f: f.writelines(file_list) def load(self): if not os.path.exists(f"{self.dsdir}/{self.pklname}"): return [], [], [] with open(f"{self.dsdir}/{self.pklname}", 'r') as f: filelist = [i.strip() for i in f.readlines()] train_list = [i for i in filelist if 'train' in i] train_x, train_y = [], [] for i in train_list: with gzip.open(f"{self.dsdir}/{i}", 'rb') as f: train = pickle.load(f) train_x.append(train['train_x']) train_y.append(train['train_y']) train_x = np.concatenate(train_x) train_y = np.concatenate(train_y) val_list = [i for i in filelist if 'val' in i] val_x, val_y = [], [] for i in val_list: with gzip.open(f"{self.dsdir}/{i}", 'rb') as f: val = pickle.load(f) val_x.append(val['val_x']) val_y.append(val['val_y']) val_x = np.concatenate(val_x) val_y = np.concatenate(val_y) test_list = [i for i in filelist if 'test' in i] if test_list: test_x = [] for i in test_list: with gzip.open(f"{self.dsdir}/{i}", 'rb') as f: test = pickle.load(f) test_x.append(test['test_x']) test_x = np.concatenate(test_x) else: test_x = None return [train_x, train_y], [val_x, val_y], test_x def img_func(self, filename, mode): img = Image.open(filename) if img.mode != 'RGB': print(filename, img.mode) img = img.convert('RGB') if mode == 'ignore': img = np.array(img) elif mode == 'fill0': w, h = img.size if h > self.size[0] or w > self.size[1]: if h >= w: _w = int(w / h * self.size[0]) img = img.resize((_w, self.size[0])) if w > h: _h = int(h / w * self.size[1]) img = img.resize((self.size[1], _h)) w, h = img.size p_w = self.size[0] - w p_h = self.size[1] - h pad_w = (int(p_w / 2), p_w - int(p_w / 2)) pad_h = (int(p_h / 2), p_h - int(p_h / 2)) img =
np.array(img)
numpy.array
#!/usr/bin/python3 # -*- coding: utf-8 -*- from sys import argv from desert.helpers import filename from numpy import array from numpy import cos from numpy import pi from numpy import sin from numpy import zeros from numpy.random import random from desert import Desert from desert import stroke from desert.color import rgb from desert.color import white from desert.color import black from time import time TWOPI = 2.0*pi VERBOSE = 'v' def main(arg): with Desert(1000, show=True, verbose=VERBOSE)\ .init(fg=black(0.001), bg=white()) as c: density = 0.02 a = random(2)*TWOPI acc = zeros(2) noise = 0.000000005 rad = 0.45 resa = [] resb = [] for i in range(4000000): a += acc acc += (1-2*random(2))*noise resa.append((cos(a[0]),
sin(a[0])
numpy.sin
################################################################################ # Copyright (C) 2011-2014 <NAME> # # This file is licensed under the MIT License. ################################################################################ """ General numerical functions and methods. """ import itertools import numpy as np import scipy as sp #import scipy.linalg.decomp_cholesky as decomp import scipy.linalg as linalg import scipy.special as special import scipy.optimize as optimize import scipy.sparse as sparse #import scikits.sparse.cholmod as cholmod # THIS IS SOME NEW GENERALIZED UFUNC FOR LINALG FEATURE, NOT IN OFFICIAL NUMPY # REPO YET #import numpy.linalg._gufuncs_linalg as gula #import numpy.core.gufuncs_linalg as gula from . import misc def chol(C, ndim=1): if sparse.issparse(C): if ndim != 1: raise NotImplementedError() # Sparse Cholesky decomposition (returns a Factor object) return cholmod.cholesky(C) else: # Computes Cholesky decomposition for a collection of matrices. # The last 2*ndim axes of C are considered as the matrix. if ndim == 0: return np.sqrt(C) shape_original = np.shape(C)[-ndim:] C = ( C if ndim == 1 else misc.flatten_axes(C, ndim, ndim) ) if np.shape(C)[-1] != np.shape(C)[-2]: raise ValueError("Not square matrix w.r.t. ndim sense") U = np.empty(np.shape(C)) for i in misc.nested_iterator(np.shape(U)[:-2]): try: # Handle (0, 0) matrices. See: # https://github.com/scipy/scipy/issues/8056 U[i] = ( np.empty((0,0)) if np.size(C[i]) == 0 else linalg.cho_factor(C[i])[0] ) except np.linalg.linalg.LinAlgError: raise Exception("Matrix not positive definite") return ( U if ndim == 1 else misc.reshape_axes(U, shape_original, shape_original) ) def chol_solve(U, b, out=None, matrix=False, ndim=1): if isinstance(U, np.ndarray) or np.isscalar(U): if sparse.issparse(b): b = b.toarray() if ndim == 0: return (b / U) / U shape = np.shape(U)[-ndim:] U = ( U if ndim == 1 else misc.flatten_axes(U, ndim, ndim) ) if matrix: shape_b = np.shape(b)[-ndim:] B = ( b if ndim == 1 else misc.flatten_axes(b, ndim, ndim) ) B = transpose(B, ndim=1) U = U[...,None,:,:] else: B = ( b if ndim == 1 else misc.flatten_axes(b, ndim) ) # Allocate memory sh_u = U.shape[:-2] sh_b = B.shape[:-1] l_u = len(sh_u) l_b = len(sh_b) # Check which axis are iterated over with B along with U ind_b = [slice(None)] * l_b l_min = min(l_u, l_b) jnd_b = tuple(i for i in range(-l_min,0) if sh_b[i]==sh_u[i]) if out == None: # Shape of the result (broadcasting rules) sh = misc.broadcasted_shape(sh_u, sh_b) #out = np.zeros(np.shape(B)) out =
np.zeros(sh + B.shape[-1:])
numpy.zeros
from keras.preprocessing.image import load_img from keras.preprocessing.image import img_to_array from keras.preprocessing.image import array_to_img from tensorflow import keras from tensorflow.keras.preprocessing import image_dataset_from_directory from keras.callbacks import TensorBoard from time import time import tensorflow as tf import os import json import base64 from io import BytesIO from datetime import datetime from keras.optimizers import Adam from sklearn.model_selection import train_test_split import models as models import numpy as np import locale def train_target_score_model(imagesPath, modelPath, tensorboard_gcs_logs, epochs_count, batch_size): train_images_dir = imagesPath scores_file = os.path.join(imagesPath, "scores.json") IMAGE_SIZE = 128 with open(scores_file) as f: train_data = json.load(f) labels = [] img_data = [] img_index = 0 #tensorboard_gcs_logs = 'gs://dpa23/tarsanlogs' img_to_show = [] def add_image(img, rotation, score): labels.append(score) if rotation != 0: r_image = img.rotate(rotation) else: r_image = img img_array = img_to_array(r_image) / 255.0 img_data.append(img_array) for file_name, score in train_data.items(): full_file_name = os.path.join(train_images_dir, file_name) print("Loading {} with score {}".format(full_file_name, score)) img = load_img(full_file_name, color_mode="grayscale", target_size=(IMAGE_SIZE,IMAGE_SIZE), interpolation='bilinear') if img_index < 10: buffered = BytesIO() img.save(buffered, format="PNG") img_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8") img_to_show.append((img_base64, score, 0.0)) add_image(img, 0, score) add_image(img, 45, score) add_image(img, 90, score) add_image(img, 135, score) img_index = img_index + 1 np_labels = np.asfarray(labels) np_image_data = np.asfarray(img_data) # partition the data into training and testing splits using 75% of # the data for training and the remaining 25% for testing split = train_test_split(np_labels, np_image_data, test_size=0.25, random_state=42) (trainAttrX, testAttrX, trainImagesX, testImagesX) = split # find the largest score in the training set and use it to # scale the scores to the range [0, 1] maxScore = trainAttrX.max() trainY = trainAttrX / maxScore testY = testAttrX / maxScore # create our Convolutional Neural Network and then compile the model # using mean absolute percentage error as our loss, implying that we # seek to minimize the absolute percentage difference between our # score *predictions* and the *actual score* model = models.create_cnn(IMAGE_SIZE, IMAGE_SIZE, 1, regress=True) opt = Adam(lr=1e-3, decay=1e-3 / 200) model.compile(loss="mean_absolute_percentage_error", optimizer=opt) # Define Tensorboard as a Keras callback tensorboard = TensorBoard( log_dir=tensorboard_gcs_logs +'/' + datetime.now().strftime("%Y%m%d-%H%M%S"), histogram_freq=5, write_images=True, update_freq='epoch' ) keras_callbacks = [] if len(tensorboard_gcs_logs) > 2: keras_callbacks = [ tensorboard ] # train the model print("[INFO] training model...") model.fit(trainImagesX, trainY, validation_data=(testImagesX, testY), epochs=epochs_count, batch_size=batch_size, callbacks=keras_callbacks) print("[INFO] saving model to {} ...".format(modelPath)) model.save(modelPath) # make predictions on the testing data print("[INFO] predicting scores prices...") preds = model.predict(testImagesX) # compute the difference between the *predicted* scores and the # *actual* scores, then compute the percentage difference and # the absolute percentage difference diff = preds.flatten() - testY percentDiff = (diff / testY) * 100 absPercentDiff = np.abs(percentDiff) # compute the mean and standard deviation of the absolute percentage # difference mean =
np.mean(absPercentDiff)
numpy.mean
""" Dispersed Phases ================ Create several objects and functions to manipulate dispersed phase particles The `single_bubble_model`, `stratified_plume_model`, and `bent_plume_model` all must handle dispersed phase particles in several different ways. This module defines several particle classes that provide seamless interfaces to the `dbm` module. It also defines several functions that aid in manipulating common input data to create the inputs needed to initialize these particle classes. These classes and functions originated in the older versions of the `single_bubble_model` and `stratified_plume_model`. This module is a re-factorization of these modules during creation of the `bent_plume_model`, which allows all particle manipulations to reside in one place. Notes ----- These class objects and helper functions are used throughout the TAMOC modeling suite. See Also -------- `stratified_plume_model` : Predicts the plume solution for quiescent ambient conditions or weak crossflows, where the intrusion (outer plume) interacts with the upward rising plume in a double-plume integral model approach. Such a situation is handeled properly in the `stratified_plume_model` and would violate the assumption of non- iteracting Lagrangian plume elements as required in this module. `single_bubble_model` : Tracks the trajectory of a single bubble, drop or particle through the water column. The numerical solution, including the various object types and their functionality, used here follows the pattern in the `single_bubble_model`. The main difference is the more complex state space and governing equations. `bent_plume_model` : Simulates a multiphase plume as a Lagrangian plume model, which makes the model much more amenable to a crossflow. This model is similar to the `stratified_plume_model`, except that it does not have an outer plume that interacts with the inner plume (Lagrangian elements are independent). """ # <NAME>, October 2014, Texas A&M University <<EMAIL>>. from __future__ import (absolute_import, division, print_function) from tamoc import seawater from tamoc import dbm import numpy as np from scipy.optimize import fsolve import unicodedata from copy import copy # ---------------------------------------------------------------------------- # Define the Particle objects for the multiphase behavior in the TAMOC models # ---------------------------------------------------------------------------- class SingleParticle(object): """ Interface to the `dbm` module and container for model parameters This class provides a uniform interface to the `dbm` module objects and methods and stores the particle-specific model parameters. Because the methods for `dbm.FluidParticle` and `dbm.InsolubleParticle` sometimes have different inputs and different outputs, there needs to be a method to support these interface differences in a single location. This object solves that problem by providing a single interface and uniform outputs for the particle properties needed by the single bubble model. This also affords a convenient place to store the particle-specific model parameters and behavior, such as mass transfer reduction factor, etc., turning off heat transfer once the particle matches the ambient temperature and turning off the particle buoyancy once the particle is dissolved. Parameters ---------- dbm_particle : `dbm.FluidParticle` or `dbm.InsolubleParticle` object Object describing the particle properties and behavior m0 : ndarray Initial masses of the components of the `dbm` particle object (kg) T0 : float Initial temperature of the of `dbm` particle object (K) K : float, default = 1. Mass transfer reduction factor (--). K_T : float, default = 1. Heat transfer reduction factor (--). fdis : float, default = 1e-6 Fraction of the initial total mass (--) remaining when the particle should be considered dissolved. t_hyd : float, default = 0. Hydrate film formation time (s). Mass transfer is computed by clean bubble methods for t less than t_hyd and by dirty bubble methods thereafter. The default behavior is to assume the particle is dirty or hydrate covered from the release. lag_time : bool, default = True. Flag that indicates whether (True) or not (False) to use the biodegradation lag times data. Attributes ---------- particle : `dbm.FluidParticle` or `dbm.InsolubleParticle` object Stores the `dbm_particle` object passed to `__init__()`. composition : str list Copy of the `composition` attribute of the `dbm_particle` object. m0 : ndarray Initial masses (kg) of the particle components T0 : float Initial temperature (K) of the particle cp : float Heat capacity at constant pressure (J/(kg K)) of the particle. K : float Mass transfer reduction factor (--) K_T : float Heat transfer reduction factor (--) fdis : float Fraction of initial mass remaining as total dissolution (--) diss_indices : ndarray bool Indices of m0 that are non-zero. Notes ----- This object only provides an interface to the `return_all` and `diameter` methods of the `dbm` module objects. The intent is to be as fast as possible while providing a single location for the necessary `if`-statements needed to select between soluble and insoluble particle methods and facilitate turning heat transfer and dissolution on and off as necessary at the simulation progresses. Dissolution is turned off component by component as each components mass becomes fdis times smaller than the initial mass. Once all of the initial components have been turned off, the particle is assumed to have a density equation to the ambient water and a slip velocity of zero. Heat transfer is turned off once the particle comes within 0.1 K of the ambient temperature. Thereafter, the temperature is forced to track the ambient temperature. """ def __init__(self, dbm_particle, m0, T0, K=1., K_T=1., fdis=1.e-6, t_hyd=0., lag_time=True): super(SingleParticle, self).__init__() # Make sure the masses are in a numpy array if not isinstance(m0, np.ndarray): if not isinstance(m0, list): m0 = np.array([m0]) else: m0 = np.array(m0) # Store the input parameters self.particle = dbm_particle self.composition = dbm_particle.composition self.m0 = m0 self.T0 = T0 self.cp = seawater.cp() * 0.5 self.lag_time = lag_time # Store the particle-specific model parameters self.K = K self.K_T = K_T self.fdis = fdis self.t_hyd = t_hyd self.lag_time = lag_time # Store parameters to track the dissolution of the initial masses self.diss_indices = self.m0 > 0 def properties(self, m, T, P, Sa, Ta, t): """ Return the particle properties from the discrete bubble model Provides a single interface to the `return_all` methods of the fluid and insoluble particle objects defined in the `dbm` module. This method also applies the particle-specific model parameters to adjust the mass and heat transfer and determine the dissolution state. Parameters ---------- m : float mass of the particle (kg) T : float particle temperature (K) P : float particle pressure (Pa) Sa : float salinity of ambient seawater (psu) Ta : float temperature of ambient seawater (K) t : float age of the particle--time since it was released into the water column (s) Returns ------- A tuple containing: us : float slip velocity (m/s) rho_p : float particle density (kg/m^3) A : float surface area (m^2) Cs : ndarray, size (nc) solubility (kg/m^3) K * beta : ndarray, size (nc) effective mass transfer coefficient(s) (m/s) K_T * beta_T : float effective heat transfer coefficient (m/s) T : float temperature of the particle (K) Notes ----- For insoluble particles, `Cs` and `beta` are undefined. This method returns values for these variables that will result in no dissolution and will also protect model simulations from undefined mathematical operations (e.g., divide by zero). """ # Turn off heat transfer when at equilibrium. This will be a # persistent change, so it only has to happen once. if self.K_T > 0. and np.abs(Ta - T) < 0.5: self.K_T = 0. # Use the right temperature if self.K_T == 0.: T = Ta # Decide which slip velocity and mass and heat transfer to use if t < self.t_hyd: # Treat the particle as clean for slip velocity and mass # transfer status = 1 else: # Use the dirty bubble slip velocity and mass transfer status = -1 # Distinguish between soluble and insoluble particles if self.particle.issoluble: # Get the DBM results m[m<0] = 0. # stop oscillations at small mass shape, de, rho_p, us, A, Cs, beta, beta_T = \ self.particle.return_all(m, T, P, Sa, Ta, status) # Turn off dissolution for "dissolved" components frac_diss = np.ones(np.size(m)) frac_diss[self.diss_indices] = \ m[self.diss_indices] / self.m0[self.diss_indices] beta[frac_diss < self.fdis] = 0. # Shut down bubble forces when particles fully dissolve if np.sum(beta[self.diss_indices]) == 0.: # Injected chemicals have dissolved if np.sum(m[self.diss_indices]) > \ np.sum(m[~self.diss_indices]): # The whole particle has dissolved us = 0.0 rho_p = seawater.density(Ta, Sa, P) else: # Get the particle properties shape, de, rho_p, us, A, beta_T = \ self.particle.return_all(m[0], T, P, Sa, Ta, status) beta = np.array([]) Cs = np.array([]) # Return the particle properties return (us, rho_p, A, Cs, self.K * beta, self.K_T * beta_T, T) def diameter(self, m, T, P, Sa, Ta): """ Compute the diameter of a particle from mass and density Computes the diameter of a particle using the methods in the `dbm` module. This method is used in the post-processor of the `Model` object, but not in the actual simulation. Parameters ---------- m : float mass of the particle (kg) T : float particle temperature (K) P : float particle pressure (Pa) Sa : float salinity of ambient seawater (psu) Ta : float temperature of ambient seawater (K) Returns ------- de : float diameter of the particle (m) """ # Distinguish between soluble and insoluble particles if self.particle.issoluble: de = self.particle.diameter(m, T, P) else: de = self.particle.diameter(m, T, P, Sa, Ta) # Return the diameter return de def biodegradation_rate(self, t): """ Compute the biodegradation rate constants Computes the biodegradation rate constants using the method in the `dbm` module. Parameters ---------- t : float current simulation time (s) Returns ------- k_bio : ndarray, size (nc) first-order biodegradation rate constants (1/s) """ return self.particle.biodegradation_rate(t, self.lag_time) class PlumeParticle(SingleParticle): """ Interface to the `dbm` module and container for the model parameters As in the `single_bubble_model.Particle` class, this object provides a uniform interface to the `dbm` module objects and captures the particle-specific model parameters. Parameters ---------- dbm_particle : `dbm.FluidParticle` or `dbm.InsolubleParticle` object Object describing the particle properties and behavior m0 : ndarray Initial masses of one particle for the components of the `dbm_particle` object (kg) T0 : float Initial temperature of the of `dbm` particle object (K) nb0 : float Initial number flux of particles at the release (--) lambda_1 : float spreading rate of the dispersed phase in a plume (--) P : float Local pressure (Pa) Sa : float Local salinity surrounding the particle (psu) Ta : float Local temperature surrounding the particle (K) K : float, default = 1. Mass transfer reduction factor (--). K_T : float, default = 1. Heat transfer reduction factor (--). fdis : float, default = 0.01 Fraction of the initial total mass (--) remaining when the particle should be considered dissolved. t_hyd : float, default = 0. Hydrate film formation time (s). Mass transfer is computed by clean bubble methods for t less than t_hyd and by dirty bubble methods thereafter. The default behavior is to assume the particle is dirty or hydrate covered from the release. lag_time : bool, default = True. Flag that indicates whether (True) or not (False) to use the biodegradation lag times data. Attributes ---------- particle : `dbm.FluidParticle` or `dbm.InsolubleParticle` object Stores the `dbm_particle` object passed to `__init__()`. composition : str list Copy of the `composition` attribute of the `dbm_particle` object. m0 : ndarray Initial masses (kg) of the particle components T0 : float Initial temperature (K) of the particle cp : float Heat capacity at constant pressure (J/(kg K)) of the particle. K : float Mass transfer reduction factor (--) K_T : float Heat transfer reduction factor (--) fdis : float Fraction of initial mass remaining as total dissolution (--) diss_indices : ndarray bool Indices of m0 that are non-zero. nb0 : float Initial number flux of particles at the release (--) lambda_1 : float Spreading rate of the dispersed phase in a plume (--) m : ndarray Current masses of the particle components (kg) T : float Current temperature of the particle (K) us : float Slip velocity (m/s) rho_p : float Particle density (kg/m^3) A : float Particle surface area (m^2) Cs : ndarray Solubility of each dissolving component in the particle (kg/m^3) beta : ndarray Mass transfer coefficients (m/s) beta_T : float Heat transfer coefficient (m/s) See Also -------- single_bubble_model.Particle Notes ----- This object inherits the `single_bubble_model.Particle` object, which defines the attributes: `particle`, `composition`, `m0`, `T0`, `cp`, `K`, `K_T`, `fdis`, and `diss_indices` and the methods `single_bubble_model.Particle.properties`, and `single_bubble_model.Particle.diameter`. """ def __init__(self, dbm_particle, m0, T0, nb0, lambda_1, P, Sa, Ta, K=1., K_T=1., fdis=1.e-6, t_hyd=0., lag_time=True): super(PlumeParticle, self).__init__(dbm_particle, m0, T0, K, K_T, fdis, t_hyd, lag_time) # Store the input variables related to the particle description self.nb0 = nb0 # Store the model parameters self.lambda_1 = lambda_1 # Set the local masses and temperature to their initial values. The # particle age is zero at instantiation self.update(m0, T0, P, Sa, Ta, 0.) def update(self, m, T, P, Sa, Ta, t): """ Store the instantaneous values of the particle properties During the simulation, it is often helpful to keep the state space variables for each particle stored within the particle, especially since each particle type (soluble or insoluble) can have different sizes of arrays for m. Parameters ---------- m : ndarray Current masses (kg) of the particle components T : float Current temperature (K) of the particle P : float Local pressure (Pa) Sa : float Local salinity surrounding the particle (psu) Ta : float Local temperature surrounding the particle (K) t : float age of the particle--time since it was released into the water column (s) """ # Make sure the masses are in a numpy array if not isinstance(m, np.ndarray): if not isinstance(m, list): m = np.array([m]) else: m = np.array(m) # Update the variables with their currrent values self.m = m if np.sum(self.m) > 0.: self.us, self.rho_p, self.A, self.Cs, self.beta, \ self.beta_T, self.T = self.properties(m, T, P, Sa, Ta, t) self.k_bio = self.biodegradation_rate(t) else: self.us = 0. self.rho_p = seawater.density(Ta, Sa, P) self.A = 0. self.Cs = np.zeros(len(self.composition)) self.beta = np.zeros(len(self.composition)) self.beta_T = 0. self.T = Ta self.k_bio = np.zeros(len(self.composition)) # ---------------------------------------------------------------------------- # Functions that help to create SingleParticle and PlumeParticle objects # ---------------------------------------------------------------------------- def initial_conditions(profile, z0, dbm_particle, yk, q, q_type, de, T0=None): """ Define standard initial conditions for a PlumeParticle from flow rate Returns the standard variables describing a particle as needed to initializae a PlumeParticle object from specification of the dispersed phase flow rate. Parameters ---------- profile : `ambient.Profile` object The ambient CTD object used by the simulation. z0 : float Depth of the release point (m) dbm_particle : `dbm.FluidParticle` or `dbm.InsolubleParticle` object Object describing the particle properties and behavior yk : ndarray Vector of mol fractions of each component of the dispersed phase particle. If the particle is a `dbm.InsolubleParticle`, then yk should be equal to one. q : float Flux of the dispersed phase, either as the volume flux (m^3/s) at standard conditions, defined as 0 deg C and 1 bar, or as mass flux (kg/s). q_type : int Determines the type of flux units. 0: we want the mass of a single particle (hence q = None since it is currently unknown), 1: q is volume flux, 2: q is mass flux de : float Initial diameter (m) of the particle T0 : float, default = None Initial temperature of the of `dbm` particle object (K). If None, then T0 is set equal to the ambient temperature. Returns ------- m0 : ndarray Initial masses of the components of one particle in the `dbm` particle object (kg) T0 : float Initial temperature of the of `dbm` particle object (K) nb0 : float Initial number flux of particles at the release (--) P : float Local pressure (Pa) Sa : float Local salinity surrounding the particle (psu) Ta : float Local temperature surrounding the particle (K) """ # Make sure yk is an array if not isinstance(yk, np.ndarray): if not isinstance(yk, list): yk = np.array([yk]) else: yk = np.array(yk) # Get the ambient conditions at the release Ta, Sa, P = profile.get_values(z0, ['temperature', 'salinity', 'pressure']) # Get the particle temperature if T0 is None: T0 = copy(Ta) # Compute the density at standard and in situ conditions if dbm_particle.issoluble: mf = dbm_particle.mass_frac(yk) rho_N = dbm_particle.density(mf, 273.15, 1.e5) rho_p = dbm_particle.density(mf, T0, P) else: mf = 1. rho_N = dbm_particle.density(273.15, 1.e5, 0., 273.15) rho_p = dbm_particle.density(T0, P, Sa, Ta) # Get the mass and number flux of particles if q_type == 0: # Compute the mass flux of a single particle from the given diameter if dbm_particle.issoluble: m0 = dbm_particle.masses_by_diameter(de, T0, P, yk) else: m0 = dbm_particle.mass_by_diameter(de, T0, P, Sa, Ta) nb0 = 1. else: if q_type == 1: # Compute the total mass flux from the given volume flux at STP m_dot = q * rho_N else: # The input flux is the total mass flux m_dot = q # Get the source volume flux and particle number flux Q = m_dot / rho_p nb0 = Q / (np.pi * de**3 / 6.) # Get the initial particle mass(es) m0 = m_dot / nb0 * mf # Return the standard variables return (m0, T0, nb0, P, Sa, Ta) # ---------------------------------------------------------------------------- # Functions to save and load a particle to an open netCDF4 dataset # ---------------------------------------------------------------------------- def save_particle_to_nc_file(nc, chem_names, particles, K_T0): """ Write the particle attributes to a netCDF output file Writes all of the object attributes for a `SingleParticle` or `PlumeParticle` object to a netCDF output file. Parameters ---------- nc : `netCDF4.Dataset` object A `netCDF4.Dataset` object that is open and where the particle attributes should be written chem_names : str list A list of chemical names in the composition of the `dbm` objects in these particles particles : list of `Particle` objects List of `SingleParticle`, `PlumeParticle`, or `bent_plume_model.Particle` objects describing each dispersed phase in the simulation K_T0 : ndarray Array of the initial values of the heat transfer reduction factor. """ # Make sure the particles variable is iterable if not isinstance(particles, list): particles = [particles] # Make sure K_T0 is an array if not isinstance(K_T0, np.ndarray): if not isinstance(K_T0, list): K_T0 = np.array([K_T0]) else: K_T0 = np.array(K_T0) # Count the number of particles nparticles = nc.createDimension('nparticles', len(particles)) ngroups = nc.createDimension('ngroups', 15) if len(chem_names) > 0: nchems = nc.createDimension('nchems', len(chem_names)) else: nchems = nc.createDimension('nchems', 1) num = nc.createDimension('num', 1) # Save the particle composition nc.composition = ' '.join(chem_names) # Create the dataset descriptions for all the particle variables particle_type = nc.createVariable('particle_type', 'i4', ('num',)) particle_type.long_name = 'dispersed_phases Particle type' particle_type.standard_name = 'particle_type' particle_type.units = '0: Single, 1:Plume, 2:Bent plume particle' issoluble = nc.createVariable('issoluble', 'i4', ('nparticles',)) issoluble.long_name = 'solubility (0: false, 1: true)' issoluble.standard_name = 'issoluble' issoluble.units = 'boolean' isair = nc.createVariable('isair', 'i4', ('nparticles',)) isair.long_name = 'fluid is air (0: false, 1: true)' isair.standard_name = 'isair' isair.units = 'boolean' isfluid = nc.createVariable('isfluid', 'i4', ('nparticles',)) isfluid.long_name = 'Fluid status (0: false, 1: true)' isfluid.standard_name = 'isfluid' isfluid.units = 'boolean' iscompressible = nc.createVariable('iscompressible', 'i4', ('nparticles',)) iscompressible.long_name = 'Compressibility (0: false, 1: true)' iscompressible.standard_name = 'iscompressible' iscompressible.units = 'boolean' calc_delta = nc.createVariable('calc_delta', 'i4', ('nparticles',)) calc_delta.long_name = 'Calculate delta (-1: false, 1: true)' calc_delta.standard_name = 'calc_delta' calc_delta.units = 'boolean' extern_data = nc.createVariable('extern_data', 'i4', ('nparticles',)) extern_data.long_name = 'External chem database (0: false, 1: true)' extern_data.standard_name = 'extern_data' extern_data.units = 'boolean' fp_type = nc.createVariable('fp_type', 'i4', ('nparticles',)) fp_type.long_name = 'fluid phase (0: gas, 1: liquid, 2: solid)' fp_type.standard_name = 'fp_type' fp_type.units = 'nondimensional' rho_p = nc.createVariable('rho_p', 'f8', ('nparticles',)) rho_p.long_name = 'particle density' rho_p.standard_name = 'rho_p' rho_p.units = 'kg/m^3' gamma = nc.createVariable('gamma', 'f8', ('nparticles',)) gamma.long_name = 'API Gravity' gamma.standard_name = 'gamma' gamma.units = 'deg API' beta = nc.createVariable('beta', 'f8', ('nparticles',)) beta.long_name = 'thermal expansion coefficient' beta.standard_name = 'beta' beta.units = 'Pa^(-1)' co = nc.createVariable('co', 'f8', ('nparticles',)) co.long_name = 'isothermal compressibility coefficient' co.standard_name = 'co' co.units = 'K^(-1)' sigma_correction = nc.createVariable('sigma_correction', 'f8', ('nparticles',)) sigma_correction.long_name = 'interfacial tension reduction factor (--)' sigma_correction.standard_name = 'sigma_correction' sigma_correction.units = 'nondimensional' delta_groups = nc.createVariable('delta_groups', 'f8', ('nparticles', 'nchems', 'ngroups')) delta_groups.long_name = 'group contribution method delta groups' delta_groups.standard_name = 'delta_groups' delta_groups.units = 'nondimensional' m0 = nc.createVariable('m0', 'f8', ('nparticles', 'nchems')) m0.long_name = 'initial mass flux' m0.standard_name = 'm0' m0.units = 'kg/s' T0 = nc.createVariable('T0', 'f8', ('nparticles')) T0.long_name = 'initial temperature' T0.standard_name = 'T0' T0.units = 'K' K = nc.createVariable('K', 'f8', ('nparticles',)) K.long_name = 'mass transfer reduction factor' K.standard_name = 'K' K.units = 'nondimensional' K_T = nc.createVariable('K_T', 'f8', ('nparticles',)) K_T.long_name = 'heat transfer reduction factor' K_T.standard_name = 'K_T' K_T.units = 'nondimensional' fdis = nc.createVariable('fdis', 'f8', ('nparticles',)) fdis.long_name = 'dissolution criteria' fdis.standard_name = 'fdis' fdis.units = 'nondimensional' t_hyd = nc.createVariable('t_hyd', 'f8', ('nparticles',)) t_hyd.long_name = 'hydrate formation time' t_hyd.standard_name = 't_hyd' t_hyd.units = 's' # Check if these are plume particle objects try: particles[0].integrate # Must be bent_plume_model.Particle object particle_type[0] = 2 nb0 = nc.createVariable('nb0', 'f8', ('nparticles')) nb0.long_name = 'initial bubble number flux' nb0.standard_name = 'nb0' nb0.units = 's^(-1)' nbe = nc.createVariable('nbe', 'f8', ('nparticles')) nbe.long_name = 'number of bubbles following plume element' nbe.standard_name = 'nbe' nbe.units = 'count' lambda_1 = nc.createVariable('lambda_1', 'f8', ('nparticles')) lambda_1.long_name = 'bubble spreading ratio' lambda_1.standard_name = 'lambda_1' lambda_1.units = 'nondimensional' integrate = nc.createVariable('integrate', 'i4', ('nparticles',)) integrate.long_name = 'Particle status (0: false, 1: true)' integrate.standard_name = 'integrate' integrate.units = 'boolean' sim_stored = nc.createVariable('sim_stored', 'i4', ('nparticles',)) sim_stored.long_name = 'Tracking state (0: false, 1: true)' sim_stored.standard_name = 'sim_stored' sim_stored.units = 'boolean' farfield = nc.createVariable('farfield', 'i4', ('nparticles',)) farfield.long_name = 'Farfield simualtion (0: false, 1: true)' farfield.standard_name = 'farfield' farfield.units = 'boolean' tp = nc.createVariable('tp', 'f8', ('nparticles')) tp.long_name = 'time' tp.standard_name = 't' tp.units = 's' xp = nc.createVariable('xp', 'f8', ('nparticles')) xp.long_name = 'x-coordinate' xp.standard_name = 'x' xp.units = 'm' yp = nc.createVariable('yp', 'f8', ('nparticles')) yp.long_name = 'y-coordinate' yp.standard_name = 'y' yp.units = 'm' zp = nc.createVariable('zp', 'f8', ('nparticles')) zp.long_name = 'z-coordinate' zp.standard_name = 'z' zp.units = 'm' zp.axis = 'Z' zp.positive = 'down' te = nc.createVariable('te', 'f8', ('nparticles')) te.long_name = 'particle exit time' te.standard_name = 'te' te.units = 's' xe = nc.createVariable('xe', 'f8', ('nparticles')) xe.long_name = 'particle exit x-coordinate' xe.standard_name = 'xe' xe.units = 'm' ye = nc.createVariable('ye', 'f8', ('nparticles')) ye.long_name = 'particle exit y-coordinate' ye.standard_name = 'ye' ye.units = 'm' ze = nc.createVariable('ze', 'f8', ('nparticles')) ze.long_name = 'particle exit z-coordinate' ze.standard_name = 'ze' ze.units = 'm' ze.axis = 'Z' ze.positive = 'down' except AttributeError: try: particles[0].nb0 # Must be PlumeParticle object particle_type[0] = 1 nb0 = nc.createVariable('nb0', 'f8', ('nparticles')) nb0.long_name = 'initial bubble number flux' nb0.standard_name = 'nb0' nb0.units = 's^(-1)' lambda_1 = nc.createVariable('lambda_1', 'f8', ('nparticles')) lambda_1.long_name = 'bubble spreading ratio' lambda_1.standard_name = 'lambda_1' lambda_1.units = 'nondimensional' except AttributeError: particle_type[0] = 0 # Check if we need to reserve space to store an external chemical data # base of user_data next_chems = 0 for i in range(len(particles)): if particles[i].particle.issoluble: if len(particles[i].particle.user_data) > next_chems: next_chems = len(particles[i].particle.user_data) # Python 3 will not index a dict_keys() object because that # is not a good thing to do. However, that is what we do # below...hence, we need to make the dict_keys into a list user_composition = \ list(particles[i].particle.user_data.keys()) if next_chems > 0: next_chems = nc.createDimension('next_chems', next_chems) nc.user_composition = ' '.join(user_composition) M = nc.createVariable('M', 'f8', ('nparticles', 'next_chems')) M.long_name = 'molecular weight' M.standard_name = 'M' M.units = 'kg/mol' Pc = nc.createVariable('Pc', 'f8', ('nparticles', 'next_chems')) Pc.long_name = 'pressure at the critical point' Pc.standard_name = 'Pc' Pc.units = 'Pa' Tc = nc.createVariable('Tc', 'f8', ('nparticles', 'next_chems')) Tc.long_name = 'temperature at the critical point' Tc.standard_name = 'Tc' Tc.units = 'K' Vc = nc.createVariable('Vc', 'f8', ('nparticles', 'next_chems')) Vc.long_name = 'molar volume at the critical point' Vc.standard_name = 'Vc' Vc.units = 'm^3/mol' Tb = nc.createVariable('Tb', 'f8', ('nparticles', 'next_chems')) Tb.long_name = 'boiling point' Tb.standard_name = 'Tb' Tb.units = 'K' Vb = nc.createVariable('Vb', 'f8', ('nparticles', 'next_chems')) Vb.long_name = 'molar volume at the boiling point' Vb.standard_name = 'Vb' Vb.units = 'm^3/mol' omega = nc.createVariable('omega', 'f8', ('nparticles', 'next_chems')) omega.long_name = 'acentric factor' omega.standard_name = 'omega' omega.units = 'nondimensional' kh_0 = nc.createVariable('kh_0', 'f8', ('nparticles', 'next_chems')) kh_0.long_name = 'Henrys law constant at 298.15 K' kh_0.standard_name = 'kh_0' kh_0.units = 'kg/(m^3 Pa)' neg_dH_solR = nc.createVariable('neg_dH_solR', 'f8', ('nparticles', 'next_chems')) neg_dH_solR.long_name = 'negative of the enthalpy of solution / R' neg_dH_solR.standard_name = 'neg_dH_solR' neg_dH_solR.units = 'K' nu_bar = nc.createVariable('nu_bar', 'f8', ('nparticles', 'next_chems')) nu_bar.long_name = 'specific volume at infinite dilution' nu_bar.standard_name = 'nu_bar' nu_bar.units = 'm^3/mol' B = nc.createVariable('B', 'f8', ('nparticles', 'next_chems')) B.long_name = 'diffusivity model coefficient B' B.standard_name = 'B' B.units = 'm^2/s' dE = nc.createVariable('dE', 'f8', ('nparticles', 'next_chems')) dE.long_name = 'diffusivity model coefficient dE' dE.standard_name = 'dE' dE.units = 'J/mol' K_salt = nc.createVariable('K_salt', 'f8', ('nparticles', 'next_chems')) K_salt.long_name = 'Setschenow salting out correction for solubility' K_salt.standard_name = 'K_salt' K_salt.units = 'm^3/mol' # Store the values for each particle in the list for i in range(len(particles)): # Store the variables needed to create dbm particle objects if particles[i].particle.issoluble: issoluble[i] = 1 isfluid[i] = 1 isair[i] = particles[i].particle.isair iscompressible[i] = 1 fp_type[i] = particles[i].particle.fp_type calc_delta[i] = particles[i].particle.calc_delta if len(particles[i].particle.user_data) == 0: extern_data[i] = 0 else: extern_data[i] = 1 user_data = particles[i].particle.user_data for j in range(len(user_composition)): M[i,j] = user_data[user_composition[j]]['M'] Pc[i,j] = user_data[user_composition[j]]['Pc'] Tc[i,j] = user_data[user_composition[j]]['Tc'] Vc[i,j] = user_data[user_composition[j]]['Vc'] Tb[i,j] = user_data[user_composition[j]]['Tb'] Vb[i,j] = user_data[user_composition[j]]['Vb'] omega[i,j] = user_data[user_composition[j]]['omega'] kh_0[i,j] = user_data[user_composition[j]]['kh_0'] neg_dH_solR[i,j] = \ user_data[user_composition[j]]['-dH_solR'] nu_bar[i,j] = user_data[user_composition[j]]['nu_bar'] B[i,j] = user_data[user_composition[j]]['B'] dE[i,j] = user_data[user_composition[j]]['dE'] K_salt[i,j] = user_data[user_composition[j]]['K_salt'] sigma_correction[i] = particles[i].particle.sigma_correction if particles[i].particle.calc_delta: delta_groups[i,:,:] = particles[i].particle.delta_groups else: delta_groups[i,:,:] = np.zeros((len(chem_names),15)) m0[i,:] = particles[i].m0 rho_p[i] = -1. gamma[i] = -1. beta[i] = -1. co[i] = -1. else: issoluble[i] = 0 isair[i] = 0 if particles[i].particle.isfluid: isfluid[i] = 1 else: isfluid[i] = 0 if particles[i].particle.iscompressible: iscompressible[i] = 1 else: iscompressible[i] = 0 fp_type[i] = 3 calc_delta[i] = -1 sigma_correction[i] = 1. m0[i,0] = particles[i].m0 rho_p[i] = particles[i].particle.rho_p gamma[i] = particles[i].particle.gamma beta[i] = particles[i].particle.beta co[i] = particles[i].particle.co # Store the variables needed to create dispersed_phases SingleParticle # or PlumeParticle objects T0[i] = particles[i].T0 K[i] = particles[i].K K_T[i] = K_T0[i] fdis[i] = particles[i].fdis t_hyd[i] = particles[i].t_hyd if particle_type[0] == 1 or particle_type[0] == 2: nb0[i] = particles[i].nb0 lambda_1[i] = particles[i].lambda_1 if particle_type[0] == 2: nb0[i] = particles[i].nb0 nbe[i] = particles[i].nbe lambda_1[i] = particles[i].lambda_1 integrate[i] = particles[i].integrate sim_stored[i] = particles[i].sim_stored farfield[i] = particles[i].farfield tp[i] = particles[i].t xp[i] = particles[i].x yp[i] = particles[i].y zp[i] = particles[i].z try: te[i] = particles[i].te xe[i] = particles[i].xe ye[i] = particles[i].ye ze[i] = particles[i].ze except: pass def load_particle_from_nc_file(nc): """ Read the complete `particles` list from a netCDF output file Creates the `particles` list of `SingleParticle`, `PlumeParticle`, or `bent_plume_model.Particle` objects from the attributes stored in a netCDF output file. Parameters ---------- nc : `netCDF4.Dataset` object A `netCDF4.Dataset` object that is open and where the particle attributes should be written particle_type : int The particle type is either 0: `SingleParticle`, 1: `PlumeParticle` or 2: `bent_plume_model.Particle` X0 : ndarray Vector of initial positions for the `bent_plume_model.Particle` objects. """ # All particles have the same composition chem_names = str(nc.composition).split() # Load each particle object separately particles = [] for i in range(len(nc.dimensions['nparticles'])): # Create the correct dbm object if nc.variables['issoluble'][i]: if nc.variables['extern_data'][i]: user_data = {} user_composition = str(nc.user_composition).split() for j in range(len(user_composition)): user_data[user_composition[j]] = {} user_data[user_composition[j]]['M'] = \ nc.variables['M'][i,j] user_data[user_composition[j]]['Pc'] = \ nc.variables['Pc'][i,j] user_data[user_composition[j]]['Tc'] = \ nc.variables['Tc'][i,j] user_data[user_composition[j]]['Vc'] = \ nc.variables['Vc'][i,j] user_data[user_composition[j]]['Tb'] = \ nc.variables['Tb'][i,j] user_data[user_composition[j]]['Vb'] = \ nc.variables['Vb'][i,j] user_data[user_composition[j]]['omega'] = \ nc.variables['omega'][i,j] user_data[user_composition[j]]['kh_0'] = \ nc.variables['kh_0'][i,j] user_data[user_composition[j]]['-dH_solR'] = \ nc.variables['neg_dH_solR'][i,j] user_data[user_composition[j]]['nu_bar'] = \ nc.variables['nu_bar'][i,j] user_data[user_composition[j]]['B'] = \ nc.variables['B'][i,j] user_data[user_composition[j]]['dE'] = \ nc.variables['dE'][i,j] user_data[user_composition[j]]['K_salt'] = \ nc.variables['K_salt'][i,j] else: user_data = {} if nc.variables['calc_delta'][i]: delta_groups = nc.variables['delta_groups'][i,:,:] else: delta_groups = None particle = dbm.FluidParticle(chem_names, fp_type=nc.variables['fp_type'][i], user_data=user_data, delta_groups=delta_groups, isair=nc.variables['isair'][i], sigma_correction=nc.variables['sigma_correction'][i]) m0 = np.array(nc.variables['m0'][i,:]) else: if nc.variables['isfluid'][i]: isfluid = True else: isfluid = False if nc.variables['iscompressible'][i]: iscompressible = True else: iscompressible = False particle = dbm.InsolubleParticle(isfluid, iscompressible, rho_p=nc.variables['rho_p'][i], gamma=nc.variables['gamma'][i], beta=nc.variables['beta'][i], co=nc.variables['co'][i]) m0 =
np.array([nc.variables['m0'][i,0]])
numpy.array
import numpy as np import matplotlib.pyplot as plt import math import matplotlib.patches as patches import matplotlib.animation as animation import gym import random from datetime import date float_formatter = "{:.2f}".format np.set_printoptions(formatter={'float_kind':float_formatter}) import numpy as np #%matplotlib qt import matplotlib.pyplot as plt import math import matplotlib.patches as patches from matplotlib.collections import PatchCollection import matplotlib.animation as animation from matplotlib.offsetbox import TextArea, DrawingArea, OffsetImage, AnnotationBbox import matplotlib.image as mpimg float_formatter = "{:.2f}".format np.set_printoptions(formatter={'float_kind':float_formatter}) class UnbreakableSeaweed(gym.Env): """ Description: A one D model of Aplysia californica feeding. The goal is to ingest the most edible food Source: This enviornment cooresponds to the model of Aplysia feeding presented in Control for Multifunctionality: Bioinspired Control Based on Feeding in Aplysia californica 2 Observation (7-element): Type: Num Observation Min Max 0 x_h 0 1 1 x_g 0 1 2 force_on_object -Inf Inf 3 pressure_grasper -Inf Inf 4 pressure_jaws -Inf Inf 5 edible -1 1 6 grasper_friction_state 0 1 Actions (32-element): Type: 5 element array element 0 - B7 state element 1 - B6/B9/B3 state element 2 - B 8a/b state element 3 - B31/B32 state element 4 - B38 state Control frequency: 20 Hz Reward: Reward is proportional to the amount of seaweed ingested Episode Termination: Episode is greater than max_steps_per_iteration. Default: 1000 """ ##properties for visualization #define the location of the ground plane x_ground = np.array([[0],[0]]) len_ground_line = 5 #define the location of the force transducer x_transducer = x_ground + np.array([[8],[0]]) len_transducer_line = 5 #define location and shape of head x_H = x_ground + np.array([[0],[0]]) x_H_width = 1 x_H_height = 4 #define the extents of the grasper protraction/retraction path grasper_origin = x_H + np.array([[0],[0]]) grasper_full = grasper_origin + np.array([[1],[0]]) #define the starting position for the bottom of the grasper along this track x_R = grasper_origin + np.array([[0],[0]]) #specify vectors based on the grasper in the upright position theta_grasper_initial = math.pi/2 #specify the grasper radius r_grasper = 1 grasper_offset = 1 #define the positions of the I2 muscle origins x_I2_Borigin = grasper_origin + np.array([[0],[0]]) x_I2_Aorigin = grasper_origin + np.array([[0],[2*r_grasper]]) #define the position of the hinge origin x_hinge_origin = grasper_origin + np.array([[0],[0]]) #specify the angle relative to horizontal for each of the attachment points fixed on the grasper surface theta_s = 0 theta_I2_A = math.pi/6 theta_I2_B = math.pi/6 #plot line representing ground line_ground =[] #plot a dot at the origin dot_ground =[] #plot line representing force transducer line_transducer =[] #plot line representing track line_grapser_track =[] #plot line from R to G line_RG =[] #plot dot at point R dot_R =[] #plot dot at point G dot_G =[] #plot dot at point S dot_S =[] #plot dot at I2 attachment point A dot_I2_A =[] #plot dot at I2 attachment point B dot_I2_B =[] #plot dot at I2 attachment point A dot_I2_Aorigin =[] #plot dot at I2 attachment point B dot_I2_Borigin =[] #draw grasper draw_circle =[] #draw head head =[] dot_H_spring =[] #draw head spring as dashed line line_H_spring =[] #draw grasper to head spring as dashed line line_G_spring =[] preset_inputs = 0 generat_plots_toggle = 0 init_reward = 0.0 init_force_level = 'low' high_threshold = 4 low_threshold = 40 output_expert_mean =
np.load('output_expert_mean.npy')
numpy.load
import tensorflow as tf import numpy as np from FUNCTION import * def psnr(input, label, shave): assert (label.dtype == input.dtype) if shave != 0: input = input[shave:-shave, shave:-shave, :] label = label[shave:-shave, shave:-shave, :] diff = np.int32(label) -
np.int32(input)
numpy.int32
""" Generating target function, featurizer, and train/validation/test splits for the Lasso homework. Author: <NAME> <<EMAIL>> License: Creative Commons Attribution 4.0 International License """ import random import numpy as np import matplotlib.pyplot as plt import pickle def step_fn_generator(stepLoc=0): def f(x): ret = np.zeros(len(x)) ret[x >= stepLoc] = 1 return ret return f def linear_comb_generator(fns, coefs): def f(x): return sum(fns[i](x) * coefs[i] for i in range(len(fns))) return f def get_target_and_featurizer(num_basis_fns = 100, num_nonzero = 10, coefs_true=None): # We'll create a basis of step functions on the interval [0,1]. We'll then # construct a linear combination of these step functions to be our target # function. We'll construct a function to "featurize" an input in [0,1] # into the evaluations of all functions in the basis on the input. # Optionally: If coefs_true is provided, they will be used to generate # target_fn and featurize. # Construct basis, to be used for generating target function if coefs_true is not None: num_basis_fns = len(coefs_true) else: nonzero_indices = np.random.choice(num_basis_fns, num_nonzero) coefs_true = np.zeros(num_basis_fns) coefs_true[nonzero_indices] = np.random.randn(num_nonzero) all_basis_fns = [step_fn_generator(stepLoc=s) for s in np.linspace(0, 1, num_basis_fns, endpoint=False)] # Construct target function (the Bayes prediction function) target_fn = linear_comb_generator(all_basis_fns, coefs_true) def featurize(x): n = len(x) # Featurize input values in [0,1] X_ftrs = np.empty((n, num_basis_fns)) for ftr_num in range(num_basis_fns): X_ftrs[:, ftr_num] = all_basis_fns[ftr_num](x) return X_ftrs return target_fn, coefs_true, featurize def generate_data(target_fn, n=1000, noise_scale=.25, tdof=6): # Construct dataset x = np.sort(np.random.rand(n)) #chooses uniformly from [0,1) y_target = target_fn(x) y = y_target + noise_scale *
np.random.standard_t(tdof,n)
numpy.random.standard_t
import pandas as pd import sys import numpy as np import scipy as sp import json import os from decimal import Decimal import scipy.optimize as opt from scipy.optimize import minimize, curve_fit from scipy.special import erfc from scipy.stats import crystalball from scipy.signal import medfilt, find_peaks import pygama.analysis.histograms as pgh import pygama.utils as pgu import pygama.analysis.peak_fitting as pga import matplotlib.pyplot as plt from matplotlib.lines import Line2D plt.style.use('style.mplstyle') def main(): ## this code takes the peaks from thorium's first-pass calibration and fits them. the values from these fits are used to then do a non-linear, second-pass calibration. peak_2615() #peak_1765() #peak_1460() #peak_609() #peak_352() def peak_2615(): if(len(sys.argv) != 2): print('Usage: fit_bkg_peaks.py [run number]') sys.exit() with open("runDB.json") as f: runDB = json.load(f) meta_dir = os.path.expandvars(runDB["meta_dir"]) #df = pd.read_hdf("{}/Spectrum_280-329.hdf5".format(meta_dir), key="df") df = pd.read_hdf("{}/Spectrum_{}.hdf5".format(meta_dir,sys.argv[1]), key="df") def gauss(x, mu, sigma, A=1): """ define a gaussian distribution, w/ args: mu, sigma, area (optional). """ return A * (1. / sigma / np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2. * sigma**2)) def radford_peak(x, mu, sigma, hstep, htail, tau, bg0, a=1): """ David Radford's HPGe peak shape function """ # make sure the fractional amplitude parameters stay reasonable... if htail < 0 or htail > 1: return np.zeros_like(x) if hstep < 0 or hstep > 1: return np.zeros_like(x) bg_term = bg0 #+ x*bg1 if np.any(bg_term < 0): return np.zeros_like(x) # compute the step and the low energy tail step = a * hstep * erfc((x - mu) / (sigma * np.sqrt(2))) le_tail = a * htail le_tail *= erfc((x - mu) / (sigma * np.sqrt(2)) + sigma / (tau * np.sqrt(2))) le_tail *= np.exp((x - mu) / tau) le_tail /= (2 * tau * np.exp(-(sigma / (np.sqrt(2) * tau))**2)) # add up all the peak shape components return (1 - htail) * gauss(x, mu, sigma, a) + bg_term + step + le_tail hist, bins, var = pgh.get_hist(df['e_cal'], range=(2540,2680), dx=0.5) pgh.plot_hist(hist, bins, var=hist, label="data") pars, cov = pga.fit_hist(radford_peak, hist, bins, var=hist, guess=[2608.5, 1.05, 0.001, 0.02, 5, 1, 4000]) pgu.print_fit_results(pars, cov, radford_peak) pgu.plot_func(radford_peak, pars, label="chi2 fit", color='red') #x_vals = np.arange(2540,2680,0.5) #plt.plot(x_vals, radford_peak(x_vals, 2608.5, 1.05, .001, 0.02, 5, 1, 4000)) FWHM = '%.2f' % Decimal(pars[1]*2) FWHM_uncertainty = '%.2f' % Decimal(np.sqrt(cov[1][1])*2) peak = '%.2f' % Decimal(pars[0]) peak_uncertainty = '%.2f' % Decimal(np.sqrt(cov[0][0])) residual = '%.2f' % (2614.51 - float(peak)) chi_2_element_list = [] for i in range(len(hist)): chi_2_element = abs((radford_peak(bins[i], *pars) - hist[i])**2/radford_peak(bins[i], *pars)) chi_2_element_list.append(chi_2_element) chi_2 = sum(chi_2_element_list) reduced_chi_2 = '%.2f' % Decimal(chi_2/len(hist)) print(reduced_chi_2) label_01 = '2614.51 keV peak fit' label_02 = 'FWHM = '+str(FWHM)+r' $\pm$ '+str(FWHM_uncertainty) label_03 = 'Peak = '+str(peak)+r' $\pm$ '+str(peak_uncertainty) label_04 = 'Residual = '+str(residual)+r' $\pm$ '+str(peak_uncertainty) colors = ['red', 'red','red', 'red'] lines = [Line2D([0], [0], color=c, lw=2) for c in colors] labels = [label_01, label_02, label_03, label_04] plt.xlim(2540,2680) plt.ylim(0,plt.ylim()[1]) plt.xlabel('Energy (keV)', ha='right', x=1.0) plt.ylabel('Counts', ha='right', y=1.0) plt.title('Fit of First-Pass Kr83m Calibration Peak') plt.tight_layout() #plt.semilogy() plt.legend(lines, labels, frameon=False, loc='upper right', fontsize='small') plt.show() def peak_1765(): if(len(sys.argv) != 2): print('Usage: fit_bkg_peaks.py [run number]') sys.exit() with open("runDB.json") as f: runDB = json.load(f) meta_dir = os.path.expandvars(runDB["meta_dir"]) #df = pd.read_hdf("{}/Spectrum_280-329.hdf5".format(meta_dir), key="df") df = pd.read_hdf("{}/Spectrum_{}.hdf5".format(meta_dir,sys.argv[1]), key="df") def gauss(x, mu, sigma, A=1): """ define a gaussian distribution, w/ args: mu, sigma, area (optional). """ return A * (1. / sigma / np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2. * sigma**2)) def radford_peak(x, mu, sigma, hstep, htail, tau, bg0, a=1): """ <NAME>'s HPGe peak shape function """ # make sure the fractional amplitude parameters stay reasonable... if htail < 0 or htail > 1: return np.zeros_like(x) if hstep < 0 or hstep > 1: return np.zeros_like(x) bg_term = bg0 #+ x*bg1 if np.any(bg_term < 0): return np.zeros_like(x) # compute the step and the low energy tail step = a * hstep * erfc((x - mu) / (sigma * np.sqrt(2))) le_tail = a * htail le_tail *= erfc((x - mu) / (sigma * np.sqrt(2)) + sigma / (tau * np.sqrt(2))) le_tail *=
np.exp((x - mu) / tau)
numpy.exp
import torch.nn as nn import torch from torch.autograd import Variable import pickle import numpy as np from torch.utils.data import SubsetRandomSampler, TensorDataset import os from model import * import torch.optim as optim import datetime seed = 1 torch.manual_seed(seed) np.random.seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False title_count, title_set, genres2int, features, targets_values, ratings, users, movies, data, movies_orig, users_orig = pickle.load(open('preprocess.p', mode='rb')) embed_dim = 32 uid_max = max(features.take(0,1)) + 1 gender_max = max(features.take(2,1)) + 1 age_max = max(features.take(3,1)) + 1 job_max = max(features.take(4,1)) + 1 movie_id_max = max(features.take(1,1)) + 1 movie_categories_max = max(genres2int.values()) + 1 movie_title_max = len(title_set) sentences_size = title_count # print(uid_max,gender_max,age_max,job_max,movie_id_max,movie_title_max,movie_categories_max) #电影ID转下标的字典,数据集中电影ID跟下标不一致,比如第5行的数据电影ID不一定是5 movieid2idx = {val[0]:i for i, val in enumerate(movies.values)} model = MR_Model(uid_max, gender_max, age_max, job_max, movie_id_max, movie_categories_max, movie_title_max) model_dir = './movie_recommendation_model' pt_name = model_dir + '/lr_checkpoint.pt' model.load_state_dict(torch.load(pt_name, map_location="cpu")) def movie_feature(): MF = [] model.eval() for item in movies.values: categories = np.zeros([1, 18]) categories[0] = item.take(2) titles =
np.zeros([1, sentences_size])
numpy.zeros
# -*- coding: utf-8 -*- ''' Author: <NAME> Date: 2021-11-02 16:17:39 LastEditTime: 2021-11-29 13:23:25 LastEditors: <NAME> Description: FilePath: \标定上位机\Calculate.py ''' import math import numpy as np from GPS2UTM import * # 角度转弧度 def Angle2Rad(angle): return angle * math.pi / 180 # 弧度转角度 def Rad2Angle(rad): return rad * 180 / math.pi ''' description: 计算两点之间距离和方位角,以真值为原点,正北方向为y轴 param {mat} 位置矩阵,目标经度,目标纬度,雷达经度,雷达纬度 return {angle} 距离,方位弧度,方位角度 ''' def TwoPointsCal(mat): earthRad = 6371004 # earthRad = 6378137 radLonTar = Angle2Rad(mat[0]) radLatTar = Angle2Rad(mat[1]) radLonTru = Angle2Rad(mat[2]) radLatTru = Angle2Rad(mat[3]) lonDis = radLonTru - radLonTar latDis = radLatTru - radLatTar dst = 2 * math.asin(math.sqrt(math.pow(math.sin(latDis / 2), 2) + math.cos(radLatTru) * math.cos(radLatTar) * \ math.pow(math.sin(lonDis / 2), 2))) dst = abs(dst * earthRad) # 计算两点方位角,以真值为原点,正北方向为y轴 x = math.sin(radLonTar - radLonTru) * math.cos(radLatTar) y = math.cos(radLatTru) * math.sin(radLatTar) - math.sin(radLatTru) * math.cos(radLatTar) * math.cos(radLonTar - radLonTru) rad = math.atan2(y, x) angle = (90 - Rad2Angle(rad)) % 360 return dst, rad, angle ''' description: 北向夹角计算 param {mat} 位置矩阵,目标x,y,经度,纬度,雷达经度,纬度 return {angle} 北向夹角 ''' def NorthAngleCal(mat): ''' x' = x * cos + y * sin y' = y * cos - x * sin 逆时针旋转为正 ''' inputMat = np.array([mat[2], mat[3], mat[4], mat[5]]) dis, rad, angle = TwoPointsCal(inputMat) xCoor = dis * math.cos(rad) yCoor = dis * math.sin(rad) northRad = math.atan2(mat[0] * yCoor - xCoor * mat[1], \ mat[0] * xCoor + mat[1] * yCoor) northAngle = (360 - Rad2Angle(northRad)) % 360 return northAngle ''' description: 距离误差计算——检测中心 param {mat} 位置矩阵,目标检测经纬度, 目标真值经纬度, 主基站北向夹角 return {dis} x,y方向距离误差 ''' def DisCal(mat): inputMat = np.array([mat[0], mat[1], mat[2], mat[3]]) dis, rad, angle = TwoPointsCal(inputMat) xDis = dis * math.cos(rad) yDis = dis * math.sin(rad) rotAngle = 360 - mat[4] rotRad = Angle2Rad(rotAngle) rotMat = np.array([[math.cos(rotRad), math.sin(rotRad)], [-math.sin(rotRad), math.cos(rotRad)]]) # 坐标系旋转矩阵 newCoor = np.matmul(rotMat, np.array([[xDis], [yDis]])) return newCoor ''' description: 标定参数计算 param {mat} 2行3列,第1行:主基站经度,纬度,北向夹角 第2行:副基站经度,纬度,北向夹角 return {副基站} x平移量,y平移量,角度差 ''' def CalibCal(mat): angleDis = (mat[0,2] - mat[1,2]) inputMat = np.array([mat[1,0], mat[1,1], mat[0,0], mat[0,1], mat[0,2]]) result = DisCal(inputMat) return np.array([result[0], result[1], angleDis]) ''' -------------------------------------------------------- ### 经纬度转UTM坐标系,再计算距离、角度方法,暂时不使用 ### -------------------------------------------------------- ''' # description: 北向夹角计算 # param {mat} 位置矩阵,目标x,y,E,N;雷达E,N # return {angle} 航向角 # ''' # def angleCal(mat): # ''' # x' = x * cos + y * sin # y' = y * cos - x * sin # 逆时针旋转为正 # ''' # xEarth = mat[2] - mat[4] # yEarth = mat[3] - mat[5] # rad = math.atan2(yEarth * mat[0] - mat[1] * xEarth, \ # yEarth * mat[1] + xEarth * mat[0]) # angle = 360 - (rad / math.pi * 180) % 360 # # angle = (90 - Rad2Angle(rad)) % 360 # return angle # ''' # description: 标定参数计算 # param {mat} 2行3列,第1行:主基站X,主基站Y,主基站北向夹角 # 第2行:副基站X,副基站Y,副基站北向夹角 # return {副基站} x平移量,y平移量,角度差 # ''' # def calibCal(mat): # angleDis = (mat[0,2] - mat[1,2]) # rad = (360 - mat[0,2]) / 180 * math.pi # coor = np.array([[mat[1,0] - mat[0,0]], [mat[1,1] - mat[0,1]]]) # 以主基站为原点,副基站xy坐标 # rotMat = np.array([[math.cos(rad), math.sin(rad)], [-math.sin(rad), math.cos(rad)]]) # 坐标系旋转矩阵 # newCoor = np.matmul(rotMat, coor) # xDis = newCoor[0] # yDis = newCoor[1] # result = [xDis, yDis, angleDis] # return result # ''' # description: 距离误差计算 # param {mat} 位置矩阵,目标x,y方向, 真值x,y方向, 主基站北向夹角 # return {dis} x,y方向距离误差 # ''' # def disCal(mat): # rad = Angle2Rad(360 - mat[4]) # coor = np.array([[mat[0] - mat[2]], [mat[1] - mat[3]]]) # 以真值为原点,检测结果相对真值位置 # rotMat = np.array([[math.cos(rad), math.sin(rad)], [-math.sin(rad), math.cos(rad)]]) # 坐标系旋转矩阵 # newCoor = np.matmul(rotMat, coor) # print('------------------') # print(newCoor) # xDis = newCoor[0] # yDis = newCoor[1] # result = [xDis, yDis] # # return result # return result if __name__ == '__main__': lonLidar = 116.2869783345294 latLidar = 40.0516953302213 lonTar = 116.2867578256973 latTar = 40.0520586730172 # lonTar = 116.2869783345294 # latTar = 40.0516953302213 angleLidar = 159.43 angleTar = 163 ELidar, NLidar = GPS2UTM(latLidar, lonLidar) # 雷达经纬度转xy ETar, NTar = GPS2UTM(latTar, lonTar) mat = np.array([-18,40, lonTar, latTar, lonLidar, latLidar]) mat2 =
np.array([-18,40, ETar, NTar, ELidar, NLidar])
numpy.array
from scipy.stats import lognorm import numpy as np def all_true(logical_list): try: logical_list[2] return logical_list[0] and all_true(logical_list[1:]) except IndexError: return logical_list[0] and logical_list[1] class MarkovRenewalProcess(): """ Markov renewal process - the transition matrix has entries [j][i] which is the probablity of next=j given current=i - the residence times are log-normal distributed """ def __init__(self, states, tm=None, mu=None, sigma=None, m=None): self.states = states k = len(self.states) # init the parameters for training if tm == 'uniform' or tm is None: tm = np.ones((k, k)) tm.flat[::k+1] = 0 self.__comx = tm if sigma is None: sigma = np.full((k, ), 10) if mu is None: mu = np.full((k, ), 1) self.__mu = np.log(mu**2/np.sqrt(sigma**2 + mu**2)) self.__S2 = np.log(1 + sigma**2/mu**2) + self.__mu**2 @property def states(self): return self.__states @property def transition_matrix(self): return self.__comx / self.__comx.sum(axis=0, keepdims=True) @property def residence_times(self): # base the residence times upon the parameters mu and sigma return {state: lognorm(s=self.s[self._ix[state]], loc=0, scale=self.scale[self._ix[state]]) for state in self.states} @property def sigma(self): """ second moments for each of the states' residence times based on self.n samples """ return [np.sqrt(rv.stats(moments='v')) for rv in self.residence_times.values()] @property def mu(self): """ first moments for each of the states' residence times """ return [rv.stats(moments='m') for rv in self.residence_times.values()] @property def comx(self): """ co-occurrence matrix """ return self.__comx @states.setter def states(self, states): self.__states = list(states) @property def _ix(self): return {s: ix for ix, s in enumerate(self.states)} @property def s(self): return np.sqrt(self.__S2 - self.__mu ** 2) @property def scale(self): return np.exp(self.__mu) @property def steady_state(self): w, v = np.linalg.eig(self.transition_matrix) ix = np.argmax(np.real(w)) steady_state = np.real(v[:, ix]) for ix, st in enumerate(self.residence_times.values()): steady_state[ix] = steady_state[ix] * st.stats(moments='m') # steady_state[ix] = steady_state[ix] * self.mu[ix] return steady_state / steady_state.sum() def train(self, X): """ X comes as a list of tuples (state, duration) for a specific element that has no duration, it is not used to update the estimate of the residence_times, but is used as an "end-state" (previous transition is taken into account, not the next one) """ # residence times surv_t = { s: [] for s in self.states } # the number of observations we already had m = self.__comx.sum(axis=0) # TODO: should this not be axis=0 ??? # get the current and next states together as x and y for x, y in zip(X[:-1], X[1:]): if x[1] is not None: # only if the current state has a duration will we look at # - current residence time # - transition to next state surv_t[x[0]].append(np.log(x[1])) self.__comx[self._ix[y[0]], self._ix[x[0]]] += 1 # the number of observations after the update n = self.__comx.sum(axis=0) # TODO: should this not be axis=0 ??? # update estimators of first two moments: mu and S2 for k, v in surv_t.items(): ix = self._ix[k] # do not update if no samples are observed # alternative, we may multiply # the current estimator by alpha # and the newly obtained estimator by (1 - alpha) # this would allow to forget the past trials at a "constant" rate # (not taking into account variance of the estimators) if n[ix] - m[ix] > 0: self.__mu[ix] = (self.__mu[ix] * m[ix] + np.array(v).sum()) / n[ix] self.__S2[ix] = (self.__S2[ix] * m[ix] + (
np.array(v)
numpy.array
""" Multiplication of distributions. Example usage ------------- Distribution * a constant:: >>> distribution = chaospy.Uniform(0, 1) * 4 >>> print(distribution) Mul(Uniform(lower=0, upper=1), 4) >>> print(numpy.around(distribution.sample(5), 4)) [2.6144 0.46 3.8011 1.9288 3.4899] >>> print(numpy.around(distribution.fwd([1, 2, 3]), 4)) [0.25 0.5 0.75] >>> print(numpy.around(distribution.inv(distribution.fwd([1, 2, 3])), 4)) [1. 2. 3.] >>> print(numpy.around(distribution.pdf([1, 2, 3]), 4)) [0.25 0.25 0.25] >>> print(numpy.around(distribution.mom([1, 2, 3]), 4)) [ 2. 5.3333 16. ] >>> print(numpy.around(distribution.ttr([1, 2, 3]), 4)) [[2. 2. 2. ] [1.3333 1.0667 1.0286]] Construct joint multiplication distribution:: >>> lhs = chaospy.Uniform(-1, 0) >>> rhs = chaospy.Uniform(-3, -2) >>> multiplication = lhs * rhs >>> print(multiplication) Mul(Uniform(lower=-1, upper=0), Uniform(lower=-3, upper=-2)) >>> joint1 = chaospy.J(lhs, multiplication) >>> print(joint1.range()) [[-1. 0.] [ 0. 3.]] >>> joint2 = chaospy.J(rhs, multiplication) >>> print(joint2.range()) [[-3. -0.] [-2. 3.]] >>> joint3 = chaospy.J(multiplication, lhs) >>> print(joint3.range()) [[ 0. -1.] [ 3. 0.]] >>> joint4 = chaospy.J(multiplication, rhs) >>> print(joint4.range()) [[-0. -3.] [ 3. -2.]] Generate random samples:: >>> print(numpy.around(joint1.sample(4), 4)) [[-0.7877 -0.9593 -0.6028 -0.7669] [ 2.2383 2.1172 1.6532 1.8345]] >>> print(numpy.around(joint2.sample(4), 4)) [[-2.8177 -2.2565 -2.9304 -2.1147] [ 2.6843 2.1011 1.2174 0.0613]] Forward transformations:: >>> lcorr = numpy.array([-0.9, -0.5, -0.1]) >>> rcorr = numpy.array([-2.99, -2.5, -2.01]) >>> print(numpy.around(joint1.fwd([lcorr, lcorr*rcorr]), 4)) [[0.1 0.5 0.9 ] [0.99 0.5 0.01]] >>> print(numpy.around(joint2.fwd([rcorr, lcorr*rcorr]), 4)) [[0.01 0.5 0.99] [0.9 0.5 0.1 ]] Inverse transformations:: >>> print(numpy.around(joint1.inv(joint1.fwd([lcorr, lcorr*rcorr])), 4)) [[-0.9 -0.5 -0.1 ] [ 2.691 1.25 0.201]] >>> print(numpy.around(joint2.inv(joint2.fwd([rcorr, lcorr*rcorr])), 4)) [[-2.99 -2.5 -2.01 ] [ 2.691 1.25 0.201]] """ import numpy from ..baseclass import Dist from .. import evaluation class Mul(Dist): """Multiplication.""" def __init__(self, left, right): """ Args: left (Dist, numpy.ndarray) : Left hand side. right (Dist, numpy.ndarray) : Right hand side. """ self.matrix = False if (isinstance(left, Dist) and len(left) > 1 and not isinstance(right, Dist)): right = right*numpy.eye(len(left)) self.matrix = True elif (isinstance(right, Dist) and len(right) > 1 and not isinstance(left, Dist)): left = left*numpy.eye(len(right)) self.matrix = True Dist.__init__(self, left=left, right=right) def _bnd(self, xloc, left, right, cache): """ Distribution bounds. Example: >>> print(chaospy.Uniform().range([-2, 0, 2, 4])) [[0. 0. 0. 0.] [1. 1. 1. 1.]] >>> print(Mul(chaospy.Uniform(), 2).range([-2, 0, 2, 4])) [[0. 0. 0. 0.] [2. 2. 2. 2.]] >>> print(Mul(2, chaospy.Uniform()).range([-2, 0, 2, 4])) [[0. 0. 0. 0.] [2. 2. 2. 2.]] >>> print(Mul(2, 2).range([-2, 0, 2, 4])) [[4. 4. 4. 4.] [4. 4. 4. 4.]] >>> dist = chaospy.Mul(chaospy.Iid(chaospy.Uniform(), 2), [1, 2]) >>> print(dist.range([[0.5, 0.6, 1.5], [0.5, 0.6, 1.5]])) [[[0. 0. 0.] [0. 0. 0.]] <BLANKLINE> [[1. 1. 1.] [2. 2. 2.]]] >>> dist = chaospy.Mul([2, 1], chaospy.Iid(chaospy.Uniform(), 2)) >>> print(dist.range([[0.5, 0.6, 1.5], [0.5, 0.6, 1.5]])) [[[0. 0. 0.] [0. 0. 0.]] <BLANKLINE> [[2. 2. 2.] [1. 1. 1.]]] >>> dist = chaospy.Mul(chaospy.Iid(chaospy.Uniform(), 2), [1, 2]) >>> print(dist.range([[0.5, 0.6, 1.5], [0.5, 0.6, 1.5]])) [[[0. 0. 0.] [0. 0. 0.]] <BLANKLINE> [[1. 1. 1.] [2. 2. 2.]]] """ left = evaluation.get_forward_cache(left, cache) right = evaluation.get_forward_cache(right, cache) if isinstance(left, Dist): if isinstance(right, Dist): raise evaluation.DependencyError( "under-defined distribution {} or {}".format(left, right)) elif not isinstance(right, Dist): return numpy.dot(left, right), numpy.dot(left, right) else: left = numpy.asfarray(left) if self.matrix: Ci = numpy.linalg.inv(left) xloc = numpy.dot(Ci, xloc) assert len(xloc) == len(right) elif len(left.shape) == 3: left_ = numpy.mean(left, 0) valids = left_ != 0 xloc.T[valids.T] = xloc.T[valids.T]/left_.T[valids.T] else: left = (left.T+numpy.zeros(xloc.shape).T).T valids = left != 0 xloc.T[valids.T] = xloc.T[valids.T]/left.T[valids.T] assert len(xloc) == len(right) lower, upper = evaluation.evaluate_bound(right, xloc, cache=cache) if self.matrix: lower = numpy.dot(lower.T, left.T).T upper = numpy.dot(upper.T, left.T).T elif len(left.shape) == 3: lower = numpy.where(left[0]*lower > 0, left[0]*lower, left[1]*lower) upper = numpy.where(left[1]*upper > 0, left[1]*upper, left[0]*upper) lower, upper = ( numpy.where(lower < upper, lower, upper), numpy.where(lower < upper, upper, lower), ) lower[(left[0] < 0) & (lower > 0)] = 0. assert len(lower) == len(right) else: lower *= left upper *= left lower, upper = ( numpy.where(lower < upper, lower, upper), numpy.where(lower < upper, upper, lower), ) return lower, upper right = numpy.asfarray(right) if self.matrix: Ci = numpy.linalg.inv(right) xloc = numpy.dot(xloc.T, Ci.T).T assert len(left) == len(xloc) elif len(right.shape) == 3: right_ = numpy.mean(right, 0) valids = right_ != 0 xloc.T[valids.T] = xloc.T[valids.T]/right_.T[valids.T] else: right = (right.T+numpy.zeros(xloc.shape).T).T valids = right != 0 xloc.T[valids.T] = xloc.T[valids.T]/right.T[valids.T] assert len(left) == len(xloc) lower, upper = evaluation.evaluate_bound(left, xloc, cache=cache) if self.matrix: lower = numpy.dot(lower.T, right.T).T upper = numpy.dot(upper.T, right.T).T elif len(right.shape) == 3: lower = numpy.where(right[0]*lower > 0, right[0]*lower, right[1]*lower) upper = numpy.where(right[1]*upper > 0, right[1]*upper, right[0]*upper) lower, upper = ( numpy.where(lower < upper, lower, upper), numpy.where(lower < upper, upper, lower), ) lower[(right[0] < 0) & (lower > 0)] = 0. else: lower *= right upper *= right lower, upper = ( numpy.where(lower < upper, lower, upper),
numpy.where(lower < upper, upper, lower)
numpy.where
import mock import numpy from PIL import Image from types import SimpleNamespace import unittest from machine_common_sense.mcs_action import MCS_Action from machine_common_sense.mcs_goal import MCS_Goal from machine_common_sense.mcs_object import MCS_Object from machine_common_sense.mcs_pose import MCS_Pose from machine_common_sense.mcs_return_status import MCS_Return_Status from machine_common_sense.mcs_step_output import MCS_Step_Output from .mock_mcs_controller_ai2thor import Mock_MCS_Controller_AI2THOR class Test_MCS_Controller_AI2THOR(unittest.TestCase): def setUp(self): self.controller = Mock_MCS_Controller_AI2THOR() self.controller.set_config({ 'metadata': '' }) def create_mock_scene_event(self, mock_scene_event_data): # Wrap the dict in a SimpleNamespace object to permit property access with dotted notation since the actual # variable is a class, not a dict. return SimpleNamespace(**mock_scene_event_data) def create_retrieve_object_list_scene_event(self): return { "events": [self.create_mock_scene_event({ "object_id_to_color": { "testId1": (12, 34, 56), "testId2": (98, 76, 54), "testId3": (101, 102, 103) } })], "metadata": { "objects": [{ "colorsFromMaterials": ["c1"], "direction": { "x": 0, "y": 0, "z": 0 }, "distance": 0, "distanceXZ": 0, "isPickedUp": True, "mass": 1, "objectId": "testId1", "position": { "x": 1, "y": 1, "z": 2 }, "rotation": { "x": 1.0, "y": 2.0, "z": 3.0 }, "salientMaterials": [], "shape": "shape1", "visibleInCamera": True }, { "colorsFromMaterials": ["c2", "c3"], "direction": { "x": 90, "y": -30, "z": 0 }, "distance": 1.5, "distanceXZ": 1.1, "isPickedUp": False, "mass": 12.34, "objectBounds": { "objectBoundsCorners": ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8"] }, "objectId": "testId2", "position": { "x": 1, "y": 2, "z": 3 }, "rotation": { "x": 1.0, "y": 2.0, "z": 3.0 }, "salientMaterials": ["Foobar", "Metal", "Plastic"], "shape": "shape2", "visibleInCamera": True }, { "colorsFromMaterials": [], "direction": { "x": -90, "y": 180, "z": 270 }, "distance": 2.5, "distanceXZ": 2, "isPickedUp": False, "mass": 34.56, "objectBounds": { "objectBoundsCorners": ["pA", "pB", "pC", "pD", "pE", "pF", "pG", "pH"] }, "objectId": "testId3", "position": { "x": -3, "y": -2, "z": -1 }, "rotation": { "x": 11.0, "y": 12.0, "z": 13.0 }, "salientMaterials": ["Wood"], "shape": "shape3", "visibleInCamera": False }] } } def create_wrap_output_scene_event(self): image_data = numpy.array([[0]], dtype=numpy.uint8) depth_mask_data = numpy.array([[128]], dtype=numpy.uint8) object_mask_data = numpy.array([[192]], dtype=numpy.uint8) return { "events": [self.create_mock_scene_event({ "depth_frame": depth_mask_data, "frame": image_data, "instance_segmentation_frame": object_mask_data, "object_id_to_color": { "testId": (12, 34, 56), "testWallId": (101, 102, 103) } })], "metadata": { "agent": { "cameraHorizon": 12.34, "position": { "x": 0.12, "y": -0.23, "z": 4.5 }, "rotation": { "x": 1.111, "y": 2.222, "z": 3.333 } }, "cameraPosition": { "y": 0.1234 }, "clippingPlaneFar": 25, "clippingPlaneNear": 0, "fov": 42.5, "lastActionStatus": "SUCCESSFUL", "lastActionSuccess": True, "objects": [{ "colorsFromMaterials": ["c1"], "direction": { "x": 90, "y": -30, "z": 0 }, "distance": 1.5, "distanceXZ": 1.1, "isPickedUp": False, "mass": 12.34, "objectBounds": { "objectBoundsCorners": ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8"] }, "objectId": "testId", "position": { "x": 10, "y": 11, "z": 12 }, "rotation": { "x": 1.0, "y": 2.0, "z": 3.0 }, "salientMaterials": ["Wood"], "shape": "shape", "visibleInCamera": True }, { "colorsFromMaterials": [], "direction": { "x": -90, "y": 180, "z": 270 }, "distance": 2.5, "distanceXZ": 2.0, "isPickedUp": False, "mass": 34.56, "objectBounds": { "objectBoundsCorners": ["pA", "pB", "pC", "pD", "pE", "pF", "pG", "pH"] }, "objectId": "testIdHidden", "position": { "x": -3, "y": -2, "z": -1 }, "rotation": { "x": 11.0, "y": 12.0, "z": 13.0 }, "salientMaterials": ["Wood"], "shape": "shapeHidden", "visibleInCamera": False }], "structuralObjects": [{ "colorsFromMaterials": ["c2"], "direction": { "x": 180, "y": -60, "z": 0 }, "distance": 2.5, "distanceXZ": 2.2, "isPickedUp": False, "mass": 56.78, "objectBounds": { "objectBoundsCorners": ["p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18"] }, "objectId": "testWallId", "position": { "x": 20, "y": 21, "z": 22 }, "rotation": { "x": 4.0, "y": 5.0, "z": 6.0 }, "salientMaterials": ["Ceramic"], "shape": "structure", "visibleInCamera": True }, { "colorsFromMaterials": [], "direction": { "x": -180, "y": 60, "z": 90 }, "distance": 3.5, "distanceXZ": 3.3, "isPickedUp": False, "mass": 78.90, "objectBounds": { "objectBoundsCorners": ["pAA", "pBB", "pCC", "pDD", "pEE", "pFF", "pGG", "pHH"] }, "objectId": "testWallIdHidden", "position": { "x": 30, "y": 31, "z": 32 }, "rotation": { "x": 14.0, "y": 15.0, "z": 16.0 }, "salientMaterials": ["Ceramic"], "shape": "structureHidden", "visibleInCamera": False }] } }, image_data, depth_mask_data, object_mask_data def test_end_scene(self): # TODO When this function actually does anything pass def test_start_scene(self): # TODO MCS-15 pass def test_step(self): # TODO MCS-15 pass def test_restrict_goal_output_metadata(self): goal = MCS_Goal(metadata={ 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) actual = self.controller.restrict_goal_output_metadata(goal) self.assertEqual(actual.metadata, { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) def test_restrict_goal_output_metadata_full(self): self.controller.set_config({ 'metadata': 'full' }) goal = MCS_Goal(metadata={ 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) actual = self.controller.restrict_goal_output_metadata(goal) self.assertEqual(actual.metadata, { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) def test_restrict_goal_output_metadata_no_navigation(self): self.controller.set_config({ 'metadata': 'no_navigation' }) goal = MCS_Goal(metadata={ 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) actual = self.controller.restrict_goal_output_metadata(goal) self.assertEqual(actual.metadata, { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) def test_restrict_goal_output_metadata_no_vision(self): self.controller.set_config({ 'metadata': 'no_vision' }) goal = MCS_Goal(metadata={ 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) actual = self.controller.restrict_goal_output_metadata(goal) self.assertEqual(actual.metadata, { 'target': { 'image': None }, 'target_1': { 'image': None }, 'target_2': { 'image': None } }) def test_restrict_goal_output_metadata_none(self): self.controller.set_config({ 'metadata': 'none' }) goal = MCS_Goal(metadata={ 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) actual = self.controller.restrict_goal_output_metadata(goal) self.assertEqual(actual.metadata, { 'target': { 'image': None }, 'target_1': { 'image': None }, 'target_2': { 'image': None } }) def test_restrict_object_output_metadata(self): test_object = MCS_Object( color={ 'r': 1, 'g': 2, 'b': 3 }, dimensions={ 'x': 1, 'y': 2, 'z': 3 }, distance=12.34, distance_in_steps=34.56, distance_in_world=56.78, position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 }, shape='sofa', texture_color_list=['c1', 'c2'] ) actual = self.controller.restrict_object_output_metadata(test_object) self.assertEqual(actual.color, { 'r': 1, 'g': 2, 'b': 3 }) self.assertEqual(actual.dimensions, { 'x': 1, 'y': 2, 'z': 3 }) self.assertEqual(actual.distance, 12.34) self.assertEqual(actual.distance_in_steps, 34.56) self.assertEqual(actual.distance_in_world, 56.78) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) self.assertEqual(actual.shape, 'sofa') self.assertEqual(actual.texture_color_list, ['c1', 'c2']) def test_restrict_object_output_metadata_full(self): self.controller.set_config({ 'metadata': 'full' }) test_object = MCS_Object( color={ 'r': 1, 'g': 2, 'b': 3 }, dimensions={ 'x': 1, 'y': 2, 'z': 3 }, distance=12.34, distance_in_steps=34.56, distance_in_world=56.78, position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 }, shape='sofa', texture_color_list=['c1', 'c2'] ) actual = self.controller.restrict_object_output_metadata(test_object) self.assertEqual(actual.color, { 'r': 1, 'g': 2, 'b': 3 }) self.assertEqual(actual.dimensions, { 'x': 1, 'y': 2, 'z': 3 }) self.assertEqual(actual.distance, 12.34) self.assertEqual(actual.distance_in_steps, 34.56) self.assertEqual(actual.distance_in_world, 56.78) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) self.assertEqual(actual.shape, 'sofa') self.assertEqual(actual.texture_color_list, ['c1', 'c2']) def test_restrict_object_output_metadata_no_navigation(self): self.controller.set_config({ 'metadata': 'no_navigation' }) test_object = MCS_Object( color={ 'r': 1, 'g': 2, 'b': 3 }, dimensions={ 'x': 1, 'y': 2, 'z': 3 }, distance=12.34, distance_in_steps=34.56, distance_in_world=56.78, position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 }, shape='sofa', texture_color_list=['c1', 'c2'] ) actual = self.controller.restrict_object_output_metadata(test_object) self.assertEqual(actual.color, { 'r': 1, 'g': 2, 'b': 3 }) self.assertEqual(actual.dimensions, { 'x': 1, 'y': 2, 'z': 3 }) self.assertEqual(actual.distance, 12.34) self.assertEqual(actual.distance_in_steps, 34.56) self.assertEqual(actual.distance_in_world, 56.78) self.assertEqual(actual.position, None) self.assertEqual(actual.rotation, None) self.assertEqual(actual.shape, 'sofa') self.assertEqual(actual.texture_color_list, ['c1', 'c2']) def test_restrict_object_output_metadata_no_vision(self): self.controller.set_config({ 'metadata': 'no_vision' }) test_object = MCS_Object( color={ 'r': 1, 'g': 2, 'b': 3 }, dimensions={ 'x': 1, 'y': 2, 'z': 3 }, distance=12.34, distance_in_steps=34.56, distance_in_world=56.78, position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 }, shape='sofa', texture_color_list=['c1', 'c2'] ) actual = self.controller.restrict_object_output_metadata(test_object) self.assertEqual(actual.color, None) self.assertEqual(actual.dimensions, None) self.assertEqual(actual.distance, None) self.assertEqual(actual.distance_in_steps, None) self.assertEqual(actual.distance_in_world, None) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) self.assertEqual(actual.shape, None) self.assertEqual(actual.texture_color_list, None) def test_restrict_object_output_metadata_none(self): self.controller.set_config({ 'metadata': 'none' }) test_object = MCS_Object( color={ 'r': 1, 'g': 2, 'b': 3 }, dimensions={ 'x': 1, 'y': 2, 'z': 3 }, distance=12.34, distance_in_steps=34.56, distance_in_world=56.78, position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 }, shape='sofa', texture_color_list=['c1', 'c2'] ) actual = self.controller.restrict_object_output_metadata(test_object) self.assertEqual(actual.color, None) self.assertEqual(actual.dimensions, None) self.assertEqual(actual.distance, None) self.assertEqual(actual.distance_in_steps, None) self.assertEqual(actual.distance_in_world, None) self.assertEqual(actual.position, None) self.assertEqual(actual.rotation, None) self.assertEqual(actual.shape, None) self.assertEqual(actual.texture_color_list, None) def test_restrict_step_output_metadata(self): step = MCS_Step_Output( camera_aspect_ratio=(1, 2), camera_clipping_planes=(3, 4), camera_field_of_view=5, camera_height=6, depth_mask_list=[7], object_mask_list=[8], position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 } ) actual = self.controller.restrict_step_output_metadata(step) self.assertEqual(actual.camera_aspect_ratio, (1, 2)) self.assertEqual(actual.camera_clipping_planes, (3, 4)) self.assertEqual(actual.camera_field_of_view, 5) self.assertEqual(actual.camera_height, 6) self.assertEqual(actual.depth_mask_list, [7]) self.assertEqual(actual.object_mask_list, [8]) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) def test_restrict_step_output_metadata_full(self): self.controller.set_config({ 'metadata': 'full' }) step = MCS_Step_Output( camera_aspect_ratio=(1, 2), camera_clipping_planes=(3, 4), camera_field_of_view=5, camera_height=6, depth_mask_list=[7], object_mask_list=[8], position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 } ) actual = self.controller.restrict_step_output_metadata(step) self.assertEqual(actual.camera_aspect_ratio, (1, 2)) self.assertEqual(actual.camera_clipping_planes, (3, 4)) self.assertEqual(actual.camera_field_of_view, 5) self.assertEqual(actual.camera_height, 6) self.assertEqual(actual.depth_mask_list, [7]) self.assertEqual(actual.object_mask_list, [8]) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) def test_restrict_step_output_metadata_no_navigation(self): self.controller.set_config({ 'metadata': 'no_navigation' }) step = MCS_Step_Output( camera_aspect_ratio=(1, 2), camera_clipping_planes=(3, 4), camera_field_of_view=5, camera_height=6, depth_mask_list=[7], object_mask_list=[8], position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 } ) actual = self.controller.restrict_step_output_metadata(step) self.assertEqual(actual.camera_aspect_ratio, (1, 2)) self.assertEqual(actual.camera_clipping_planes, (3, 4)) self.assertEqual(actual.camera_field_of_view, 5) self.assertEqual(actual.camera_height, 6) self.assertEqual(actual.depth_mask_list, [7]) self.assertEqual(actual.object_mask_list, [8]) self.assertEqual(actual.position, None) self.assertEqual(actual.rotation, None) def test_restrict_step_output_metadata_no_vision(self): self.controller.set_config({ 'metadata': 'no_vision' }) step = MCS_Step_Output( camera_aspect_ratio=(1, 2), camera_clipping_planes=(3, 4), camera_field_of_view=5, camera_height=6, depth_mask_list=[7], object_mask_list=[8], position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 } ) actual = self.controller.restrict_step_output_metadata(step) self.assertEqual(actual.camera_aspect_ratio, None) self.assertEqual(actual.camera_clipping_planes, None) self.assertEqual(actual.camera_field_of_view, None) self.assertEqual(actual.camera_height, None) self.assertEqual(actual.depth_mask_list, []) self.assertEqual(actual.object_mask_list, []) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) def test_restrict_step_output_metadata_none(self): self.controller.set_config({ 'metadata': 'none' }) step = MCS_Step_Output( camera_aspect_ratio=(1, 2), camera_clipping_planes=(3, 4), camera_field_of_view=5, camera_height=6, depth_mask_list=[7], object_mask_list=[8], position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 } ) actual = self.controller.restrict_step_output_metadata(step) self.assertEqual(actual.camera_aspect_ratio, None) self.assertEqual(actual.camera_clipping_planes, None) self.assertEqual(actual.camera_field_of_view, None) self.assertEqual(actual.camera_height, None) self.assertEqual(actual.depth_mask_list, []) self.assertEqual(actual.object_mask_list, []) self.assertEqual(actual.position, None) self.assertEqual(actual.rotation, None) def test_retrieve_action_list(self): self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(), 0), self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[]), 0), \ self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[[]]), 0), \ self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[['MoveAhead',\ 'RotateLook,rotation=180']]), 0), ['MoveAhead', 'RotateLook,rotation=180']) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[['MoveAhead',\ 'RotateLook,rotation=180']]), 1), self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[['MoveAhead',\ 'RotateLook,rotation=180'], []]), 1), self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[[],['MoveAhead',\ 'RotateLook,rotation=180']]), 0), self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[[],['MoveAhead',\ 'RotateLook,rotation=180']]), 1), ['MoveAhead', 'RotateLook,rotation=180']) def test_retrieve_goal(self): goal_1 = self.controller.retrieve_goal({}) self.assertEqual(goal_1.action_list, None) self.assertEqual(goal_1.info_list, []) self.assertEqual(goal_1.last_step, None) self.assertEqual(goal_1.task_list, []) self.assertEqual(goal_1.type_list, []) self.assertEqual(goal_1.metadata, {}) goal_2 = self.controller.retrieve_goal({ "goal": { } }) self.assertEqual(goal_2.action_list, None) self.assertEqual(goal_2.info_list, []) self.assertEqual(goal_2.last_step, None) self.assertEqual(goal_2.task_list, []) self.assertEqual(goal_2.type_list, []) self.assertEqual(goal_2.metadata, {}) goal_3 = self.controller.retrieve_goal({ "goal": { "action_list": [["action1"], [], ["action2", "action3", "action4"]], "info_list": ["info1", "info2", 12.34], "last_step": 10, "task_list": ["task1", "task2"], "type_list": ["type1", "type2"], "metadata": { "key": "value" } } }) self.assertEqual(goal_3.action_list, [["action1"], [], ["action2", "action3", "action4"]]) self.assertEqual(goal_3.info_list, ["info1", "info2", 12.34]) self.assertEqual(goal_3.last_step, 10) self.assertEqual(goal_3.task_list, ["task1", "task2"]) self.assertEqual(goal_3.type_list, ["type1", "type2"]) self.assertEqual(goal_3.metadata, { "key": "value" }) def test_retrieve_goal_with_config_metadata(self): self.controller.set_config({ 'metadata': 'full' }) actual = self.controller.retrieve_goal({ 'goal': { 'metadata': { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } } } }) self.assertEqual(actual.metadata, { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) self.controller.set_config({ 'metadata': 'no_navigation' }) actual = self.controller.retrieve_goal({ 'goal': { 'metadata': { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } } } }) self.assertEqual(actual.metadata, { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) self.controller.set_config({ 'metadata': 'no_vision' }) actual = self.controller.retrieve_goal({ 'goal': { 'metadata': { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } } } }) self.assertEqual(actual.metadata, { 'target': { 'image': None }, 'target_1': { 'image': None }, 'target_2': { 'image': None } }) self.controller.set_config({ 'metadata': 'none' }) actual = self.controller.retrieve_goal({ 'goal': { 'metadata': { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } } } }) self.assertEqual(actual.metadata, { 'target': { 'image': None }, 'target_1': { 'image': None }, 'target_2': { 'image': None } }) def test_retrieve_head_tilt(self): mock_scene_event_data = { "metadata": { "agent": { "cameraHorizon": 12.34 } } } actual = self.controller.retrieve_head_tilt(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, 12.34) mock_scene_event_data = { "metadata": { "agent": { "cameraHorizon": -56.78 } } } actual = self.controller.retrieve_head_tilt(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, -56.78) def test_retrieve_object_list(self): mock_scene_event_data = self.create_retrieve_object_list_scene_event() actual = self.controller.retrieve_object_list(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(len(actual), 2) self.assertEqual(actual[0].uuid, "testId1") self.assertEqual(actual[0].color, { "r": 12, "g": 34, "b": 56 }) self.assertEqual(actual[0].dimensions, {}) self.assertEqual(actual[0].direction, { "x": 0, "y": 0, "z": 0 }) self.assertEqual(actual[0].distance, 0) self.assertEqual(actual[0].distance_in_steps, 0) self.assertEqual(actual[0].distance_in_world, 0) self.assertEqual(actual[0].held, True) self.assertEqual(actual[0].mass, 1) self.assertEqual(actual[0].material_list, []) self.assertEqual(actual[0].position, { "x": 1, "y": 1, "z": 2 }) self.assertEqual(actual[0].rotation, 2.0) self.assertEqual(actual[0].shape, 'shape1') self.assertEqual(actual[0].texture_color_list, ['c1']) self.assertEqual(actual[0].visible, True) self.assertEqual(actual[1].uuid, "testId2") self.assertEqual(actual[1].color, { "r": 98, "g": 76, "b": 54 }) self.assertEqual(actual[1].dimensions, ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8"]) self.assertEqual(actual[1].direction, { "x": 90, "y": -30, "z": 0 }) self.assertEqual(actual[1].distance, 2.2) self.assertEqual(actual[1].distance_in_steps, 2.2) self.assertEqual(actual[1].distance_in_world, 1.5) self.assertEqual(actual[1].held, False) self.assertEqual(actual[1].mass, 12.34) self.assertEqual(actual[1].material_list, ["METAL", "PLASTIC"]) self.assertEqual(actual[1].position, { "x": 1, "y": 2, "z": 3 }) self.assertEqual(actual[1].rotation, 2) self.assertEqual(actual[1].shape, 'shape2') self.assertEqual(actual[1].texture_color_list, ['c2', 'c3']) self.assertEqual(actual[1].visible, True) def test_retrieve_object_list_with_config_metadata_full(self): self.controller.set_config({ 'metadata': 'full' }) mock_scene_event_data = self.create_retrieve_object_list_scene_event() actual = self.controller.retrieve_object_list(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(len(actual), 3) self.assertEqual(actual[0].uuid, "testId1") self.assertEqual(actual[0].color, { "r": 12, "g": 34, "b": 56 }) self.assertEqual(actual[0].dimensions, {}) self.assertEqual(actual[0].direction, { "x": 0, "y": 0, "z": 0 }) self.assertEqual(actual[0].distance, 0) self.assertEqual(actual[0].distance_in_steps, 0) self.assertEqual(actual[0].distance_in_world, 0) self.assertEqual(actual[0].held, True) self.assertEqual(actual[0].mass, 1) self.assertEqual(actual[0].material_list, []) self.assertEqual(actual[0].position, { "x": 1, "y": 1, "z": 2 }) self.assertEqual(actual[0].rotation, 2.0) self.assertEqual(actual[0].shape, 'shape1') self.assertEqual(actual[0].texture_color_list, ['c1']) self.assertEqual(actual[0].visible, True) self.assertEqual(actual[1].uuid, "testId2") self.assertEqual(actual[1].color, { "r": 98, "g": 76, "b": 54 }) self.assertEqual(actual[1].dimensions, ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8"]) self.assertEqual(actual[1].direction, { "x": 90, "y": -30, "z": 0 }) self.assertEqual(actual[1].distance, 2.2) self.assertEqual(actual[1].distance_in_steps, 2.2) self.assertEqual(actual[1].distance_in_world, 1.5) self.assertEqual(actual[1].held, False) self.assertEqual(actual[1].mass, 12.34) self.assertEqual(actual[1].material_list, ["METAL", "PLASTIC"]) self.assertEqual(actual[1].position, { "x": 1, "y": 2, "z": 3 }) self.assertEqual(actual[1].rotation, 2) self.assertEqual(actual[1].shape, 'shape2') self.assertEqual(actual[1].texture_color_list, ['c2', 'c3']) self.assertEqual(actual[1].visible, True) self.assertEqual(actual[2].uuid, "testId3") self.assertEqual(actual[2].color, { "r": 101, "g": 102, "b": 103 }) self.assertEqual(actual[2].dimensions, ["pA", "pB", "pC", "pD", "pE", "pF", "pG", "pH"]) self.assertEqual(actual[2].direction, { "x": -90, "y": 180, "z": 270 }) self.assertEqual(actual[2].distance, 4) self.assertEqual(actual[2].distance_in_steps, 4) self.assertEqual(actual[2].distance_in_world, 2.5) self.assertEqual(actual[2].held, False) self.assertEqual(actual[2].mass, 34.56) self.assertEqual(actual[2].material_list, ["WOOD"]) self.assertEqual(actual[2].position, { "x": -3, "y": -2, "z": -1 }) self.assertEqual(actual[2].rotation, 12) self.assertEqual(actual[2].shape, 'shape3') self.assertEqual(actual[2].texture_color_list, []) self.assertEqual(actual[2].visible, False) def test_retrieve_object_list_with_config_metadata_no_navigation(self): self.controller.set_config({ 'metadata': 'no_navigation' }) mock_scene_event_data = self.create_retrieve_object_list_scene_event() actual = self.controller.retrieve_object_list(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(len(actual), 2) self.assertEqual(actual[0].uuid, "testId1") self.assertEqual(actual[0].color, { "r": 12, "g": 34, "b": 56 }) self.assertEqual(actual[0].dimensions, {}) self.assertEqual(actual[0].direction, { "x": 0, "y": 0, "z": 0 }) self.assertEqual(actual[0].distance, 0) self.assertEqual(actual[0].distance_in_steps, 0) self.assertEqual(actual[0].distance_in_world, 0) self.assertEqual(actual[0].held, True) self.assertEqual(actual[0].mass, 1) self.assertEqual(actual[0].material_list, []) self.assertEqual(actual[0].position, None) self.assertEqual(actual[0].rotation, None) self.assertEqual(actual[0].shape, 'shape1') self.assertEqual(actual[0].texture_color_list, ['c1']) self.assertEqual(actual[0].visible, True) self.assertEqual(actual[1].uuid, "testId2") self.assertEqual(actual[1].color, { "r": 98, "g": 76, "b": 54 }) self.assertEqual(actual[1].dimensions, ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8"]) self.assertEqual(actual[1].direction, { "x": 90, "y": -30, "z": 0 }) self.assertEqual(actual[1].distance, 2.2) self.assertEqual(actual[1].distance_in_steps, 2.2) self.assertEqual(actual[1].distance_in_world, 1.5) self.assertEqual(actual[1].held, False) self.assertEqual(actual[1].mass, 12.34) self.assertEqual(actual[1].material_list, ["METAL", "PLASTIC"]) self.assertEqual(actual[1].position, None) self.assertEqual(actual[1].rotation, None) self.assertEqual(actual[1].shape, 'shape2') self.assertEqual(actual[1].texture_color_list, ['c2', 'c3']) self.assertEqual(actual[1].visible, True) def test_retrieve_object_list_with_config_metadata_no_vision(self): self.controller.set_config({ 'metadata': 'no_vision' }) mock_scene_event_data = self.create_retrieve_object_list_scene_event() actual = self.controller.retrieve_object_list(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(len(actual), 2) self.assertEqual(actual[0].uuid, "testId1") self.assertEqual(actual[0].color, None) self.assertEqual(actual[0].dimensions, None) self.assertEqual(actual[0].direction, None) self.assertEqual(actual[0].distance, None) self.assertEqual(actual[0].distance_in_steps, None) self.assertEqual(actual[0].distance_in_world, None) self.assertEqual(actual[0].held, True) self.assertEqual(actual[0].mass, 1) self.assertEqual(actual[0].material_list, []) self.assertEqual(actual[0].position, { "x": 1, "y": 1, "z": 2 }) self.assertEqual(actual[0].rotation, 2.0) self.assertEqual(actual[0].shape, None) self.assertEqual(actual[0].texture_color_list, None) self.assertEqual(actual[0].visible, True) self.assertEqual(actual[1].uuid, "testId2") self.assertEqual(actual[1].color, None) self.assertEqual(actual[1].dimensions, None) self.assertEqual(actual[1].direction, None) self.assertEqual(actual[1].distance, None) self.assertEqual(actual[1].distance_in_steps, None) self.assertEqual(actual[1].distance_in_world, None) self.assertEqual(actual[1].held, False) self.assertEqual(actual[1].mass, 12.34) self.assertEqual(actual[1].material_list, ["METAL", "PLASTIC"]) self.assertEqual(actual[1].position, { "x": 1, "y": 2, "z": 3 }) self.assertEqual(actual[1].rotation, 2) self.assertEqual(actual[1].shape, None) self.assertEqual(actual[1].texture_color_list, None) self.assertEqual(actual[1].visible, True) def test_retrieve_object_list_with_config_metadata_none(self): self.controller.set_config({ 'metadata': 'none' }) mock_scene_event_data = self.create_retrieve_object_list_scene_event() actual = self.controller.retrieve_object_list(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(len(actual), 2) self.assertEqual(actual[0].uuid, "testId1") self.assertEqual(actual[0].color, None) self.assertEqual(actual[0].dimensions, None) self.assertEqual(actual[0].direction, None) self.assertEqual(actual[0].distance, None) self.assertEqual(actual[0].distance_in_steps, None) self.assertEqual(actual[0].distance_in_world, None) self.assertEqual(actual[0].held, True) self.assertEqual(actual[0].mass, 1) self.assertEqual(actual[0].material_list, []) self.assertEqual(actual[0].position, None) self.assertEqual(actual[0].rotation, None) self.assertEqual(actual[0].shape, None) self.assertEqual(actual[0].texture_color_list, None) self.assertEqual(actual[0].visible, True) self.assertEqual(actual[1].uuid, "testId2") self.assertEqual(actual[1].color, None) self.assertEqual(actual[1].dimensions, None) self.assertEqual(actual[1].direction, None) self.assertEqual(actual[1].distance, None) self.assertEqual(actual[1].distance_in_steps, None) self.assertEqual(actual[1].distance_in_world, None) self.assertEqual(actual[1].held, False) self.assertEqual(actual[1].mass, 12.34) self.assertEqual(actual[1].material_list, ["METAL", "PLASTIC"]) self.assertEqual(actual[1].position, None) self.assertEqual(actual[1].rotation, None) self.assertEqual(actual[1].shape, None) self.assertEqual(actual[1].texture_color_list, None) self.assertEqual(actual[1].visible, True) def test_retrieve_pose(self): # TODO MCS-18 pass def test_retrieve_return_status(self): mock_scene_event_data = { "metadata": { "lastActionStatus": "SUCCESSFUL" } } actual = self.controller.retrieve_return_status(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, MCS_Return_Status.SUCCESSFUL.name) mock_scene_event_data = { "metadata": { "lastActionStatus": "FAILED" } } actual = self.controller.retrieve_return_status(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, MCS_Return_Status.FAILED.name) mock_scene_event_data = { "metadata": { "lastActionStatus": "INVALID_STATUS" } } actual = self.controller.retrieve_return_status(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, MCS_Return_Status.UNDEFINED.name) mock_scene_event_data = { "metadata": { "lastActionStatus": None } } actual = self.controller.retrieve_return_status(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, MCS_Return_Status.UNDEFINED.name) def test_save_images(self): image_data = numpy.array([[0]], dtype=numpy.uint8) depth_mask_data = numpy.array([[128]], dtype=numpy.uint8) object_mask_data = numpy.array([[192]], dtype=numpy.uint8) mock_scene_event_data = { "events": [self.create_mock_scene_event({ "depth_frame": depth_mask_data, "frame": image_data, "instance_segmentation_frame": object_mask_data })] } image_list, depth_mask_list, object_mask_list = self.controller.save_images(self.create_mock_scene_event( mock_scene_event_data)) self.assertEqual(len(image_list), 1) self.assertEqual(len(depth_mask_list), 1) self.assertEqual(len(object_mask_list), 1) self.assertEqual(
numpy.array(image_list[0])
numpy.array
from tkinter import filedialog, Tk from typing import List import matplotlib.pyplot as plt import numpy as np from lmfit import Model from lmfit.models import GaussianModel, LinearModel from pandas import read_csv, read_hdf, DataFrame, set_option from scipy import fftpack, interpolate from scipy.optimize import curve_fit from seaborn import set_style from range_selector import RangeTool set_option('column_space', 80) set_style("whitegrid") # set_palette(["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"]) e = 2.7182818 def find_nearest(array, value): idx = (
np.abs(array - value)
numpy.abs
import numpy as np from econml.utilities import cross_product from statsmodels.tools.tools import add_constant class AbstracDynamicPanelDGP: def __init__(self, n_periods, n_treatments, n_x): self.n_periods = n_periods self.n_treatments = n_treatments self.n_x = n_x return def create_instance(self, *args, **kwargs): pass def _gen_data_with_policy(self, n_units, policy_gen, random_seed=123): pass def static_policy_data(self, n_units, tau, random_seed=123): def policy_gen(Tpre, X, period): return tau[period] return self._gen_data_with_policy(n_units, policy_gen, random_seed=random_seed) def adaptive_policy_data(self, n_units, policy_gen, random_seed=123): return self._gen_data_with_policy(n_units, policy_gen, random_seed=random_seed) def static_policy_effect(self, tau, mc_samples=1000): Y_tau, _, _, _ = self.static_policy_data(mc_samples, tau) Y_zero, _, _, _ = self.static_policy_data( mc_samples, np.zeros((self.n_periods, self.n_treatments))) return np.mean(Y_tau[np.arange(Y_tau.shape[0]) % self.n_periods == self.n_periods - 1]) - \ np.mean(Y_zero[np.arange(Y_zero.shape[0]) % self.n_periods == self.n_periods - 1]) def adaptive_policy_effect(self, policy_gen, mc_samples=1000): Y_tau, _, _, _ = self.adaptive_policy_data(mc_samples, policy_gen) Y_zero, _, _, _ = self.static_policy_data( mc_samples, np.zeros((self.n_periods, self.n_treatments))) return np.mean(Y_tau[np.arange(Y_tau.shape[0]) % self.n_periods == self.n_periods - 1]) - \ np.mean(Y_zero[np.arange(Y_zero.shape[0]) % self.n_periods == self.n_periods - 1]) class DynamicPanelDGP(AbstracDynamicPanelDGP): def __init__(self, n_periods, n_treatments, n_x): super().__init__(n_periods, n_treatments, n_x) def create_instance(self, s_x, sigma_x, sigma_y, conf_str, hetero_strength=0, hetero_inds=None, autoreg=.5, state_effect=.5, random_seed=123): np.random.seed(random_seed) self.s_x = s_x self.conf_str = conf_str self.sigma_x = sigma_x self.sigma_y = sigma_y self.hetero_inds = hetero_inds.astype( int) if hetero_inds is not None else hetero_inds self.endo_inds = np.setdiff1d( np.arange(self.n_x), hetero_inds).astype(int) # The first s_x state variables are confounders. The final s_x variables are exogenous and can create # heterogeneity self.Alpha = np.random.uniform(-1, 1, size=(self.n_x, self.n_treatments)) self.Alpha /= np.linalg.norm(self.Alpha, axis=1, ord=1, keepdims=True) self.Alpha *= state_effect if self.hetero_inds is not None: self.Alpha[self.hetero_inds] = 0 self.Beta = np.zeros((self.n_x, self.n_x)) for t in range(self.n_x): self.Beta[t, :] = autoreg * np.roll(np.random.uniform(low=4.0**(-np.arange( 0, self.n_x)), high=4.0**(-np.arange(1, self.n_x + 1))), t) if self.hetero_inds is not None: self.Beta[np.ix_(self.endo_inds, self.hetero_inds)] = 0 self.Beta[np.ix_(self.hetero_inds, self.endo_inds)] = 0 self.epsilon = np.random.uniform(-1, 1, size=self.n_treatments) self.zeta = np.zeros(self.n_x) self.zeta[:self.s_x] = self.conf_str / self.s_x self.y_hetero_effect = np.zeros(self.n_x) self.x_hetero_effect = np.zeros(self.n_x) if self.hetero_inds is not None: self.y_hetero_effect[self.hetero_inds] = np.random.uniform(.5 * hetero_strength, 1.5 * hetero_strength) / \ len(self.hetero_inds) self.x_hetero_effect[self.hetero_inds] = np.random.uniform(.5 * hetero_strength, 1.5 * hetero_strength) / \ len(self.hetero_inds) self.true_effect = np.zeros((self.n_periods, self.n_treatments)) self.true_effect[0] = self.epsilon for t in np.arange(1, self.n_periods): self.true_effect[t, :] = (self.zeta.reshape( 1, -1) @ np.linalg.matrix_power(self.Beta, t - 1) @ self.Alpha) self.true_hetero_effect = np.zeros( (self.n_periods, (self.n_x + 1) * self.n_treatments)) self.true_hetero_effect[0, :] = cross_product(add_constant(self.y_hetero_effect.reshape(1, -1), has_constant='add'), self.epsilon.reshape(1, -1)) for t in np.arange(1, self.n_periods): self.true_hetero_effect[t, :] = cross_product(add_constant(self.x_hetero_effect.reshape(1, -1), has_constant='add'), self.zeta.reshape(1, -1) @ np.linalg.matrix_power(self.Beta, t - 1) @ self.Alpha) return self def hetero_effect_fn(self, t, x): if t == 0: return (np.dot(self.y_hetero_effect, x.flatten()) + 1) * self.epsilon else: return (np.dot(self.x_hetero_effect, x.flatten()) + 1) *\ (self.zeta.reshape(1, -1) @ np.linalg.matrix_power(self.Beta, t - 1) @ self.Alpha).flatten() def _gen_data_with_policy(self, n_units, policy_gen, random_seed=123): np.random.seed(random_seed) Y = np.zeros(n_units * self.n_periods) T = np.zeros((n_units * self.n_periods, self.n_treatments)) X = np.zeros((n_units * self.n_periods, self.n_x)) groups = np.zeros(n_units * self.n_periods) for t in range(n_units * self.n_periods): period = t % self.n_periods if period == 0: X[t] = np.random.normal(0, self.sigma_x, size=self.n_x) T[t] = policy_gen(np.zeros(self.n_treatments), X[t], period) else: X[t] = (np.dot(self.x_hetero_effect, X[t - 1]) + 1) * np.dot(self.Alpha, T[t - 1]) + \ np.dot(self.Beta, X[t - 1]) + \ np.random.normal(0, self.sigma_x, size=self.n_x) T[t] = policy_gen(T[t - 1], X[t], period) Y[t] = (np.dot(self.y_hetero_effect, X[t]) + 1) * np.dot(self.epsilon, T[t]) + \ np.dot(X[t], self.zeta) + \ np.random.normal(0, self.sigma_y) groups[t] = t // self.n_periods return Y, T, X, groups def observational_data(self, n_units, gamma, s_t, sigma_t, random_seed=123): """ Generated observational data with some observational treatment policy parameters Parameters ---------- n_units : how many units to observe gamma : what is the degree of auto-correlation of the treatments across periods s_t : sparsity of treatment policy; how many states does it depend on sigma_t : what is the std of the exploration/randomness in the treatment """ Delta = np.zeros((self.n_treatments, self.n_x)) Delta[:, :s_t] = self.conf_str / s_t def policy_gen(Tpre, X, period): return gamma * Tpre + (1 - gamma) * np.dot(Delta, X) + \ np.random.normal(0, sigma_t, size=self.n_treatments) return self._gen_data_with_policy(n_units, policy_gen, random_seed=random_seed) class LongRangeDynamicPanelDGP(DynamicPanelDGP): def __init__(self, n_periods, n_treatments, n_x): super().__init__(n_periods, n_treatments, n_x) def create_instance(self, s_x, sigma_x, sigma_y, conf_str, hetero_strength=0, hetero_inds=None, autoreg=.5, state_effect=.5, random_seed=123): np.random.seed(random_seed) self.s_x = s_x self.conf_str = conf_str self.sigma_x = sigma_x self.sigma_y = sigma_y self.hetero_inds = hetero_inds.astype( int) if hetero_inds is not None else hetero_inds self.endo_inds = np.setdiff1d( np.arange(self.n_x), hetero_inds).astype(int) # The first s_x state variables are confounders. The final s_x variables are exogenous and can create # heterogeneity self.Alpha = state_effect * np.ones((self.n_x, self.n_treatments)) if self.hetero_inds is not None: self.Alpha[self.hetero_inds] = 0 self.Beta = autoreg * np.eye(self.n_x) self.epsilon = np.random.uniform(-1, 1, size=self.n_treatments) self.zeta = np.zeros(self.n_x) self.zeta[:self.s_x] = self.conf_str / self.s_x self.y_hetero_effect = np.zeros(self.n_x) self.x_hetero_effect = np.zeros(self.n_x) if self.hetero_inds is not None: self.y_hetero_effect[self.hetero_inds] = np.random.uniform(.5 * hetero_strength, 1.5 * hetero_strength) / \ len(self.hetero_inds) self.x_hetero_effect[self.hetero_inds] = np.random.uniform(.5 * hetero_strength, 1.5 * hetero_strength) / \ len(self.hetero_inds) self.true_effect = np.zeros((self.n_periods, self.n_treatments)) self.true_effect[0] = self.epsilon for t in np.arange(1, self.n_periods): self.true_effect[t, :] = (self.zeta.reshape( 1, -1) @ np.linalg.matrix_power(self.Beta, t - 1) @ self.Alpha) self.true_hetero_effect = np.zeros( (self.n_periods, (self.n_x + 1) * self.n_treatments)) self.true_hetero_effect[0, :] = cross_product(add_constant(self.y_hetero_effect.reshape(1, -1), has_constant='add'), self.epsilon.reshape(1, -1)) for t in np.arange(1, self.n_periods): self.true_hetero_effect[t, :] = cross_product(add_constant(self.x_hetero_effect.reshape(1, -1), has_constant='add'), self.zeta.reshape(1, -1) @ np.linalg.matrix_power(self.Beta, t - 1) @ self.Alpha) return self class EndogenousDynamicPanelDGP(DynamicPanelDGP): def __init__(self, n_periods, n_treatments, n_x): super().__init__(n_periods, n_treatments, n_x) def create_instance(self, s_x, sigma_x, sigma_y, conf_str, hetero_strength=0, hetero_inds=None, autoreg=.5, state_effect=.5, random_seed=123): np.random.seed(random_seed) self.s_x = s_x self.conf_str = conf_str self.sigma_x = sigma_x self.sigma_y = sigma_y self.hetero_inds = hetero_inds.astype( int) if hetero_inds is not None else hetero_inds # The first s_x state variables are confounders. The final s_x variables are exogenous and can create # heterogeneity self.Alpha = state_effect * \ np.ones((self.n_x, self.n_treatments))/self.n_treatments self.Beta = autoreg * np.eye(self.n_x) self.epsilon = np.random.uniform(-1, 1, size=self.n_treatments) self.zeta = np.zeros(self.n_x) self.zeta[:self.s_x] = self.conf_str / self.s_x self.y_hetero_effect = np.zeros(self.n_x) self.x_hetero_effect = np.zeros(self.n_x) if self.hetero_inds is not None: self.y_hetero_effect[self.hetero_inds] = np.random.uniform(.5 * hetero_strength, 1.5 * hetero_strength) / \ len(self.hetero_inds) self.x_hetero_effect[self.hetero_inds] = np.random.uniform(.5 * hetero_strength, 1.5 * hetero_strength) / \ len(self.hetero_inds) self.true_effect = np.zeros((self.n_periods, self.n_treatments)) self.true_effect[0] = self.epsilon for t in np.arange(1, self.n_periods): self.true_effect[t, :] = (self.zeta.reshape( 1, -1) @ np.linalg.matrix_power(self.Beta, t - 1) @ self.Alpha) self.true_hetero_effect = np.zeros( (self.n_periods, (self.n_x + 1) * self.n_treatments)) self.true_hetero_effect[0, :] = cross_product(add_constant(self.y_hetero_effect.reshape(1, -1), has_constant='add'), self.epsilon.reshape(1, -1)) for t in np.arange(1, self.n_periods): self.true_hetero_effect[t, :] = cross_product(add_constant(self.x_hetero_effect.reshape(1, -1), has_constant='add'), self.zeta.reshape(1, -1) @ np.linalg.matrix_power(self.Beta, t - 1) @ self.Alpha) return self class PastTreatmentHeteroDynamicPanelDGP(DynamicPanelDGP): def __init__(self, n_periods, n_treatments, n_x): super().__init__(n_periods, n_treatments, n_x) def create_instance(self, s_x, sigma_x, sigma_y, conf_str, hetero_strength=0, hetero_inds=None, autoreg=.5, state_effect=.5, random_seed=123): np.random.seed(random_seed) self.s_x = s_x self.conf_str = conf_str self.sigma_x = sigma_x self.sigma_y = sigma_y self.hetero_inds = np.arange(self.n_x - self.n_treatments, self.n_x) self.Alpha = state_effect * \ np.ones((self.n_x, self.n_treatments))/self.n_treatments self.Alpha[-self.n_treatments:, - self.n_treatments:] = state_effect * np.eye(self.n_treatments) self.Beta = autoreg * np.eye(self.n_x) self.epsilon = np.random.uniform(-1, 1, size=self.n_treatments) self.zeta = np.zeros(self.n_x) self.zeta[:self.s_x] = self.conf_str / self.s_x self.y_hetero_effect = np.zeros(self.n_x) self.x_hetero_effect = np.zeros(self.n_x) if self.hetero_inds is not None: self.y_hetero_effect[self.hetero_inds] = hetero_strength / \ len(self.hetero_inds) self.x_hetero_effect[self.hetero_inds] = hetero_strength / \ len(self.hetero_inds) self.true_effect = np.zeros((self.n_periods, self.n_treatments)) self.true_effect[0] = self.epsilon for t in np.arange(1, self.n_periods): self.true_effect[t, :] = (self.zeta.reshape( 1, -1) @ np.linalg.matrix_power(self.Beta, t - 1) @ self.Alpha) self.true_hetero_effect = np.zeros( (self.n_periods, (self.n_x + 1) * self.n_treatments)) self.true_hetero_effect[0, :] = cross_product(add_constant(self.y_hetero_effect.reshape(1, -1), has_constant='add'), self.epsilon.reshape(1, -1)) for t in np.arange(1, self.n_periods): self.true_hetero_effect[t, :] = cross_product(add_constant(self.x_hetero_effect.reshape(1, -1), has_constant='add'), self.zeta.reshape(1, -1) @
np.linalg.matrix_power(self.Beta, t - 1)
numpy.linalg.matrix_power
import numpy as np import matplotlib.pyplot as plt from matplotlib import animation, cm from mpl_toolkits.mplot3d import Axes3D # create a figure fig = plt.figure() # initialise 3D Axes ax = Axes3D(fig) # remove background grid, fill and axis ax.grid(False) ax.xaxis.pane.fill = ax.yaxis.pane.fill = ax.zaxis.pane.fill = False plt.axis('off') # tighter fit to window plt.tight_layout() # create surface values x = np.arange(-5, 5, 0.25) y = np.arange(-5, 5, 0.25) xx, yy = np.meshgrid(x, y) r = np.sqrt(xx ** 2 + yy ** 2) z =
np.cos(r)
numpy.cos
""" A collection of functions to generate a generic model Statistics and boundary conditions used are documented in TODO: Source Final Report """ import numpy as np import pandas as pd import logging as lg from SystemComponentsFast import Agent, Building, Cell, SepBSLagent lg.basicConfig(level=lg.WARNING) def _addAgents(building, pAgent, pPHH, pAgriculture): """ Add agents to building Args: building (Building): Object to represent building pAgent (float32): Probability that agents is created (Corresponds to the propotion of agents on max. possible Agents in Building(s)) pPHH (float32): Proportion of PHH agents in Building pAgriculture (float32): Proportion of BSL agents which are agricultural Returns: Building: Building object with agents """ for aNr in range(building.n_max_agents): if np.random.random() > pAgent: continue # determine agent type if np.random.random() <= pPHH: aType = 0 else: if
np.random.random()
numpy.random.random
import numpy as np from numpy.ma.core import MaskedArray from scipy.special import gammaln, digamma, polygamma from math import log, exp import cvxopt as cvx from cvxopt import solvers import time, pdb from ribohmm import utils from ribohmm.utils import Mappability, States from collections import namedtuple import logging logger = logging.getLogger('viterbi_log') solvers.options['maxiters'] = 300 solvers.options['show_progress'] = False CandidateCDS = namedtuple('CandidateCDS', 'frame start stop') def logistic(x): return 1 / (1 + np.exp(x)) def nplog(x): return np.nan_to_num(np.log(x)) def normalize(arr): """Compute the log-sum-exp of a real-valued vector, avoiding numerical overflow issues. Arguments: x : numpy vector (float64) Returns: c : scalar (float64) """ arr_max = np.max(arr) c = 0 for val in arr: c += exp(val - arr_max) c = log(c) + arr_max return c # cdef np.ndarray[np.float64_t, ndim=1] outsum(np.ndarray[np.float64_t, ndim=2] arr): def outsum(arr): """Fast summation over the 0-th axis. Faster than numpy.sum() """ # cdef np.ndarray thesum return sum([a for a in arr]) class Data: def __init__(self, riboseq_pileup, codon_map, transcript_normalization_factor, is_pos_mappable): """Instantiates a data object for a transcript and populates it with observed ribosome-profiling data, expression RPKM as its scaling factor, and the DNA sequence of each triplet in the transcript in each frame and the missingness-type for each triplet in the transcript in each frame. footprint_counts (riboseq_pileup, formerly obs) ====================== List of size num_transcripts, where each element is an array of shape (len_transcript, num_footprint_lengths) This is the riboseq pileup at each position of a transcript. This is a list of transcripts, where each transcript is represented by an array of integers. The outer element is the position in the transcript, and the inner element is for each footprint length. codon_map ======== A dictionary with three keys: kozak, start, and stop. The values for each of those keys is an array of size (num_codons, 3), where the 3 is for each possible reading frame. The start array maps to the list of start codons in utils.STARTCODONS, and the stop array does the same. ex: [ [0 1 0], [0 0 0], [3 0 0] ] means that there is an AUG codon in the first triplet of the second open reading frame, and an GUG codon in the third triplet of the first open reading frame rna_counts (scale) ================== A scaling factor based on observed RNAseq counts. Is a scalar value that is transcript specific. obs: footprint counts codon_id: codon flags scale: rna_counts mappable: rna_mappability """ # cdef double r,m,f # cdef np.ndarray ma, mapp # length of transcript self.transcript_length = riboseq_pileup.shape[0] # length of HMM self.n_triplets = int(self.transcript_length / 3) - 1 # number of distinct footprint lengths self.n_footprint_lengths = riboseq_pileup.shape[1] # observed ribosome-profiling data self.riboseq_pileup = riboseq_pileup # transcript expression RPKM as scaling factor self.transcript_normalization_factor = transcript_normalization_factor # mappability of each position for each footprint length, values are boolean self.is_pos_mappable = is_pos_mappable # ensure that all unmappable positions have a zero footprint count self.riboseq_pileup[~self.is_pos_mappable] = 0 # codon type of each triplet in each frame self.codon_map = codon_map # missingness-type of each triplet in each frame for each footprint length self.missingness_type = np.zeros((self.n_footprint_lengths, 3, self.n_triplets), dtype=np.uint8) # total footprint count for each triplet in each frame for each footprint length self.total_pileup = np.empty((3, self.n_triplets, self.n_footprint_lengths), dtype=np.uint64) # Compute missingness type and total footprint count in each triplet for frame_i in range(3): for footprint_length_i in range(self.n_footprint_lengths): # Get mappability information and reshapes into a 2-dim array, where the number of rows is equal to # the number of triplets and the columns are for each frame index frame_sequence_positions = slice(frame_i, 3 * self.n_triplets + frame_i) per_triplet_mappability = ( self.is_pos_mappable[frame_sequence_positions, footprint_length_i] .reshape(self.n_triplets, 3) ) # missingness pattern of a triplet can belong to one of 8 types, # depending on which of the 3 positions are unmappable # Each triplet will be represented by an integer that corresponds to a value in utils.binarize # Each value ma in each iteration represents one triplet (so will be length 3) self.missingness_type[footprint_length_i, frame_i, :] = np.array([ utils.debinarize[triplet_mappability.tostring()] for triplet_mappability in per_triplet_mappability ]).astype(np.uint8) # Gets the total pileup count from the riboseq data for each triplet in this frame self.total_pileup[frame_i, :, footprint_length_i] = ( np.sum(self.riboseq_pileup[frame_sequence_positions, footprint_length_i] .reshape(self.n_triplets, 3), axis=1) ) def compute_log_probability(self, emission): """Computes the log probability of the data given model parameters. Log probability of data is the sum of log probability at positions under the HMM and log probability at extra positions. Arguments: emission : instance of `Emission` containing estimates of emission model parameters """ # Create array to store log probability # It is 3-dimensional: # - 1st dim is frame index, of size 3 # - 2nd dim is triplet index, of size n_triplets # - 3rd dim is state index, of size emission.S, which is 9 # In this case, log probability is the log of the likelihood that self.log_probability = np.zeros((3, self.n_triplets, emission['S']), dtype=np.float64) self.extra_log_probability = np.zeros((3,), dtype=np.float64) # missingness-types where 1 out of 3 positions are unmappable # This is based utils.binarize, the below indexes all have 1 position unmappable # Except that isn't true? That's what the comment from the original code says, but as far as I can # tell, this maps to the following, where False means unmappable: # - [False, True, True] # - [True, False, True] # - [True, True, False] # - [True, True, True] # Why is 7 included in this? # one_base_unmappable = np.array([3, 5, 6, 7]).reshape(4, 1) one_base_unmappable = np.array([ Mappability.UMM, Mappability.MUM, Mappability.MMU, Mappability.MMM ]).reshape(4, 1) # loop over possible frames for frame_i in range(3): # loop over footprint lengths for footprint_length_i in range(self.n_footprint_lengths): # The local log probability for this frame index and footprint length index log_probability = np.zeros((self.n_triplets, emission['S']), dtype=np.float64) # Riboseq pileup for all the triplets in this frame index, then reshaped to where each row is a # triplet with three values frame_positions = slice(frame_i, 3 * self.n_triplets + frame_i) frame_pileups = self.riboseq_pileup[frame_positions, footprint_length_i].reshape(self.n_triplets, 3) # probability under periodicity model, accounting for mappability # triplets with at most 1 unmappable position # For each triplet in the transcript, for this footprint length and frame index, determine which # triplets match one of the missingness types that have one unmappable position triplet_one_base_unmappable = np.any( self.missingness_type[footprint_length_i, frame_i, :] == one_base_unmappable, axis=0 ) # Calculate the log probability of those triplets which have one unmappable position, for each # possible state log_probability[triplet_one_base_unmappable, :] = ( ( # Give total riboseq pileup for each triplet, for this footprint length and frame index, to # the natural log of the gamma function (https://www.desmos.com/calculator/q4evkl4ekm) gammaln(self.total_pileup[frame_i, triplet_one_base_unmappable, footprint_length_i] + 1) # Base pileups for each triplet in this frame index, given to the natural log of the # gamma function - np.sum(gammaln(frame_pileups[triplet_one_base_unmappable, :] + 1), axis=1) # Reshape to put each value in its own row, with 1 column ).reshape(triplet_one_base_unmappable.sum(), 1) # Inner product of the base pileup for each triplet in this frame index and the emission # log periodicity for this footprint length + np.dot( frame_pileups[triplet_one_base_unmappable, :], emission['logperiodicity'][footprint_length_i].T ) ) # Iterate through each missingness type that has one unmappable position # Subtract some log probability from each triplet which has one unmappable position for mtype in one_base_unmappable[:3, 0]: mapAB = self.missingness_type[footprint_length_i, frame_i, :] == mtype log_probability[mapAB, :] -= np.dot( self.total_pileup[frame_i, mapAB, footprint_length_i:footprint_length_i + 1], utils.nplog(emission['rescale'][footprint_length_i:footprint_length_i + 1, :, mtype]) ) # probability under occupancy model, accounting for mappability # The alpha and beta model parameters are arrays of size (n_footprint_lengths, n_states) # alpha and beta below are 1-D arrays of size n_states alpha = emission['rate_alpha'][footprint_length_i] beta = emission['rate_beta'][footprint_length_i] # The rescale variable ends up being an array of size n_triplets, where each values corresponds to # the rescale value for that triplet's missingness type rescale = emission['rescale'][footprint_length_i, :, self.missingness_type[footprint_length_i, frame_i, :]] # Total pileup for each triplet, where each value is a single-element array total = self.total_pileup[frame_i, :, footprint_length_i:footprint_length_i + 1] rate_log_probability = ( alpha * beta * utils.nplog(beta) + gammaln(alpha*beta + total) - gammaln(alpha*beta) - gammaln(total + 1) + total * utils.nplog(self.transcript_normalization_factor * rescale) - (alpha * beta + total) * utils.nplog(beta + self.transcript_normalization_factor * rescale) ) # ensure that triplets with all positions unmappable # do not contribute to the data probability mask = self.missingness_type[footprint_length_i, frame_i, :] == Mappability.UUU rate_log_probability[mask, :] = 0 # Store the log probability self.log_probability[frame_i] += log_probability + rate_log_probability # likelihood of extra positions in transcript # Compute likelihood for bases before the core sequence of triplets # TODO Consolidate this code, make it DRY for extra_base_pos in range(frame_i): if self.is_pos_mappable[extra_base_pos, footprint_length_i]: self.extra_log_probability[frame_i] += ( alpha[States.ST_5PRIME_UTS] * beta[States.ST_5PRIME_UTS] * utils.nplog(beta[States.ST_5PRIME_UTS]) - (alpha[States.ST_5PRIME_UTS] * beta[States.ST_5PRIME_UTS] + self.riboseq_pileup[extra_base_pos, footprint_length_i]) * utils.nplog(beta[States.ST_5PRIME_UTS] + self.transcript_normalization_factor / 3.) + gammaln(alpha[States.ST_5PRIME_UTS] * beta[States.ST_5PRIME_UTS]+self.riboseq_pileup[extra_base_pos, footprint_length_i]) - gammaln(alpha[States.ST_5PRIME_UTS] * beta[States.ST_5PRIME_UTS]) + self.riboseq_pileup[extra_base_pos, footprint_length_i] * utils.nplog(self.transcript_normalization_factor / 3.) - gammaln(self.riboseq_pileup[extra_base_pos, footprint_length_i] + 1) ) # Compute likelihood for bases after the core sequence of triplets for extra_base_pos in range(3 * self.n_triplets + frame_i, self.transcript_length): if self.is_pos_mappable[extra_base_pos, footprint_length_i]: self.extra_log_probability[frame_i] += ( alpha[States.ST_3PRIME_UTS] * beta[States.ST_3PRIME_UTS] * utils.nplog(beta[States.ST_3PRIME_UTS]) - (alpha[States.ST_3PRIME_UTS] * beta[States.ST_3PRIME_UTS] + self.riboseq_pileup[extra_base_pos, footprint_length_i]) * utils.nplog(beta[States.ST_3PRIME_UTS] + self.transcript_normalization_factor / 3.) + gammaln(alpha[States.ST_3PRIME_UTS] * beta[States.ST_3PRIME_UTS] + self.riboseq_pileup[extra_base_pos, footprint_length_i]) - gammaln(alpha[States.ST_3PRIME_UTS] * beta[States.ST_3PRIME_UTS]) + self.riboseq_pileup[extra_base_pos, footprint_length_i] * utils.nplog(self.transcript_normalization_factor / 3.) - gammaln(self.riboseq_pileup[extra_base_pos, footprint_length_i] + 1) ) # check for infs or nans in log likelihood if np.isnan(self.log_probability).any() or np.isinf(self.log_probability).any(): print('Warning: Inf/Nan in data log likelihood') pdb.set_trace() if np.isnan(self.extra_log_probability).any() or np.isinf(self.extra_log_probability).any(): print('Warning: Inf/Nan in extra log likelihood') pdb.set_trace() def compute_log_probability_(self, emission): self.log_likelihood = np.zeros((3, self.n_triplets, emission['S']), dtype=np.float64) self.extra_log_likelihood = np.zeros((3,), dtype=np.float64) self.missing = ~self.is_pos_mappable for f in range(3): for r in range(self.n_footprint_lengths): log_likelihood = np.zeros((self.n_triplets,emission['S']), dtype=np.float64) # periodicity likelihood count_data = np.array([self.riboseq_pileup[3*m+f:3*m+3+f,r] for m in range(self.n_triplets)]).astype(np.uint64) log_likelihood += np.dot( count_data, emission['logperiodicity'][r] ) + gammaln(self.total_pileup[f,:,r:r+1]+1) - utils.insum(gammaln(count_data+1),[1]) if True: # abundance likelihood rate_log_likelihood = ( emission['rate_alpha'][r] # A * emission['rate_beta'][r] # B * utils.nplog(emission['rate_beta'][r]) # C - (emission['rate_alpha'][r]*emission['rate_beta'][r]+self.total_pileup[f,:,r:r+1]) # D * utils.nplog(emission['rate_beta'][r] + self.transcript_normalization_factor) # E + gammaln(emission['rate_alpha'][r]*emission['rate_beta'][r]+self.total_pileup[f,:,r:r+1]) # F - gammaln(emission['rate_alpha'][r]*emission['rate_beta'][r]) # G + self.total_pileup[f,:,r:r+1] # H * utils.nplog(self.transcript_normalization_factor) # I - gammaln(self.total_pileup[f,:,r:r+1]+1) # J ) log_likelihood += rate_log_likelihood # likelihood of extra positions for l in range(f): if not self.missing[l,r]: self.extra_log_likelihood[f] += ( emission['rate_alpha'][r,0] * emission['rate_beta'][r,0] * utils.nplog(emission['rate_beta'][r,0]) - (emission['rate_alpha'][r,0]*emission['rate_beta'][r,0]+self.riboseq_pileup[l,r]) * utils.nplog(emission['rate_beta'][r,0]+self.transcript_normalization_factor/3.) + gammaln(emission['rate_alpha'][r,0]*emission['rate_beta'][r,0]+self.riboseq_pileup[l,r]) - gammaln(emission['rate_alpha'][r,0]*emission['rate_beta'][r,0]) + self.riboseq_pileup[l,r]*utils.nplog(self.transcript_normalization_factor/3.) - gammaln(self.riboseq_pileup[l,r]+1) ) for l in range(3 * self.n_triplets + f, self.transcript_length): if not self.missing[l,r]: self.extra_log_likelihood[f] += ( emission['rate_alpha'][r,emission['S']-1] * emission['rate_beta'][r,emission['S']-1] * utils.nplog(emission['rate_beta'][r,emission['S']-1]) - (emission['rate_alpha'][r,emission['S']-1]*emission['rate_beta'][r,emission['S']-1]+ self.riboseq_pileup[l,r]) * utils.nplog(emission['rate_beta'][r,emission['S']-1]+self.transcript_normalization_factor/3.) + gammaln(emission['rate_alpha'][r,emission['S']-1]*emission['rate_beta'][r,emission['S']-1]+self.riboseq_pileup[l,r]) - gammaln(emission['rate_alpha'][r,emission['S']-1]*emission['rate_beta'][r,emission['S']-1]) + self.riboseq_pileup[l,r]*utils.nplog(self.transcript_normalization_factor/3.) - gammaln(self.riboseq_pileup[l,r]+1) ) # account for mappability in main positions missing = np.array([m for m in range(self.n_triplets) if np.any(self.missing[3*m+f:3*m+3+f,r])]).astype(np.int64) log_likelihood[missing,:] = 0 self.log_likelihood[f] += log_likelihood self.log_probability = self.log_likelihood self.extra_log_probability = self.extra_log_likelihood # if np.isnan(self.log_likelihood).any() \ # or np.isinf(self.log_likelihood).any(): # print("Warning: Inf/Nan in data log likelihood") # pdb.set_trace() # # if np.isnan(self.extra_log_likelihood).any() \ # or np.isinf(self.extra_log_likelihood).any(): # print("Warning: Inf/Nan in extra log likelihood") # pdb.set_trace() def compute_observed_pileup_deviation(self, emission, return_sorted=True): """ For each ORF, for each read length, for the first two base positions in each triplet, computes a difference between observed and expected pileup :param candidate_orfs: :param emission: :return: """ orfs_with_errors = list() for candidate_orf in self.get_candidate_cds_simple(): footprint_errors = list() by_triplet_error = dict() for footprint_length_i in range(self.n_footprint_lengths): expected = emission['logperiodicity'][footprint_length_i] observed_frame_i = candidate_orf.frame observed_start = candidate_orf.start observed_stop = candidate_orf.stop orf_square_error = np.zeros(shape=(self.n_triplets, 3)) for triplet_i in range(self.n_triplets): triplet_state = get_triplet_state(triplet_i, start_pos=observed_start, stop_pos=observed_stop) state_expected = np.exp(expected[triplet_state]) # Get observed pileup proportions triplet_positions = slice(triplet_i * 3 + observed_frame_i, 3 * triplet_i + observed_frame_i + 3) triplet_pileups = self.riboseq_pileup[triplet_positions, footprint_length_i] if triplet_pileups.sum() == 0: triplet_proportions = np.ones(3) / 3 # TODO Should this be all 0s? else: triplet_proportions = triplet_pileups / triplet_pileups.sum() square_error = (triplet_proportions - state_expected) ** 2 orf_square_error[triplet_i] = square_error by_triplet_error[footprint_length_i] = np.sum(orf_square_error, axis=1) orf_rmse = np.sqrt(np.sum(orf_square_error) / (self.n_triplets * 2)) footprint_errors.append(orf_rmse) orf_error = np.mean(footprint_errors) orfs_with_errors.append((candidate_orf, orf_error, by_triplet_error)) if not return_sorted: return orfs_with_errors return sorted(orfs_with_errors, key=lambda r: r[1]) def get_candidate_cds_simple(self, shifted_forward=True): """ Args: shifted_forward: If True, shifts forward the codon map to directly represent the codon position Returns: """ local_start_codon_map = self.codon_map['start'].copy() local_stop_codon_map = self.codon_map['stop'].copy() if shifted_forward: local_start_codon_map = np.roll(local_start_codon_map, shift=1, axis=0) local_start_codon_map[0] = [0, 0, 0] # np.roll wraps around, so set the first codon to 0s local_stop_codon_map = np.roll(local_stop_codon_map, shift=1, axis=0) local_stop_codon_map[0] = [0, 0, 0] N_FRAMES = 3 n_triplets = local_start_codon_map.shape[0] candidate_cds = list() for pos_i in range(n_triplets): for frame_i in range(N_FRAMES): if local_start_codon_map[pos_i, frame_i] > 0: for stop_i in range(pos_i, n_triplets): if local_stop_codon_map[stop_i, frame_i] > 0: candidate_cds.append(CandidateCDS( frame=frame_i, start=pos_i, stop=stop_i )) break return candidate_cds def get_state_sequence(self, n_triplets, start, stop): seq = np.zeros(n_triplets, dtype=int) try: seq[start - 1] = 1 seq[start] = 2 seq[start + 1] = 3 seq[start + 2:stop - 1] = 4 seq[stop - 1] = 5 seq[stop] = 6 seq[stop + 1] = 7 seq[stop + 2:] = 8 except: pass # Silently fail return list(seq) def orf_state_matrix(self): """ Returns () matrix of orf states, """ n_triplets = self.codon_map['start'].shape[0] orf_state_matrix_ = [list(), list(), list()] for candidate_cds in self.get_candidate_cds_simple(): state_seq = self.get_state_sequence(n_triplets, candidate_cds.start, candidate_cds.stop) orf_state_matrix_[candidate_cds.frame].append(state_seq) return [np.array(m) for m in orf_state_matrix_] class Frame(object): def __init__(self): """Instantiates a frame object for a transcript and initializes a random posterior probability over all three frames. """ self.posterior = np.random.rand(3) """Why on Earth did I add a int() here? It isn't in the original code""" # self.posterior = int(self.posterior/self.posterior.sum()) self.posterior = self.posterior/self.posterior.sum() def update(self, data, state): """Update posterior probability over the three frames for a transcript. Arguments: data : instance of `Datum` state : instance of `State` """ self.posterior = outsum(state.likelihood) + data.extra_log_probability self.posterior = self.posterior - self.posterior.max() self.posterior = np.exp(self.posterior) self.posterior = self.posterior / self.posterior.sum() def __reduce__(self): return (rebuild_Frame, (self.posterior,)) def rebuild_Frame(pos): f = Frame() f.posterior = pos return f class State(object): def __init__(self, n_triplets): # number of triplets self.n_triplets = n_triplets # number of states for the HMM self.n_states = 9 # stores the (start,stop) and posterior for the MAP state for each frame self.best_start = [] self.best_stop = [] self.max_posterior = np.empty(shape=(3,), dtype=np.float64) def _forward_update(self, data, transition): """ Inflate serialized transition dictionary """ # Define one for each of the 9 States logprior = nplog([1, 0, 0, 0, 0, 0, 0, 0, 0]) # swapidx = np.array([2, 3, 6, 7]).astype(np.uint8) swapidx = np.array( [States.ST_TIS, States.ST_TIS_PLUS, States.ST_TTS, States.ST_3PRIME_UTS_MINUS] ).astype(np.uint8) # alpha_k(z_k) is P(z_k | x_1:k) # In this case the three frames are three separate HMMs self.alpha = np.zeros((3, self.n_triplets, self.n_states), dtype=np.float64) self.likelihood = np.zeros((self.n_triplets, 3), dtype=np.float64) # data.codon_map['kozak'] is shape (n_triplets, n_frames) and is the kozak values for each triplet in # each frame # transition['seqparam']['start'] is an 11-element array, one value for each defined Start codon, where 0 is # defined as not a Start codon # data.codon_map['start'] is an integer value for each triplet and frame that corresponds to a Start codon, or # 0 if not any of the Start codons # transition['seqparam']['start'][data.codon_map['start']]) is the broadcast of each Start codon seqparam value # to the appropriate codon type # The shape of P will be (n_triplets, n_frames) # Q is essentially the same thing but with Stop codons P = logistic( -1 * (transition['seqparam']['kozak'] * data.codon_map['kozak'] + transition['seqparam']['start'][data.codon_map['start']]) ) Q = logistic(-1 * transition['seqparam']['stop'][data.codon_map['stop']]) for frame_i in range(3): # Determine the likelihood and alpha for the first triplet # data.log_probability[frame_i, triplet_i, state_i] # Both logprior and the log_probabilty are size (9,) newalpha = logprior + data.log_probability[frame_i, 0, :] normalized_new_alpha = normalize(newalpha) # Set the likelihood and alpha for each state for the first triplet for state_i in range(self.n_states): self.alpha[frame_i, 0, state_i] = newalpha[state_i] - normalized_new_alpha self.likelihood[0, frame_i] = normalized_new_alpha # For all triplets after the first triplet for triplet_i in range(1, self.n_triplets): # states 2,3,6,7 # TIS, TIS+, TTS, 3'UTS- for swap_state_i in swapidx: newalpha[swap_state_i] = ( self.alpha[frame_i, triplet_i - 1, swap_state_i - 1] + data.log_probability[frame_i, triplet_i, swap_state_i] ) # state 0,1 # 5'UTS, 5'UTS+ try: # Get the alpha value from the previous triplet, state 5'UTS p = self.alpha[frame_i, triplet_i - 1, States.ST_5PRIME_UTS] + log(1 - P[triplet_i, frame_i]) q = self.alpha[frame_i, triplet_i - 1, States.ST_5PRIME_UTS] + log(P[triplet_i, frame_i]) except ValueError: # log(x) where x <= 0 if P[triplet_i, frame_i] == 0.0: p = self.alpha[frame_i, triplet_i - 1, States.ST_5PRIME_UTS] q = utils.MIN else: p = utils.MIN q = self.alpha[frame_i, triplet_i - 1, States.ST_5PRIME_UTS] newalpha[States.ST_5PRIME_UTS] = p + data.log_probability[frame_i, triplet_i, States.ST_5PRIME_UTS] newalpha[States.ST_5PRIME_UTS_PLUS] = q + data.log_probability[frame_i, triplet_i, States.ST_5PRIME_UTS_PLUS] # state 4 # TES p = self.alpha[frame_i, triplet_i - 1, States.ST_TIS_PLUS] try: q = self.alpha[frame_i, triplet_i - 1, States.ST_TES] + log(1 - Q[triplet_i, frame_i]) except ValueError: q = utils.MIN if p > q: newalpha[States.ST_TES] = log(1 + exp(q - p)) + p + data.log_probability[frame_i, triplet_i, States.ST_TES] else: newalpha[States.ST_TES] = log(1 + exp(p - q)) + q + data.log_probability[frame_i, triplet_i, States.ST_TES] # state 5 try: newalpha[States.ST_TTS_MINUS] = self.alpha[frame_i, triplet_i - 1, States.ST_TES] + log(Q[triplet_i, frame_i]) + data.log_probability[frame_i, triplet_i, States.ST_TTS_MINUS] except ValueError: newalpha[States.ST_TTS_MINUS] = utils.MIN # state 8 p = self.alpha[frame_i, triplet_i - 1, States.ST_3PRIME_UTS_MINUS] q = self.alpha[frame_i, triplet_i - 1, States.ST_5PRIME_UTS] if p > q: newalpha[States.ST_5PRIME_UTS] = log(1 + exp(q - p)) + p + data.log_probability[frame_i, triplet_i, States.ST_5PRIME_UTS] else: newalpha[States.ST_5PRIME_UTS] = log(1 + exp(p - q)) + q + data.log_probability[frame_i, triplet_i, States.ST_5PRIME_UTS] normalized_new_alpha = normalize(newalpha) # for s from 0 <= s < self.S: for s in range(self.n_states): self.alpha[frame_i, triplet_i, s] = newalpha[s] - normalized_new_alpha self.likelihood[triplet_i, frame_i] = normalized_new_alpha # if np.isnan(self.alpha).any() or np.isinf(self.alpha).any(): # print('Warning: Inf/Nan in forward update step') # pdb.set_trace() def _reverse_update(self, data, transition): swapidx = np.array([1, 2, 3, 5, 6, 7]).astype(np.uint8) self.pos_first_moment = np.empty((3, self.n_triplets, self.n_states), dtype=np.float64) self.pos_cross_moment_start = np.empty((3, self.n_triplets, 2), dtype=np.float64) P = logistic( -1 * (transition.seqparam['kozak'] * data.codon_map['kozak'] + transition.seqparam['start'][data.codon_map['start']]) ) Q = logistic(-1 * transition.seqparam['stop'][data.codon_map['stop']]) # for f from 0 <= f < 3: for f in range(3): self.pos_first_moment[f, self.n_triplets - 1, :] = np.exp(self.alpha[f, self.n_triplets - 1, :]) newbeta = np.empty((self.n_states,), dtype=np.float64) beta = np.zeros((self.n_states,), dtype=np.float64) for m in range(self.n_triplets - 2, -1, -1): for s in range(self.n_states): beta[s] = beta[s] + data.log_probability[f, m + 1, s] try: pp = beta[0] + log(1 - P[m + 1, f]) except ValueError: pp = utils.MIN try: p = beta[1] + log(P[m + 1, f]) except ValueError: p = utils.MIN try: q = beta[5] + log(Q[m + 1, f]) except ValueError: q = utils.MIN try: qq = beta[4] + log(1 - Q[m + 1, f]) except ValueError: qq = utils.MIN # pos cross moment at start a = self.alpha[f, m, 0] - self.likelihood[m + 1, f] self.pos_cross_moment_start[f, m + 1, 0] = exp(a + p) self.pos_cross_moment_start[f, m + 1, 1] = exp(a + pp) # states 1,2,3,5,6,7 for s in swapidx: newbeta[s] = beta[s + 1] newbeta[self.n_states - 1] = beta[self.n_states - 1] # state 0 if p > pp: newbeta[0] = log(1 + np.exp(pp - p)) + p else: newbeta[0] = log(1 + np.exp(p - pp)) + pp # state 4 if qq > q: newbeta[4] = log(1 + np.exp(q - qq)) + qq else: newbeta[4] = log(1 + np.exp(qq - q)) + q # for s from 0 <= s < self.S: for s in range(self.n_states): beta[s] = newbeta[s] - self.likelihood[m + 1, f] self.pos_first_moment[f, m, s] = exp(self.alpha[f, m, s] + beta[s]) self.pos_cross_moment_start[f, 0, 0] = 0 self.pos_cross_moment_start[f, 0, 1] = 0 if np.isnan(self.pos_first_moment).any() or np.isinf(self.pos_first_moment).any(): print('Warning: Inf/Nan in first moment') pdb.set_trace() if np.isnan(self.pos_cross_moment_start).any() or np.isinf(self.pos_cross_moment_start).any(): print('Warning: Inf/Nan in start cross moment') pdb.set_trace() def new_decode(self, data, transition): P = logistic(-1 * (transition['seqparam']['kozak'] * data.codon_map['kozak'] + transition['seqparam']['start'][data.codon_map['start']])) Q = logistic(-1 * transition['seqparam']['stop'][data.codon_map['stop']]) N_FRAMES = 3 orf_state_matrix = data.orf_state_matrix() orf_posteriors = list() for frame_i in range(N_FRAMES): n_orfs = orf_state_matrix[frame_i].shape[0] orf_posteriors.append(np.zeros(shape=n_orfs)) for orf_i in range(n_orfs): alpha = utils.nplog(1) + data.log_probability[frame_i, 0, 0] for triplet_i in range(1, orf_state_matrix[frame_i].shape[1]): current_state = orf_state_matrix[frame_i][orf_i, triplet_i] prev_state = orf_state_matrix[frame_i][orf_i, triplet_i - 1] if current_state == 0: try: newalpha = alpha + log(1 - P[triplet_i, frame_i]) # What do we do when this is log(0)? except: print(f'Got utils.MIN on triplet {triplet_i} | P[{triplet_i}, {frame_i}] = {P[triplet_i, frame_i]} | Exception 1****************') newalpha = utils.MIN elif current_state == 1: try: newalpha = alpha + log(P[triplet_i, frame_i]) except: print(f'Got utils.MIN on triplet {triplet_i} | P[{triplet_i}, {frame_i}] = {P[triplet_i, frame_i]} | Exception 2') newalpha = utils.MIN elif current_state == 2: newalpha = alpha + log(1) elif current_state == 3: newalpha = alpha + log(1) elif current_state == 4: if prev_state == 3: newalpha = alpha + log(1) else: try: newalpha = alpha + log(1 - Q[triplet_i, frame_i]) except: print(f'Got utils.MIN on triplet {triplet_i} | Q[{triplet_i}, {frame_i}] = {Q[triplet_i, frame_i]} | Exception 3***************') newalpha = utils.MIN elif current_state == 5: try: newalpha = alpha + log(Q[triplet_i, frame_i]) except: print(f'Got utils.MIN on triplet {triplet_i} | Q[{triplet_i}, {frame_i}] = {Q[triplet_i, frame_i]} | Exception 4') newalpha = utils.MIN elif current_state == 6: newalpha = alpha + log(1) elif current_state == 7: newalpha = alpha + log(1) else: # current_state == 8 newalpha = alpha + log(1) # Is it deterministic? alpha = newalpha + data.log_probability[frame_i, triplet_i, current_state] # Last element is the state we're on? orf_posteriors[frame_i][orf_i] = np.exp(alpha - np.sum(self.likelihood[:, frame_i])) return orf_posteriors def decode(self, data, transition): P = logistic(-1*(transition['seqparam']['kozak'] * data.codon_map['kozak'] + transition['seqparam']['start'][data.codon_map['start']])) Q = logistic(-1*transition['seqparam']['stop'][data.codon_map['stop']]) logprior = utils.nplog([1, 0, 0, 0, 0, 0, 0, 0, 0]) swapidx = np.array( [States.ST_TIS, States.ST_TIS_PLUS, States.ST_TTS, States.ST_3PRIME_UTS_MINUS] ).astype(np.uint8) pointer = np.zeros((self.n_triplets, self.n_states), dtype=np.uint8) pointer[0, 0] = np.array([0]) alpha = np.zeros((self.n_states,), dtype=np.float64) self.decode_alphas = np.zeros((3, self.n_states), dtype=np.float64) newalpha = np.zeros((self.n_states,), dtype=np.float64) # Most likely hidden state for each triplet state = np.zeros((self.n_triplets,), dtype=np.uint8) # Iterate over each frame for frame_i in range(3): # find the state sequence with highest posterior # data.log_probability is (frame_i, triplet_i, state_i) # This frame, first triplet, all states alpha = logprior + data.log_probability[frame_i, 0, :] for triplet_i in range(1, self.n_triplets): # states 2,3,6,7 for s in swapidx: newalpha[s] = alpha[s - 1] pointer[triplet_i, s] = s - 1 # state 0,1 try: p = alpha[0] + log(1 - P[triplet_i, frame_i]) q = alpha[0] + log(P[triplet_i, frame_i]) except ValueError: if P[triplet_i, frame_i] == 0.0: p = alpha[0] q = utils.MIN else: p = utils.MIN q = alpha[0] + log(1) pointer[triplet_i, 0] = 0 newalpha[0] = p pointer[triplet_i, 1] = 0 newalpha[1] = q # state 4 p = alpha[3] try: q = alpha[4] + log(1-Q[triplet_i, frame_i]) except ValueError: q = utils.MIN if p >= q: newalpha[4] = p pointer[triplet_i, 4] = 3 else: newalpha[4] = q pointer[triplet_i, 4] = 4 # state 5 try: newalpha[5] = alpha[4] + log(Q[triplet_i, frame_i]) except ValueError: newalpha[5] = utils.MIN pointer[triplet_i, 5] = 4 # state 8 p = alpha[7] q = alpha[8] if p >= q: newalpha[8] = p pointer[triplet_i, 8] = 7 else: newalpha[8] = q pointer[triplet_i, 8] = 8 # for s from 0 <= s < self.n_states: for s in range(self.n_states): alpha[s] = newalpha[s] + data.log_probability[frame_i, triplet_i, s] self.decode_alphas[frame_i] = alpha # constructing the MAP state sequence # alpha is 1-dim array of size n_states state[self.n_triplets - 1] = np.argmax(alpha) # Start on the second-to-last triplet, then count backward to the first triplet for triplet_i in range(self.n_triplets - 2, 0, -1): # Previous state in the sense that it was the last calculated state # Since we're going backward, this is technically the next state in the sequence prev_state = state[triplet_i + 1] # Get the most likely state of this triplet state[triplet_i] = pointer[triplet_i + 1, prev_state] state[0] = pointer[0, 0] # Calculate the max posterior using the HMM definition # max_post = 0 # for triplet_i, state_ in enumerate(state): # max_post += data.log_probability[frame_i, triplet_i, state_] # max_post = np.exp(max_post) self.max_posterior[frame_i] = np.exp(np.max(alpha) - np.sum(self.likelihood[:, frame_i])) # identifying start codon position # state is 1-dim array of size n_triplets # This gives the position in the transcript, not the triplet index # Returns the most upstream possible start codon try: self.best_start.append(np.where(state == States.ST_TIS)[0][0] * 3 + frame_i) except IndexError: self.best_start.append(None) # identifying stop codon position try: # Should this be TTS? self.best_stop.append(np.where(state == States.ST_3PRIME_UTS_MINUS)[0][0] * 3 + frame_i) except IndexError: self.best_stop.append(None) # To allow us to extract out this function's alpha value # self.alpha = np.empty((1, 1, 1), dtype=np.float64) self.pos_cross_moment_start = np.empty((1, 1, 1), dtype=np.float64) self.pos_cross_moment_stop = np.empty((1, 1, 1), dtype=np.float64) self.pos_first_moment = np.empty((1, 1, 1), dtype=np.float64) self.likelihood = np.empty((1, 1), dtype=np.float64) def joint_probability(self, data, transition, state, frame): # cdef long m # cdef double p, q, joint_probability joint_probability = data.log_probability[frame,0,state[0]] # for m from 1 <= m < self.M: for m in range(self.n_triplets): if state[m-1]==0: p = transition.seqparam['kozak'] * data.codon_map['kozak'][m,frame] \ + transition.seqparam['start'][data.codon_map['start'][m,frame]] try: joint_probability = joint_probability - log(1+exp(-p)) if state[m]==0: joint_probability = joint_probability - p except OverflowError: if state[m]==1: joint_probability = joint_probability - p elif state[m-1]==4: q = transition.seqparam['stop'][data.codon_id['stop'][m,frame]] try: joint_probability = joint_probability - log(1+exp(-q)) if state[m]==4: joint_probability = joint_probability - q except OverflowError: if state[m]==5: joint_probability = joint_probability - q joint_probability = joint_probability + data.log_probability[frame,m,state[m]] return joint_probability def compute_posterior(self, data, transition, start, stop): # cdef long frame # cdef double joint_prob, marginal_prob, posterior # cdef np.ndarray state frame = start%3 start = int((start-frame)/3) stop = int((stop-frame)/3) # construct state sequence given a start/stop pair state = np.empty((self.n_triplets,), dtype=np.uint8) state[:start-1] = 0 state[start-1] = 1 state[start] = 2 state[start+1] = 3 state[start+2:stop-2] = 4 state[stop-2] = 5 state[stop-1] = 6 state[stop] = 7 state[stop+1:] = 8 # compute joint probability joint_prob = self.joint_probability(data, transition, state, frame) # compute marginal probability marginal_prob = np.sum(self.likelihood[:,frame]) posterior = exp(joint_prob - marginal_prob) return posterior def __reduce__(self): return (rebuild_State, (self.best_start, self.best_stop, self.max_posterior, self.M)) def rebuild_State(bstart, bstop, mposterior, M): s = State(M) s.best_start = bstart s.best_stop = bstop s.max_posterior = mposterior return s class Transition(object): def __init__(self): """Order of the states is '5UTS','5UTS+','TIS','TIS+','TES','TTS-','TTS','3UTS-','3UTS' """ # number of states in HMM self.S = 9 self.restrict = True self.C = len(utils.STARTCODONS) + 1 self.seqparam = dict() # initialize parameters for translation initiation self.seqparam['kozak'] = np.random.rand() self.seqparam['start'] = np.zeros((self.C,), dtype='float') self.seqparam['start'][0] = utils.MIN self.seqparam['start'][1] = 1+np.random.rand() self.seqparam['start'][2:] = utils.MIN # initialize parameters for translation termination self.seqparam['stop'] = utils.MAX * np.ones((4,), dtype=np.float64) self.seqparam['stop'][0] = utils.MIN def __getitem__(self, item): return self.__dict__[item] def _serialize(self): return { 'seqparam': { 'kozak': self.seqparam['kozak'], 'start': list(self.seqparam['start']), 'stop': list(self.seqparam['stop']) } } # @cython.boundscheck(False) # @cython.wraparound(False) # @cython.nonecheck(False) # cdef update(self, list data, list states, list frames): # @njit def update(self, data, states, frames): # cdef bool optimized # cdef long id, f, V # cdef double p, q # cdef np.ndarray[np.float64_t, ndim=1] xo, x_final # cdef np.ndarray[np.float64_t, ndim=2] x_init # cdef State state # cdef Frame frame # update 5'UTS -> 5'UTS+ transition parameter # warm start for the optimization optimized = False if self.restrict: xo = np.hstack((self.seqparam['kozak'], self.seqparam['start'][1:2])) else: xo = np.hstack((self.seqparam['kozak'], self.seqparam['start'][1:])) V = xo.size x_init = xo.reshape(V,1) try: x_final, optimized = optimize_transition_initiation(x_init, data, states, frames, self.restrict) if optimized: self.seqparam['kozak'] = x_final[0] self.seqparam['start'][1] = x_final[1] if not self.restrict: self.seqparam['start'][2:] = x_final[2:] except: # if any error is thrown, skip updating at this iteration pass def __reduce__(self): return (rebuild_Transition, (self.seqparam,self.restrict)) def rebuild_Transition(seqparam, restrict): t = Transition() t.seqparam = seqparam t.restrict = restrict return t # @njit def optimize_transition_initiation(x_init, data, states, frames, restrict): # @njit def func(x=None, z=None): if x is None: return 0, cvx.matrix(x_init) xx = np.array(x).ravel().astype(np.float64) if z is None: # compute likelihood function and gradient results = transition_func_grad(xx, data, states, frames, restrict) fd = results[0] Df = results[1] # check for infs and nans, in function and gradient if np.isnan(fd) or np.isinf(fd): f = np.array([np.finfo(np.float32).max]).astype(np.float64) else: f = np.array([fd]).astype(np.float64) if np.isnan(Df).any() or
np.isinf(Df)
numpy.isinf
# -*- coding: utf-8 -*- """ Created on Wed Sep 15 17:24:08 2021 @author: gawe """ # ========================================================================== # # ========================================================================== # # This section is to improve python compataibilty between py27 and py3 from __future__ import absolute_import, with_statement, absolute_import, division, print_function, unicode_literals __metaclass__ = type # ========================================================================== # import numpy as _np import matplotlib.pyplot as _plt # ========================================================================== # # ========================================================================== # """ Laplace Transform: Maps complex-valued signal x(t) with real-valued independent variable t to its complex-valued Laplace transform with complex-valued independent variable s Whether a Laplace transform X(s)=L{x(t)} exists depends on complex frequency s and the signal x(t) itself. All values s for which the Laplace transform converges form a region of convergence (ROC). The Laplace transform of two different signals may differe only wrt their ROCs. Conseqeuently, the ROC needs to be explicitly given for a unique inversion of the Laplace transform. Laplace transforms are extensively used for signals/systems analysis and filter analysis/design with linear, time-invariant (LTI) systems. The bilateral (+- time) Laplace transform of a causal signal is identical to the unilateral (t>0) Laplace transform of that signal. A rational Laplace transform (i.e., of an LTI system) can always be written as either the quotient of two polynomials in s: F(s) = P_n(s) / Q_m(s) where m>=n or the same quotient with a constant damping factor F(s) = (P_n(s) / Q_m(s))*exp[-a*s] where m>=n, a>0 Roots: zeros of the Laplace transform (where P_n = 0) Poles: discontinuities of the Laplace transform (where Q_m = 0) Special case: The Laplace transform of the Dirac-delta function delta(t) is 1 L{delta(t)} = 1 for s an element of all complex-numbers ROC covers the entire complex plane ----- Laplace transform (unilateral): s = alpha + j*omega F[u(t)] = U(s) = int_0^infty{ u(t)*exp[-(alpha+j*omega)*t]dt} Laplace transform (bilateral): s = alpha + j*omega F[u(t)] = U(s) = int_-infty^infty{ u(t)*exp[-(alpha+j*omega)*t]dt} Fourier transform: (just for this example we are normalizing on the inverse transform) F[u(t)] = U(omega) = int_-infty^infty{ u(t)*exp[-j*omega*t]dt} By inspection: The unilateral Laplace transform is the Fourier transform of a causal function multiplied by a decaying exponential U(s) = F[ u(t)*H(t)*exp(-alpha*t) ] - H() is the Heaviside function The bilateral Laplace transform is the Fourier transform of a generally non-causal function multiplied by a decaying exponential U(s) = F[ u(t)*exp(-alpha*t) ] """ def laplace(): pass def laplace_1d(uin, real_sigma_interval=_np.arange(-1, 1 + 0.001, 0.001), nfft=None): """ Returns the Laplace transform of a signal using a brute-force method and Fourier transforms, first axis is the real range second axis the imaginary range. Complex numbers are returned. """ uin = _np.copy(uin) if nfft is None: uin = _np.atleast_1d(uin) nfft = len(uin) # end if # The transform is from last timestep to first, so "x" is reversed uin =
_np.array(uin)
numpy.array
# ###################################################################### # Copyright (c) 2014, Brookhaven Science Associates, Brookhaven # # National Laboratory. All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions # # are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of the Brookhaven Science Associates, Brookhaven # # National Laboratory nor the names of its contributors may be used # # to endorse or promote products derived from this software without # # specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OTHERWISE) ARISING # # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # ######################################################################## """ This module is for spectroscopy specific tools (spectrum fitting etc). """ from __future__ import absolute_import, division, print_function import numpy as np from six.moves import zip from scipy.integrate import simps from .fitting import fit_quad_to_peak import logging logger = logging.getLogger(__name__) def align_and_scale(energy_list, counts_list, pk_find_fun=None): """ Parameters ---------- energy_list : iterable of ndarrays list of ndarrays with the energy of each element counts_list : iterable of ndarrays list of ndarrays of counts/element pk_find_fun : function or None A function which takes two ndarrays and returns parameters about the largest peak. If None, defaults to `find_largest_peak`. For this demo, the output is (center, height, width), but this sould be pinned down better. Returns ------- out_e : list of ndarray The aligned/scaled energy arrays out_c : list of ndarray The count arrays (should be the same as the input) """ if pk_find_fun is None: pk_find_fun = find_largest_peak base_sigma = None out_e, out_c = [], [] for e, c in zip(energy_list, counts_list): E0, max_val, sigma = pk_find_fun(e, c) if base_sigma is None: base_sigma = sigma out_e.append((e - E0) * base_sigma / sigma) out_c.append(c) return out_e, out_c def find_largest_peak(x, y, window=None): """ Finds and estimates the location, width, and height of the largest peak. Assumes the top of the peak can be approximated as a Gaussian. Finds the peak properties using least-squares fitting of a parabola to the log of the counts. The region around the peak can be approximated by Y = Y0 * exp(- (X - X0)**2 / (2 * sigma **2)) Parameters ---------- x : ndarray The independent variable y : ndarary Dependent variable sampled at positions X window : int, optional The size of the window around the maximum to use for the fitting Returns ------- x0 : float The location of the peak y0 : float The magnitude of the peak sigma : float Width of the peak """ # make sure they are _really_ arrays x = np.asarray(x) y = np.asarray(y) # get the bin with the largest number of counts j = np.argmax(y) if window is not None: roi = slice(
np.max(j - window, 0)
numpy.max
from __future__ import division from future.utils import viewitems from builtins import int, zip import concurrent.futures import os import itertools from ._adaptive_threshold import threshold as athreshold from .pool import pooler from ._moving_window import moving_window # from mpglue.raster_tools import create_raster # from mpglue import moving_window import numpy as np import cv2 # SciPy from scipy.ndimage.measurements import label as nd_label from scipy.ndimage.measurements import mean as nd_mean import scipy.stats as sci_stats from scipy.stats import mode as sci_mode from sklearn.preprocessing import StandardScaler # Scikit-image from skimage.exposure import rescale_intensity from skimage.filters import threshold_local from skimage.morphology import remove_small_objects, skeletonize from skimage.morphology import thin as sk_thin from skimage.feature import peak_local_max from skimage.measure import regionprops from skimage.measure import label as sk_label import pymorph from mahotas import thin as mthin from mahotas.morph import hitmiss as mhitmiss # from tqdm import tqdm # from joblib import Parallel, delayed def local_straightness(arr, kernel_filter, w, sigma_color, sigma_space): """ https://ieeexplore-ieee-org.ezproxy.library.uq.edu.au/document/1334256 https://docs.opencv.org/master/d4/d70/tutorial_anisotropic_image_segmentation_by_a_gst.html Example: >>> conv_kernels = set_kernel_pairs(methods=['compass']) >>> kernel_filter = conv_kernels['compass']['kernels'] >>> local_straightness(array, kernel_filter, 3, 1, 1) """ diff_x = cv2.filter2D(np.float32(arr), cv2.CV_32F, kernel_filter[1], borderType=cv2.BORDER_CONSTANT) diff_y = cv2.filter2D(np.float32(arr), cv2.CV_32F, kernel_filter[0], borderType=cv2.BORDER_CONSTANT) diff_xy = diff_x * diff_y diff_xx = diff_x * diff_x diff_yy = diff_y * diff_y c11 = cv2.boxFilter(np.float32(diff_xx), cv2.CV_32F, (w, w)) c22 = cv2.boxFilter(np.float32(diff_yy), cv2.CV_32F, (w, w)) c12 = cv2.boxFilter(np.float32(diff_xy), cv2.CV_32F, (w, w)) # c11 = cv2.bilateralFilter(np.float32(diff_xx), w, sigma_color, sigma_space) # c22 = cv2.bilateralFilter(np.float32(diff_yy), w, sigma_color, sigma_space) # c12 = cv2.bilateralFilter(np.float32(diff_xy), w, sigma_color, sigma_space) gamma_max = (c11 + c22 + np.sqrt((c11 - c22)**2 + 4*c12**2)) / 2.0 gamma_min = (c11 + c22 - np.sqrt((c11 - c22)**2 + 4*c12**2)) / 2.0 s = 1.0 - (gamma_min / gamma_max) return s def logistic(x, **params): return sci_stats.logistic.cdf(x, **params) def sigmoid(x, a, b): return 1.0 / (1.0 + np.exp(-b * (x - a))) def log_transform(egm, scale=1e-6, logistic_alpha=1.6, logistic_beta=0.5): """ Transforms an EGM to probabilities Args: egm (2d array) scale (Optional[float]): The scaling factor logistic_alpha (Optional[float]) logistic_beta (Optional[float]) Returns: Probabilities (2d array) """ # Mask egm[egm == 0] = np.nan log_min = np.nanpercentile(np.log(egm * scale), 2) egm[np.isnan(egm)] = 0 # Log transform egm_proba = np.where(egm > 0, np.log(egm * scale), log_min) # Scale and clip r, c = egm_proba.shape zegm = np.where(egm_proba.ravel() > log_min)[0] scaler = StandardScaler().fit(egm_proba.ravel()[zegm][:, np.newaxis]) egm_proba = scaler.transform(egm_proba.ravel()[:, np.newaxis]).reshape(r, c) egm_proba = rescale_intensity(egm_proba, in_range=(-3, 3), out_range=(-3, 3)) # CDF return logistic(egm_proba, loc=logistic_alpha, scale=logistic_beta) def bayes(prior_a, prior_b, likelihood): """ Bayes rule Args: prior_a (float): The class prior probability. prior_b (float): The class prior probability. likelihood (float) """ posterior = (likelihood * prior_a) / (likelihood * prior_a + prior_b * (1.0 - prior_a)) posterior[np.isnan(posterior)] = 0 return posterior class Params(object): def __init__(self, **kwargs): for k, v in viewitems(kwargs): setattr(self, k, v) def mopen(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_OPEN, se, iterations=iters) def mclose(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_CLOSE, se, iterations=iters) def merode(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_ERODE, se, iterations=iters) def mdilate(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_DILATE, se, iterations=iters) def closerec(array2morph, se, r=3, iters=5): """ Close by reconstruction Args: array2morph (2d array) se (str) r (Optional[int]) iters (Optional[int]) """ if se == 'disk': se = np.uint8(pymorph.sedisk(r=r)) elif se == 'cross': se = np.uint8(pymorph.secross(r=r)) evi2_dist = np.float32(cv2.distanceTransform(np.uint8(np.where(array2morph >= 20, 1, 0)), cv2.DIST_L2, 3)) seed = np.uint8(np.where(evi2_dist >= 2, cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_OPEN, se, iterations=1), 0)) im_result = seed.copy() for iter in range(0, iters): im_dilated = cv2.morphologyEx(np.uint8(im_result), cv2.MORPH_DILATE, se, iterations=1) im_rec = np.minimum(im_dilated, array2morph) im_result = im_rec.copy() if np.allclose(seed, im_rec): break return im_result def openrec(array2morph, se, iters=5): """ Open by reconstruction Args: array2morph (2d array) se (2d array) iters (Optional[int]) """ evi2_dist = np.float32(cv2.distanceTransform(np.uint8(np.where(array2morph >= 20, 1, 0)), cv2.DIST_L2, 3)) seed = np.uint8(np.where(evi2_dist >= 2, cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_OPEN, se, iterations=1), 0)) im_result = seed.copy() for iter in range(0, iters): im_dilated = merode(im_result, se, iters=1) im_rec = np.minimum(im_dilated, array2morph) im_result = im_rec.copy() if np.allclose(seed, im_rec): break return im_result def set_kernel_pairs(methods=None): """ Creates 2d convolution kernels Args: methods (Optional[str list]): Choices are ['compass', 'kirsch', 'prewitt', 'roberts', 'scharr', 'sobel']. Returns: List of kernel filters """ returned_filters = dict() if methods: returned_filters['custom'] = dict(kernels=methods, compass=True) methods = ['compass', 'kirsch', 'prewitt', 'roberts', 'sobel'] # Prewitt compass compass_filters = np.array([[[-1, -1, -1], [1, -2, 1], [1, 1, 1]], [[-1, -1, 1], [-1, -2, 1], [1, 1, 1]], [[-1, 1, 1], [-1, -2, 1], [-1, 1, 1]], [[1, 1, 1], [-1, -2, 1], [-1, -1, 1]], [[1, 1, 1], [1, -2, 1], [-1, -1, -1]], [[1, 1, 1], [1, -2, -1], [1, -1, -1]], [[1, 1, -1], [1, -2, -1], [1, 1, -1]]], dtype='float32') # Sobel sobel_filters = np.array([[[1, 2, 0], [2, 0, -2], [0, -2, -1]], [[-1, -2, 0], [-2, 0, 2], [0, 2, 1]], [[0, 2, 1], [-2, 0, 2], [-1, -2, 0]], [[0, -2, -1], [2, 0, -2], [1, 2, 0]], [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], [[1, 0, -1], [2, 0, -2], [1, 0, -1]], [[-1, -2, -1], [0, 0, 0], [1, 2, 1]], [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]], dtype='float32') # Scharr scharr_filters = np.array([[[10, 3, 0], [3, 0, -3], [0, -3, -10]], [[-10, -3, 0], [-3, 0, 3], [0, 3, 10]], [[0, 3, 10], [-3, 0, 3], [-10, -3, 0]], [[0, -3, -10], [3, 0, -3], [10, 3, 0]], [[-10, 0, 10], [-3, 0, 3], [-10, 0, 10]], [[10, 0, -10], [3, 0, -3], [10, 0, -10]], [[-10, -3, -10], [0, 0, 0], [10, 3, 10]], [[10, 3, 10], [0, 0, 0], [-10, -3, -10]]], dtype='float32') # Roberts cross roberts_filters = np.array([[[0, -1], [1, 0]], [[0, 1], [-1, 0]], [[-1, 0], [0, 1]], [[1, 0], [0, -1]]], dtype='float32') # Prewitt prewitt_filters = np.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]], [[-1, -1, -1], [0, 0, 0], [1, 1, 1]], [[1, 1, 0], [1, 0, -1], [0, -1, -1]], [[-1, -1, 0], [-1, 0, 1], [0, 1, 1]], [[1, 0, -1], [1, 0, -1], [1, 0, -1]], [[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]], [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]], [[0, -1, -1], [1, 0, -1], [1, 1, 0]]], dtype='float32') # Kirsch compass kirsch_filters = np.array([[[5, 5, 5], [-3, 0, -3], [-3, -3, -3]], [[5, 5, -3], [5, 0, -3], [-3, -3, -3]], [[5, -3, -3], [5, 0, -3], [5, -3, -3]], [[-3, -3, -3], [5, 0, -3], [5, 5, -3]], [[-3, -3, -3], [-3, 0, -3], [5, 5, 5]], [[-3, -3, -3], [-3, 0, 5], [-3, 5, 5]], [[-3, -3, 5], [-3, 0, 5], [-3, -3, 5]]], dtype='float32') if 'compass' in methods: returned_filters['compass'] = dict(kernels=compass_filters, compass=True) if 'kirsch' in methods: returned_filters['kirsch'] = dict(kernels=kirsch_filters, compass=True) if 'prewitt' in methods: returned_filters['prewitt'] = dict(kernels=prewitt_filters, compass=False) if 'roberts' in methods: returned_filters['roberts'] = dict(kernels=roberts_filters, compass=False) if 'scharr' in methods: returned_filters['scharr'] = dict(kernels=scharr_filters, compass=False) if 'sobel' in methods: returned_filters['sobel'] = dict(kernels=sobel_filters, compass=False) return returned_filters def find_circles(intensity_array, kernel_size): """ Finds circles Args: intensity_array (2d array) kernel_size (int) """ kernel_radius = int(kernel_size / 2.0) kernel_circle = np.uint8(pymorph.sedisk(r=kernel_radius, dim=2, metric='euclidean', flat=True, h=0) * 1) kernel_square = np.uint8(pymorph.sebox(r=kernel_radius) * 1) circles = cv2.filter2D(np.float32(intensity_array), cv2.CV_32F, kernel_circle, borderType=cv2.BORDER_CONSTANT) squares = cv2.filter2D(np.float32(intensity_array), cv2.CV_32F, kernel_square, borderType=cv2.BORDER_CONSTANT) diff = circles - squares local_max_coords = peak_local_max(diff, min_distance=kernel_size, indices=True) local_max = np.zeros(intensity_array.shape, dtype='uint8') for local_coord in local_max_coords: local_coord[0] -= kernel_radius local_coord[1] -= kernel_radius local_max[local_coord[0]:local_coord[0]+kernel_size, local_coord[1]:local_coord[1]+kernel_size] = kernel_circle se = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype='uint8') return cv2.morphologyEx(local_max, cv2.MORPH_GRADIENT, se) def _get_magnitude(image2convolve, kernel_filter): """ Calculates the Edge Gradient Magnitude from x and y derivatives Args: image2convolve (2d array) kernel_filter (tuple) Returns: EGM as 2d array """ return cv2.magnitude(cv2.filter2D(np.float32(image2convolve), cv2.CV_32F, kernel_filter[1], borderType=cv2.BORDER_CONSTANT), cv2.filter2D(np.float32(image2convolve), cv2.CV_32F, kernel_filter[0], borderType=cv2.BORDER_CONSTANT)) def get_magnitude(im, kernels=None, pad=15): """ Gets the Edge Gradient Magnitude (EGM) over multiple edge kernels Args: im (2d array) kernels (Optional[list] pad (Optional[int]) Returns: Gradient edge magnitude as 2d array. [Mean EGM] * [Max EGM] """ n_rows, n_cols = im.shape # Pad image edges. if pad > 0: im = np.float32(cv2.copyMakeBorder(im, pad, pad, pad, pad, cv2.BORDER_REFLECT)) # The convolution kernel pairs conv_kernels = set_kernel_pairs(methods=kernels) # Mean EGM # mag_p = np.zeros((len(conv_kernels), im.shape[0], im.shape[1]), dtype='float32') mag_p = np.zeros(im.shape, dtype='float32') for kernel_name, kernel_dict in viewitems(conv_kernels): kernel_filters = kernel_dict['kernels'] mag_c = np.zeros(im.shape, dtype='float32') if kernel_dict['compass']: if isinstance(kernel_filters, list): kiter = len(kernel_filters) # Get the maximum EGM over all kernel pairs. for ki in range(0, kiter): for kw in range(0, 2): # Image convolution temp_egm = cv2.filter2D(np.float32(im), cv2.CV_32F, np.array(kernel_filters[ki], dtype='float32')[kw], borderType=cv2.BORDER_CONSTANT) mag_c = np.maximum(mag_c, temp_egm) else: # Get the maximum EGM over all kernels. for ki in range(0, kernel_filters.shape[0]): # Image convolution temp_egm = cv2.filter2D(np.float32(im), cv2.CV_32F, kernel_filters[ki], borderType=cv2.BORDER_CONSTANT) mag_c = np.maximum(mag_c, temp_egm) else: if isinstance(kernel_filters, list): kiter = len(kernel_filters) # Get the maximum EGM over all kernel pairs. for ki in range(0, kiter): # EGM temp_egm = _get_magnitude(im, np.array(kernel_filters[ki], dtype='float32')) mag_c = np.maximum(mag_c, temp_egm) else: kiter = kernel_filters.shape[0] # Get the maximum EGM over all kernel pairs. for ki in range(0, kiter, 2): # EGM temp_egm = _get_magnitude(im, kernel_filters[ki:ki+2]) mag_c = np.maximum(mag_c, temp_egm) mag_p += mag_c if pad > 0: # mag_p = mag_p.mean(axis=0)[pad:n_rows+pad, pad:n_cols+pad] * mag_p.max(axis=0)[pad:n_rows+pad, pad:n_cols+pad] mag_p = mag_p[pad:n_rows+pad, pad:n_cols+pad] / len(conv_kernels) else: # mag_p = mag_p.mean(axis=0) * mag_p.max(axis=0) mag_p = mag_p / len(conv_kernels) mag_p[np.isnan(mag_p) | np.isinf(mag_p)] = 0.0 return mag_p def get_mag_egm(ts_array, ts_r, ts_c, kernels): # EGM holder mag_egm = np.zeros((ts_array.shape[0], ts_r, ts_c), dtype='float32') se = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype='uint8') # count = np.zeros((ts_r, ts_c), dtype='uint8') # Get the EGM from each day. for ti in range(0, ts_array.shape[0]): mask = mdilate(np.where(ts_array[ti] == 0, 1, 0), se, iters=10) # count[mask == 0] += 1 # Get the EGM over all 'kernels'. magg_ = get_magnitude(ts_array[ti], kernels=kernels, pad=0) # magg_[mask == 1] = 0 magg_[mask == 1] = np.nan mag_egm[ti] = magg_ # Get the mean EGM over all layers # mag_egm_mean = mag_egm.sum(axis=0) / np.float32(count) mag_egm_mean = np.nanmean(mag_egm, axis=0) mag_egm_med = np.nanmedian(mag_egm, axis=0) mag_egm_cv = np.nanstd(mag_egm, axis=0) / mag_egm_med mag_egm_cv = ((mag_egm_cv + mag_egm_med) / 2.0) * 10000.0 return mag_egm_mean, mag_egm_cv def get_mag_dist(ts_array, ts_r, ts_c, cvm): # EGM holder mag_dist = np.zeros((ts_r, ts_c), dtype='float32') # Get the edge distance from each day. for ti in range(0, ts_array.shape[0]-3): mag_dist_ = moving_window(ts_array[ti:ti+3], statistic='distance', window_size=3, weights=cvm) mag_dist += mag_dist_ return mag_dist / float(ts_array.shape[0]-3) def _do_clahe(image2adjust, clip_perc, grid_tile): """ Contrast Limited Adaptive Histogram Equalization (CLAHE) Args: image2adjust (2d array) clip_perc (float) grid_tile (int) Returns: CLAHE adjusted 2d array """ clahe = cv2.createCLAHE(clipLimit=clip_perc, tileGridSize=grid_tile) return clahe.apply(image2adjust) def local_hist_eq(image2adjust, clip_percentages=None, grid_tiles=None, method='mean'): """ Computes multi-scale Contrast Limited Adaptive Histogram Equalization (CLAHE) Args: image2adjust (ndarray): The edge gradient magnitude array to adjust. Should be uint8 data type. clip_percentages (Optional[float list]): A list of clip percentages for CLAHE. Default is [1.]. grid_tiles (Optional[tuple list]): A list of grid tuples for CLAHE. Default is [(16, 16)]. method (Optional[str]): The aggregation method. Returns: Adjusted image as 2d array. """ if not clip_percentages: clip_percentages = [1.] if grid_tiles: grid_tiles = [(gk, gk) for gk in grid_tiles] else: grid_tiles = [(16, 16)] rws, cls = image2adjust.shape if method == 'mean': temp_arr_eq = np.zeros((rws, cls), dtype='uint64') elif method == 'median' or method == 'min': temp_arr_eq = np.zeros((len(clip_percentages) * len(grid_tiles), rws, cls), dtype='uint64') counter = 0 # Iterate over each clip percentage. for clip_perc in clip_percentages: # Iterate over each grid tile. for grid_tile in grid_tiles: # Compute CLAHE and add it to the output array. if method == 'mean': temp_arr_eq += _do_clahe(image2adjust, clip_perc, grid_tile) # temp_arr_eq += rescale_intensity(exposure.equalize_adapthist(image2adjust, # kernel_size=grid_tile[0], # clip_limit=clip_perc), # in_range=(0., 1.), out_range=(0, 255)) elif method == 'median' or method == 'min': temp_arr_eq[counter] = _do_clahe(image2adjust, clip_perc, grid_tile) counter += 1 # Return the mean CLAHE-adjusted edge gradient magnitude if method == 'mean': return np.float32(temp_arr_eq / float(len(clip_percentages) * len(grid_tiles))) / 255.0 # return np.uint8(np.divide(temp_arr_eq, float(len(clip_percentages) * len(grid_tiles))) / 255.) elif method == 'median': return np.float32(np.median(temp_arr_eq, axis=0) / 255.0) elif method == 'min': return np.float32(temp_arr_eq.min(axis=0) / 255.0) def locate_endpoints(edge_image, locations='all'): """ Locates edge endpoints Args: edge_image (2d array) locations (Optional[str]): Choices are ['all', 'small', 'broken']. Returns: Image endpoints, where endpoints = 1. """ # Setup the endpoint structuring elements for # hit or miss morphology. if locations == 'all': endpoints = [np.array([[0, 0, 0], [0, 1, 0], [2, 1, 2]], dtype='uint8'), np.array([[0, 0, 0], [0, 1, 2], [0, 2, 1]], dtype='uint8'), np.array([[0, 0, 2], [0, 1, 1], [0, 0, 2]], dtype='uint8'), np.array([[0, 2, 1], [0, 1, 2], [0, 0, 0]], dtype='uint8'), np.array([[2, 1, 2], [0, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[1, 2, 0], [2, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[2, 0, 0], [1, 1, 0], [2, 0, 0]], dtype='uint8'), np.array([[0, 0, 0], [2, 1, 0], [1, 2, 0]], dtype='uint8'), np.array([[0, 0, 0], [0, 1, 0], [1, 2, 1]], dtype='uint8'), np.array([[0, 0, 1], [0, 1, 2], [0, 0, 1]], dtype='uint8'), np.array([[1, 2, 1], [0, 1, 0], [0, 0, 0]], dtype='uint8')] elif locations == 'small': endpoints = [np.array([[0, 0, 0], [0, 1, 0], [1, 1, 1]], dtype='uint8'), np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], dtype='uint8'), np.array([[0, 0, 1], [0, 1, 1], [0, 0, 1]], dtype='uint8'), np.array([[0, 1, 1], [0, 1, 1], [0, 0, 0]], dtype='uint8'), np.array([[1, 1, 1], [0, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[1, 0, 0], [1, 1, 0], [1, 0, 0]], dtype='uint8'), np.array([[0, 0, 0], [1, 1, 0], [1, 1, 0]], dtype='uint8'), np.array([[0, 0, 0], [0, 1, 0], [1, 1, 1]], dtype='uint8'), np.array([[0, 0, 1], [0, 1, 1], [0, 0, 1]], dtype='uint8'), np.array([[1, 1, 1], [0, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[1, 0, 0], [1, 1, 0], [1, 0, 0]], dtype='uint8')] elif locations == 'broken': endpoints = [np.array([[0, 0, 0], [0, 1, 0], [1, 0, 1]], dtype='uint8'), np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1]], dtype='uint8'), np.array([[1, 0, 1], [0, 1, 0], [0, 0, 0]], dtype='uint8'), np.array([[1, 0, 0], [0, 1, 0], [1, 0, 0]], dtype='uint8')] end_points = np.zeros(edge_image.shape, dtype='uint8') # Find the endpoints. for endpoint in endpoints: end_points += mhitmiss(np.uint8(edge_image), endpoint) end_points[end_points > 1] = 1 return end_points def _locate_islands(edge_image): """ Locates single pixel islands Args: edge_image (2d array) Returns: Image endpoint islands, where islands = 1. """ # Setup the endpoint structuring elements for # hit or miss morphology. endpoint = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype='uint8') end_points = np.zeros(edge_image.shape, dtype='uint8') end_points += mhitmiss(edge_image, endpoint) end_points[end_points > 1] = 1 return end_points def _trim_endpoints(edge_image, iterations, locations='all', filter=False, filter_ws=15, filter_pct=.1, skeleton=False): """ Trims unconnected lines, starting from endpoints Args: edge_image (2d array) iterations (int) locations (str) filter (bool) filter_ws (int) filter_pct (float) skeleton (bool) """ if filter: edge_image_sum = moving_window(edge_image, statistic='sum', window_size=filter_ws) for iter in range(0, iterations): # Locate the endpoints ep = locate_endpoints(edge_image, locations=locations) # Filter high density areas. if filter: ep[edge_image_sum >= int((filter_ws * filter_ws) * filter_pct)] = 0 # Remove the endpoints from the edge image. edge_image[ep == 1] = 0 # Fill small gaps after the first iteration. if iter == 0: edge_image = moving_window(edge_image, statistic='fill', window_size=3, n_neighbors=2) # Remove remaining single pixels. ep = _locate_islands(edge_image) edge_image[ep == 1] = 0 if skeleton: return _do_skeleton(edge_image) else: return edge_image def _link_edge_endpoints(cr, max_gap, mag_image, **kwargs): """ Links edge endpoints Args: cr (2d array) max_gap (int) mag_image (2d array) """ # Link endpoints cr = moving_window(np.uint8(cr*1), statistic='link', window_size=max_gap, endpoint_array=locate_endpoints(np.uint8(cr*1)), gradient_array=mag_image, **kwargs) # Fill broken links # __--__ to # ______ cr = _trim_endpoints(cr, 1, locations='broken') cr = moving_window(cr, statistic='fill', window_size=3) # A little cleanup before linking. cr = _trim_endpoints(cr, 1, locations='all', filter=True, filter_ws=15, filter_pct=.1) # Link endpoints. return moving_window(cr * 1, statistic='link', window_size=max_gap, endpoint_array=locate_endpoints(cr * 1), gradient_array=mag_image, **kwargs) def canny_morphology(value_array, egm_array, l1, l2, k_size, l_egm, link_window): """ Args: value_array (2d array): Float32 0-1 egm_array (2d array): Float32 0-1 l1 (int): Canny lower threshold. l2 (int): Canny upper threshold. k_size (int): Canny aperture size. l_egm (float): The EGM lower threshold. link_window (int): The link window size. """ canny_edge = cv2.Canny(np.uint8(value_array * 255.), l1, l2, apertureSize=k_size, L2gradient=True) # canny_edge = moving_window(egm_array, # window_size=3, # weights=egd, # statistic='suppression') canny_edge[canny_edge > 0] = 1 canny_edge = _trim_endpoints(canny_edge, 1, locations='broken') # Remove small edge objects. # canny_edge = nd_label(canny_edge)[0] canny_edge = sk_label(np.uint8(canny_edge), connectivity=2) # canny_edge = np.uint64(remove_small_objects(canny_edge, min_size=5, connectivity=1)) # Remove objects with low EGM. props = regionprops(canny_edge, intensity_image=egm_array) canny_edge = np.float32(canny_edge) for prop in props: canny_edge[canny_edge == prop.label] = prop.mean_intensity canny_edge[canny_edge <= l_egm] = 0 canny_edge[canny_edge > 0] = 1 # Link endpoints canny_edge = _trim_endpoints(np.uint8(canny_edge), 1, locations='broken') canny_edge = moving_window(np.uint8(canny_edge), statistic='link', window_size=link_window, endpoint_array=locate_endpoints(np.uint8(canny_edge)), gradient_array=egm_array, smallest_allowed_gap=5) # Remove small objects. # canny_edge = nd_label(np.uint8(canny_edge))[0] canny_edge = sk_label(np.uint8(canny_edge), connectivity=2) canny_edge = np.uint64(remove_small_objects(canny_edge, min_size=10, connectivity=1)) # props = regionprops(canny_edge, intensity_image=egm_array) # canny_edge = np.float32(canny_edge) canny_edge[canny_edge > 0] = 1 return _trim_endpoints(canny_edge, 1) # for prop in props: # # if (prop.eccentricity < .4) and (prop.area < 100): # canny_edge[canny_edge == prop.label] = 0 # # # if ((prop.major_axis_length + .00001) / (prop.minor_axis_length + .00001) < 2) and (prop.area < 100): # # canny_edge[canny_edge == prop.label] = 0 # # canny_edge[canny_edge > 0] = 1 # cannycv_r = cv2.threshold(np.uint8(canny_edge), 0, 1, cv2.THRESH_BINARY_INV)[1] # # dist = cv2.distanceTransform(np.uint8(cannycv_r), cv2.DIST_L2, 3) # # canny_edge = moving_window(dist, statistic='seg-dist', window_size=3) # # canny_edge = moving_window(np.uint8(canny_edge), # statistic='link', # window_size=link_window, # endpoint_array=locate_endpoints(np.uint8(canny_edge)), # gradient_array=egm_array, # smallest_allowed_gap=5) return canny_edge def _do_skeleton(cr): """ Computes the morphological skeleton Args: cr (2d array) Returns: Image skeleton as 2d array """ # Fill holes to keep straighter skeleton lines. return np.uint8(skeletonize(moving_window(np.uint8(cr), statistic='fill', window_size=3))) def morphological_cleanup(cr, min_line_size, theta_45_iters=0, theta_90_iters=0, theta_180_iters=0, pre_thin=False, endpoint_iterations=0, skeleton=False, link_ends=False, egm_array=None, extend_endpoints=False, max_gap=25, min_egm=25, smallest_allowed_gap=3, medium_allowed_gap=7, link_iters=1, link_window_size=7, extend_iters=1, value_array=None): """ A function to morphologically clean binary edges Args: cr (2d array) min_line_size (int) theta_45_iters (Optional[int]) theta_90_iters (Optional[int]) theta_180_iters (Optional[int]) pre_thin (Optional[bool]) endpoint_iterations (Optional[int]) skeleton (Optional[bool]) link_ends (Optional[bool]) egm_array (Optional[2d array]): Edge gradient magnitude extend_endpoints (Optional[bool]) max_gap (Optional[int]) min_egm (Optional[int]) smallest_allowed_gap (Optional[int]) medium_allowed_gap (Optional[int]) link_iters (Optional[int]) link_window_size (Optional[int]) extend_iters (Optional[int]) value_array (Optional[2d array]) Returns: Morphologically cleaned edges as 2d array """ if isinstance(value_array, np.ndarray): low_value_edge_idx = np.where((cr == 1) & (value_array < 0.2)) if pre_thin: # Thin edges with 1 iteration cr = pymorph.thin(pymorph.binary(cr), n=1, Iab=pymorph.endpoints()) # Remove small edge objects. # cr = nd_label(cr)[0] cr = sk_label(np.uint8(cr), connectivity=2) cr = np.uint64(remove_small_objects(cr, min_size=min_line_size, connectivity=1)) cr[cr > 0] = 1 # Extend endpoints along # the same gradient # orientation. if extend_endpoints: # The edge gradient direction egd_array = moving_window(egm_array, window_size=link_window_size, statistic='edge-direction') for iter in range(0, extend_iters): cr = moving_window(cr, statistic='extend-endpoints', window_size=3, endpoint_array=locate_endpoints(cr), gradient_array=egm_array*255., weights=egd_array) # Thin edges if (theta_180_iters > 0) and (theta_90_iters > 0) and (theta_45_iters > 0): # cr = np.uint8(pymorph.thin(pymorph.binary(np.uint8(cr)), theta=180, n=theta_180_iters)) # cr2 = np.uint8(pymorph.thin(pymorph.binary(np.uint8(cr)), theta=90, n=theta_90_iters)) # cr3 = np.uint8(pymorph.thin(pymorph.binary(np.uint8(cr)), n=theta_45_iters)) # # cr[(cr2 == 1) | (cr3 == 1)] = 1 cr = sk_thin(np.uint8(cr), max_iter=1) else: if theta_180_iters > 0: cr = np.uint8(pymorph.thin(pymorph.binary(np.uint8(cr)), theta=180, n=theta_180_iters)) if theta_90_iters > 0: cr = np.uint8(pymorph.thin(pymorph.binary(np.uint8(cr)), theta=90, n=theta_90_iters)) if theta_45_iters > 0: cr = np.uint8(mthin(np.uint8(cr), max_iter=theta_45_iters)) # Remove small objects again after # thinning and trimming. if min_line_size > 0: # cr, __ = nd_label(cr) cr = sk_label(np.uint8(cr), connectivity=2) cr = np.uint64(remove_small_objects(cr, min_size=min_line_size, connectivity=1)) cr[cr > 0] = 1 # if skeleton: # crc = _do_skeleton(cr.copy()) # Link endpoints with small gaps. if link_ends: for link_iter in range(0, link_iters): cr = _link_edge_endpoints(cr, max_gap, egm_array, min_egm=min_egm, smallest_allowed_gap=smallest_allowed_gap, medium_allowed_gap=medium_allowed_gap) cr = _trim_endpoints(cr, 1) # import matplotlib.pyplot as plt # cr = _do_skeleton(cr) # plt.subplot(121) # plt.imshow(crc) # plt.subplot(122) # plt.imshow(cr) # plt.show() # import sys # sys.exit() # Compute the morphological skeleton. # The skeleton is morphological thinning with # infinite iterations. if skeleton: cr = _do_skeleton(cr) # Trim endpoints with ``endpoint_iterations`` iterations. if endpoint_iterations > 0: cr = _trim_endpoints(cr, endpoint_iterations, skeleton=True) # Fill small holes if isinstance(value_array, np.ndarray): cr[low_value_edge_idx] = 1 cr = moving_window(cr, statistic='fill', window_size=3, n_neighbors=2) # Fill broken links # __--__ to # ______ cr = _trim_endpoints(cr, 1, locations='broken') return moving_window(cr, statistic='fill', window_size=3) def init_distance(egm_array, threshold): """ Initializes a euclidean distance transform array Args: egm_array (2d array) threshold (float or int) """ # Threshold the EGM into a binary edge/no edge array. binary_array = np.uint8(np.where(egm_array < threshold, 1, 0)) # Get the euclidean distance from edge pixels. dist = np.float32(cv2.distanceTransform(binary_array, cv2.DIST_L2, 3)) dist[dist < 0] = 0 dist /= dist.max() return dist def init_level_set(egm_array, threshold): """ Initializes a level set array Args: egm_array (2d array) threshold (float or int) """ # Threshold the EGM into a binary edge/no edge array. binary_array = np.uint8(np.where(egm_array < threshold, 1, 0)) # Get the euclidean distance from edge pixels. dist = np.float32(cv2.distanceTransform(binary_array, cv2.DIST_L2, 3)) dist = np.where((binary_array == 1) & (dist > 1), dist, 0) binary_array_r = np.uint8(cv2.threshold(binary_array, 0, 1, cv2.THRESH_BINARY_INV)[1]) dist_r = cv2.distanceTransform(binary_array_r, cv2.DIST_L2, 3) return np.where(dist == 0, dist_r * -1., dist) def multiscale_threshold(egm_array, min_object_size, windows=None, link_ends=False, theta_180_iters=1, theta_90_iters=1, theta_45_iters=1, skeleton=False, endpoint_iterations=1, method='wmean', ignore_thresh=15.0, inverse_dist=True, n_jobs=-1): """ Computes multi-scale adaptive threshold and morphological "cleaning" Args: egm_array (ndarray): min_object_size (int): windows (Optional[int list]): link_ends (Optional[bool]): theta_180_iters (Optional[int]): theta_90_iters (Optional[int]): theta_45_iters (Optional[int]): skeleton (Optional[bool]): endpoint_iterations (Optional[int]): method (Optional[str]): Choices area ['gaussian', 'mean', 'median', 'weighted']. ignore_thresh (Optional[float]) inverse_dist (Optional[bool]) n_jobs (Optional[int]) Returns: Binary edges as 2d array """ if not isinstance(windows, list): windows = [11, 21, 31, 41, 51, 61, 71] # Get the image shape. im_rows, im_cols = egm_array.shape # Setup the output binary edge array holder. thresholded_edges = np.zeros((im_rows, im_cols), dtype='uint8') wp = 64 egm_array = cv2.copyMakeBorder(egm_array, wp, wp, wp, wp, cv2.BORDER_REFLECT) for w in windows: # Threshold the array with the current window size. if method == 'gaussian': # The gaussian threshold is a weighted sum of the window, # where the weights are a gaussian window. binary_adaptive_m = cv2.adaptiveThreshold(egm_array, 1, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, w, 15.) elif method == 'mean-c': binary_adaptive_m = cv2.adaptiveThreshold(egm_array, 1, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, w, 15.) elif method == 'median': binary_adaptive_m = threshold_local(egm_array, w, method=method) elif method == 'wmean': dist_transform = np.float64(init_distance(egm_array, 30)) dist_transform = np.float64(closerec(np.uint8(dist_transform*255.0), 'disk', r=3, iters=5)) dist_transform /= dist_transform.max() binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=ignore_thresh, rt=-25.0, n_jobs=n_jobs, method=method, inverse_dist=inverse_dist, edge_direction_array=None, edge_distance_array=dist_transform) elif method == 'bernson': binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=15., rt=-10., n_jobs=n_jobs, method=method) elif method == 'niblack': binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=15., rt=-10., k=-.01, n_jobs=n_jobs, method=method) elif method == 'sauvola': binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=15., rt=-10., k=-.01, n_jobs=n_jobs, method=method) elif method == 'bradley': binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=15., rt=1., n_jobs=n_jobs, method=method) elif method == 'otsu': binary_adaptive_m = athreshold(np.ascontiguousarray(egm_array, dtype='float64'), w, ignore_thresh=15., rt=1., n_jobs=n_jobs, method=method) elif method == '60': func = lambda arr: np.percentile(arr, 60) binary_adaptive_m = threshold_local(egm_array, w, 'generic', param=func) else: raise ValueError('The method was not recognized.') # Cleanup the binary edges with image morphology. thresholded_edges += morphological_cleanup(binary_adaptive_m[wp:-wp, wp:-wp], min_object_size, theta_180_iters=theta_180_iters, theta_90_iters=theta_90_iters, theta_45_iters=theta_45_iters, skeleton=skeleton, endpoint_iterations=endpoint_iterations, link_ends=link_ends, egm_array=egm_array) thresholded_edges[thresholded_edges > 1] = 1 return thresholded_edges # def _remove_interior_islands(prop, # min_area_int_, # mean_threshold_, # boundary_mean_, # prop_area_weight_, # bbox_pad, # arows, # acols, # segments_g, # original_binary_edge_g, # se_cross): def _remove_interior_islands(*args): """ Gets indices to remove interior island objects """ prop, min_area_int_, mean_threshold_, boundary_mean_, prop_area_weight_, bbox_pad, arows, acols, segments_g, original_binary_edge_g, se_cross = list(itertools.chain(*args)) # mean_threshold_ = 0.2 # The minimum EVI2 threshold allowed for objects # boundary_mean_ = 0.25 # The maximum EVI2 threshold allowed for boundaries # min_area_int_ = 222 # The minimum pixel count allowed for interior objects # Get the bounding box of the current segment. min_row, min_col, max_row, max_col = prop.bbox # Expand the box. min_row = min_row - bbox_pad if (min_row - bbox_pad) > 0 else 0 max_row = max_row + bbox_pad if (max_row + bbox_pad) < (arows - 1) else arows - 1 min_col = min_col - bbox_pad if (min_col - bbox_pad) > 0 else 0 max_col = max_col + bbox_pad if (max_col + bbox_pad) < (acols - 1) else acols - 1 # Get a subset of the current object. labels_sub = segments_g[min_row:max_row, min_col:max_col] # Get a subset of the pre-cleaned edges if isinstance(original_binary_edge_g, np.ndarray): binary_sub = original_binary_edge_g[min_row:max_row, min_col:max_col] # Get the count of pre-cleaned # edges in the object. binary_edge_count = ((binary_sub == 1) & (labels_sub == prop.label)).sum() # Don't include objects half covered by pre-cleaned edges. if binary_edge_count >= int(prop.area * prop_area_weight_): idx = list(np.where(labels_sub == prop.label)) idx[0] = idx[0] + min_row idx[1] = idx[1] + min_col return list(idx[0]), list(idx[1]) # Don't include objects with low EVI2. if hasattr(prop, 'mean_intensity'): if prop.mean_intensity < mean_threshold_: idx = list(np.where(labels_sub == prop.label)) idx[0] = idx[0] + min_row idx[1] = idx[1] + min_col return list(idx[0]), list(idx[1]) # Get the current object. labels_sub_center = np.uint8(np.where(labels_sub == prop.label, 1, 0)) # Get the boundary labels. label_boundary = cv2.morphologyEx(labels_sub_center, cv2.MORPH_DILATE, se_cross, iterations=2) - labels_sub_center boundary_idx = np.where(label_boundary == 1) # Check if the current object is completely # surrounded by 1-2 other objects. if
np.any(boundary_idx)
numpy.any
import numpy as np def _softmax(x): ''' A numberically stable way ''' x = x - np.max(x) exp_x = np.exp(x) res = exp_x/np.sum(exp_x) return res def sigmoid(x, epsilon=1.0): sigm = 1. / (1. + np.exp(-x*epsilon)) return sigm def triu_indice(k=1, pair_type='NoTies', labels=None): ''' Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation. All: pairs including both pairs of documents across different relevance levels and pairs of documents having the same relevance level. NoTies: the pairs consisting of two documents of the same relevance level are removed No00: the pairs consisting of two non-relevant documents are removed :param batch_mats: [batch, m, m] :param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line :return: ''' #assert pair_type in PAIR_TYPE m = len(labels) # the number of documents if pair_type == 'All': row_inds, col_inds = np.triu_indices(m, k=k) elif pair_type == 'No00': row_inds, col_inds = np.triu_indices(m, k=k) pairs = [e for e in zip(row_inds, col_inds) if not (0==labels[e[0]] and 0==labels[e[1]])] # remove pairs of 00 comparisons row_inds = [e[0] for e in pairs] col_inds = [e[1] for e in pairs] elif pair_type == '00': # the pairs consisting of two non-relevant documents row_inds, col_inds = np.triu_indices(m, k=k) pairs = [e for e in zip(row_inds, col_inds) if (0 == labels[e[0]] and 0 == labels[e[1]])] # remove pairs of 00 comparisons row_inds = [e[0] for e in pairs] col_inds = [e[1] for e in pairs] elif pair_type == 'NoTies': row_inds, col_inds = np.triu_indices(m, k=k) pairs = [e for e in zip(row_inds, col_inds) if labels[e[0]]!=labels[e[1]]] # remove pairs of documents of the same level row_inds = [e[0] for e in pairs] col_inds = [e[1] for e in pairs] else: raise NotImplementedError return row_inds, col_inds #todo the customized usage should be double-checked !!! """ # <1> using # customized objective functions, arguments should be as follows: grad, hess = self.func(labels, preds, dataset.get_group()) # <2> using argument: fobj fobj : callable or None, optional (default=None) Customized objective function. Should accept two parameters: preds, train_data, and return (grad, hess). """ FIRST_ORDER = False CONSTANT_HESSIAN = 1.0 #-- LambdaLoss --# WEIGHTING_TYPE = ['DeltaNDCG', 'DeltaGain'] def ideal_dcg(ideally_sorted_labels): ''' :param ideally_sorted_labels: :return: ''' gains = np.power(2.0, ideally_sorted_labels) - 1.0 ranks = np.arange(len(ideally_sorted_labels)) + 1.0 discounts = np.log2(1.0 + ranks) ideal_dcg = np.sum(gains / discounts) return ideal_dcg def get_delta_gains(labels_sorted_via_preds): gains = np.power(2.0, labels_sorted_via_preds) - 1.0 gain_diffs = np.expand_dims(gains, axis=1) - np.expand_dims(gains, axis=0) delta_gain = np.abs(gain_diffs) # absolute delta gains w.r.t. pairwise swapping return delta_gain def get_delta_ndcg(ideally_sorted_labels, labels_sorted_via_preds): ''' Delta-nDCG w.r.t. pairwise swapping of the currently predicted ranking ''' idcg = ideal_dcg(ideally_sorted_labels) # ideal discount cumulative gains gains = np.power(2.0, labels_sorted_via_preds) - 1.0 n_gains = gains / idcg # normalised gains ng_diffs = np.expand_dims(n_gains, axis=1) - np.expand_dims(n_gains, axis=0) ranks = np.arange(len(labels_sorted_via_preds)) + 1.0 dists = 1.0 / np.log2(ranks + 1.0) # discount co-efficients dists_diffs = np.expand_dims(dists, axis=1) - np.expand_dims(dists, axis=0) mat_delta_ndcg = np.abs(ng_diffs) * np.abs(dists_diffs) # absolute changes w.r.t. pairwise swapping return mat_delta_ndcg def per_query_gradient_hessian_lambda(preds=None, labels=None, first_order=False, weighting=False, weighting_type='DeltaNDCG', pair_type='NoTies', epsilon=1.0): ''' Compute the corresponding gradient & hessian cf. LightGBM https://github.com/microsoft/LightGBM/blob/master/src/objective/rank_objective.hpp cf. XGBoost https://github.com/dmlc/xgboost/blob/master/src/objective/rank_obj.cc :param preds: 1-dimension predicted scores :param labels: 1-dimension ground truth :return: ''' desc_inds = np.flip(np.argsort(preds)) # indice that sort the preds in a descending order system_sorted_preds = preds[desc_inds] labels_sorted_via_preds = labels[desc_inds] row_inds, col_inds = triu_indice(labels=labels_sorted_via_preds, k=1, pair_type=pair_type) # prediction difference mat_s_ij = np.expand_dims(system_sorted_preds, axis=1) - np.expand_dims(system_sorted_preds, axis=0) # S_ij in {-1, 0, 1} is the standard indicator mat_S_ij = np.expand_dims(labels_sorted_via_preds, axis=1) - np.expand_dims(labels_sorted_via_preds, axis=0) mat_S_ij = np.clip(mat_S_ij, a_min=-1.0, a_max=1.0) num_docs, num_pairs = len(labels), len(row_inds) if first_order: grad = np.zeros((num_docs,)) else: grad, hess = np.zeros((num_docs,)), np.zeros((num_docs,)) if weighting and weighting in WEIGHTING_TYPE: if weighting_type == 'DeltaNDCG': ideally_sorted_labels = np.flip(np.sort(labels)) mat_weights = get_delta_ndcg(ideally_sorted_labels=ideally_sorted_labels, labels_sorted_via_preds=labels_sorted_via_preds) elif weighting_type == 'DeltaGain': mat_weights = get_delta_gains(labels_sorted_via_preds=labels_sorted_via_preds) for i in range(num_pairs): # iterate over pairs r, c = row_inds[i], col_inds[i] s_ij = mat_s_ij[r, c] S_ij = mat_S_ij[r, c] lambda_ij = epsilon*(sigmoid(s_ij, epsilon=epsilon) - 0.5*(1.0+S_ij)) # gradient w.r.t. s_i if weighting and weighting in WEIGHTING_TYPE: lambda_ij *= mat_weights[r, c] # delta metric variance lambda_ji = - lambda_ij # gradient w.r.t. s_j grad[desc_inds[r]] += lambda_ij # desc_inds[r] denotes the original index of the document currently being at r-th position after a full-descending-ordering by predictions grad[desc_inds[c]] += lambda_ji if not first_order: # 2nd order hessian lambda_ij_2order = np.power(epsilon, 2.0) * sigmoid(s_ij) * (1.0-sigmoid(s_ij)) lambda_ij_2order = np.maximum(lambda_ij_2order, 1e-16) # trick as XGBoost https://github.com/dmlc/xgboost/blob/master/src/objective/rank_obj.cc if weighting and weighting in WEIGHTING_TYPE: lambda_ij_2order *= mat_weights[r, c] lambda_ji_2order = -lambda_ij_2order hess[desc_inds[r]] += lambda_ij_2order hess[desc_inds[c]] += lambda_ji_2order if first_order: return grad, None else: return grad, hess def lightgbm_custom_obj_ranknet(labels=None, preds=None, group=None): """ :param labels: numpy.ndarray of shape (size_data, ) :param preds: :param group: # numpy.ndarray of shape (num_queries, ) :return: """ size_data = len(labels) if FIRST_ORDER: all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN) else: all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,)) head = 0 for num_docs_per_query in group.astype(np.int): labels_per_query = labels[head:head + num_docs_per_query] preds_per_query = preds[head:head + num_docs_per_query] grad_per_query, hess_per_query = per_query_gradient_hessian_lambda(preds=preds_per_query, labels=labels_per_query, first_order=FIRST_ORDER, pair_type='All', epsilon=1.0, weighting=False) all_grad[head:head + num_docs_per_query] = grad_per_query if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query head += num_docs_per_query return all_grad, all_hess def lightgbm_custom_obj_ranknet_fobj(preds, train_data): ''' The traditional ranknet :param preds: numpy.ndarray of shape (size_data, ) :param train_data: :return: ''' all_labels = train_data.get_label() # numpy.ndarray of shape (size_data, ) group = train_data.get_group() # numpy.ndarray of shape (num_queries, ) size_data = len(all_labels) if FIRST_ORDER: all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN) else: all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,)) head = 0 for num_docs_per_query in group.astype(np.int): labels_per_query = all_labels[head:head + num_docs_per_query] preds_per_query = preds[head:head + num_docs_per_query] grad_per_query, hess_per_query = per_query_gradient_hessian_lambda(preds=preds_per_query, labels=labels_per_query, first_order=FIRST_ORDER, pair_type='All', epsilon=1.0, weighting=False) all_grad[head:head + num_docs_per_query] = grad_per_query if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query head += num_docs_per_query return all_grad, all_hess def lightgbm_custom_obj_lambdarank(labels=None, preds=None, group=None): """ :param labels: numpy.ndarray of shape (size_data, ) :param preds: :param group: numpy.ndarray of shape (num_queries, ) :return: """ size_data = len(labels) if FIRST_ORDER: all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN) else: all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,)) head = 0 for num_docs_per_query in group.astype(np.int): labels_per_query = labels[head:head + num_docs_per_query] preds_per_query = preds[head:head + num_docs_per_query] grad_per_query, hess_per_query = per_query_gradient_hessian_lambda(preds=preds_per_query, labels=labels_per_query, first_order=FIRST_ORDER, pair_type='NoTies', epsilon=1.0, weighting=True, weighting_type='DeltaNDCG') all_grad[head:head + num_docs_per_query] = grad_per_query if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query head += num_docs_per_query return all_grad, all_hess def lightgbm_custom_obj_lambdarank_fobj(preds, train_data): ''' :param preds: numpy.ndarray of shape (size_data, ) :param train_data: :return: ''' all_labels = train_data.get_label() # numpy.ndarray of shape (size_data, ) group = train_data.get_group() # numpy.ndarray of shape (num_queries, ) size_data = len(all_labels) if FIRST_ORDER: all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN) else: all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,)) head = 0 for num_docs_per_query in group.astype(np.int): labels_per_query = all_labels[head:head + num_docs_per_query] preds_per_query = preds[head:head + num_docs_per_query] grad_per_query, hess_per_query = per_query_gradient_hessian_lambda(preds=preds_per_query, labels=labels_per_query, first_order=FIRST_ORDER, pair_type='NoTies', epsilon=1.0, weighting=True, weighting_type='DeltaNDCG') all_grad[head:head + num_docs_per_query] = grad_per_query if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query head += num_docs_per_query return all_grad, all_hess #-- ListNet --# GAIN_TYPE = ['Power', 'Label'] def per_query_gradient_hessian_listnet(preds=None, labels=None, gain_type='Power', first_order=False): ''' Compute the corresponding gradient & hessian cf. LightGBM https://github.com/microsoft/LightGBM/blob/master/src/objective/rank_objective.hpp cf. XGBoost https://github.com/dmlc/xgboost/blob/master/src/objective/rank_obj.cc :param preds: 1-dimension predicted scores :param labels: 1-dimension ground truth :return: ''' assert gain_type in GAIN_TYPE if 'Power' == gain_type: gains = np.power(2.0, labels) - 1.0 elif 'Label' == gain_type: gains = labels p_pred, p_truth = _softmax(preds), _softmax(gains) grad = p_pred - p_truth hess = None if first_order else p_pred * (1.0-p_pred) return grad, hess def lightgbm_custom_obj_listnet(labels=None, preds=None, group=None): """ :param labels: numpy.ndarray of shape (size_data, ) :param preds: numpy.ndarray of shape (size_data, ) :param group: numpy.ndarray of shape (num_queries, ) :return: """ size_data = len(labels) if FIRST_ORDER: all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN) else: all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,)) head = 0 for num_docs_per_query in group.astype(np.int): labels_per_query = labels[head:head + num_docs_per_query] preds_per_query = preds[head:head + num_docs_per_query] grad_per_query, hess_per_query = per_query_gradient_hessian_listnet(preds=preds_per_query, labels=labels_per_query, gain_type='Power', first_order=FIRST_ORDER) all_grad[head:head + num_docs_per_query] = grad_per_query if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query head += num_docs_per_query return all_grad, all_hess def lightgbm_custom_obj_listnet_fobj(preds, train_data): ''' :param preds: numpy.ndarray of shape (size_data, ) :param train_data: :return: ''' all_labels = train_data.get_label() # numpy.ndarray of shape (size_data, ) group = train_data.get_group() # numpy.ndarray of shape (num_queries, ) size_data = len(all_labels) if FIRST_ORDER: all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN) else: all_grad, all_hess = np.zeros((size_data,)),
np.zeros((size_data,))
numpy.zeros
# -*- coding: utf-8 -*- from __future__ import print_function, division, absolute_import import matplotlib, warnings import numpy as np import CoolProp from CoolProp.CoolProp import PropsSI from CoolProp.Plots.Common import BasePlot, PropertyDict, SIunits def SimpleCycle(Ref, Te, Tc, DTsh, DTsc, eta_a, Ts_Ph='Ph', **kwargs): """ This function plots a simple four-component cycle, on the current axis, or that given by the optional parameter *axis* Required parameters: * Ref : A string for the refrigerant * Te : Evap Temperature in K * Tc : Condensing Temperature in K * DTsh : Evaporator outlet superheat in K * DTsc : Condenser outlet subcooling in K * eta_a : Adiabatic efficiency of compressor (no units) in range [0,1] Optional parameters: * Ts_Ph : 'Ts' for a Temperature-Entropy plot, 'Ph' for a Pressure-Enthalpy * axis : An axis to use instead of the active axis * skipPlot : If True, won't actually plot anything, just print COP """ warnings.warn("This function has been deprecated. Please consider converting it to an object inheriting from \"BaseCycle\".", DeprecationWarning) for i in kwargs: warnings.warn("This function has been deprecated, your input \"{0}: {1}\" will be ignored".format(i, kwargs[i]), DeprecationWarning) from CoolProp.Plots import SimpleCompressionCycle cycle = SimpleCompressionCycle(fluid_ref=Ref, graph_type=Ts_Ph) cycle.simple_solve_dt(Te, Tc, DTsh, DTsc, eta_a, SI=True) print(cycle.COP_cooling(), cycle.COP_heating()) def TwoStage(Ref, Q, Te, Tc, DTsh, DTsc, eta_oi, f_p, Tsat_ic, DTsh_ic, Ts_Ph='Ph', prints=False, skipPlot=False, axis=None, **kwargs): """ This function plots a two-stage cycle, on the current axis, or that given by the optional parameter *axis* Required parameters: * Ref : Refrigerant [string] * Q : Cooling capacity [W] * Te : Evap Temperature [K] * Tc : Condensing Temperature [K] * DTsh : Evaporator outlet superheat [K] * DTsc : Condenser outlet subcooling [K] * eta_oi : Adiabatic efficiency of compressor (no units) in range [0,1] * f_p : fraction of compressor power lost as ambient heat transfer in range [0,1] * Tsat_ic : Saturation temperature corresponding to intermediate pressure [K] * DTsh_ic : Superheating at outlet of intermediate stage [K] Optional parameters: * Ts_Ph : 'Ts' for a Temperature-Entropy plot, 'Ph' for a Pressure-Enthalpy * prints : True to print out some values * axis : An axis to use instead of the active axis * skipPlot : If True, won't actually plot anything, just print COP """ warnings.warn("This function has been deprecated. PLease consider converting it to an object inheriting from \"BaseCycle\".", DeprecationWarning) T = np.zeros((8)) h = np.zeros_like(T) p = np.zeros_like(T) s = np.zeros_like(T) rho = np.zeros_like(T) T[0] = np.NAN s[0] = np.NAN T[1] = Te + DTsh pe = PropsSI('P', 'T', Te, 'Q', 1.0, Ref) pc = PropsSI('P', 'T', Tc, 'Q', 1.0, Ref) pic = PropsSI('P', 'T', Tsat_ic, 'Q', 1.0, Ref) Tbubble_c = PropsSI('T', 'P', pc, 'Q', 0, Ref) Tbubble_e = PropsSI('T', 'P', pe, 'Q', 0, Ref) h[1] = PropsSI('H', 'T', T[1], 'P', pe, Ref) s[1] = PropsSI('S', 'T', T[1], 'P', pe, Ref) rho[1] = PropsSI('D', 'T', T[1], 'P', pe, Ref) T[5] = Tbubble_c - DTsc h[5] = PropsSI('H', 'T', T[5], 'P', pc, Ref) s[5] = PropsSI('S', 'T', T[5], 'P', pc, Ref) rho[5] = PropsSI('D', 'T', T[5], 'P', pc, Ref) mdot = Q / (h[1] - h[5]) rho1 = PropsSI('D', 'T', T[1], 'P', pe, Ref) h2s = PropsSI('H', 'S', s[1], 'P', pic, Ref) Wdot1 = mdot * (h2s - h[1]) / eta_oi h[2] = h[1] + (1 - f_p) * Wdot1 / mdot T[2] = PropsSI('T', 'H', h[2], 'P', pic, Ref) s[2] = PropsSI('S', 'T', T[2], 'P', pic, Ref) rho[2] = PropsSI('D', 'T', T[2], 'P', pic, Ref) T[3] = 288 p[3] = pic h[3] = PropsSI('H', 'T', T[3], 'P', pic, Ref) s[3] = PropsSI('S', 'T', T[3], 'P', pic, Ref) rho[3] = PropsSI('D', 'T', T[3], 'P', pic, Ref) rho3 = PropsSI('D', 'T', T[3], 'P', pic, Ref) h4s = PropsSI('H', 'T', s[3], 'P', pc, Ref) Wdot2 = mdot * (h4s - h[3]) / eta_oi h[4] = h[3] + (1 - f_p) * Wdot2 / mdot T[4] = PropsSI('T', 'H', h[4], 'P', pc, Ref) s[4] = PropsSI('S', 'T', T[4], 'P', pc, Ref) rho[4] = PropsSI('D', 'T', T[4], 'P', pc, Ref) sbubble_e = PropsSI('S', 'T', Tbubble_e, 'Q', 0, Ref) sbubble_c = PropsSI('S', 'T', Tbubble_c, 'Q', 0, Ref) sdew_e = PropsSI('S', 'T', Te, 'Q', 1, Ref) sdew_c = PropsSI('S', 'T', Tc, 'Q', 1, Ref) hsatL = PropsSI('H', 'T', Tbubble_e, 'Q', 0, Ref) hsatV = PropsSI('H', 'T', Te, 'Q', 1, Ref) ssatL = PropsSI('S', 'T', Tbubble_e, 'Q', 0, Ref) ssatV = PropsSI('S', 'T', Te, 'Q', 1, Ref) vsatL = 1 / PropsSI('D', 'T', Tbubble_e, 'Q', 0, Ref) vsatV = 1 / PropsSI('D', 'T', Te, 'Q', 1, Ref) x = (h[5] - hsatL) / (hsatV - hsatL) s[6] = x * ssatV + (1 - x) * ssatL T[6] = x * Te + (1 - x) * Tbubble_e rho[6] = 1.0 / (x * vsatV + (1 - x) * vsatL) h[6] = h[5] h[7] = h[1] s[7] = s[1] T[7] = T[1] p = [np.nan, pe, pic, pic, pc, pc, pe, pe] COP = Q / (Wdot1 + Wdot2) RE = h[1] - h[6] if prints == True: print('x5:', x) print('COP:', COP) print('COPH', (Q + Wdot1 + Wdot2) / (Wdot1 + Wdot2)) print(T[2] - 273.15, T[4] - 273.15, p[2] / p[1], p[4] / p[3]) print(mdot, mdot * (h[4] - h[5]), pic) print('Vdot1', mdot / rho1, 'Vdisp', mdot / rho1 / (3500 / 60.) * 1e6 / 0.7) print('Vdot2', mdot / rho3, 'Vdisp', mdot / rho3 / (3500 / 60.) * 1e6 / 0.7) print(mdot * (h[4] - h[5]), Tc - 273.15) for i in range(1, len(T) - 1): print('%d & %g & %g & %g & %g & %g \\\\' % (i, T[i] - 273.15, p[i], h[i], s[i], rho[i])) else: print(Tsat_ic, COP) if skipPlot == False: if axis == None: ax = matplotlib.pyplot.gca() else: ax = axis if Ts_Ph in ['ph', 'Ph']: ax.plot(h, p) elif Ts_Ph in ['Ts', 'ts']: s_copy = s.copy() T_copy = T.copy() for i in range(1, len(s) - 1): ax.plot(s[i], T[i], 'bo', mfc='b', mec='b') dT = [0, -5, 5, -20, 5, 5, 5] ds = [0, 0.05, 0, 0, 0, 0, 0] ax.text(s[i] + ds[i], T[i] + dT[i], str(i)) s = list(s) T = list(T) s.insert(7, sdew_e) T.insert(7, Te) s.insert(5, sbubble_c) T.insert(5, Tbubble_c) s.insert(5, sdew_c) T.insert(5, Tc) ax.plot(s, T) s = s_copy T = T_copy else: raise TypeError('Type of Ts_Ph invalid') return COP def EconomizedCycle(Ref, Qin, Te, Tc, DTsh, DTsc, eta_oi, f_p, Ti, Ts_Ph='Ts', skipPlot=False, axis=None, **kwargs): """ This function plots an economized cycle, on the current axis, or that given by the optional parameter *axis* Required parameters: * Ref : Refrigerant [string] * Qin : Cooling capacity [W] * Te : Evap Temperature [K] * Tc : Condensing Temperature [K] * DTsh : Evaporator outlet superheat [K] * DTsc : Condenser outlet subcooling [K] * eta_oi : Adiabatic efficiency of compressor (no units) in range [0,1] * f_p : fraction of compressor power lost as ambient heat transfer in range [0,1] * Ti : Saturation temperature corresponding to intermediate pressure [K] Optional parameters: * Ts_Ph : 'Ts' for a Temperature-Entropy plot, 'Ph' for a Pressure-Enthalpy * axis : An axis to use instead of the active axis * skipPlot : If True, won't actually plot anything, just print COP """ warnings.warn("This function has been deprecated. Please consider converting it to an object inheriting from \"BaseCycle\".", DeprecationWarning) from scipy.optimize import newton m = 1 T = np.zeros((11)) h = np.zeros_like(T) p = np.zeros_like(T) s = np.zeros_like(T) rho = np.zeros_like(T) T[0] = np.NAN s[0] = np.NAN T[1] = Te + DTsh pe = PropsSI('P', 'T', Te, 'Q', 1.0, Ref) pc = PropsSI('P', 'T', Tc, 'Q', 1.0, Ref) pi = PropsSI('P', 'T', Ti, 'Q', 1.0, Ref) p[1] = pe h[1] = PropsSI('H', 'T', T[1], 'P', pe, Ref) s[1] = PropsSI('S', 'T', T[1], 'P', pe, Ref) rho[1] = PropsSI('D', 'T', T[1], 'P', pe, Ref) h2s = PropsSI('H', 'S', s[1], 'P', pi, Ref) wdot1 = (h2s - h[1]) / eta_oi h[2] = h[1] + (1 - f_p[0]) * wdot1 p[2] = pi # T[2]=T_hp(Ref,h[2],pi,T2s) T[2] = PropsSI('T', 'H', h[2], 'P', pi, Ref) s[2] = PropsSI('S', 'T', T[2], 'P', pi, Ref) rho[2] = PropsSI('D', 'T', T[2], 'P', pi, Ref) T[5] = Tc - DTsc h[5] = PropsSI('H', 'T', T[5], 'P', pc, Ref) s[5] = PropsSI('S', 'T', T[5], 'P', pc, Ref) rho[5] = PropsSI('D', 'T', T[5], 'P', pc, Ref) p[5] = pc p[6] = pi h[6] = h[5] p[7] = pi p[8] = pi p[6] = pi T[7] = Ti h[7] = PropsSI('H', 'T', Ti, 'Q', 1, Ref) s[7] = PropsSI('S', 'T', Ti, 'Q', 1, Ref) rho[7] = PropsSI('D', 'T', Ti, 'Q', 1, Ref) T[8] = Ti h[8] = PropsSI('H', 'T', Ti, 'Q', 0, Ref) s[8] = PropsSI('S', 'T', Ti, 'Q', 0, Ref) rho[8] = PropsSI('D', 'T', Ti, 'Q', 0, Ref) x6 = (h[6] - h[8]) / (h[7] - h[8]) # Vapor Quality s[6] = s[7] * x6 + s[8] * (1 - x6) rho[6] = 1.0 / (x6 / rho[7] + (1 - x6) / rho[8]) T[6] = Ti # Injection mass flow rate x = m * (h[6] - h[8]) / (h[7] - h[6]) p[3] = pi h[3] = (m * h[2] + x * h[7]) / (m + x) # T[3]=T_hp(Ref,h[3],pi,T[2]) T[3] = PropsSI('T', 'H', h[3], 'P', pi, Ref) s[3] = PropsSI('S', 'T', T[3], 'P', pi, Ref) rho[3] = PropsSI('D', 'T', T[3], 'P', pi, Ref) T4s = newton(lambda T: PropsSI('S', 'T', T, 'P', pc, Ref) - s[3], T[2] + 30) h4s = PropsSI('H', 'T', T4s, 'P', pc, Ref) p[4] = pc wdot2 = (h4s - h[3]) / eta_oi h[4] = h[3] + (1 - f_p[1]) * wdot2 # T[4]=T_hp(Ref,h[4],pc,T4s) T[4] = PropsSI('T', 'H', h[4], 'P', pc, Ref) s[4] = PropsSI('S', 'T', T[4], 'P', pc, Ref) rho[4] = PropsSI('D', 'T', T[4], 'P', pc, Ref) p[9] = pe h[9] = h[8] T[9] = Te hsatL_e = PropsSI('H', 'T', Te, 'Q', 0, Ref) hsatV_e = PropsSI('H', 'T', Te, 'Q', 1, Ref) ssatL_e = PropsSI('S', 'T', Te, 'Q', 0, Ref) ssatV_e = PropsSI('S', 'T', Te, 'Q', 1, Ref) vsatL_e = 1 / PropsSI('D', 'T', Te, 'Q', 0, Ref) vsatV_e = 1 / PropsSI('D', 'T', Te, 'Q', 1, Ref) x9 = (h[9] - hsatL_e) / (hsatV_e - hsatL_e) # Vapor Quality s[9] = ssatV_e * x9 + ssatL_e * (1 - x9) rho[9] = 1.0 / (x9 * vsatV_e + (1 - x9) * vsatL_e) s[10] = s[1] T[10] = T[1] h[10] = h[1] p[10] = p[1] Tbubble_e = Te Tbubble_c = Tc sbubble_e = PropsSI('S', 'T', Tbubble_e, 'Q', 0, Ref) sbubble_c = PropsSI('S', 'T', Tbubble_c, 'Q', 0, Ref) sdew_e = PropsSI('S', 'T', Te, 'Q', 1, Ref) sdew_c = PropsSI('S', 'T', Tc, 'Q', 1, Ref) Wdot1 = m * wdot1 Wdot2 = (m + x) * wdot2 if skipPlot == False: if axis == None: ax = matplotlib.pyplot.gca() else: ax = axis if Ts_Ph in ['ph', 'Ph']: ax.plot(h, p) ax.set_yscale('log') elif Ts_Ph in ['Ts', 'ts']: ax.plot(np.r_[s[7], s[3]], np.r_[T[7], T[3]], 'b') s_copy = s.copy() T_copy = T.copy() dT = [0, -5, 5, -12, 5, 12, -12, 0, 0, 0] ds = [0, 0.05, 0.05, 0, 0.05, 0, 0.0, 0.05, -0.05, -0.05] for i in range(1, len(s) - 1): ax.plot(s[i], T[i], 'bo', mfc='b', mec='b') ax.text(s[i] + ds[i], T[i] + dT[i], str(i), ha='center', va='center') s = list(s) T = list(T) s.insert(10, sdew_e) T.insert(10, Te) s.insert(5, sbubble_c) T.insert(5, Tbubble_c) s.insert(5, sdew_c) T.insert(5, Tc) ax.plot(s, T, 'b') s = s_copy T = T_copy else: raise TypeError('Type of Ts_Ph invalid') COP = m * (h[1] - h[9]) / (m * (h[2] - h[1]) + (m + x) * (h[4] - h[3])) for i in range(1, len(T) - 1): print('%d & %g & %g & %g & %g & %g \\\\' % (i, T[i] - 273.15, p[i], h[i], s[i], rho[i])) print(x, m * (h[1] - h[9]), (m * (h[2] - h[1]) + (m + x) * (h[4] - h[3])), COP) mdot = Qin / (h[1] - h[9]) mdot_inj = x * mdot print('x9', x9,) print('Qcond', (mdot + mdot_inj) * (h[4] - h[5]), 'T4', T[4] - 273.15) print(mdot, mdot + mdot_inj) f = 3500 / 60. eta_v = 0.7 print('Vdisp1: ', mdot / (rho[1] * f * eta_v) * 1e6, 'cm^3') print('Vdisp2: ', (mdot + mdot_inj) / (rho[1] * f * eta_v) * 1e6, 'cm^3') return COP # class SimpleCycle(object): # """A class that calculates a simple thermodynamic cycle""" # def __init__(self, *args, **kwargs): # object.__init__(self, *args, **kwargs) # (states, steps, fluid): # Parameters # ---------- # x_type : int, str # Either a letter or an integer that specifies the property type for the x-axis # y_type : int, str # Either a letter or an integer that specifies the property type for the y-axis # states : list # A collection of state points that follows a fixed scheme defined # in the implementing subclass. # fluid_ref : str, CoolProp.AbstractState # The fluid property provider, either a subclass of CoolProp.AbstractState # or a string that can be used to generate a CoolProp.AbstractState instance # via :func:`Common.process_fluid_state`. # steps : int # The number of steps used for going from one state to another # # for more properties, see :class:`CoolProp.Plots.Common.Base2DObject`. # # See http://stackoverflow.com/questions/1061283/lt-instead-of-cmp # class ComparableMixin: # """A mixin class that implements all comparing mathods except for __lt__""" # def __eq__(self, other): # return not self<other and not other<self # def __ne__(self, other): # return self<other or other<self # def __gt__(self, other): # return other<self # def __ge__(self, other): # return not self<other # def __le__(self, other): # return not other<self class StatePoint(PropertyDict): """A simple fixed dimension dict represented by an object with attributes""" # Significant digits in SI units ROUND_DECIMALS = { CoolProp.iDmass: 5, CoolProp.iHmass: 5, CoolProp.iP: 2, CoolProp.iSmass: 5, CoolProp.iT: 5, CoolProp.iUmass: 5, CoolProp.iQ: 5 } def __iter__(self): """Make sure we always iterate in the same order""" keys = [CoolProp.iDmass, CoolProp.iHmass, CoolProp.iP, CoolProp.iSmass, CoolProp.iT] for key in sorted(keys): yield key def __str__(self): return str(self.__dict__) def __prop_compare(self, other, typ): # TODO if self[typ] is None and other[typ] is None: return 0 elif self[typ] is None and other[typ] is not None: return -1 elif self[typ] is not None and other[typ] is None: return 1 else: A = np.round(self[typ], self.ROUND_DECIMALS[typ]) B = np.round(other[typ], self.ROUND_DECIMALS[typ]) if A > B: return 1 elif A < B: return -1 elif A == B: return 0 else: raise ValueError("Comparison failed.") def __eq__(self, other): for i in self: if not self.__prop_compare(other, i) == 0: return False return True def __hash__(self): return hash(repr(self)) class StateContainer(object): """A collection of values for the main properties, built to mixin with :class:`CoolProp.Plots.Common.PropertyDict` Examples -------- This container has overloaded accessor methods. Just pick your own flavour or mix the styles as you like: >>> from __future__ import print_function >>> import CoolProp >>> from CoolProp.Plots.SimpleCycles import StateContainer >>> T0 = 300.000; p0 = 200000.000; h0 = 112745.749; s0 = 393.035 >>> cycle_states = StateContainer() >>> cycle_states[0,'H'] = h0 >>> cycle_states[0]['S'] = s0 >>> cycle_states[0][CoolProp.iP] = p0 >>> cycle_states[0,CoolProp.iT] = T0 >>> cycle_states[1,"T"] = 300.064 >>> print(cycle_states) Stored State Points: state T (K) p (Pa) d (kg/m3) h (J/kg) s (J/kg/K) 0 300.000 200000.000 - 112745.749 393.035 1 300.064 - - - - """ def __init__(self, unit_system=SIunits()): self._points = {} self._units = unit_system @property def points(self): return self._points @points.setter def points(self, value): self._points = value @property def units(self): return self._units @units.setter def units(self, value): self._units = value def get_point(self, index, SI=True): if SI: state = self[index] else: state = self[index] for i in state: state[i] = self.units[i].from_SI(state[i]) return state def set_point(self, index, value, SI=True): if SI: self._points[index] = value else: for i in value: self._points[index][i] = self.units[i].to_SI(value[i]) def _list_like(self, value): """Try to detect a list-like structure excluding strings""" return (not hasattr(value, "strip") and (hasattr(value, "__getitem__") or hasattr(value, "__iter__"))) # return is_sequence(value) # use from pandas.core.common import is_sequence def __len__(self): """Some cheating to get the correct behaviour""" return len(self._points) def __iter__(self): """Make sure we iterate in the righ order""" for key in sorted(self._points): yield key def __getitem__(self, index): """Another tweak that changes the default access path""" if self._list_like(index): len_var = len(index) if len_var == 0: raise IndexError("Received empty index.") elif len_var == 1: return self._points[index[0]] elif len_var == 2: return self._points[index[0]][index[1]] else: raise IndexError("Received too long index.") return self._points[index] def __setitem__(self, index, value): """Another tweak that changes the default access path""" if self._list_like(index): len_var = len(index) if len_var == 0: raise IndexError("Received empty index.") elif len_var == 1: self._points[index[0]] = value elif len_var == 2: # safeguard against empty entries if index[0] not in self._points: self._points[index[0]] = StatePoint() self._points[index[0]][index[1]] = value else: raise IndexError("Received too long index.") else: self._points[index] = value def __str__(self): out = "Stored State Points:\n" keys = True for i in self._points: if keys: row = [u"{0:>5s}".format("state")] for j in self._points[i]: label = u"{0:s} ({1:s})".format(self.units[j].symbol, self.units[j].unit) row.append(u"{0:>11s}".format(label)) out = out + u" ".join(row) + "\n" keys = False row = [u"{0:>5s}".format(str(i))] for j in self._points[i]: try: row.append(u"{0:11.3f}".format(self.units[j].from_SI(self._points[i][j]))) except: row.append(u"{0:>11s}".format("-")) out = out + u" ".join(row) + "\n" return out def append(self, new): i = 0 + self.__len__() for j in new: self[i, j] = new[j] return self def extend(self, new): i = 0 + self.__len__() for j in new: for k in new[j]: self[i, k] = new[j][k] i = i + 1 return self @property def D(self): return np.array([self._points[k].D for k in self]) @property def H(self): return
np.array([self._points[k].H for k in self])
numpy.array
import numpy as np import numexpr as ne #numexpr-ized problem 2 #this one is blazing fast def perona_malik_ne(u, lbda, sigma, reps): #expects array of 32 bit floats sinv = np.float32(1./sigma) lbda32 = np.float32(lbda) unew = u.copy() #make some views of the same data as u uN = u[:-1] uS = u[1:] uW = u[:,:-1] uE = u[:,1:] #make similar views for unew uNnew = unew[:-1] uSnew = unew[1:] uWnew = unew[:,:-1] uEnew = unew[:,1:] temp = np.empty_like(u) vtemp = temp[:-1] htemp = temp[:,:-1] for i in xrange(reps): ne.evaluate('lbda32*exp(-(sinv*(uS-uN))**2)*(uS-uN)', out=vtemp) ne.evaluate('uNnew+vtemp', out=uNnew) ne.evaluate('uSnew-vtemp', out=uSnew) ne.evaluate('lbda32*exp(-(sinv*(uE-uW))**2)*(uE-uW)', out=htemp) ne.evaluate('uWnew+htemp', out=uWnew) ne.evaluate('uEnew-htemp', out=uEnew) u[:] = unew #problem 2 #vanilla numpy version #based on diferent views of the same data which #are made by slicing the arrays involved. #It is less straightforward, but much shorter. #This one could probably be better optimized by #pre-allocation of all needed temporary arrays. def perona_malik(u, lbda, sigma, reps): unew = u.copy() #make some views of the same data as u uN = u[:-1] uS = u[1:] uW = u[:,:-1] uE = u[:,1:] #make similar views for unew uNnew = unew[:-1] uSnew = unew[1:] uWnew = unew[:,:-1] uEnew = unew[:,1:] temp = np.empty_like(u) vtemp = temp[:-1] htemp = temp[:,:-1] difs = np.empty_like(u) vdifs = difs[:-1] hdifs = difs[:,:-1] for i in xrange(reps): vdifs[:] = uS - uN vtemp[:] = vdifs / sigma np.square(vtemp, out=vtemp) vtemp *= -1 np.exp(vtemp, out=vtemp) vtemp *= lbda vtemp *= vdifs uNnew += vtemp uSnew -= vtemp hdifs[:] = uE - uW htemp[:] = hdifs / sigma np.square(htemp, out=htemp) htemp *= -1 np.exp(htemp, out=htemp) htemp *= lbda htemp *= hdifs uWnew += htemp uEnew -= htemp u[:] = unew #problem 3 #vanilla numpy version based on array views def perona_malik_color(u, lbda, sigma, iters): unew = u.copy() #transposes are necessary so that broadcasting can work later. uNT = u[:-1].T uST = u[1:].T uWT = u[:,:-1].T uET = u[:,1:].T uNnewT = unew[:-1].T uSnewT = unew[1:].T uWnewT = unew[:,:-1].T uEnewT = unew[:,1:].T vdifs = np.empty_like(uNT[0]) hdifs = np.empty_like(uWT[0]) temp = np.empty_like(u) vtemp = temp[:-1].T htemp = temp[:,:-1].T temp2 = np.empty_like(temp) vtemp2 = temp2[:-1].T htemp2 = temp2[:,:-1].T for n in xrange(iters): #I lined the computations up in this way so as to #avoid unnecessary memory allocation and deallocation #as we go through the for loop. vtemp[:] = uST - uNT np.fabs(vtemp, out=vtemp2) np.max(vtemp2, axis=0, out=vdifs) vdifs /= sigma np.square(vdifs, out=vdifs) vdifs *= -1 np.exp(vdifs, out=vdifs) vdifs *= lbda vtemp *= vdifs #broadcasting across color dimension uNnewT += vtemp uSnewT -= vtemp htemp[:] = uET-uWT np.fabs(htemp, out=htemp2) np.max(htemp2, axis=0, out=hdifs) hdifs /= sigma np.square(hdifs, out=hdifs) hdifs *= -1 np.exp(hdifs, out=hdifs) hdifs *= lbda htemp *= hdifs #broadcasting across color dimension uWnewT += htemp uEnewT -= htemp u[:] = unew #problem 3 #using numexpr and array slices def perona_malik_color_ne(u, lbda, sigma, iters): sinv = np.float32(1./sigma) lbda32 = np.float32(lbda) unew = u.copy() uNT = u[:-1].T uST = u[1:].T uWT = u[:,:-1].T uET = u[:,1:].T uNnewT = unew[:-1].T uSnewT = unew[1:].T uWnewT = unew[:,:-1].T uEnewT = unew[:,1:].T vdifs = np.empty_like(uNT[0]) hdifs = np.empty_like(uWT[0]) temp = np.empty_like(u) vtemp = temp[:-1].T htemp = temp[:,:-1].T temp2 = np.empty_like(temp) vtemp2 = temp2[:-1].T htemp2 = temp2[:,:-1].T for n in xrange(iters): ne.evaluate('uST-uNT', out=vtemp) ne.evaluate('abs(vtemp)', out=vtemp2) np.max(vtemp2, axis=0, out=vdifs) ne.evaluate('lbda32*exp(-(sinv*(vdifs))**2)', out=vdifs) vtemp *= vdifs #broadcasting ne.evaluate('uNnewT+vtemp', out=uNnewT) ne.evaluate('uSnewT-vtemp', out=uSnewT) ne.evaluate('uET-uWT', out=htemp) ne.evaluate('abs(htemp)', out=htemp2) np.max(htemp2, axis=0, out=hdifs) ne.evaluate('lbda32*exp(-(sinv*(hdifs))**2)', out=hdifs) htemp *= hdifs #broadcasting ne.evaluate('uWnewT+htemp', out=uWnewT) ne.evaluate('uEnewT-htemp', out=uEnewT) u[:] = unew #vanilla numpy version for problem 4 def min_bias_color(u, lbda, reps): #this uses a good bit of excess memory... #the approach is based on the approach I took with the #optimized versions of problems 2 and 3 below difs = np.empty_like(u) uN = u[:-1] uS = u[1:] uW = u[:,:-1] uE = u[:,1:] uNW = u[:-1,:-1] uNE = u[:-1,1:] uSW = u[1:,:-1] uSE = u[1:,1:] Ndifs = difs[:-1] Sdifs = difs[1:] Wdifs = difs[:,:-1] Edifs = difs[:,1:] temp = np.empty_like(u) #coefs is used to store the coefficients that we use #to control how much diffusion we allow at each pixel coefs = np.empty_like(temp[:,:,0]) vtemp = temp[:-1] htemp = temp[:,:-1] dtemp = temp[:-1,:-1] vdifs = np.empty_like(vtemp[:,:,0]) hdifs = np.empty_like(htemp[:,:,0]) ldifs = np.empty_like(dtemp[:,:,0]) udifs =
np.empty_like(dtemp[:,:,0])
numpy.empty_like
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = import felis from astropy.io import fits import scipy.signal import pdb import matplotlib.pyplot as plt import datetime import pickle import sys import os import numpy as np # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = def match_templates2specs(templates,spectra,speczs,picklename,wavewindow=[50.0],wavecen_restframe=[1908.0], vshift=None,min_template_level=1e-4,plotdir=None,plot_allCCresults=False, subtract_spec_median=True,overwrite=False,verbose=True): """ Wrapper around felis cross-correlation template matching, to match a list of spectra with a list of templtes. --- INPUT --- spectra fits spectra to find a (cross-correlation) match to template for templates fits templates to correlate with speczs Spectroscopic redshifts to perform cross-correlation in rest-frame (shifting the spectrum). subtract_spec_median Subtract median value of spectrum (approximating the continuum level) picklename Name of pickle file to store final cross-correlation results in wavewindow Window (wavecen_restframe * (1+speczs) +/- wavewindow) to perform template matching over. wavecen_restframe Central rest-frame wavelength of the region to match vshift If a velcotiy shift is known, provide it here and it will be stored in output (not used) min_template_level The template is interpolated to the wavelength grid of the spectrum and extrapolated beyond it's edges if nescessary. In this extrapolation (assuming the template goes to ~0 at the edges), very small values (e.g., <1e-20) can be returned. To set these to 0.0 provide a level below which all values in the interpolated template are treated as 0s. plotdir Directory to store plots to plot_allCCresults To plot all the cross-correlation plots, set this to True overwrite Overwrite existing pickle file if it already exists? verbose Toggle verbosity --- EXAMPLE OF USE --- import felis import glob specdir = '/Users/kschmidt/work/MUSE/uvEmissionlineSearch/felis_testing/' #specs = glob.glob(specdir+'uves_felis_mock_MUSEspectrum_noisesigma*3p0.fits') specs = glob.glob(specdir+'uves_felis_mock_MUSEspectrum_noisesigma*.fits') speczs = [3.5]*len(specs) tempdir = '/Users/kschmidt/work/MUSE/uvEmissionlineSearch/felis_testing/' #temps = glob.glob(specdir+'uves_felis_template_CIIIdoublet_sig_0p25_fluxCIII1_4p0_flux*.fits') temps = glob.glob(specdir+'uves_felis_template_CIIIdoublet_*fits') temps = glob.glob(specdir+'uves_felis_template_CIVdoublet_*fits') plotdir = '/Users/kschmidt/work/MUSE/uvEmissionlineSearch/felis_testing/plots_CCresults180615/' pickle = '/Users/kschmidt/work/MUSE/uvEmissionlineSearch/felis_testing/CCresults180615_RENAME_.pkl' specs = ['/Volumes/DATABCKUP1/TDOSEextractions/171201_TDOSEextraction/Modelimg/tdose_spectra/tdose_spectrum_candels-cdfs-15_modelimg_0115003085-0115003085.fits'] speczs = [3.2585198879241943] ccdic = felis.match_templates2specs(temps,specs,speczs,pickle,wavewindow=[60]*len(specs),plotdir=plotdir,wavecen_restframe=[1549.0]*len(specs)) --- OUTPUT --- This wrapper will collect all the cross-correlation results in a main dictionary. The dictionary will be returned directly but also saved to disk as a pickled filed. This file can be loaded with: felis.load_picklefile(picklefilename) The returned dictionary has the following format: dictionary.keys() = the list of spectra that have been crossmatched (input = 'spectra') Each entry in the dictionary (dictionary[key]) contains the following entries: 'wavelengths' : The wavelength vector used for the cross-correlation matching of each of the N templates 'templatevec' : list of each of the N templates matched to spectrum 'zspec' : Spectroscopic redshift for spectrum 'zCCmaxvec' : the redshift corresponding to max S/N for each of the N templates matched 'ccresultsarray_flux' : fluc vectors for each of the N templates matched 'ccresultsarray_variance' : Variance vecotrs for each of the N templates matched 'ccresultsarr_S2N' : S/N vector for each of the N templates matched 'ccresultsarr_chi2' : chi squared values for the cross-correlation of each of the N templates matched 'ccresultsarr_Ngoodent' : The number of good pixels used in the cross correlation for each of the N templates matched 'S2NCCmaxvec' : vector with max(S/N) values for N templates matched 'continuumlevel' : The 'continuum level' of the spectrum removed in the cross-correlation. Currently the value is simply the median of the spectrum. 'vshift' : If a velocity shift was provided for the template match this is stored here The picklefile can be used to assemble sub-sample results (e.g., S/N cuts) based on the template cross-correlations with felis.selection_from_picklefile() And individual entries can be plotted using felis.plot_picklefilecontent() """ ccresultdic = {} if verbose: print(' - Starting cross-correlation of the '+str(len(spectra))+' spectra and '+ str(len(templates))+' templates') startstring = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f") if verbose: print(' '+startstring+'\n') if len(spectra) == 0: sys.exit(' No spectra provided') if len(templates) == 0: sys.exit(' No templates provided') for ss, spec in enumerate(spectra): # Nwave = pyfits.open(spec)[1].header['NAXIS2'] spec_namebase = spec.split('/')[-1].split('.fit')[0] for tt, temp in enumerate(templates): temp_namebase = temp.split('/')[-1].split('.fit')[0] wavecenter = wavecen_restframe[ss] * (1.0 + speczs[ss]) waverange = [wavecenter-wavewindow[ss],wavecenter+wavewindow[ss]] wave, ccresults, max_S2N, max_z, continuumlevel = \ felis.cross_correlate_template(spec,temp,z_restframe=speczs[ss],spec_median_sub=subtract_spec_median, waverange=waverange,min_template_level=min_template_level,verbose=verbose) if tt == 0: ccresultsarr_flux = np.array(ccresults[:,0]) ccresultsarr_variance = ccresults[:,1] ccresultsarr_S2N = ccresults[:,2] ccresultsarr_chi2 = ccresults[:,3] ccresultsarr_Ngoodent = ccresults[:,4] templatevec = np.array([temp]) S2NCCmaxvec = np.array([max_S2N]) zCCmaxvec = np.array([max_z]) #print('-------------------------->'+str(np.max(ccresultsarr_S2N))+' '+str(max_S2N)) else: ccresultsarr_flux = np.vstack((ccresultsarr_flux,ccresults[:,0])) ccresultsarr_variance = np.vstack((ccresultsarr_variance,ccresults[:,1])) ccresultsarr_S2N = np.vstack((ccresultsarr_S2N,ccresults[:,2])) ccresultsarr_chi2 = np.vstack((ccresultsarr_chi2,ccresults[:,3])) ccresultsarr_Ngoodent = np.vstack((ccresultsarr_Ngoodent,ccresults[:,4])) templatevec = np.append(templatevec,temp) S2NCCmaxvec = np.append(S2NCCmaxvec,max_S2N) zCCmaxvec =
np.append(zCCmaxvec,max_z)
numpy.append
import glob import itertools import math import os import typing from collections import OrderedDict import gym import numpy as np import yaml from ray.rllib.env import MultiAgentEnv from ray.tune.registry import register_env if os.environ.get("USE_PY_NATIVERL"): import pathmind_training.pynativerl as nativerl else: import nativerl import pathmind_training.utils from pathmind_training.pynativerl import Continuous from pathmind_training.utils import get_class_from_string OR_GYM_ENVS = [ "Knapsack-v0", "Knapsack-v1", "Knapsack-v2", "Knapsack-v3", "BinPacking-v0", "Newsvendor-v0", "VMPacking-v0", "VMPacking-v1", "VehicleRouting-v0", "InvManagement-v0", "InvManagement-v1", "PortfolioOpt-v0", "TSP-v0", "TSP-v1", ] def make_env(env_name): if env_name in OR_GYM_ENVS: import or_gym return or_gym.make(env_name) else: return gym.make(env_name) def get_gym_environment(environment_name: str): if "." in environment_name: # a python module, like "cartpole.CartPoleEnv" env_class = pathmind_training.utils.get_class_from_string(environment_name) def env_creator(env_config): return env_class() env_name = env_class.__name__ else: # built-in gym envs retrieved by name, e.g. "CartPole-v0" env_name = environment_name try: make_env(env_name) except Exception: raise Exception( f"Could not find gym environment '{env_name}'. Make sure to check for typos." ) def env_creator(env_config): return make_env(env_name) # Register the environment as string register_env(env_name, env_creator) return env_name, env_creator def get_environment( jar_dir: str, environment_name: str, is_multi_agent: bool = True, max_memory_in_mb: int = 4096, is_pathmind_simulation: bool = False, obs_selection=None, ): base_class = MultiAgentEnv if is_multi_agent else gym.Env simple_name = environment_name.split(".")[-1] class PathmindEnvironment(base_class): def __init__(self, env_config): # AnyLogic needs this to find its database os.chdir(jar_dir) # Put all JAR files found here in the class path jars = glob.glob(jar_dir + "/**/*.jar", recursive=True) # Initialize nativerl nativerl.init( [ "-Djava.class.path=" + os.pathsep.join(jars + [jar_dir]), f"-Xmx{max_memory_in_mb}m", ] ) # Instantiate the native environment, or mock it with pynativerl if is_pathmind_simulation: self.nativeEnv = get_native_env_from_simulation( environment_name, obs_selection ) else: self.nativeEnv = nativerl.createEnvironment(environment_name) self.action_space = self.define_action_space() self.observation_space = self.define_observation_space() self.id = simple_name if not is_multi_agent: self.unwrapped.spec = self self.use_reward_terms = env_config["use_reward_terms"] self.num_reward_terms = env_config["num_reward_terms"] self.alphas = env_config["alphas"] self.betas = np.ones(self.num_reward_terms) self.term_contributions_dict = {} self.term_contributions = np.zeros(self.num_reward_terms) def define_action_space(self): i = 0 action_space = self.nativeEnv.getActionSpace(i) action_spaces = [] while action_space is not None: if isinstance(action_space, nativerl.Discrete): action_spaces += [ gym.spaces.Discrete(action_space.n) for _ in range(action_space.size) ] else: # Continuous spaces have "shape" action_spaces += [ gym.spaces.Box( 0, 1,
np.array(action_space.shape)
numpy.array
# Source: # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/master/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py import math from functools import partial from inspect import isfunction from typing import List import jax import jax.numpy as jnp import numpy as np import pax from einops import rearrange from pax import GroupNorm, LayerNorm def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d class Residual(pax.Module): def __init__(self, fn): super().__init__() self.fn = fn def __call__(self, x, *args, **kwargs): return self.fn(x, *args, **kwargs) + x class SinusoidalPosEmbed(pax.Module): def __init__(self, dim): super().__init__() self.dim = dim def __call__(self, x): half_dim = self.dim // 2 emb = math.log(10_000) / (half_dim - 1) emb = jnp.exp(jnp.arange(0, half_dim) * (-emb)) emb = x[:, None] * emb[None, :] emb = jnp.concatenate((jnp.sin(emb), jnp.cos(emb)), axis=-1) return emb class Mish(pax.Module): def __call__(self, x): return x * jnp.tanh(jax.nn.softplus(x)) class Upsample(pax.Module): def __init__(self, dim): super().__init__() self.conv = pax.Conv2DTranspose(dim, dim, 4, 2, padding="SAME") def __call__(self, x): return self.conv(x) class Downsample(pax.Module): def __init__(self, dim): super().__init__() self.conv = pax.Conv2D(dim, dim, 3, 2, padding="SAME") def __call__(self, x): return self.conv(x) class PreNorm(pax.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = LayerNorm(dim, -1, True, True) def __call__(self, x): x = self.norm(x) return self.fn(x) class Block(pax.Module): def __init__(self, dim, dim_out, groups: int = 8): super().__init__() self.blocks = pax.Sequential( pax.Conv2D(dim, dim_out, 3, padding="SAME"), GroupNorm(groups, dim_out), Mish(), ) def __call__(self, x): return self.blocks(x) class ResnetBlock(pax.Module): def __init__(self, dim, dim_out, *, time_emb_dim=None, groups=8): super().__init__() self.mlp = ( pax.Sequential(Mish(), pax.Linear(time_emb_dim, dim_out)) if exists(time_emb_dim) else None ) self.block1 = Block(dim, dim_out, groups=groups) self.block2 = Block(dim_out, dim_out, groups=groups) if dim != dim_out: self.res_conv = pax.Conv2D(dim, dim_out, 1) else: self.res_conv = pax.Identity() def __call__(self, x, time_emb): h = self.block1(x) if exists(self.mlp): h = h + self.mlp(time_emb)[:, None, None, :] h = self.block2(h) return h + self.res_conv(x) class LinearAttention(pax.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = pax.Conv2D(dim, hidden_dim * 3, 1, with_bias=False) self.to_out = pax.Conv2D(hidden_dim, dim, 1) def __call__(self, x): b, h, w, c = x.shape qkv = self.to_qkv(x) q, k, v = rearrange( qkv, "b h w (qkv heads c) -> qkv b heads c (h w)", heads=self.heads, qkv=3 ) k = jax.nn.softmax(k, axis=-1) context = jnp.einsum("bhdn,bhen->bhde", k, v) out = jnp.einsum("bhde,bhdn->bhen", context, q) out = rearrange( out, "b heads c (h w) -> b h w (heads c)", heads=self.heads, h=h, w=w ) return self.to_out(out) ### model class UNet(pax.Module): ups: List[List[pax.Module]] downs: List[List[pax.Module]] def __init__( self, dim, out_dim=None, dim_mults=(1, 2, 4, 8), groups=8, channels=3, with_time_emb=True, ): super().__init__() self.channels = channels dims = [channels] + [dim * m for m in dim_mults] in_out = list(zip(dims[:-1], dims[1:])) if with_time_emb: time_dim = dim self.time_mlp = pax.Sequential( SinusoidalPosEmbed(dim), pax.Linear(dim, dim * 4), Mish(), pax.Linear(dim * 4, dim), ) else: time_dim = None self.time_mlp = None self.downs = [] self.ups = [] num_resolutions = len(in_out) for ind, (dim_in, dim_out) in enumerate(in_out): is_last = ind >= (num_resolutions - 1) self.downs.append( [ ResnetBlock(dim_in, dim_out, time_emb_dim=time_dim, groups=groups), ResnetBlock(dim_out, dim_out, time_emb_dim=time_dim, groups=groups), Residual(PreNorm(dim_out, LinearAttention(dim_out))), Downsample(dim_out) if not is_last else pax.Identity(), ] ) mid_dim = dims[-1] self.mid_block1 = ResnetBlock( mid_dim, mid_dim, time_emb_dim=time_dim, groups=groups ) self.mid_attn = Residual(PreNorm(mid_dim, LinearAttention(mid_dim))) self.mid_block2 = ResnetBlock( mid_dim, mid_dim, time_emb_dim=time_dim, groups=groups ) for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])): is_last = ind >= (num_resolutions - 1) self.ups.append( [ ResnetBlock( dim_out * 2, dim_in, time_emb_dim=time_dim, groups=groups ), ResnetBlock(dim_in, dim_in, time_emb_dim=time_dim, groups=groups), Residual(PreNorm(dim_in, LinearAttention(dim_in))), Upsample(dim_in) if not is_last else pax.Identity(), ] ) out_dim = default(out_dim, channels) self.final_conv = pax.Sequential( Block(dim, dim, groups=groups), pax.Conv2D(dim, out_dim, 1), ) def __call__(self, x, time): t = self.time_mlp(time) if exists(self.time_mlp) else None h = [] for resnet, resnet2, attn, downsample in self.downs: x = resnet(x, t) x = resnet2(x, t) x = attn(x) h.append(x) x = downsample(x) x = self.mid_block1(x, t) x = self.mid_attn(x) x = self.mid_block2(x, t) for resnet, resnet2, attn, upsample in self.ups: x = jnp.concatenate((x, h.pop()), axis=-1) x = resnet(x, t) x = resnet2(x, t) x = attn(x) x = upsample(x) return self.final_conv(x) def extract(a, t, x_shape): b, *_ = t.shape out = jnp.take_along_axis(a, t, axis=-1) out = jnp.reshape(out, (b,) + (1,) * (len(x_shape) - 1)) return out def noise_like(rng_key, shape, repeat=False): repeat_noise = lambda: jnp.tile( jax.random.normal(rng_key, (1, *shape[1:])), (shape[0],) + (1,) * (len(shape) - 1), ) noise = lambda: jax.random.normal(rng_key, shape) return repeat_noise() if repeat else noise() def cosine_beta_schedule(timesteps, s=0.008): """ cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ """ steps = timesteps + 1 x = np.linspace(0, steps, steps) alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 alphas_cumprod = alphas_cumprod / alphas_cumprod[0] betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) return np.clip(betas, a_min=0, a_max=0.999) class GaussianDiffusion(pax.Module): def __init__( self, denoise_fn, *, image_size, channels=3, timesteps=1000, loss_type="l1", betas=None, random_seed=42, ): super().__init__() self.channels = channels self.image_size = image_size self.denoise_fn = denoise_fn self.rng_seq = pax.RngSeq(random_seed) if exists(betas): betas = jnp.array(betas) else: betas = cosine_beta_schedule(timesteps) alphas = 1.0 - betas alphas_cumprod = np.cumprod(alphas, axis=0) alphas_cumprod_prev =
np.append(1.0, alphas_cumprod[:-1])
numpy.append
from __future__ import division from itertools import product import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import pytest from .. import relational as rel from ..palettes import color_palette from ..utils import categorical_order, sort_df class TestRelationalPlotter(object): def scatter_rgbs(self, collections): rgbs = [] for col in collections: rgb = tuple(col.get_facecolor().squeeze()[:3]) rgbs.append(rgb) return rgbs def colors_equal(self, *args): equal = True for c1, c2 in zip(*args): c1 = mpl.colors.colorConverter.to_rgb(np.squeeze(c1)) c2 = mpl.colors.colorConverter.to_rgb(np.squeeze(c1)) equal &= c1 == c2 return equal def paths_equal(self, *args): equal = True for p1, p2 in zip(*args): equal &= np.array_equal(p1.vertices, p2.vertices) equal &= np.array_equal(p1.codes, p2.codes) return equal @pytest.fixture def wide_df(self): columns = list("abc") index = pd.Int64Index(np.arange(10, 50, 2), name="wide_index") values = np.random.randn(len(index), len(columns)) return pd.DataFrame(values, index=index, columns=columns) @pytest.fixture def wide_array(self): return np.random.randn(20, 3) @pytest.fixture def flat_array(self): return np.random.randn(20) @pytest.fixture def flat_series(self): index = pd.Int64Index(np.arange(10, 30), name="t") return pd.Series(np.random.randn(20), index, name="s") @pytest.fixture def wide_list(self): return [np.random.randn(20), np.random.randn(10)] @pytest.fixture def wide_list_of_series(self): return [pd.Series(np.random.randn(20), np.arange(20), name="a"), pd.Series(np.random.randn(10), np.arange(5, 15), name="b")] @pytest.fixture def long_df(self): n = 100 rs = np.random.RandomState() df = pd.DataFrame(dict( x=rs.randint(0, 20, n), y=rs.randn(n), a=np.take(list("abc"), rs.randint(0, 3, n)), b=np.take(list("mnop"), rs.randint(0, 4, n)), c=np.take(list([0, 1]), rs.randint(0, 2, n)), d=np.repeat(np.datetime64('2005-02-25'), n), s=np.take([2, 4, 8], rs.randint(0, 3, n)), f=np.take(list([0.2, 0.3]), rs.randint(0, 2, n)), )) df["s_cat"] = df["s"].astype("category") return df @pytest.fixture def repeated_df(self): n = 100 rs = np.random.RandomState() return pd.DataFrame(dict( x=np.tile(np.arange(n // 2), 2), y=rs.randn(n), a=np.take(list("abc"), rs.randint(0, 3, n)), u=np.repeat(np.arange(2), n // 2), )) @pytest.fixture def missing_df(self): n = 100 rs = np.random.RandomState() df = pd.DataFrame(dict( x=rs.randint(0, 20, n), y=rs.randn(n), a=np.take(list("abc"), rs.randint(0, 3, n)), b=np.take(list("mnop"), rs.randint(0, 4, n)), s=np.take([2, 4, 8], rs.randint(0, 3, n)), )) for col in df: idx = rs.permutation(df.index)[:10] df.loc[idx, col] = np.nan return df @pytest.fixture def null_column(self): return pd.Series(index=np.arange(20)) def test_wide_df_variables(self, wide_df): p = rel._RelationalPlotter() p.establish_variables(data=wide_df) assert p.input_format == "wide" assert p.semantics == ["x", "y", "hue", "style"] assert len(p.plot_data) == np.product(wide_df.shape) x = p.plot_data["x"] expected_x = np.tile(wide_df.index, wide_df.shape[1]) assert np.array_equal(x, expected_x) y = p.plot_data["y"] expected_y = wide_df.values.ravel(order="f") assert np.array_equal(y, expected_y) hue = p.plot_data["hue"] expected_hue = np.repeat(wide_df.columns.values, wide_df.shape[0]) assert np.array_equal(hue, expected_hue) style = p.plot_data["style"] expected_style = expected_hue assert np.array_equal(style, expected_style) assert p.plot_data["size"].isnull().all() assert p.x_label == wide_df.index.name assert p.y_label is None assert p.hue_label == wide_df.columns.name assert p.size_label is None assert p.style_label == wide_df.columns.name def test_wide_df_variables_check(self, wide_df): p = rel._RelationalPlotter() wide_df = wide_df.copy() wide_df.loc[:, "not_numeric"] = "a" with pytest.raises(ValueError): p.establish_variables(data=wide_df) def test_wide_array_variables(self, wide_array): p = rel._RelationalPlotter() p.establish_variables(data=wide_array) assert p.input_format == "wide" assert p.semantics == ["x", "y", "hue", "style"] assert len(p.plot_data) == np.product(wide_array.shape) nrow, ncol = wide_array.shape x = p.plot_data["x"] expected_x = np.tile(np.arange(nrow), ncol) assert np.array_equal(x, expected_x) y = p.plot_data["y"] expected_y = wide_array.ravel(order="f") assert np.array_equal(y, expected_y) hue = p.plot_data["hue"] expected_hue = np.repeat(np.arange(ncol), nrow) assert np.array_equal(hue, expected_hue) style = p.plot_data["style"] expected_style = expected_hue assert np.array_equal(style, expected_style) assert p.plot_data["size"].isnull().all() assert p.x_label is None assert p.y_label is None assert p.hue_label is None assert p.size_label is None assert p.style_label is None def test_flat_array_variables(self, flat_array): p = rel._RelationalPlotter() p.establish_variables(data=flat_array) assert p.input_format == "wide" assert p.semantics == ["x", "y"] assert len(p.plot_data) == np.product(flat_array.shape) x = p.plot_data["x"] expected_x = np.arange(flat_array.shape[0]) assert np.array_equal(x, expected_x) y = p.plot_data["y"] expected_y = flat_array assert np.array_equal(y, expected_y) assert p.plot_data["hue"].isnull().all() assert p.plot_data["style"].isnull().all() assert p.plot_data["size"].isnull().all() assert p.x_label is None assert p.y_label is None assert p.hue_label is None assert p.size_label is None assert p.style_label is None def test_flat_series_variables(self, flat_series): p = rel._RelationalPlotter() p.establish_variables(data=flat_series) assert p.input_format == "wide" assert p.semantics == ["x", "y"] assert len(p.plot_data) == len(flat_series) x = p.plot_data["x"] expected_x = flat_series.index assert np.array_equal(x, expected_x) y = p.plot_data["y"] expected_y = flat_series assert np.array_equal(y, expected_y) assert p.x_label is None assert p.y_label is None assert p.hue_label is None assert p.size_label is None assert p.style_label is None def test_wide_list_variables(self, wide_list): p = rel._RelationalPlotter() p.establish_variables(data=wide_list) assert p.input_format == "wide" assert p.semantics == ["x", "y", "hue", "style"] assert len(p.plot_data) == sum(len(l) for l in wide_list) x = p.plot_data["x"] expected_x = np.concatenate([np.arange(len(l)) for l in wide_list]) assert np.array_equal(x, expected_x) y = p.plot_data["y"] expected_y = np.concatenate(wide_list) assert np.array_equal(y, expected_y) hue = p.plot_data["hue"] expected_hue = np.concatenate([ np.ones_like(l) * i for i, l in enumerate(wide_list) ]) assert np.array_equal(hue, expected_hue) style = p.plot_data["style"] expected_style = expected_hue assert np.array_equal(style, expected_style) assert p.plot_data["size"].isnull().all() assert p.x_label is None assert p.y_label is None assert p.hue_label is None assert p.size_label is None assert p.style_label is None def test_wide_list_of_series_variables(self, wide_list_of_series): p = rel._RelationalPlotter() p.establish_variables(data=wide_list_of_series) assert p.input_format == "wide" assert p.semantics == ["x", "y", "hue", "style"] assert len(p.plot_data) == sum(len(l) for l in wide_list_of_series) x = p.plot_data["x"] expected_x = np.concatenate([s.index for s in wide_list_of_series]) assert np.array_equal(x, expected_x) y = p.plot_data["y"] expected_y = np.concatenate(wide_list_of_series) assert np.array_equal(y, expected_y) hue = p.plot_data["hue"] expected_hue = np.concatenate([ np.full(len(s), s.name, object) for s in wide_list_of_series ]) assert np.array_equal(hue, expected_hue) style = p.plot_data["style"] expected_style = expected_hue assert np.array_equal(style, expected_style) assert p.plot_data["size"].isnull().all() assert p.x_label is None assert p.y_label is None assert p.hue_label is None assert p.size_label is None assert p.style_label is None def test_long_df(self, long_df): p = rel._RelationalPlotter() p.establish_variables(x="x", y="y", data=long_df) assert p.input_format == "long" assert p.semantics == ["x", "y"] assert np.array_equal(p.plot_data["x"], long_df["x"]) assert np.array_equal(p.plot_data["y"], long_df["y"]) for col in ["hue", "style", "size"]: assert p.plot_data[col].isnull().all() assert (p.x_label, p.y_label) == ("x", "y") assert p.hue_label is None assert p.size_label is None assert p.style_label is None p.establish_variables(x=long_df.x, y="y", data=long_df) assert p.semantics == ["x", "y"] assert np.array_equal(p.plot_data["x"], long_df["x"]) assert np.array_equal(p.plot_data["y"], long_df["y"]) assert (p.x_label, p.y_label) == ("x", "y") p.establish_variables(x="x", y=long_df.y, data=long_df) assert p.semantics == ["x", "y"] assert np.array_equal(p.plot_data["x"], long_df["x"]) assert np.array_equal(p.plot_data["y"], long_df["y"]) assert (p.x_label, p.y_label) == ("x", "y") p.establish_variables(x="x", y="y", hue="a", data=long_df) assert p.semantics == ["x", "y", "hue"] assert np.array_equal(p.plot_data["hue"], long_df["a"]) for col in ["style", "size"]: assert p.plot_data[col].isnull().all() assert p.hue_label == "a" assert p.size_label is None and p.style_label is None p.establish_variables(x="x", y="y", hue="a", style="a", data=long_df) assert p.semantics == ["x", "y", "hue", "style"] assert np.array_equal(p.plot_data["hue"], long_df["a"]) assert np.array_equal(p.plot_data["style"], long_df["a"]) assert p.plot_data["size"].isnull().all() assert p.hue_label == p.style_label == "a" assert p.size_label is None p.establish_variables(x="x", y="y", hue="a", style="b", data=long_df) assert p.semantics == ["x", "y", "hue", "style"] assert np.array_equal(p.plot_data["hue"], long_df["a"]) assert np.array_equal(p.plot_data["style"], long_df["b"]) assert p.plot_data["size"].isnull().all() p.establish_variables(x="x", y="y", size="y", data=long_df) assert p.semantics == ["x", "y", "size"] assert np.array_equal(p.plot_data["size"], long_df["y"]) assert p.size_label == "y" assert p.hue_label is None and p.style_label is None def test_bad_input(self, long_df): p = rel._RelationalPlotter() with pytest.raises(ValueError): p.establish_variables(x=long_df.x) with pytest.raises(ValueError): p.establish_variables(y=long_df.y) with pytest.raises(ValueError): p.establish_variables(x="not_in_df", data=long_df) with pytest.raises(ValueError): p.establish_variables(x="x", y="not_in_df", data=long_df) with pytest.raises(ValueError): p.establish_variables(x="x", y="not_in_df", data=long_df) def test_empty_input(self): p = rel._RelationalPlotter() p.establish_variables(data=[]) p.establish_variables(data=np.array([])) p.establish_variables(data=pd.DataFrame()) p.establish_variables(x=[], y=[]) def test_units(self, repeated_df): p = rel._RelationalPlotter() p.establish_variables(x="x", y="y", units="u", data=repeated_df) assert np.array_equal(p.plot_data["units"], repeated_df["u"]) def test_parse_hue_null(self, wide_df, null_column): p = rel._LinePlotter(data=wide_df) p.parse_hue(null_column, "Blues", None, None) assert p.hue_levels == [None] assert p.palette == {} assert p.hue_type is None assert p.cmap is None def test_parse_hue_categorical(self, wide_df, long_df): p = rel._LinePlotter(data=wide_df) assert p.hue_levels == wide_df.columns.tolist() assert p.hue_type == "categorical" assert p.cmap is None # Test named palette palette = "Blues" expected_colors = color_palette(palette, wide_df.shape[1]) expected_palette = dict(zip(wide_df.columns, expected_colors)) p.parse_hue(p.plot_data.hue, palette, None, None) assert p.palette == expected_palette # Test list palette palette = color_palette("Reds", wide_df.shape[1]) p.parse_hue(p.plot_data.hue, palette, None, None) expected_palette = dict(zip(wide_df.columns, palette)) assert p.palette == expected_palette # Test dict palette colors = color_palette("Set1", 8) palette = dict(zip(wide_df.columns, colors)) p.parse_hue(p.plot_data.hue, palette, None, None) assert p.palette == palette # Test dict with missing keys palette = dict(zip(wide_df.columns[:-1], colors)) with pytest.raises(ValueError): p.parse_hue(p.plot_data.hue, palette, None, None) # Test list with wrong number of colors palette = colors[:-1] with pytest.raises(ValueError): p.parse_hue(p.plot_data.hue, palette, None, None) # Test hue order hue_order = ["a", "c", "d"] p.parse_hue(p.plot_data.hue, None, hue_order, None) assert p.hue_levels == hue_order # Test long data p = rel._LinePlotter(x="x", y="y", hue="a", data=long_df) assert p.hue_levels == categorical_order(long_df.a) assert p.hue_type == "categorical" assert p.cmap is None # Test default palette p.parse_hue(p.plot_data.hue, None, None, None) hue_levels = categorical_order(long_df.a) expected_colors = color_palette(n_colors=len(hue_levels)) expected_palette = dict(zip(hue_levels, expected_colors)) assert p.palette == expected_palette # Test default palette with many levels levels = pd.Series(list("abcdefghijklmnopqrstuvwxyz")) p.parse_hue(levels, None, None, None) expected_colors = color_palette("husl", n_colors=len(levels)) expected_palette = dict(zip(levels, expected_colors)) assert p.palette == expected_palette # Test binary data p = rel._LinePlotter(x="x", y="y", hue="c", data=long_df) assert p.hue_levels == [0, 1] assert p.hue_type == "categorical" df = long_df[long_df["c"] == 0] p = rel._LinePlotter(x="x", y="y", hue="c", data=df) assert p.hue_levels == [0] assert p.hue_type == "categorical" df = long_df[long_df["c"] == 1] p = rel._LinePlotter(x="x", y="y", hue="c", data=df) assert p.hue_levels == [1] assert p.hue_type == "categorical" # Test Timestamp data p = rel._LinePlotter(x="x", y="y", hue="d", data=long_df) assert p.hue_levels == [pd.Timestamp('2005-02-25')] assert p.hue_type == "categorical" # Test numeric data with category type p = rel._LinePlotter(x="x", y="y", hue="s_cat", data=long_df) assert p.hue_levels == categorical_order(long_df.s_cat) assert p.hue_type == "categorical" assert p.cmap is None # Test categorical palette specified for numeric data palette = "deep" p = rel._LinePlotter(x="x", y="y", hue="s", palette=palette, data=long_df) expected_colors = color_palette(palette, n_colors=len(levels)) hue_levels = categorical_order(long_df["s"]) expected_palette = dict(zip(hue_levels, expected_colors)) assert p.palette == expected_palette assert p.hue_type == "categorical" def test_parse_hue_numeric(self, long_df): p = rel._LinePlotter(x="x", y="y", hue="s", data=long_df) hue_levels = list(np.sort(long_df.s.unique())) assert p.hue_levels == hue_levels assert p.hue_type == "numeric" assert p.cmap.name == "seaborn_cubehelix" # Test named colormap palette = "Purples" p.parse_hue(p.plot_data.hue, palette, None, None) assert p.cmap is mpl.cm.get_cmap(palette) # Test colormap object palette = mpl.cm.get_cmap("Greens") p.parse_hue(p.plot_data.hue, palette, None, None) assert p.cmap is palette # Test cubehelix shorthand palette = "ch:2,0,light=.2" p.parse_hue(p.plot_data.hue, palette, None, None) assert isinstance(p.cmap, mpl.colors.ListedColormap) # Test default hue limits p.parse_hue(p.plot_data.hue, None, None, None) assert p.hue_limits == (p.plot_data.hue.min(), p.plot_data.hue.max()) # Test specified hue limits hue_norm = 1, 4 p.parse_hue(p.plot_data.hue, None, None, hue_norm) assert p.hue_limits == hue_norm assert isinstance(p.hue_norm, mpl.colors.Normalize) assert p.hue_norm.vmin == hue_norm[0] assert p.hue_norm.vmax == hue_norm[1] # Test Normalize object hue_norm = mpl.colors.PowerNorm(2, vmin=1, vmax=10) p.parse_hue(p.plot_data.hue, None, None, hue_norm) assert p.hue_limits == (hue_norm.vmin, hue_norm.vmax) assert p.hue_norm is hue_norm # Test default colormap values hmin, hmax = p.plot_data.hue.min(), p.plot_data.hue.max() p.parse_hue(p.plot_data.hue, None, None, None) assert p.palette[hmin] == pytest.approx(p.cmap(0.0)) assert p.palette[hmax] == pytest.approx(p.cmap(1.0)) # Test specified colormap values hue_norm = hmin - 1, hmax - 1 p.parse_hue(p.plot_data.hue, None, None, hue_norm) norm_min = (hmin - hue_norm[0]) / (hue_norm[1] - hue_norm[0]) assert p.palette[hmin] == pytest.approx(p.cmap(norm_min)) assert p.palette[hmax] == pytest.approx(p.cmap(1.0)) # Test list of colors hue_levels = list(np.sort(long_df.s.unique())) palette = color_palette("Blues", len(hue_levels)) p.parse_hue(p.plot_data.hue, palette, None, None) assert p.palette == dict(zip(hue_levels, palette)) palette = color_palette("Blues", len(hue_levels) + 1) with pytest.raises(ValueError): p.parse_hue(p.plot_data.hue, palette, None, None) # Test dictionary of colors palette = dict(zip(hue_levels, color_palette("Reds"))) p.parse_hue(p.plot_data.hue, palette, None, None) assert p.palette == palette palette.pop(hue_levels[0]) with pytest.raises(ValueError): p.parse_hue(p.plot_data.hue, palette, None, None) # Test invalid palette palette = "not_a_valid_palette" with pytest.raises(ValueError): p.parse_hue(p.plot_data.hue, palette, None, None) # Test bad norm argument hue_norm = "not a norm" with pytest.raises(ValueError): p.parse_hue(p.plot_data.hue, None, None, hue_norm) def test_parse_size(self, long_df): p = rel._LinePlotter(x="x", y="y", size="s", data=long_df) # Test default size limits and range default_linewidth = mpl.rcParams["lines.linewidth"] default_limits = p.plot_data["size"].min(), p.plot_data["size"].max() default_range = .5 * default_linewidth, 2 * default_linewidth p.parse_size(p.plot_data["size"], None, None, None) assert p.size_limits == default_limits size_range = min(p.sizes.values()), max(p.sizes.values()) assert size_range == default_range # Test specified size limits size_limits = (1, 5) p.parse_size(p.plot_data["size"], None, None, size_limits) assert p.size_limits == size_limits # Test specified size range sizes = (.1, .5) p.parse_size(p.plot_data["size"], sizes, None, None) assert p.size_limits == default_limits # Test size values with normalization range sizes = (1, 5) size_norm = (1, 10) p.parse_size(p.plot_data["size"], sizes, None, size_norm) normalize = mpl.colors.Normalize(*size_norm, clip=True) for level, width in p.sizes.items(): assert width == sizes[0] + (sizes[1] - sizes[0]) * normalize(level) # Test size values with normalization object sizes = (1, 5) size_norm = mpl.colors.LogNorm(1, 10, clip=False) p.parse_size(p.plot_data["size"], sizes, None, size_norm) assert p.size_norm.clip for level, width in p.sizes.items(): assert width == sizes[0] + (sizes[1] - sizes[0]) * size_norm(level) # Test specified size order var = "a" levels = long_df[var].unique() sizes = [1, 4, 6] size_order = [levels[1], levels[2], levels[0]] p = rel._LinePlotter(x="x", y="y", size=var, data=long_df) p.parse_size(p.plot_data["size"], sizes, size_order, None) assert p.sizes == dict(zip(size_order, sizes)) # Test list of sizes var = "a" levels = categorical_order(long_df[var]) sizes = list(np.random.rand(len(levels))) p = rel._LinePlotter(x="x", y="y", size=var, data=long_df) p.parse_size(p.plot_data["size"], sizes, None, None) assert p.sizes == dict(zip(levels, sizes)) # Test dict of sizes var = "a" levels = categorical_order(long_df[var]) sizes = dict(zip(levels, np.random.rand(len(levels)))) p = rel._LinePlotter(x="x", y="y", size=var, data=long_df) p.parse_size(p.plot_data["size"], sizes, None, None) assert p.sizes == sizes # Test sizes list with wrong length sizes = list(np.random.rand(len(levels) + 1)) with pytest.raises(ValueError): p.parse_size(p.plot_data["size"], sizes, None, None) # Test sizes dict with missing levels sizes = dict(zip(levels, np.random.rand(len(levels) - 1))) with pytest.raises(ValueError): p.parse_size(p.plot_data["size"], sizes, None, None) # Test bad sizes argument sizes = "bad_size" with pytest.raises(ValueError): p.parse_size(p.plot_data["size"], sizes, None, None) # Test bad norm argument size_norm = "not a norm" p = rel._LinePlotter(x="x", y="y", size="s", data=long_df) with pytest.raises(ValueError): p.parse_size(p.plot_data["size"], None, None, size_norm) def test_parse_style(self, long_df): p = rel._LinePlotter(x="x", y="y", style="a", data=long_df) # Test defaults markers, dashes = True, True p.parse_style(p.plot_data["style"], markers, dashes, None) assert p.markers == dict(zip(p.style_levels, p.default_markers)) assert p.dashes == dict(zip(p.style_levels, p.default_dashes)) # Test lists markers, dashes = ["o", "s", "d"], [(1, 0), (1, 1), (2, 1, 3, 1)] p.parse_style(p.plot_data["style"], markers, dashes, None) assert p.markers == dict(zip(p.style_levels, markers)) assert p.dashes == dict(zip(p.style_levels, dashes)) # Test dicts markers = dict(zip(p.style_levels, markers)) dashes = dict(zip(p.style_levels, dashes)) p.parse_style(p.plot_data["style"], markers, dashes, None) assert p.markers == markers assert p.dashes == dashes # Test style order with defaults style_order = np.take(p.style_levels, [1, 2, 0]) markers = dashes = True p.parse_style(p.plot_data["style"], markers, dashes, style_order) assert p.markers == dict(zip(style_order, p.default_markers)) assert p.dashes == dict(zip(style_order, p.default_dashes)) # Test too many levels with style lists markers, dashes = ["o", "s"], False with pytest.raises(ValueError): p.parse_style(p.plot_data["style"], markers, dashes, None) markers, dashes = False, [(2, 1)] with pytest.raises(ValueError): p.parse_style(p.plot_data["style"], markers, dashes, None) # Test too many levels with style dicts markers, dashes = {"a": "o", "b": "s"}, False with pytest.raises(ValueError): p.parse_style(p.plot_data["style"], markers, dashes, None) markers, dashes = False, {"a": (1, 0), "b": (2, 1)} with pytest.raises(ValueError): p.parse_style(p.plot_data["style"], markers, dashes, None) # Test mixture of filled and unfilled markers markers, dashes = ["o", "x", "s"], None with pytest.raises(ValueError): p.parse_style(p.plot_data["style"], markers, dashes, None) def test_subset_data_quantities(self, long_df): p = rel._LinePlotter(x="x", y="y", data=long_df) assert len(list(p.subset_data())) == 1 # -- var = "a" n_subsets = len(long_df[var].unique()) p = rel._LinePlotter(x="x", y="y", hue=var, data=long_df) assert len(list(p.subset_data())) == n_subsets p = rel._LinePlotter(x="x", y="y", style=var, data=long_df) assert len(list(p.subset_data())) == n_subsets n_subsets = len(long_df[var].unique()) p = rel._LinePlotter(x="x", y="y", size=var, data=long_df) assert len(list(p.subset_data())) == n_subsets # -- var = "a" n_subsets = len(long_df[var].unique()) p = rel._LinePlotter(x="x", y="y", hue=var, style=var, data=long_df) assert len(list(p.subset_data())) == n_subsets # -- var1, var2 = "a", "s" n_subsets = len(set(list(map(tuple, long_df[[var1, var2]].values)))) p = rel._LinePlotter(x="x", y="y", hue=var1, style=var2, data=long_df) assert len(list(p.subset_data())) == n_subsets p = rel._LinePlotter(x="x", y="y", hue=var1, size=var2, style=var1, data=long_df) assert len(list(p.subset_data())) == n_subsets # -- var1, var2, var3 = "a", "s", "b" cols = [var1, var2, var3] n_subsets = len(set(list(map(tuple, long_df[cols].values)))) p = rel._LinePlotter(x="x", y="y", hue=var1, size=var2, style=var3, data=long_df) assert len(list(p.subset_data())) == n_subsets def test_subset_data_keys(self, long_df): p = rel._LinePlotter(x="x", y="y", data=long_df) for (hue, size, style), _ in p.subset_data(): assert hue is None assert size is None assert style is None # -- var = "a" p = rel._LinePlotter(x="x", y="y", hue=var, data=long_df) for (hue, size, style), _ in p.subset_data(): assert hue in long_df[var].values assert size is None assert style is None p = rel._LinePlotter(x="x", y="y", style=var, data=long_df) for (hue, size, style), _ in p.subset_data(): assert hue is None assert size is None assert style in long_df[var].values p = rel._LinePlotter(x="x", y="y", hue=var, style=var, data=long_df) for (hue, size, style), _ in p.subset_data(): assert hue in long_df[var].values assert size is None assert style in long_df[var].values p = rel._LinePlotter(x="x", y="y", size=var, data=long_df) for (hue, size, style), _ in p.subset_data(): assert hue is None assert size in long_df[var].values assert style is None # -- var1, var2 = "a", "s" p = rel._LinePlotter(x="x", y="y", hue=var1, size=var2, data=long_df) for (hue, size, style), _ in p.subset_data(): assert hue in long_df[var1].values assert size in long_df[var2].values assert style is None def test_subset_data_values(self, long_df): p = rel._LinePlotter(x="x", y="y", data=long_df) _, data = next(p.subset_data()) expected = sort_df(p.plot_data.loc[:, ["x", "y"]], ["x", "y"]) assert np.array_equal(data.values, expected) p = rel._LinePlotter(x="x", y="y", data=long_df, sort=False) _, data = next(p.subset_data()) expected = p.plot_data.loc[:, ["x", "y"]] assert
np.array_equal(data.values, expected)
numpy.array_equal
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den =
N.array([1,1,1])
numpy.array
# Copyright 2022 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for ensemble routing. We will use the following abbreviations: G = number of groups S = group size E = total number of experts K = number of selected experts M = number of ensemble members, also referred to as ensemble size. H = hidden size (a.k.a. number of dimensions of each token). """ from unittest import mock from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp import numpy as np from vmoe.nn import ensemble_routing as ens_routing from vmoe.nn import routing NoisyTopExpertsPerItemEnsembleRouter = ens_routing.NoisyTopExpertsPerItemEnsembleRouter class NoisyTopExpertsPerItemEnsembleRouterTest(parameterized.TestCase): # We mock get_top_experts_per_item_dispatcher to avoid having to specify the # parameters of the dispatcher during testing. The output of the # NoisyTopExpertsPerItemEnsembleRouter is supposed to be a dispatcher, but we # will simply return the `gates_softmax`, which is fine for testing purposes. @parameterized.named_parameters( ('G=1, M=1', 1, 1, (1, 1)), ('G=1, M=2', 1, 2, (1, 2)), ('G=2, M=1', 2, 1, (2, 1)), ('G=2, M=2', 2, 2, (2, 2))) @mock.patch.object( routing.vmoe.moe, 'get_top_experts_per_item_dispatcher', side_effect=lambda x, **_: x) def test_forward_deterministic(self, num_groups, ens_size, expected_output_shape, unused_mock): """Tests that output is the same given two different gating PRNG seeds.""" num_experts = 4 num_selected_experts = 2 batch_size = 6 batch_size_with_repeat = batch_size * ens_size dim_x = num_experts product_shape = dim_x * batch_size_with_repeat * num_groups x = jnp.arange(product_shape) x = x.reshape(num_groups, batch_size_with_repeat, dim_x).astype(jnp.float32) kernel = jnp.eye(dim_x).reshape(dim_x, ens_size, num_experts // ens_size) variables = {'params': {'dense': {'kernel': kernel}}} layer = NoisyTopExpertsPerItemEnsembleRouter( num_experts=num_experts, ensemble_size=ens_size, num_selected_experts=num_selected_experts, noise_std=1.0, deterministic=True) # y's are dispatch weights, m's are metrics. y1, m1 = layer.apply(variables, x, rngs={'gating': jax.random.PRNGKey(0)}) y2, m2 = layer.apply(variables, x, rngs={'gating': jax.random.PRNGKey(1)}) chex.assert_trees_all_close(y1, y2) chex.assert_trees_all_close(m1, m2) for loss in m1.values(): self.assertEqual(loss.shape, expected_output_shape) @parameterized.named_parameters( ('G=1, M=1', 1, 1, (1, 1)), ('G=1, M=2', 1, 2, (1, 2)), ('G=2, M=1', 2, 1, (2, 1)), ('G=2, M=2', 2, 2, (2, 2))) @mock.patch.object( routing.vmoe.moe, 'get_top_experts_per_item_dispatcher', side_effect=lambda x, **_: x) def test_forward_not_deterministic(self, num_groups, ens_size, expected_output_shape, unused_mock): """Tests that output is different given two different gating PRNG seeds.""" num_experts = 4 num_selected_experts = 2 batch_size = 6 batch_size_with_repeat = batch_size * ens_size dim_x = num_experts product_shape = dim_x * batch_size_with_repeat * num_groups x = jnp.arange(product_shape) x = x.reshape(num_groups, batch_size_with_repeat, dim_x).astype(jnp.float32) kernel = jnp.eye(dim_x).reshape(dim_x, ens_size, num_experts // ens_size) variables = {'params': {'dense': {'kernel': kernel}}} layer = NoisyTopExpertsPerItemEnsembleRouter( num_experts=num_experts, ensemble_size=ens_size, num_selected_experts=num_selected_experts, noise_std=1.0, deterministic=False) # y's are dispatch weights, m's are metrics. y1, m1 = layer.apply(variables, x, rngs={'gating': jax.random.PRNGKey(0)}) y2, m2 = layer.apply(variables, x, rngs={'gating': jax.random.PRNGKey(1)}) different_fn = lambda x, y: jnp.abs(x - y).sum() > 1e-3 error_msg_fn = lambda x, y: f'{x} is too close to {y}' chex.assert_trees_all_equal_comparator(different_fn, error_msg_fn, y1, y2) # Importance loss is applied before adding noise, so it should be identical. chex.assert_trees_all_close(m1['importance_loss'], m2['importance_loss']) del m1['importance_loss'] del m2['importance_loss'] chex.assert_trees_all_equal_comparator(different_fn, error_msg_fn, m1, m2) for loss1, loss2 in zip(m1.values(), m2.values()): self.assertEqual(loss1.shape, expected_output_shape) self.assertEqual(loss2.shape, expected_output_shape) @mock.patch.object( routing.vmoe.moe, 'get_top_experts_per_item_dispatcher', side_effect=lambda x, **_: x) def test_expert_partitioning_in_forward_deterministic(self, unused_mock): """Tests that experts are selected according to their partitioning.""" ens_size = 2 dim_x = 3 num_experts = 4 # With ens_size=2, partition {0, 1}, {2, 3}. num_selected_experts = 1 batch_size = 1 batch_size_with_repeat = batch_size * ens_size num_groups = 1 x = jnp.arange(batch_size_with_repeat * dim_x) x = x.reshape(num_groups, batch_size_with_repeat, dim_x).astype(jnp.float32) # The kernel is such that x * kernel leads to select expert 3 and 1 for # the first and second part of the batch. But the partitioning enforces a # selection in respectively {0, 1} and {2, 3}. kernel = [[[1.0, 1.0], [-1.0, -1.0]], [[-1.0, 1.0], [-1.0, -1.0]], [[-1.0, -1.0], [-1.0, 1.0]]] kernel = jnp.asarray(kernel) variables = {'params': {'dense': {'kernel': kernel}}} layer = NoisyTopExpertsPerItemEnsembleRouter( num_experts=num_experts, ensemble_size=ens_size, num_selected_experts=num_selected_experts, noise_std=1.0, deterministic=False) rngs = {'gating': jax.random.PRNGKey(0)} gates_softmax, _ = layer.apply(variables, x, rngs=rngs) selected_experts = jnp.argmax(gates_softmax, axis=-1) # Only one group, hence the first 0 index. self.assertIn(selected_experts[0, 0], (0, 1)) self.assertIn(selected_experts[0, 1], (2, 3)) selected_experts_no_partitioning = jnp.argmax( jnp.dot(x, kernel.reshape(dim_x, num_experts)), -1) # Only one group, hence the first 0 index. self.assertNotEqual(selected_experts_no_partitioning[0, 0], selected_experts[0, 0]) self.assertNotEqual(selected_experts_no_partitioning[0, 1], selected_experts[0, 1]) def test_diag_blocks(self): """Test the utils to manipulate the block-diagonal representations.""" rows = 2 cols = 3 ens_size = 4 diag_blocks1 = jnp.asarray( [k * jnp.ones((rows, cols)) for k in range(1, ens_size + 1)]) full_block_diag_matrix1 = jax.scipy.linalg.block_diag(*diag_blocks1) diag_blocks2 = jnp.asarray( [-k * jnp.ones((rows, cols)) for k in range(1, ens_size + 1)]) full_block_diag_matrix2 = jax.scipy.linalg.block_diag(*diag_blocks2) diag_blocks12 = jnp.asarray([diag_blocks1, diag_blocks2]) full_block_diag_matrix12 = jnp.asarray( [full_block_diag_matrix1, full_block_diag_matrix2]) def dist(u, v): return float(jnp.sum(jnp.abs(u - v))) out12 = ens_routing.reshape_from_diag_blocks(diag_blocks12) self.assertAlmostEqual(dist(out12, full_block_diag_matrix12), 0.0) def test_reshape_to_and_from_group_representation(self): num_images = 4 ensemble_size = 2 num_rep_images = num_images * ensemble_size num_tokens_per_image = 3 hidden_size = 1 num_groups = 2 group_size = (num_rep_images * num_tokens_per_image) // num_groups def generate_image_tokens_with_repeat_ensemble_structure(): x = [] for i in range(num_images): for e in range(ensemble_size): # (i, e, t) are the image, ensemble member and token indices. # The inner-most [] accounts for hidden_size = 1. x += [[[f'image={i},ensemble={e},token={t}'] for t in range(num_tokens_per_image)]] return
np.array(x)
numpy.array
''' episodestats.py implements statistic that are used in producing employment statistics for the lifecycle model ''' import h5py import numpy as np import numpy_financial as npf import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns from scipy.stats import norm #import locale from tabulate import tabulate import pandas as pd import scipy.optimize from tqdm import tqdm_notebook as tqdm from . empstats import Empstats from scipy.stats import gaussian_kde #locale.setlocale(locale.LC_ALL, 'fi_FI') def modify_offsettext(ax,text): ''' For y axis ''' x_pos = 0.0 y_pos = 1.0 horizontalalignment='left' verticalalignment='bottom' offset = ax.yaxis.get_offset_text() #value=offset.get_text() # value=float(value) # if value>=1e12: # text='biljoonaa' # elif value>1e9: # text=str(value/1e9)+' miljardia' # elif value==1e9: # text=' miljardia' # elif value>1e6: # text=str(value/1e6)+' miljoonaa' # elif value==1e6: # text='miljoonaa' # elif value>1e3: # text=str(value/1e3)+' tuhatta' # elif value==1e3: # text='tuhatta' offset.set_visible(False) ax.text(x_pos, y_pos, text, transform=ax.transAxes, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment) class Labels(): def get_labels(self,language='English'): labels={} if language=='English': labels['osuus tilassa x']='Proportion in state {} [%]' labels['age']='Age [y]' labels['ratio']='Proportion [%]' labels['unemp duration']='Length of unemployment [y]' labels['scaled freq']='Scaled frequency' labels['probability']='probability' labels['telp']='Employee pension premium' labels['sairausvakuutus']='Health insurance' labels['työttömyysvakuutusmaksu']='Unemployment insurance' labels['puolison verot']='Partners taxes' labels['taxes']='Taxes' labels['asumistuki']='Housing benefit' labels['toimeentulotuki']='Supplementary benefit' labels['tyottomyysturva']='Unemployment benefit' labels['paivahoito']='Daycare' labels['elake']='Pension' labels['tyollisyysaste']='Employment rate' labels['tyottomien osuus']='Proportion of unemployed' labels['havainto']='Observation' labels['tyottomyysaste']='Unemployment rate [%]' labels['tyottomien osuus']='Proportion of unemployed [%]' labels['tyollisyysaste %']='Employment rate [%]' labels['ero osuuksissa']='Difference in proportions [%]' labels['osuus']='proportion' labels['havainto, naiset']='data, women' labels['havainto, miehet']='data, men' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='Life cycle model' else: labels['osuus tilassa x']='Osuus tilassa {} [%]' labels['age']='Ikä [v]' labels['ratio']='Osuus tilassa [%]' labels['unemp duration']='työttömyysjakson pituus [v]' labels['scaled freq']='skaalattu taajuus' labels['probability']='todennäköisyys' labels['telp']='TEL-P' labels['sairausvakuutus']='Sairausvakuutus' labels['työttömyysvakuutusmaksu']='Työttömyysvakuutusmaksu' labels['puolison verot']='puolison verot' labels['taxes']='Verot' labels['asumistuki']='Asumistuki' labels['toimeentulotuki']='Toimeentulotuki' labels['tyottomyysturva']='Työttömyysturva' labels['paivahoito']='Päivähoito' labels['elake']='Eläke' labels['tyollisyysaste']='työllisyysaste' labels['tyottomien osuus']='työttömien osuus' labels['havainto']='havainto' labels['tyottomyysaste']='Työttömyysaste [%]' labels['tyottomien osuus']='Työttömien osuus väestöstö [%]' labels['tyollisyysaste %']='Työllisyysaste [%]' labels['ero osuuksissa']='Ero osuuksissa [%]' labels['osuus']='Osuus' labels['havainto, naiset']='havainto, naiset' labels['havainto, miehet']='havainto, miehet' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='elinkaarimalli' return labels class EpisodeStats(): def __init__(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year=2018,version=3,params=None,gamma=0.92,lang='English'): self.version=version self.gamma=gamma self.params=params self.lab=Labels() self.reset(timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,params=params,lang=lang) print('version',version) def reset(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,version=None,params=None,lang=None,dynprog=False): self.min_age=min_age self.max_age=max_age self.min_retirementage=min_retirementage self.minimal=minimal if params is not None: self.params=params if lang is None: self.language='English' else: self.language=lang if version is not None: self.version=version self.setup_labels() self.n_employment=n_emps self.n_time=n_time self.timestep=timestep # 0.25 = 3kk askel self.inv_timestep=int(np.round(1/self.timestep)) # pitää olla kokonaisluku self.n_pop=n_pop self.year=year self.env=env self.reaalinen_palkkojenkasvu=0.016 self.palkkakerroin=(0.8*1+0.2*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.elakeindeksi=(0.2*1+0.8*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.dynprog=dynprog if self.minimal: self.version=0 if self.version in set([0,101]): self.n_groups=1 else: self.n_groups=6 self.empstats=Empstats(year=self.year,max_age=self.max_age,n_groups=self.n_groups,timestep=self.timestep,n_time=self.n_time, min_age=self.min_age) self.init_variables() def init_variables(self): n_emps=self.n_employment self.empstate=np.zeros((self.n_time,n_emps)) self.gempstate=np.zeros((self.n_time,n_emps,self.n_groups)) self.deceiced=np.zeros((self.n_time,1)) self.alive=np.zeros((self.n_time,1)) self.galive=np.zeros((self.n_time,self.n_groups)) self.rewstate=np.zeros((self.n_time,n_emps)) self.poprewstate=np.zeros((self.n_time,self.n_pop)) self.salaries_emp=np.zeros((self.n_time,n_emps)) #self.salaries=np.zeros((self.n_time,self.n_pop)) self.actions=np.zeros((self.n_time,self.n_pop)) self.popempstate=np.zeros((self.n_time,self.n_pop)) self.popunemprightleft=np.zeros((self.n_time,self.n_pop)) self.popunemprightused=np.zeros((self.n_time,self.n_pop)) self.tyoll_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.unemp_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.siirtyneet=np.zeros((self.n_time,n_emps)) self.siirtyneet_det=np.zeros((self.n_time,n_emps,n_emps)) self.pysyneet=np.zeros((self.n_time,n_emps)) self.aveV=np.zeros((self.n_time,self.n_pop)) self.time_in_state=np.zeros((self.n_time,n_emps)) self.stat_tyoura=np.zeros((self.n_time,n_emps)) self.stat_toe=np.zeros((self.n_time,n_emps)) self.stat_pension=np.zeros((self.n_time,n_emps)) self.stat_paidpension=np.zeros((self.n_time,n_emps)) self.out_of_work=np.zeros((self.n_time,n_emps)) self.stat_unemp_len=np.zeros((self.n_time,self.n_pop)) self.stat_wage_reduction=np.zeros((self.n_time,n_emps)) self.stat_wage_reduction_g=np.zeros((self.n_time,n_emps,self.n_groups)) self.infostats_group=np.zeros((self.n_pop,1)) self.infostats_taxes=np.zeros((self.n_time,1)) self.infostats_wagetaxes=np.zeros((self.n_time,1)) self.infostats_taxes_distrib=np.zeros((self.n_time,n_emps)) self.infostats_etuustulo=np.zeros((self.n_time,1)) self.infostats_etuustulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_perustulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo_eielakkeella=np.zeros((self.n_time,1)) self.infostats_palkkatulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_palkkatulo_eielakkeella_group=np.zeros((self.n_time,1)) self.infostats_ansiopvraha=np.zeros((self.n_time,1)) self.infostats_ansiopvraha_group=np.zeros((self.n_time,self.n_groups)) self.infostats_asumistuki=
np.zeros((self.n_time,1))
numpy.zeros
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier import unittest as ut import nnetsauce as ns from sklearn.model_selection import train_test_split from sklearn.datasets import load_breast_cancer, load_wine class TestAdaBoost(ut.TestCase): def test_AdaBoost(self): breast_cancer = load_breast_cancer() X = breast_cancer.data y = breast_cancer.target np.random.seed(123) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=123 ) wine = load_wine() Z = wine.data t = wine.target Z_train, Z_test, t_train, t_test = train_test_split( Z, t, test_size=0.2, random_state=123 ) clf = DecisionTreeClassifier(max_depth=1, random_state=123) fit_obj = ns.AdaBoostClassifier( clf, n_hidden_features=np.int(11.22338867), direct_link=True, n_estimators=5, learning_rate=0.01126343, col_sample=0.72684326, row_sample=0.86429443, dropout=0.63078613, n_clusters=0, verbose=0, seed=123, reg_lambda=0, reg_alpha=0, method="SAMME.R", ) clf2 = DecisionTreeClassifier(max_depth=1, random_state=123) fit_obj2 = ns.AdaBoostClassifier( clf2, n_hidden_features=np.int(8.21154785e01), direct_link=True, n_estimators=5, learning_rate=2.96252441e-02, col_sample=4.22766113e-01, row_sample=7.87268066e-01, dropout=1.56909180e-01, n_clusters=0, verbose=0, seed=123, reg_lambda=0, reg_alpha=0, method="SAMME", ) clf3 = DecisionTreeClassifier(max_depth=1, random_state=123) fit_obj3 = ns.AdaBoostClassifier( clf3, n_hidden_features=np.int(11.22338867), direct_link=True, n_estimators=5, learning_rate=0.01126343, col_sample=0.72684326, row_sample=0.86429443, dropout=0.63078613, n_clusters=0, verbose=0, seed=123, reg_lambda=0.1, reg_alpha=0.5, method="SAMME.R", ) clf4 = DecisionTreeClassifier(max_depth=1, random_state=123) fit_obj4 = ns.AdaBoostClassifier( clf4, n_hidden_features=np.int(11.22338867), direct_link=True, n_estimators=5, learning_rate=0.01126343, col_sample=0.72684326, row_sample=0.86429443, dropout=0.63078613, n_clusters=2, cluster_encode=False, verbose=0, seed=123, reg_lambda=0.1, reg_alpha=0.5, method="SAMME.R", ) fit_obj.fit(X_train, y_train) preds1 = fit_obj.predict_proba(X_test) fit_obj2.fit(Z_train, t_train) preds2 = fit_obj2.predict_proba(Z_test) fit_obj3.fit(Z_train, t_train) preds3 = fit_obj3.predict_proba(Z_test) fit_obj4.fit(Z_train, t_train) preds4 = fit_obj4.predict_proba(Z_test) self.assertTrue(np.allclose(preds1[0, 0], 0.0010398157809255607)) self.assertTrue(np.allclose(preds1[0, 1], 0.9989601842190745)) self.assertTrue(np.allclose(preds2[0, 0], 0.28646471034732585)) self.assertFalse(np.allclose(preds3[0, 0], 1000)) self.assertFalse(np.allclose(preds4[0, 0], 1000)) self.assertTrue( np.allclose(fit_obj.predict(X_test)[0], 1) & np.allclose(fit_obj2.predict(X_test)[0], 1) ) def test_score(self): breast_cancer = load_breast_cancer() X = breast_cancer.data y = breast_cancer.target X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=123 ) clf = LogisticRegression(solver="liblinear", multi_class="ovr") fit_obj = ns.AdaBoostClassifier( clf, n_hidden_features=np.int(11.22338867), direct_link=True, n_estimators=5, learning_rate=0.01126343, col_sample=0.72684326, row_sample=0.86429443, dropout=0.63078613, n_clusters=0, verbose=0, seed=123, reg_lambda=0, reg_alpha=0, method="SAMME.R", ) clf2 = LogisticRegression(solver="liblinear", multi_class="ovr") fit_obj2 = ns.AdaBoostClassifier( clf2, n_hidden_features=np.int(8.21154785e01), direct_link=True, n_estimators=5, learning_rate=2.96252441e-02, col_sample=4.22766113e-01, row_sample=7.87268066e-01, dropout=1.56909180e-01, n_clusters=0, verbose=0, seed=123, reg_lambda=0, reg_alpha=0, method="SAMME", ) fit_obj3 = ns.AdaBoostClassifier( clf, n_hidden_features=np.int(11.22338867), direct_link=True, n_estimators=5, learning_rate=0.01126343, col_sample=0.72684326, row_sample=0.86429443, dropout=0.63078613, n_clusters=0, verbose=0, seed=123, reg_lambda=0.1, reg_alpha=0.5, method="SAMME.R", ) fit_obj.fit(X_train, y_train) score1 = fit_obj.score(X_test, y_test) fit_obj2.fit(X_train, y_train) score2 = fit_obj2.score(X_test, y_test) fit_obj3.fit(X_train, y_train) score3 = fit_obj3.score(X_test, y_test) self.assertTrue( np.allclose(score1, 0.9210526315789473) &
np.allclose(score2, 0.7807017543859649)
numpy.allclose
""" Generating data from the CarRacing gym environment. !!! DOES NOT WORK ON TITANIC, DO IT AT HOME, THEN SCP !!! """ import argparse from os.path import join, exists import gym import numpy as np import random import gym_minigrid from gym_minigrid.wrappers import * from gym_minigrid.window import Window import cv2 from models import MDRNNCell, VAE import torch def generate_data(rollouts, data_dir, noise_type): # pylint: disable=R0914 """ Generates data """ assert exists(data_dir), "The data directory does not exist..." mdir = 'D:\steps1000' vae_file, rnn_file, ctrl_file = \ [join(mdir, m, 'best.tar') for m in ['vae', 'mdrnn', 'ctrl']] assert exists(vae_file) and exists(rnn_file),\ "Either vae or mdrnn is untrained." vae_state, rnn_state= [ torch.load(fname, map_location={'cuda:0': str('cuda')}) for fname in (vae_file, rnn_file)] for m, s in (('VAE', vae_state), ('MDRNN', rnn_state)): print("Loading {} at epoch {} " "with test loss {}".format( m, s['epoch'], s['precision'])) vae = VAE(3, 32).to('cuda') vae.load_state_dict(vae_state['state_dict']) mdrnn = MDRNNCell(32, 1, 256, 5).to('cuda') mdrnn.load_state_dict({k.strip('_l0'): v for k, v in rnn_state['state_dict'].items()}) hidden = [torch.zeros(1, 256).to('cuda') for _ in range(2)] env = gym.make('MiniGrid-MultiRoom-N6-v0') env.reset() #env = RGBImgPartialObsWrapper(env) # Get pixel observations seq_len = 1000 for i in range(rollouts): #env.reset() #uncomment this if a new environment must be produced every episode #env.env.viewer.window.dispatch_events() s_rollout = [] r_rollout = [] d_rollout = [] a_rollout = [] h_rollout = [] t = 0 while True: action = random.randint(0, env.action_space.n - 1) t += 1 #env.render() s, r, done, _ = env.step(action) #tu = cv2.resize(s['image'],(64,64)) tu = s['image'] obs = torch.tensor(tu.flatten(),dtype = torch.float32).unsqueeze(0).to('cuda') reconx, latent_mu, logsigma = vae(obs) #print(hidden[0]) act = torch.Tensor([[action]]).to('cuda') _, _, _, _, _, hidden = mdrnn(act, latent_mu, tuple(hidden)) #env.env.viewer.window.dispatch_events() s_rollout += [tu] if t == 125: d = True else: d= False r_rollout += [r] d_rollout += [d] a_rollout += [[action]] h_rollout.append(np.array(hidden[0].cpu().detach().numpy())) if t ==125: print("> End of rollout {}, {} frames...".format(i, len(s_rollout))) np.savez(join(data_dir, 'rollout_{}'.format(i)), observations=np.array(s_rollout), rewards=
np.array(r_rollout)
numpy.array
# -------------------------------------------------------- # DaSiamRPN # Licensed under The MIT License # Written by <NAME> (wangqiang2015 at ia.ac.cn) # -------------------------------------------------------- import cv2 import torch import numpy as np def to_numpy(tensor): if torch.is_tensor(tensor): return tensor.cpu().numpy() elif type(tensor).__module__ != 'numpy': raise ValueError("Cannot convert {} to numpy array" .format(type(tensor))) return tensor def to_torch(ndarray): if type(ndarray).__module__ == 'numpy': return torch.from_numpy(ndarray) elif not torch.is_tensor(ndarray): raise ValueError("Cannot convert {} to torch tensor" .format(type(ndarray))) return ndarray def im_to_numpy(img): img = to_numpy(img) img = np.transpose(img, (1, 2, 0)) # H*W*C return img def im_to_torch(img): img = np.transpose(img, (2, 0, 1)) # C*H*W img = to_torch(img).float() return img def torch_to_img(img): img = to_numpy(torch.squeeze(img, 0)) img = np.transpose(img, (1, 2, 0)) # H*W*C return img def get_subwindow_tracking(im, pos, model_sz, original_sz, avg_chans, out_mode='torch'): if isinstance(pos, float): pos = [pos, pos] sz = original_sz im_sz = im.shape c = (original_sz+1) // 2 context_xmin = round(pos[0] - c) # floor(pos(2) - sz(2) / 2); context_xmax = context_xmin + sz - 1 context_ymin = round(pos[1] - c) # floor(pos(1) - sz(1) / 2); context_ymax = context_ymin + sz - 1 left_pad = int(max(0., -context_xmin)) top_pad = int(max(0., -context_ymin)) right_pad = int(max(0., context_xmax - im_sz[1] + 1)) bottom_pad = int(max(0., context_ymax - im_sz[0] + 1)) context_xmin = context_xmin + left_pad context_xmax = context_xmax + left_pad context_ymin = context_ymin + top_pad context_ymax = context_ymax + top_pad # zzp: a more easy speed version r, c, k = im.shape if any([top_pad, bottom_pad, left_pad, right_pad]): te_im =
np.zeros((r + top_pad + bottom_pad, c + left_pad + right_pad, k), np.uint8)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Fri Oct 19 19:38:28 2018 @author: User """ import numpy as np import cv2 import os import time os.getcwd() os.chdir(r'C:\Users\jmunozb\OneDrive - Universidad EAFIT\Reto AI disruptive') #Videos os.chdir(r'C:\Users\jmunozb\OneDrive - Universidad EAFIT\Reto AI disruptive\videos') #Imagenes os.chdir(r'C:\Users\jmunozb\OneDrive - Universidad EAFIT\Reto AI disruptive\2. DATASET PLACAS\1. Placas Originales') ##Control #control=0 #0 es video, 1 es imagenes archivos=os.listdir() os.listdir() #Trackbar to see Yellow for contour def nothing(x): pass cv2.namedWindow('image') cv2.resizeWindow('image',650,320) cv2.createTrackbar('Hmin','image',0,180,nothing) cv2.createTrackbar('Smin','image',0,255,nothing) cv2.createTrackbar('Vmin','image',0,255,nothing) cv2.createTrackbar('Hmax','image',0,180,nothing) cv2.createTrackbar('Smax','image',0,255,nothing) cv2.createTrackbar('Vmax','image',0,255,nothing) cv2.createTrackbar('Control','image',0,1,nothing) cv2.setTrackbarPos('Hmin','image',10) cv2.setTrackbarPos('Smin','image',87) cv2.setTrackbarPos('Vmin','image',93) cv2.setTrackbarPos('Hmax','image',39) cv2.setTrackbarPos('Smax','image',255) cv2.setTrackbarPos('Vmax','image',255) ret=False i=0 #contador de archivos v=0 showtime=3 #tiempo para mostrar imagenes t_inicial=time.time() control_previo=0 pausa=False saveImages=False recortadas=True contImages=0 while True: #print(cv2.getTrackbarPos('Control','image')) control=cv2.getTrackbarPos('Control','image') if control==control_previo: pass else: i=0 if control==0: #Videos os.chdir(r'C:\Users\jmunozb\OneDrive - Universidad EAFIT\Reto AI disruptive\videos') archivos=os.listdir() if v==0: cap = cv2.VideoCapture(archivos[i]) ret, frame = cap.read() v=1 else: if pausa==False: ret, frame = cap.read() else: if recortadas: os.chdir(r'C:\Users\jmunozb\OneDrive - Universidad EAFIT\Reto AI disruptive\ImagesDetection') #Imagenes else: os.chdir(r'C:\Users\jmunozb\OneDrive - Universidad EAFIT\Reto AI disruptive\2. DATASET PLACAS\1. Placas Originales') archivos=os.listdir() frame=cv2.imread(archivos[i]) ret=True v=0 control_previo=control if ret: frame=cv2.resize(frame,(640,360),interpolation=cv2.INTER_AREA) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) frame_or=frame.copy() low_green=np.array([cv2.getTrackbarPos('Hmin','image'),cv2.getTrackbarPos('Smin','image'),cv2.getTrackbarPos('Vmin','image')]) upper_green=np.array([cv2.getTrackbarPos('Hmax','image'),cv2.getTrackbarPos('Smax','image'),cv2.getTrackbarPos('Vmax','image')]) mask2=cv2.inRange(hsv,low_green,upper_green) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) lower_range = np.array([15,100,100]) upper_range = np.array([45,255,255]) mask = cv2.inRange(hsv, lower_range, upper_range) output = cv2.bitwise_and(frame, frame, mask = mask2) im2, contours, hierarchy = cv2.findContours(mask2.copy(),cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) contours=sorted(contours,key=cv2.contourArea, reverse=True)[:20] # print('contours',len(contours)) for cnt in contours: peri = cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, 0.022 * peri, True) lx,ly,_=frame.shape area_frame=lx*ly area=cv2.contourArea(cnt) #print(len(approx),peri,area/peri,area/area_frame) # if our approximated contour has four points, then # we can assume that we have found our screen if 2 <len(approx)< 9 and peri > 35 and area/area_frame<0.03 and 18>area/peri>2.5 : rect = cv2.minAreaRect(cnt) box = cv2.boxPoints(rect) box = np.int0(box) lim_sup=3.5 lim_inf=1.25 width,height=np.int0(rect[1]) if width<height: aux=width width=height height=aux dst = np.array([ [0, height - 1], [0, 0], [width - 1, 0], [width - 1, height - 1], ], dtype = "float32") if rect[2]<-30: dst = np.array([ [width - 1, height - 1], [0, height - 1], [0, 0], [width - 1, 0], ], dtype = "float32") if 135>rect[2]>45 or -135<rect[2]<-45: if rect[1][1] >lim_inf* rect[1][0] and rect[1][1] <lim_sup* rect[1][0]: cv2.drawContours(frame_or,[box],0,(0,255,0),2) M = cv2.getPerspectiveTransform(np.array(box,dtype="float32"), dst) # warp = cv2.warpPerspective(frame, M, (width, height)) warp = cv2.warpPerspective(mask2, M, (width, height)) if len(approx)==4: M2 = cv2.getPerspectiveTransform(np.array(approx,dtype="float32"), dst) warp2 = cv2.warpPerspective(frame.copy(), M2, (width, height)) print('approx=4',approx,'box',box) else: print('approx',approx) #print(len(approx),peri,area,area/peri) else: cv2.drawContours(frame_or,[box],0,(255,0,0),2) else: if rect[1][0] >lim_inf* rect[1][1] and rect[1][0] <lim_sup* rect[1][1]: cv2.drawContours(frame_or,[box],0,(0,255,0),2) M = cv2.getPerspectiveTransform(
np.array(box,dtype="float32")
numpy.array
from . import transform_ipa as tipa from .phone import Phone, attributes import numpy as np positions = ['itself', 'prev', 'prevNonDot', 'prevCons', 'prevVowel', 'prevOrSelfNonDot', 'prevOrSelfCons', 'prevOrSelfVowel'] def get_features(source_w, target_w): """ Creates a matrix containing the features for all sounds in the given words. Keyword arguments: source_w: The word in the source language. A list(Phone) as returned by utils.get_cognates. target_w: The word in the target language. A list(Phone) as returned by utils.get_cognates. Returns: A numpy matrix with 2 * n_phonetic_features * n_context_positions columns and len(source_w)-1 rows. The order of the columns matches that of the header created by features.generate_features. """ n_features = len(attributes()) * len(positions) source_matrix = process_word(source_w, n_features) target_matrix = process_word(target_w, n_features) return
np.concatenate((source_matrix, target_matrix), axis=1)
numpy.concatenate
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """ import numpy as np import pickle import gym from keras.layers import Input,Dense,Flatten,Convolution2D,Activation from keras.models import Model,Sequential from keras.optimizers import RMSprop,Adam import uuid from multiprocessing import Pool from functools import partial def buildmodel(opt): print("Now we build the model") model = Sequential() model.add(Convolution2D(32, 8, 8, subsample=(4,4), border_mode='same',input_shape=(80,80,1))) model.add(Activation('relu')) model.add(Convolution2D(64, 4, 4, subsample=(2,2), border_mode='same')) model.add(Activation('relu')) model.add(Convolution2D(64, 3, 3, subsample=(1,1), border_mode='same')) model.add(Activation('relu')) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dense(1)) model.compile(loss='binary_crossentropy',optimizer=opt) print("We finish building the model") return model def create_perc_model(input_dim,hidden_dim): inp=Input(shape=(80,80,1), dtype='float32', name='main_input') dd=Flatten()(inp) dd=Dense(hidden_dim,activation='relu')(dd) out=Dense(1,activation='sigmoid')(dd) return inp,out def create_conv_model(input_dim): inp=Input(shape=(80,80,1), dtype='float32', name='main_input') dd=Convolution2D(32,4,4,border_mode='same',activation='relu')(inp) dd=Convolution2D(32,4,4,border_mode='same',activation='relu')(dd) dd=Flatten()(dd) out=Dense(1,activation='sigmoid')(dd) return inp,out def prepro(I): """ prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector """ I = I[35:195] # crop I = I[::2,::2,0] # downsample by factor of 2 I[I == 144] = 0 # erase background (background type 1) I[I == 109] = 0 # erase background (background type 2) I[I != 0] = 1 # everything else (paddles, ball) just set to 1 return I.astype(np.float32) def discount_rewards(r): """ take 1D float array of rewards and compute discounted reward """ gamma = 0.99 # discount factor for reward discounted_r = np.zeros_like(r) running_add = 0 for t in reversed(range(0, r.size)): if r[t] != 0: running_add = 0 # reset the sum, since this was a game boundary (pong specific!) running_add = running_add * gamma + r[t] discounted_r[t] = running_add return discounted_r def get_dense_model(): """Make keras model""" learning_rate=1e-4 inp = Input(shape=(80*80,)) h = Dense(200, activation='relu')(inp) out = Dense(1, activation='sigmoid')(h) model = Model(inp, out) optim = RMSprop(learning_rate) model.compile(optim, 'binary_crossentropy') try: model.load_weights('mod_weights_binary.h5') print('weights loaded') except: pass return model def run_episodes(thr): """ Main issue - make environments that are stateful and can run for some iterations (say 4). Make fast gradient updates based on a few iterations on many agents. It's important to get the environments to keep the state. """ n_episodes=3 D=80*80 model=get_dense_model() #env = gym.make("Pong-v0") env=gym.make("Pong-v0") observation = env.reset() prev_x = None # used in computing the difference frame xs,ys,drs = [],[],[] running_reward = None reward_sum = 0 episode_number = 0 loc_len=0 while True: #if render: env.render() # preprocess the observation, set input to network to be difference image cur_x = prepro(observation) x = cur_x - prev_x if prev_x is not None else np.zeros(D) prev_x = cur_x # forward the policy network and sample an action from the returned probability aprob = model.predict(x.reshape((1, -1))) action = 2 if np.random.uniform() < aprob else 3 # roll the dice! # record various intermediates (needed later for backprop) xs.append(x.reshape((1, -1))) # observation # y = 1 if action == 2 else 0 # a "fake label" giving the action chosen ys.append(1 if action == 2 else 0) # a "fake label" giving the action chosen # step the environment and get new measurements observation, reward, done, info = env.step(action) reward_sum += reward drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action) loc_len+=1 if done: # an episode finished (one player has reached a score of 21) episode_number += 1 print(episode_number,reward_sum,loc_len) reward_sum=0 loc_len=0 if episode_number>(n_episodes-1): return xs,ys,drs observation = env.reset() def run_training(mod): xs,ys,drs,inds = [],[],[],[] bn=0 pp=Pool(3) while True: thr=[ iii for iii in range(3)] outs=pp.map(run_episodes,thr) for o in outs: xs.extend(o[0]) ys.extend(o[1]) drs.extend(o[2]) # for iii in range(4): # xs_n,ys_n,drs_n=run_episodes(mod) # xs.extend(xs_n) # ys.extend(ys_n) # drs.extend(drs_n) print('Updating weights...') # stack together all inputs, actions, and rewards for this episode epx = np.vstack(xs) print(epx.shape) epy = np.vstack(ys) epr =
np.vstack(drs)
numpy.vstack
import os import numpy as np import pandas as pd """ This function is used to import the data. Put the data in a folder named all_data in the directory of the code """ def import_data(dt_name): """ :param dt_name: Name of the Dataset :return: Three pandas frames which correspond to training, testing and validation data """ # First we get the directory of our project and then take all the three files and import them to the respective # names. d = os.getcwd() test_data = pd.read_csv(os.path.join(os.path.join(d, "all_data"), "test_{0}.csv".format(dt_name)), header=None) train_data = pd.read_csv(os.path.join(os.path.join(d, "all_data"), "train_{0}.csv".format(dt_name)), header=None) validation_data = pd.read_csv(os.path.join(os.path.join(d, "all_data"), "valid_{0}.csv".format(dt_name)), header=None) # Now we will return the data frames return [test_data, train_data, validation_data] """ This function is defined to get the labels/classes and attribute values in different variables """ def get_attributes_and_labels(data): """ :param data: The dataset to be divided :return: Two panda frames which are in order of classes and attributes """ # Here we divide our attributes and classes features for a given dataset return [data.iloc[:, -1], data.iloc[:, :-1]] """ This function is used to find the entropy which is our impurity heuristic for this algorithm """ def get_entropy(data): """ :param data: THese are the values for which we want to find the entropy of. We pass a whole vector of values which correspond to the attribute of importance and find entropy for that vector. :return: Entropy for the given vector """ entropy_value = 0 temp, unique_count = np.unique(data, return_counts=True) # We will use the formula mentioned in the slides to calculate the value of entropy for both the options (i.e, # 1 and 0) sum_of_counts = np.sum(unique_count) for count in unique_count: entropy_value = entropy_value - ((count / sum_of_counts) * np.log2(count / sum_of_counts)) return entropy_value """ This function is used to find the information gain for the given sub-tree/tree. The information gain is used to find the attribute we will use to do further branching """ def Information_Gain_Heuristic(examples, attributes, target_attribute): """ :param examples: The data for whihc we want to find the information gain :param attributes: the values of the attributes available (the column number) :param target_attribute: the target attribute we are trying to find :return: Information Gain of the given sub-tree. """ # Here we find the entropy for the root node previous_entropy = get_entropy(target_attribute) Information_Gain = [] for each_attribute in attributes: unique_value_of_attribute, counts_of_attribute =
np.unique(examples[each_attribute], return_counts=True)
numpy.unique
# ------------------------------------------------------------------- import cv2 import numpy as np import time from enum import Enum # ============================================================================= # Ref. design # https://github.com/Xilinx/Vitis-AI/blob/v1.1/mpsoc/vitis_ai_dnndk_samples/tf_yolov3_voc_py/tf_yolov3_voc.py # From Vitis-AI Zoo # 1. data channel order: BGR(0~255) # 2. resize: 416 * 416(H * W) # 3. mean_value: 0.0, 0.0, 0.0 # 4. scale: 1 / 255.0 # 5. reisze mode: biliner # Data from yolov4_leaky_spp_m.prototxt # and Xilinx yolov4-test.py yolo_anchors = np.array([(12, 16), (19, 36), (40, 28), (36, 75), (76, 55), (72, 146), (142, 110), (192, 243),(459, 401)], np.float32) / 416 yolo_anchor_masks = np.array([[6, 7, 8], [3, 4, 5], [0, 1, 2]]) # ------------------------------------------------------------------- # YOLOv4 data collected from notebook (dpu_test.ipynb) # # inputTensor[0]: name=data_fixed, dims=[1, 416, 416, 3], dtype=xint8 # # outputTensor[0]: name=layer138-conv_fixed, dims=[1, 52, 52, 255], dtype=xint8 # outputTensor[1]: name=layer149-conv_fixed, dims=[1, 26, 26, 255], dtype=xint8 # outputTensor[2]: name=layer160-conv_fixed, dims=[1, 13, 13, 255], dtype=xint8 # ------------------------------------------------------------------- # Load .xmodel downloaded from Vitis-AI repository #yolov4_model_path = "models/yolov4_leaky_spp_m/yolov4_leaky_spp_m.xmodel" yolov4_model_path = "models/yolov4_leaky_spp_m_pruned_0_36/yolov4_leaky_spp_m_pruned_0_36.xmodel" # ============================================================================= # ------------------------------------------------------------------- def resize_with_padding(image, size): # resize image with unchanged aspect ratio using padding ih, iw, _ = image.shape w, h = size scale = min(w/iw, h/ih) nw = int(iw*scale) nh = int(ih*scale) image = cv2.resize(image, (nw,nh), interpolation=cv2.INTER_LINEAR) new_image = np.ones((h,w,3), np.uint8) * 128 h_start = (h-nh)//2 w_start = (w-nw)//2 new_image[h_start:h_start+nh, w_start:w_start+nw, :] = image return new_image # ------------------------------------------------------------------- def preprocess_img(image, size, fixpos): image = image[...,::-1] image = resize_with_padding(image, size) image_data = np.array(image, dtype='float32', order='C') fix_scale = 2**fixpos image_data *= fix_scale/255 image_data = np.expand_dims(image_data, 0) return image_data # ------------------------------------------------------------------- def sigmoid(x): return 1 / (1 + np.exp(-x)) # ------------------------------------------------------------------- def draw_outputs(img, outputs, class_names): boxes, objectness, classes, nums = outputs ih, iw, _ = img.shape wh = np.array([iw, ih]) for i in range(nums): x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32)) x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32)) img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 2) img = cv2.putText( img, '{} {:.4f}'.format(class_names[int(classes[i])], objectness[i]), x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2) return img # ------------------------------------------------------------------- def draw_outputs_scale(img, scale, offset, outputs, class_names): boxes, objectness, classes, nums = outputs for i in range(nums): x1y1 = tuple( ((np.array(boxes[i][0:2]) - offset) * scale).astype(np.int32)) x2y2 = tuple( ((np.array(boxes[i][2:4]) - offset) * scale).astype(np.int32)) img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 2) img = cv2.putText( img, '{} {:.4f}'.format(class_names[int(classes[i])], objectness[i]), x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2) return img # ------------------------------------------------------------------- def yolo_box(conv_output, grid_size, num_classes, anchors, layer_id): box_xy = conv_output[:, :, :, :, 0:2] box_wh = conv_output[:, :, :, :, 2:4] objectness = conv_output[:, :, :, :, 4] objectness = np.expand_dims(objectness, axis=-1) class_probs = conv_output[:, :, :, :, 5:] box_xy = sigmoid(box_xy) objectness = sigmoid(objectness) class_probs = sigmoid(class_probs) grid = np.meshgrid(range(grid_size), range(grid_size)) grid = np.expand_dims(np.stack(grid, axis=-1), axis=2) box_xy = (box_xy + grid) / grid_size box_wh = np.exp(box_wh) * anchors box_x1y1 = box_xy - box_wh / 2 box_x2y2 = box_xy + box_wh / 2 box_x1y1 = box_x1y1 box_x2y2 = box_x2y2 bbox = np.concatenate((box_x1y1, box_x2y2), axis=-1) return bbox, objectness, class_probs # ------------------------------------------------------------------- def yolo_non_max_suppression(outputs, score_thres, iou_thres): # bbox, objectness, class_index b, c, t = [], [], [] for o in outputs: b.append(np.reshape(o[0], (-1, o[0].shape[-1]))) c.append(np.reshape(o[1], (-1, o[1].shape[-1]))) t.append(np.reshape(o[2], (-1, o[2].shape[-1]))) bbox = np.concatenate(b) objectness = np.concatenate(c) class_probs = np.concatenate(t) scores = objectness * class_probs # find the highes class score for each box max_scores =
np.amax(scores, axis=-1)
numpy.amax
import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D def rgb_to_hex(rgb): return '%02x%02x%02x' % rgb def ball(center, r): n = 200 #Pripravimo 100 točk: theta = np.linspace(0,2*np.pi, n) phi = np.linspace(0,np.pi, n) #koordinate krogle x = center[0] * np.ones((n,n)) + r * np.outer(np.cos(theta),np.sin(phi)) y = center[1] * np.ones((n,n)) + r * np.outer(np.sin(theta),np.sin(phi)) z = center[2] * np.ones((n,n)) + r * np.outer(np.ones(n),np.cos(phi)) #krogle ni treba rotirati return x, y, z def normalize(vector): return vector / np.linalg.norm(vector) def rot(axis, sin_theta, cos_theta): """ Rodriguezova formula predelana na vhodna podatka cos in sin kota. """ axis = np.asarray(axis) axis = axis / (np.dot(axis, axis))**0.5 a = ((cos_theta+1.) / 2.)**0.5 #np.cos(theta / 2.0) b, c, d = -axis * sin_theta / (2 * a) #-axis*np.sin(theta / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) def cylinder(center, axis, r, hmax): """ paramterizacija valja s središčem (vektor center), usmerjenostjo (vektor axis), radijem (r), maksimalno višino (hmax). """ #cos_fi=np.dot(normalize(axis), normalize(0,0,1)) if normalize(axis)[2]==1: R =
np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
numpy.array
# Copyright (c) 2021 zfit import mplhep import numpy as np import numpy.testing import pytest import zfit import zfit.z.numpy as znp from matplotlib import pyplot as plt from zfit._data.binneddatav1 import BinnedData from zfit._loss.binnedloss import ExtendedBinnedNLL from zfit.models.binned_functor import BinnedSumPDF from zfit.models.morphing import SplineMorphingPDF from zfit.models.template import BinnedTemplatePDFV1 def test_binned_template_pdf(): bins1 = 5 bins2 = 7 counts = np.random.uniform(high=1, size=(bins1, bins2)) # generate counts counts2 = np.random.normal(loc=5, size=(bins1, bins2)) counts3 = np.linspace(0, 10, num=bins1)[:, None] * np.linspace(0, 5, num=bins2)[None, :] binnings = [zfit.binned.RegularBinning(bins1, 0, 10, name='obs1'), zfit.binned.RegularBinning(7, -10, bins2, name='obs2')] binning = binnings axes = zfit.binned.Binnings(binning) obs = zfit.Space(obs=['obs1', 'obs2'], binning=binning) data = BinnedData.from_tensor(space=obs, values=counts, variances=znp.ones_like(counts) * 1.3) data2 = BinnedData.from_tensor(obs, counts2) data3 = BinnedData.from_tensor(obs, counts3) pdf = BinnedTemplatePDFV1(data=data, extended=np.sum(counts)) pdf2 = BinnedTemplatePDFV1(data=data2, extended=np.sum(counts2)) pdf3 = BinnedTemplatePDFV1(data=data3, extended=np.sum(counts3)) assert len(pdf.ext_pdf(data)) > 0 pdf_sum = BinnedSumPDF(pdfs=[pdf, pdf2, pdf3], obs=obs) probs = pdf_sum.counts(data) true_sum_counts = counts + counts2 + counts3 np.testing.assert_allclose(true_sum_counts, probs) nsamples = 100_000_000 sample = pdf_sum.sample(n=nsamples) np.testing.assert_allclose(true_sum_counts, sample.values() / nsamples * pdf_sum.get_yield(), rtol=0.03) # integrate true_integral = znp.sum(true_sum_counts) integral = pdf_sum.ext_integrate(limits=obs) assert pytest.approx(float(true_integral)) == float(integral) # import matplotlib.pyplot as plt # plt.imshow(probs) # plt.imshow(counts2) # plt.show() # assert len(pdf.pdf(None, obs)) > 0 @pytest.mark.plots @pytest.mark.parametrize('alphas', [None, [-0.7, -0.1, 0.5, 1.4]]) def test_morphing_templates(alphas): bins1 = 15 irregular_str = 'irregular templates' if alphas is not None else '' counts1 = np.random.uniform(70, high=100, size=bins1) # generate counts counts = [counts1 - np.random.uniform(high=20, size=bins1), counts1, counts1 + np.random.uniform(high=20, size=bins1)] if alphas is not None: counts.append(counts1 + np.random.uniform(high=5, size=bins1)) binning = zfit.binned.RegularBinning(bins1, 0, 10, name='obs1') obs = zfit.Space(obs='obs1', binning=binning) histos = [BinnedData.from_tensor(obs, count) for count in counts] pdfs = [zfit.pdf.HistogramPDF(h) for h in histos] if alphas is not None: pdfs = {a: p for a, p in zip(alphas, pdfs)} alpha = zfit.Parameter('alpha', 0, -5, 5) morph = SplineMorphingPDF(alpha=alpha, hists=pdfs) if alphas is None: alphas = [-1, 0, 1] for i, a in enumerate(alphas): alpha.set_value(a) np.testing.assert_allclose(morph.counts(), counts[i]) if len(alphas) > i + 1: alpha.set_value((a + alphas[i + 1]) / 2) max_dist = (counts[i] - counts[i + 1]) ** 2 + 5 # tolerance max_dist *= 1.1 # not strict, it can be a bit higher numpy.testing.assert_array_less((morph.counts() - counts[i]) ** 2, max_dist) numpy.testing.assert_array_less((morph.counts() - counts[i + 1]) ** 2, max_dist) import matplotlib.cm as cm amin, amax = -2, 2 n = 5 template_alphas = np.array(list(alphas)) for do_3d in [True, False]: plt.figure() if do_3d: ax = plt.gcf().add_subplot(111, projection='3d') else: ax = plt.gca() plotstyle = '3d plot' if do_3d else 'hist plot' plt.title(f"Morphing with splines {irregular_str} {plotstyle}") for a in list(znp.linspace(amin, amax, n * 2)) + list(template_alphas): normed_a = (a - amin) / (amax - amin) / 1.3 # 3 is a scaling factor color = cm.get_cmap('winter')(normed_a) alpha.set_value(a) histo = morph.ext_pdf(None) histo = BinnedData.from_tensor(obs, histo) histo = histo.to_hist() values = histo.values() x = histo.axes.edges[0][:-1] y = np.broadcast_to(a, values.shape) z = values label = None if do_3d: ax.step(x, y, z, color=color, where='pre', label=label) else: if np.min((a - template_alphas) ** 2) < 0.0001: label = f'alpha={a}' mplhep.histplot(histo, label=label, color=color) ax.set_xlabel('observable') ax.set_ylabel('alpha') if do_3d: ax.set_zlabel('ext_pdf') plt.legend() pytest.zfit_savefig() @pytest.mark.parametrize('alphas', [None, [-0.7, -0.1, 0.5, 1.4]]) def test_morphing_templates2D(alphas): bins1 = 10 bins2 = 7 shape = (bins1, bins2) counts1 = np.random.uniform(70, high=100, size=shape) # generate counts # counts1 = np.random.uniform(70, high=100, size=bins1) # generate counts counts = [counts1 - np.random.uniform(high=20, size=shape), counts1, counts1 + np.random.uniform(high=20, size=shape)] if alphas is not None: counts.append(counts1 + np.random.uniform(high=5, size=shape)) binning1 = zfit.binned.VariableBinning(sorted(np.random.uniform(0, 10, size=bins1 + 1)), name='obs1') binning2 = zfit.binned.RegularBinning(bins2, 0, 10, name='obs2') obs1 = zfit.Space(obs='obs1', binning=binning1) obs2 = zfit.Space(obs='obs2', binning=binning2) obs = obs1 * obs2 datasets = [BinnedData.from_tensor(obs, count) for count in counts] pdfs = [BinnedTemplatePDFV1(data=data, extended=np.sum(data.values())) for data in datasets] if alphas is not None: pdfs = {a: p for a, p in zip(alphas, pdfs)} alpha = zfit.Parameter('alpha', 0, -5, 5) morph = SplineMorphingPDF(alpha=alpha, hists=pdfs) if alphas is None: alphas = [-1, 0, 1] for i, a in enumerate(alphas): alpha.set_value(a) np.testing.assert_allclose(morph.counts(), counts[i]) assert pytest.approx(np.sum(counts[i])) == zfit.run(morph.get_yield()) if len(alphas) > i + 1: alpha.set_value((a + alphas[i + 1]) / 2) max_dist = (counts[i] - counts[i + 1]) ** 2 + 5 # tolerance max_dist *= 1.1 # not strict, it can be a bit higher numpy.testing.assert_array_less((morph.counts() - counts[i]) ** 2, max_dist) numpy.testing.assert_array_less((morph.counts() - counts[i + 1]) ** 2, max_dist) def _binned_template_composed_factory(data, sysshape): pdf = zfit.pdf.HistogramPDF(data=data, extended=True) pdf = zfit.pdf.BinwiseScaleModifier(pdf=pdf, modifiers=sysshape) return pdf @pytest.mark.parametrize('TemplateLikePDF', [BinnedTemplatePDFV1, _binned_template_composed_factory]) def test_binned_template_pdf_bbfull(TemplateLikePDF): bins1 = 15 bins2 = 10 counts1 = np.random.uniform(high=150, size=(bins1, bins2)) # generate counts counts2 = np.random.normal(loc=50, size=(bins1, bins2)) counts3 =
np.linspace(10, 100, num=bins1)
numpy.linspace
# These are the data exploration functions I often use import matplotlib.pyplot as plt # plot individual kernel density curve n_rows = 1 n_cols = 1 i = 1 fig=plt.figure(figsize=(10,7)) ax=fig.add_subplot(n_rows,n_cols,i) bins = np.linspace(0, 1, 100) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) sns.kdeplot(volatility_df['prediction_prob_std'].values) plt.legend(loc='best', fontsize=25) plt.title('Prepdiction Probability Std Distribution (all)', fontsize=25) plt.xlabel('pred_prob_std', fontsize=25) plt.ylabel('density', fontsize=25) fig.tight_layout() plt.show() # plot numerical features distribution (histogram) def show_num_feature_distribution(feature_df, n_rows, n_cols): plt.rcParams.update({'font.size': 20}) features = feature_df.columns i = 0 fig=plt.figure(figsize=(40, 15)) for feature in features: if feature == 'id' or feature == 'label': continue i += 1 ax=fig.add_subplot(n_rows,n_cols,i) bins = np.linspace(np.nanmin(feature_df[feature]), np.nanmax(feature_df[feature]), 100) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) plt.hist(feature_df[feature], bins, alpha=0.75, label='median = ' + str(round(np.nanmedian(feature_df[feature]), 3)), color = 'g', edgecolor = 'k', range=(bins.min(),bins.max()), weights=np.zeros_like(feature_df[feature]) + 1. / feature_df[feature].shape[0]) # weights here covert count into percentage for y-axis plt.legend(loc='best') plt.title('Feature: ' + feature) plt.xlabel('Feature Values') plt.ylabel('Percentage') fig.tight_layout() plt.show() # plot numerical features distribution (KDE) n_rows = 3 n_cols = 3 i = 0 fig=plt.figure(figsize=(20,10)) for feature in score_df.columns: if feature in ['rid', 'prediction_prob', 'prediction', 'score']: continue i += 1 ax=fig.add_subplot(n_rows,n_cols,i) bins =
np.linspace(0, 1, 100)
numpy.linspace
import os import sys from sklearn.cluster import KMeans import numpy as np from tensorflow.keras.models import load_model from transformation import transform_images from utils.config import TRANSFORMATION #from kmeans import k_means from fcmeans import FCM modelsDir="./trans_models" AEDir ="./AEs" predVecFP="./vectors.txt" # load AEs and their original labels numOfEPS = 4 listEPS = [10,15,20,25] IMG_TRANSFORMATIONS = TRANSFORMATION.supported_types() # remove the original model IMG_TRANSFORMATIONS.remove('clean') numOfModels = len(IMG_TRANSFORMATIONS) numOfAEs = 10000 # list of tranformation based model modelFPList=[] models=[] for imgTranID in range(numOfModels): modelName = IMG_TRANSFORMATIONS[imgTranID] modelNameFP = os.path.join(modelsDir, "mnist_cnn_"+modelName+".h5") modelFPList.append(modelNameFP) print("load model {} - {}".format(imgTranID, modelName)) models.append(load_model(modelNameFP)) predVec = np.zeros((numOfModels, numOfAEs)) with open(predVecFP) as fp: row = 0 for line in fp: line = line.rstrip() if len(line) == 0: continue parts = line.split(',') col = 0 for elem in parts: predVec[row, col] = int(elem) col+=1 row+=1 predVecList=predVec.tolist() # Clustering NC=list(range(1, 11))#numOfModels+1)) # list of numbers of clusters accuracies = np.zeros((numOfEPS, len(NC))) clusteringResult = {} with open("FCM_clustering_result.txt", "w") as fp: for numOfClusters in NC: # clustering into c groups print("Clustering: {} clusters".format(numOfClusters)) fcm = FCM(n_clusters=numOfClusters) fcm.fit(predVec) clusteringResult[numOfClusters] = fcm.u fp.write("\n## number of clusters: "+str(numOfClusters)+"\n") fp.write(str(fcm.u)+"\n") fp.write("\n") def vote2(pred, mem): ''' pred: numOfModels X numOfAEs X 2 mem : numOfModels X numOfClusters voteResult: numOfAEs X 2 ''' numOfModels = pred.shape[0] numOfAEs = pred[0].shape[0] voteResult =
np.zeros((numOfAEs, 2))
numpy.zeros
import pygame as pg import numpy as np from numba import njit def main(): pg.init() pg.display.set_caption("Dead and - A Python game by FinFET, thanks for playing!") font = pg.font.SysFont("Courier New", 70) sounds = load_sounds() m_vol, sfx_vol, music = 0.4, 0.5, 0 set_volume(m_vol, sfx_vol, sounds) sounds['music'+str(music)].play(-1) stepdelay = pg.time.get_ticks()/200 stepdelay2 = stepdelay click, clickdelay = 0, stepdelay screen = pg.display.set_mode((800,600)) running, pause, options, newgame = 1, 1, 0, 2 clock = pg.time.Clock() pg.mouse.set_visible(False) timer = 0 hres, halfvres, mod, frame = adjust_resolution() fullscreen = 0 level, player_health, swordsp, story = 0, 0, 0, 0 #sky1, floor, wall, door, window, enemies level_textures = [[0, 1, 0, 0, 1, 4], #level 0 [0, 2, 1, 1, 0, 3], #level 1 [1, 0, 2, 1, 1, 4], #level 2 [1, 3, 1, 0, 0, 1], #level 3 [2, 1, 2, 1, 1, 0], #level 4 [2, 0, 0, 0, 0, 2]] #level 5 menu = [pg.image.load('Assets/Textures/menu0.png').convert_alpha()] menu.append(pg.image.load('Assets/Textures/options.png').convert_alpha()) menu.append(pg.image.load('Assets/Textures/credits.png').convert_alpha()) menu.append(pg.image.load('Assets/Textures/menu1.png').convert_alpha()) hearts = pg.image.load('Assets/Textures/hearts.png').convert_alpha() colonel = pg.image.load('Assets/Sprites/colonel1.png').convert_alpha() hearts2 = pg.Surface.subsurface(hearts,(0,0,player_health*10,20)) exit1 = pg.image.load('Assets/Textures/exit.png').convert_alpha() exit2 = 1 exits = [pg.Surface.subsurface(exit1,(0,0,50,50)), pg.Surface.subsurface(exit1,(50,0,50,50))] splash = [] for i in range(4): splash.append(pg.image.load('Assets/Textures/splash'+str(i)+'.jpg').convert()) blood = pg.image.load('Assets/Textures/blood0.png').convert_alpha() blood_size = np.asarray(blood.get_size()) sky1 = hearts.copy() # initialize with something to adjust resol on start msg = "Press any key..." surf = splash[0].copy() splash_screen(msg, splash[0], clock, font, screen) msg = " " while running: pg.display.update() ticks = pg.time.get_ticks()/200 er = min(clock.tick()/500, 0.3) if not pause and (player_health <= 0 or (exit2 == 0 and int(posx) == exitx and int(posy) == exity)): msg = ' ' if player_health <= 0: sounds['died'].play() newgame = 2 surf = splash[3].copy() else: level += 1 player_health = min(player_health+2, 20) sounds['won'].play() newgame = 1 if level > 5: level, newgame = 0, 2 sounds['died'].play() surf = splash[2].copy() surf.blit(font.render('Total time: ' + str(round(timer,1)), 1, (255, 255, 255)), (20, 525)) else: msg = "Cleared level " + str(level-1)+'!' splash_screen(msg, surf, clock, font, screen) pause, clickdelay = 1, ticks pg.time.wait(500) if pg.mouse.get_pressed()[0]: if swordsp < 1 and not pause: swordsp, damage_mod = 1, 1 if pause and ticks - clickdelay > 1: click, clickdelay = 1, ticks sounds['healthup'].play() for event in pg.event.get(): if event.type == pg.QUIT: running = False if event.type == pg.KEYDOWN: if event.key == ord('p') or event.key == pg.K_ESCAPE: if not pause: pause = 1 else: if options > 0: options = 0 elif newgame == 0: pause = 0 pg.mouse.set_pos(400,300) if event.key == ord('f'): # toggle fullscreen pg.display.toggle_fullscreen() fullscreen = not(fullscreen) if pause: clock.tick(60) surf2, pause, options, running, newgame, adjust_res, m_vol, sfx_vol, story = pause_menu( surf.copy(), menu, pause, options, click, running, m_vol, sfx_vol, sounds, newgame, font, msg, level, ticks, hres, story) if adjust_res != 1: hres, halfvres, mod, frame = adjust_resolution(int(hres*adjust_res)) sky = pg.surfarray.array3d(pg.transform.smoothscale(sky1, (720, halfvres*4))) adjust_res = 1 screen.blit(surf2, (0,0)) click = 0 if newgame == 1: newgame, pause = 0, not(pause) if player_health <= 0 or msg[0] != 'C': surf = splash[1].copy() splash_screen(' ', surf, clock, font, screen) level, player_health, timer = 0, 20, -0.1 if np.random.randint(0, 2) != music: sounds['music'+str(music)].fadeout(1000) music = int(not(music)) sounds['music'+str(music)].play(-1) msg = 'Loading...' surf2 = surf.copy() surf2.blit(font.render(msg, 1, (255, 255, 255)), (30, 500)) surf2.blit(font.render(msg, 1, (30, 255, 155)), (32, 502)) screen.blit(surf2, (0,0)) pg.display.update() msg = 'Kill the monsters!' if story: posx, posy, rot, rotv, maph, mapc, exitx, exity, stepscount, size = load_map(level) nlevel = level_textures[level] else: size = np.random.randint(10+level*2, 16+level*2) nenemies = size #number of enemies posx, posy, rot, rotv, maph, mapc, exitx, exity, stepscount = gen_map(size) nlevel = [np.random.randint(0,3), #sky1 np.random.randint(0,4), #floorwall np.random.randint(0,3), #wall np.random.randint(0,2), #door np.random.randint(0,2), #window np.random.randint(0,5), #enemies ] nenemies = level**2 + 10 + level #number of enemies sprites, spsize, sword, swordsp = get_sprites(nlevel[5]) sky1, floor, wall, bwall, door, window = load_textures(nlevel) sky = pg.surfarray.array3d(pg.transform.smoothscale(sky1, (720, halfvres*4))) enemies = spawn_enemies(nenemies, maph, size, posx, posy, level/2) hearts2 = pg.Surface.subsurface(hearts,(0,0,player_health*10,20)) exit2, damage_mod, blood_scale = 1, 1, 1 mape, minimap = np.zeros((size, size)), np.zeros((size, size, 3)) sounds['healthup'].play() else: timer = timer + er/2 frame = new_frame(posx-0.2*np.cos(rot), posy-0.2*np.sin(rot), rot, frame, sky, floor, hres, halfvres, mod, maph, size, wall, mapc, exitx, exity, nenemies, rotv, door, window, bwall, exit2) surf = pg.surfarray.make_surface(frame) mape = np.zeros((size, size)) health = player_health enemies, player_health, mape = enemies_ai(posx, posy, enemies, maph, size, mape, swordsp, ticks, player_health, nenemies, level/3) enemies = sort_sprites(posx-0.2*np.cos(rot), posy-0.2*np.sin(rot), rot, enemies, maph, size, er/3) if exit2 == 0: surf = draw_colonel(surf, colonel, posx-0.2*np.cos(rot), posy-0.2*np.sin(rot), exitx+0.5, exity+0.5, hres, halfvres, rot, rotv, maph, size) surf, en = draw_sprites(surf, sprites, enemies, spsize, hres, halfvres, ticks, sword, swordsp, rotv) if int(swordsp) > 0 and damage_mod < 1: blood_scale = blood_scale*(1 + 2*er) scaled_blood = pg.transform.scale(blood, 4*blood_scale*blood_size*hres/800) surf.blit(scaled_blood, np.asarray([hres/2, halfvres]) - 2*blood_scale*blood_size*hres/800) surf = pg.transform.scale2x(surf) surf = pg.transform.smoothscale(surf, (800, 600)) surf.blit(hearts2, (20,20)) if exit2 == 0: minimap[int(posx)][int(posy)] = (50, 50, 255) surfmap = pg.surfarray.make_surface(minimap.astype('uint8')) surfmap = pg.transform.scale(surfmap, (size*5, size*5)) surf.blit(surfmap,(20, 50), special_flags=pg.BLEND_ADD) minimap[int(posx)][int(posy)] = (100, 100, 0) surf.blit(font.render(str(round(timer,1)), 1, (255, 255, 255)), (20, 525)) surf.blit(exits[exit2], (730,20)) screen.blit(surf, (0,0)) if health > player_health: hearts2 = pg.Surface.subsurface(hearts,(0,0,player_health*10,20)) sounds['hurt'].play() if ticks - stepdelay > 2 and stepscount != posx + posy: sounds['step'].play() stepdelay = ticks stepscount = posx + posy if mape[int(posx)][int(posy)] > 0: delaycontrol = max(0.3, 2/np.random.uniform(0.99, mape[int(posx)][int(posy)])) if ticks - stepdelay2 > delaycontrol: sounds['step2'].play() stepdelay2 = ticks if int(swordsp) > 0: if swordsp == 1: damage_mod = 1 while enemies[en][3] < 10 and damage_mod > 0.4 and en >= 0: x = posx -0.2*np.cos(rot) + np.cos(rot + np.random.uniform(0, 0.05))/enemies[en][3] y = posy -0.2*np.sin(rot) + np.sin(rot + np.random.uniform(0, 0.05))/enemies[en][3] z = 0.5 + np.sin(rotv*-0.392699)/enemies[en][3] dist2en = np.sqrt((enemies[en][0]-x)**2 + (enemies[en][1]-y)**2) if dist2en < 0.1 and z > 0 and z < 0.07*enemies[en][5]: if z > 0.05*enemies[en][5]: enemies[en][8] = enemies[en][8] - np.random.uniform(0,2)*2 else: enemies[en][8] = enemies[en][8] - np.random.uniform(0,2) enemies[en][10] = ticks x = enemies[en][0] + 0.1*np.cos(rot) y = enemies[en][1] + 0.1*np.sin(rot) if maph[int(x)][int(y)] == 0: enemies[en][0]= (x + enemies[en][0])/2 # push back enemies[en][1]= (y + enemies[en][1])/2 if damage_mod == 1: blood_scale = enemies[en][3] sounds['swoosh'].play() if enemies[en][4]: sounds['hitmonster2'].set_volume(min(1, enemies[en][3])*sfx_vol) sounds['hitmonster2'].play() else: sounds['hitmonster'].set_volume(min(1, enemies[en][3])*sfx_vol) sounds['hitmonster'].play() damage_mod = damage_mod*0.5 if enemies[en][8] < 0: sounds['deadmonster'].set_volume(min(1, enemies[en][3])*sfx_vol) sounds['deadmonster'].play() nenemies = nenemies - 1 if nenemies == 0: exit2, msg = 0, "Find the master!" ## if np.random.uniform(0,1) < 0.3: ## player_health = min(player_health+0.5, 20) ## hearts2 = pg.Surface.subsurface(hearts,(0,0,player_health*10,20)) ## sounds['healthup'].play() en = en - 1 if damage_mod == 1: sounds['swoosh2'].play() swordsp = (swordsp + er*10)%4 fps = int(clock.get_fps()) pg.display.set_caption("Health: "+str(round(player_health, 1))+" Enemies: " + str(nenemies) + " FPS: " + str(fps)+ ' ' + msg) posx, posy, rot, rotv = movement(pg.key.get_pressed(), posx, posy, rot, maph, er, rotv) pg.mouse.set_pos(400,300) def movement(pressed_keys, posx, posy, rot, maph, et, rotv): x, y, diag = posx, posy, 0 if pg.mouse.get_focused(): p_mouse = pg.mouse.get_pos() rot = rot + np.clip((p_mouse[0]-400)/200, -0.2, .2) rotv = rotv + np.clip((p_mouse[1]-300)/200, -0.2, .2) rotv = np.clip(rotv, -0.999, .999) if pressed_keys[pg.K_UP] or pressed_keys[ord('w')]: x, y, diag = x + et*np.cos(rot), y + et*np.sin(rot), 1 elif pressed_keys[pg.K_DOWN] or pressed_keys[ord('s')]: x, y, diag = x - et*np.cos(rot), y - et*np.sin(rot), 1 if pressed_keys[pg.K_LEFT] or pressed_keys[ord('a')]: et = et/(diag+1) x, y = x + et*np.sin(rot), y - et*np.cos(rot) elif pressed_keys[pg.K_RIGHT] or pressed_keys[ord('d')]: et = et/(diag+1) x, y = x - et*np.sin(rot), y + et*np.cos(rot) posx, posy = check_walls(posx, posy, maph, x, y) return posx, posy, rot, rotv def gen_map(size): mapc = np.random.uniform(0,1, (size,size,3)) maph = np.random.choice([0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4], (size,size)) maph[0,:] = np.random.choice([1, 2, 3, 4], size) maph[size-1,:] = np.random.choice([1, 2, 3, 4], size) maph[:,0] = np.random.choice([1, 2, 3, 4], size) maph[:,size-1] = np.random.choice([1, 2, 3, 4], size) posx, posy = np.random.randint(1, size -2)+0.5, np.random.randint(1, size -2)+0.5 rot, rotv, stepscount = np.pi/4, 0, posx + posy x, y = int(posx), int(posy) maph[x][y] = 0 count = 0 while True: testx, testy = (x, y) if np.random.uniform() > 0.5: testx = testx + np.random.choice([-1, 1]) else: testy = testy + np.random.choice([-1, 1]) if testx > 0 and testx < size -1 and testy > 0 and testy < size -1: if maph[testx][testy] == 0 or count > 5: count = 0 x, y = (testx, testy) maph[x][y] = 0 dtx = np.sqrt((x-posx)**2 + (y-posy)**2) if (dtx > size*.6 and np.random.uniform() > .999) or np.random.uniform() > .99999: exitx, exity = (x, y) break else: count = count+1 return posx, posy, rot, rotv, maph, mapc, exitx, exity, stepscount def load_map(level): mapc = pg.surfarray.array3d(pg.image.load('Assets/Levels/map'+str(level)+'.png')) size = len(mapc) maph = np.random.choice([1, 2, 3, 4], (size,size)) colors = np.asarray([[0,0,0], [255,255,255], [127,127,127]]) posx, exitx = None, None for i in range(size): for j in range(size): color = mapc[i][j] if (color == colors[0]).all() or (color == colors[1]).all() or (color == colors[2]).all(): maph[i][j] = 0 if (color == colors[1]).all(): posx, posy = i+0.5, j+0.5 if (color == colors[2]).all(): exitx, exity = i, j while posx == None: # if no start is found x, y = np.random.randint(1, size), np.random.randint(1, size) if (mapc[x][y] == colors[0]).all(): posx, posy = x+0.5, y+0.5 while exitx == None: # if no exit is found x, y = np.random.randint(1, size), np.random.randint(1, size) if (mapc[x][y] == colors[0]).all(): exitx, exity = x, y rot, rotv, stepscount = np.pi/4, 0, posx + posy return posx, posy, rot, rotv, maph, mapc/255, exitx, exity, stepscount, size @njit(cache=True) def new_frame(posx, posy, rot, frame, sky, floor, hres, halfvres, mod, maph, size, wall, mapc, exitx, exity, nenemies, rotv, door, window, bwall, exit2): offset = -int(halfvres*rotv) for i in range(hres): rot_i = rot + np.deg2rad(i/mod - 30) sin, cos, cos2 = np.sin(rot_i), np.cos(rot_i), np.cos(np.deg2rad(i/mod - 30)) frame[i][:] = sky[int(np.rad2deg(rot_i)*2%720)][halfvres-offset:3*halfvres-offset] n = 0 n2 = 0 x, y = posx +0.2*cos, posy +0.2*sin for j in range(2000): x, y = x +0.01*cos, y +0.01*sin if n == 0 and maph[int(x)%(size-1)][int(y)%(size-1)] != 0: # found lower wall n = np.sqrt((x-posx)**2+(y-posy)**2) if maph[int(x)%(size-1)][int(y)%(size-1)] == 2:# found upper wall n2 = np.sqrt((x-posx)**2+(y-posy)**2) h = halfvres/(n2*cos2 + 0.001) break cwall = wall if n2 > 0.5 and 3*h > int(halfvres/(n*cos2 + 0.000001)): #draw upper wall xx = int(x*3%1*99) xxx = x%1 if x%1 < 0.01 or x%1 > 0.99: xx = int(y*3%1*99) xxx = y%1 yy = np.linspace(0, 3, int(h*2))*99%99 shade = 0.3 + 0.7*(h/halfvres) if shade > 1: shade = 1 if maph[int(x-0.02)%(size-1)][int(y-0.02)%(size-1)] != 0: shade = shade*0.8 c = shade*mapc[int(x)%(size-1)][int(y)%(size-1)] if n2 > 3.5: cwall = bwall for k in range(int(h)*2): c2 = c*cwall[xx][int(yy[k])] h1 = int(halfvres - int(h) +k +offset -2*h +3) h2 = int(halfvres+3*h-k+offset-1 +2*h - 6) if xxx > 1/3 and xxx < 2/3 and k > h*2/3 and k < h*4/3: c2 = shade*window[xx][int(yy[k])] if h1 >= 0 and h1 < 2*halfvres: frame[i][h1] = c2 if h2 < halfvres*2: frame[i][h2] = c2 if n == 0: n = 1000 x, y = posx +n*cos, posy +n*sin walltype = maph[int(x)%(size-1)][int(y)%(size-1)] cwall = wall if n > 3.5: cwall = bwall h = int(halfvres/(n*cos2 + 0.000001)) xx = int(x*3%1*99) xxx = x%1 if x%1 < 0.01 or x%1 > 0.99: xx = int(y*3%1*99) xxx = y%1 yy = np.linspace(0, 3, int(h*2))*99%99 shade = 0.4 + 0.6*(h/halfvres) if shade > 1: shade = 1 ash = 0 if maph[int(x-0.33)%(size-1)][int(y-0.33)%(size-1)] != 0: ash = 1 if maph[int(x-0.01)%(size-1)][int(y-0.01)%(size-1)] != 0: shade, ash = shade*0.7, 0 c = mapc[int(x)%(size-1)][int(y)%(size-1)] cdoor = np.sqrt(np.ones(3) - c) c = shade*c start_range, stop_range = 0, int(2*h) if h > halfvres+abs(offset): start_range = int(h - halfvres - offset) stop_range = int(h + halfvres - offset) for k in range(start_range, stop_range): c2 = c*cwall[xx][int(yy[k])] h1 = int(halfvres - h +k +offset) h2 = int(halfvres+3*h-k+offset-3) if xxx > 1/3 and xxx < 2/3 and k > h*2/3: if walltype < 3: c2 = shade*cdoor*door[xx][int(yy[k])] elif k < h*4/3 and walltype == 3: c2 = shade*window[xx][int(yy[k])] if h1 >= 0 and h1 < 2*halfvres: if ash and 1-k/(2*h) < 1-xx/99: c2, c, ash = 0.7*c2, 0.7*c, 0 frame[i][h1] = c2 if h2 < halfvres*2: frame[i][h2] = c2 for j in range(int(halfvres -h -offset)): #floor n = (halfvres/(halfvres-j - offset ))/cos2 x, y = posx + cos*n, posy + sin*n xx, yy = int(x*3%1*99), int(y*3%1*99) shade = min(0.2 + 0.8/n, 1) if maph[int(x-0.33)%(size-1)][int(y-0.33)%(size-1)] != 0: shade = shade*0.7 elif ((maph[int(x-0.33)%(size-1)][int(y)%(size-1)] and y%1>x%1) or (maph[int(x)%(size-1)][int(y-0.33)%(size-1)] and x%1>y%1)): shade = shade*0.7 frame[i][halfvres*2-j-1] = shade*(floor[xx][yy]*2+frame[i][halfvres*2-j-1])/3 if exit2 == 0 and int(x) == exitx and int(y) == exity and (x%1-0.5)**2 + (y%1-0.5)**2 < 0.2: ee = j/(20*halfvres) frame[i][j:2*halfvres-j] = (ee*np.ones(3)*255+frame[i][j:2*halfvres-j])/(1+ee) return frame @njit(cache=True) def vision(posx, posy, enx, eny, dist2p, maph, size): cos, sin = (posx-enx)/dist2p, (posy-eny)/dist2p x, y = enx, eny seen = 1 x, y = x +0.25*cos, y +0.25*sin for i in range(abs(int((dist2p-0.5)/0.05))): x, y = x +0.05*cos, y +0.05*sin if (maph[int(x-0.02)%(size-1)][int(y-0.02)%(size-1)] or maph[int(x-0.02)%(size-1)][int(y+0.02)%(size-1)] or maph[int(x+0.02)%(size-1)][int(y-0.02)%(size-1)] or maph[int(x+0.02)%(size-1)][int(y+0.02)%(size-1)]): seen = 0 break return seen @njit(cache=True) def enemies_ai(posx, posy, enemies, maph, size, mape, swordsp, ticks, player_health, nenemies, level=0): if nenemies < 5: # teleport far enemies closer for en in range(len(enemies)): # mape = enemies heatmap if enemies[en][8] > 0: enx, eny = enemies[en][0], enemies[en][1] dist2p = np.sqrt((enx-posx)**2 + (eny-posy)**2 + 1e-16) if dist2p > 10: for i in range(10): x, y =
np.random.randint(1, size)
numpy.random.randint
"""Evaluation script to analyse the gathered data. This script: - reads the interaction data (from the logs) and re-run the study to compute performance measures - simulates the baseline user behaviour (starting with the same prior and query) """ import os import warnings import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels import yaml from statsmodels.formula.api import ols from interactive_bayesian_optimisation import config def main(path_to_analyse=None): if path_to_analyse is None: path_to_analyse = "data_analysis_config.yaml" with open(path_to_analyse) as config_file: analysis_config = yaml.load(config_file, Loader=yaml.FullLoader) print(analysis_config) load_and_analyse(analysis_config) def load_and_analyse(analysis_config): plotting_folder = os.path.join(config.INSTANCE_PATH, analysis_config["plotting_folder"]) os.makedirs(plotting_folder, exist_ok=True) dataframe = pd.read_csv( filepath_or_buffer=os.path.join(config.INSTANCE_PATH, "dataset", analysis_config["dataset_name"], "dataset.csv") ) print("Dataset loaded:", analysis_config["dataset_name"]) # Reconvert each string to a list of floats try: dataframe["la_all_expected_future_scores"] = dataframe.apply( lambda row: [float(el) for el in row["la_all_expected_future_scores"][1:-1].split()], axis=1 ) except Exception as e: warnings.warn( "Could not convert list for 'la_all_expected_future_scores' for the following error:\n" + str(e) ) # Set generic settings for all plots sns.set_palette(sns.color_palette("muted")) # Comment or uncomment to select which analysis to perform analyse_user_vs_naive_questionnaire(dataframe, plotting_folder, analysis_config) def create_means(data, fields): iterations = sorted(list(data["iteration"].unique())) user_id_series = data["user_id"].unique() if len(user_id_series) > 1: # Means by user: for each user, have a list of their average score. The whole is an ndarray fields_mean_by_user_list_list = [np.array([ # Each element of the list is the average score for a given user at a specific iteration [np.mean(data[(data["iteration"] == i) & (data["user_id"] == user)][field]) for i in iterations] for user in user_id_series]) for field in fields] else: session_series = data["session"].unique() # Means by session: for each user, have a list of the session score. The whole is an ndarray fields_mean_by_user_list_list = [np.array([ # Each element of the list is the average score for a given user at a specific iteration [np.mean(data[(data["iteration"] == i) & (data["session"] == session)][field]) for i in iterations] for session in session_series]) for field in fields] assert len(fields_mean_by_user_list_list) == len(fields) return fields_mean_by_user_list_list def plot_averages(data, plotting_folder, plot_filename, title, fields): """ Parameters ---------- data plotting_folder plot_filename title fields Returns ------- """ # List of iteration number in the specific user-study instance iterations = sorted(list(data["iteration"].unique())) user_id_series = data["user_id"].unique() fields_by_user_list_list = create_means(data, fields) sample_size = fields_by_user_list_list[0].shape[0] # len(data[(data["iteration"] == 0)]) # Get the mean of the score for each iteration fields_mean_score_list_list = [np.mean(fields_by_user_list, 0) for fields_by_user_list in fields_by_user_list_list] # Get the standard deviation of the score for each iteration fields_se_score_list_list = [(np.std(fields_by_user_list, 0) / np.sqrt(sample_size)) for fields_by_user_list in fields_by_user_list_list] for field_mean, field_se, field_name in zip(fields_mean_score_list_list, fields_se_score_list_list, fields): plt.fill_between(iterations, np.array(field_mean) + np.array(field_se), np.array(field_mean) - np.array(field_se), alpha=0.2) plt.plot(iterations, field_mean, label=field_name) plt.legend() plt.ylabel(f"AVG {fields}") plt.xlabel("Iterations") plt.xticks(iterations, [i + 1 for i in iterations]) plt.title(title) plt.tight_layout() figure_path = os.path.join( plotting_folder, plot_filename ) plt.savefig(figure_path) print("Plot completed:", figure_path) plt.close() if len(user_id_series) > 1: plt.plot(iterations, [0] * len(iterations), "--") assert len(user_id_series) == fields_by_user_list_list[0].shape[ 0], f"{len(user_id_series)}, {fields_mean_score_list_list[0].shape[0]}" for i, user in zip(range(fields_by_user_list_list[0].shape[0]), user_id_series): for field_mean, field_name in zip(fields_by_user_list_list, fields): plt.plot(iterations, field_mean[i, :], label=f"{user}_{field_name}") plt.legend() plt.ylabel(f"AVG {fields} by user") plt.xlabel("Iterations") plt.xticks(iterations, [i + 1 for i in iterations]) plt.title("All " + title) plt.tight_layout() figure_path = os.path.join( plotting_folder, "ALL__" + plot_filename ) plt.savefig(figure_path) print("Plot completed:", figure_path) plt.close() def plot_averages_naive_vs_user_special(data, plotting_folder, plot_filename, title, fields=None, also_utility=False): """ Parameters ---------- data plotting_folder plot_filename title fields Returns ------- """ # Fields to be plotted if fields is None: fields = [ "naive_bo_score", # Score averaged "user_score", "abs_scaled_steering", "scaled_steering", ] # List of iteration number in the specific user-study instance user_id_series = data["user_id"].unique() study_id_series = data["study_name"].unique() # Part for study 5 data_5 = data[data["study_name"] == "study_5"] iterations_5 = sorted(list(data_5["iteration"].unique())) fields_mean_by_user_list_list = create_means(data_5, fields) # Shaped (users, iterations) sample_size = fields_mean_by_user_list_list[0].shape[0] naive_mean_by_user_list_list_5 = fields_mean_by_user_list_list[0] user_mean_by_user_list_list_5 = fields_mean_by_user_list_list[1] abs_steering_mean_by_user_list_list = fields_mean_by_user_list_list[2] steering_mean_by_user_list_list = fields_mean_by_user_list_list[3] difference_mean_by_user_list_list_5 = np.array(user_mean_by_user_list_list_5) - np.array( naive_mean_by_user_list_list_5) # Get the mean of the score for each iteration naive_mean_score_list_5 = np.mean(naive_mean_by_user_list_list_5, 0) user_mean_score_list_5 = np.mean(user_mean_by_user_list_list_5, 0) # Get the standard deviation of the score for each iteration naive_se_score_list_5 = np.std(naive_mean_by_user_list_list_5, 0) / np.sqrt(sample_size) user_se_score_list_5 = np.std(user_mean_by_user_list_list_5, 0) / np.sqrt(sample_size) # Part for study 10 data_10 = data[data["study_name"] == "study_10"] iterations_10 = sorted(list(data_10["iteration"].unique())) fields_mean_by_user_list_list = create_means(data_10, fields) # Shaped (users, iterations) sample_size = fields_mean_by_user_list_list[0].shape[0] naive_mean_by_user_list_list_10 = fields_mean_by_user_list_list[0] user_mean_by_user_list_list_10 = fields_mean_by_user_list_list[1] abs_steering_mean_by_user_list_list = fields_mean_by_user_list_list[2] steering_mean_by_user_list_list = fields_mean_by_user_list_list[3] difference_mean_by_user_list_list_10 = np.array(user_mean_by_user_list_list_10) - np.array( naive_mean_by_user_list_list_10) # Get the mean of the score for each iteration naive_mean_score_list_10 = np.mean(naive_mean_by_user_list_list_10, 0) user_mean_score_list_10 = np.mean(user_mean_by_user_list_list_10, 0) # Get the standard deviation of the score for each iteration naive_se_score_list_10 = np.std(naive_mean_by_user_list_list_10, 0) / np.sqrt(sample_size) user_se_score_list_10 = np.std(user_mean_by_user_list_list_10, 0) / np.sqrt(sample_size) # ANCHOR PLOTS_SP # Two subplots, 1 figure fig, (sub_10, sub_5) = plt.subplots(nrows=1, ncols=2, sharey=True, constrained_layout=True) # In order of execution # Sublplot 10 sub_10.fill_between(iterations_10, np.array(naive_mean_score_list_10) + np.array(naive_se_score_list_10), np.array(naive_mean_score_list_10) - np.array(naive_se_score_list_10), alpha=0.2) sub_10.fill_between(iterations_10, np.array(user_mean_score_list_10) +
np.array(user_se_score_list_10)
numpy.array
import os import sys import time import argparse import pandas as pd import numpy as np from scipy import interp from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt import seaborn as sns from matplotlib.ticker import FormatStrFormatter plt.style.use('ggplot') sns.set(color_codes=True) sns.set(font_scale=4) sns.set_style("whitegrid") sns.set_context("paper") sns.set(style='white', palette='muted', color_codes=True) sns.despine(left=True) fig_format = 'pdf' if not os.path.exists('fig'): os.system('mkdir fig') ########## # figure 1 ########## title_list = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'] filename_dataset = 'snap_data_w_annot_1000_seq_reg.txt' dataset = pd.read_csv(filename_dataset, sep='\t') d1 = dataset[dataset['label']==1] d0 = dataset[dataset['label']==0] # AFR, AMR, ASN, EUR for i, ft in enumerate(['AFR', 'AMR', 'ASN', 'EUR']): f = plt.figure() x_range = np.linspace(0.0, 1.0, 11) ft_ll1 = np.histogram(d1[ft], x_range, density=True)[0] ft_ll0 = np.histogram(d0[ft], x_range, density=True)[0] ft_llr = np.log(ft_ll1 / ft_ll0) sns.barplot(x=[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9], y=ft_llr, palette='vlag') plt.xlabel('allele frequency', fontsize=18) plt.ylabel('LLR(+/-)', fontsize=18) plt.tick_params(axis='both', labelsize=18) plt.title('({}) Binned log-likelihood-ratio: {}'.format(title_list[i], ft), fontsize=18) plt.tight_layout() plt.savefig('./fig/fig1_{}.{}'.format(ft, fig_format)) print('[INFO]fig1_{}.{} saved to ./fig'.format(ft, fig_format)) # reg_score_int f = plt.figure() ft = 'reg_score_int' ft_ll1 = np.array([d1[d1[ft] == x].shape[0] for x in np.arange(1.0, 17.0, 1.0)]) ft_ll0 = np.array([d0[d0[ft] == x].shape[0] for x in np.arange(1.0, 17.0, 1.0)]) ft_llr = np.log(ft_ll1 / ft_ll0) sns.barplot(x=np.arange(1, 17, 1), y=ft_llr, palette='vlag') plt.xlabel('RegulomeDB score (encoded)', fontsize=18) plt.ylabel('LLR(+/-)', fontsize=18) plt.tick_params(axis='both', labelsize=18) plt.title('(e) Log-likelihood-ratio: {}'.format(ft), fontsize=18) plt.tight_layout() plt.savefig('./fig/fig1_{}.{}'.format(ft, fig_format)) print('[INFO]fig1_{}.{} saved to ./fig'.format(ft, fig_format)) # GENCODE_direction, RefSeq_direction for i, ft in enumerate(['GENCODE_direction', 'RefSeq_direction']): f = plt.figure() x_range = [-1, 1, 4, 6] ft_ll1 = np.histogram(d1[ft], x_range, density=True)[0] ft_ll0 = np.histogram(d0[ft], x_range, density=True)[0] ft_llr = np.log(ft_ll1 / ft_ll0) sns.barplot(x=[0, 3, 5], y=ft_llr, palette='vlag', label=ft) plt.xlabel(ft, fontsize=18) plt.ylabel('LLR(+/-)', fontsize=18) plt.tick_params(axis='both', labelsize=18) plt.title('({}) Log-likelihood-ratio: {}'.format(title_list[i+5], ft), fontsize=18) plt.tight_layout() plt.savefig('./fig/fig1_{}.{}'.format(ft, fig_format)) print('[INFO]fig1_{}.{} saved to ./fig'.format(ft, fig_format)) # GERP_cons, SiPhy_cons for i, ft in enumerate(['GERP_cons', 'SiPhy_cons']): f = plt.figure() ft_ll1 = np.array([d1[d1[ft]==0.0].shape[0], d1[d1[ft]==1.0].shape[0]]) ft_ll0 = np.array([d0[d0[ft]==0.0].shape[0], d0[d0[ft]==1.0].shape[0]]) ft_llr = np.log(ft_ll1 / ft_ll0) sns.barplot(x=[0.0, 1.0], y=ft_llr, palette='vlag') plt.xlabel(ft, fontsize=18) plt.ylabel('LLR(+/-)', fontsize=18) plt.tick_params(axis='both', labelsize=18) plt.title('({}) Log-likelihood-ratio: {}'.format(title_list[i+7], ft), fontsize=18) plt.tight_layout() plt.savefig('./fig/fig1_{}.{}'.format(ft, fig_format)) print('[INFO]fig1_{}.{} saved to ./fig'.format(ft, fig_format)) # plot annotation distribution f = plt.figure() table0 = d0.pivot_table(index='chr', columns='annotation', values='label', aggfunc='count') sns.heatmap(table0, annot=True, cmap='YlGnBu', fmt='g', cbar_kws={'label': 'count'}) f.savefig('./fig/fig1_annot0.{}'.format(fig_format)) print('[INFO] fig1_annot0.{} saved to ./fig'.format(fig_format)) f = plt.figure() table1 = d1.pivot_table(index='chr', columns='annotation', values='label', aggfunc=np.sum) sns.heatmap(table1, annot=True, cmap='YlGnBu', fmt='g', cbar_kws={'label': 'count'}) f.savefig('./fig/fig1_annot1.{}'.format(fig_format)) print('[INFO] fig1_annot1.{} saved to ./fig'.format(fig_format)) ########## # figure 2 ########## method_list = ['regulomedb', 'DeFine0', 'DeFine', 'cnn_1s', 'cnn_2s', 'resnet_2s2a', 'resnet_2s2a_metadata'] method_list_xticks = ['RDB', 'DF0', 'DF', 'CNN1s', 'CNN2s', 'Res', 'ResM'] random_seed_list = [1337, 1338, 1339, 1340, 1341] perf_list = [] for method in method_list: for random_seed in random_seed_list: filename = 'out_test_{}_1000_fold_{}.txt'.format(method, random_seed) perf = pd.read_csv(filename, sep='\t', nrows=1) perf['random_seed'] = random_seed perf['method'] = method perf_list.append(perf) perf_list = pd.concat(perf_list) f = plt.figure() g = sns.boxplot(x='method', y='AUROC', data=perf_list, palette='RdBu') g.set_xlabel('method', fontsize=15) g.set_ylabel('AUROC', fontsize=15) plt.title('(c) 5-fold AUROC', fontsize=15) g.set_xticklabels(labels=method_list_xticks, rotation=20) g.tick_params(axis='both', labelsize=15) g.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) plt.tight_layout() f.savefig('./fig/fig2_auroc.{}'.format(fig_format)) print('[INFO] ./fig/fig2_auroc.{} saved'.format(fig_format)) f = plt.figure() g = sns.boxplot(x='method', y='AUPRC', data=perf_list, palette='RdBu') g.set_xlabel('method', fontsize=15) g.set_ylabel('AUPRC', fontsize=15) plt.title('(d) 5-fold AUPRC', fontsize=15) g.set_xticklabels(labels=method_list_xticks, rotation=20) g.tick_params(axis='both', labelsize=15) g.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) plt.tight_layout() f.savefig('./fig/fig2_auprc.{}'.format(fig_format)) print('[INFO] ./fig/fig2_auprc.{} saved'.format(fig_format)) roc_list = {} prc_list = {} tprs = [] precisions = [] recalls = [] for method in method_list: roc_list[method] = [] prc_list[method] = [] for random_seed in random_seed_list: filename_roc = 'roc_test_{}_1000_fold_{}.txt'.format(method, random_seed) filename_prc = 'prc_test_{}_1000_fold_{}.txt'.format(method, random_seed) roc = pd.read_csv(filename_roc, sep='\t') prc = pd.read_csv(filename_prc, sep='\t') roc_list[method].append(roc) prc_list[method].append(prc) f = plt.figure() for i, method in enumerate(method_list): for roc in roc_list[method]: mean_fp = np.linspace(0, 1, 100) tprs.append(interp(mean_fp, roc['FP'], roc['TP'])) tprs[-1][0] = 0.0 mean_tp = np.mean(tprs, axis=0) mean_tp[-1] = 1.0 #mean_auc = auc(mean_tp, mean_fp) mean_auc = perf_list[perf_list['method']==method]['AUROC'].mean() plt.plot(mean_tp, mean_fp, label='{} (Mean AUC={:.4f})'.format(method_list_xticks[i], mean_auc), lw=1, alpha=.8) #plt.plot(roc_list[method][0]['TP'], roc_list[method][0]['FP'], label='{} (Mean AUC={:.4f})'.format(method, mean_auc), lw=1, alpha=.8) plt.plot([0, 1], [0, 1], color='navy', linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate', fontsize=15) plt.ylabel('True Positive Rate', fontsize=15) g.set_xticklabels(labels=method_list_xticks) g.tick_params(axis='both', labelsize=18) plt.title('(a) ROC curve', fontsize=15) plt.legend() f.savefig('./fig/fig2_roc.{}'.format(fig_format)) print('[INFO] fig2_roc.{} saved!'.format(fig_format)) f = plt.figure() for i, method in enumerate(method_list): for prc in prc_list[method]: # mean_recall = np.linspace(0, 1, 100) mean_threshold = np.linspace(0.0, 0.99, 100) precisions.append(interp(mean_threshold, prc['threshold'], prc['Precision'])) recalls.append(interp(mean_threshold, prc['threshold'], prc['Recall'])) precisions[-1][0] = 0.0 recalls[-1][0] = 1.0 recalls[-1][-1] = 0.0 mean_precision = np.mean(precisions, axis=0) mean_recall =
np.mean(recalls, axis=0)
numpy.mean
""" Description: Utility functions to transform option data """ import datetime import numpy as np import pandas as pd from wallstreet import Stock, Call, Put import matplotlib.pyplot as plt import matplotlib.colors as colors # Constants FIG_WIDTH = 20 FIG_HEIGHT = 6 def collect_option_data(ticker, year, month, day, strict=True): """ Collect the option data for the given date """ dates = [] strikes = [] prices = [] call_setup = False attempts = 0 print(strict) while not call_setup and attempts < 10: try: wc = Call(ticker, d=day, m=month, y=year, strict=strict) new_date = wc.expiration.split('-') day = int(new_date[0]) month = int(new_date[1]) year = int(new_date[2]) date = datetime.datetime(year=year, month=month, day=day) call_setup = True except: attempts += 1 attempts = 0 if call_setup: for cdata in wc.data: strikes.append(cdata['strike']) prices.append(cdata['lastPrice']) dates.append(date) data = pd.DataFrame({'date':dates, 'price':prices, 'strike':strikes}) return data def calculate_gains(strike_price, share_price, call_price, initial=None): """ Calculate the net gains given option data and a share price """ # Calculate current value gains = (share_price - strike_price) * 100 # OTM is worth nothing, not negative gains[gains < 0] = 0.0 # Cost of a single contract cost = call_price * 100 if initial: n_contracts = np.floor(initial / cost) net = (gains * n_contracts) + (initial - cost * n_contracts) else: net = ((gains - cost) / cost) * 100 return net def plot_option_percent_gain(ticker, year, month, day, strict_date=True, data=None): """ Plot mesh grid of scenarios for a given call option and the resulting percent gain """ fig, ax = plt.subplots(figsize=(FIG_WIDTH, FIG_HEIGHT)) if data is None: data = collect_option_data(ticker, year, month, day, strict=strict_date) stock = Stock(ticker) current_price = stock.price # Make data. strike_price = data['strike'] share_price = np.arange(0, data['strike'].max() * 1.5, current_price / 100) call_price_mesh = np.tile(data['price'].T, (len(share_price), 1)) strike_mesh, stock_mesh = np.meshgrid(strike_price, share_price) percent_gains = calculate_gains(strike_mesh, stock_mesh, call_price_mesh) # Plot the mesh grid and percent gain surfaces pg_min = percent_gains.min() pg_max = percent_gains.max() positive = np.concatenate((np.arange(0, 100, 5), np.arange(100, 1100, 100))) negative = np.linspace(-100, 0, len(positive)) bounds =
np.concatenate((negative, positive))
numpy.concatenate
import tensorflow as tf from tensorflow import keras import tensorflow_io as tfio import numpy as np import os # System filepath setup import sys # add data folders to path sys.path.insert(1, '../data') sys.path.insert(1, '../src') sys.path.insert(1, '../img') def mel_1s_snapshot(input): sr = 48000 a_tensor = tf.convert_to_tensor(input, dtype=tf.float32) tensor = tf.cast(a_tensor, tf.float32) spectrogram = tfio.experimental.audio.spectrogram( tensor, nfft=512, window=512, stride=256 ) mel_spectrogram = tfio.experimental.audio.melscale( spectrogram, rate=sr, mels=128, fmin=93.75, # 20, fmax=13687.5) # 15000) reshape = tf.expand_dims(mel_spectrogram.numpy(), -1) return
np.array(reshape)
numpy.array
"""Use k-nearest neighbors on pitch2dv0 joint data""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os import pandas as pd import scipy.io as spio import matplotlib.pyplot as plt import time from datetime import datetime from sklearn import neighbors from sklearn.metrics import confusion_matrix import utils train_path = "/media/linzhank/850EVO_1T/Works/Action_Recognition/Data/train/joint/" test_path = "/media/linzhank/850EVO_1T/Works/Action_Recognition/Data/test/joint/" TODAY = datetime.today().strftime("%Y%m%d") result_path= "/media/linzhank/850EVO_1T/Works/Action_Recognition/Data/result{}".format(TODAY) # Load train data train_data = spio.loadmat(train_path + "joint_train.mat")["joint_train"] num_examples_train = train_data.shape[0] initid_train = utils.detectInit(train_data) train_data = train_data.reshape(num_examples_train,150,75) train_classes = spio.loadmat(train_path + "labels_train.mat")["labels_train"] train_labels = np.argmax(train_classes, axis=1) # Load test data test_data = spio.loadmat(test_path + "joint_test.mat")["joint_test"] num_examples_test = test_data.shape[0] initid_test = utils.detectInit(test_data) test_data = test_data.reshape(num_examples_test,150,75) test_classes = spio.loadmat(test_path + "labels_test.mat")["labels_test"] test_labels = np.argmax(test_classes, axis=1) # Use 5, 10, 15,...,40 frames of data to train 8 knn classifier num_frames = 5*
np.arange(1,9)
numpy.arange
# -*- coding: utf-8 -*- import nnabla as nn import numpy as np import rawdata as rdat from tex_util import Texture """ from nnc_proj.($$project_name_of_nnc) import network """ from nnc_proj.model import network nn.clear_parameters() nn.parameter.load_parameters('./nnc_proj/model.nnp') ratios = rdat.ratios mvec = rdat.max_vector def estimate_sscurve(stress_roots, tex_info, num=1): ''' return:(array_like, [rootNum, 50]) strain, stress ''' x = nn.Variable((num, 1, 128, 128)) x2 = nn.Variable((num, 1)) y1, y2 = network(x, x2, test=True) # RD, TD なので2つ [num, xx, '2'] rootsNum = len(stress_roots) strain =
np.empty((num, rootsNum, 50, 2))
numpy.empty
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Nov 16 23:34:59 2020 @author: mlampert """ import os import pandas import copy import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from matplotlib.gridspec import GridSpec import pickle import numpy as np import matplotlib.cm as cm #Flap imports import flap import flap_nstx flap_nstx.register() import flap_mdsplus #Setting up FLAP flap_mdsplus.register('NSTX_MDSPlus') thisdir = os.path.dirname(os.path.realpath(__file__)) fn = os.path.join(thisdir,"../flap_nstx.cfg") flap.config.read(file_name=fn) #Plot settings for publications publication=True if publication: #figsize=(8.5/2.54, # 8.5/2.54/1.618*1.1) figsize=(17/2.54,10/2.54) plt.rc('font', family='serif', serif='Helvetica') labelsize=6 linewidth=0.5 major_ticksize=2 plt.rc('text', usetex=False) plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 plt.rcParams['lines.linewidth'] = linewidth plt.rcParams['axes.linewidth'] = linewidth plt.rcParams['axes.labelsize'] = labelsize plt.rcParams['axes.titlesize'] = labelsize plt.rcParams['xtick.labelsize'] = labelsize plt.rcParams['xtick.major.size'] = major_ticksize plt.rcParams['xtick.major.width'] = linewidth plt.rcParams['xtick.minor.width'] = linewidth/2 plt.rcParams['xtick.minor.size'] = major_ticksize/2 plt.rcParams['ytick.labelsize'] = labelsize plt.rcParams['ytick.major.width'] = linewidth plt.rcParams['ytick.major.size'] = major_ticksize plt.rcParams['ytick.minor.width'] = linewidth/2 plt.rcParams['ytick.minor.size'] = major_ticksize/2 plt.rcParams['legend.fontsize'] = labelsize else: figsize=None #TODO #These are for a different analysis and a different method #define pre ELM time #define ELM burst time #define the post ELM time based on the ELM burst time #Calculate the average, maximum and the variance of the results in those time ranges #Calculate the averaged velocity trace around the ELM time #Calculate the correlation coefficients between the +-tau us time range around the ELM time #Classify the ELMs based on the correlation coefficents def plot_nstx_gpi_velocity_distribution(window_average=500e-6, tau_range=[-500e-6,500e-6], sampling_time=2.5e-6, pdf=False, plot=True, return_results=False, return_error=False, plot_variance=True, plot_error=False, normalized_velocity=True, normalized_structure=True, subtraction_order=4, opacity=0.2, correlation_threshold=0.6, plot_max_only=False, plot_for_publication=False, gpi_plane_calculation=True, plot_scatter=True, elm_time_base='frame similarity', n_hist=50, min_max_range=False, nocalc=False, general_plot=True, plot_for_velocity=False, plot_for_structure=False, plot_for_dependence=False, structure_finding_method='contour', interpolation=False, ): if elm_time_base not in ['frame similarity', 'radial velocity']: raise ValueError('elm_time_base should be either "frame similarity" or "radial velocity"') wd=flap.config.get_all_section('Module NSTX_GPI')['Working directory'] all_results_file=wd+'/processed_data/all_results_file.pickle' database_file=wd+'/db/ELM_findings_mlampert_velocity_good.csv' db=pandas.read_csv(database_file, index_col=0) elm_index=list(db.index) n_elm=len(elm_index) nwin=int(window_average/sampling_time) time_vec=(np.arange(2*nwin)*sampling_time-window_average)*1e3 all_results={'Velocity ccf':np.zeros([2*nwin,n_elm,2]), 'Velocity str max':np.zeros([2*nwin,n_elm,2]), 'Acceleration ccf':np.zeros([2*nwin,n_elm,2]), 'Frame similarity':np.zeros([2*nwin,n_elm]), 'Correlation max':np.zeros([2*nwin,n_elm]), 'Size max':np.zeros([2*nwin,n_elm,2]), 'Position max':np.zeros([2*nwin,n_elm,2]), 'Separatrix dist max':np.zeros([2*nwin,n_elm]), 'Centroid max':np.zeros([2*nwin,n_elm,2]), 'COG max':np.zeros([2*nwin,n_elm,2]), 'Area max':np.zeros([2*nwin,n_elm]), 'Elongation max':np.zeros([2*nwin,n_elm]), 'Angle max':np.zeros([2*nwin,n_elm]), 'Str number':np.zeros([2*nwin,n_elm]), 'GPI Dalpha':np.zeros([2*nwin,n_elm]), } hist_range_dict={'Velocity ccf':{'Radial':[-5e3,15e3], 'Poloidal':[-25e3,5e3]}, 'Velocity str max':{'Radial':[-10e3,20e3], 'Poloidal':[-20e3,10e3]}, 'Size max':{'Radial':[0,0.1], 'Poloidal':[0,0.1]}, 'Separatrix dist max':[-0.05,0.150], 'Elongation max':[-0.5,0.5], 'Str number':[-0.5,10.5], } n_hist_str=int(hist_range_dict['Str number'][1]-hist_range_dict['Str number'][0])*4 result_histograms={'Velocity ccf':np.zeros([2*nwin,n_hist,2]), 'Velocity str max':np.zeros([2*nwin,n_hist,2]), 'Size max':np.zeros([2*nwin,n_hist,2]), 'Separatrix dist max':np.zeros([2*nwin,n_hist]), 'Elongation max':np.zeros([2*nwin,n_hist]), 'Str number':np.zeros([2*nwin,n_hist_str]), } average_results={'Velocity ccf':np.zeros([2*nwin,2]), 'Velocity str max':np.zeros([2*nwin,2]), 'Size max':np.zeros([2*nwin,2]), 'Separatrix dist max':np.zeros([2*nwin]), 'Elongation max':np.zeros([2*nwin]), 'Str number':np.zeros([2*nwin]), } moment_results={'average':copy.deepcopy(average_results), 'median':copy.deepcopy(average_results), '10percentile':copy.deepcopy(average_results), '90percentile':copy.deepcopy(average_results), } result_bins={'Velocity ccf':np.zeros([n_hist+1,2]), 'Velocity str max':np.zeros([n_hist+1,2]), 'Size max':np.zeros([n_hist+1,2]), 'Separatrix dist max':np.zeros([n_hist+1]), 'Elongation max':np.zeros([n_hist+1]), 'Str number':np.zeros([n_hist_str+1]), } coeff_r=np.asarray([3.7183594,-0.77821046,1402.8097])/1000. #The coordinates are in meters, the coefficients are in mm coeff_z=np.asarray([0.18090118,3.0657776,70.544312])/1000. #The coordinates are in meters, the coefficients are in mm coeff_r_new=3./800. coeff_z_new=3./800. if not nocalc: for index_elm in range(n_elm): #preprocess velocity results, tackle with np.nan and outliers shot=int(db.loc[elm_index[index_elm]]['Shot']) #define ELM time for all the cases elm_time=db.loc[elm_index[index_elm]]['ELM time']/1000. if structure_finding_method == 'contour': str_add_find_method='' elif structure_finding_method == 'watershed' and interpolation == False: str_add_find_method='_nointer_watershed' else: str_add_find_method='' if normalized_velocity: if normalized_structure: str_add='_ns' else: str_add='' filename=flap_nstx.tools.filename(exp_id=shot, working_directory=wd+'/processed_data', time_range=[elm_time-2e-3,elm_time+2e-3], comment='ccf_velocity_pfit_o'+str(subtraction_order)+'_fst_0.0'+str_add+'_nv'+str_add_find_method, extension='pickle') else: filename=wd+'/processed_data/'+db.loc[elm_index[index_elm]]['Filename']+'.pickle' status=db.loc[elm_index[index_elm]]['OK/NOT OK'] if status != 'NO': velocity_results=pickle.load(open(filename, 'rb')) velocity_results['GPI Dalpha']=velocity_results['GPI Dalpha'][0] velocity_results['Separatrix dist avg']=np.zeros(velocity_results['Position avg'].shape[0]) velocity_results['Separatrix dist max']=np.zeros(velocity_results['Position max'].shape[0]) R_sep=flap.get_data('NSTX_MDSPlus', name='\EFIT02::\RBDRY', exp_id=shot, object_name='SEP R OBJ').slice_data(slicing={'Time':elm_time}).data z_sep=flap.get_data('NSTX_MDSPlus', name='\EFIT02::\ZBDRY', exp_id=shot, object_name='SEP Z OBJ').slice_data(slicing={'Time':elm_time}).data sep_GPI_ind=np.where(np.logical_and(R_sep > coeff_r[2], np.logical_and(z_sep > coeff_z[2], z_sep < coeff_z[2]+79*coeff_z[0]+64*coeff_z[1]))) try: sep_GPI_ind=np.asarray(sep_GPI_ind[0]) sep_GPI_ind=np.insert(sep_GPI_ind,0,sep_GPI_ind[0]-1) sep_GPI_ind=np.insert(sep_GPI_ind,len(sep_GPI_ind),sep_GPI_ind[-1]+1) z_sep_GPI=z_sep[(sep_GPI_ind)] R_sep_GPI=R_sep[sep_GPI_ind] GPI_z_vert=coeff_z[0]*np.arange(80)/80*64+coeff_z[1]*
np.arange(80)
numpy.arange
import math import re import numpy as np import torch from torch import nn from torch.nn import functional as F from fibber import log from fibber.metrics.bert_lm_utils import get_lm from fibber.paraphrase_strategies.asrs_utils_text_parser import TextParser from fibber.paraphrase_strategies.asrs_utils_wpe import get_wordpiece_emb from fibber.paraphrase_strategies.strategy_base import StrategyBase logger = log.setup_custom_logger(__name__) POST_PROCESSING_PATTERN = [ (r"\s+n\s", "n "), (r"\s*'\s*t\s", "'t "), (r"\s*'\s*s\s", "'s "), (r"\s*'\s*ve\s", "'ve "), (r"\s*'\s*ll\s", "'ll "), (r"\s*n't\s", "n't "), (r"- -", "--"), (r"\s*([\.,?!])", r"\1"), (r"\s+-\s+", "-"), ] PRE_PROCESSING_PATTERN = [ (r"can't\s", r" cannot "), (r"won't\s", r" will not "), (r"n't\s", r" not "), (r"'ll\s", r" will "), (r"'ve\s", r" have "), ] AUTO_SENTENCE_LEN_THRESHOLD = 50 # 50 words def process_text(text, patterns): """Processing the text using regex patterns. Args: text (str): the str to be post processed. patterns (list): a list of substitution patterns. """ for pattern in patterns: text = re.sub(pattern[0], pattern[1], text) return text def tostring(tokenizer, seq): """Convert a sequence of word ids to a sentence. The post prossing is applied. Args: tokenizer (transformers.BertTokenizer): a BERT tokenizer. seq (list): a list-like sequence of word ids. """ return process_text(tokenizer.decode(seq), POST_PROCESSING_PATTERN) def sample_word_from_logits(logits, temperature=1., top_k=0): """Sample a word from a distribution. Args: logits (torch.Tensor): tensor of logits with size ``(batch_size, vocab_size)``. temperature (float): the temperature of softmax. The PMF is ``softmax(logits/temperature)``. top_k (int): if ``k>0``, only sample from the top k most probable words. """ logits = logits / temperature if top_k > 0: kth_vals, kth_idx = logits.topk(top_k, dim=-1) dist = torch.distributions.categorical.Categorical(logits=kth_vals) idx = kth_idx.gather(dim=1, index=dist.sample().unsqueeze(-1)).squeeze(-1) else: dist = torch.distributions.categorical.Categorical(logits=logits) idx = dist.sample().squeeze(-1) return idx def all_accept_criteria(candidate_ids, stats, **kargs): """Always accept proposed words. Args: candidate_ids (torch.Tensor): proposed word ids in this sampling step with size ``(batch_size, pos_ed-pos_st)``. stats (dict): a dict to keep track the accept rate. Returns: (np.array, None) np.array is the same as candidate_ids. None means this criteria does not have any state. """ stats["accept"] += len(candidate_ids) stats["all"] += len(candidate_ids) return candidate_ids, None def sim_criteria_score(origin, paraphrases, sim_metric, sim_threshold, sim_weight): """Estimate the score of a sentence using USE. Args: origin (str): original sentence. paraphrases ([str]): a list of paraphrase_list. sim_metric (MetricBase): a similarity metric object. sim_threshold (float): the universal sentence encoder similarity threshold. sim_weight (float): the weight parameter for the criteria. Returns: (np.array): a numpy array of size ``(batch_size,)``. All entries ``<=0``. """ if sim_weight == 0: return np.zeros(len(paraphrases), dtype="float32") use_semantic_similarity = sim_metric.measure_batch(origin, paraphrases) return -sim_weight * ( np.maximum(sim_threshold - np.asarray(use_semantic_similarity), 0) ** 2) def ppl_criteria_score(origin, paraphrases, ppl_metric, ppl_weight): """Estimate the score of a sentence using USE. Args: origin (str): original sentence. paraphrases ([str]): a list of paraphrase_list. ppl_metric (GPT2PerplexityMetric): a GPT2PerplexityMetric metric object. ppl_weight (float): the weight parameter for the criteria. Returns: (np.array): a numpy array of size ``(batch_size,)``. All entries ``<=0``. """ if ppl_weight == 0: return np.zeros(len(paraphrases), dtype="float32") ppl_ratio = ppl_metric.measure_batch(origin, paraphrases) return -ppl_weight * (np.maximum(
np.asarray(ppl_ratio)
numpy.asarray
import pytest import torch import sklearn.metrics import numpy as np from flambe.metric import Accuracy, AUC, MultiClassAUC, Perplexity, BPC, F1 from flambe.metric import BinaryRecall, BinaryPrecision, BinaryAccuracy from flambe.metric import Recall from pytest import approx NUMERIC_PRECISION = 1e-2 def metric_test_case(predicted, true, metric, expected): assert metric(predicted, true).item() == approx(expected, NUMERIC_PRECISION) def test_auc_full(): """Test random score list.""" y_pred = np.random.randint(0, 10000, 100) y_true = np.random.randint(0, 2, 100) metric_test_case(y_pred, y_true, AUC(), sklearn.metrics.roc_auc_score(y_true, y_pred)) def test_auc_threshold(): """To compute rates: -> fpr: number of false positives / total number of negatives -> tpr: number of true positives / total number of positives In this example, consider the first threshold of 0.1, and consider everything higher than 0.1 as positives, and everything lower as negatives: fpr = 1 / 2 = 0.5 tpr = 1 Thus, if the max_fpr rate is 0.1, the tpr is 0, and if the max_fpr is 0.5, then the tpr is 1. So we get an auc of 0 for the 0.1 threshold, and 0.5 for the 0.5 threshold. For more details: https://en.wikipedia.org/wiki/Receiver_operating_characteristic """ y_pred = torch.tensor([0.1, 0.2, 0.3, 0.4]) y_true = torch.tensor([0, 1, 0, 1]) metric_test_case(y_pred, y_true, AUC(max_fpr=1.), sklearn.metrics.roc_auc_score(y_true, y_pred)) metric_test_case(y_pred, y_true, AUC(max_fpr=0.500001), 0.5) metric_test_case(y_pred, y_true, AUC(max_fpr=0.1), 0.5) def test_auc_empty(): """Should be completely random on an empty list""" y_pred = torch.tensor([]) y_true = torch.tensor([]) auc = AUC() assert auc(y_pred, y_true).item() == approx(0.5, NUMERIC_PRECISION) def test_multiclass_auc_full_one_hot(): """simple base case with one-hot labels""" n_classes = 100 y_pred = np.random.uniform(0, 1, (100, n_classes)) y_true = np.zeros((100, n_classes)) y_true[np.arange(100), np.random.randint(n_classes)] = 1 sklearn_score = sklearn.metrics.roc_auc_score(y_true.flatten(), y_pred.flatten()) metric_test_case(torch.tensor(y_pred), torch.tensor(y_true), MultiClassAUC(), sklearn_score) def test_multiclass_auc_full_indexed(): """simple base case with index labels""" n_classes = 100 y_pred = np.random.uniform(0, 1, (100, n_classes)) y_true =
np.random.randint(0, n_classes, 100)
numpy.random.randint
""" Copyright (c) 2019, <NAME> and the respective contributors All rights reserved. Use of this source code is governed by a MIT license that can be found in the LICENSE.txt file. """ import numpy as np import copy ################################################################################################### optimizers class Optimizer: def optimize(self,w,dw): pass #gradient descent algorithm using only gradient sign class OptimizerStep(Optimizer): lr = 0.01 def optimize(self,w,dw): return w - np.sign(dw) * self.lr #classical gradient descent algorithm class OptimizerSGD(Optimizer): lr = 0.01 def optimize(self,w,dw): return w - dw * self.lr # Momentum from https://cs231n.github.io/neural-networks-3/#sgd # simplification of below Ng momentum, (avoid one mult) class OptimizerMomentum(Optimizer): lr = 0.01 # is 0.1*(1-momentum) momentum = 0.9 init = False def optimize(self,w,dw): if not self.init: self.v = dw self.init = True self.v = self.v * self.momentum + dw * self.lr return w - self.v # Andrew Ng definition of momentum class OptimizerMomentumNg(Optimizer): lr = 0.1 # can be high since gradient is smoothed momentum = 0.9 init = False def optimize(self,w,dw): if not self.init: self.v = dw self.init = True self.v = self.v * self.momentum + dw * (1.-self.momentum) #recursive averaging return w - self.v*self.lr # sgd update step with smoothed gradient # Nesterov from https://cs231n.github.io/neural-networks-3/#sgd class OptimizerNesterov(Optimizer): lr = 0.01 momentum = 0.9 init = False def optimize(self,w,dw): if not self.init: self.v = 0. * w self.init = True v_prev = self.v # back this up self.v = self.momentum * self.v - self.lr * dw # velocity update stays the same w += -self.momentum * v_prev + (1. + self.momentum) * self.v # position update changes form return w # RPROP- as in : https://pdfs.semanticscholar.org/df9c/6a3843d54a28138a596acc85a96367a064c2.pdf # or in paper : Improving the Rprop Learning Algorithm (<NAME> and <NAME>) class OptimizerRPROPm(Optimizer): init = False def optimize(self,w,dw): if not self.init: self.mu = 0.0125 *
np.ones(w.shape)
numpy.ones
""" Compare preformance of methods within certain running time. Author(s): <NAME> (<EMAIL>) """ import argparse import os import itertools import numpy as np import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 18}) if __name__ == "__main__": # Arguments parser = argparse.ArgumentParser(description='Optimize') parser.add_argument('--n_runs', type=int, default=10, help='number of runs') parser.add_argument('--n_eval', type=int, default=500, help='number of evaluations per run') args = parser.parse_args() n_runs = args.n_runs n_eval = args.n_eval ''' Call optimization ''' for latent_dim in [2, 4, 6, 8, 10]: if not os.path.exists('./results_opt/gan_bo_refine_{}_10/opt_history.npy'.format(latent_dim)) or not os.path.exists('./results_opt/gan_bo_refine_{}_10/opt_airfoil.npy'.format(latent_dim)): os.system('python optimize_gan_bo_refine.py {} 10 --n_runs={} --n_eval={}'.format(latent_dim, args.n_runs, args.n_eval)) if not os.path.exists('./results_opt/gan_bo_8_0/opt_history.npy') or not os.path.exists('./results_opt/gan_bo_8_0/opt_airfoil.npy'): os.system('python optimize_gan_bo.py 8 0 --n_runs={} --n_eval={}'.format(args.n_runs, args.n_eval)) if not os.path.exists('./results_opt/gan_bo_refine_8_20/opt_history.npy') or not os.path.exists('./results_opt/gan_bo_refine_8_20/opt_airfoil.npy'): os.system('python optimize_gan_bo_refine.py 8 20 --n_runs={} --n_eval={}'.format(args.n_runs, args.n_eval)) for latent_dim in [2, 4, 6, 8, 10]: if not os.path.exists('./results_opt/gan_bo_{}_10/opt_history.npy'.format(latent_dim)) or not os.path.exists('./results_opt/gan_bo_{}_10/opt_airfoil.npy'.format(latent_dim)): os.system('python optimize_gan_bo.py {} 10 --n_runs={} --n_eval={}'.format(latent_dim, args.n_runs, args.n_eval)) for dim in [6, 8, 10, 12]: if not os.path.exists('./results_opt/generic_bo_{}/opt_history.npy'.format(dim)) or not os.path.exists('./results_opt/generic_bo_{}/opt_airfoil.npy'.format(dim)): os.system('python optimize_generic_bo.py {} --n_runs={} --n_eval={}'.format(dim, args.n_runs, args.n_eval)) if not os.path.exists('./results_opt/generic_ga_8/opt_history.npy') or not os.path.exists('./results_opt/generic_ga_8/opt_airfoil.npy'): os.system('python optimize_generic_ga.py 8 --n_runs={} --n_eval={}'.format(args.n_runs, args.n_eval)) for dim in [8, 9, 10]: if not os.path.exists('./results_opt/svd_bo_{}/opt_history.npy'.format(dim)) or not os.path.exists('./results_opt/svd_bo_{}/opt_airfoil.npy'.format(dim)): os.system('python optimize_svd_bo.py {} --n_runs={} --n_eval={}'.format(dim, args.n_runs, args.n_eval)) if not os.path.exists('./results_opt/svd_ga_9/opt_history.npy') or not os.path.exists('./results_opt/svd_ga_9/opt_airfoil.npy'): os.system('python optimize_svd_ga.py 9 --n_runs={} --n_eval={}'.format(args.n_runs, args.n_eval)) if not os.path.exists('./results_opt/nurbs_bo/opt_history.npy') or not os.path.exists('./results_opt/nurbs_bo/opt_airfoil.npy'): os.system('python optimize_nurbs_bo.py --n_runs={} --n_eval={}'.format(args.n_runs, args.n_eval)) if not os.path.exists('./results_opt/nurbs_ga/opt_history.npy') or not os.path.exists('./results_opt/nurbs_ga/opt_airfoil.npy'): os.system('python optimize_nurbs_ga.py --n_runs={} --n_eval={}'.format(args.n_runs, args.n_eval)) if not os.path.exists('./results_opt/ffd_bo/opt_history.npy') or not os.path.exists('./results_opt/ffd_bo/opt_airfoil.npy'): os.system('python optimize_ffd_bo.py --n_runs={} --n_eval={}'.format(args.n_runs, args.n_eval)) if not os.path.exists('./results_opt/ffd_ga/opt_history.npy') or not os.path.exists('./results_opt/ffd_ga/opt_airfoil.npy'): os.system('python optimize_ffd_ga.py --n_runs={} --n_eval={}'.format(args.n_runs, args.n_eval)) ''' Plot history ''' gan_bo_2_10_hist = np.load('results_opt/gan_bo_2_10/opt_history.npy') gan_bo_4_10_hist = np.load('results_opt/gan_bo_4_10/opt_history.npy') gan_bo_6_10_hist = np.load('results_opt/gan_bo_6_10/opt_history.npy') gan_bo_8_10_hist = np.load('results_opt/gan_bo_8_10/opt_history.npy') gan_bo_10_10_hist = np.load('results_opt/gan_bo_10_10/opt_history.npy') gan_bo_refine_2_10_hist = np.load('results_opt/gan_bo_refine_2_10/opt_history.npy') gan_bo_refine_4_10_hist = np.load('results_opt/gan_bo_refine_4_10/opt_history.npy') gan_bo_refine_6_10_hist = np.load('results_opt/gan_bo_refine_6_10/opt_history.npy') gan_bo_refine_8_10_hist = np.load('results_opt/gan_bo_refine_8_10/opt_history.npy') gan_bo_refine_10_10_hist = np.load('results_opt/gan_bo_refine_10_10/opt_history.npy') gan_bo_8_0_hist = np.load('results_opt/gan_bo_8_0/opt_history.npy') gan_bo_refine_8_20_hist = np.load('results_opt/gan_bo_refine_8_20/opt_history.npy') generic_bo_6_hist = np.load('results_opt/generic_bo_6/opt_history.npy') generic_bo_8_hist = np.load('results_opt/generic_bo_8/opt_history.npy') generic_bo_10_hist = np.load('results_opt/generic_bo_10/opt_history.npy') generic_bo_12_hist = np.load('results_opt/generic_bo_12/opt_history.npy') generic_ga_8_hist = np.load('results_opt/generic_ga_8/opt_history.npy') svd_bo_8_hist = np.load('results_opt/svd_bo_8/opt_history.npy') svd_bo_9_hist = np.load('results_opt/svd_bo_9/opt_history.npy') svd_bo_10_hist = np.load('results_opt/svd_bo_10/opt_history.npy') svd_ga_9_hist = np.load('results_opt/svd_ga_9/opt_history.npy') nurbs_bo_hist = np.load('results_opt/nurbs_bo/opt_history.npy') nurbs_ga_hist = np.load('results_opt/nurbs_ga/opt_history.npy') ffd_bo_hist = np.load('results_opt/ffd_bo/opt_history.npy') ffd_ga_hist = np.load('results_opt/ffd_ga/opt_history.npy') mean_gan_bo_2_10_hist = np.mean(gan_bo_2_10_hist, axis=0) std_gan_bo_2_10_hist = np.std(gan_bo_2_10_hist, axis=0) mean_gan_bo_4_10_hist = np.mean(gan_bo_4_10_hist, axis=0) std_gan_bo_4_10_hist = np.std(gan_bo_4_10_hist, axis=0) mean_gan_bo_6_10_hist = np.mean(gan_bo_6_10_hist, axis=0) std_gan_bo_6_10_hist = np.std(gan_bo_6_10_hist, axis=0) mean_gan_bo_8_10_hist = np.mean(gan_bo_8_10_hist, axis=0) std_gan_bo_8_10_hist = np.std(gan_bo_8_10_hist, axis=0) mean_gan_bo_10_10_hist = np.mean(gan_bo_10_10_hist, axis=0) std_gan_bo_10_10_hist = np.std(gan_bo_10_10_hist, axis=0) mean_gan_bo_refine_2_10_hist = np.mean(gan_bo_refine_2_10_hist, axis=0) std_gan_bo_refine_2_10_hist = np.std(gan_bo_refine_2_10_hist, axis=0) mean_gan_bo_refine_4_10_hist = np.mean(gan_bo_refine_4_10_hist, axis=0) std_gan_bo_refine_4_10_hist = np.std(gan_bo_refine_4_10_hist, axis=0) mean_gan_bo_refine_6_10_hist = np.mean(gan_bo_refine_6_10_hist, axis=0) std_gan_bo_refine_6_10_hist = np.std(gan_bo_refine_6_10_hist, axis=0) mean_gan_bo_refine_8_10_hist = np.mean(gan_bo_refine_8_10_hist, axis=0) std_gan_bo_refine_8_10_hist = np.std(gan_bo_refine_8_10_hist, axis=0) mean_gan_bo_refine_10_10_hist = np.mean(gan_bo_refine_10_10_hist, axis=0) std_gan_bo_refine_10_10_hist = np.std(gan_bo_refine_10_10_hist, axis=0) mean_gan_bo_8_0_hist = np.mean(gan_bo_8_0_hist, axis=0) std_gan_bo_8_0_hist = np.std(gan_bo_8_0_hist, axis=0) mean_gan_bo_refine_8_20_hist = np.mean(gan_bo_refine_8_20_hist, axis=0) std_gan_bo_refine_8_20_hist = np.std(gan_bo_refine_8_20_hist, axis=0) mean_generic_bo_6_hist = np.mean(generic_bo_6_hist, axis=0) std_generic_bo_6_hist = np.std(generic_bo_6_hist, axis=0) mean_generic_bo_8_hist = np.mean(generic_bo_8_hist, axis=0) std_generic_bo_8_hist = np.std(generic_bo_8_hist, axis=0) mean_generic_bo_10_hist = np.mean(generic_bo_10_hist, axis=0) std_generic_bo_10_hist = np.std(generic_bo_10_hist, axis=0) mean_generic_bo_12_hist = np.mean(generic_bo_12_hist, axis=0) std_generic_bo_12_hist = np.std(generic_bo_12_hist, axis=0) mean_generic_ga_8_hist = np.mean(generic_ga_8_hist, axis=0) std_generic_ga_8_hist = np.std(generic_ga_8_hist, axis=0) mean_svd_bo_8_hist = np.mean(svd_bo_8_hist, axis=0) std_svd_bo_8_hist = np.std(svd_bo_8_hist, axis=0) mean_svd_bo_9_hist = np.mean(svd_bo_9_hist, axis=0) std_svd_bo_9_hist = np.std(svd_bo_9_hist, axis=0) mean_svd_bo_10_hist = np.mean(svd_bo_10_hist, axis=0) std_svd_bo_10_hist = np.std(svd_bo_10_hist, axis=0) mean_svd_ga_9_hist = np.mean(svd_ga_9_hist, axis=0) std_svd_ga_9_hist = np.std(svd_ga_9_hist, axis=0) mean_nurbs_bo_hist = np.mean(nurbs_bo_hist, axis=0) std_nurbs_bo_hist = np.std(nurbs_bo_hist, axis=0) mean_nurbs_ga_hist = np.mean(nurbs_ga_hist, axis=0) std_nurbs_ga_hist = np.std(nurbs_ga_hist, axis=0) mean_ffd_bo_hist = np.mean(ffd_bo_hist, axis=0) std_ffd_bo_hist = np.std(ffd_bo_hist, axis=0) mean_ffd_ga_hist = np.mean(ffd_ga_hist, axis=0) std_ffd_ga_hist = np.std(ffd_ga_hist, axis=0) linestyles = ['-', '--', ':', '-.', (0, (5,1,1,1,1,1)), (0, (1,4))] lss = itertools.cycle(linestyles) iters = np.arange(n_eval+1, dtype=int) diff_2 = gan_bo_refine_2_10_hist - gan_bo_2_10_hist mean_diff_2 = np.mean(diff_2, axis=0) std_diff_2 = np.std(diff_2, axis=0) diff_4 = gan_bo_refine_4_10_hist - gan_bo_4_10_hist mean_diff_4 = np.mean(diff_4, axis=0) std_diff_4 = np.std(diff_4, axis=0) diff_6 = gan_bo_refine_6_10_hist - gan_bo_6_10_hist mean_diff_6 = np.mean(diff_6, axis=0) std_diff_6 = np.std(diff_6, axis=0) diff_8 = gan_bo_refine_8_10_hist - gan_bo_8_10_hist mean_diff_8 = np.mean(diff_8, axis=0) std_diff_8 = np.std(diff_8, axis=0) diff_10 = gan_bo_refine_10_10_hist - gan_bo_10_10_hist mean_diff_10 = np.mean(diff_10, axis=0) std_diff_10 = np.std(diff_10, axis=0) plt.figure(figsize=(10,5)) plt.plot(iters, mean_gan_bo_6_10_hist, ls=next(lss), label='OSO', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_6_10_hist-std_gan_bo_6_10_hist, mean_gan_bo_6_10_hist+std_gan_bo_6_10_hist, alpha=.2, color='0.6') plt.plot(iters, mean_gan_bo_refine_6_10_hist, ls=next(lss), label='TSO', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_refine_6_10_hist-std_gan_bo_refine_6_10_hist, mean_gan_bo_refine_6_10_hist+std_gan_bo_refine_6_10_hist, alpha=.2, color='0.6') plt.legend(frameon=False, title='Latent dim.') plt.title('Performance History') plt.xlabel('Number of Evaluations') plt.ylabel(r'$C_L/C_D$') # plt.xticks(np.linspace(0, max_n_eval+1, 5, dtype=int)) plt.tight_layout() plt.savefig('results_opt/opt_history_refine_6.svg') plt.savefig('results_opt/opt_history_refine_6.pdf', dpi=600) plt.close() list_latent_dim = [2, 4, 6, 8, 10] list_mean = [mean_gan_bo_2_10_hist[-1], mean_gan_bo_4_10_hist[-1], mean_gan_bo_6_10_hist[-1], mean_gan_bo_8_10_hist[-1], mean_gan_bo_10_10_hist[-1]] list_std = [std_gan_bo_2_10_hist[-1], std_gan_bo_4_10_hist[-1], std_gan_bo_6_10_hist[-1], std_gan_bo_8_10_hist[-1], std_gan_bo_10_10_hist[-1]] list_mean_refine = [mean_gan_bo_refine_2_10_hist[-1], mean_gan_bo_refine_4_10_hist[-1], mean_gan_bo_refine_6_10_hist[-1], mean_gan_bo_refine_8_10_hist[-1], mean_gan_bo_refine_10_10_hist[-1]] list_std_refine = [std_gan_bo_refine_2_10_hist[-1], std_gan_bo_refine_4_10_hist[-1], std_gan_bo_refine_6_10_hist[-1], std_gan_bo_refine_8_10_hist[-1], std_gan_bo_refine_10_10_hist[-1]] plt.figure(figsize=(5,5)) plt.bar(np.array(list_latent_dim)-.3, list_mean, width=.6, yerr=list_std, label='One-stage opt.', color='0.7') plt.bar(np.array(list_latent_dim)+.3, list_mean_refine, width=.6, yerr=list_std_refine, label='Two-stage opt.', color='0.3') plt.legend(frameon=False) plt.ylim([50, 350]) plt.xticks(list_latent_dim) plt.xlabel('Latent dimension') plt.ylabel(r'Max. $C_L/C_D$') plt.tight_layout() plt.savefig('results_opt/opt_refine.svg') plt.savefig('results_opt/opt_refine.pdf', dpi=600) plt.close() lss = itertools.cycle(linestyles) plt.figure(figsize=(7,5)) plt.plot(iters, mean_diff_2, ls=next(lss), label='2', c='k', alpha=.7) plt.fill_between(iters, mean_diff_2-std_diff_2, mean_diff_2+std_diff_2, alpha=.2, color='0.6') # plt.plot(iters, mean_diff_4, ls=next(lss), label='4', c='k', alpha=.7) # plt.fill_between(iters, mean_diff_4-std_diff_4, mean_diff_4+std_diff_4, alpha=.2, color='0.6') # plt.plot(iters, mean_diff_6, ls=next(lss), label='6', c='k', alpha=.7) # plt.fill_between(iters, mean_diff_6-std_diff_6, mean_diff_6+std_diff_6, alpha=.2, color='0.6') plt.plot(iters, mean_diff_8, ls=next(lss), label='8', c='k', alpha=.7) plt.fill_between(iters, mean_diff_8-std_diff_8, mean_diff_8+std_diff_8, alpha=.2, color='0.6') # plt.plot(iters, mean_diff_10, ls=next(lss), label='10', c='k', alpha=.7) # plt.fill_between(iters, mean_diff_10-std_diff_10, mean_diff_10+std_diff_10, alpha=.2, color='0.6') plt.axhline(y=0., color='r', ls=next(lss), alpha=.7) plt.legend(frameon=False, title='Latent dim.') plt.title('Performance Improvement History') plt.xlabel('Number of Evaluations') plt.ylabel(r'$\Delta$ ($C_L/C_D$)') # plt.xticks(np.linspace(0, max_n_eval+1, 5, dtype=int)) plt.tight_layout() plt.savefig('results_opt/opt_history_refine.svg') plt.savefig('results_opt/opt_history_refine.pdf', dpi=600) plt.close() lss = itertools.cycle(linestyles) plt.figure(figsize=(10,5)) plt.plot(iters, mean_gan_bo_refine_8_10_hist, ls=next(lss), label=r'B$\acute{e}$zier-GAN+TSO', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_refine_8_10_hist-std_gan_bo_refine_8_10_hist, mean_gan_bo_refine_8_10_hist+std_gan_bo_refine_8_10_hist, alpha=.2, color='0.6') plt.plot(iters, mean_generic_bo_8_hist, ls=next(lss), label='GMDV+EGO', c='k', alpha=.7) plt.fill_between(iters, mean_generic_bo_8_hist-std_generic_bo_8_hist, mean_generic_bo_8_hist+std_generic_bo_8_hist, alpha=.2, color='0.6') # plt.plot(iters, mean_generic_ga_8_hist, ls=next(lss), label='GMDV+GA') # plt.fill_between(iters, mean_generic_ga_8_hist-std_generic_ga_8_hist, mean_generic_ga_8_hist+std_generic_ga_8_hist, alpha=.2, color='0.6') plt.plot(iters, mean_svd_bo_9_hist, ls=next(lss), label='SVD+EGO', c='k', alpha=.7) plt.fill_between(iters, mean_svd_bo_9_hist-std_svd_bo_9_hist, mean_svd_bo_9_hist+std_svd_bo_9_hist, alpha=.2, color='0.6') # plt.plot(iters, mean_svd_ga_9_hist, ls=next(lss), label='SVD+GA', c='k', alpha=.7) # plt.fill_between(iters, mean_svd_ga_9_hist-std_svd_ga_9_hist, mean_svd_ga_9_hist+std_svd_ga_9_hist, alpha=.2, color='0.6') plt.plot(iters, mean_ffd_bo_hist, ls=next(lss), label='FFD+EGO', c='k', alpha=.7) plt.fill_between(iters, mean_ffd_bo_hist-std_ffd_bo_hist, mean_ffd_bo_hist+std_ffd_bo_hist, alpha=.2, color='0.6') plt.plot(iters, mean_ffd_ga_hist, ls=next(lss), label='FFD+GA', c='k', alpha=.7) plt.fill_between(iters, mean_ffd_ga_hist-std_ffd_ga_hist, mean_ffd_ga_hist+std_ffd_ga_hist, alpha=.2, color='0.6') plt.legend(frameon=False) plt.title('Optimization History') plt.xlabel('Number of Evaluations') plt.ylabel(r'$C_L/C_D$') plt.ylim(ymax=300) # plt.xticks(np.linspace(0, max_n_eval+1, 5, dtype=int)) plt.tight_layout() plt.savefig('results_opt/opt_history_conventional.svg') plt.savefig('results_opt/opt_history_conventional.pdf', dpi=600) plt.close() lss = itertools.cycle(linestyles) plt.figure(figsize=(10,5)) plt.plot(iters, mean_gan_bo_refine_2_10_hist, ls=next(lss), label='2', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_refine_2_10_hist-std_gan_bo_refine_2_10_hist, mean_gan_bo_refine_2_10_hist+std_gan_bo_refine_2_10_hist, alpha=.2, color='0.6') plt.plot(iters, mean_gan_bo_refine_4_10_hist, ls=next(lss), label='4', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_refine_4_10_hist-std_gan_bo_refine_4_10_hist, mean_gan_bo_refine_4_10_hist+std_gan_bo_refine_4_10_hist, alpha=.2, color='0.6') plt.plot(iters, mean_gan_bo_refine_6_10_hist, ls=next(lss), label='6', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_refine_6_10_hist-std_gan_bo_refine_6_10_hist, mean_gan_bo_refine_6_10_hist+std_gan_bo_refine_6_10_hist, alpha=.2, color='0.6') plt.plot(iters, mean_gan_bo_refine_8_10_hist, ls=next(lss), label='8', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_refine_8_10_hist-std_gan_bo_refine_8_10_hist, mean_gan_bo_refine_8_10_hist+std_gan_bo_refine_8_10_hist, alpha=.2, color='0.6') plt.plot(iters, mean_gan_bo_refine_10_10_hist, ls=next(lss), label='10', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_refine_10_10_hist-std_gan_bo_refine_10_10_hist, mean_gan_bo_refine_10_10_hist+std_gan_bo_refine_10_10_hist, alpha=.2, color='0.6') plt.legend(frameon=False, title='Latent dim.') plt.title('Optimization History') plt.xlabel('Number of Evaluations') plt.ylabel(r'$C_L/C_D$') plt.ylim(ymax=300) # plt.xticks(np.linspace(0, max_n_eval+1, 5, dtype=int)) plt.tight_layout() plt.savefig('results_opt/opt_history_latent.svg') plt.savefig('results_opt/opt_history_latent.pdf', dpi=600) plt.close() lss = itertools.cycle(linestyles) plt.figure(figsize=(10,5)) plt.plot(iters, mean_gan_bo_8_0_hist, ls=next(lss), label='0', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_8_0_hist-std_gan_bo_8_0_hist, mean_gan_bo_8_0_hist+std_gan_bo_8_0_hist, alpha=.2, color='0.6') plt.plot(iters, mean_gan_bo_refine_8_10_hist, ls=next(lss), label='10', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_refine_8_10_hist-std_gan_bo_refine_8_10_hist, mean_gan_bo_refine_8_10_hist+std_gan_bo_refine_8_10_hist, alpha=.2, color='0.6') plt.plot(iters, mean_gan_bo_refine_8_20_hist, ls=next(lss), label='20', c='k', alpha=.7) plt.fill_between(iters, mean_gan_bo_refine_8_20_hist-std_gan_bo_refine_8_20_hist, mean_gan_bo_refine_8_20_hist+std_gan_bo_refine_8_20_hist, alpha=.2, color='0.6') plt.legend(frameon=False, title='Noise dim.') plt.title('Optimization History') plt.xlabel('Number of Evaluations') plt.ylabel(r'$C_L/C_D$') plt.ylim(ymax=300) # plt.xticks(np.linspace(0, max_n_eval+1, 5, dtype=int)) plt.tight_layout() plt.savefig('results_opt/opt_history_noise.svg') plt.savefig('results_opt/opt_history_noise.pdf', dpi=600) plt.close() ''' Plot optimal solutions ''' gan_bo_4_10_opt = np.load('results_opt/gan_bo_4_10/opt_airfoil.npy') gan_bo_refine_2_10_opt = np.load('results_opt/gan_bo_refine_2_10/opt_airfoil.npy') gan_bo_refine_4_10_opt = np.load('results_opt/gan_bo_refine_4_10/opt_airfoil.npy') gan_bo_refine_6_10_opt = np.load('results_opt/gan_bo_refine_6_10/opt_airfoil.npy') gan_bo_refine_8_10_opt = np.load('results_opt/gan_bo_refine_8_10/opt_airfoil.npy') gan_bo_refine_10_10_opt = np.load('results_opt/gan_bo_refine_10_10/opt_airfoil.npy') gan_bo_8_0_opt = np.load('results_opt/gan_bo_8_0/opt_airfoil.npy') gan_bo_refine_8_10_opt = np.load('results_opt/gan_bo_refine_8_10/opt_airfoil.npy') gan_bo_refine_8_20_opt = np.load('results_opt/gan_bo_refine_8_20/opt_airfoil.npy') generic_bo_8_opt = np.load('results_opt/generic_bo_8/opt_airfoil.npy') generic_ga_8_opt =
np.load('results_opt/generic_ga_8/opt_airfoil.npy')
numpy.load
import numpy as np import os import matplotlib.pyplot as plt import sklearn.datasets as skld import sklearn.model_selection as sklms import sklearn.ensemble as skle from bayeso import bo from bayeso.utils import utils_bo from bayeso.utils import utils_common from bayeso.utils import utils_plotting from bayeso import constants STR_FUN_TARGET = 'real1' INT_BO = 20 INT_ITER = 50 INT_INIT = 3 data = skld.fetch_olivetti_faces() images = data.images targets = data.target print(images.shape) print(targets.shape) X_train, X_test, y_train, y_test = sklms.train_test_split(images, targets, test_size=0.2, random_state=42, stratify=targets) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1] * X_train.shape[2])) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1] * X_test.shape[2])) def fun_target(X): print(X) model_ = skle.RandomForestClassifier(n_estimators=int(X[0]), max_depth=int(X[1]), min_samples_split=int(X[2]), max_features=float(X[3]), random_state=42) model_.fit(X_train, y_train) y_pred = model_.predict(X_test) score_ = 1.0 - np.mean(y_pred == y_test) print(score_) return score_ def main(str_optimizer_method_gp, str_mlm_method, str_ms_method, int_bo, int_iter, int_init): bounds = np.array([ [10, 100], [2.01, 5], [2.01, 6], [0.001, 1], ]) list_Y = [] list_time = [] for ind_bo in range(0, int_bo): print('BO Iteration', ind_bo) model_bo = bo.BO(bounds, str_optimizer_method_gp=str_optimizer_method_gp, debug=False) X_final, Y_final, time_final = utils_bo.optimize_many_with_random_init(model_bo, fun_target, int_init, int_iter, str_initial_method_bo='uniform', str_initial_method_ao='uniform', int_samples_ao=100, str_mlm_method=str_mlm_method, str_modelselection_method=str_ms_method, int_seed=77*(ind_bo+1)) list_Y.append(Y_final) list_time.append(time_final) arr_Y = np.array(list_Y) if int_bo == 1: arr_Y = np.expand_dims(
np.squeeze(arr_Y)
numpy.squeeze
from __future__ import print_function import numpy as NP """ A module which implements the continuous wavelet transform --------------------------------------------------------- Code released under the BSD 3-clause licence. Copyright (c) 2012, <NAME>, University of Cape Town All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of Cape Town nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------- Wavelet classes: Morlet MorletReal MexicanHat Paul2 : Paul order 2 Paul4 : Paul order 4 DOG1 : 1st Derivative Of Gaussian DOG4 : 4th Derivative Of Gaussian Haar : Unnormalised version of continuous Haar transform HaarW : Normalised Haar Usage e.g. wavelet=Morlet(data, largestscale=2, notes=0, order=2, scaling="log") data: Numeric array of data (float), with length ndata. Optimum length is a power of 2 (for FFT) Worst-case length is a prime largestscale: largest scale as inverse fraction of length scale = len(data)/largestscale smallest scale should be >= 2 for meaningful data notes: number of scale intervals per octave if notes == 0, scales are on a linear increment order: order of wavelet for wavelets with variable order [Paul, DOG, ..] scaling: "linear" or "log" scaling of the wavelet scale. Note that feature width in the scale direction is constant on a log scale. Attributes of instance: wavelet.cwt: 2-d array of Wavelet coefficients, (nscales,ndata) wavelet.nscale: Number of scale intervals wavelet.scales: Array of scale values Note that meaning of the scale will depend on the family wavelet.fourierwl: Factor to multiply scale by to get scale of equivalent FFT Using this factor, different wavelet families will have comparable scales References: A practical guide to wavelet analysis C Torrance and GP Compo Bull Amer Meteor Soc Vol 79 No 1 61-78 (1998) naming below vaguely follows this. updates: (24/2/07): Fix Morlet so can get MorletReal by cutting out H (10/04/08): Numeric -> numpy (25/07/08): log and lin scale increment in same direction! swap indices in 2-d coeffiecient matrix explicit scaling of scale axis """ class Cwt: """ Base class for continuous wavelet transforms Implements cwt via the Fourier transform Used by subclass which provides the method wf(self,s_omega) wf is the Fourier transform of the wavelet function. Returns an instance. """ fourierwl=1.00 def _log2(self, x): # utility function to return (integer) log2 return int( NP.log(float(x))/ NP.log(2.0)+0.0001 ) def __init__(self, data, largestscale=1, notes=0, order=2, scaling='linear'): """ Continuous wavelet transform of data data: data in array to transform, length must be power of 2 notes: number of scale intervals per octave largestscale: largest scale as inverse fraction of length of data array scale = len(data)/largestscale smallest scale should be >= 2 for meaningful data order: Order of wavelet basis function for some families scaling: Linear or log """ ndata = len(data) self.order=order self.scale=largestscale self._setscales(ndata,largestscale,notes,scaling) self.cwt= NP.zeros((self.nscale,ndata), NP.complex64) omega= NP.array(range(0,ndata/2)+range(-ndata/2,0))*(2.0*NP.pi/ndata) datahat=NP.fft.fft(data) self.fftdata=datahat #self.psihat0=self.wf(omega*self.scales[3*self.nscale/4]) # loop over scales and compute wvelet coeffiecients at each scale # using the fft to do the convolution for scaleindex in range(self.nscale): currentscale=self.scales[scaleindex] self.currentscale=currentscale # for internal use s_omega = omega*currentscale psihat=self.wf(s_omega) psihat = psihat * NP.sqrt(2.0*NP.pi*currentscale) convhat = psihat * datahat W = NP.fft.ifft(convhat) self.cwt[scaleindex,0:ndata] = W return def _setscales(self,ndata,largestscale,notes,scaling): """ if notes non-zero, returns a log scale based on notes per ocave else a linear scale (25/07/08): fix notes!=0 case so smallest scale at [0] """ if scaling=="log": if notes<=0: notes=1 # adjust nscale so smallest scale is 2 noctave=self._log2( ndata/largestscale/2 ) self.nscale=notes*noctave #print self.nscale self.scales=NP.zeros(self.nscale,float) for j in range(self.nscale): self.scales[j] = ndata/(self.scale*(2.0**(float(self.nscale-j)/notes))) #self.scales[j] = ndata/(self.scale*(2.0**(float(self.nscale-1-j)/notes))) elif scaling=="linear": nmax=ndata/largestscale/2 self.scales=NP.arange(float(2),float(nmax)) self.nscale=len(self.scales) else: raise ValueError("scaling must be linear or log") return def getdata(self): """ returns wavelet coefficient array """ return self.cwt def getcoefficients(self): return self.cwt def getpower(self): """ returns square of wavelet coefficient array """ return (self.cwt* NP.conjugate(self.cwt)).real def getscales(self): """ returns array containing scales used in transform """ return self.scales def getnscale(self): """ return number of scales """ return self.nscale # wavelet classes class Morlet(Cwt): """ Morlet wavelet """ _omega0=5.0 fourierwl=4* NP.pi/(_omega0+ NP.sqrt(2.0+_omega0**2)) def wf(self, s_omega): H= NP.ones(len(s_omega)) n=len(s_omega) for i in range(len(s_omega)): if s_omega[i] < 0.0: H[i]=0.0 # !!!! note : was s_omega/8 before 17/6/03 #xhat=0.75112554*( NP.exp(-(s_omega-self._omega0)**2/2.0))*H xhat=0.75112554*( NP.exp(-(s_omega-self.order)**2/2.0))*H return xhat class MorletReal(Cwt): """ Real Morlet wavelet """ _omega0=5.0 fourierwl=4* NP.pi/(_omega0+ NP.sqrt(2.0+_omega0**2)) def wf(self, s_omega): H= NP.ones(len(s_omega)) n=len(s_omega) for i in range(len(s_omega)): if s_omega[i] < 0.0: H[i]=0.0 # !!!! note : was s_omega/8 before 17/6/03 xhat=0.75112554*( NP.exp(-(s_omega-self._omega0)**2/2.0)+ NP.exp(-(s_omega+self._omega0)**2/2.0)- NP.exp(-(self._omega0)**2/2.0)+ NP.exp(-(self._omega0)**2/2.0)) return xhat class Paul4(Cwt): """ Paul m=4 wavelet """ fourierwl=4* NP.pi/(2.*4+1.) def wf(self, s_omega): n=len(s_omega) xhat= NP.zeros(n) xhat[0:n/2]=0.11268723*s_omega[0:n/2]**4* NP.exp(-s_omega[0:n/2]) #return 0.11268723*s_omega**2*exp(-s_omega)*H return xhat class Paul2(Cwt): """ Paul m=2 wavelet """ fourierwl=4* NP.pi/(2.*2+1.) def wf(self, s_omega): n=len(s_omega) xhat= NP.zeros(n) xhat[0:n/2]=1.1547005*s_omega[0:n/2]**2*
NP.exp(-s_omega[0:n/2])
numpy.exp
"""Unittests for imes4d""" import unittest from imes4d.utils import translation_transformation, rigid_transformation, affine_transformation, ransac from imes4d.utils import create_dummy_data, blend_volumes, _calc_new_bounds from imes4d.PyrLK3D import PyrLK3D import numpy as np class ImesTest(unittest.TestCase): """Unittests for imes4d""" def test_pyr_lk_3d(self): shift = np.random.rand(3)-0.5 * 20 trans = np.eye(4) trans[:3, 3] = shift a, b = create_dummy_data((128, 128, 128), trans=trans) prev_pts = PyrLK3D.harris_corner_3d(a) lk = PyrLK3D(a, b, prev_pts) flow, _, _ = lk.calc_flow() self.assertLess(np.linalg.norm(shift - np.mean(flow, axis=0)), 5e-2) def test_translation_transformation(self): # generate random transformation trans = np.eye(4) trans[:3, 3] = np.random.rand(3) # generate point set and apply transformation a = np.concatenate((np.random.rand(100, 3), np.ones((100, 1))), axis=1) b = np.matmul(trans, a.T).T # calculate transformation t = translation_transformation(a, b) # check for equality with tolerance self.assertTrue(np.allclose(t, trans), "t not trans") def test_rigid_transformation(self): # generate random transformation trans = np.eye(4) a = np.random.rand() * np.pi trans[0, 0] = np.cos(a) trans[0, 1] = -np.sin(a) trans[1, 0] = np.sin(a) trans[1, 1] = np.cos(a) trans[2, 2] = 1 trans[:3, 3] = np.random.rand(3) # generate point set and apply transformation a = np.concatenate((np.random.rand(100, 3), np.ones((100, 1))), axis=1) b = np.matmul(trans, a.T).T # calculate transformation t = rigid_transformation(a, b) # check for equality with tolerance self.assertTrue(np.allclose(t, trans), "t not trans") def test_affine_transformation(self): # generate random data in homogeneous a = np.concatenate((np.random.rand(4, 3), np.ones((4, 1))), axis=1) # generate random transformation matrix trans = np.vstack((np.random.rand(3, 4), np.array([0, 0, 0, 1]))) b = np.matmul(trans, a.T).T # calculate transformation t = affine_transformation(a, b) # check for equality with tolerance self.assertTrue(np.allclose(t, trans), "t not trans") def test_ransac_rigid(self): # generate random transformation trans = np.eye(4) a = np.random.rand() * np.pi trans[0, 0] = np.cos(a) trans[0, 1] = -np.sin(a) trans[1, 0] = np.sin(a) trans[1, 1] = np.cos(a) trans[2, 2] = 1 trans[:3, 3] = np.random.rand(3) # generate point set and apply transformation a = np.concatenate((np.random.rand(100, 3), np.ones((100, 1))), axis=1) b = np.matmul(trans, a.T).T # add some outlier for _ in range(50): i = np.random.randint(0, b.shape[0]) b[i] = b[i] + 10 * np.random.rand() + 10 t, inlier_idx = ransac(a, b, 'rigid', inlier_threshold=0.25) self.assertTrue(np.allclose(t, trans), "t not trans") def test_blend_calc_bounds(self): shape = (128, 128, 128) shift = (np.random.rand(3)-0.5) * 20 trans = np.eye(4) trans[:3, 3] = shift bounds = np.zeros((8, 3)) bounds[0] =
np.array([0, 0, 0])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 17 15:32:46 2020 @author: jgb """ import numpy as np import matplotlib.pyplot as plt #https://www.ti.com/download/trng/docs/seminar/Topic_3_Lynch.pdf Vin = 12 Vout = 180 Iout = 0.01 Rout = Vout/Iout Fsw = 200e3 Tsw = 1/Fsw L = 47e-6 # Assume CCM to find critical inductance D = 1-(Vin/Vout) print("Dccm: {}".format(D)) Lmax = 1/2*(Vout-Vin)*(1-D)**2*Tsw/Iout print("Lmax: {} uH".format(Lmax*1e6)) # Now assuming DCM K = (2*L)/(Rout*Tsw) D =
np.linspace(0,1)
numpy.linspace
import numpy as np import mesh import mesh.plot.trimesh_viewer as mplot # visualize # Generate some data length = 10 # length of flagellum, um radius = 0.125 # flagellum radius long_grid = 30 # longitudal grid azimuth_grid = 8 xs =
np.linspace(-1, 1, long_grid)
numpy.linspace
""" A series of tools with which tidal data can be extracted from FVCOM NetCDF model results. Also provides a number of tools to interrogate the SQLite database of tidal data collated from a range of sources across the north-west European continental shelf. """ from __future__ import print_function import os import sys import numpy as np import scipy from lxml import etree from netCDF4 import Dataset, date2num from PyFVCOM.grid import find_nearest_point, unstructured_grid_depths from PyFVCOM.utilities.general import fix_range, warn from PyFVCOM.utilities.time import julian_day try: import sqlite3 use_sqlite = True except ImportError: warn('No sqlite standard library found in this python' ' installation. Some functions will be disabled.') use_sqlite = False class HarmonicOutput(object): """ Class to create a harmonic output file which creates variables for surface elevation and currents (both depth-averaged and depth-resolved). Will optionally save raw data and predicted time series too. """ def __init__(self, ncfile, fvcom, consts, files=None, predict=False, dump_raw=False): """ Create a new netCDF file for harmonic analysis output. Parameters ---------- ncfile : str Path to the netCDF to create. fvcom : PyFVCOM.read.FileReader Model data object. consts : list List of constituents used in the harmonic analysis. files : list, optional File names used to create the harmonic analysis for the metadata. predict : bool, optional Set to True to enable predicted variable creation (defaults to False). dump_raw : bool, optional Set to True to enable output of the raw data used to perform the harmonic analysis (defaults to False). """ # Things to do. self._predict = predict self._dump_raw = dump_raw # The output file self._ncfile = ncfile self._files = files self._ncopts = {'zlib': True, 'complevel': 7} self._consts = consts # The data arrays self._time = fvcom.time.datetime self._lon = fvcom.grid.lon self._lat = fvcom.grid.lat self._lonc = fvcom.grid.lonc self._latc = fvcom.grid.latc self._Times = fvcom.time.Times self._nv = fvcom.grid.nv self._h = fvcom.grid.h self._h_center = fvcom.grid.h_center self._siglay = fvcom.grid.siglay self._siglev = fvcom.grid.siglev # The dimensions self._nx = len(self._lon) self._ne = len(self._lonc) self._nz = self._siglay.shape[0] self._nzlev = self._siglev.shape[0] self._nt = self._Times.shape[0] self._nconsts = len(self._consts) # Make the netCDF and populate the initial values (grid and time). self._init_structure() self._populate_grid() # Sync what we've got to disk now. self.sync() def _init_structure(self): if self._nz == 0: # Space last self._node_siglay_dims = ['siglay', 'node'] self._node_siglev_dims = ['siglev', 'node'] self._three_nele_dims = ['three', 'nele'] self._nele_time_dims = ['time', 'nele'] self._nele_siglay_time_dims = ['time', 'siglay', 'nele'] self._node_time_dims = ['time', 'node'] self._nele_nconsts_dims = ['nconsts', 'nele'] self._nele_siglay_nconsts_dims = self._nele_consts_dims # single-layer only self._node_nconsts_dims = ['nconsts', 'node'] self._nele_coordinates = 'time latc lonc' self._nconsts_coordinates = 'nconsts lonc latc' else: # Space last self._node_siglay_dims = ['siglay', 'node'] self._node_siglev_dims = ['siglev', 'node'] self._three_nele_dims = ['three', 'nele'] self._nele_time_dims = ['time', 'nele'] self._nele_siglay_time_dims = ['time', 'siglay', 'nele'] self._node_time_dims = ['time', 'node'] self._nele_nconsts_dims = ['nconsts', 'nele'] self._nele_siglay_nconsts_dims = ['nconsts', 'siglay', 'nele'] # multi-layer self._node_nconsts_dims = ['nconsts', 'node'] self._nele_coordinates = 'time latc lonc' self._nconsts_coordinates = 'nconsts lonc latc' self._nc = Dataset(self._ncfile, 'w', format='NETCDF4', clobber=True) self._nc.createDimension('node', self._nx) self._nc.createDimension('nele', self._ne) if self._nz != 0: self._nc.createDimension('siglay', self._nz) self._nc.createDimension('siglev', self._nzlev) # Only create a Times variable if we're actually outputting any time dependent data. if self._dump_raw or self._predict: self._nc.createDimension('time', 0) self._nc.createDimension('nconsts', self._nconsts) self._nc.createDimension('three', 3) self._nc.createDimension('NameStrLen', 4) self._nc.createDimension('DateStrLen', 26) self._nc.setncattr('type', 'Harmonic analysis of elevation, u and v data') self._nc.setncattr('title', 'FVCOM model results harmonic analysis') self._nc.setncattr('author', '<NAME> (Plymouth Marine Laboratory)') self._nc.setncattr('history', 'File created using {}'.format(os.path.basename(sys.argv[0]))) if self._files: self._nc.setncattr('sources', 'Created from file(s): {}'.format(self._files)) self.lon = self._nc.createVariable('lon', 'f4', ['node'], **self._ncopts) self.lon.setncattr('units', 'degrees_east') self.lon.setncattr('long_name', 'nodal longitude') self.lon.setncattr('standard_name', 'longitude') self.lat = self._nc.createVariable('lat', 'f4', ['node'], **self._ncopts) self.lat.setncattr('units', 'degrees_north') self.lat.setncattr('long_name', 'nodal longitude') self.lat.setncattr('standard_name', 'longitude') self.lonc = self._nc.createVariable('lonc', 'f4', ['nele'], **self._ncopts) self.lonc.setncattr('units', 'degrees_east') self.lonc.setncattr('long_name', 'zonal longitude') self.lonc.setncattr('standard_name', 'longitude') self.latc = self._nc.createVariable('latc', 'f4', ['nele'], **self._ncopts) self.latc.setncattr('units', 'degrees_north') self.latc.setncattr('long_name', 'zonal longitude') self.latc.setncattr('standard_name', 'longitude') self.h = self._nc.createVariable('h', 'f4', ['node'], **self._ncopts) self.h.setncattr('long_name', 'Bathymetry') self.h.setncattr('standard_name', 'sea_floor_depth_below_geoid') self.h.setncattr('units', 'm') self.h.setncattr('positive', 'down') self.h.setncattr('grid', 'Bathymetry_Mesh') self.h.setncattr('coordinates', 'x y') self.h.setncattr('type', 'data') self.h_center = self._nc.createVariable('h_center', 'f4', ['nele'], **self._ncopts) self.h_center.setncattr('long_name', 'Bathymetry') self.h_center.setncattr('standard_name', 'sea_floor_depth_below_geoid') self.h_center.setncattr('units', 'm') self.h_center.setncattr('positive', 'down') self.h_center.setncattr('grid', 'grid1 grid3') self.h_center.setncattr('coordinates', 'latc lonc') self.h_center.setncattr('grid_location', 'center') self.siglay = self._nc.createVariable('siglay', 'f4', self._node_siglay_dims, **self._ncopts) self.siglay.setncattr('long_name', 'Sigma Layers') self.siglay.setncattr('standard_name', 'ocean_sigma/general_coordinate') self.siglay.setncattr('positive', 'up') self.siglay.setncattr('valid_min', -1.0) self.siglay.setncattr('valid_max', 0.0) self.siglay.setncattr('formula_terms', 'sigma: siglay eta: zeta depth: h') self.siglev = self._nc.createVariable('siglev', 'f4', self._node_siglev_dims, **self._ncopts) self.siglev.setncattr('long_name', 'Sigma Levels') self.siglev.setncattr('standard_name', 'ocean_sigma/general_coordinate') self.siglev.setncattr('positive', 'up') self.siglev.setncattr('valid_min', -1.0) self.siglev.setncattr('valid_max', 0.0) self.siglev.setncattr('formula_terms', 'sigma: siglay eta: zeta depth: h') self.nv = self._nc.createVariable('nv', 'f4', self._three_nele_dims, **self._ncopts) self.nv.setncattr('long_name', 'nodes surrounding element') if self._dump_raw or self._predict: self.Times = self._nc.createVariable('Times', 'c', ['time', 'DateStrLen'], **self._ncopts) self.Times.setncattr('time_zone', 'UTC') if self._dump_raw: self.ua_raw = self._nc.createVariable('ua_raw', 'f4', self._nele_time_dims, **self._ncopts) self.ua_raw.setncattr('long_name', 'Modelled Eastward Water Depth-averaged Velocity') self.ua_raw.setncattr('standard_name', 'fvcom_eastward_sea_water_velocity') self.ua_raw.setncattr('units', 'meters s-1') self.ua_raw.setncattr('grid', 'fvcom_grid') self.ua_raw.setncattr('type', 'data') self.ua_raw.setncattr('coordinates', self._nele_coordinates) self.ua_raw.setncattr('location', 'face') self.va_raw = self._nc.createVariable('va_raw', 'f4', self._nele_time_dims, **self._ncopts) self.va_raw.setncattr('long_name', 'Modelled Northward Water Depth-averaged Velocity') self.va_raw.setncattr('standard_name', 'fvcom_northward_sea_water_velocity') self.va_raw.setncattr('units', 'meters s-1') self.va_raw.setncattr('grid', 'fvcom_grid') self.va_raw.setncattr('type', 'data') self.va_raw.setncattr('coordinates', self._nele_coordinates) self.va_raw.setncattr('location', 'face') self.u_raw = self._nc.createVariable('u_raw', 'f4', self._nele_siglay_time_dims, **self._ncopts) self.u_raw.setncattr('long_name', 'Modelled Eastward Water Velocity') self.u_raw.setncattr('standard_name', 'fvcom_eastward_sea_water_velocity') self.u_raw.setncattr('units', 'meters s-1') self.u_raw.setncattr('grid', 'fvcom_grid') self.u_raw.setncattr('type', 'data') self.u_raw.setncattr('coordinates', self._nele_coordinates) self.u_raw.setncattr('location', 'face') self.v_raw = self._nc.createVariable('v_raw', 'f4', self._nele_siglay_time_dims, **self._ncopts) self.v_raw.setncattr('long_name', 'Modelled Northward Water Velocity') self.v_raw.setncattr('standard_name', 'fvcom_northward_sea_water_velocity') self.v_raw.setncattr('units', 'meters s-1') self.v_raw.setncattr('grid', 'fvcom_grid') self.v_raw.setncattr('type', 'data') self.v_raw.setncattr('coordinates', self._nele_coordinates) self.v_raw.setncattr('location', 'face') self.z_raw = self._nc.createVariable('z_raw', 'f4', self._node_time_dims, **self._ncopts) self.z_raw.setncattr('long_name', 'Modelled Surface Elevation') self.z_raw.setncattr('standard_name', 'fvcom_surface_elevation') self.z_raw.setncattr('units', 'meters') self.z_raw.setncattr('grid', 'fvcom_grid') self.z_raw.setncattr('type', 'data') self.z_raw.setncattr('coordinates', 'time lat lon') self.z_raw.setncattr('location', 'node') if self._predict: self.ua_pred = self._nc.createVariable('ua_pred', 'f4', self._nele_time_dims, **self._ncopts) self.ua_pred.setncattr('long_name', 'Predicted Eastward Water Depth-averaged Velocity') self.ua_pred.setncattr('standard_name', 'eastward_sea_water_velocity') self.ua_pred.setncattr('units', 'meters s-1') self.ua_pred.setncattr('grid', 'fvcom_grid') self.ua_pred.setncattr('type', 'data') self.ua_pred.setncattr('coordinates', self._nele_coordinates) self.ua_pred.setncattr('location', 'face') self.va_pred = self._nc.createVariable('va_pred', 'f4', self._nele_time_dims, **self._ncopts) self.va_pred.setncattr('long_name', 'Predicted Northward Water Depth-averaged Velocity') self.va_pred.setncattr('standard_name', 'northward_sea_water_velocity') self.va_pred.setncattr('units', 'meters s-1') self.va_pred.setncattr('grid', 'fvcom_grid') self.va_pred.setncattr('type', 'data') self.va_pred.setncattr('coordinates', self._nele_coordinates) self.va_pred.setncattr('location', 'face') self.u_pred = self._nc.createVariable('u_pred', 'f4', self._nele_siglay_time_dims, **self._ncopts) self.u_pred.setncattr('long_name', 'Predicted Eastward Water Velocity') self.u_pred.setncattr('standard_name', 'eastward_sea_water_velocity') self.u_pred.setncattr('units', 'meters s-1') self.u_pred.setncattr('grid', 'fvcom_grid') self.u_pred.setncattr('type', 'data') self.u_pred.setncattr('coordinates', self._nele_coordinates) self.u_pred.setncattr('location', 'face') self.v_pred = self._nc.createVariable('v_pred', 'f4', self._nele_siglay_time_dims, **self._ncopts) self.v_pred.setncattr('long_name', 'Predicted Northward Water Velocity') self.v_pred.setncattr('standard_name', 'northward_sea_water_velocity') self.v_pred.setncattr('units', 'meters s-1') self.v_pred.setncattr('grid', 'fvcom_grid') self.v_pred.setncattr('type', 'data') self.v_pred.setncattr('coordinates', self._nele_coordinates) self.v_pred.setncattr('location', 'face') self.z_pred = self._nc.createVariable('z_pred', 'f4', self._node_time_dims, **self._ncopts) self.z_pred.setncattr('long_name', 'Predicted Surface Elevation') self.z_pred.setncattr('standard_name', 'surface_elevation') self.z_pred.setncattr('units', 'meters') self.z_pred.setncattr('grid', 'fvcom_grid') self.z_pred.setncattr('type', 'data') self.z_pred.setncattr('coordinates', 'time lat lon') self.z_pred.setncattr('location', 'node') self.u_const_names = self._nc.createVariable('u_const_names', 'c', ['nconsts', 'NameStrLen'], **self._ncopts) self.u_const_names.setncattr('long_name', 'Tidal constituent names for u-velocity') self.u_const_names.setncattr('standard_name', 'u_constituent_names') self.v_const_names = self._nc.createVariable('v_const_names', 'c', ['nconsts', 'NameStrLen'], **self._ncopts) self.v_const_names.setncattr('long_name', 'Tidal constituent names for v-velocity') self.v_const_names.setncattr('standard_name', 'v_constituent_names') self.z_const_names = self._nc.createVariable('z_const_names', 'c', ['nconsts', 'NameStrLen'], **self._ncopts) self.z_const_names.setncattr('long_name', 'Tidal constituent names for surface elevation') self.z_const_names.setncattr('standard_name', 'z_constituent_names') self.u_amp = self._nc.createVariable('u_amp', 'f4', self._nele_siglay_nconsts_dims, **self._ncopts) self.u_amp.setncattr('long_name', 'Tidal harmonic amplitudes of the u velocity') self.u_amp.setncattr('standard_name', 'u_amplitude') self.u_amp.setncattr('units', 'meters') self.u_amp.setncattr('grid', 'fvcom_grid') self.u_amp.setncattr('type', 'data') self.u_amp.setncattr('coordinates', self._nconsts_coordinates) self.v_amp = self._nc.createVariable('v_amp', 'f4', self._nele_siglay_nconsts_dims, **self._ncopts) self.v_amp.setncattr('long_name', 'Tidal harmonic amplitudes of the v velocity') self.v_amp.setncattr('standard_name', 'v_amplitude') self.v_amp.setncattr('units', 'meters') self.v_amp.setncattr('grid', 'fvcom_grid') self.v_amp.setncattr('type', 'data') self.v_amp.setncattr('coordinates', self._nconsts_coordinates) self.ua_amp = self._nc.createVariable('ua_amp', 'f4', self._nele_nconsts_dims, **self._ncopts) self.ua_amp.setncattr('long_name', 'Tidal harmonic amplitudes of the ua velocity') self.ua_amp.setncattr('standard_name', 'ua_amplitude') self.ua_amp.setncattr('units', 'meters') self.ua_amp.setncattr('grid', 'fvcom_grid') self.ua_amp.setncattr('type', 'data') self.ua_amp.setncattr('coordinates', self._nconsts_coordinates) self.va_amp = self._nc.createVariable('va_amp', 'f4', self._nele_nconsts_dims, **self._ncopts) self.va_amp.setncattr('long_name', 'Tidal harmonic amplitudes of the va velocity') self.va_amp.setncattr('standard_name', 'va_amplitude') self.va_amp.setncattr('units', 'meters') self.va_amp.setncattr('grid', 'fvcom_grid') self.va_amp.setncattr('type', 'data') self.va_amp.setncattr('coordinates', self._nconsts_coordinates) self.z_amp = self._nc.createVariable('z_amp', 'f4', self._node_nconsts_dims, **self._ncopts) self.z_amp.setncattr('long_name', 'Tidal harmonic amplitudes of the surface elevation') self.z_amp.setncattr('standard_name', 'z_amplitude') self.z_amp.setncattr('units', 'meters') self.z_amp.setncattr('grid', 'fvcom_grid') self.z_amp.setncattr('type', 'data') self.z_amp.setncattr('coordinates', 'lon lat nconsts') self.u_phase = self._nc.createVariable('u_phase', 'f4', self._nele_siglay_nconsts_dims, **self._ncopts) self.u_phase.setncattr('long_name', 'Tidal harmonic phases of the u velocity') self.u_phase.setncattr('standard_name', 'u_amplitude') self.u_phase.setncattr('units', 'meters') self.u_phase.setncattr('grid', 'fvcom_grid') self.u_phase.setncattr('type', 'data') self.u_phase.setncattr('coordinates', self._nconsts_coordinates) self.v_phase = self._nc.createVariable('v_phase', 'f4', self._nele_siglay_nconsts_dims, **self._ncopts) self.v_phase.setncattr('long_name', 'Tidal harmonic phases of the v velocity') self.v_phase.setncattr('standard_name', 'v_amplitude') self.v_phase.setncattr('units', 'meters') self.v_phase.setncattr('grid', 'fvcom_grid') self.v_phase.setncattr('type', 'data') self.v_phase.setncattr('coordinates', self._nconsts_coordinates) self.ua_phase = self._nc.createVariable('ua_phase', 'f4', self._nele_nconsts_dims, **self._ncopts) self.ua_phase.setncattr('long_name', 'Tidal harmonic phases of the ua velocity') self.ua_phase.setncattr('standard_name', 'ua_amplitude') self.ua_phase.setncattr('units', 'meters') self.ua_phase.setncattr('grid', 'fvcom_grid') self.ua_phase.setncattr('type', 'data') self.ua_phase.setncattr('coordinates', self._nconsts_coordinates) self.va_phase = self._nc.createVariable('va_phase', 'f4', self._nele_nconsts_dims, **self._ncopts) self.va_phase.setncattr('long_name', 'Tidal harmonic phases of the va velocity') self.va_phase.setncattr('standard_name', 'va_amplitude') self.va_phase.setncattr('units', 'meters') self.va_phase.setncattr('grid', 'fvcom_grid') self.va_phase.setncattr('type', 'data') self.va_phase.setncattr('coordinates', self._nconsts_coordinates) self.z_phase = self._nc.createVariable('z_phase', 'f4', self._node_nconsts_dims, **self._ncopts) self.z_phase.setncattr('long_name', 'Tidal harmonic phases of the surface elevation'), self.z_phase.setncattr('standard_name', 'z_amplitude') self.z_phase.setncattr('units', 'meters') self.z_phase.setncattr('grid', 'fvcom_grid') self.z_phase.setncattr('type', 'data') self.z_phase.setncattr('coordinates', 'lon lat nconsts') def _populate_grid(self): # Add the data we already have. self.lon[:] = self._lon self.lat[:] = self._lat self.lonc[:] = self._lonc self.latc[:] = self._latc self.h[:] = self._h self.h_center[:] = self._h_center self.nv[:] = self._nv self.z_const_names[:] = self._consts self.u_const_names[:] = self._consts self.v_const_names[:] = self._consts self.siglay[:] = self._siglay self.siglev[:] = self._siglev if self._predict or self._dump_raw: self._write_fvcom_time(self._time) def _write_fvcom_time(self, time, **kwargs): """ Write the four standard FVCOM time variables (time, Times, Itime, Itime2) for the given time series. Parameters ---------- time : np.ndarray, list, tuple Times as datetime objects. """ mjd = date2num(time, units='days since 1858-11-17 00:00:00') Itime = np.floor(mjd) # integer Modified Julian Days Itime2 = (mjd - Itime) * 24 * 60 * 60 * 1000 # milliseconds since midnight Times = [t.strftime('%Y-%m-%dT%H:%M:%S.%f') for t in time] # time self.time = self._nc.createVariable('time', 'f4', ['time'], **self._ncopts) self.time.setncattr('units', 'days since 1858-11-17 00:00:00') self.time.setncattr('format', 'modified julian day (MJD)') self.time.setncattr('long_name', 'time') self.time.setncattr('time_zone', 'UTC') # Itime self.Itime = self._nc.createVariable('Itime', 'i', ['time'], **self._ncopts) self.Itime.setncattr('units', 'days since 1858-11-17 00:00:00') self.Itime.setncattr('format', 'modified julian day (MJD)') self.Itime.setncattr('time_zone', 'UTC') self.Itime[:] = Itime # Itime2 self.Itime2 = self._nc.createVariable('Itime2', 'i', ['time'], **self._ncopts) self.Itime2.setncattr('units', 'msec since 00:00:00') self.Itime2.setncattr('time_zone', 'UTC') self.Itime2[:] = Itime2 # Times self.Times = self._nc.createVariable('Times', 'c', ['time', 'DateStrLen'], **self._ncopts) self.Times.setncattr('long_name', 'Calendar Date') self.Times.setncattr('format', 'String: Calendar Time') self.Times.setncattr('time_zone', 'UTC') self.Times[:] = Times def close(self): """ Close the netCDF file handle. """ self._nc.close() def sync(self): """ Sync data to disk now. """ self._nc.sync() def add_harmonic_results(db, stationName, constituentName, phase, amplitude, speed, inferred, ident=None, noisy=False): """ Add data to an SQLite database. Parameters ---------- db : str Full path to an SQLite database. If absent, it will be created. stationName : str Short name for the current station. This is the table name. constituentName : str Name of the current tidal constituent being added. phase : float Tidal constituent phase (in degrees). amplitude : float Tidal constituent amplitude (in metres). speed : float Tidal constituent speed (in degrees per hour). inferred : str 'true' or 'false' indicating whether the values are inferred (i.e. the time series is too short to perform a robust harmonic analysis). ident : str Optional prefix for the table names in the SQLite database. Usage of this option means you can store both u and v data in the same database. noisy : bool Set to True to enable verbose output. """ if not use_sqlite: raise RuntimeError('No sqlite standard library found in this python' ' installation. This function (add_harmonic_results)' ' is unavailable.') if not ident: ident = '' else: ident = '_' + ident conn = sqlite3.connect(db) c = conn.cursor() # Create the necessary tables if they don't exist already c.execute('CREATE TABLE IF NOT EXISTS TidalConstituents ( \ shortName TEXT COLLATE nocase, \ amplitude FLOAT(10), \ phase FLOAT(10), \ speed FLOAT(10), \ constituentName TEXT COLLATE nocase, \ amplitudeUnits TEXT COLLATE nocase, \ phaseUnits TEXT COLLATE nocase, \ speedUnits TEXT COLLATE nocase, \ inferredConstituent TEXT COLLATE nocase)') if noisy: print('amplitude, phase and speed.', end=' ') for item in range(len(inferred)): c.execute('INSERT INTO TidalConstituents VALUES (?,?,?,?,?,?,?,?,?)', (stationName + ident, amplitude[item], phase[item], speed[item], constituentName[item], 'metres', 'degrees', 'degrees per mean solar hour', inferred[item])) conn.commit() conn.close() def get_observed_data(db, table, startYear=False, endYear=False, noisy=False): """ Extract the tidal data from the SQLite database for a given station. Specify the database (db), the table name (table) which needs to be the short name version of the station of interest. Optionally supply a start and end year (which if equal give all data from that year) to limit the returned data. If no data exists for that station, the output is returned as False. Parameters ---------- db : str Full path to the tide data SQLite database. table : str Name of the table to be extracted (e.g. 'AVO'). startYear : bool, optional Year from which to start extracting data (inclusive). endYear : bool, optional Year at which to end data extraction (inclusive). noisy : bool, optional Set to True to enable verbose output. See Also -------- tide.get_observed_metadata : extract metadata for a tide station. Notes ----- Search is not fuzzy, so "NorthShields" is not the same as "North Shields". Search is case insensitive, however. """ if not use_sqlite: raise RuntimeError('No sqlite standard library found in this python' ' installation. This function (get_observed_data)' ' is unavailable.') if noisy: print('Getting data for {} from the database...'.format(table), end=' ') try: con = sqlite3.connect(db) with con: c = con.cursor() if startYear and endYear: # We've been given a range of data if startYear == endYear: # We have the same start and end dates, so just do a # simpler version c.execute('SELECT * FROM {t} WHERE {t}.year == {sy} ORDER BY year, month, day, hour, minute, second'.format(t=table, sy=startYear)) else: # We have a date range c.execute('SELECT * FROM {t} WHERE {t}.year >= {sy} AND {t}.year <= {ey} ORDER BY year, month, day, hour, minute, second'.format(t=table, sy=startYear, ey=endYear)) else: # Return all data c.execute('SELECT * FROM {} ORDER BY year, month, day, hour, minute, second'.format(table)) # Now get the data in a format we might actually want to use data = c.fetchall() con.close() if noisy: print('done.') except sqlite3.Error as e: if con: con.close() print('Error {}:'.format(e.args[0])) data = [False] return data def get_observed_metadata(db, originator=False, obsdepth=None): """ Extracts the meta data from the supplied database. If the supplied originator is False (default), then information from all stations is returned. Parameters ---------- db : str Full path to the tide data SQLite database. originator : str, optional Specify an originator (e.g. 'NTSLF', 'NSTD', 'REFMAR') to extract only that data. Defaults to all data. obsdepth : bool, optional Set to True to return the observation depth (useful for current meter data). Defaults to False. Returns ------- lat, lon : list Latitude and longitude of the requested station(s). site : list Short names (e.g. 'AVO' for 'Avonmouth') of the tide stations. longName : list Long names of the tide stations (e.g. 'Avonmouth'). depth : list If obsdepth=True on input, then depths are returned, otherwise omitted. """ if not use_sqlite: raise RuntimeError('No sqlite standard library found in this python' ' installation. This function (get_observed_metadata)' ' is unavailable.') con = None try: con = sqlite3.connect(db) c = con.cursor() if not originator: out = c.execute('SELECT * from Stations where originatorName ' 'is ? or originatorLongName is ?', [originator, originator]) else: out = c.execute('SELECT * from Stations') # Convert it to a set of better formatted values. metadata = out.fetchall() lat = [float(m[0]) for m in metadata] lon = [float(m[1]) for m in metadata] site = [str(m[2]) for m in metadata] longName = [str(m[3]) for m in metadata] if len(metadata) > 4: depth = [str(m[4]) for m in metadata] else: depth = None except sqlite3.Error as e: if con: con.close() lat, lon, site, longName, depth = False, False, False, False, False raise Exception('SQLite error: {}'.format(e.args[0])) if not obsdepth: return lat, lon, site, longName else: return lat, lon, site, longName, depth def clean_observed_data(data, removeResidual=False): """ Process the observed raw data to a more sensible format. Also convert from Gregorian dates to Modified Julian Day (to match FVCOM model output times). Parameters ---------- data : ndarray Array of [YYYY, MM, DD, hh, mm, ss, zeta, flag] data output by getObservedData(). removeResidual : bool, optional If True, remove any residual values. Where such data are absent (marked by values of -9999 or -99.0), no removal is performed. Defaults to False. Returns ------- dateMJD : ndarray Modified Julian Days of the input data. tideDataMSL : ndarray Time series of surface elevations from which the mean surface elevation has been subtracted. If removeResidual is True, these values will omit the atmospheric effects, leaving a harmonic signal only. npFlagsData : ndarray Flag values from the SQLite database (usually -9999, or P, N etc. if BODC data). allDateTimes : ndarray Original date data in [YYYY, MM, DD, hh, mm, ss] format. """ npObsData = [] npFlagData = [] for row in data: npObsData.append(row[:-1]) # eliminate the flag from the numeric data npFlagData.append(row[-1]) # save the flag separately # For the tidal data, convert the numbers to floats to avoid issues # with truncation. npObsData = np.asarray(npObsData, dtype=float) npFlagData = np.asarray(npFlagData) # Extract the time and tide data allObsTideData = np.asarray(npObsData[:, 6]) allObsTideResidual = np.asarray(npObsData[:, 7]) allDateTimes = np.asarray(npObsData[:, :6], dtype=float) dateMJD = julian_day(allDateTimes, mjd=True) # Apply a correction (of sorts) from LAT to MSL by calculating the # mean (excluding nodata values (-99 for NTSLF, -9999 for SHOM)) # and removing that from the elevation. tideDataMSL = allObsTideData - np.mean(allObsTideData[allObsTideData > -99]) if removeResidual: # Replace the residuals to remove with zeros where they're -99 # or -9999 since the net effect at those times is "we don't have # a residual, so just leave the original value alone". allObsTideResidual[allObsTideResidual <= -99] = 0 tideDataMSL = tideDataMSL - allObsTideResidual return dateMJD, tideDataMSL, npFlagData, allDateTimes def parse_TAPPY_XML(file): """ Extract values from an XML file created by TAPPY. TODO: Allow a list of constituents to be specified when calling parse_TAPPY_XML. Parameters ---------- file : str Full path to a TAPPY output XML file. Returns ------- constituentName : list Tidal constituent names. constituentSpeed : list Tidal constituent speeds (in degrees per hour). constituentPhase : list Tidal constituent phases (in degrees). constituentAmplitude : list Tidal constituent amplitudes (in metres). constituentInference : list Flag of whether the tidal constituent was inferred due to a short time series for the given constituent. """ tree = etree.parse(open(file, 'r')) constituentName = [] constituentSpeed = [] constituentInference = [] constituentPhase = [] constituentAmplitude = [] for harmonic in tree.iter('Harmonic'): # Still not pretty for item in harmonic.iter('name'): constituentName.append(item.text) for item in harmonic.iter('speed'): constituentSpeed.append(item.text) for item in harmonic.iter('inferred'): constituentInference.append(item.text) for item in harmonic.iter('phaseAngle'): constituentPhase.append(item.text) for item in harmonic.iter('amplitude'): constituentAmplitude.append(item.text) return constituentName, constituentSpeed, constituentPhase, constituentAmplitude, constituentInference def get_harmonics(db, stationName, noisy=False): """ Use the harmonics database to extract the results of the harmonic analysis for a given station (stationName). Parameters ---------- db : str Full path to the tidal harmonics SQLite database. stationName : str Station short name (i.e. table name). noisy : bool, optional Set to True to enable verbose output. Returns ------- siteHarmonics : dict Contains all the harmonics data for the given tide station. Keys and units are: - 'stationName' (e.g. 'AVO') - 'amplitude' (m) - 'phase' (degrees) - 'speed' (degrees per mean solar hour) - 'constituentName' (e.g. 'M2') - 'inferredConstituent' ('true'|'false') """ if not use_sqlite: raise RuntimeError('No sqlite standard library found in this python' ' installation. This function (get_harmonics) is' ' unavailable.') if noisy: print('Getting harmonics data for site {}...'.format(stationName), end=' ') try: con = sqlite3.connect(db) with con: c = con.cursor() c.execute('SELECT * FROM TidalConstituents WHERE shortName = \'' + stationName + '\'') data = c.fetchall() con.close() except sqlite3.Error as e: if con: con.close() print('Error %s:' % e.args[0]) data = [False] if noisy: print('extraction failed.') # Convert data to a dict of value pairs siteHarmonics = {} tAmp = np.empty(np.shape(data)[0]) tPhase = np.empty(np.shape(data)[0]) tSpeed = np.empty(np.shape(data)[0]) tConst = np.empty(np.shape(data)[0], dtype="|S7") tInfer = np.empty(np.shape(data)[0], dtype=bool) for i, constituent in enumerate(data): tAmp[i] = constituent[1] tPhase[i] = constituent[2] tSpeed[i] = constituent[3] tConst[i] = str(constituent[4]) if str(constituent[-1]) == 'false': tInfer[i] = False else: tInfer[i] = True siteHarmonics['amplitude'] = tAmp siteHarmonics['phase'] = tPhase siteHarmonics['speed'] = tSpeed siteHarmonics['constituentName'] = tConst siteHarmonics['inferredConstituent'] = tInfer if noisy: print('done.') return siteHarmonics def read_POLPRED(harmonics, noisy=False): """ Load a POLPRED data file into a NumPy array. This can then be used by get_harmonics_POLPRED to extract the harmonics at a given loaction, or otherwise can be used to simply extract the positions of the POLCOMS grid. Parameters ---------- harmonics : str Full path to the POLPRED ASCII data file. noisy : bool, optional Set to True to enable verbose output. Returns ------- header : dict Contains the header data from the POLPRED ASCII file. values : ndarray Harmonic constituent data formatted as [x, y, nConst * [zZ, zG, uZ, uG, vZ, vG]], where nConst is the number of constituents in the POLPRED data (15) and z, u and v refer to surface elevation, u-vector and v-vector components, respectively. The suffixes Z and G refer to amplitude and phase of the z, u and v data. See Also -------- tide.grid_POLPRED : Converts the POLPRED data into a rectangular gridded data set with values of -999.9 outside the POLPRED domain. """ # Open the harmonics file f = open(harmonics, 'r') polpred = f.readlines() f.close() # Read the header into a dict. readingHeader = True header = {} values = [] if noisy: print('Parsing POLPRED raw data...', end=' ') for line in polpred: if readingHeader: if not line.strip(): # Blank line, which means the end of the header readingHeader = False else: key, parameters = line.split(':') header[key.strip()] = parameters.strip() else: # Remove duplicate whitespaces and split on the resulting # single spaces. line = line.strip() line = ' '.join(line.split()) values.append(line.split(' ')) # Make the values into a numpy array values =
np.asarray(values, dtype=float)
numpy.asarray
from unittest import TestCase from plotoptix.utils import * from plotoptix.utils import _make_contiguous_vector, _make_contiguous_3d import numpy as np class TestScene(TestCase): @classmethod def setUpClass(cls): print("################ Test 060: Utility and convenience functions. ################") def test010_make_contiguous(self): x = 1 a = _make_contiguous_vector(x, 3) self.assertTrue(a.shape == (3,), msg="Output shape is wrong.") self.assertTrue(a.dtype == np.float32, msg="Data type is not np.float32.") self.assertTrue(np.array_equal(a, [x, x, x]), msg="Output content is wrong.") self.assertTrue(a.flags['C_CONTIGUOUS'], msg="Output array is not c-contiguous.") y = [1, 2, 3] a = _make_contiguous_vector(y, len(y)) self.assertTrue(a.shape == (len(y),), msg="Output shape is wrong.") self.assertTrue(a.dtype == np.float32, msg="Data type is not np.float32.") self.assertTrue(np.array_equal(a, y), msg="Output content is wrong.") self.assertTrue(a.flags['C_CONTIGUOUS'], msg="Output array is not c-contiguous.") z = [[1, 2], [3, 4]] a = _make_contiguous_vector(z, 4) self.assertTrue(a.shape == (4,), msg="Output shape is wrong.") self.assertTrue(a.dtype == np.float32, msg="Data type is not np.float32.") self.assertTrue(np.array_equal(a, [1, 2, 3, 4]), msg="Output content is wrong.") self.assertTrue(a.flags['C_CONTIGUOUS'], msg="Output array is not c-contiguous.") x = 1 a = _make_contiguous_3d(x, extend_scalars=True) self.assertTrue(a.shape == (1, 3), msg="Output shape is wrong.") self.assertTrue(a.dtype == np.float32, msg="Data type is not np.float32.") self.assertTrue(np.array_equal(a, [[x, x, x]]), msg="Output content is wrong.") self.assertTrue(a.flags['C_CONTIGUOUS'], msg="Output array is not c-contiguous.") a = _make_contiguous_3d(x, extend_scalars=False) self.assertTrue(a.shape == (1, 3), msg="Output shape is wrong.") self.assertTrue(a.dtype == np.float32, msg="Data type is not np.float32.") self.assertTrue(
np.array_equal(a, [[x, x, x]])
numpy.array_equal
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for training utility functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.eager import context from tensorflow.python.framework import tensor_util from tensorflow.python.keras.engine import training_utils from tensorflow.python.keras.utils import tf_utils from tensorflow.python.platform import test class ModelInputsTest(test.TestCase): def test_single_thing(self): a =
np.ones(10)
numpy.ones
import tensorflow as tf from copy import deepcopy import numpy as np import time import json import tqdm from base import * from lm import loss from lm import stop class Config(wb.Config): def __init__(self, data_or_vocab_size=1000, hidden_size=200, hidden_layers=2): if isinstance(data_or_vocab_size, int): self.vocab_size = data_or_vocab_size else: self.vocab_size = data_or_vocab_size.get_vocab_size() self.embedding_size = hidden_size self.hidden_layers = hidden_layers self.hidden_size = hidden_size self.softmax_type = 'Softmax' # only support 'Softmax' self.softmax_pred_token_per_cluster = int(np.sqrt(self.vocab_size)) # used to accelerate the sampling, suggested as int(np.sqrt(vocab_size)) self.init_weight = 0.1 self.optimize_method = 'SGD' # can be one of 'SGD', 'adam' self.max_grad_norm = 5.0 # grad_norm, can be None self.dropout = 0.0 self.learning_rate = 1. # [learning rate] initial values self.max_update_batch = 100 def __str__(self): s = 'lstm_e{}_h{}x{}'.format(self.embedding_size, self.hidden_size, self.hidden_layers) return s class Net(object): def __init__(self, config, is_training, name='lstm_net', reuse=None): self.is_training = is_training self.config = config self.state = None # save the current state of LSMT # a initializer for variables initializer = tf.random_uniform_initializer(-config.init_weight, config.init_weight) with tf.variable_scope(name, reuse=reuse, initializer=initializer): # Create LSTM cell def one_lstm_cell(): c = tf.contrib.rnn.BasicLSTMCell(self.config.hidden_size, forget_bias=0., reuse=reuse) if self.is_training and self.config.dropout > 0: c = tf.contrib.rnn.DropoutWrapper(c, output_keep_prob=1. - self.config.dropout_prob) return c cell = tf.contrib.rnn.MultiRNNCell([one_lstm_cell() for _ in range(self.config.hidden_layers)]) # inputs: [batch_size, max_length] # targets: [batch_size, max_length] # lengths: [batch_size] # _scales: [batch_size] the scales for each sequences self._inputs = tf.placeholder(tf.int32, [None, None], name='net_inputs') self._targets = tf.placeholder(tf.int32, [None, None], name='net_targets') self._lengths = tf.ones([tf.shape(self._inputs)[0]], dtype=tf.int32) * tf.shape(self._inputs)[1] self._scales = tf.placeholder(tf.float32, [None], name='net_scales') self._initial_state = cell.zero_state(tf.shape(self._inputs)[0], tf.float32) # bulid network... self.softmax, self.final_state = self.output(cell, self._initial_state, self._inputs, self._targets, self._lengths) # loss for each position length_mask = tf.sequence_mask(self._lengths, tf.shape(self._inputs)[1], dtype=tf.float32) self.logps = self.softmax.logps self.logps_for_position = self.logps * length_mask self.logps_for_sequence = tf.reduce_sum(self.logps_for_position, axis=-1) self.loss = -self.softmax.logps self.loss_for_position = self.loss * length_mask self.loss_for_sequence = tf.reduce_sum(self.loss_for_position, axis=-1) # all the trainalbe vairalbes self.vars = tf.get_collection(key=tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name) self.var_size = tf.add_n([tf.size(v) for v in self.vars]) # print the variables if reuse is None: print('[%s.%s] variables in %s' % (__name__, self.__class__.__name__, name)) for v in self.vars: print('\t' + v.name, v.shape, v.device) print('[%s.%s] max_update_batch=%d' % (__name__, self.__class__.__name__, self.config.max_update_batch)) if is_training: # as _lr and _global_step is not defined in variables_scope(), # as the default collection is tf.GraphKeys.TRAINABLE_VARIABLES # It should be initialized by session.run(tf.global_variables_initializer()) or # use tf.Train.Supervisor() self.grads = tf.gradients(self.loss_for_sequence, self.vars, self._scales) self.train_op = layers.TrainOp(self.grads, self.vars, optimize_method=self.config.optimize_method, max_grad_norm=self.config.max_grad_norm) def output(self, cell, init_states, _inputs, _targets=None, _lengths=None): # word embedding word_embedding = tf.get_variable('word_embedding', [self.config.vocab_size, self.config.embedding_size], dtype=tf.float32) inputs = tf.nn.embedding_lookup(word_embedding, _inputs) # dropout if self.is_training and self.config.dropout > 0: inputs = tf.nn.dropout(inputs, keep_prob=1. - self.config.dropout) # lstm # using tf.nn.dynamic_rnn to remove the constrains of step size. outputs, state = tf.nn.dynamic_rnn(cell, inputs=inputs, initial_state=init_states, sequence_length=_lengths) # softmax softmax = layers.Softmax(outputs, _targets, self.config.vocab_size, self.config.softmax_pred_token_per_cluster, name='Softmax') return softmax, state def run_update(self, session, inputs, targets, lengths, scales, learning_rate=None): if learning_rate is None: learning_rate = self.config.learning_rate self.train_op.set_lr(session, learning_rate) self.train_op.update(session, {self._inputs: inputs, self._targets: targets, self._lengths: lengths, self._scales: scales}) def run_loss(self, session, inputs, targets, lengths): return session.run(self.loss_for_sequence, {self._inputs: inputs, self._targets: targets, self._lengths: lengths}) def run_draws(self, session, inputs, max_sample_num, end_id=None): states = session.run(self.final_state, {self._inputs: inputs[:, 0:-1]}) final_outputs = np.array(inputs) final_lengths = np.ones(inputs.shape[0], dtype='int32') * inputs.shape[1] final_logps = np.zeros_like(inputs) is_tail = np.array([False] * len(inputs)) for i in range(max_sample_num): draw_w, draw_logp, states = session.run(self.softmax.draw + [self.final_state], {self._inputs: final_outputs[:, -1:], self._initial_state: states}) final_outputs = np.concatenate([final_outputs, draw_w], axis=-1) final_lengths += np.where(is_tail, 0, 1) final_logps = np.concatenate([final_logps, draw_logp], axis=-1) if end_id is not None: is_tail = np.logical_or(is_tail, np.reshape(draw_w, [-1]) == end_id) if np.all(is_tail): break return final_outputs, final_lengths, final_logps def run_logps(self, session, inputs): final_logps = session.run(self.logps_for_position, {self._inputs: inputs[:, 0:-1], self._targets: inputs[:, 1:]}) final_logps = np.concatenate([np.zeros([len(inputs), 1]), final_logps], axis=-1) return final_logps # parallize the sampling class NetEval(object): def __init__(self, config, name='lstm_net', devices=['/gpu:0', '/gpu:1']): self.device_num = len(devices) self.nets = [] for device in devices: with tf.device(device): self.nets.append(Net(config, is_training=False, name=name, reuse=True)) with tf.device(devices[0]): draw_w_list = [net.softmax.draw[0] for net in self.nets] draw_logp_list = [net.softmax.draw[1] for net in self.nets] self.draw_w = tf.concat(draw_w_list, axis=0) self.draw_logp = tf.concat(draw_logp_list, axis=0) loss_list = [net.loss_for_sequence for net in self.nets] self.loss_for_sequence = tf.concat(loss_list, axis=0) def split_data(self, a): n = len(a) k = n // self.device_num res = [] for i in range(self.device_num): if i == self.device_num - 1: res.append(a[k * i: ]) else: res.append(a[k * i: k * (i+1)]) return res def run_loss(self, session, inputs, targets, lengths): feed_dict = {} for net, i, t, l in zip(self.nets, self.split_data(inputs), self.split_data(targets), self.split_data(lengths)): feed_dict[net._inputs] = i feed_dict[net._targets] = t feed_dict[net._lengths] = l return session.run(self.loss_for_sequence, feed_dict) def run_draws(self, session, inputs, max_sample_num, end_id=None): feed_dict = {} for net, i in zip(self.nets, self.split_data(inputs)): feed_dict[net._inputs] = i[:, 0:-1] # get states ( a list of state ) states = session.run([net.final_state for net in self.nets], feed_dict) final_outputs = np.array(inputs) final_lengths = np.ones(inputs.shape[0], dtype='int32') * inputs.shape[1] final_logps = np.zeros_like(inputs) is_tail = np.array([False] * len(inputs)) for i in range(max_sample_num): feed_dict = {} for net, st, i in zip(self.nets, states, self.split_data(final_outputs[:, -1:])): feed_dict[net._inputs] = i feed_dict[net._initial_state] = st draw_w, draw_logp, states = session.run([self.draw_w, self.draw_logp, [net.final_state for net in self.nets] ], feed_dict) final_outputs = np.concatenate([final_outputs, draw_w], axis=-1) final_lengths += np.where(is_tail, 0, 1) final_logps = np.concatenate([final_logps, draw_logp], axis=-1) if end_id is not None: is_tail = np.logical_or(is_tail, np.reshape(draw_w, [-1]) == end_id) if np.all(is_tail): break return final_outputs, final_lengths, final_logps class Model(object): def __init__(self, config, name='seq_lstmlm', devices='/gpu:0'): if isinstance(devices, str): with tf.device(devices): self.train_net = Net(config, is_training=True, name=name, reuse=None) self.eval_net = Net(config, is_training=False, name=name, reuse=True) else: with tf.device(devices[0]): self.train_net = Net(config, is_training=True, name=name, reuse=None) self.eval_net = NetEval(config, name=name, devices=devices) self.saver = tf.train.Saver(self.train_net.vars) def update(self, session, seq_list, seq_scales, learning_rate=None): inputs, lengths = reader.produce_data_to_array(seq_list) self.train_net.run_update(session, inputs[:, 0:-1], inputs[:, 1:], lengths-1, seq_scales, learning_rate) def get_log_probs(self, session, seq_list, max_batch_size=None): if max_batch_size is None: max_batch_size = len(seq_list) logps = np.zeros(len(seq_list)) for i in range(0, len(seq_list), max_batch_size): j = i + max_batch_size inputs, lengths = reader.produce_data_to_array(seq_list[i:j]) logps[i: j] = -self.eval_net.run_loss(session, inputs[:, 0:-1], inputs[:, 1:], lengths-1) return logps def eval(self, session, seq_list): logps = self.get_log_probs(session, seq_list) nll = -np.mean(logps) words = np.sum([len(x) - 1 for x in seq_list]) ppl = np.exp(-np.sum(logps) / words) return nll, ppl def draw_seqs(self, session, batch_size, beg_token, end_token=None, max_length=1000): inputs =
np.ones([batch_size, 1], dtype='int32')
numpy.ones
from __future__ import division, absolute_import, print_function import numpy as np try: from scipy.spatial import cKDTree, KDTree, SphericalVoronoi, distance except ImportError: pass from .common import Benchmark class Build(Benchmark): params = [ [(3,10000,1000), (8,10000,1000), (16,10000,1000)], ['KDTree', 'cKDTree'], ] param_names = ['(m, n, r)', 'class'] def setup(self, mnr, cls_name): self.cls = KDTree if cls_name == 'KDTree' else cKDTree m, n, r = mnr np.random.seed(1234) self.data = np.concatenate((np.random.randn(n//2,m), np.random.randn(n-n//2,m)+np.ones(m))) self.queries = np.concatenate((np.random.randn(r//2,m), np.random.randn(r-r//2,m)+np.ones(m))) def time_build(self, mnr, cls_name): """ Constructing kd-tree ======================= dim | # points | time """ m, n, r = mnr if cls_name == 'cKDTree_flat': self.T = self.cls(self.data, leafsize=n) else: self.cls(self.data) LEAF_SIZES = [8, 128] BOX_SIZES = [None, 1.0] class Query(Benchmark): params = [ [(3,10000,1000), (8,10000,1000), (16,10000,1000)], [1, 2, np.inf], BOX_SIZES, LEAF_SIZES, ] param_names = ['(m, n, r)', 'p', 'boxsize', 'leafsize'] @staticmethod def do_setup(self, mnr, p, boxsize, leafsize): m, n, r = mnr np.random.seed(1234) self.data = np.random.uniform(size=(n, m)) self.queries = np.random.uniform(size=(r, m)) self.T = cKDTree(self.data, leafsize=leafsize, boxsize=boxsize) def setup(self, mnr, p, boxsize, leafsize): Query.do_setup(self, mnr, p, boxsize, leafsize) def time_query(self, mnr, p, boxsize, leafsize): """ Querying kd-tree dim | # points | # queries | KDTree | cKDTree | flat cKDTree """ self.T.query(self.queries, p=p) class Radius(Benchmark): params = [ [(3,10000,1000)], [1, 2, np.inf], [0.2, 0.5], BOX_SIZES, LEAF_SIZES, ] param_names = ['(m, n, r)', 'p', 'probe radius', 'boxsize', 'leafsize'] def __init__(self): self.time_query_pairs.__func__.params = list(self.params) self.time_query_pairs.__func__.params[0] = [(3,1000,30), (8,1000,30), (16,1000,30)] def setup(self, mnr, p, probe_radius, boxsize, leafsize): Query.do_setup(self, mnr, p, boxsize, leafsize) def time_query_ball_point(self, mnr, p, probe_radius, boxsize, leafsize): self.T.query_ball_point(self.queries, probe_radius, p=p) def time_query_pairs(self, mnr, p, probe_radius, boxsize, leafsize): self.T.query_pairs(probe_radius, p=p) class Neighbors(Benchmark): params = [ [(3,1000,1000), (8,1000,1000), (16,1000,1000)], [1, 2, np.inf], [0.2, 0.5], BOX_SIZES, LEAF_SIZES, ] param_names = ['(m, n1, n2)', 'p', 'probe radius', 'boxsize', 'leafsize'] def setup(self, mn1n2, p, probe_radius, boxsize, leafsize): m, n1, n2 = mn1n2 self.data1 = np.random.uniform(size=(n1, m)) self.data2 = np.random.uniform(size=(n2, m)) self.T1 = cKDTree(self.data1, boxsize=boxsize, leafsize=leafsize) self.T2 = cKDTree(self.data2, boxsize=boxsize, leafsize=leafsize) def time_sparse_distance_matrix(self, mn1n2, p, probe_radius, boxsize, leafsize): self.T1.sparse_distance_matrix(self.T2, probe_radius, p=p) def time_count_neighbors(self, mn1n2, p, probe_radius, boxsize, leafsize): """ Count neighbors kd-tree dim | # points T1 | # points T2 | p | probe radius | BoxSize | LeafSize """ self.T1.count_neighbors(self.T2, probe_radius, p=p) def generate_spherical_points(num_points): # generate uniform points on sphere (see: # http://stackoverflow.com/a/23785326/2942522) np.random.seed(123) points = np.random.normal(size=(num_points, 3)) points /= np.linalg.norm(points, axis=1)[:, np.newaxis] return points class SphericalVor(Benchmark): params = [10, 100, 1000, 5000, 10000] param_names = ['num_points'] def setup(self, num_points): self.points = generate_spherical_points(num_points) def time_spherical_voronoi_calculation(self, num_points): """Perform spherical Voronoi calculation, but not the sorting of vertices in the Voronoi polygons. """ SphericalVoronoi(self.points, radius=1, center=np.zeros(3)) class SphericalVorSort(Benchmark): params = [10, 100, 1000, 5000, 10000] param_names = ['num_points'] def setup(self, num_points): self.points = generate_spherical_points(num_points) self.sv = SphericalVoronoi(self.points, radius=1, center=np.zeros(3)) def time_spherical_polygon_vertex_sorting(self, num_points): """Time the vertex sorting operation in the Spherical Voronoi code. """ self.sv.sort_vertices_of_regions() class Cdist(Benchmark): params = ([10, 100, 1000], ['euclidean', 'minkowski', 'cityblock', 'seuclidean', 'sqeuclidean', 'cosine', 'correlation', 'hamming', 'jaccard', 'chebyshev', 'canberra', 'braycurtis', 'mahalanobis', 'yule', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath', 'wminkowski']) param_names = ['num_points', 'metric'] def setup(self, num_points, metric):
np.random.seed(123)
numpy.random.seed
""" Tests for General Tree Inference Library (GTIL). The tests ensure that GTIL produces correct prediction results for a variety of tree models. """ import os import pytest import treelite import xgboost as xgb import lightgbm as lgb import numpy as np import scipy from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, \ ExtraTreesClassifier, RandomForestRegressor, GradientBoostingRegressor, \ ExtraTreesRegressor from sklearn.datasets import load_iris, load_breast_cancer, load_boston, load_svmlight_file from sklearn.model_selection import train_test_split from .metadata import dataset_db from .util import load_txt @pytest.mark.parametrize('clazz', [RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor]) def test_skl_regressor(clazz): """Scikit-learn regressor""" X, y = load_boston(return_X_y=True) kwargs = {'max_depth': 3, 'random_state': 0, 'n_estimators': 10} if clazz == GradientBoostingRegressor: kwargs['init'] = 'zero' clf = clazz(**kwargs) clf.fit(X, y) expected_pred = clf.predict(X) tl_model = treelite.sklearn.import_model(clf) out_pred = treelite.gtil.predict(tl_model, X) np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5) @pytest.mark.parametrize('clazz', [RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier]) def test_skl_binary_classifier(clazz): """Scikit-learn binary classifier""" X, y = load_breast_cancer(return_X_y=True) kwargs = {'max_depth': 3, 'random_state': 0, 'n_estimators': 10} if clazz == GradientBoostingClassifier: kwargs['init'] = 'zero' clf = clazz(**kwargs) clf.fit(X, y) expected_prob = clf.predict_proba(X)[:, 1] tl_model = treelite.sklearn.import_model(clf) out_prob = treelite.gtil.predict(tl_model, X) np.testing.assert_almost_equal(out_prob, expected_prob, decimal=5) @pytest.mark.parametrize('clazz', [RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier]) def test_skl_multiclass_classifier(clazz): """Scikit-learn multi-class classifier""" X, y = load_iris(return_X_y=True) kwargs = {'max_depth': 3, 'random_state': 0, 'n_estimators': 10} if clazz == GradientBoostingClassifier: kwargs['init'] = 'zero' clf = clazz(**kwargs) clf.fit(X, y) expected_prob = clf.predict_proba(X) tl_model = treelite.sklearn.import_model(clf) out_prob = treelite.gtil.predict(tl_model, X) np.testing.assert_almost_equal(out_prob, expected_prob, decimal=5) @pytest.mark.parametrize('objective', ['reg:linear', 'reg:squarederror', 'reg:squaredlogerror', 'reg:pseudohubererror']) @pytest.mark.parametrize('model_format', ['binary', 'json']) def test_xgb_boston(tmpdir, model_format, objective): # pylint: disable=too-many-locals """Test XGBoost with Boston data (regression)""" X, y = load_boston(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) param = {'max_depth': 8, 'eta': 1, 'silent': 1, 'objective': objective} num_round = 10 xgb_model = xgb.train(param, dtrain, num_boost_round=num_round, evals=[(dtrain, 'train'), (dtest, 'test')]) if model_format == 'json': model_name = 'boston.json' model_path = os.path.join(tmpdir, model_name) xgb_model.save_model(model_path) tl_model = treelite.Model.load(filename=model_path, model_format='xgboost_json') else: tl_model = treelite.Model.from_xgboost(xgb_model) out_pred = treelite.gtil.predict(tl_model, X_test) expected_pred = xgb_model.predict(dtest) np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5) @pytest.mark.parametrize('model_format', ['binary', 'json']) @pytest.mark.parametrize('objective', ['multi:softmax', 'multi:softprob']) def test_xgb_iris(tmpdir, objective, model_format): # pylint: disable=too-many-locals """Test XGBoost with Iris data (multi-class classification)""" X, y = load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) param = {'max_depth': 6, 'eta': 0.05, 'num_class': 3, 'verbosity': 0, 'objective': objective, 'metric': 'mlogloss'} xgb_model = xgb.train(param, dtrain, num_boost_round=10, evals=[(dtrain, 'train'), (dtest, 'test')]) if model_format == 'json': model_name = 'iris.json' model_path = os.path.join(tmpdir, model_name) xgb_model.save_model(model_path) tl_model = treelite.Model.load(filename=model_path, model_format='xgboost_json') else: tl_model = treelite.Model.from_xgboost(xgb_model) out_pred = treelite.gtil.predict(tl_model, X_test) expected_pred = xgb_model.predict(dtest) np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5) @pytest.mark.parametrize('model_format', ['binary', 'json']) @pytest.mark.parametrize('objective,max_label', [('binary:logistic', 2), ('binary:hinge', 2), ('binary:logitraw', 2), ('count:poisson', 4), ('rank:pairwise', 5), ('rank:ndcg', 5), ('rank:map', 5)], ids=['binary:logistic', 'binary:hinge', 'binary:logitraw', 'count:poisson', 'rank:pairwise', 'rank:ndcg', 'rank:map']) def test_xgb_nonlinear_objective(tmpdir, objective, max_label, model_format): # pylint: disable=too-many-locals """Test XGBoost with non-linear objectives with dummy data""" nrow = 16 ncol = 8 rng = np.random.default_rng(seed=0) X = rng.standard_normal(size=(nrow, ncol), dtype=np.float32) y = rng.integers(0, max_label, size=nrow) assert np.min(y) == 0 assert np.max(y) == max_label - 1 num_round = 4 dtrain = xgb.DMatrix(X, label=y) if objective.startswith('rank:'): dtrain.set_group([nrow]) xgb_model = xgb.train({'objective': objective, 'base_score': 0.5, 'seed': 0}, dtrain=dtrain, num_boost_round=num_round) objective_tag = objective.replace(':', '_') if model_format == 'json': model_name = f'nonlinear_{objective_tag}.json' else: model_name = f'nonlinear_{objective_tag}.bin' model_path = os.path.join(tmpdir, model_name) xgb_model.save_model(model_path) tl_model = treelite.Model.load( filename=model_path, model_format=('xgboost_json' if model_format == 'json' else 'xgboost')) out_pred = treelite.gtil.predict(tl_model, X) expected_pred = xgb_model.predict(dtrain) np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5) def test_xgb_categorical_split(): """Test toy XGBoost model with categorical splits""" dataset = 'xgb_toy_categorical' tl_model = treelite.Model.load(dataset_db[dataset].model, model_format='xgboost_json') X, _ = load_svmlight_file(dataset_db[dataset].dtest, zero_based=True) expected_pred = load_txt(dataset_db[dataset].expected_margin) out_pred = treelite.gtil.predict(tl_model, X.toarray()) np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5) @pytest.mark.parametrize('model_format', ['binary', 'json']) def test_xgb_dart(tmpdir, model_format): # pylint: disable=too-many-locals """Test XGBoost DART model with dummy data""" nrow = 16 ncol = 8 rng = np.random.default_rng(seed=0) X = rng.standard_normal(size=(nrow, ncol)) y = rng.integers(0, 2, size=nrow) assert np.min(y) == 0 assert np.max(y) == 1 num_round = 50 dtrain = xgb.DMatrix(X, label=y) param = {'booster': 'dart', 'max_depth': 5, 'learning_rate': 0.1, 'objective': 'binary:logistic', 'sample_type': 'uniform', 'normalize_type': 'tree', 'rate_drop': 0.1, 'skip_drop': 0.5} xgb_model = xgb.train(param, dtrain=dtrain, num_boost_round=num_round) if model_format == 'json': model_name = 'dart.json' model_path = os.path.join(tmpdir, model_name) xgb_model.save_model(model_path) tl_model = treelite.Model.load(filename=model_path, model_format='xgboost_json') else: tl_model = treelite.Model.from_xgboost(xgb_model) out_pred = treelite.gtil.predict(tl_model, X) expected_pred = xgb_model.predict(dtrain) np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5) @pytest.mark.parametrize('objective', ['regression', 'regression_l1', 'huber']) @pytest.mark.parametrize('reg_sqrt', [True, False]) def test_lightgbm_regression(tmpdir, objective, reg_sqrt): # pylint: disable=too-many-locals """Test LightGBM regressor""" lgb_model_path = os.path.join(tmpdir, 'boston_lightgbm.txt') X, y = load_boston(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) dtrain = lgb.Dataset(X_train, y_train, free_raw_data=False) dtest = lgb.Dataset(X_test, y_test, reference=dtrain, free_raw_data=False) param = {'task': 'train', 'boosting_type': 'gbdt', 'objective': objective, 'reg_sqrt': reg_sqrt, 'metric': 'rmse', 'num_leaves': 31, 'learning_rate': 0.05} lgb_model = lgb.train(param, dtrain, num_boost_round=10, valid_sets=[dtrain, dtest], valid_names=['train', 'test']) expected_pred = lgb_model.predict(X_test) lgb_model.save_model(lgb_model_path) tl_model = treelite.Model.load(lgb_model_path, model_format='lightgbm') out_pred = treelite.gtil.predict(tl_model, X_test) np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5) @pytest.mark.parametrize('objective', ['binary', 'xentlambda', 'xentropy']) def test_lightgbm_binary_classification(tmpdir, objective): # pylint: disable=too-many-locals """Test LightGBM binary classifier""" lgb_model_path = os.path.join(tmpdir, 'breast_cancer_lightgbm.txt') X, y = load_breast_cancer(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) dtrain = lgb.Dataset(X_train, y_train, free_raw_data=False) dtest = lgb.Dataset(X_test, y_test, reference=dtrain, free_raw_data=False) param = {'task': 'train', 'boosting_type': 'gbdt', 'objective': objective, 'metric': 'auc', 'num_leaves': 7, 'learning_rate': 0.1} lgb_model = lgb.train(param, dtrain, num_boost_round=10, valid_sets=[dtrain, dtest], valid_names=['train', 'test']) expected_prob = lgb_model.predict(X_test) lgb_model.save_model(lgb_model_path) tl_model = treelite.Model.load(lgb_model_path, model_format='lightgbm') out_prob = treelite.gtil.predict(tl_model, X_test) np.testing.assert_almost_equal(out_prob, expected_prob, decimal=5) @pytest.mark.parametrize('boosting_type', ['gbdt', 'rf']) @pytest.mark.parametrize('objective', ['multiclass', 'multiclassova']) def test_lightgbm_multiclass_classification(tmpdir, objective, boosting_type): # pylint: disable=too-many-locals """Test LightGBM multi-class classifier""" lgb_model_path = os.path.join(tmpdir, 'iris_lightgbm.txt') X, y = load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) dtrain = lgb.Dataset(X_train, y_train, free_raw_data=False) dtest = lgb.Dataset(X_test, y_test, reference=dtrain, free_raw_data=False) param = {'task': 'train', 'boosting': boosting_type, 'objective': objective, 'metric': 'multi_logloss', 'num_class': 3, 'num_leaves': 31, 'learning_rate': 0.05} if boosting_type == 'rf': param.update({'bagging_fraction': 0.8, 'bagging_freq': 1}) lgb_model = lgb.train(param, dtrain, num_boost_round=10, valid_sets=[dtrain, dtest], valid_names=['train', 'test']) expected_pred = lgb_model.predict(X_test) lgb_model.save_model(lgb_model_path) tl_model = treelite.Model.load(lgb_model_path, model_format='lightgbm') out_pred = treelite.gtil.predict(tl_model, X_test) np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5) def test_lightgbm_categorical_data(): """Test LightGBM with toy categorical data""" dataset = 'toy_categorical' lgb_model_path = dataset_db[dataset].model tl_model = treelite.Model.load(lgb_model_path, model_format='lightgbm') X, _ = load_svmlight_file(dataset_db[dataset].dtest, zero_based=True) expected_pred = load_txt(dataset_db[dataset].expected_margin) out_pred = treelite.gtil.predict(tl_model, X.toarray())
np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5)
numpy.testing.assert_almost_equal
import numpy as np from at import * from at.load import load_mat from matplotlib import pyplot as plt import matplotlib.pyplot as plt import at.plot import numpy as np from pylab import * import pandas as pd import csv from random import random def defineMatrices( Nm, C0x, C0y, C0xy, C0yx, Cxx_err, Cyy_err, Cxy_err, Cyx_err, dCx, dCy, dCxy,dCyx ): Nk = len(dCx) # number of free parameters Nm = 40 # number of measurements print('NK:', Nk) print('Nm:', Nm) Ax = np.zeros([Nk, Nk]) Ay = np.zeros([Nk, Nk]) Axy = np.zeros([Nk, Nk]) Ayx = np.zeros([Nk, Nk]) A = np.zeros([4 * Nk, Nk]) ## Bx = np.zeros([Nk, 1]) By = np.zeros([Nk, 1]) Bxy = np.zeros([Nk, 1]) Byx = np.zeros([Nk, 1]) B = np.zeros([4 * Nk, 1]) ## Dx = (Cxx_err[0:Nm, :] - C0x[0:Nm, :]) ### dk ? Dy = (Cyy_err[0:Nm, :] - C0y[0:Nm, :]) Dxy = (Cxy_err[0:Nm, :] - C0xy[0:Nm, :]) Dyx = (Cyx_err[0:Nm, :] - C0yx[0:Nm, :]) ## for i in range(Nk): ## i represents each quad # print('done A:', 100.* i ,'%') for j in range(Nk): Ax[i, j] = np.sum(np.dot(dCx[i], dCx[j].T)) Ay[i, j] = np.sum(np.dot(dCy[i], dCy[j].T)) Axy[i, j] = np.sum(np.dot(dCxy[i], dCxy[j].T)) Ayx[i, j] = np.sum(np.dot(dCyx[i], dCyx[j].T)) A[i, :] = Ax[i, :] A[i + Nk, :] = Ay[i, :] A[i + 2 * Nk, :] = Axy[i, :] A[i + 3 * Nk, :] = Ayx[i, :] ## for i in range(Nk): Bx[i] = np.sum(np.dot(dCx[i], Dx.T)) By[i] = np.sum(np.dot(dCy[i], Dy.T)) Bxy[i] = np.sum(np.dot(dCxy[i], Dxy.T)) Byx[i] = np.sum(np.dot(dCyx[i], Dyx.T)) B[i] = Bx[i] B[i + Nk] = By[i] B[i + 2 * Nk] = Bxy[i] B[i + 3 * Nk] = Byx[i] return A, B def getInverse(A, B,Nk, sCut): u, s, v = np.linalg.svd(A, full_matrices=True) smat = 0.0 * A si = s ** -1 n_sv = sCut si[n_sv:] *= 0.0 print("number of singular values {}".format(len(si))) smat[:Nk, :Nk] = np.diag(si) print('A' + str(A.shape), 'B' + str(B.shape), 'U' + str(u.shape), 'smat' + str(smat.shape), 'v' + str(v.shape)) plt.plot(np.log(s), 'd--') plt.title('singular value') plt.show() plt.plot(si, 'd--') plt.title('singular value inverse') plt.show() Ai = np.dot(v.transpose(), np.dot(smat.transpose(), u.transpose())) ### r = (
np.dot(Ai, B)
numpy.dot
import copy import grp import matplotlib import matplotlib.cm import numpy as np import os import re import sys import threading # OpenCV import for python3.5 if os.environ['ROS_PYTHON_VERSION'] == '3': import cv2 else: sys.path.remove('/opt/ros/{}/lib/python2.7/dist-packages'.format(os.getenv('ROS_DISTRO'))) # NOQA import cv2 # NOQA sys.path.append('/opt/ros/{}/lib/python2.7/dist-packages'.format(os.getenv('ROS_DISTRO'))) # NOQA from cv_bridge import CvBridge from edgetpu.basic.edgetpu_utils import EDGE_TPU_STATE_ASSIGNED from edgetpu.basic.edgetpu_utils import EDGE_TPU_STATE_NONE from edgetpu.basic.edgetpu_utils import ListEdgeTpuPaths from edgetpu.detection.engine import DetectionEngine import PIL.Image from resource_retriever import get_filename import rospy from coral_usb.util import get_panorama_sliced_image from coral_usb.util import get_panorama_slices from coral_usb.util import non_maximum_suppression from jsk_recognition_msgs.msg import ClassificationResult from jsk_recognition_msgs.msg import Rect from jsk_recognition_msgs.msg import RectArray from jsk_topic_tools import ConnectionBasedTransport from sensor_msgs.msg import CompressedImage from sensor_msgs.msg import Image class EdgeTPUDetectorBase(ConnectionBasedTransport): def __init__(self, model_file=None, label_file=None, namespace='~'): # get image_trasport before ConnectionBasedTransport subscribes ~input self.transport_hint = rospy.get_param( namespace + 'image_transport', 'raw') rospy.loginfo("Using transport {}".format(self.transport_hint)) super(EdgeTPUDetectorBase, self).__init__() self.bridge = CvBridge() self.classifier_name = rospy.get_param( namespace + 'classifier_name', rospy.get_name()) self.model_file = rospy.get_param(namespace + 'model_file', model_file) if self.model_file is not None: self.model_file = get_filename(self.model_file, False) self.label_file = rospy.get_param(namespace + 'label_file', label_file) if self.label_file is not None: self.label_file = get_filename(self.label_file, False) self.duration = rospy.get_param(namespace + 'visualize_duration', 0.1) self.enable_visualization = rospy.get_param( namespace + 'enable_visualization', True) device_id = rospy.get_param(namespace + 'device_id', None) if device_id is None: device_path = None else: device_paths = ListEdgeTpuPaths(EDGE_TPU_STATE_NONE) if len(device_paths) == 0: rospy.logerr('No device found.') elif device_id >= len(device_paths): rospy.logerr( 'Only {} devices are found, but device id {} is set.' .format(len(device_paths), device_id)) device_path = device_paths[device_id] assigned_device_paths = ListEdgeTpuPaths(EDGE_TPU_STATE_ASSIGNED) if device_path in assigned_device_paths: rospy.logwarn( 'device {} is already assigned: {}'.format( device_id, device_path)) self.device_path = device_path if not grp.getgrnam('plugdev').gr_gid in os.getgroups(): rospy.logerr('Current user does not belong to plugdev group') rospy.logerr('Please run `sudo adduser $(whoami) plugdev`') rospy.logerr( 'And make sure to re-login the terminal by `su -l $(whoami)`') if self.model_file is not None: self.engine = DetectionEngine( self.model_file, device_path=self.device_path) if self.label_file is None: self.label_ids = None self.label_names = None else: self.label_ids, self.label_names = self._load_labels( self.label_file) # dynamic reconfigure self.start_dynamic_reconfigure(namespace) self.pub_rects = self.advertise( namespace + 'output/rects', RectArray, queue_size=1) self.pub_class = self.advertise( namespace + 'output/class', ClassificationResult, queue_size=1) # visualize timer if self.enable_visualization: self.lock = threading.Lock() self.pub_image = self.advertise( namespace + 'output/image', Image, queue_size=1) self.pub_image_compressed = self.advertise( namespace + 'output/image/compressed', CompressedImage, queue_size=1) self.timer = rospy.Timer( rospy.Duration(self.duration), self.visualize_cb) self.img = None self.header = None self.bboxes = None self.labels = None self.scores = None def start(self): if self.model_file is not None: self.engine = DetectionEngine( self.model_file, device_path=self.device_path) self.subscribe() if self.enable_visualization: self.timer = rospy.Timer( rospy.Duration(self.duration), self.visualize_cb) def stop(self): self.unsubscribe() del self.sub_image if self.enable_visualization: self.timer.shutdown() del self.timer del self.engine def subscribe(self): if self.transport_hint == 'compressed': self.sub_image = rospy.Subscriber( '{}/compressed'.format(rospy.resolve_name('~input')), CompressedImage, self.image_cb, queue_size=1, buff_size=2**26) else: self.sub_image = rospy.Subscriber( '~input', Image, self.image_cb, queue_size=1, buff_size=2**26) def unsubscribe(self): self.sub_image.unregister() @property def visualize(self): return self.pub_image.get_num_connections() > 0 or \ self.pub_image_compressed.get_num_connections() > 0 def config_callback(self, config, level): self.score_thresh = config.score_thresh self.top_k = config.top_k self.model_file = get_filename(config.model_file, False) if 'label_file' in config: self.label_file = get_filename(config.label_file, False) self.label_ids, self.label_names = self._load_labels( self.label_file) if self.model_file is not None: self.engine = DetectionEngine( self.model_file, device_path=self.device_path) return config def _load_labels(self, path): p = re.compile(r'\s*(\d+)(.+)') with open(path, 'r', encoding='utf-8') as f: lines = (p.match(line).groups() for line in f.readlines()) labels = {int(num): text.strip() for num, text in lines} return list(labels.keys()), list(labels.values()) def _process_result(self, objs, H, W, y_offset=None, x_offset=None): bboxes = [] labels = [] scores = [] for obj in objs: x_min, y_min, x_max, y_max = obj.bounding_box.flatten().tolist() y_max = int(np.round(y_max * H)) y_min = int(np.round(y_min * H)) if y_offset: y_max = y_max + y_offset y_min = y_min + y_offset x_max = int(np.round(x_max * W)) x_min = int(np.round(x_min * W)) if x_offset: x_max = x_max + x_offset x_min = x_min + x_offset bboxes.append([y_min, x_min, y_max, x_max]) labels.append(self.label_ids.index(int(obj.label_id))) scores.append(obj.score) bboxes = np.array(bboxes, dtype=np.int).reshape((len(bboxes), 4)) labels = np.array(labels, dtype=np.int) scores = np.array(scores, dtype=np.float) return bboxes, labels, scores def _detect_step(self, img, y_offset=None, x_offset=None): H, W = img.shape[:2] objs = self.engine.DetectWithImage( PIL.Image.fromarray(img), threshold=self.score_thresh, keep_aspect_ratio=True, relative_coord=True, top_k=self.top_k) return self._process_result( objs, H, W, y_offset=y_offset, x_offset=x_offset) def _detect(self, img): return self._detect_step(img) def image_cb(self, msg): if not hasattr(self, 'engine'): return if self.transport_hint == 'compressed': np_arr = np.fromstring(msg.data, np.uint8) img = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) img = img[:, :, ::-1] else: img = self.bridge.imgmsg_to_cv2(msg, desired_encoding='rgb8') bboxes, labels, scores = self._detect(img) rect_msg = RectArray(header=msg.header) for bbox in bboxes: y_min, x_min, y_max, x_max = bbox rect = Rect( x=x_min, y=y_min, width=x_max - x_min, height=y_max - y_min) rect_msg.rects.append(rect) cls_msg = ClassificationResult( header=msg.header, classifier=self.classifier_name, target_names=self.label_names, labels=labels, label_names=[self.label_names[lbl] for lbl in labels], label_proba=scores) self.pub_rects.publish(rect_msg) self.pub_class.publish(cls_msg) if self.enable_visualization: with self.lock: self.img = img self.header = msg.header self.bboxes = bboxes self.labels = labels self.scores = scores def visualize_cb(self, event): if (not self.visualize or self.img is None or self.header is None or self.bboxes is None or self.labels is None or self.scores is None): return with self.lock: vis_img = self.img.copy() header = copy.deepcopy(self.header) bboxes = self.bboxes.copy() labels = self.labels.copy() scores = self.scores.copy() # bbox cmap = matplotlib.cm.get_cmap('hsv') n = max(len(bboxes) - 1, 10) for i, (bbox, label, score) in enumerate(zip(bboxes, labels, scores)): rgba = np.array(cmap(1. * i / n)) color = rgba[:3] * 255 label_text = '{}, {:.2f}'.format(self.label_names[label], score) p1y = max(bbox[0], 0) p1x = max(bbox[1], 0) p2y = min(bbox[2], vis_img.shape[0]) p2x = min(bbox[3], vis_img.shape[1]) cv2.rectangle( vis_img, (p1x, p1y), (p2x, p2y), color, thickness=3, lineType=cv2.LINE_AA) cv2.putText( vis_img, label_text, (p1x, max(p1y - 10, 0)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=2, lineType=cv2.LINE_AA) if self.pub_image.get_num_connections() > 0: vis_msg = self.bridge.cv2_to_imgmsg(vis_img, 'rgb8') # BUG: https://answers.ros.org/question/316362/sensor_msgsimage-generates-float-instead-of-int-with-python3/ # NOQA vis_msg.step = int(vis_msg.step) vis_msg.header = header self.pub_image.publish(vis_msg) if self.pub_image_compressed.get_num_connections() > 0: # publish compressed http://wiki.ros.org/rospy_tutorials/Tutorials/WritingImagePublisherSubscriber # NOQA vis_compressed_msg = CompressedImage() vis_compressed_msg.header = header vis_compressed_msg.format = "jpeg" vis_img_rgb = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB) vis_compressed_msg.data = np.array( cv2.imencode('.jpg', vis_img_rgb)[1]).tostring() self.pub_image_compressed.publish(vis_compressed_msg) class EdgeTPUPanoramaDetectorBase(EdgeTPUDetectorBase): def __init__(self, model_file=None, label_file=None, namespace='~'): super(EdgeTPUPanoramaDetectorBase, self).__init__( model_file=model_file, label_file=label_file, namespace=namespace ) def _detect(self, orig_img): _, orig_W = orig_img.shape[:2] panorama_slices = get_panorama_slices( orig_W, self.n_split, overlap=self.overlap) bboxes = [] labels = [] scores = [] for panorama_slice in panorama_slices: img = get_panorama_sliced_image(orig_img, panorama_slice) bbox, label, score = self._detect_step( img, x_offset=panorama_slice.start) if len(bbox) > 0: bboxes.append(bbox) labels.append(label) scores.append(score) if len(bboxes) > 0: bboxes = np.concatenate(bboxes, axis=0).astype(np.int) labels = np.concatenate(labels, axis=0).astype(np.int) scores =
np.concatenate(scores, axis=0)
numpy.concatenate
import numpy import os import matplotlib.pyplot as plt import errandpy.handy as handy import errandpy.utility as Utility def get_test_curve(): x, y = [], [] with open(os.path.dirname(__file__) + "/forcecurve.csv") as f: next(f) lines = f.readlines() for line in lines: x.append(float(line.split(",")[0])) y.append(float(line.split(",")[1])) return numpy.asarray(x),
numpy.asarray(y)
numpy.asarray
import pytest from numpy import allclose, arange, array, asarray, dot, cov, corrcoef, float64 from thunder.series.readers import fromlist, fromarray from thunder.images.readers import fromlist as img_fromlist pytestmark = pytest.mark.usefixtures("eng") def test_map(eng): data = fromlist([array([1, 2]), array([3, 4])], engine=eng) assert allclose(data.map(lambda x: x + 1).toarray(), [[2, 3], [4, 5]]) assert data.map(lambda x: 1.0*x, dtype=float64).dtype == float64 assert data.map(lambda x: 1.0*x).dtype == float64 def test_map_singletons(eng): data = fromlist([array([4, 5, 6, 7]), array([8, 9, 10, 11])], engine=eng) mapped = data.map(lambda x: x.mean()) assert mapped.shape == (2, 1) def test_filter(eng): data = fromlist([array([1, 2]), array([3, 4])], engine=eng) assert allclose(data.filter(lambda x: x.sum() > 3).toarray(), [3, 4]) def test_flatten(eng): arr = arange(2*2*5).reshape(2, 2, 5) data = fromarray(arr, engine=eng) assert data.flatten().shape == (4, 5) assert allclose(data.flatten().toarray(), arr.reshape(2*2, 5)) def test_sample(eng): data = fromlist([array([1, 5]), array([1, 10]), array([1, 15])], engine=eng) assert allclose(data.sample(3).shape, (3, 2)) assert allclose(data.filter(lambda x: x.max() > 10).sample(1).toarray(), [1, 15]) def test_between(eng): data = fromlist([array([4, 5, 6, 7]), array([8, 9, 10, 11])], engine=eng) val = data.between(0, 2) assert allclose(val.index, array([0, 1])) assert allclose(val.toarray(), array([[4, 5], [8, 9]])) def test_first(eng): data = fromlist([array([4, 5, 6, 7]), array([8, 9, 10, 11])], engine=eng) assert allclose(data.first(), [4, 5, 6, 7]) def test_select(eng): index = ['label1', 'label2', 'label3', 'label4'] data = fromlist([array([4, 5, 6, 7]), array([8, 9, 10, 11])], engine=eng, index=index) assert data.select('label1').shape == (2, 1) assert allclose(data.select('label1').toarray(), [4, 8]) assert allclose(data.select(['label1']).toarray(), [4, 8]) assert allclose(data.select(['label1', 'label2']).toarray(), array([[4, 5], [8, 9]])) assert data.select('label1').index == ['label1'] assert data.select(['label1']).index == ['label1'] def test_standardize_axis1(eng): data = fromlist([array([1, 2, 3, 4, 5])], engine=eng) centered = data.center(1) standardized = data.standardize(1) zscored = data.zscore(1) assert allclose(centered.toarray(), array([-2, -1, 0, 1, 2]), atol=1e-3) assert allclose(standardized.toarray(), array([0.70710, 1.41421, 2.12132, 2.82842, 3.53553]), atol=1e-3) assert allclose(zscored.toarray(), array([-1.41421, -0.70710, 0, 0.70710, 1.41421]), atol=1e-3) def test_standardize_axis0(eng): data = fromlist([array([1, 2]), array([3, 4])], engine=eng) centered = data.center(0) standardized = data.standardize(0) zscored = data.zscore(0) assert allclose(centered.toarray(), array([[-1, -1], [1, 1]]), atol=1e-3) assert allclose(standardized.toarray(), array([[1, 2], [3, 4]]), atol=1e-3) assert allclose(zscored.toarray(), array([[-1, -1], [1, 1]]), atol=1e-3) def test_squelch(eng): data = fromlist([array([1, 2]), array([3, 4])], engine=eng) squelched = data.squelch(5) assert allclose(squelched.toarray(), [[0, 0], [0, 0]]) squelched = data.squelch(3) assert allclose(squelched.toarray(), [[0, 0], [3, 4]]) squelched = data.squelch(1) assert allclose(squelched.toarray(), [[1, 2], [3, 4]]) def test_correlate(eng): data = fromlist([array([1, 2, 3, 4, 5])], engine=eng) sig = [4, 5, 6, 7, 8] corr = data.correlate(sig).toarray() assert allclose(corr, 1) sigs = [[4, 5, 6, 7, 8], [8, 7, 6, 5, 4]] corrs = data.correlate(sigs).toarray() assert allclose(corrs, [1, -1]) def test_correlate_multiindex(eng): index = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] data = fromlist([array([1, 2, 3, 4, 5])], index=asarray(index).T, engine=eng) sig = [4, 5, 6, 7, 8] corr = data.correlate(sig).toarray() assert allclose(corr, 1) sigs = [[4, 5, 6, 7, 8], [8, 7, 6, 5, 4]] corrs = data.correlate(sigs).toarray() assert allclose(corrs, [1, -1]) def test_clip(eng): data = fromlist([array([1, 2, 3, 4, 5])], engine=eng) assert allclose(data.clip(2).toarray(), [2, 2, 3, 4, 5]) assert allclose(data.clip(2, 3).toarray(), [2, 2, 3, 3, 3]) def test_mean(eng): data = fromlist([arange(8), arange(8)], engine=eng) val = data.mean().toarray() expected = data.toarray().mean(axis=0) assert allclose(val, expected) assert str(val.dtype) == 'float64' def test_sum(eng): data = fromlist([arange(8), arange(8)], engine=eng) val = data.sum().toarray() expected = data.toarray().sum(axis=0) assert allclose(val, expected) assert str(val.dtype) == 'int64' def test_var(eng): data = fromlist([arange(8), arange(8)], engine=eng) val = data.var().toarray() expected = data.toarray().var(axis=0) assert allclose(val, expected) assert str(val.dtype) == 'float64' def test_std(eng): data = fromlist([arange(8), arange(8)], engine=eng) val = data.std().toarray() expected = data.toarray().std(axis=0) assert allclose(val, expected) assert str(val.dtype) == 'float64' def test_max(eng): data = fromlist([arange(8), arange(8)], engine=eng) val = data.max().toarray() expected = data.toarray().max(axis=0) assert allclose(val, expected) def test_min(eng): data = fromlist([arange(8), arange(8)], engine=eng) val = data.min().toarray() expected = data.toarray().min(axis=0) assert allclose(val, expected) def test_labels(eng): x = [array([0, 1]), array([2, 3]), array([4, 5]), array([6, 7])] data = fromlist(x, labels=[0, 1, 2, 3], engine=eng) assert allclose(data.filter(lambda x: x[0]>2).labels, array([2, 3])) assert allclose(data[2:].labels, array([2, 3])) assert allclose(data[1].labels, array([1])) assert allclose(data[1, :].labels, array([1])) assert allclose(data[[0, 2]].labels, array([0, 2])) assert allclose(data.flatten().labels, array([0, 1, 2, 3])) x = [
array([[0, 1],[2, 3]])
numpy.array
""" sampling.py We sample Metropolis-Hastings: * Random walk proposals * Langevin proposals * Langevin proposals with preconditioning * Hamiltonian MC * Hamiltonian MC with preconditioning NOTE: The functionality of this module is restricted to log-densities, i.e. densities of the form p(s) = exp(-E(s)). We work with E(s) only. The reason is that in Bayesian inference, evaluations of exp(-E(s)) are too instable in a numerical sense. """ import collections from abc import ABC, abstractmethod import numpy as np from difflikelihoods import logdensity def metropolishastings_rw(logpdf, nsamps, initstate, pwidth, ninits): """ Convenience function for Metropolis-Hastings sampling with random walk proposal kernel. """ logdens = logdensity.LogDensity(logpdf) rwmh = RandomWalkMH(logdens) return rwmh.sample_nd(nsamps, initstate, pwidth, ninits) def metropolishastings_lang(logpdf, loggrad, nsamps, initstate, pwidth, ninits): """ Convenience function for Metropolis-Hastings sampling with Langevin dynamics proposal kernel. """ logdens = logdensity.LogDensity(logpdf, loggrad) langmh = LangevinMH(logdens) return langmh.sample_nd(nsamps, initstate, pwidth, ninits) def metropolishastings_plang( logpdf, loggrad, loghess, nsamps, initstate, pwidth, ninits ): """ Convenience function for Metropolis-Hastings sampling with Riemannian (preconditioned) Langevin dynamics proposal kernel. """ logdens = logdensity.LogDensity(logpdf, loggrad, loghess) plangmh = PrecondLangevinMH(logdens) return plangmh.sample_nd(nsamps, initstate, pwidth, ninits) def metropolishastings_ham( logpdf, loggrad, nsamps, initstate, stepsize, nsteps, ninits ): """ Convenience function for Hamiltonian MCMC. """ logdens = logdensity.LogDensity(logpdf, loggrad) hmc = HamiltonianMC(logdens, nsteps) return hmc.sample_nd(nsamps, initstate, stepsize, ninits) def metropolishastings_pham( logpdf, loggrad, loghess, nsamps, initstate, stepsize, nsteps, ninits ): """ Convenience function for preconditioned Hamiltonian MCMC. """ logdens = logdensity.LogDensity(logpdf, loggrad, loghess) phmc = PrecondHamiltonianMC(logdens, nsteps) return phmc.sample_nd(nsamps, initstate, stepsize, ninits) # Convenience data structure. MCMCState = collections.namedtuple("MCMCState", "state logdens loggrad loghess") class MetropolisHastings(ABC): """ Abstract Metropolis-Hastings class. Contains everything but the proposal kernels. """ def __init__(self, logdens): """ Initialise MH sampler with a log-density function. Args: logdens: LogDensity object, evaluations of a negative log- density and derivatives """ self.logdens = logdens def sample_nd(self, nsamps, init_state, pwidth, ninits=None, *optional): """ """ assert init_state_is_array( init_state ), "Please enter a (d,) dimensional initial state" states, logprobs = np.zeros((nsamps, len(init_state))), np.zeros(nsamps) accepted = 0 if ninits is None: ninits = 0 currstate = self.evaluate_logdens(init_state) states[0], logprobs[0] = currstate.state, currstate.logdens for idx in range(1, nsamps): if idx < ninits: proposal, corrfact = self.generate_proposal(currstate, pwidth) else: proposal, corrfact = self.generate_proposal(currstate, 0.2 * pwidth) currstate, is_accept = self.accept_or_reject( currstate, proposal, corrfact, idx, ninits ) states[idx], logprobs[idx] = ( currstate.state.copy(), currstate.logdens.copy(), ) if idx >= ninits: accepted = accepted + int(is_accept) ratio = accepted / nsamps return states, logprobs, ratio def evaluate_logdens(self, loc): """ """ logdenseval = self.logdens.eval(loc) if self.logdens.has_gradient: gradeval = self.logdens.gradeval(loc) else: gradeval = 0 if self.logdens.has_hessian: hesseval = self.logdens.hesseval(loc) else: hesseval = 0 return MCMCState( state=loc, logdens=logdenseval, loggrad=gradeval, loghess=hesseval ) def accept_or_reject(self, currstate, proposal, corrfact, idx, ninits): """ """ logaccprob = self.get_logaccprob(currstate, proposal, corrfact, idx, ninits) if logaccprob < 0 or logaccprob < -np.log(np.random.rand()): state = proposal is_accept = True else: state = currstate is_accept = False return state, is_accept def get_logaccprob(self, currstate, proposal, corrfact, idx, ninits): """ Returns NEGATIVE log acceptance probability, i.e. corrected proposal - corrected currstate """ if idx < ninits: corrfact = -corrfact return (corrfact) + (proposal.logdens - currstate.logdens) @abstractmethod def generate_proposal(self, *args): """ """ pass def init_state_is_array(init_state): """ Checks whether init_state is compliant with an Nd algorithm. That is, whether init_state is an (d,) np.ndarray. """ assert isinstance(init_state, np.ndarray), "Please enter init_state of shape (d,)" assert len(init_state.shape) == 1, "Please enter init_state of shape (d,)" return True class RandomWalkMH(MetropolisHastings): """ """ def __init__(self, logdens): """ """ MetropolisHastings.__init__(self, logdens) def generate_proposal(self, currstate, pwidth): """ """ newloc = self.sample_randomwalk(currstate.state, pwidth) proposal = self.evaluate_logdens(newloc) corrfact = 0 return proposal, corrfact def sample_randomwalk(self, mean, var): """ """ return mean + np.sqrt(var) * np.random.randn(len(mean)) class LangevinMH(MetropolisHastings): """ """ def __init__(self, logdens): """ """ MetropolisHastings.__init__(self, logdens) def generate_proposal(self, currstate, pwidth): """ """ newloc = self.sample_langevin(currstate, pwidth) proposal = self.evaluate_logdens(newloc) corrfact = self.compute_corrfact_langevin(currstate, proposal, pwidth) return proposal, corrfact def sample_langevin(self, currstate, pwidth): """ """ noise = np.random.randn(len(currstate.state)) return ( currstate.state - pwidth * currstate.loggrad + np.sqrt(2 * pwidth) * noise ) def compute_corrfact_langevin(self, currstate, proposal, pwidth): """ """ lognomin = self.kernel_langevin(currstate, proposal, pwidth) logdenom = self.kernel_langevin(proposal, currstate, pwidth) return lognomin - logdenom def kernel_langevin(self, state1, state2, pwidth): """ """ state2_dyn = state2.state - pwidth * state2.loggrad dist = np.linalg.norm(state1.state - state2_dyn) ** 2 return 0.5 * dist / (2 * pwidth) class PrecondLangevinMH(MetropolisHastings): """ Preconditioning with (inverse) Hessian. """ def __init__(self, logdens): """ precondeval returns M (and not M^{-1}) as used in Cald&Gir """ MetropolisHastings.__init__(self, logdens) def generate_proposal(self, currstate, pwidth): """ """ newloc = self.sample_langevin(currstate, pwidth) proposal = self.evaluate_logdens(newloc) corrfact = self.compute_corrfact_langevin(currstate, proposal, pwidth) return proposal, corrfact def sample_langevin(self, currstate, pwidth): """ """ noise = np.random.multivariate_normal( np.zeros(len(currstate.loghess)), np.linalg.inv(currstate.loghess) ) prec_dyn = np.linalg.solve(currstate.loghess, currstate.loggrad) return currstate.state - pwidth * prec_dyn + np.sqrt(2 * pwidth) * noise def compute_corrfact_langevin(self, currstate, proposal, pwidth): """ """ lognomin = self.kernel_langevin(currstate, proposal, pwidth) logdenom = self.kernel_langevin(proposal, currstate, pwidth) return lognomin - logdenom def kernel_langevin(self, state1, state2, pwidth): """ """ prec_dyn = np.linalg.solve(state2.loghess, state2.loggrad) state2_dyn = state2.state - pwidth * prec_dyn difference = state1.state - state2_dyn return 0.5 * difference.dot(np.dot(state2.loghess, difference)) / (2 * pwidth) class HamiltonianMC(MetropolisHastings): """ """ def __init__(self, logdens, nsteps): """ """ MetropolisHastings.__init__(self, logdens) self.nsteps = nsteps def generate_proposal(self, currstate, pwidth): """ pwidth is used as stepsize for self.nsteps leapfrog steps. The correction factor is the quotient of the hamiltonian terms. """ momentum = np.random.multivariate_normal( np.zeros(len(currstate.state)), np.eye(len(currstate.state)) ) # hamilt = self.evaluate_hamiltonian(momentum, currstate) momentum_new, proposal = self.leapfrog_dynamics(momentum, currstate, pwidth) # prop_hamilt = self.evaluate_hamiltonian(momentum_new, proposal) corrfact = self.get_corrfact(momentum, momentum_new) return proposal, corrfact def leapfrog_dynamics(self, momentum, currstate, pwidth): """ """ proposal = currstate for idx in range(self.nsteps): momentum, proposal = self.compute_next_lfstep(momentum, proposal, pwidth) return momentum, proposal def compute_next_lfstep(self, momentum, proposal, pwidth): """ """ momentum = momentum - 0.5 * pwidth * proposal.loggrad pstate = proposal.state + pwidth * momentum proposal = self.evaluate_logdens(pstate) momentum = momentum - 0.5 * pwidth * proposal.loggrad return momentum, proposal def get_corrfact(self, mom_new, mom): """ """ return 0.5 * (mom_new.T @ mom_new - mom.T @ mom) class PrecondHamiltonianMC(MetropolisHastings): """ In fact, the true name would be either * Riemannian-Gaussian HMC: if the preconditioner depends on the state * Euclidean-Gaussian HMC: if the preconditioner is constant [Girolami and Calderhead, 2011; Betancourt, 2018] """ def __init__(self, logdens, nsteps): """ evalprecond returns M (and not M^{-1}) as used in Cald&Gir. M is the Hessian """ MetropolisHastings.__init__(self, logdens) self.nsteps = nsteps def generate_proposal(self, currstate, pwidth): """ pwidth is used as stepsize for self.nsteps leapfrog steps. The correction factor is the quotient of the hamiltonian terms. """ momentum = np.random.multivariate_normal( np.zeros(len(currstate.state)), currstate.loghess ) momentum_new, proposal = self.leapfrog_dynamics(momentum, currstate, pwidth) corrfact = self.get_corrfact(momentum, momentum_new, currstate, proposal) return proposal, corrfact def leapfrog_dynamics(self, momentum, currstate, pwidth): """ """ proposal = currstate for idx in range(self.nsteps): momentum, proposal = self.compute_next_lfstep(momentum, proposal, pwidth) return momentum, proposal def compute_next_lfstep(self, momentum, proposal, pwidth): """ """ momentum = momentum - 0.5 * pwidth * proposal.loggrad pstate = proposal.state + pwidth * np.linalg.solve(proposal.loghess, momentum) proposal = self.evaluate_logdens(pstate) momentum = momentum - 0.5 * pwidth * proposal.loggrad return momentum, proposal def get_corrfact(self, mom, mom_new, currstate, proposal): """ """ return 0.5 * ( mom_new.T @ np.linalg.solve(proposal.loghess, mom_new) + np.log(
np.linalg.det(proposal.loghess)
numpy.linalg.det
''' This module generates thin-cell transmission spectra, accounting for cavity effects, transient atom dynamics following depolarisation in atom-wall collisions, and atom-surface van der Waals :math:`\propto 1/R^3` interactions. Example: To generate simple thin cell spectra:: from tas import * import matplotlib.pyplot as plt import numpy as np laserDetuning = np.linspace(-6500,-1500,60) # (MHz) temperature = 228 # (degree Celsius) collisionalBroadening = 840 # (MHz) C3 = 2 # (kHz mum^3) cellLength = 80e-9 # (m) collisionalShift = 0 # (MHz) calc = ThinCellSpectra(nSurface=1.76) T = calc.getTransmission(laserDetuning, temperature, collisionalBroadening, collisionalShift, C3, cellLength) plt.figure() plt.plot(laserDetuning, T, 'b', label='Theoretical prediction') plt.xlabel('Detuning (GHz)') plt.ylabel('Transmission' ) plt.legend(loc='lower right') plt.show() ''' import numpy as np #from pylab import * from scipy.constants import Boltzmann as C_kb,\ atomic_mass,\ epsilon_0,\ hbar class ThinCellSpectra(): r""" Generates spectra for optically thin atom slabs in nano-cells. Includes atom-surface interactions, transient effects of atom dynamics following depolarisation at the walls of the cell, and cavity effects due to the cell walls. Neglects change of driving light power due to interaction with the atomic medium. Args: nSurface: (Optional) refractive index of the vapour cell surface wavelength: (Optional) transition wavelength (m) gamma0: (Optional) transition natural linewidth (MHz) atomMass: (Optional) mass of the atoms (atomic units) energyLevelsF: (Optional) array of offsets of energy levels, relative to center of gravity of HFS line (MHz) cg_coeff: (Optional) array of Clebsch–Gordan coefficients for the energy levels listed in `energyLevelsF`. Note: To include different transitions and/or atomic species change atom specific data with optional parameters of ThinCellSpectra during initialisation of the class instance. Optional parameters are all set by default to conditions in the experiment (Cs D1, :math:`F=4 \rightarrow F=3,4` ). """ def __init__(self, nSurface=1.76, wavelength=894.59295986e-9, gamma0=4.5612, atomMass=132.905451931, energyLevelsF=[-3510.916, -4678.597], cg_coeff=[0.026024508, 0.0364343] ): # === surface specific data === self.nSurface = nSurface # Reflection and transmission coefficients. See Fig. 1 in supplemental material self.t1 = 2. * nSurface / (nSurface + 1) self.t2 = 2. / (nSurface + 1) self.r1 = (nSurface - 1) / (nSurface + 1) self.r2 = (1 - nSurface) / (nSurface + 1) # === atom specific data === self.kProbe = 2. * np.pi / wavelength # wavector in vacuum self.gamma0 = gamma0 self.dipole = 3.0 * np.sqrt(epsilon_0 * hbar * (2.0 * gamma0 * (10.0**6)) * (wavelength**3) / (8.0 * np.pi)) self.mass = atomMass * atomic_mass self.energyLevelsF = np.array(energyLevelsF) self.cg_coeff =
np.array(cg_coeff)
numpy.array
# pylint: disable=E1101 import torch import torch.nn as nn from torch.utils.data import DataLoader, TensorDataset from sklearn.metrics import average_precision_score, confusion_matrix import numpy as np from physionet import PhysioNet, get_data_min_max, variable_time_collate_fn2 from sklearn import model_selection from sklearn import metrics from sklearn.metrics import precision_score, recall_score, f1_score from person_activity import PersonActivity def one_hot(y_): # Function to encode output labels from number indexes # e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]] y_ = y_.reshape(len(y_)) y_ = [int(x) for x in y_] n_values = np.max(y_) + 1 return np.eye(n_values)[np.array(y_, dtype=np.int32)] def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def log_normal_pdf(x, mean, logvar, mask): const = torch.from_numpy(np.array([2. * np.pi])).float().to(x.device) const = torch.log(const) return -.5 * (const + logvar + (x - mean) ** 2. / torch.exp(logvar)) * mask def normal_kl(mu1, lv1, mu2, lv2): v1 = torch.exp(lv1) v2 = torch.exp(lv2) lstd1 = lv1 / 2. lstd2 = lv2 / 2. kl = lstd2 - lstd1 + ((v1 + (mu1 - mu2) ** 2.) / (2. * v2)) - .5 return kl def mean_squared_error(orig, pred, mask): error = (orig - pred) ** 2 error = error * mask return error.sum() / mask.sum() def normalize_masked_data(data, mask, att_min, att_max): # we don't want to divide by zero att_max[att_max == 0.] = 1. if (att_max != 0.).all(): data_norm = (data - att_min) / att_max else: raise Exception("Zero!") if torch.isnan(data_norm).any(): raise Exception("nans!") # set masked out elements back to zero data_norm[mask == 0] = 0 return data_norm, att_min, att_max def evaluate(dim, rec, dec, test_loader, args, num_sample=10, device="cuda"): mse, test_n = 0.0, 0.0 with torch.no_grad(): for test_batch in test_loader: test_batch = test_batch.to(device) observed_data, observed_mask, observed_tp = ( test_batch[:, :, :dim], test_batch[:, :, dim: 2 * dim], test_batch[:, :, -1], ) if args.sample_tp and args.sample_tp < 1: subsampled_data, subsampled_tp, subsampled_mask = subsample_timepoints( observed_data.clone(), observed_tp.clone(), observed_mask.clone(), args.sample_tp) else: subsampled_data, subsampled_tp, subsampled_mask = \ observed_data, observed_tp, observed_mask out = rec(torch.cat((subsampled_data, subsampled_mask), 2), subsampled_tp) qz0_mean, qz0_logvar = ( out[:, :, : args.latent_dim], out[:, :, args.latent_dim:], ) epsilon = torch.randn( num_sample, qz0_mean.shape[0], qz0_mean.shape[1], qz0_mean.shape[2] ).to(device) z0 = epsilon * torch.exp(0.5 * qz0_logvar) + qz0_mean z0 = z0.view(-1, qz0_mean.shape[1], qz0_mean.shape[2]) batch, seqlen = observed_tp.size() time_steps = ( observed_tp[None, :, :].repeat(num_sample, 1, 1).view(-1, seqlen) ) pred_x = dec(z0, time_steps) pred_x = pred_x.view(num_sample, -1, pred_x.shape[1], pred_x.shape[2]) pred_x = pred_x.mean(0) mse += mean_squared_error(observed_data, pred_x, observed_mask) * batch test_n += batch return mse / test_n def compute_losses(dim, dec_train_batch, qz0_mean, qz0_logvar, pred_x, args, device): observed_data, observed_mask \ = dec_train_batch[:, :, :dim], dec_train_batch[:, :, dim:2*dim] noise_std = args.std noise_std_ = torch.zeros(pred_x.size()).to(device) + noise_std noise_logvar = 2. * torch.log(noise_std_).to(device) logpx = log_normal_pdf(observed_data, pred_x, noise_logvar, observed_mask).sum(-1).sum(-1) pz0_mean = pz0_logvar = torch.zeros(qz0_mean.size()).to(device) analytic_kl = normal_kl(qz0_mean, qz0_logvar, pz0_mean, pz0_logvar).sum(-1).sum(-1) if args.norm: logpx /= observed_mask.sum(-1).sum(-1) analytic_kl /= observed_mask.sum(-1).sum(-1) return logpx, analytic_kl def evaluate_classifier(model, test_loader, dec=None, args=None, classifier=None, dim=41, device='cuda', reconst=False, num_sample=1, dataset='P12'): pred = [] true = [] test_loss = 0 for test_batch, label in test_loader: test_batch, label = test_batch.to(device), label.to(device) batch_len = test_batch.shape[0] observed_data, observed_mask, observed_tp \ = test_batch[:, :, :dim], test_batch[:, :, dim:2*dim], test_batch[:, :, -1] with torch.no_grad(): out = model( torch.cat((observed_data, observed_mask), 2), observed_tp) if reconst: qz0_mean, qz0_logvar = out[:, :, :args.latent_dim], out[:, :, args.latent_dim:] epsilon = torch.randn( num_sample, qz0_mean.shape[0], qz0_mean.shape[1], qz0_mean.shape[2]).to(device) z0 = epsilon * torch.exp(.5 * qz0_logvar) + qz0_mean z0 = z0.view(-1, qz0_mean.shape[1], qz0_mean.shape[2]) if args.classify_pertp: pred_x = dec(z0, observed_tp[None, :, :].repeat( num_sample, 1, 1).view(-1, observed_tp.shape[1])) out = classifier(pred_x) else: out = classifier(z0) if args.classify_pertp: N = label.size(-1) out = out.view(-1, N) label = label.view(-1, N) _, label = label.max(-1) test_loss += nn.CrossEntropyLoss()(out, label.long()).item() * batch_len * 50. else: label = label.unsqueeze(0).repeat_interleave( num_sample, 0).view(-1) test_loss += nn.CrossEntropyLoss()(out, label).item() * batch_len * num_sample pred.append(out.cpu().numpy()) true.append(label.cpu().numpy()) pred = np.concatenate(pred, 0) true = np.concatenate(true, 0) acc = np.mean(pred.argmax(1) == true) if dataset == 'P12' or dataset == 'P19' or dataset == 'eICU': auc = metrics.roc_auc_score(true, pred[:, 1]) if not args.classify_pertp else 0. aupr = average_precision_score(true, pred[:, 1]) if not args.classify_pertp else 0. return test_loss / pred.shape[0], acc, auc, aupr, None, None, None elif dataset == 'PAM': auc = metrics.roc_auc_score(one_hot(true), pred) if not args.classify_pertp else 0. aupr = average_precision_score(one_hot(true), pred) if not args.classify_pertp else 0. precision = precision_score(true, pred.argmax(1), average='macro', ) if not args.classify_pertp else 0. recall = recall_score(true, pred.argmax(1), average='macro', ) if not args.classify_pertp else 0. F1 = 2 * (precision * recall) / (precision + recall) if not args.classify_pertp else 0. return test_loss/pred.shape[0], acc, auc, aupr, precision, recall, F1 def random_sample(idx_0, idx_1, batch_size): """ Returns a balanced sample by randomly sampling without replacement. :param idx_0: indices of negative samples :param idx_1: indices of positive samples :param batch_size: batch size :return: indices of balanced batch of negative and positive samples """ idx0_batch = np.random.choice(idx_0, size=int(batch_size / 2), replace=False) idx1_batch = np.random.choice(idx_1, size=int(batch_size / 2), replace=False) idx = np.concatenate([idx0_batch, idx1_batch], axis=0) return idx def preprocess_P19(PT_dict, arr_outcomes, labels_ts): total = [] for i, patient in enumerate(PT_dict): length = patient['length'] record_id = patient['id'] tt = torch.squeeze(torch.tensor(patient['time'][:length]), 1) vals = torch.tensor(patient['arr'][:length, :], dtype=torch.float32) m = np.zeros(shape=patient['arr'][:length, :].shape) m[patient['arr'][:length, :].nonzero()] = 1 mask = torch.tensor(m, dtype=torch.float32) outcome = torch.tensor(arr_outcomes[i][0], dtype=torch.float32) total.append((record_id, tt, vals, mask, outcome)) ''' # calculate and save P19 statistics - age, gender, density scores (can be used for all algorithms) idx_under_65 = [] idx_over_65 = [] idx_male = [] idx_female = [] for i in range(len(PT_dict)): if total[i][0] == PT_dict[i]['id']: age, gender, _, _, _, _ = PT_dict[i]['extended_static'] if age > 0: if age < 65: idx_under_65.append(i) else: idx_over_65.append(i) if gender == 0: idx_female.append(i) if gender == 1: idx_male.append(i) np.save('P19_idx_under_65.npy', np.array(idx_under_65), allow_pickle=True) np.save('P19_idx_over_65.npy', np.array(idx_over_65), allow_pickle=True) np.save('P19_idx_male.npy', np.array(idx_male), allow_pickle=True) np.save('P19_idx_female.npy', np.array(idx_female), allow_pickle=True) # save density scores X_features = np.array([d['arr'] for d in PT_dict]) counts = np.count_nonzero(X_features, axis=(0, 1)) ascending_indices = np.argsort(counts) density_scores = counts / (X_features.shape[0] * 60) res = [[ind, density_scores[ind], labels_ts[:-1][ind]] for ind in ascending_indices] np.save('P19_density_scores.npy', res, allow_pickle=True) ''' return total def preprocess_eICU(PT_dict, arr_outcomes, labels_ts): total = [] for i, patient in enumerate(PT_dict): record_id = str(i) tt = torch.squeeze(torch.tensor(patient['time']), 1) vals = torch.tensor(patient['arr'], dtype=torch.float32) m = np.zeros(shape=patient['arr'].shape) m[patient['arr'].nonzero()] = 1 mask = torch.tensor(m, dtype=torch.float32) outcome = torch.tensor(arr_outcomes[i], dtype=torch.float32) total.append((record_id, tt, vals, mask, outcome)) ''' # calculate and save P19 statistics - gender, density scores (can be used for all algorithms) idx_male = [] idx_female = [] for i in range(len(PT_dict)): if total[i][0] == str(i): vec = PT_dict[i]['extended_static'] if vec[-3] > 0: idx_female.append(i) if vec[-4] > 0: idx_male.append(i) print('\nOnly 1.329/36.443 samples have gender data available.\n') np.save('eICU_idx_male.npy', np.array(idx_male), allow_pickle=True) np.save('eICU_idx_female.npy', np.array(idx_female), allow_pickle=True) # save density scores X_features = np.array([d['arr'] for d in PT_dict]) counts = np.count_nonzero(X_features, axis=(0, 1)) ascending_indices = np.argsort(counts) density_scores = counts / (X_features.shape[0] * 300) res = [[ind, density_scores[ind], labels_ts[ind]] for ind in ascending_indices] np.save('eICU_density_scores.npy', res, allow_pickle=True) ''' return total def preprocess_PAM(PT_dict, arr_outcomes): length = 600 total = [] for i, patient in enumerate(PT_dict): record_id = str(i) tt = torch.tensor(list(range(length))) vals = torch.tensor(patient, dtype=torch.float32) m = np.zeros(shape=patient.shape) m[patient.nonzero()] = 1 mask = torch.tensor(m, dtype=torch.float32) outcome = torch.tensor(arr_outcomes[i][0], dtype=torch.float32) total.append((record_id, tt, vals, mask, outcome)) return total def random_sample_8(ytrain, B, replace=False): """ Returns a balanced sample of tensors by randomly sampling without replacement. """ idx0_batch = np.random.choice(np.where(ytrain == 0)[0], size=int(B / 8), replace=replace) idx1_batch = np.random.choice(np.where(ytrain == 1)[0], size=int(B / 8), replace=replace) idx2_batch = np.random.choice(np.where(ytrain == 2)[0], size=int(B / 8), replace=replace) idx3_batch = np.random.choice(np.where(ytrain == 3)[0], size=int(B / 8), replace=replace) idx4_batch = np.random.choice(np.where(ytrain == 4)[0], size=int(B / 8), replace=replace) idx5_batch = np.random.choice(np.where(ytrain == 5)[0], size=int(B / 8), replace=replace) idx6_batch = np.random.choice(np.where(ytrain == 6)[0], size=int(B / 8), replace=replace) idx7_batch = np.random.choice(np.where(ytrain == 7)[0], size=int(B / 8), replace=replace) idx = np.concatenate([idx0_batch, idx1_batch, idx2_batch, idx3_batch, idx4_batch, idx5_batch, idx6_batch, idx7_batch], axis=0) return idx def get_data(args, dataset, device, q, upsampling_batch, split_type, feature_removal_level, missing_ratio, flag=1, reverse=False, predictive_label='mortality'): if dataset == 'P12': train_dataset_obj_1 = PhysioNet('data/physionet', train=True, quantization=q, download=True, n_samples=12000, device=device, set_letter='a') train_dataset_obj_2 = PhysioNet('data/physionet', train=True, quantization=q, download=True, n_samples=12000, device=device, set_letter='b') train_dataset_obj_3 = PhysioNet('data/physionet', train=True, quantization=q, download=True, n_samples=12000, device=device, set_letter='c') dataset_1 = train_dataset_obj_1[:len(train_dataset_obj_1)] dataset_2 = train_dataset_obj_2[:len(train_dataset_obj_2)] dataset_3 = train_dataset_obj_3[:len(train_dataset_obj_3)] total_dataset = dataset_1 + dataset_2 + dataset_3 if predictive_label == 'LoS': los_outcomes = np.load('../saved/LoS_y1_out.npy', allow_pickle=True) for i, tpl in enumerate(total_dataset): a, b, c, d, _ = tpl los_label = los_outcomes[i][0] los_label = torch.tensor(los_label, dtype=torch.float32) total_dataset[i] = (a, b, c, d, los_label) ''' # calculate and save statistics idx_under_65 = [] idx_over_65 = [] idx_male = [] idx_female = [] P_list = np.load('P_list.npy', allow_pickle=True) for i in range(len(P_list)): if total_dataset[i][0] == P_list[i]['id']: age, gender, _, _, _ = P_list[i]['static'] if age > 0: if age < 65: idx_under_65.append(i) else: idx_over_65.append(i) if gender == 0: idx_female.append(i) if gender == 1: idx_male.append(i) np.save('mtand_idx_under_65.npy', np.array(idx_under_65), allow_pickle=True) np.save('mtand_idx_over_65.npy', np.array(idx_over_65), allow_pickle=True) np.save('mtand_idx_male.npy', np.array(idx_male), allow_pickle=True) np.save('mtand_idx_female.npy', np.array(idx_female), allow_pickle=True) ''' elif dataset == 'P19': PT_dict = np.load('../../../P19data/processed_data/PT_dict_list_6.npy', allow_pickle=True) labels_ts = np.load('../../../P19data/processed_data/labels_ts.npy', allow_pickle=True) labels_demogr = np.load('../../../P19data/processed_data/labels_demogr.npy', allow_pickle=True) arr_outcomes = np.load('../../../P19data/processed_data/arr_outcomes_6.npy', allow_pickle=True) total_dataset = preprocess_P19(PT_dict, arr_outcomes, labels_ts) elif dataset == 'eICU': PT_dict = np.load('../../../eICUdata/processed_data/PTdict_list.npy', allow_pickle=True) labels_ts = np.load('../../../eICUdata/processed_data/eICU_ts_vars.npy', allow_pickle=True) labels_demogr = np.load('../../../eICUdata/processed_data/eICU_static_vars.npy', allow_pickle=True) arr_outcomes = np.load('../../../eICUdata/processed_data/arr_outcomes.npy', allow_pickle=True) total_dataset = preprocess_eICU(PT_dict, arr_outcomes, labels_ts) elif dataset == 'PAM': PT_dict = np.load('../../../PAMdata/processed_data/PTdict_list.npy', allow_pickle=True) arr_outcomes = np.load('../../../PAMdata/processed_data/arr_outcomes.npy', allow_pickle=True) total_dataset = preprocess_PAM(PT_dict, arr_outcomes) print('len(total_dataset):', len(total_dataset)) if split_type == 'random': # Shuffle and split train_data, test_data = model_selection.train_test_split(total_dataset, train_size=0.9, # 80% train, 10% validation, 10% test shuffle=True) elif split_type == 'age' or split_type == 'gender': if dataset == 'P12': prefix = 'mtand' elif dataset == 'P19': prefix = 'P19' elif dataset == 'eICU': # possible only with split_type == 'gender' prefix = 'eICU' if split_type == 'age': if dataset == 'eICU': print('\nCombination of eICU dataset and age split is not possible.\n') if reverse == False: idx_train = np.load('%s_idx_under_65.npy' % prefix, allow_pickle=True) idx_vt = np.load('%s_idx_over_65.npy' % prefix, allow_pickle=True) else: idx_train = np.load('%s_idx_over_65.npy' % prefix, allow_pickle=True) idx_vt = np.load('%s_idx_under_65.npy' % prefix, allow_pickle=True) elif split_type == 'gender': if reverse == False: idx_train = np.load('%s_idx_male.npy' % prefix, allow_pickle=True) idx_vt = np.load('%s_idx_female.npy' % prefix, allow_pickle=True) else: idx_train = np.load('%s_idx_female.npy' % prefix, allow_pickle=True) idx_vt = np.load('%s_idx_male.npy' % prefix, allow_pickle=True) np.random.shuffle(idx_train) np.random.shuffle(idx_vt) train_data = [total_dataset[i] for i in idx_train] test_data = [total_dataset[i] for i in idx_vt] record_id, tt, vals, mask, labels = train_data[0] input_dim = vals.size(-1) data_min, data_max = get_data_min_max(total_dataset, device) batch_size = 128 if flag: if args.classif: if split_type == 'random': train_data, val_data = model_selection.train_test_split(train_data, train_size=0.8889, shuffle=True) # 80% train, 10% validation, 10% test elif split_type == 'age' or split_type == 'gender': val_data, test_data = model_selection.train_test_split(test_data, train_size=0.5, shuffle=False) if dataset == 'P12': num_all_features = 36 elif dataset == 'P19': num_all_features = 34 elif dataset == 'eICU': num_all_features = 14 elif dataset == 'PAM': num_all_features = 17 num_missing_features = round(missing_ratio * num_all_features) if feature_removal_level == 'sample': for i, tpl in enumerate(val_data): idx = np.random.choice(num_all_features, num_missing_features, replace=False) _, _, values, _, _ = tpl tpl = list(tpl) values[:, idx] = torch.zeros(values.shape[0], num_missing_features) tpl[2] = values val_data[i] = tuple(tpl) for i, tpl in enumerate(test_data): idx = np.random.choice(num_all_features, num_missing_features, replace=False) _, _, values, _, _ = tpl tpl = list(tpl) values[:, idx] = torch.zeros(values.shape[0], num_missing_features) tpl[2] = values test_data[i] = tuple(tpl) elif feature_removal_level == 'set': if dataset == 'P12': dict_params = train_dataset_obj_1.params_dict density_scores_names = np.load('../saved/IG_density_scores_P12.npy', allow_pickle=True)[:, 1] idx = [dict_params[name] for name in density_scores_names[:num_missing_features]] elif dataset == 'P19': labels_ts = np.load('../../../P19data/processed_data/labels_ts.npy', allow_pickle=True) dict_params = {label: i for i, label in enumerate(labels_ts[:-1])} density_scores_names = np.load('../saved/IG_density_scores_P19.npy', allow_pickle=True)[:, 1] idx = [dict_params[name] for name in density_scores_names[:num_missing_features]] elif dataset == 'eICU': labels_ts = np.load('../../../eICUdata/processed_data/eICU_ts_vars.npy', allow_pickle=True) dict_params = {label: i for i, label in enumerate(labels_ts)} density_scores_names = np.load('../saved/IG_density_scores_eICU.npy', allow_pickle=True)[:, 1] idx = [dict_params[name] for name in density_scores_names[:num_missing_features]] elif dataset == 'PAM': density_scores_indices = np.load('../saved/IG_density_scores_PAM.npy', allow_pickle=True)[:, 0] idx = list(map(int, density_scores_indices[:num_missing_features])) for i, tpl in enumerate(val_data): _, _, values, _, _ = tpl tpl = list(tpl) values[:, idx] = torch.zeros(values.shape[0], num_missing_features) tpl[2] = values val_data[i] = tuple(tpl) for i, tpl in enumerate(test_data): _, _, values, _, _ = tpl tpl = list(tpl) values[:, idx] = torch.zeros(values.shape[0], num_missing_features) tpl[2] = values test_data[i] = tuple(tpl) if upsampling_batch: train_data_upsamled = [] true_labels = np.array(list(map(lambda x: float(x[7]), np.array(train_data)[:, 4]))) if dataset == 'P12' or dataset == 'P19' or dataset == 'eICU': # 2 classes idx_0 = np.where(true_labels == 0)[0] idx_1 = np.where(true_labels == 1)[0] for _ in range(len(true_labels) // batch_size): indices = random_sample(idx_0, idx_1, batch_size) for i in indices: train_data_upsamled.append(train_data[i]) elif dataset == 'PAM': # 8 classes for b in range(len(true_labels) // batch_size): indices = random_sample_8(true_labels, batch_size) for i in indices: train_data_upsamled.append(train_data[i]) train_data = train_data_upsamled test_data_combined = variable_time_collate_fn(test_data, device, classify=args.classif, data_min=data_min, data_max=data_max) train_data_combined = variable_time_collate_fn(train_data, device, classify=args.classif, data_min=data_min, data_max=data_max) val_data_combined = variable_time_collate_fn( val_data, device, classify=args.classif, data_min=data_min, data_max=data_max) print(train_data_combined[1].sum( ), val_data_combined[1].sum(), test_data_combined[1].sum()) print(train_data_combined[0].size(), train_data_combined[1].size(), val_data_combined[0].size(), val_data_combined[1].size(), test_data_combined[0].size(), test_data_combined[1].size()) train_data_combined = TensorDataset( train_data_combined[0], train_data_combined[1].long().squeeze()) val_data_combined = TensorDataset( val_data_combined[0], val_data_combined[1].long().squeeze()) test_data_combined = TensorDataset( test_data_combined[0], test_data_combined[1].long().squeeze()) else: train_data_combined = variable_time_collate_fn( train_data, device, classify=args.classif, data_min=data_min, data_max=data_max) train_dataloader = DataLoader( train_data_combined, batch_size=batch_size, shuffle=False) test_dataloader = DataLoader( test_data_combined, batch_size=batch_size, shuffle=False) else: train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=False, collate_fn=lambda batch: variable_time_collate_fn2(batch, args, device, data_type="train", data_min=data_min, data_max=data_max)) test_dataloader = DataLoader(test_data, batch_size=batch_size, shuffle=False, collate_fn=lambda batch: variable_time_collate_fn2(batch, args, device, data_type="test", data_min=data_min, data_max=data_max)) data_objects = {"dataset_obj": {}, "train_dataloader": train_dataloader, "test_dataloader": test_dataloader, "input_dim": input_dim, "n_train_batches": len(train_dataloader), "n_test_batches": len(test_dataloader), "attr": {}, # optional "classif_per_tp": False, # optional "n_labels": 1} # optional if args.classif: val_dataloader = DataLoader( val_data_combined, batch_size=batch_size, shuffle=False) data_objects["val_dataloader"] = val_dataloader return data_objects def variable_time_collate_fn(batch, device=torch.device("cpu"), classify=False, activity=False, data_min=None, data_max=None): """ Expects a batch of time series data in the form of (record_id, tt, vals, mask, labels) where - record_id is a patient id - tt is a 1-dimensional tensor containing T time values of observations. - vals is a (T, D) tensor containing observed values for D variables. - mask is a (T, D) tensor containing 1 where values were observed and 0 otherwise. - labels is a list of labels for the current patient, if labels are available. Otherwise None. Returns: combined_tt: The union of all time observations. combined_vals: (M, T, D) tensor containing the observed values. combined_mask: (M, T, D) tensor containing 1 where values were observed and 0 otherwise. """ D = batch[0][2].shape[1] # number of labels N = batch[0][-1].shape[1] if activity else 1 len_tt = [ex[1].size(0) for ex in batch] maxlen = np.max(len_tt) enc_combined_tt = torch.zeros([len(batch), maxlen]).to(device) enc_combined_vals = torch.zeros([len(batch), maxlen, D]).to(device) enc_combined_mask = torch.zeros([len(batch), maxlen, D]).to(device) if classify: if activity: combined_labels = torch.zeros([len(batch), maxlen, N]).to(device) else: combined_labels = torch.zeros([len(batch), N]).to(device) for b, (record_id, tt, vals, mask, labels) in enumerate(batch): currlen = tt.size(0) enc_combined_tt[b, :currlen] = tt.to(device) enc_combined_vals[b, :currlen] = vals.to(device) enc_combined_mask[b, :currlen] = mask.to(device) if classify: if activity: combined_labels[b, :currlen] = labels.to(device) else: if labels is not None: combined_labels[b] = labels.to(device) if not activity: enc_combined_vals, _, _ = normalize_masked_data(enc_combined_vals, enc_combined_mask, att_min=data_min, att_max=data_max) if torch.max(enc_combined_tt) != 0.: enc_combined_tt = enc_combined_tt / torch.max(enc_combined_tt) combined_data = torch.cat( (enc_combined_vals, enc_combined_mask, enc_combined_tt.unsqueeze(-1)), 2) if classify: return combined_data, combined_labels else: return combined_data def get_activity_data(args, device): n_samples = min(10000, args.n) dataset_obj = PersonActivity('data/PersonActivity', download=True, n_samples=n_samples, device=device) print(dataset_obj) train_data, test_data = model_selection.train_test_split(dataset_obj, train_size=0.8, random_state=42, shuffle=True) record_id, tt, vals, mask, labels = train_data[0] input_dim = vals.size(-1) batch_size = min(min(len(dataset_obj), args.batch_size), args.n) test_data_combined = variable_time_collate_fn(test_data, device, classify=args.classif, activity=True) train_data, val_data = model_selection.train_test_split(train_data, train_size=0.8, random_state=11, shuffle=True) train_data_combined = variable_time_collate_fn( train_data, device, classify=args.classif, activity=True) val_data_combined = variable_time_collate_fn( val_data, device, classify=args.classif, activity=True) print(train_data_combined[1].sum( ), val_data_combined[1].sum(), test_data_combined[1].sum()) print(train_data_combined[0].size(), train_data_combined[1].size(), val_data_combined[0].size(), val_data_combined[1].size(), test_data_combined[0].size(), test_data_combined[1].size()) train_data_combined = TensorDataset( train_data_combined[0], train_data_combined[1].long()) val_data_combined = TensorDataset( val_data_combined[0], val_data_combined[1].long()) test_data_combined = TensorDataset( test_data_combined[0], test_data_combined[1].long()) train_dataloader = DataLoader( train_data_combined, batch_size=batch_size, shuffle=False) test_dataloader = DataLoader( test_data_combined, batch_size=batch_size, shuffle=False) val_dataloader = DataLoader( val_data_combined, batch_size=batch_size, shuffle=False) data_objects = {"train_dataloader": train_dataloader, "test_dataloader": test_dataloader, "val_dataloader": val_dataloader, "input_dim": input_dim, "n_train_batches": len(train_dataloader), "n_test_batches": len(test_dataloader), "classif_per_tp": False, # optional "n_labels": 1} # optional return data_objects def irregularly_sampled_data_gen(n=10, length=20, seed=0): np.random.seed(seed) obs_values, ground_truth, obs_times = [], [], [] for i in range(n): t1 = np.sort(np.random.uniform(low=0.0, high=1.0, size=length)) t2 = np.sort(np.random.uniform(low=0.0, high=1.0, size=length)) t3 = np.sort(np.random.uniform(low=0.0, high=1.0, size=length)) a = 10 * np.random.randn() b = 10 * np.random.rand() f1 = .8 * np.sin(20*(t1+a) + np.sin(20*(t1+a))) + \ 0.01 * np.random.randn() f2 = -.5 * np.sin(20*(t2+a + 20) + np.sin(20*(t2+a + 20)) ) + 0.01 * np.random.randn() f3 = np.sin(12*(t3+b)) + 0.01 * np.random.randn() obs_times.append(np.stack((t1, t2, t3), axis=0)) obs_values.append(np.stack((f1, f2, f3), axis=0)) t = np.linspace(0, 1, 100) fg1 = .8 * np.sin(20*(t+a) + np.sin(20*(t+a))) fg2 = -.5 * np.sin(20*(t+a + 20) + np.sin(20*(t+a + 20))) fg3 = np.sin(12*(t+b)) ground_truth.append(np.stack((fg1, fg2, fg3), axis=0)) return obs_values, ground_truth, obs_times def sine_wave_data_gen(args, seed=0): np.random.seed(seed) obs_values, ground_truth, obs_times = [], [], [] for _ in range(args.n): t = np.sort(np.random.choice(np.linspace( 0, 1., 101), size=args.length, replace=True)) b = 10 * np.random.rand() f = np.sin(12*(t+b)) + 0.1 * np.random.randn() obs_times.append(t) obs_values.append(f) tc = np.linspace(0, 1, 100) fg = np.sin(12*(tc + b)) ground_truth.append(fg) obs_values = np.array(obs_values) obs_times = np.array(obs_times) ground_truth = np.array(ground_truth) print(obs_values.shape, obs_times.shape, ground_truth.shape) mask = np.ones_like(obs_values) combined_data = np.concatenate((np.expand_dims(obs_values, axis=2), np.expand_dims( mask, axis=2), np.expand_dims(obs_times, axis=2)), axis=2) print(combined_data.shape) print(combined_data[0]) train_data, test_data = model_selection.train_test_split(combined_data, train_size=0.8, random_state=42, shuffle=True) print(train_data.shape, test_data.shape) train_dataloader = DataLoader(torch.from_numpy( train_data).float(), batch_size=args.batch_size, shuffle=False) test_dataloader = DataLoader(torch.from_numpy( test_data).float(), batch_size=args.batch_size, shuffle=False) data_objects = {"dataset_obj": combined_data, "train_dataloader": train_dataloader, "test_dataloader": test_dataloader, "input_dim": 1, "ground_truth": np.array(ground_truth)} return data_objects def kernel_smoother_data_gen(args, alpha=100., seed=0, ref_points=10): np.random.seed(seed) obs_values, ground_truth, obs_times = [], [], [] for _ in range(args.n): key_values = np.random.randn(ref_points) key_points = np.linspace(0, 1, ref_points) query_points = np.sort(np.random.choice( np.linspace(0, 1., 101), size=args.length, replace=True)) weights = np.exp(-alpha*(np.expand_dims(query_points, 1) - np.expand_dims(key_points, 0))**2) weights /= weights.sum(1, keepdims=True) query_values = np.dot(weights, key_values) obs_values.append(query_values) obs_times.append(query_points) query_points = np.linspace(0, 1, 100) weights = np.exp(-alpha*(np.expand_dims(query_points, 1) - np.expand_dims(key_points, 0))**2) weights /= weights.sum(1, keepdims=True) query_values = np.dot(weights, key_values) ground_truth.append(query_values) obs_values = np.array(obs_values) obs_times =
np.array(obs_times)
numpy.array
import numpy as np import scipy.signal import matplotlib.pyplot as plt import matplotlib plt.switch_backend('agg') import sys import pandas as pd import os import pickle from multiprocessing import Pool from itertools import repeat import utils.EventDetection_utils as EventDetection_utils import utils.general_utils as general_utils import utils.plot_utils as plot_utils import utils.list_twoP_exp as list_twoP_exp import utils.list_behavior as list_behavior import utils.math_utils as math_utils experiments=list_twoP_exp.SS29579_SS51046_DFFevt_based_anlysis # experiments=[ # ('20190221', 'SS29579-tdTomGC6fopt', 'fly1', '001', {'kinx_factor':0.4, 'raw_thrsld':0.4, 'grad_raw_thrsld':0.2, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # no video # ('20190221', 'SS29579-tdTomGC6fopt', 'fly1', '002', {'kinx_factor':0.4, 'raw_thrsld':0.4, 'grad_raw_thrsld':0.2, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # no video # ('20190221', 'SS29579-tdTomGC6fopt', 'fly1', '003', {'kinx_factor':0.4, 'raw_thrsld':0.4, 'grad_raw_thrsld':0.2, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # no video # ('20190221', 'SS29579-tdTomGC6fopt', 'fly1', '004', {'kinx_factor':0.4, 'raw_thrsld':0.4, 'grad_raw_thrsld':0.2, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # no video # ('20190221', 'SS29579-tdTomGC6fopt', 'fly1', '005', {'kinx_factor':0.4, 'raw_thrsld':0.4, 'grad_raw_thrsld':0.2, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # no video # ('20190221', 'SS29579-tdTomGC6fopt', 'fly1', '006', {'kinx_factor':0.4, 'raw_thrsld':0.4, 'grad_raw_thrsld':0.2, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # no video # ('20190221', 'SS29579-tdTomGC6fopt', 'fly1', '007', {'kinx_factor':0.4, 'raw_thrsld':0.4, 'grad_raw_thrsld':0.2, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # no video # ('20190221', 'SS29579-tdTomGC6fopt', 'fly1', '008', {'kinx_factor':0.4, 'raw_thrsld':0.4, 'grad_raw_thrsld':0.2, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # no video # ('20190221', 'SS29579-tdTomGC6fopt', 'fly1', '009', {'kinx_factor':0.4, 'raw_thrsld':0.4, 'grad_raw_thrsld':0.2, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # no video # # ('20191002', 'SS51046-tdTomGC6fopt', 'fly1', '001', {'kinx_factor':0.4, 'raw_thrsld':1, 'grad_raw_thrsld':0.5, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # # ('20191002', 'SS51046-tdTomGC6fopt', 'fly1', '002', {'kinx_factor':0.4, 'raw_thrsld':0.7, 'grad_raw_thrsld':0.5, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # # ('20191002', 'SS51046-tdTomGC6fopt', 'fly1', '003', {'kinx_factor':0.2, 'raw_thrsld':1.5, 'grad_raw_thrsld':0.3, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # # ('20191002', 'SS51046-tdTomGC6fopt', 'fly1', '004', {'kinx_factor':0.2, 'raw_thrsld':1.4, 'grad_raw_thrsld':0.3, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # # ('20191002', 'SS51046-tdTomGC6fopt', 'fly1', '005', {'kinx_factor':0.4, 'raw_thrsld':0.7, 'grad_raw_thrsld':0.5, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # # ('20191002', 'SS51046-tdTomGC6fopt', 'fly1', '006', {'kinx_factor':0.4, 'raw_thrsld':0.7, 'grad_raw_thrsld':0.5, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # # ('20191002', 'SS51046-tdTomGC6fopt', 'fly1', '007', {'kinx_factor':0.2, 'raw_thrsld':0.55, 'grad_raw_thrsld':0.2, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # # ('20191002', 'SS51046-tdTomGC6fopt', 'fly1', '008', {'kinx_factor':0.4, 'raw_thrsld':0.7, 'grad_raw_thrsld':0.5, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # # ('20191002', 'SS51046-tdTomGC6fopt', 'fly1', '009', {'kinx_factor':0.4, 'raw_thrsld':0.7, 'grad_raw_thrsld':0.5, 'diff_window':0.3, 'evt_shortest_dur':0.5, 'evt_longest_dur':2}), # ] ##Assgining dFF difference for detecting dominant dFF events dmnt_difference_thrsld=0.2 def make_structure_as_modelStructure(ori_list, exempl_list): if len(ori_list)!=len(exempl_list): anticipate_list=[] for i,v in enumerate(exempl_list): anticipate_list.append([]) return anticipate_list else: return ori_list def add_NaNtail_to_each_Evt(Evt_list): Evt_len_list=[] for evt in Evt_list: Evt_len_list.append(len(evt)) max_EvtLen=max(Evt_len_list) # print('max_EvtLen', max_EvtLen) EvtNaNtail_list=[] for evt in Evt_list: evt_NaNtail=general_utils.add_NaN_tail(evt, max_EvtLen) #print('len evt_NaNtail', len(evt_NaNtail)) EvtNaNtail_list.append(evt_NaNtail) return EvtNaNtail_list def worker_for_CI_mean_trace(idx, dataset, confidence, least_realNum_amount): dataset=np.asarray(dataset) # print('idx', idx) # print('shape dataset', np.shape(dataset)) # print('least_realNum_amount', least_realNum_amount) # print('len dataset', len(dataset)) data=dataset[:, idx] non_nan_counts=data.size - np.count_nonzero(np.isnan(data)) if non_nan_counts > least_realNum_amount: nonnan_data_list=data[np.logical_not(np.isnan(data))] (mean, down_CI, up_CI) = math_utils.compute_CI_and_mean(nonnan_data_list, confidence=confidence) return mean, down_CI, up_CI else: return np.nan, np.nan, np.nan def compute_CI_and_mean_trace(dataset, confidence=0.95, least_realNum_amount=4): print('Computing event mean amd CI ...') # args_for_pool=[] # for j in range(0,np.shape(dataset)[1]): # args_for_pool.append([j, dataset, confidence, least_realNum_amount]) idx_range=[i for i in range(0,np.shape(dataset)[1])] # print('colums_range', colums_range) p=Pool() mean_downCI_upCI = p.starmap(worker_for_CI_mean_trace, zip(idx_range, repeat(dataset), repeat(confidence), repeat(least_realNum_amount))) #mean_trace, down_err_trace, up_err_trace = p.starmap(worker_for_CI_mean_trace, args_for_pool) p.close() p.join() del p mean_trace=np.asarray(mean_downCI_upCI)[:,0] down_err_trace=
np.asarray(mean_downCI_upCI)
numpy.asarray
import argparse, os, sys import torch import mmcv import numpy as np import torch.nn.functional as F from mmcv.parallel import collate, scatter from mmaction.datasets.pipelines import Compose from mmaction.apis import init_recognizer from mmaction.datasets import build_dataloader, build_dataset from mmcv.parallel import MMDataParallel from tqdm import tqdm import scipy.spatial.distance as spd try: import libmr except ImportError: print("LibMR not installed or libmr.so not found") print("Install libmr: cd libMR/; ./compile.sh") sys.exit() from sklearn.metrics import f1_score, roc_auc_score, accuracy_score import matplotlib.pyplot as plt def set_deterministic(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # if you are using multi-GPU. np.random.seed(seed) # Numpy module. torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True def parse_args(): """ Example shell script: $ cd experiments $ source activate mmaction $ nohup python baseline_openmax.py --model i3d --config configs/recognition/tpn/inference_tpn_slowonly_dnn.py """ parser = argparse.ArgumentParser(description='MMAction2 test') # model config parser.add_argument('--config', help='test config file path') parser.add_argument('--checkpoint', help='checkpoint file/url') parser.add_argument('--trainset_split', default='data/ucf101/ucf101_train_split_1_videos.txt', help='the split file path of the training set') parser.add_argument('--num_cls', type=int, default=101, help='The number of classes in training set.') parser.add_argument('--cache_mav_dist', help='the result path to cache the mav and distances for each class.') # test data config parser.add_argument('--ind_data', help='the split file of in-distribution testing data') parser.add_argument('--ood_data', help='the split file of out-of-distribution testing data') parser.add_argument('--ood_ncls', type=int, help='the number of classes in unknwon dataset') parser.add_argument('--num_rand', type=int, default=10, help='the number of random selection for ood classes') # device parser.add_argument('--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument('--result_prefix', help='result file prefix') args = parser.parse_args() return args def get_datalist(split_file): assert os.path.exists(split_file), 'split file does not exist! %s'%(split_file) video_dir = os.path.join(os.path.dirname(split_file), 'videos') filelist, labels = [], [] with open(split_file, 'r') as f: for line in f.readlines(): videofile = os.path.join(video_dir, line.strip().split(' ')[0]) clsid = int(line.strip().split(' ')[-1]) filelist.append(videofile) labels.append(clsid) return filelist, labels def spatial_temporal_pooling(feat_blob): if isinstance(feat_blob, tuple): # slowfast model returns a tuple of features assert len(feat_blob) == 2, "invalid feature tuple!" avg_pool3d = torch.nn.AdaptiveAvgPool3d((1, 1, 1)) x_fast, x_slow = feat_blob x_fast = avg_pool3d(x_fast) x_slow = avg_pool3d(x_slow) # [N, channel_fast + channel_slow, 1, 1, 1] feat_clips = torch.cat((x_slow, x_fast), dim=1).squeeze(-1).squeeze(-1).squeeze(-1) else: if len(feat_blob.size()) == 5: # 3D Network # spatial temporal average pooling kernel_size = (feat_blob.size(-3), feat_blob.size(-2), feat_blob.size(-1)) avg_pool3d = torch.nn.AvgPool3d(kernel_size, stride=1, padding=0) feat_clips = avg_pool3d(feat_blob).view(feat_blob.size(0), feat_blob.size(1)) # (c, D) elif len(feat_blob.size()) == 4: # 2D Network # spatial temporal average pooling kernel_size = (feat_blob.size(-2), feat_blob.size(-1)) avg_pool2d = torch.nn.AvgPool2d(kernel_size, stride=1, padding=0) feat_clips = avg_pool2d(feat_blob).view(feat_blob.size(0), feat_blob.size(1)) # (c, D) else: print('Unsupported feature dimension: {}'.format(feat_blob.size())) # get the mean features of all clips and crops feat_final = torch.mean(feat_clips, dim=0, keepdim=True) # (c=1, D) return feat_final def inference_recognizer(model, video_path): """Inference a video with the detector. Args: model (nn.Module): The loaded recognizer. video_path (str): The video file path/url or the rawframes directory path. If ``use_frames`` is set to True, it should be rawframes directory path. Otherwise, it should be video file path. """ cfg = model.cfg device = next(model.parameters()).device # model device # build the data pipeline test_pipeline = cfg.data.test.pipeline test_pipeline = Compose(test_pipeline) # prepare data (by default, we use videodata) start_index = cfg.data.test.get('start_index', 0) data = dict(filename=video_path, label=-1, start_index=start_index, modality='RGB') data = test_pipeline(data) data = collate([data], samples_per_gpu=1) if next(model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device])[0] # forward the model with torch.no_grad(): feat_blob, score = model(return_loss=False, return_score=True, get_feat=True, **data) # (c, D, t, h, w) feat_blob = spatial_temporal_pooling(feat_blob) feat_final = feat_blob.cpu().numpy() score = score.cpu().numpy() return feat_final, score def extract_class_features(videolist, model, cls_gt): features = [] for videofile in tqdm(videolist, total=len(videolist), desc='Extract Class %d Features'%(cls_gt)): feat, score = inference_recognizer(model, videofile) # (c, D) cls_pred = np.argmax(score, axis=1) if cls_gt in cls_pred: features.append(feat) features = np.array(features) # (N, c, D) return features def compute_distance(mav, features): # extract features and compute distances for each class num_channels = mav.shape[0] eucos_dist, eu_dist, cos_dist = [], [], [] for feat in features: # compute distance of each channel eu_channel, cos_channel, eu_cos_channel = [], [], [] for c in range(num_channels): eu_channel += [spd.euclidean(mav[c, :], feat[c, :])/200.] cos_channel += [spd.cosine(mav[c, :], feat[c, :])] eu_cos_channel += [spd.euclidean(mav[c, :], feat[c, :]) / 200. + spd.cosine(mav[c, :], feat[c, :])] # Here, 200 is from the official OpenMax code eu_dist += [eu_channel] cos_dist += [cos_channel] eucos_dist += [eu_cos_channel] return np.array(eucos_dist), np.array(eu_dist), np.array(cos_dist) def compute_channel_distance(mav_channel, feat_channel, distance_type='eucos'): if distance_type == 'eucos': query_distance = spd.euclidean(mav_channel, feat_channel)/200. + spd.cosine(mav_channel, feat_channel) elif distance_type == 'eu': query_distance = spd.euclidean(mav_channel, feat_channel)/200. elif distance_type == 'cos': query_distance = spd.cosine(mav_channel, feat_channel) else: print("distance type not known: enter either of eucos, euclidean or cosine") return query_distance def compute_mav_dist(videolist, labels, model, mav_dist_cachedir): num_cls = model.cls_head.num_classes mav_dist_list = [] for cls_gt in range(num_cls): mav_dist_file = os.path.join(mav_dist_cachedir, 'mav_dist_cls%03d.npz'%(cls_gt)) mav_dist_list.append(mav_dist_file) if os.path.exists(mav_dist_file): continue # data for the current class inds = np.where(np.array(labels) == cls_gt)[0] videos_cls = [videolist[i] for i in inds] # extract MAV features features = extract_class_features(videos_cls, model, cls_gt) mav_train = np.mean(features, axis=0) # compute distance eucos_dist, eu_dist, cos_dist = compute_distance(mav_train, features) # save MAV and distances np.savez(mav_dist_file[:-4], mav=mav_train, eucos=eucos_dist, eu=eu_dist, cos=cos_dist) return mav_dist_list def weibull_fitting(mav_dist_list, distance_type='eucos', tailsize=20): weibull_model = {} for cls_gt in range(len(mav_dist_list)): # load the mav_dist file cache = np.load(mav_dist_list[cls_gt], allow_pickle=True) mav_train = cache['mav'] distances = cache[distance_type] weibull_model[cls_gt] = {} weibull_model[cls_gt]['mean_vec'] = mav_train # weibull fitting for each channel weibull_model[cls_gt]['weibull_model'] = [] num_channels = mav_train.shape[0] for c in range(num_channels): mr = libmr.MR() tailtofit = sorted(distances[:, c])[-tailsize:] mr.fit_high(tailtofit, len(tailtofit)) weibull_model[cls_gt]['weibull_model'] += [mr] return weibull_model def compute_openmax_prob(openmax_score, openmax_score_u): num_channels, num_cls = openmax_score.shape prob_scores, prob_unknowns = [], [] for c in range(num_channels): channel_scores, channel_unknowns = [], [] for gt_cls in range(num_cls): channel_scores += [np.exp(openmax_score[c, gt_cls])] total_denominator = np.sum(np.exp(openmax_score[c, :])) + np.exp(np.sum(openmax_score_u[c, :])) prob_scores += [channel_scores/total_denominator ] prob_unknowns += [np.exp(
np.sum(openmax_score_u[c, :])
numpy.sum
# imports #region import os import pyreadstat import pandas as pd import numpy as np from statsmodels.stats.weightstats import DescrStatsW from sklearn.linear_model import LinearRegression import statsmodels.api as sm import statsmodels.formula.api as smf import seaborn as sns import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from libs.utils import * from libs.plots import * from libs.extensions import * plt.ioff() #endregion # ----------------------------- # --- FOOD CARBON FOOTPRINT --- # Can I parse the LCA meta model database? --- root = 'D:\\projects\\fakta-o-klimatu\\work\\389-food-carbon-footprint' path = root + '\\LCA+Meta-Analysis_database-static.xlsx' df = pd.read_excel(path, header=2) df.columns labels = df[np.isfinite(df['Unnamed: 0'])][['Unnamed: 0', 'Reference']] df['Unnamed: 0'] = df['Unnamed: 0'].fillna(method='ffill') ghg_cols = { 'GHG Emis \n(kg CO2 eq)': 'ghg_total', 'LUC Burn': 'luc_burn', 'LUC C Stock': 'luc_stock', 'Feed': 'feed', 'Farm': 'farm', 'Prcssing': 'processing', 'Tran & Str': 'transport', 'Packging': 'packaging', 'Ret\nail': 'retail', 'Loss.1': 'loss' } w_col = 'Weight' g_col = 'Unnamed: 0' data = df[[g_col, w_col, *ghg_cols]].rename(columns={w_col: 'weight', g_col: 'product', **ghg_cols}) data['processing'] = data['processing'].replace(to_replace='-', value=0) data.show() data.dtypes data['luc'] = data[''] ghgs = list(ghg_cols.values()) df.dtypes.reset_index().show() df.columns[65:76] data data.dtypes data.groupby('product')['weight'].sum() data.groupby('product')['weight'].sum() for c in ghgs: data[f'{c}_w'] = data[c] * data['weight'] avgs = data.groupby('product')[[f'{c}_w' for c in ghgs]].sum().reset_index().rename(columns={f'{c}_w':c for c in ghgs}) labels.columns = ['product', 'label'] labels = labels.iloc[:-1] avgs = pd.merge(avgs, labels) avgs = avgs[['label', *ghgs]].copy() avgs['luc'] = avgs.luc_burn + avgs.luc_stock avgs.show() plain = data.groupby('product')[ghgs].mean().reset_index() plain = pd.merge(plain, labels) plain = plain[['label', *ghgs]].copy() plain['luc'] = plain.luc_burn + plain.luc_stock plain.show() plain['ghg'] = plain.eval('luc + feed + farm + transport + processing + packaging + retail') avgs['ghg'] = avgs.eval('luc + feed + farm + transport + processing + packaging + retail') avgs.show() sns.barplot('') cols = 'luc feed farm transport processing packaging retail'.split() plt.rcParams['figure.figsize'] = 12, 9 plt.rcParams['figure.subplot.left'] = 0.2 sums = avgs.set_index('label')[cols].sum(axis=1).sort_values() ax = avgs.set_index('label').loc[sums.index][cols].plot.barh(stacked=True) for x, y in enumerate(sums): ax.text(y + 3, x, f'{y:.3g}', va='center') #ax.text(50, 5, 'here') ax.show() second_file = 'aaq0216_DataS2.xls' path2 = root + '\\' + second_file df2 = pd.read_excel(path2, sheet_name='Results - Global Totals', header=2) df2.show() ghg_cols = ['LUC', 'Feed', 'Farm', 'Processing', 'Transport', 'Packging', 'Retail'] df2 = df2.iloc[:43].set_index('Product')[ghg_cols] sums = df2.sum(axis=1).sort_values() ax = df2.loc[sums.index].plot.barh(stacked=True) for x, y in enumerate(sums): ax.text(y + 3, x, f'{y:.3g}', va='center') ax.set_title('Total GHG based on LCA, FBS 1kg weight') ax.show() # THIS IS GOOD! --- # exactly the same results as on OurWorldInData foo = """Beef (beef herd) 16 10 22 2.1 0 0 0 Lamb & Mutton 5.7 3.7 11 0.7 0 0 0 Beef (dairy herd) 13 8.6 18 1.7 0 0 0 Buffalo 2.7 1.8 2.8 0.4 0 0 0 Crustaceans (farmed) 4.3 2.1 1.1 0.2 0 0 0 Cheese 8.3 8.0 27 1.7 0 0 0 Pig Meat 45 28 112 4.5 0 0 0 Fish (farmed) 18 7.4 12 1.7 0 0 0 Poultry Meat 39 26 51 4.5 0 0 0 Eggs 24 24 34 2.6 0 0 0 Fish (capture) 21 8.4 13 1.9 0 0 0 Crustaceans (capture) 8.5 4.2 2.1 0.4 0 0 0 Tofu 3.5 3.2 2.5 0.5 53 40 8.4 Groundnuts 4.3 3.5 21 0.9 5.9 36 1.6 Other Pulses 16 15 51 3.1 55 188 12 Nuts 6.0 2.7 16 0.5 4.7 28 0.8 Peas 2.3 2.1 7.2 0.5 7.9 27 1.8 Milk 185 171 105 6.1 0 0 0 Butter, Cream & Ghee 4.8 4.6 29 0.1 0 0 0 Soymilk 10 9.1 5.1 0.3 185 104 6.1 Cassava 55 45 44 0.4 45 44 0.4 Rice 148 134 494 9.3 146 538 10 Oatmeal 1.6 1.0 2.6 0.1 1.1 2.9 0.1 Potatoes 115 90 66 1.3 90 66 1.3 Wheat & Rye (Bread) 182 166 471 14 181 513 15 Maize (Meal) 47 28 127 3.1 31 138 3.3 Cereals & Oilcr. Misc. 39 34 93 3.2 37 101 3.5 Palm Oil 6.6 6.7 52 0 7.5 59 0 Soybean Oil 10 10 77 0 11 87 0 Olive Oil 1.2 1.3 10 0 1.5 11 0 Rapeseed Oil 4.0 4.1 33 0 4.7 37 0 Sunflower Oil 3.8 3.8 31 0 4.3 35 0 Oils Misc. 5.1 4.7 41 0 5.2 47 0 Animal Fats 4.2 3.8 27 0 0 0 0 Tomatoes 55 37 6.7 0.4 44 8.0 0.4 Brassicas 28 25 6.2 0.3 30 7.5 0.4 Onions & Leeks 29 23 8.7 0.3 28 10 0.4 Root Vegetables 13 11 2.8 0.2 14 3.4 0.2 Other Vegetables 241 213 53 2.9 256 64 3.4 Aquatic Plants 5.0 4.4 1.8 0.1 5.3 2.1 0.1 Berries 11 7.5 4.3 0 9.0 5.1 0.1 Bananas 42 29 19 0.2 35 23 0.3 Apples 25 22 9.2 0.1 27 11 0.1 Citrus 48 40 11 0.2 47 13 0.2 Other Fruit 77 58 26 0.3 69 32 0.4 Cane Sugar 50 41 145 0 41 145 0 Beet Sugar 10 7.9 28 0 7.9 28 0 Sweeteners & Honey 8.3 6.7 20 0 6.7 20 0 Beer 72 63 28 0.3 63 28 0.3 Wine 9.1 8.0 5.3 0 8.0 5.3 0 Dark Chocolate 1.7 0.6 3.0 0.1 0.6 3.0 0.1 Coffee 3.1 1.7 0.7 0.1 1.7 0.7 0.1 Stimul. & Spices Misc. 5.3 3.5 6.8 0.4 3.5 6.8 0.4""".split(sep='\n') pat = '^([^0-9]*) ([0-9.]*) ([0-9.]*) ' res = [] for x in foo: m = re.match(pat, x) res.append((m.group(1), m.group(2), m.group(3))) conv = pd.DataFrame(res, columns=['Product', 'fbs', 'retail']) conv['fbs'] =
np.float_(conv.fbs)
numpy.float_
"""Tests for the atmos_flux_inversion package. Includes tests using random data, analytic solutions, and checks that different methods agree for simple problems. """ from __future__ import print_function, division import fractions import itertools import operator import os.path import atexit import pickle import math import sys try: from functools import reduce except ImportError: # reduce used to be a builtin pass import numpy as np import numpy.linalg as np_la import numpy.linalg as la import numpy.testing as np_tst import scipy.linalg import scipy.sparse import scipy.optimize # Import from scipy.linalg if not using dask from scipy.linalg import cholesky from scipy.sparse.linalg.interface import LinearOperator, MatrixLinearOperator import unittest2 import pyfftw import pandas as pd import xarray try: import sparse HAVE_SPARSE = True except ImportError: HAVE_SPARSE = False import atmos_flux_inversion.optimal_interpolation import atmos_flux_inversion.correlations import atmos_flux_inversion.covariances import atmos_flux_inversion.variational import atmos_flux_inversion.remapper import atmos_flux_inversion.wrapper import atmos_flux_inversion.linalg import atmos_flux_inversion.noise import atmos_flux_inversion.psas import atmos_flux_inversion.util from atmos_flux_inversion.linalg import tolinearoperator if os.path.exists(".pyfftw.pickle"): with open(".pyfftw.pickle", "rb") as wis_in: WISDOM = pickle.load(wis_in) if isinstance(WISDOM[0], str): WISDOM = [wis.encode("ascii") for wis in WISDOM] pyfftw.import_wisdom(WISDOM) del WISDOM, wis_in def save_wisdom(): """Save accumulated pyfftw wisdom. Saves in hidden file in current directory. Should help speed up subsequent test runs. """ with open(".pyfftw.pickle", "wb") as wis_out: pickle.dump(pyfftw.export_wisdom(), wis_out, 2) atexit.register(save_wisdom) del save_wisdom # If adding other inexact methods to the list tested, be sure to add # those to the `if "var" in name or "psas" in name` and # `if "psas" in name` tests as applicable. ALL_METHODS = ( atmos_flux_inversion.optimal_interpolation.simple, atmos_flux_inversion.optimal_interpolation.fold_common, atmos_flux_inversion.optimal_interpolation.save_sum, atmos_flux_inversion.optimal_interpolation.scipy_chol, atmos_flux_inversion.variational.simple, atmos_flux_inversion.variational.incremental, atmos_flux_inversion.variational.incr_chol, atmos_flux_inversion.psas.simple, atmos_flux_inversion.psas.fold_common, ) ITERATIVE_METHOD_START = 4 """Where the iterative methods start in the above list. Used to test failure modes for these solvers. """ PRECISE_DTYPE = np.float128 """The dtype used to represent analytic results. These are initialized as :class:`fractions.Fraction` then converted to this dtype for the comparison. """ ITERATIVE_STATE_TOLERANCE = 1e-3 ITERATIVE_COVARIANCE_TOLERANCE = 1e-1 EXACT_TOLERANCE = 1e-7 DTYPE = np.float64 """Default dtype for certain tests.""" def getname(method): """Descriptive name for the function. A name combining the function name and module. Parameters ---------- method: callable Returns ------- name: str """ module = method.__module__ group = module.split(".")[-1] variant = method.__name__ return "{group:s} ({variant:s})".format(group=group, variant=variant) def expectFailureIf(condition): """Mark a test as XFAIL based on condition. Wrapper to make :func:`unittest2.expectedFailure` conditional. Parameters ---------- condition: bool Returns ------- decorator: func """ if condition: return unittest2.expectedFailure return lambda fun: fun class TestInversionSimple(unittest2.TestCase): """Test inversions using simple cases.""" def test_scalar_equal_variance(self): """Test a direct measurement of a scalar state.""" bg = np.atleast_1d(2.) bg_cov = np.atleast_2d(1.) obs = np.atleast_1d(3.) obs_cov = np.atleast_2d(1.) obs_op = np.atleast_2d(1.) for method in ALL_METHODS: name = getname(method) with self.subTest(method=name): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose(post, 2.5) np_tst.assert_allclose(post_cov, .5) def test_scalar_unequal_variance(self): """Test assimilation of a direct measurement fo a scalar state. Variances not equal. """ bg = np.atleast_1d(15.) bg_cov = np.atleast_2d(2.) obs = np.atleast_1d(14.) obs_cov = np.atleast_2d(1.) obs_op = np.atleast_2d(1.) for method in ALL_METHODS: with self.subTest(method=getname(method)): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose( post, PRECISE_DTYPE(14 + fractions.Fraction(1, 3))) np_tst.assert_allclose( post_cov, PRECISE_DTYPE(fractions.Fraction(2, 3))) def test_multiple_priors(self): """Test doing multiple assimilations at once. Simple test. """ bg = np.array([[2., 3.]]) bg_cov = np.atleast_2d(1.) obs = np.array([[3., 4.]]) obs_cov = np.atleast_2d(1.) obs_op = np.atleast_2d(1.) for method in ALL_METHODS[:ITERATIVE_METHOD_START]: name = getname(method) with self.subTest(method=name): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose(post, [[2.5, 3.5]]) np_tst.assert_allclose(post_cov, .5) def test_homework_one(self): """Verify that this can reproduce the answers to HW1. Make sure the answers here are within roundoff of the analytic solutions. """ bg = np.array((18., 15., 22.)) bg_var = np.array((2., 2., 2.)) bg_corr = np.array(((1, .5, .25), (.5, 1, .5), (.25, .5, 1))) obs = np.array((19., 14.)) obs_var = np.array((1., 1.)) obs_op = np.array(((1., 0., 0.), (0., 1., 0.))) bg_std = np.sqrt(bg_var) bg_cov = np.diag(bg_std).dot(bg_corr.dot(np.diag(bg_std))) # obs_std = np.sqrt(obs_var) # Assume no correlations between observations. obs_cov = np.diag(obs_var) for method in ALL_METHODS: # Setup for expected degradation of solutions name = getname(method) # The default for assert_allclose cov_rtol = state_rtol = EXACT_TOLERANCE with self.subTest(method=name): # Also tested above in scalar_unequal_variance with self.subTest(problem=3): state_college_index = 1 post, post_cov = method( bg[state_college_index], bg_cov[state_college_index, state_college_index], obs[state_college_index], obs_cov[state_college_index, state_college_index], obs_op[state_college_index, state_college_index]) np_tst.assert_allclose( post, np.asanyarray(14 + fractions.Fraction(1, 3), dtype=PRECISE_DTYPE), rtol=state_rtol) np_tst.assert_allclose( post_cov, np.asanyarray(fractions.Fraction(2, 3), dtype=PRECISE_DTYPE), rtol=cov_rtol) with self.subTest(problem=4): state_college_index = 1 post, post_cov = method( bg, bg_cov, obs[state_college_index], obs_cov[state_college_index, state_college_index], obs_op[state_college_index, :]) np_tst.assert_allclose( post, np.asanyarray((17 + fractions.Fraction(2, 3), 14 + fractions.Fraction(1, 3), 21 + fractions.Fraction(2, 3)), dtype=PRECISE_DTYPE), rtol=state_rtol) with self.subTest(problem=5): pittsburgh_index = 0 post, post_cov = method( bg, bg_cov, obs[pittsburgh_index], obs_cov[pittsburgh_index, pittsburgh_index], obs_op[pittsburgh_index, :]) np_tst.assert_allclose( post, np.asanyarray((18 + fractions.Fraction(2, 3), 15 + fractions.Fraction(1, 3), 22 + fractions.Fraction(1, 6)), PRECISE_DTYPE), rtol=state_rtol) with self.subTest(problem=7): state_college_index = 1 post, post_cov = method( bg, bg_cov, obs[state_college_index], 4 * obs_cov[state_college_index, state_college_index], obs_op[state_college_index, :]) np_tst.assert_allclose( post, np.asanyarray((17 + fractions.Fraction(5, 6), 14 + fractions.Fraction(2, 3), 21 + fractions.Fraction(5, 6)), dtype=PRECISE_DTYPE), rtol=state_rtol) with self.subTest(problem=8): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) # background correlations make this problem not # strictly linear, at least without doing # sequential inversions. Have not verified by hand np_tst.assert_allclose( post, np.asanyarray( (18 + fractions.Fraction(1, 2), 14 + fractions.Fraction(1, 2), 21 + fractions.Fraction(3, 4)), dtype=PRECISE_DTYPE), rtol=state_rtol) def test_sequential_assimilations(self): """Make sure this follows Bayes' rule.""" bg = np.array((18., 15., 22.)) bg_var = np.array((2., 2., 2.)) bg_corr = np.array(((1, .5, .25), (.5, 1, .5), (.25, .5, 1))) obs = np.array((19., 14.)) obs_var = np.array((1., 1.)) obs_op = np.array(((1., 0., 0.), (0., 1., 0.))) bg_std = np.sqrt(bg_var) bg_cov = np.diag(bg_std).dot(bg_corr.dot(np.diag(bg_std))) # obs_std = np.sqrt(obs_var) # Assume no correlations between observations. obs_cov = np.diag(obs_var) for method in ALL_METHODS: name = getname(method) if "var" in name.lower() or "psas" in name.lower(): state_rtol = ITERATIVE_STATE_TOLERANCE cov_rtol = ITERATIVE_COVARIANCE_TOLERANCE else: # The default for assert_allclose cov_rtol = state_rtol = EXACT_TOLERANCE with self.subTest(method=name): inter1, inter_cov1 = method( bg, bg_cov, obs[0], obs_cov[0, 0], obs_op[0, :]) post1, post_cov1 = method( inter1, inter_cov1, obs[1], obs_cov[1, 1], obs_op[1, :]) post2, post_cov2 = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose( post1, post2, rtol=state_rtol) if "psas" in name.lower(): # The second covariance isn't positive definite (one # positive entry) and no entry shares the order of # magnitude between the two. raise unittest2.SkipTest("Known Failure: PSAS Covariances") np_tst.assert_allclose( post_cov1, post_cov2, rtol=cov_rtol) def test_iterative_failures(self): """Test failure modes of iterative solvers.""" bg_stds = np.logspace(-8, 1, 10) bg_corr = scipy.linalg.toeplitz( np.arange(1, .9, -.01)) bg_cov = np.diag(bg_stds).dot(bg_corr).dot(np.diag(bg_stds)) bg_vals = np.arange(10) obs_op = np.eye(3, 10) obs_vals = 10 - np.arange(3) obs_cov = np.diag((10, 1e-3, 1e-6)) / 8 for method in ALL_METHODS[ITERATIVE_METHOD_START:]: name = getname(method) with self.subTest(method=name): with self.assertRaises( atmos_flux_inversion.ConvergenceError) as cxt_mgr: method(bg_vals, bg_cov, obs_vals, obs_cov, obs_op) conv_err = cxt_mgr.exception self.assertTrue(hasattr(conv_err, "guess")) self.assertTrue(hasattr(conv_err, "result")) self.assertIsInstance(conv_err.result, scipy.optimize.OptimizeResult) self.assertTrue(hasattr(conv_err, "hess_inv")) class TestGaussianNoise(unittest2.TestCase): """Test the properties of the gaussian noise.""" def test_ident_cov(self): """Test generation with identity as covariance.""" sample_shape = 3 cov = np.eye(sample_shape) noise = atmos_flux_inversion.noise.gaussian_noise(cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros((sample_shape,)), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), cov, rtol=1e-2, atol=1e-2) def test_shape(self): """Make sure the returned shapes are correct.""" sample_shape = (3,) sample_cov = np.eye(sample_shape[0]) for shape in ((), (6,), (2, 3)): with self.subTest(shape=shape): res = atmos_flux_inversion.noise.gaussian_noise( sample_cov, shape) self.assertEqual(res.shape, shape + sample_shape) with self.subTest(shape=5): res = atmos_flux_inversion.noise.gaussian_noise( sample_cov, 5) self.assertEqual(res.shape, (5,) + sample_shape) with self.subTest(shape=None): res = atmos_flux_inversion.noise.gaussian_noise( sample_cov, None) self.assertEqual(res.shape, sample_shape) def test_operator(self): """Test that the code works with operator covariances.""" diagonal = (1, .5, .3, .2, .1) sample_cov = atmos_flux_inversion.covariances.DiagonalOperator( diagonal) sample_shape = (len(diagonal),) noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(sample_shape), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), np.diag(diagonal), rtol=1e-2, atol=1e-2) def test_kron_op(self): """Test that large kronecker operators don't break the handling.""" op1 = scipy.linalg.toeplitz(.6 ** np.arange(15)) diag = (1, .9, .8, .7, .6, .5, .4, .3, .2, .1) op2 = atmos_flux_inversion.covariances.DiagonalOperator(diag) combined = atmos_flux_inversion.util.kronecker_product(op1, op2) noise = atmos_flux_inversion.noise.gaussian_noise(combined, int(1e5)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(combined.shape[0]), rtol=1.1e-2, atol=1.1e-2) np_tst.assert_allclose(np.cov(noise.T), scipy.linalg.kron(op1, np.diag(diag)), rtol=3e-2, atol=3e-2) def test_off_diagonal(self): """Test that the code works with off-diagonal elements.""" sample_cov = scipy.linalg.toeplitz((1, .5, .25, .125)) sample_shape = (4,) noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(sample_shape), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), sample_cov, rtol=1e-2, atol=1e-2) def test_slow_decay(self): """Test that the code handles slowly-decaying covariances.""" sample_cov = scipy.linalg.toeplitz(.8 ** np.arange(10)) sample_shape = (10,) noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(sample_shape), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), sample_cov, rtol=1e-2, atol=1e-2) def test_fails(self): """Test that construction fails on invalid input.""" self.assertRaises(ValueError, atmos_flux_inversion.noise.gaussian_noise, np.ones(10)) self.assertRaises(ValueError, atmos_flux_inversion.noise.gaussian_noise, np.eye(3, 2)) class TestCorrelations(unittest2.TestCase): """Test the generation of correlation matrices.""" def test_far_correl(self): """Test the correlation between points far apart. Should be zero. """ for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=corr_class.__name__): corr_fun = corr_class(1e-8) corr = corr_fun(1e8) self.assertAlmostEqual(corr, 0) def test_near_correl(self): """Test 2D correlation between near points. Should be one. """ for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=corr_class.__name__): corr_fun = corr_class(1e8) corr = corr_fun(1e-8) self.assertAlmostEqual(corr, 1) def test_2d_np_fromfunction(self): """Test that the structure works with np.fromfunction. This is how the integration tests will get background covariances, so this needs to work. """ test_size = (int(15), int(20)) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=getname(corr_class)): corr_fun = corr_class(2.) corr = np.fromfunction(corr_fun.correlation_from_index, shape=test_size * 2, dtype=float) corr_mat = corr.reshape((np.prod(test_size),) * 2) # test postitive definite try: chol_upper = cholesky(corr_mat) except la.LinAlgError: self.fail("corr_mat not positive definite") # test symmetry np_tst.assert_allclose(chol_upper.T.dot(chol_upper), corr_mat, rtol=1e-4, atol=1e-4) def test_2d_make_matrix(self): """Test make_matrix for 2D correlations. Checks against original value. This test is really slow. """ # 30x25 Gaussian 10 not close test_nx = 30 test_ny = 20 test_points = test_ny * test_nx # TODO: speed up for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 5, 10, 15): with self.subTest(corr_class=getname(corr_class), dist=dist): if ( corr_class == atmos_flux_inversion.correlations. GaussianCorrelation ): raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist) ) corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, (test_ny, test_nx)) # Make sure diagonal elements are ones np_tst.assert_allclose(np.diag(corr_mat), 1, rtol=1e-6) # check if it matches the original np_tst.assert_allclose( corr_mat, np.fromfunction( corr_fun.correlation_from_index, (test_ny, test_nx, test_ny, test_nx) ).reshape((test_points, test_points)), # rtol=1e-13: Gaussian 10 and 15 fail # atol=1e-15: Gaussian 1 and 5 fail rtol=1e-5, atol=1e-6) # check if it actually is positive definite cholesky(corr_mat) def test_1d_np_fromfunction(self): """Test that the structure works with np.fromfunction. This is how the integration tests will get background covariances, so this needs to work. """ test_size = (200,) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=getname(corr_class)): # This fails with a correlation length of 5 corr_fun = corr_class(2.) corr = np.fromfunction(corr_fun.correlation_from_index, shape=test_size * 2, dtype=float) corr_mat = corr.reshape((np.prod(test_size),) * 2) # test postitive definite chol_upper = cholesky(corr_mat) # test symmetry np_tst.assert_allclose(chol_upper.T.dot(chol_upper), corr_mat, rtol=1e-4, atol=1e-4) def test_1d_make_matrix(self): """Test make_matrix for 1D correlations. Checks against original value. """ test_nt = 200 for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 5, 10, 30): with self.subTest(corr_class=getname(corr_class), dist=dist): if ( corr_class == atmos_flux_inversion.correlations. GaussianCorrelation ): raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist) ) corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_nt ) # Make sure diagonal elements are ones np_tst.assert_allclose(np.diag(corr_mat), 1, rtol=1e-6) # check if it matches the original np_tst.assert_allclose( corr_mat, np.fromfunction( corr_fun.correlation_from_index, (test_nt, test_nt) ).reshape((test_nt, test_nt)), # rtol=1e-13: Gaussian 10 and 15 fail # atol=1e-15: Gaussian 1 and 5 fail rtol=2e-7, atol=5e-7 ) # check if it actually is positive definite chol_upper = cholesky(corr_mat) # test symmetry np_tst.assert_allclose(chol_upper.T.dot(chol_upper), corr_mat, rtol=1e-4, atol=1e-4) def test_fft_correlation_structure(self): """Ensure the FFT-based operators satisfy conditions of correlation matrices. Checks for symmetry and ones on the diagonal. """ for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for test_shape in ((300,), (20, 30)): test_size = int(np.prod(test_shape, dtype=int)) for dist in (1, 3, 10, 30): for is_cyclic in (True, False): corr_fun = corr_class(dist) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_shape, is_cyclic)) # This is the fastest way to get column-major # order from da.eye. corr_mat = corr_op.dot(np.eye(test_size).T) with self.subTest( corr_class=getname(corr_class), dist=dist, test_shape=test_shape, is_cyclic=is_cyclic, test="symmetry"): np_tst.assert_allclose(corr_mat, corr_mat.T, rtol=1e-14, atol=1e-15) with self.subTest( corr_class=getname(corr_class), dist=dist, test_shape=test_shape, is_cyclic=is_cyclic, test="self-correlation"): np_tst.assert_allclose(np.diag(corr_mat), 1) def test_1d_fft_correlation_cyclic(self): """Test HomogeneousIsotropicCorrelation for cyclic 1D arrays. Check against `make_matrix` and ignore values near the edges of the domain where the two methods are different. """ test_nt = 512 test_lst = (np.zeros(test_nt), np.ones(test_nt), np.arange(test_nt), np.eye(100, test_nt)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3, 10): # Magic numbers # May need to increase for larger test_nt noncorr_dist = 20 + 8 * dist corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_nt) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_nt)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="no"): np_tst.assert_allclose( corr_op.dot(test_vec)[noncorr_dist:-noncorr_dist], corr_mat.dot(test_vec)[noncorr_dist:-noncorr_dist], rtol=1e-3, atol=1.5e-3) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="yes"): if ((corr_class is atmos_flux_inversion.correlations. GaussianCorrelation and dist >= 3)): # Gaussian(3) has FFT less # well-conditioned than make_matrix raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist)) elif ((corr_class is atmos_flux_inversion.correlations. BalgovindCorrelation and dist == 10)): # This one distance is problematic # Roughly 3% of the points disagree # for the last half of the tests # I have no idea why raise unittest2.SkipTest( "Balgovind(10) correlations weird") np_tst.assert_allclose( corr_op.solve( test_vec)[noncorr_dist:-noncorr_dist], la.solve( corr_mat, test_vec)[noncorr_dist:-noncorr_dist], rtol=1e-3, atol=2e-3 ) def test_1d_fft_correlation_acyclic(self): """Test HomogeneousIsotropicCorrelation for acyclic 1D arrays. Check against `make_matrix` and ignore values near the edges of the domain where the two methods are different. """ test_nt = 512 test_lst = (np.zeros(test_nt), np.ones(test_nt), np.arange(test_nt), np.eye(100, test_nt)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3, 10): # Magic numbers # May need to increase for larger test_nt corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_nt) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_nt, False)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="no"): np_tst.assert_allclose( corr_op.dot(test_vec), corr_mat.dot(test_vec), rtol=1e-3, atol=1e-5) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="yes"): self.assertRaises( NotImplementedError, corr_op.solve, test_vec) def test_2d_fft_correlation_cyclic(self): """Test HomogeneousIsotropicCorrelation for cyclic 2D arrays. Check against `make_matrix` and ignore values near the edges where the two methods differ. """ test_shape = (20, 30) test_size = np.prod(test_shape) test_lst = (np.zeros(test_size), np.ones(test_size), np.arange(test_size), np.eye(10 * test_shape[0], test_size)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3): # Magic numbers # May need to increase for larger domains noncorr_dist = 20 + 8 * dist corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_shape) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_shape)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="forward"): np_tst.assert_allclose( corr_op.dot(test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], corr_mat.dot(test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], rtol=1e-3, atol=1e-5) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="backward"): if ((corr_class is atmos_flux_inversion.correlations. GaussianCorrelation and dist >= 3)): # Gaussian(3) has FFT less # well-conditioned than make_matrix raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist)) np_tst.assert_allclose( corr_op.solve( test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], la.solve( corr_mat, test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], rtol=1e-3, atol=1e-5) def test_2d_fft_correlation_acyclic(self): """Test HomogeneousIsotropicCorrelation for acyclic 2D arrays. Check against `make_matrix` and ignore values near the edges where the two methods differ. """ test_shape = (20, 30) test_size = np.prod(test_shape) test_lst = (np.zeros(test_size), np.ones(test_size), np.arange(test_size), np.eye(10 * test_shape[0], test_size)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3): # Magic numbers # May need to increase for larger domains corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_shape) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_shape, False)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="forward"): np_tst.assert_allclose( corr_op.dot(test_vec).reshape(test_shape), corr_mat.dot(test_vec).reshape(test_shape), rtol=1e-3, atol=1e-5) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="backward"): self.assertRaises( NotImplementedError, corr_op.solve, test_vec) def test_homogeneous_from_array_cyclic(self): """Make sure cyclic from_array can be roundtripped. Also tests that odd state sizes work. """ test_size = 25 corr_class = atmos_flux_inversion.correlations.ExponentialCorrelation for dist in (1, 3, 5): with self.subTest(dist=dist): corr_fun = corr_class(dist) corr_op1 = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_size, True)) first_column = corr_op1.dot(np.eye(test_size, 1)[:, 0]) corr_op2 = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_array(first_column)) np_tst.assert_allclose( corr_op1.dot(np.eye(test_size)), corr_op2.dot(np.eye(test_size))) def test_kron_composition(self): """Test that `kron` works similar to composition of the domains.""" HomogeneousIsotropicCorrelation = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation ) corr_class = atmos_flux_inversion.correlations.GaussianCorrelation corr_fun = corr_class(5) shape1 = (5,) shape2 = (7,) corr_op1 = (HomogeneousIsotropicCorrelation. from_function(corr_fun, shape1)) corr_op2 = (HomogeneousIsotropicCorrelation. from_function(corr_fun, shape2)) kron_corr = corr_op1.kron(corr_op2) direct_corr = (HomogeneousIsotropicCorrelation. from_function(corr_fun, shape1 + shape2)) self.assertEqual(kron_corr.shape, direct_corr.shape) self.assertEqual(kron_corr._underlying_shape, direct_corr._underlying_shape) np_tst.assert_allclose(kron_corr._corr_fourier, direct_corr._corr_fourier) np_tst.assert_allclose(kron_corr._fourier_near_zero, direct_corr._fourier_near_zero) def test_kron_results(self): """Test the Kronecker product implementation.""" HomogeneousIsotropicCorrelation = ( atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation) corr_class = atmos_flux_inversion.correlations.ExponentialCorrelation test_shapes = (20, 25, (5, 6)) distances = (3, 5,) for dist1, shape1, dist2, shape2 in itertools.product( distances, test_shapes, repeat=2): with self.subTest(dist1=dist1, dist2=dist2): corr_fun1 = corr_class(dist1) corr_fun2 = corr_class(dist2) corr_op1 = ( HomogeneousIsotropicCorrelation. from_function(corr_fun1, shape1)) corr_op2 = ( HomogeneousIsotropicCorrelation. from_function(corr_fun2, shape2)) size1 = np.prod(shape1) size2 = np.prod(shape2) corr_mat1 = corr_op1.dot(np.eye(size1)) corr_mat2 = corr_op2.dot(np.eye(size2)) full_corr1 = corr_op1.kron(corr_op2) full_corr2 = scipy.linalg.kron(np.asarray(corr_mat1), np.asarray(corr_mat2)) self.assertIsInstance( corr_op1, HomogeneousIsotropicCorrelation) test_vec = np.arange(size1 * size2) np_tst.assert_allclose( full_corr1.dot(test_vec), full_corr2.dot(test_vec)) test_mat = np.eye(size1 * size2) np_tst.assert_allclose( full_corr1.dot(test_mat), full_corr2.dot(test_mat)) def test_kron_delegate(self): """Test that kron delegates where appropriate.""" op1 = (atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_array((1, .5, .25))) mat2 = np.eye(5) combined_op = op1.kron(mat2) self.assertIsInstance( combined_op, atmos_flux_inversion.linalg.SchmidtKroneckerProduct ) def test_sqrt_direct(self): """Test the square root in the most direct manner possible. Checks whether matrices corresponding to sqrt.T@sqrt and the original matrix are approximately equal. """ operator = (atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_array((1, .5, .25, .125))) sqrt = operator.sqrt() sqrt_squared = sqrt.T.dot(sqrt) mat = np.eye(4) np_tst.assert_allclose(operator.dot(mat), sqrt_squared.dot(mat)) def test_from_function_direct(self): """Directly test the output of from_function.""" corr_func = (atmos_flux_inversion.correlations. ExponentialCorrelation(1 / np.log(2))) from_function = ( atmos_flux_inversion.correlations.HomogeneousIsotropicCorrelation. from_function) toeplitz = scipy.linalg.toeplitz with self.subTest(is_cyclic=False, nd=1): corr_op = from_function(corr_func, [10], False) np_tst.assert_allclose( corr_op.dot(np.eye(10)), toeplitz(0.5 ** np.arange(10))) with self.subTest(is_cyclic=False, nd=2): corr_op = from_function(corr_func, [2, 3], False) same_row = toeplitz(0.5 ** np.array([0, 1, 2])) other_row = toeplitz( 0.5 ** np.array([1, np.sqrt(2), np.sqrt(5)])) np_tst.assert_allclose( corr_op.dot(np.eye(6)), np.block([[same_row, other_row], [other_row, same_row]])) corr_op = from_function(corr_func, [4, 6], False) same_row = toeplitz(0.5 ** np.arange(6)) next_row = toeplitz( 0.5 ** np.array([1, np.sqrt(2), np.sqrt(5), np.sqrt(10), np.sqrt(17), np.sqrt(26)])) row_after_next = toeplitz( 0.5 ** np.array([2, np.sqrt(5), np.sqrt(8), np.sqrt(13), np.sqrt(20), np.sqrt(29)])) two_rows_on = toeplitz( 0.5 ** np.array([3, np.sqrt(10), np.sqrt(13), np.sqrt(18), 5, np.sqrt(34)])) np_tst.assert_allclose( corr_op.dot(np.eye(24)), np.block([[same_row, next_row, row_after_next, two_rows_on], [next_row, same_row, next_row, row_after_next], [row_after_next, next_row, same_row, next_row], [two_rows_on, row_after_next, next_row, same_row]])) with self.subTest(is_cyclic=True, nd=1): corr_op = from_function(corr_func, [10], True) np_tst.assert_allclose( corr_op.dot(np.eye(10)), toeplitz( 0.5 ** np.array([0, 1, 2, 3, 4, 5, 4, 3, 2, 1]))) with self.subTest(is_cyclic=True, nd=2): corr_op = from_function(corr_func, [4, 6]) same_row = toeplitz( 0.5 ** np.array([0, 1, 2, 3, 2, 1])) next_row = toeplitz( 0.5 ** np.array([1, np.sqrt(2), np.sqrt(5), np.sqrt(10), np.sqrt(5), np.sqrt(2)])) row_after_next = toeplitz( 0.5 ** np.array([2, np.sqrt(5), np.sqrt(8),
np.sqrt(13)
numpy.sqrt
# coding: utf-8 """ Test model class """ from __future__ import print_function import os import random import string import unittest import yaml import numpy as np import sick.models as models import sick.validation as validation def random_string(n=10): return ''.join(random.choice(string.ascii_uppercase + string.digits) \ for _ in range(n)) def create_temporary_filename(ext=None, n=10): if ext is None: ext = "" filename = os.extsep.join([random_string(10), ext]) while os.path.exists(filename): filename = os.extsep.join([random_string(10), ext]) return filename class ModelTest(unittest.TestCase): def test_non_existent_channel_keys(self): bad_model = { "channels": { "one": { "dispersion_filename": "non_existent_filename" } } } assert not os.path.exists("non_existent_filename"), "...really?"\ " you named a file 'non_existent_filename'? who does that?!" model_filename = create_temporary_filename("yaml") with open(model_filename, "w+") as fp: yaml.dump(bad_model, fp) # Assert an IOError missing the dispersion filename self.assertRaises(IOError, models.Model, model_filename) # OK create a dispersion filename dispersion_filename = create_temporary_filename("txt") np.savetxt(dispersion_filename,
np.arange(10)
numpy.arange
import pytest import numpy as np import pandas as pd import DOT_assignment.engine import DOT_assignment.assignments import DOT_assignment.controls import DOT_assignment.run import DOT_assignment.dynamics import DOT_assignment.agents import DOT_assignment.setup @pytest.fixture def sim_params_ex(): # SIM PARAMETERS CONSTANT ACROSS ENSEMBLE dt = 0.01 maxtime = 5 dim = 2 nagents = 5 ntargets = 5 # agent_model = "Double_Integrator" # target_model = "Double_Integrator" agent_model = "Linearized_Quadcopter" target_model = "Linearized_Quadcopter" collisions = True collision_tol = 1e-2 agent_control_policy = "LQR" target_control_policy = "LQR" assignment_epoch = 10 # Create directory for storage nensemble = 0 # TODO ensemble should not default to 'identical' ensemble_name = 'TEST_ENSEMBLE' root_directory = '/Users/foo/my/project/' ensemble_directory = root_directory + ensemble_name # TODO assumes heterogeneous swarms # formations: uniform_distribution, circle, fibonacci_sphere initial_formation_params = { 'nagents': nagents, 'agent_model': agent_model, 'agent_swarm_formation': 'uniform_distribution', 'ntargets': ntargets, 'target_model': target_model, 'target_swarm_formation': 'fibonacci_sphere', 'nstationary_states': ntargets, 'stationary_states_formation': 'circle' } sim_params = {'dt': dt, 'maxtime': maxtime, 'dim': dim, 'nagents': nagents, 'ntargets': ntargets, 'agent_model': agent_model, 'target_model': target_model, 'collisions': collisions, 'collision_tol': collision_tol, 'agent_control_policy': agent_control_policy, 'target_control_policy': target_control_policy, 'assignment_epoch': assignment_epoch, 'initial_formation_params': initial_formation_params} return sim_params @pytest.fixture def sim_profile_ex(sim_params_ex): sim_params = sim_params_ex dt = sim_params['dt'] maxtime = sim_params['maxtime'] dim = sim_params['dim'] nagents = sim_params['nagents'] ntargets = sim_params['ntargets'] agent_model = sim_params['agent_model'] target_model = sim_params['target_model'] collisions = sim_params['collisions'] collision_tol = sim_params['collision_tol'] agent_control_policy = sim_params['agent_control_policy'] target_control_policy = sim_params['target_control_policy'] assignment_epoch = sim_params['assignment_epoch'] initial_formation_params = sim_params['initial_formation_params'] initial_conditions = DOT_assignment.setup.generate_initial_conditions(dim, initial_formation_params) ###### DEFINE SIMULATION PROFILES ###### sim_profiles = {} # EMD parameters dt = dt asst = 'AssignmentEMD' sim_profile_name = 'emd' sim_profiles = {'agent_model': agent_model, 'target_model': target_model, 'agent_control_policy': agent_control_policy, 'target_control_policy': target_control_policy, 'assignment_policy': asst, 'assignment_epoch': assignment_epoch, 'nagents': nagents, 'ntargets': ntargets, 'collisions': collisions, 'collision_tol': collision_tol, 'dim': dim, 'dt': dt, 'maxtime': maxtime, 'initial_conditions': initial_conditions} return sim_profiles @pytest.fixture def engine_ex(sim_profile_ex): sim = DOT_assignment.setup.setup_simulation(sim_profile_ex) dim = 2 # Simulation data structures collisions = sim["collisions"] collision_tol = sim["collision_tol"] dt = sim["dt"] maxtime = sim["maxtime"] dx = sim["dx"] du = sim["du"] statespace = sim["statespace"] x0 = sim["x0"] ltidyn = sim["agent_dyn"] target_dyn = sim["target_dyns"] poltrack = sim["agent_pol"] poltargets = sim["target_pol"] assignment_pol = sim["asst_pol"] assignment_epoch = sim["asst_epoch"] nagents = sim["nagents"] ntargets = sim["ntargets"] runner = sim["runner"] # Other simulation information agent_model = sim["agent_model"] target_model = sim["target_model"] agent_control_policy = sim["agent_control_policy"] target_control_policy = sim["target_control_policy"] agents = [DOT_assignment.agents.TrackingAgent(dx, du, statespace, dim, ltidyn, poltrack) for ii in range(nagents)] targets = [DOT_assignment.agents.Agent(dx, du, statespace, dim, target_dyn, poltarget) for ii, poltarget in enumerate(poltargets)] sys = DOT_assignment.systems.OneVOne(agents, targets, assignment_pol, assignment_epoch) eng = DOT_assignment.engine.Engine(dim=dim, dt=dt, maxtime=maxtime, collisions=collisions, collision_tol=collision_tol) return [x0, sys, eng] def test_log(engine_ex): """ Tests the data logging within the engine """ x0 = engine_ex[0] sys = engine_ex[1] eng = engine_ex[2] tout = np.ones((10,1)) olddata =
np.tile(x0, (tout.shape[0], 1))
numpy.tile
import rps.robotarium as robotarium from rps.utilities.transformations import * from rps.utilities.barrier_certificates import * from rps.utilities.misc import * from rps.utilities.controllers import * import matplotlib.animation as animation import matplotlib.patches as patches import numpy as np import time import copy import math class RobotState(object): def __init__(self, initial_pose, vel_cmd, is_team_purple, robot_number): assert len(initial_pose) == 3, "Pose should be 3 elements (x, y, theta)" assert len(vel_cmd) == 2, "Vel cmd should be 2 elements (linear, angular)" self.initial_pose = initial_pose self._pose = initial_pose self.last_vel_cmd = vel_cmd # If false, is team orange. self.is_team_purple = is_team_purple self.robot_number = robot_number # Has this robot been tagged. If true, commands to this robot are ignored. self.is_tagged = False # Can this robot tag another bot / the flag. self.can_tag = True self.tag_cooldown = 0.0 # Has this robot captured a flag self.has_flag = False def update_pose(self, pose): ''' Updates the robot pose after a simulation step has been taken. ''' assert len(pose) == 3, "Pose should be 3 elements (x, y, theta)" self._pose = pose def update_last_vel(self, vel_cmd): ''' Updates the last velocity command sent to this robot. ''' assert len(vel_cmd) == 2, "Vel cmd should be 2 elements (linear, angular)" self._last_vel_cmd = vel_cmd class RobotPolicy(object): def __init__(self, attempt_tag): self.attempt_tag_fn = attempt_tag def policy(self, state, observation): # Linear and angular velocity vel_cmd = [0., 0.] return vel_cmd class RobotObservation(object): def __init__(self): self.left_encoder = 0 # rads self.right_encoder = 0 # rads self.flags = list() self.robots = list() def populate_flags(self, ego_state, flag_loc, active, color): flag = dict() angle = np.arctan2(ego_state._pose[1] - flag_loc[1], ego_state._pose[0] - flag_loc[0]) - ego_state._pose[2] angle = (angle + np.pi) % (2 * np.pi) - np.pi flag['angle'] = angle dist = np.linalg.norm((ego_state._pose[:2] - flag_loc)) flag['dist'] = dist flag['color'] = color flag['active'] = active self.flags.append(flag) def populate_robots(self, ego_state, bot): bot_obs = dict() angle = np.arctan2(ego_state._pose[1] - bot._pose[1], ego_state._pose[0] - bot._pose[0]) - ego_state._pose[2] angle = (angle + np.pi) % (2 * np.pi) - np.pi bot_obs['angle'] = angle dist = np.linalg.norm((ego_state._pose[:2] - bot._pose[:2])) bot_obs['dist'] = dist bot_obs['color'] = 'purple' if bot.is_team_purple else 'orange' self.robots.append(bot_obs) class CTFGame(object): def __init__(self, num_robots=12, store_state_history=True, max_iterations=1000, use_barriers=True): # Instantiate Robotarium object self.num_robots = num_robots assert self.num_robots == 12 or self.num_robots == 4 or self.num_robots == 2 initial_conditions = np.array([0.]) if self.num_robots == 12: initial_conditions = np.array([[-1.3, -1.3, -1.3, -1.0, -1.0, -1.0, 1.0, 1.0, 1.0, 1.3, 1.3, 1.3], [ 0.5, 0.0, -0.5, 0.5, 0.0, -0.5, 0.5, 0.0,-0.5, 0.5, 0.0,-0.5], [ 0., 0., 0., 0., 0., 0., np.pi, np.pi, np.pi, np.pi, np.pi, np.pi]]) elif self.num_robots == 4: initial_conditions = np.array([[-1.0, -1.0, 1.0, 1.0], [0.5, -0.5, 0.5, -0.5], [0., 0., np.pi, np.pi]]) elif self.num_robots == 2: initial_conditions = np.array([[-1.0, 1.0], [0.0, 0.0], [0., np.pi]]) self.robo_inst = robotarium.Robotarium(number_of_robots=num_robots, show_figure=False, initial_conditions=initial_conditions, sim_in_real_time=False) # Create barrier certificates to avoid collision self.uni_barrier_cert = create_unicycle_barrier_certificate() # Flags, true if present self.purple_flags = [True, True] self.purple_flag_locs = [(-1.45, -0.85), (-1.45, 0.85)] self.orange_flags = [True, True] self.orange_flag_locs = [(1.45, -0.85), (1.45, 0.85)] self.purple_home = [-1.5, 0.0, 0.0] self.orange_home = [1.5, 0.0, np.pi] self.purple_points = 0 self.orange_points = 0 # Robot tag cooldowns self.tag_cooldowns = np.zeros(self.num_robots) self.robot_states = [None]*self.num_robots self.robot_policies = [None]*self.num_robots self.store_state_history = store_state_history self.state_history = list() # Create barrier certificates to avoid collision self.uni_barrier_cert = create_unicycle_barrier_certificate() self.use_barriers = use_barriers self.max_iterations = max_iterations self.iterations = 0 self.flag_states = list() self.flag_states.append(copy.deepcopy(self.purple_flags + self.orange_flags)) self.score_history = list() self.score_history.append([0., 0.]) def register_purple_team(self, states, policies): assert len(states) == self.num_robots/2, "You must provide {} state classes for your team".format(self.num_robots/2) assert len(policies) == self.num_robots/2, "You must provide {} policy objects for your team".format(self.num_robots/2) self.robot_states[:int(self.num_robots/2)] = states self.robot_policies[:int(self.num_robots/2)] = policies def register_orange_team(self, states, policies): assert len(states) == self.num_robots/2, "You must provide {} state classes for your team".format(self.num_robots/2) assert len(policies) == self.num_robots/2, "You must provide {} policy objects for your team".format(self.num_robots/2) self.robot_states[int(self.num_robots/2):] = states self.robot_policies[int(self.num_robots/2):] = policies @staticmethod def is_offsides(state): if state.is_team_purple and state._pose[0] > 0.0: return True elif not state.is_team_purple and state._pose[0] < 0.0: return True else: return False @staticmethod def replace_one_flag(flags): if flags[0] == False: flags[0] = True return if flags[1] == False: flags[1] = True return def attempt_tag(self, tagger_robot_state): ''' Returns true if the tag attempt was successful, false otherwise. ''' tag_radius = 0.25 if self.tag_cooldowns[tagger_robot_state.robot_number] > 0.0: return False self.tag_cooldowns[tagger_robot_state.robot_number] = 3.0 tagger_robot_state.tag_cooldown = 3.0 tagger_robot_state.can_tag = False if tagger_robot_state.is_team_purple: for i, loc in enumerate(self.orange_flag_locs): if np.linalg.norm((tagger_robot_state._pose[:2] - np.array(loc))) < tag_radius: tagger_robot_state.has_flag = True self.orange_flags[i] = False return True else: for i, loc in enumerate(self.purple_flag_locs): if np.linalg.norm((tagger_robot_state._pose[:2] - np.array(loc))) < tag_radius: tagger_robot_state.has_flag = True self.purple_flags[i] = False return True for state in self.robot_states: # Opposing teams if state.is_team_purple != tagger_robot_state.is_team_purple: if np.linalg.norm((tagger_robot_state._pose[:2] - state._pose[:2])) < tag_radius: if self.is_offsides(state): state.is_tagged = True # If enemy is tagged, they lose and replace flag if state.has_flag: state.has_flag = False if state.is_team_purple: self.replace_one_flag(self.orange_flags) else: self.replace_one_flag(self.purple_flags) return True return False def setup(self): poses = self.robo_inst.get_poses() self.robo_inst.step() for i, pose in enumerate(poses.copy().T): assert self.robot_states[i] != None and self.robot_policies[i] != None is_team_purple = i < self.num_robots/2 # Replace classes with instantiations of those classes. self.robot_states[i] = self.robot_states[i](pose, [0., 0.], is_team_purple, i) self.robot_policies[i] = self.robot_policies[i](self.attempt_tag) if self.store_state_history: self.state_history.append(copy.deepcopy(self.robot_states)) def run(self): while self.iterations < self.max_iterations: poses = self.robo_inst.get_poses() for i, pose in enumerate(poses.copy().T): self.robot_states[i].update_pose(pose) vel_cmds = np.array([[0., 0.]]*self.num_robots) for i in range(self.num_robots): # Simulate sensors obs = RobotObservation() for flag_loc, active in zip(self.purple_flag_locs, self.purple_flags): obs.populate_flags(self.robot_states[i], flag_loc, active, 'purple') for flag_loc, active in zip(self.orange_flag_locs, self.orange_flags): obs.populate_flags(self.robot_states[i], flag_loc, active, 'orange') for j in range(self.num_robots): if i == j: continue obs.populate_robots(self.robot_states[i], self.robot_states[j]) # Run policy vel_cmds[i] = self.robot_policies[i].policy(self.robot_states[i], obs) # Send tagged robots back home for i, state in enumerate(self.robot_states): if state.is_tagged: unicycle_pose_controller = create_hybrid_unicycle_pose_controller() goal = [0., 0., 0.] if state.is_team_purple: goal = self.purple_home else: goal = self.orange_home if np.linalg.norm((state._pose[:2] - goal[:2])) < 0.15: state.is_tagged = False else: vel_cmds[i] = unicycle_pose_controller(
np.array([state._pose])
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den =
N.array([1,2,2])
numpy.array
from osgeo import gdal import math import matplotlib.pyplot as plt import numpy as np import os from osgeo import gdal_array import pandas as pd import uuid import warnings from .pipesegment import PipeSegment, LoadSegment, MergeSegment class Image: def __init__(self, data, name='image', metadata={}): self.name = name self.metadata = metadata self.set_data(data) def set_data(self, data): if isinstance(data, np.ndarray) and data.ndim == 2: data = np.expand_dims(data, axis=0) self.data = data def __str__(self): if self.data.ndim < 3: raise Exception('! Image data has too few dimensions.') metastring = str(self.metadata) if len(metastring)>400: metastring = metastring[:360] + '...' return '%s: %d bands, %dx%d, %s, %s' % (self.name, *np.shape(self.data), str(self.data.dtype), metastring) class Identity(PipeSegment): """ This class is an alias for the PipeSegment base class to emphasize its role as the identity element. """ pass class LoadImageFromDisk(LoadSegment): """ Load an image from the file system using GDAL, so it can be fed into subsequent PipeSegments. """ def __init__(self, pathstring, name=None, verbose=False): super().__init__() self.pathstring = pathstring self.name = name self.verbose = verbose def load(self): return self.load_from_disk(self.pathstring, self.name, self.verbose) def load_from_disk(self, pathstring, name=None, verbose=False): # Use GDAL to open image file dataset = gdal.Open(pathstring) if dataset is None: raise Exception('! Image file ' + pathstring + ' not found.') data = dataset.ReadAsArray() if data.ndim == 2: data = np.expand_dims(data, axis=0) metadata = { 'geotransform': dataset.GetGeoTransform(), 'projection_ref': dataset.GetProjectionRef(), 'gcps': dataset.GetGCPs(), 'gcp_projection': dataset.GetGCPProjection(), 'meta': dataset.GetMetadata() } metadata['band_meta'] = [dataset.GetRasterBand(band).GetMetadata() for band in range(1, dataset.RasterCount+1)] if name is None: name = os.path.splitext(os.path.split(pathstring)[1])[0] dataset = None # Create an Image-class object, and return it imageobj = Image(data, name, metadata) if verbose: print(imageobj) return imageobj class LoadImageFromMemory(LoadSegment): """ Points to an 'Image'-class image so it can be fed into subsequent PipeSegments. """ def __init__(self, imageobj, name=None, verbose=False): super().__init__() self.imageobj = imageobj self.name = name self.verbose = verbose def load(self): return self.load_from_memory(self.imageobj, self.name, self.verbose) def load_from_memory(self, imageobj, name=None, verbose=False): if type(imageobj) is not Image: raise Exception('! Invalid input type in LoadImageFromMemory.') if name is not None: imageobj.name = name if verbose: print(imageobj) return(imageobj) class LoadImage(LoadImageFromDisk, LoadImageFromMemory): """ Makes an image available to subsequent PipeSegments, whether the image is in the filesystem (in which case 'imageinput' is the path) or an Image-class variable (in which case 'imageinput' is the variable name). """ def __init__(self, imageinput, name=None, verbose=False): PipeSegment.__init__(self) self.imageinput = imageinput self.name = name self.verbose = verbose def load(self): if type(self.imageinput) is Image: return self.load_from_memory(self.imageinput, self.name, self.verbose) elif type(self.imageinput) in (str, np.str_): return self.load_from_disk(self.imageinput, self.name, self.verbose) else: raise Exception('! Invalid input type in LoadImage.') class SaveImage(PipeSegment): """ Save an image to disk using GDAL. """ def __init__(self, pathstring, driver='GTiff', return_image=True, save_projection=True, save_metadata=True, no_data_value=None): super().__init__() self.pathstring = pathstring self.driver = driver self.return_image = return_image self.save_projection = save_projection self.save_metadata = save_metadata self.no_data_value = no_data_value def transform(self, pin): # Save image to disk driver = gdal.GetDriverByName(self.driver) datatype = gdal_array.NumericTypeCodeToGDALTypeCode(pin.data.dtype) if datatype is None: if pin.data.dtype in (bool, np.dtype('bool')): datatype = gdal.GDT_Byte else: warnings.warn('! SaveImage did not find data type match; saving as float.') datatype = gdal.GDT_Float32 dataset = driver.Create(self.pathstring, pin.data.shape[2], pin.data.shape[1], pin.data.shape[0], datatype) for band in range(pin.data.shape[0]): bandptr = dataset.GetRasterBand(band+1) bandptr.WriteArray(pin.data[band, :, :]) if isinstance(self.no_data_value, str) \ and self.no_data_value.lower() == 'nan': bandptr.SetNoDataValue(math.nan) elif self.no_data_value is not None: bandptr.SetNoDataValue(self.no_data_value) bandptr.FlushCache() if self.save_projection: #First determine which projection system, if any, is used proj_lens = [0, 0] proj_keys = ['projection_ref', 'gcp_projection'] for i, proj_key in enumerate(proj_keys): if proj_key in pin.metadata.keys(): proj_lens[i] = len(pin.metadata[proj_key]) if proj_lens[0] > 0 and proj_lens[0] >= proj_lens[1]: dataset.SetGeoTransform(pin.metadata['geotransform']) dataset.SetProjection(pin.metadata['projection_ref']) elif proj_lens[1] > 0 and proj_lens[1] >= proj_lens[0]: dataset.SetGCPs(pin.metadata['gcps'], pin.metadata['gcp_projection']) if self.save_metadata and 'meta' in pin.metadata.keys(): dataset.SetMetadata(pin.metadata['meta']) dataset.FlushCache() # Optionally return image if self.driver.lower() == 'mem': return dataset elif self.return_image: return pin else: return None class ShowImage(PipeSegment): """ Display an image using matplotlib. """ def __init__(self, show_text=False, show_image=True, cmap='gray', vmin=None, vmax=None, bands=None, caption=None, width=None, height=None): super().__init__() self.show_text = show_text self.show_image = show_image self.cmap = cmap self.vmin = vmin self.vmax = vmax self.bands = bands self.caption = caption self.width = width self.height = height def transform(self, pin): if self.caption is not None: print(self.caption) if self.show_text: print(pin) if self.show_image: # Select data, and format it for matplotlib if self.bands is None: image_formatted = pin.data else: image_formatted = pin.data[self.bands] pyplot_formatted = np.squeeze(np.moveaxis(image_formatted, 0, -1)) if np.ndim(pyplot_formatted)==3 and self.vmin is not None and self.vmax is not None: pyplot_formatted = np.clip((pyplot_formatted - self.vmin) / (self.vmax - self.vmin), 0., 1.) # Select image size if self.height is None and self.width is None: rc = {} elif self.height is None and self.width is not None: rc = {'figure.figsize': [self.width, self.width]} elif self.height is not None and self.width is None: rc = {'figure.figsize': [self.height, self.height]} else: rc = {'figure.figsize': [self.width, self.height]} # Show image with plt.rc_context(rc): plt.imshow(pyplot_formatted, cmap=self.cmap, vmin=self.vmin, vmax=self.vmax) plt.show() return pin class ImageStats(PipeSegment): """ Calculate descriptive statististics about an image """ def __init__(self, print_desc=True, print_props=True, return_image=True, return_props=False, median=True, caption=None): super().__init__() self.print_desc = print_desc self.print_props = print_props self.return_image = return_image self.return_props = return_props self.median = median self.caption = caption def transform(self, pin): if self.caption is not None: print(self.caption) if self.print_desc: print(pin) print() props = pd.DataFrame({ 'min': np.nanmin(pin.data, (1,2)), 'max': np.nanmax(pin.data, (1,2)), 'mean': np.nanmean(pin.data, (1,2)), 'std': np.nanstd(pin.data, (1,2)), 'pos': np.count_nonzero(np.nan_to_num(pin.data, nan=-1.)>0, (1,2)), 'zero': np.count_nonzero(pin.data==0, (1,2)), 'neg': np.count_nonzero(
np.nan_to_num(pin.data, nan=1.)
numpy.nan_to_num
import numpy as np import array import os, sys import re import time import multiprocessing import h5py import logging from astropy.table import Table, Column from astropy import units as u import argparse parser = argparse.ArgumentParser() parser.add_argument("-p","--params", type=str, help = "Parameter file") parser.add_argument("-q", "--quiet", help = "Suppress extra outputs", action = "store_true") args = parser.parse_args() quiet = args.quiet params_root = re.split(".py", args.params)[0] if os.path.isfile(params_root+".pyc"): os.remove(params_root+".pyc") import importlib try: params = importlib.import_module(params_root) print('Successfully loaded "{0}" as params'.format(args.params)) importlib.reload(params) except: print('Failed to load "{0}" as params'.format(args.params)) raise if quiet: quietprint = lambda *a: None else: def quietprint(*args): for arg in args: print(arg, end=' ') print() # Fitting function definition for later use by Processess def galaxyFit(inputQueue, printQueue, printlock): for gal in iter(inputQueue.get, 'STOP'): j = np.argmin(np.abs(z-zobs[gal])) # Find closest model redshift flux_obs = obs[gal,:] flux_err = obs_err[gal,:] #flux_obs[fo <= 0.] = 0. # Set negative fluxes to zero I = np.where(flux_err > 0.)[0] # Find bands with no observation if len(I) == 0: if include_rest: M_scaled = np.ones(len(fo)) * -99. restframe_output = ' '.join(M_scaled.astype('str')) output_string = '{0} {1} {2} {3} {4} {5} {6} {7}' \ ' {8} {9} {10} {11} {12} {13} {14} {15} {16}'.format(gal+1,ID[gal],zobs[gal],-99,-99,-99,-99,-99,-99, -99, -99,-99,len(I),-99,z[j],restframe_output,'\n') else: output_string = '{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14}'.format(gal+1,ID[gal],zobs[gal],-99,-99,-99,-99,-99,-99,-99, -99,-99,len(I),-99,'\n') printQueue.put(output_string) continue flux_obs = flux_obs[I] # and exclude from fit flux_err = flux_err[I] flux_models = f[j,I,:] tot_err = np.sqrt(flux_err**2 + (0.1*flux_obs)**2) top = 0. bottom = 0. for i in range(len(flux_obs)): top += (flux_models[i,:]*flux_obs[i])/(tot_err[i]**2) bottom += (flux_models[i,:]**2)/(tot_err[i]**2) scale = top/bottom scale = np.reshape(scale, (n_metal, n_tg, n_tau, n_tauv, n_fesc)) chisq = 0. for i in range(len(flux_obs)): chisq += ((np.abs(scale*flux_models[i,:]-flux_obs[i])**2)/(flux_err[i])**2) chimin, minind = np.nanmin(chisq), np.nanargmin(chisq) if np.isinf(chimin) or np.isnan(minind): if include_rest: M_scaled = np.ones(len(flux_obs)) * -99. restframe_output = ' '.join(M_scaled.astype('str')) output_string = '{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}'.format(gal+1,ID[gal],zobs[gal],-99,-99,-99,-99,-99,-99, -99, -99,-99,len(I),-99,z[j],restframe_output,'\n') else: output_string = '{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14}'.format(gal+1,ID[gal],zobs[gal],-99,-99,-99,-99,-99,-99,-99, -99,-99,len(I),-99,'\n') printQueue.put(output_string) continue #Find the coordinate of the model with the bestfit mass mi, tgi, ti, tvi, fi = np.unravel_index(minind, (n_metal, n_tg, n_tau, n_tauv, n_fesc)) Bestfit_Mass = np.log10(scale[mi, tgi, ti, tvi, fi]*flux_corr) Bestfit_SFR = (scale[mi, tgi, ti, tvi, fi] * SFR[mi, tgi, ti, tvi, fi]*flux_corr) #Bestfit_Beta = beta[tgi,tvi,ti,mi] Bestfit_Beta = -99. #Scale the observed tot_mag band of the template to be the same as the observed tot_mag band of the galaxy #Convert the templates so they are no longer units of per stellar mass F_rest = f[0,:]*scale[mi, tgi, ti, tvi, fi]*flux_corr restframeMags = 23.9 - 2.5*np.log10(F_rest) #UV_rest = UV_flux[0]*scale[tgi,tvi,ti,mi]*flux_corr #restframeMUV = 23.9 - 2.5*np.log10(UV_rest) M_scaled = restframeMags[:, mi, tgi, ti, tvi, fi] #MUV_scaled = restframeMUV[tgi,tvi,ti,mi] MUV_scaled = -99. if np.isnan(Bestfit_Mass) or np.isinf(chimin): Bestfit_Mass = -99 #M_scaled[:] = -99 tgs = -99 tvs = -99 taus = -99 mis = -99 escape_fraction = -99 else: tgs = tg[tgi]/1e9 tvs = tv[tvi] taus = tau[ti] mis = metallicities[mi] escape_fraction = fesc[fi] printlock.acquire() print('{0:6d} {1:8d} {2:>5.2f} {3:>7.2f} {4:>8.1f} {5:>8.3f} {6:>5.1f} {7:>8.2f} {8:>4.2f} {9:>5.2f}'.format(gal+1,ID[gal], zobs[gal],Bestfit_Mass,chimin,tgs,tvs,taus,mis,
np.log10(Bestfit_SFR)
numpy.log10
# -*- coding: utf-8 -*- """ Created on Thu Mar 1 13:37:29 2018 Class for implementing the scores for the composition UI and also the display image with all the scores@author: <NAME> """ import cv2 import numpy as np import itertools from scipy.spatial import distance as dist from skimage.measure import compare_ssim as ssim from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import pandas as pd from SaliencyMap import Saliency class AutoScoreML (): def __init__(self, extractedFeatures ): self.df = pd.DataFrame(np.array(extractedFeatures)) def autoScoreML(self): filepath_01 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoringApril30.csv' filepath_02 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoringApril30_B.csv' # ============================================================================= # filepath_03 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_c.csv' # filepath_04 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_d.csv' # filepath_05 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_e.csv' # filepath_06 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_a.csv' # filepath_07 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_b.csv' # filepath_08 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_c.csv' # filepath_09 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring22apr2018_a.csv' # # ============================================================================= df_01 = pd.read_csv(filepath_01) df_02 = pd.read_csv(filepath_02) # ============================================================================= # df_03 = pd.read_csv(filepath_03) # df_04 = pd.read_csv(filepath_04) # df_05 = pd.read_csv(filepath_05) # df_06 = pd.read_csv(filepath_06) # df_07 = pd.read_csv(filepath_07) # df_08 = pd.read_csv(filepath_08) # df_09 = pd.read_csv(filepath_09) # ============================================================================= frames= [df_01, df_02 #,df_03, df_04, df_05, df_06, df_07, df_08, df_09 ] df = pd.concat(frames) df.reset_index(drop = True, inplace = True) # drop the Null Value df.dropna(inplace=True) # select the features to use: df.drop(['file', 'CompositionUserChoice'], axis=1, inplace=True) X_train = df.drop('judge', axis = 1) #y = df['judge'] X_test = self.df from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) # construct the ANN # import the Keras Library and the required packages import keras from keras.models import Sequential from keras.layers import Dense from keras.models import model_from_json import os # load json and create model json_file = open("D:\\google drive\\A PhD Project at Godlsmiths\\ArtistSupervisionProject\\code\\classifier.json", 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("D:\\google drive\\A PhD Project at Godlsmiths\\ArtistSupervisionProject\\code\\classifier.h5") print("Loaded model from disk") # evaluate loaded model on test data loaded_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # ============================================================================= # score = loaded_model.evaluate(X_test, y_test, verbose=0) # print("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100)) # ============================================================================= # predict the test set results # ============================================================================= y_pred = loaded_model.predict(X_test) for y in y_pred: res = np.argmax(y) return res class CompositionAnalysis (): def __init__ (self, image = None, imagepath = None, mask = None): if imagepath: self.image = cv2.imread(imagepath) self.imagepath = imagepath else: self.image = image self.totalPixels = self.image.size self.gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY) # ============================================================================= # # def _borderCut(self, borderCutted): # # # borderCutted[0:2, :] = 0 # borderCutted[-2:self.image.shape[0], :] = 0 # borderCutted[:, 0:2] = 0 # borderCutted[:, -2:self.image.shape[1]] = 0 # # return borderCutted # ============================================================================= def synthesisScores (self): # return the display image for the UI rows, cols, depth = self.image.shape scoreSynthesisImg = np.zeros(self.image.shape, dtype="uint8") # make solid color for the background scoreSynthesisImg[:] = (218,218,218) cv2.line(scoreSynthesisImg, ( int(self.image.shape[1] * 0.6), 20), ( int(self.image.shape[1] * 0.6),self.image.shape[0]), (50,50,140), 1) cv2.line(scoreSynthesisImg, ( int(self.image.shape[1] * 0.75), 20), ( int(self.image.shape[1] * 0.75),self.image.shape[0]), (60,140,90), 1) # collect the balance scores: VisualBalanceScore = ( self.scoreVisualBalance + self.scoreHullBalance ) / 2 # corner balance and line lineandcornerBalance = (self.cornersBalance + self.verticalandHorizBalanceMean ) / 2 # collect the rythm scores: #asymmetry = (self.scoreFourier + self.verticalandHorizBalanceMean + self.ssimAsymmetry) / 3 asymmetry = (self.ssimAsymmetry +self.diagonalAsymmetry) / 2 scoreFourier = self.scoreFourier # collect the gold proportion scores: goldScore = self.scoreProportionAreaVsGoldenRatio #score composition scoreCompMax = max(self.diagonalasymmetryBalance, self.ScoreFourTriangleAdapted,self.ScoreBigTriangle) ruleOfThird = self.ScoreRuleOfThird # diagonal balance commposition #diagonalasymmetryBalance = self.diagonalasymmetryBalance # spiral spiralScore = self.scoreSpiralGoldenRatio # fractal fractalScoreFromTarget = self.fractalScoreFromTarget cv2.putText(scoreSynthesisImg, "Balance", (20, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[20:24, 10:int(VisualBalanceScore*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Rule of Third", (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[35:39, 10:int(ruleOfThird*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Composition Max", (20, 45), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[50:54, 10:int(scoreCompMax*cols*0.9)] = (120,60,120) #cv2.putText(scoreSynthesisImg, "Diagonal Comp", (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) #scoreSynthesisImg[65:70, 10:int(diagonalasymmetryBalance*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Spiral ", (20, 75), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[80:84, 10:int(spiralScore*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Asymmetry ", (20, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[95:99, 10:int(asymmetry*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Fourier ", (20, 105), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[110:114, 10:int(scoreFourier*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "CornerLinesBalance ", (20, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[125:129, 10:int(lineandcornerBalance*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Proportion ", (20, 135), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[140:144, 10:int(goldScore*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Fractal ", (20, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[155:159, 10:int(fractalScoreFromTarget*cols*0.9)] = (120,60,120) #cv2.putText(scoreSynthesisImg, "Balance, asymmetry, Proportion, corner, spiral ", (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) #cv2.putText(scoreSynthesisImg, "Possible Comp: {} ".format(selectedComp), (10, 110), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) return scoreSynthesisImg def fourierOnEdgesDisplay (self): ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 10000, edged = False, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) cropped_img_lf = ImgImpRegionA[0:int(ImgImpRegionA.shape[0]), 0: int(ImgImpRegionA.shape[1] / 2) ] cropped_img_rt = ImgImpRegionA[0:int(ImgImpRegionA.shape[0]), int(ImgImpRegionA.shape[1] / 2): ImgImpRegionA.shape[1] ] #imgDftGray = self._returnDFT(ImgImpRegionA) imgDftGraylf = self._returnDFT(cropped_img_lf) imgDftGrayRt = self._returnDFT(cropped_img_rt) # number of pixels in left and number of pixels in right numberOfWhite_lf = (imgDftGraylf>0).sum() numberOfWhite_Rt = (imgDftGrayRt > 0).sum() # create the stiched picture stichedDft = self.image.copy() stichedDft = np.concatenate((imgDftGraylf,imgDftGrayRt ), axis = 1) score = (abs(numberOfWhite_lf - numberOfWhite_Rt)) / (numberOfWhite_lf + numberOfWhite_Rt) # to penalise the change in rithm scoreFourier = np.exp(-score * self.image.shape[0]/2) #cv2.putText(stichedDft, "diff: {:.3f}".format(score), (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 1) self.scoreFourier = scoreFourier return stichedDft, scoreFourier def _returnDFT (self, imageForDft): ImgImpRegionA = imageForDft ImgImpRegionA = cv2.cvtColor(ImgImpRegionA, cv2.COLOR_BGR2GRAY) #dft = cv2.dft(np.float32(self.gray),flags = cv2.DFT_COMPLEX_OUTPUT) dft = cv2.dft(np.float32(ImgImpRegionA),flags = cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1])) cv2.normalize( magnitude_spectrum, magnitude_spectrum, alpha = 0 , beta = 1 , norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) imgDftGray = np.array(magnitude_spectrum * 255, dtype = np.uint8) meanThres = np.mean(imgDftGray) _, imgDftGray = cv2.threshold(imgDftGray,meanThres, 255, cv2.THRESH_BINARY) imgDftGray = cv2.cvtColor(imgDftGray, cv2.COLOR_GRAY2BGR) return imgDftGray def HOGcompute (self): gray = self.gray.copy() # h x w in pixels cell_size = (8, 8) # h x w in cells block_size = (2, 2) # number of orientation bins nbins = 9 # Using OpenCV's HOG Descriptor # winSize is the size of the image cropped to a multiple of the cell size hog = cv2.HOGDescriptor(_winSize=(gray.shape[1] // cell_size[1] * cell_size[1], gray.shape[0] // cell_size[0] * cell_size[0]), _blockSize=(block_size[1] * cell_size[1], block_size[0] * cell_size[0]), _blockStride=(cell_size[1], cell_size[0]), _cellSize=(cell_size[1], cell_size[0]), _nbins=nbins) # Create numpy array shape which we use to create hog_feats n_cells = (gray.shape[0] // cell_size[0], gray.shape[1] // cell_size[1]) # We index blocks by rows first. # hog_feats now contains the gradient amplitudes for each direction, # for each cell of its group for each group. Indexing is by rows then columns. hog_feats = hog.compute(gray).reshape(n_cells[1] - block_size[1] + 1, n_cells[0] - block_size[0] + 1, block_size[0], block_size[1], nbins).transpose((1, 0, 2, 3, 4)) # Create our gradients array with nbin dimensions to store gradient orientations gradients = np.zeros((n_cells[0], n_cells[1], nbins)) # Create array of dimensions cell_count = np.full((n_cells[0], n_cells[1], 1), 0, dtype=int) # Block Normalization for off_y in range(block_size[0]): for off_x in range(block_size[1]): gradients[off_y:n_cells[0] - block_size[0] + off_y + 1, off_x:n_cells[1] - block_size[1] + off_x + 1] += \ hog_feats[:, :, off_y, off_x, :] cell_count[off_y:n_cells[0] - block_size[0] + off_y + 1, off_x:n_cells[1] - block_size[1] + off_x + 1] += 1 # Average gradients gradients /= cell_count # ============================================================================= # # Plot HOGs using Matplotlib # # angle is 360 / nbins * direction # print (gradients.shape) # # color_bins = 5 # plt.pcolor(gradients[:, :, color_bins]) # plt.gca().invert_yaxis() # plt.gca().set_aspect('equal', adjustable='box') # plt.colorbar() # plt.show() # cv2.destroyAllWindows() # ============================================================================= return def goldenProportionOnCnts(self, numberOfCnts = 25, method = cv2.RETR_CCOMP, minArea = 2): edgedForProp = self._edgeDetection( scalarFactor = 1, meanShift = 0, edgesdilateOpen = True, kernel = 3) goldenPropImg = self.image.copy() # create the contours from the segmented image ing2, contours, hierarchy = cv2.findContours(edgedForProp, method, cv2.CHAIN_APPROX_SIMPLE) innerCnts = [] for cnt, h in zip (contours, hierarchy[0]): if h[2] == -1 : innerCnts.append(cnt) sortedContours = sorted(innerCnts, key = cv2.contourArea, reverse = True) selectedContours = [cnt for cnt in sortedContours if cv2.contourArea(cnt) > minArea] for cnt in selectedContours[0: numberOfCnts]: cv2.drawContours(goldenPropImg, [cnt], -1, (255, 0, 255), 1) # get all the ratio to check ratioAreas = [] for index, cnt in enumerate(selectedContours[0: numberOfCnts]): if index < len(selectedContours[0: numberOfCnts]) -1: areaGoldenToCheck_previous = cv2.contourArea(selectedContours[index]) areaGoldenToCheck_next = cv2.contourArea(selectedContours[index + 1]) ratioArea = areaGoldenToCheck_previous / areaGoldenToCheck_next ratioAreas.append(ratioArea) meanAreaRatio = (np.mean(ratioAreas)) diffFromGoldenRatio = abs(1.618 - meanAreaRatio) scoreProportionAreaVsGoldenRatio =
np.exp(-diffFromGoldenRatio)
numpy.exp
"""Module for performing optimization over the stiefel manifold.""" import numpy as np from scipy import linalg as linalg import neuropy.temp as tmp def optimize(ObjFn): """Perform optimization over the Stiefel manifold.""" # Parameters max_iter = 1000 max_ls_iter = 500 # Maximum number of line search iterations n_restarts = 5 # Number of random restarts to use delta_b = 0.9 # eps_f = 1e-10 # Get size of space -- it would be good to get these from the obj. fn. x_dim = ObjFn.x_dim # Size of the data (high-d) m_dim = ObjFn.m_dim # Size of the desired orthonormal space # Initialize results S = [] # List to store results for each random restart for i in range(n_restarts): # Initialize M (randomly) A =
np.random.randn(x_dim, m_dim)
numpy.random.randn
"""Define LineDetectorModel class.""" from typing import Callable, Dict, Tuple import numpy as np from tensorflow.keras.optimizers import Adam from tensorflow.keras.preprocessing.image import ImageDataGenerator from text_recognizer.datasets.iam_paragraphs_dataset import IamParagraphsDataset from text_recognizer.models.base import Model from text_recognizer.networks import fcn _DATA_AUGMENTATION_PARAMS = { "width_shift_range": 0.06, "height_shift_range": 0.1, "horizontal_flip": True, "zoom_range": 0.1, "fill_mode": "constant", "cval": 0, "shear_range": 3, } class LineDetectorModel(Model): """Model to detect lines of text in an image.""" def __init__( self, dataset_cls: type = IamParagraphsDataset, network_fn: Callable = fcn, dataset_args: Dict = None, network_args: Dict = None, ): """Define the default dataset and network values for this model.""" super().__init__(dataset_cls, network_fn, dataset_args, network_args) self.data_augmentor = ImageDataGenerator(**_DATA_AUGMENTATION_PARAMS) self.batch_augment_fn = self.augment_batch def loss(self): # pylint: disable=no-self-use return "categorical_crossentropy" def optimizer(self): # pylint: disable=no-self-use return Adam(0.001 / 2) def metrics(self): # pylint: disable=no-self-use return None def augment_batch(self, x_batch: np.ndarray, y_batch: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Perform different random transformations on the whole batch of x, y samples.""" x_augment, y_augment = zip(*[self._augment_sample(x, y) for x, y in zip(x_batch, y_batch)]) return np.stack(x_augment, axis=0), np.stack(y_augment, axis=0) def _augment_sample(self, x: np.ndarray, y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ Perform the same random image transformation on both x and y. x is a 2d image of shape self.image_shape, but self.data_augmentor needs the channel image too. """ x_3d =
np.expand_dims(x, axis=-1)
numpy.expand_dims
import logging import bpy import numpy as np import kubric as kb from kubric.core import materials from kubric.renderer import Blender from kubric.renderer.blender import Blender as KubricBlender def get_proper_time(nums: int, times: np.ndarray) -> np.ndarray: return np.concatenate([times] * nums) logging.basicConfig(level="INFO") # < CRITICAL, ERROR, WARNING, INFO, DEBUG world_matrix = { "bunny": np.array( ( (-1.0, 3.2584136988589307e-07, 0.0, 0.7087775468826294), (-3.2584136988589307e-07, -1.0, 0.0, -1.2878063917160034), (0.0, 0.0, 1.0, 0.0), (0.0, 0.0, 0.0, 1.0), ), ), "suzanne": np.array( ( (1.0, 0.0, 0.0, -0.8567398190498352), (0.0, 1.0, 0.0, 0.0), (0.0, 0.0, 1.0, 0.0), (0.0, 0.0, 0.0, 1.0), ) ), "teapot": np.array( ( (1.0, 0.0, 0.0, -0.9078792333602905), (0.0, 1.0, 0.0, 1.2115877866744995), (0.0, 0.0, 1.0, 0.0), (0.0, 0.0, 0.0, 1.0), ) ), "camera_train": np.array( ( (1.0, 0.0, 0.0, 5.299691677093506), (0.0, 1.0, 0.0, 2.9463558197021484), (0.0, 0.0, 1.0, 4.46529483795166), (0.0, 0.0, 0.0, 1.0), ) ), "camera_valid": np.array( ( (1.0, 0.0, 0.0, 5.299691677093506), (0.0, 1.0, 0.0, 2.946355819702148), (0.0, 0.0, 1.0, 3.7338485717773438), (0.0, 0.0, 0.0, 1.0), ) ), } points = { "bunny": np.array( ( ( 0.044713765382766724, -1.0193415880203247, 0.8044384121894836, 1.0, ), ( 0.056191492825746536, -0.31232786178588867, 0.8044384121894836, 1.0, ), (0.0, 0.0, 0.0, 1.0), (1.0, 0.0, 0.0, 1.0), ), ), "suzanne": np.array( ( (-1.0, 0.0, 0.0, 1.0), (-0.2928931713104248, 2.9802322387695312e-08, 0.0, 1.0), (0.0, 0.0, 0.0, 1.0), (1.0, 0.0, 0.0, 1.0), ) ), "teapot": np.array( ( ( 0.044713765382766724, -1.0193415880203247, 0.8044384121894836, 1.0, ), ( 0.056191492825746536, -0.31232786178588867, 0.8044384121894836, 1.0, ), (0.0, 0.0, 0.0, 1.0), (1.0, 0.0, 0.0, 1.0), ), ), "camera": np.array( ( ( 0.11302351206541061, -2.022498846054077, -0.03925067186355591, 1.0, ), (0.2999248206615448, -2.991917133331299, 0.536824643611908, 1.0), (0.1303337812423706, -5.388640403747559, 0.32903361320495605, 1.0), (0.3103395700454712, -6.060530662536621, -0.3085057735443115, 1.0), ), ), } def interpolate_position( t: np.ndarray, handles: np.ndarray, world_matrix: np.ndarray ) -> np.ndarray: p0, p1, p2, p3 = handles[:, np.newaxis] t = t[..., np.newaxis] r = 1 - t out = r ** 3 * p0 + 3 * r ** 2 * t * p1 + 3 * r * t ** 2 * p2 + t ** 3 * p3 out = out / out[..., [-1]] return (world_matrix @ out.T).T[..., :-1] # --- create scene and attach a renderer and simulator cam_frames = 20 obj_frames = 45 num_fake_cameras = 100 obj_xs = np.linspace(-np.pi / 2, np.pi / 2, obj_frames) cam_xs = np.linspace(-np.pi / 2, np.pi / 2, cam_frames) fake_xs = np.linspace(-np.pi / 2, np.pi / 2, num_fake_cameras) train_times = { "bunny": np.abs(np.cos(obj_xs * 3.33)), "teapot": np.abs(np.cos(obj_xs * 3.33)), "suzanne": np.abs(np.cos(obj_xs * 3.33)), "camera": np.abs(np.cos(cam_xs) ** 2), } val_times = { "bunny": np.abs(np.cos(obj_xs * 3.33)), "teapot": np.abs(np.cos(obj_xs * 2.13)), "suzanne": np.abs(np.cos(obj_xs * 4.11)), "camera": np.abs(np.cos(cam_xs) ** 2), } def generate_single_dataset(times: np.ndarray, is_train: bool): scene = kb.Scene(resolution=(256, 256)) scene.frame_end = cam_frames * obj_frames # < numbers of frames to render scene.frame_rate = 24 # < rendering framerate scene.ambient_illumination = kb.Color(0.05, 0.05, 0.05) renderer = KubricBlender(scene) # --- populate the scene with objects, lights, cameras rng = np.random.RandomState(0) wall_material = kb.FlatMaterial(color=kb.get_color("silver")) floor_material = kb.FlatMaterial(color=kb.get_color("gray")) bunny_material = kb.PrincipledBSDFMaterial( color=kb.random_hue_color(rng=rng) ) bunny = kb.FileBasedObject( render_filename="objects/bunny.obj", name="bunny", scale=(4.89, 4.89, 4.89), position=(0, -1, -0.47044), quaternion=(0.0, 0.0, 0.707, 0.707), material=bunny_material, ) suzanne_material = kb.PrincipledBSDFMaterial( color=kb.random_hue_color(rng=rng) ) suzanne = kb.FileBasedObject( render_filename="objects/suzanne.obj", name="suzanne", scale=(0.316, 0.316, 0.316), position=(0, 0, 0.001821), quaternion=(0.5, 0.5, 0.5, 0.5), material=suzanne_material, ) teapot_material = kb.PrincipledBSDFMaterial( color=kb.random_hue_color(rng=rng) ) teapot = kb.FileBasedObject( render_filename="objects/teapot.obj", name="teapot", scale=(0.19, 0.19, 0.19), position=(0, 1, -0.28363), quaternion=(0.707, 0.70, 0.0, 0.0), material=teapot_material, ) scene += bunny scene += suzanne scene += teapot scene += kb.Cube( scale=(0.1, 100, 100), position=(-4, 0, 0), material=wall_material, static=True, background=True, ) scene += kb.Cube( scale=(100, 100, 0.01), position=(0, 0, -0.7), material=floor_material, static=True, background=True, ) scene += kb.DirectionalLight( name="sun", position=(4, 0, 3), look_at=(0, 0, 0), intensity=1.5 ) camera = kb.PerspectiveCamera( name="camera", position=(0.64658, 0.81138, 0.50452), look_at=(0, 0, 0) ) fake_camera = kb.PerspectiveCamera( name="fake_camera", position=(0.64658, 0.81138, 0.50452), look_at=(0, 0, 0), ) scene.camera = camera suffix = "_train" if is_train else "_valid" positions = { "bunny": interpolate_position( times["bunny"], points["bunny"], world_matrix["bunny"], ), "teapot": interpolate_position( times["teapot"], points["teapot"], world_matrix["teapot"], ), "suzanne": interpolate_position( times["suzanne"], points["suzanne"], world_matrix["suzanne"], ), "camera": interpolate_position( times["camera"], points["camera"], world_matrix[f"camera{suffix}"], ), "fake_camera": interpolate_position( np.abs(np.cos(fake_xs) ** 2), points["camera"], world_matrix[f"camera{suffix}"], ), } min_z = 10 for obj in ["bunny", "teapot", "suzanne"]: min_z = positions[obj][..., -1].min() for obj in ["bunny", "teapot", "suzanne"]: if obj == "bunny": positions[obj][..., -1] = min_z - 0.42538 elif obj == "teapot": positions[obj][..., -1] = min_z - 0.22788 for obj in ["bunny", "suzanne"]: positions[obj][..., 1] = positions[obj][..., 1].min() for obj in ["teapot"]: positions[obj][..., 1] = positions[obj][..., 1].max() positions = { "bunny": ( np.zeros_like(positions["bunny"]) + np.mean(positions["bunny"], axis=0) ), "teapot": ( np.zeros_like(positions["teapot"]) + np.mean(positions["teapot"], axis=0) ), "suzanne": ( np.zeros_like(positions["suzanne"]) +
np.mean(positions["suzanne"], axis=0)
numpy.mean
# Copyright 2021 The TensorFlow Recommenders Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Cross layer.""" import os import tempfile import numpy as np import tensorflow as tf from tensorflow_recommenders.layers.dcn import Cross class CrossTest(tf.test.TestCase): # Do not use layer_test due to multiple inputs. def test_full_matrix(self): x0 = np.asarray([[0.1, 0.2, 0.3]]).astype(np.float32) x = np.asarray([[0.4, 0.5, 0.6]]).astype(np.float32) layer = Cross(projection_dim=None, kernel_initializer="ones") output = layer(x0, x) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose(np.asarray([[0.55, 0.8, 1.05]]), output) def test_low_rank_matrix(self): x0 = np.asarray([[0.1, 0.2, 0.3]]).astype(np.float32) x = np.asarray([[0.4, 0.5, 0.6]]).astype(np.float32) layer = Cross(projection_dim=1, kernel_initializer="ones") output = layer(x0, x) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose(np.asarray([[0.55, 0.8, 1.05]]), output) def test_one_input(self): x0 = np.asarray([[0.1, 0.2, 0.3]]).astype(np.float32) layer = Cross(projection_dim=None, kernel_initializer="ones") output = layer(x0) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose(np.asarray([[0.16, 0.32, 0.48]]), output) def test_invalid_proj_dim(self): with self.assertRaisesRegexp(ValueError, r"should be smaller than last_dim / 2"): x0 = np.random.random((12, 5)) x = np.random.random((12, 5)) layer = Cross(projection_dim=6) layer(x0, x) def test_unsupported_input_dim(self): with self.assertRaisesRegexp(ValueError, r"dimension mismatch"): x0 = np.random.random((12, 5)) x = np.random.random((12, 7)) layer = Cross() layer(x0, x) def test_invalid_diag_scale(self): with self.assertRaisesRegexp(ValueError, r"`diag_scale` should be non-negative"): x0 =
np.asarray([[0.1, 0.2, 0.3]])
numpy.asarray
import sqlite3 from tqdm import tqdm import numpy as np import array import sys import math import os import multiprocessing import shutil import pandas as pd from scipy.signal import savgol_filter class Reload: def __init__(self, path_pri, path_tra, fold): self.path_pri = path_pri self.path_tra = path_tra self.fold = fold def sqlite_read(self, path): """ python读取sqlite数据库文件 """ mydb = sqlite3.connect(path) # 链接数据库 mydb.text_factory = lambda x: str(x, 'gbk', 'ignore') cur = mydb.cursor() # 创建游标cur来执行SQL语句 # 获取表名 cur.execute("SELECT name FROM sqlite_master WHERE type='table'") Tables = cur.fetchall() # Tables 为元组列表 # 获取表结构的所有信息 if path[-5:] == 'pridb': cur.execute("SELECT * FROM {}".format(Tables[3][0])) res = cur.fetchall()[-2][1] elif path[-5:] == 'tradb': cur.execute("SELECT * FROM {}".format(Tables[1][0])) res = cur.fetchall()[-3][1] return int(res) def read_with_time(self, time): conn_pri = sqlite3.connect(self.path_pri) result_pri = conn_pri.execute( "Select SetID, Time, Chan, Thr, Amp, RiseT, Dur, Eny, RMS, Counts, TRAI FROM view_ae_data") chan_1, chan_2, chan_3, chan_4 = [], [], [], [] t = [[] for _ in range(len(time) - 1)] N_pri = self.sqlite_read(self.path_pri) for _ in tqdm(range(N_pri)): i = result_pri.fetchone() if i[-2] is not None and i[-2] >= 6 and i[-1] > 0: for idx, chan in zip(np.arange(1, 5), [chan_1, chan_2, chan_3, chan_4]): if i[2] == idx: chan.append(i) for j in range(len(t)): if time[j] <= i[1] < time[j + 1]: t[j].append(i) break break chan_1 = np.array(chan_1) chan_2 = np.array(chan_2) chan_3 = np.array(chan_3) chan_4 = np.array(chan_4) return t, chan_1, chan_2, chan_3, chan_4 def read_vallen_data(self, lower=2, t_cut=float('inf'), mode='all'): data_tra, data_pri, chan_1, chan_2, chan_3, chan_4 = [], [], [], [], [], [] if mode == 'all' or mode == 'tra only': conn_tra = sqlite3.connect(self.path_tra) result_tra = conn_tra.execute( "Select Time, Chan, Thr, SampleRate, Samples, TR_mV, Data, TRAI FROM view_tr_data") N_tra = self.sqlite_read(self.path_tra) for _ in tqdm(range(N_tra), ncols=80): i = result_tra.fetchone() if i[0] > t_cut: continue data_tra.append(i) if mode == 'all' or mode == 'pri only': conn_pri = sqlite3.connect(self.path_pri) result_pri = conn_pri.execute( "Select SetID, Time, Chan, Thr, Amp, RiseT, Dur, Eny, RMS, Counts, TRAI FROM view_ae_data") N_pri = self.sqlite_read(self.path_pri) for _ in tqdm(range(N_pri), ncols=80): i = result_pri.fetchone() if i[0] > t_cut: continue if i[-2] is not None and i[-2] > lower and i[-1] > 0: data_pri.append(i) if i[2] == 1: chan_1.append(i) if i[2] == 2: chan_2.append(i) elif i[2] == 3: chan_3.append(i) elif i[2] == 4: chan_4.append(i) data_tra = sorted(data_tra, key=lambda x: x[-1]) data_pri = np.array(data_pri) chan_1 = np.array(chan_1) chan_2 = np.array(chan_2) chan_3 = np.array(chan_3) chan_4 =
np.array(chan_4)
numpy.array
from __future__ import absolute_import from __future__ import division from __future__ import print_function from torchvision import transforms import numpy as np import re from PIL import Image import sys import cv2 def read_img(filename): # Convert to RGB for scene flow finalpass data # rand = np.random.uniform() # img = np.array(transforms.functional.adjust_gamma(Image.open(filename).convert('RGB'),gamma=rand)).astype(np.float32) img = np.array(Image.open(filename).convert('RGB')).astype(np.float32) if np.random.random() < 0.5: kernel = np.random.choice([3,5,7,9]) img = cv2.GaussianBlur(img,(kernel, kernel),0) return img def read_disp(filename, subset=False): # Scene Flow dataset if filename.endswith('pfm'): # For finalpass and cleanpass, gt disparity is positive, subset is negative disp = np.ascontiguousarray(_read_pfm(filename)[0]) if subset: disp = -disp # KITTI elif filename.endswith('png'): disp = _read_kitti_disp(filename) elif filename.endswith('npy'): disp =
np.load(filename)
numpy.load
# This file is part of Patsy # Copyright (C) 2012-2013 <NAME> <<EMAIL>> # See file LICENSE.txt for license information. # There are a number of unit tests in build.py, but this file contains more # thorough tests of the overall design matrix building system. (These are # still not exhaustive end-to-end tests, though -- for that see # test_highlevel.py.) from __future__ import print_function import six import numpy as np from nose.tools import assert_raises from patsy import PatsyError from patsy.util import (atleast_2d_column_default, have_pandas, have_pandas_categorical) from patsy.desc import Term, INTERCEPT from patsy.build import * from patsy.categorical import C from patsy.user_util import balanced, LookupFactor from patsy.design_info import DesignMatrix if have_pandas: import pandas def assert_full_rank(m): m = atleast_2d_column_default(m) if m.shape[1] == 0: return True u, s, v = np.linalg.svd(m) rank = np.sum(s > 1e-10) assert rank == m.shape[1] def test_assert_full_rank(): assert_full_rank(np.eye(10)) assert_full_rank([[1, 0], [1, 0], [1, 0], [1, 1]]) assert_raises(AssertionError, assert_full_rank, [[1, 0], [2, 0]]) assert_raises(AssertionError, assert_full_rank, [[1, 2], [2, 4]]) assert_raises(AssertionError, assert_full_rank, [[1, 2, 3], [1, 10, 100]]) # col1 + col2 = col3 assert_raises(AssertionError, assert_full_rank, [[1, 2, 3], [1, 5, 6], [1, 6, 7]]) def make_termlist(*entries): terms = [] for entry in entries: terms.append(Term([LookupFactor(name) for name in entry])) return terms def check_design_matrix(mm, expected_rank, termlist, column_names=None): assert_full_rank(mm) assert set(mm.design_info.terms) == set(termlist) if column_names is not None: assert mm.design_info.column_names == column_names assert mm.ndim == 2 assert mm.shape[1] == expected_rank def make_matrix(data, expected_rank, entries, column_names=None): termlist = make_termlist(*entries) def iter_maker(): yield data builders = design_matrix_builders([termlist], iter_maker) matrices = build_design_matrices(builders, data) matrix = matrices[0] assert (builders[0].design_info.term_slices == matrix.design_info.term_slices) assert (builders[0].design_info.column_names == matrix.design_info.column_names) assert matrix.design_info.builder is builders[0] check_design_matrix(matrix, expected_rank, termlist, column_names=column_names) return matrix def test_simple(): data = balanced(a=2, b=2) x1 = data["x1"] = np.linspace(0, 1, len(data["a"])) x2 = data["x2"] = data["x1"] ** 2 m = make_matrix(data, 2, [["a"]], column_names=["a[a1]", "a[a2]"]) assert np.allclose(m, [[1, 0], [1, 0], [0, 1], [0, 1]]) m = make_matrix(data, 2, [[], ["a"]], column_names=["Intercept", "a[T.a2]"]) assert
np.allclose(m, [[1, 0], [1, 0], [1, 1], [1, 1]])
numpy.allclose
import numpy as np from scipy import constants # FIXME STILL HAS BUGS; DOES NOT GIVE CORRECT VALUES! def getdedx(betagamma, thickness, density_correction=True, restricted=True, MP=False): ''' Thickness [um] ''' if restricted and not density_correction: raise NotImplementedError( 'Restricted energy loss can only be calculated with density correction on') # Some derivations of the input to simplify the formulars betagamma2 = betagamma * betagamma gamma = (betagamma2 + 1) ** 0.5 # Calculate gamma from betagamma squared # Calculate beta from betagamma squared beta = (1 - 1. / (1 + betagamma2)) ** 0.5 beta2 = beta * beta assert np.allclose(beta, (1 - 1. / (gamma * gamma)) ** 0.5) # Cross check z = 1 # Charge of incident particle [e] mp = 938.27231 # mass of a proton [MeV/c**2] re = 2.817940325 * 10 ** -13 # electron radius [cm] Z = 14 # atomic number [#nucleons] A = 28.0855 # atomic mass of silicon absorber [amu = g/mol] Na = 6.0221415 * 10 ** 23 # avogrado number me = 0.510998918 # mass of an electron [MeV/c**2] I = 173 * 10 ** (-6) # mean excitation energy [MeV] K = 4 * np.pi * Na * re ** 2 * me # constant(?) [MeV] Alpha = 1 / 137.03599911 # fine structure constant # Density correction parameters for silicon, from # Atomic data and nuclear tables 30, 261-271 (1984) Omega_p = 31.06 # plasma energy in silicon [eV] C_d = -4.4351 # density correction parameter A_d = 0.14921 # density correction parameter M_d = 3.2546 # density correction parameter X_0_d = 0.2014 # density correction parameter X_1_d = 2.8715 # density correction parameter # Restricted Eloss, thin absorbers correction parameters # [MeV] for 200 um silicon from Nucl. Phys. B288 (1987) 681-716 T_cut = 19e-3 # MP Eloss, <NAME> detector_density = 2.3290 # density of detector material [g cm**-3] # material length [g/cm**2] mat_length = thickness * 1e-4 * detector_density j = 0.198 # parameter [no unit] # Calculate dEdx # Maximum energy transfer possible in single collision Tmax = (2.0 * me * betagamma2) / \ (1.0 + 2.0 * gamma * (me / mp) + (me / mp) ** 2) # dedx from semiempiric Bethe Bloch formular if not density_correction and not restricted: dedx = (-K * z ** 2 * Z) / (A * beta2) * \ (0.5 * np.log((2 * me * betagamma2 * Tmax) / I ** 2) - beta2) return dedx # dEdx with density effect (with silicon parameters) # Density effect correction, from # PDG 30. Passage of particles through matter X = np.log(betagamma) # Derivation of the input to simplify the formular # Calculate delta with three cases # Else case: zero for X < X_0 delta = np.zeros_like(betagamma) # Case X >= X1: 2*ln 10 * X - C delta[X >= X_1_d] = 2 * np.log(10) * X[X >= X_1_d] + C_d selection =
np.logical_and(X >= X_0_d, X < X_1_d)
numpy.logical_and
import os import time import numpy as np from .callback import Callback from molecules.utils import open_h5 class SaveEmbeddingsCallback(Callback): """ Saves embeddings """ def __init__(self, out_dir, interval=1, sample_interval=20, mpi_comm=None): """ Parameters ---------- out_dir : str Directory to store output embedding files. interval : int Plots every interval epochs, default is once per epoch. sample_interval : int Plots every sample_interval'th point in the data set mpi_comm : mpi communicator for distributed training """ super().__init__(interval, mpi_comm) if self.is_eval_node: os.makedirs(out_dir, exist_ok=True) self.out_dir = out_dir self.sample_interval = sample_interval def on_validation_begin(self, epoch, logs): self.sample_counter = 0 self.embeddings = [] self.rmsd = [] self.fnc = [] def on_validation_batch_end(self, batch, epoch, logs, mu=None, rmsd=None, fnc=None, **kwargs): if self.sample_interval == 0: return if epoch % self.interval != 0: return if (mu is None) or (rmsd is None) or (fnc is None): return # decide what to store for idx in range(len(mu)): if (self.sample_counter + idx) % self.sample_interval == 0: # use a singleton slice to keep dimensions intact self.embeddings.append(mu[idx:idx+1].detach().cpu().numpy()) self.rmsd.append(rmsd[idx:idx+1].detach().cpu().numpy()) self.fnc.append(fnc[idx:idx+1].detach().cpu().numpy()) # increase sample counter self.sample_counter += len(mu) def on_validation_end(self, epoch, logs): if epoch % self.interval != 0: return # if the sample interval was too large, we should warn here and return if not self.embeddings or not self.rmsd or not self.fnc: print('Warning, not enough samples collected for tSNE, \ try to reduce sampling interval') return # prepare plot data embeddings = np.concatenate(self.embeddings, axis=0).astype(np.float32) rmsd = np.concatenate(self.rmsd, axis=0).astype(np.float32) fnc = np.concatenate(self.fnc, axis=0).astype(np.float32) # communicate if necessary if self.comm is not None: # gather data embeddings_gather = self.comm.gather(embeddings, root=0) rmsd_gather = self.comm.gather(rmsd, root=0) fnc_gather = self.comm.gather(fnc, root=0) # concat if self.is_eval_node: embeddings = np.concatenate(embeddings_gather, axis=0) rmsd = np.concatenate(rmsd_gather, axis=0) fnc =
np.concatenate(fnc_gather, axis=0)
numpy.concatenate
import numpy as np import math import pandas as pd class SVM: def __init__(self, X, Y): # load the data self.X = X self.Y = Y self.example_num = self.X.shape[0] # len(self.X) # init alpha and b self.alpha = np.zeros(self.example_num) self.b = 0 self.w = 0 # hyparamters self.MAX_ITER_NUM = 100 # 惩罚参数,是个超参数。越大对误分类的惩罚越大。 self.C = 10 # TODO the C need to init the some method self.tol = 1e-3 # 容忍度,越小说明对KKT条件越苛刻 self.E = np.zeros(self.example_num) def rand_j(self, i, m): """ generate a index j of alpha2 different with i :param i: the alpha i :param m: :return: j index """ j = np.random.randint(0, m) while (j == i): j = np.random.randint(0, m) return j def fxi(self, x_): """ f(x) function :param X: the datasets :param x_: the predict data :return: the distance. """ # ans = self.alpha * self.Y * self.kernel(X, x_) + self.b # w =0 # for i in range(self.example_num): # w += self.alpha[i] * self.Y[i] * self.X[i] # self.w = w # ans = w.dot(x_.T) + self.b # return ans ans = 0 for i in range(self.example_num): ans += self.alpha[i] * self.Y[i] * self.kernel(self.X[i], x_) ans += self.b return ans def predict(self, x_): # ans = self.w.dot(x_.T) + self.b ans = self.fxi(x_) return np.sign(ans) def kernel(self, X1, X2, kernel_type='default', **kwargs): # TODO 加入其他的kernel方法 if kernel_type == "default" or kernel_type == "linear": return np.dot(X1, X2.T) # linear SVM if kernel_type == "polynomial": return
np.dot(X1, X2.T)
numpy.dot
import sys import os sys.path.insert(0, os.path.abspath('..\\diffpy')) import numpy as np import pandas as pd from scipy.optimize import curve_fit from scipy.ndimage.interpolation import rotate from scipy.spatial import ConvexHull import msds as msds def anomalous(x, D, alpha, dt): # The anomalous diffusion model return 4*D*(x*dt)**alpha def anomModels(MSD, dt, skips=1): # Calculates the anomalous diffusion model parameters for a single particle # from its MSD profile over multiple timespans # By default, fits the model to all possible MSD profiles of at least 10 frames def anom(x, D, alpha): return anomalous(x, D, alpha, dt=dt) steps = MSD.shape[0] + 1 N = np.linspace(1, steps-1, steps-1) alphas = np.zeros(steps-1) Ds = np.zeros(steps-1) for i in range(10, steps-1, skips): ps, _ = curve_fit(anom, N[:i], MSD[:i], p0=[6,1]) Ds[i] = ps[0] alphas[i] = ps[1] return Ds, alphas def anomModel(MSD, dt, frame=100): # Calculates the anomalous diffusion model parameters for multiple # particle trajectories. The user specifies up to which frame to include # in the MSD trajectory to use in the model fit. def anom(x, D, alpha): return anomalous(x, D, alpha, dt=dt) steps = MSD.shape[0] + 1 N = np.linspace(1, steps-1, steps-1) ps, _ = curve_fit(anom, N[:frame], MSD[:frame], p0=[6,1]) D = ps[0] alpha = ps[1] return D, alpha def anomModelN(MSD, dt, frame=100): # Calculate the anomalous diffusion model parameters for multiple particle # trajectories. def anom(x, D, alpha): return anomalous(x, D, alpha, dt=dt) steps, N = MSD.shape n = np.linspace(1, steps, steps) # For arrays that contain NaNs mask = MSD > -10000 cutoff = steps*np.average(mask, axis=0) Ds = np.zeros(N) alphas = np.zeros(N) for i in range(N): cut = int(cutoff[i]) if cut < frame: frame = cut ps, _ = curve_fit(anom, n[:frame], MSD[:frame, i], p0=[6,1]) Ds[i] = ps[0] alphas[i] = ps[1] return Ds, alphas def anomModelsN(MSD, dt, skips=1): # Calculate the anomalous diffusion model parameters for multiple particle # trajectories over multiple MSD window frames. def anom(x, D, alpha): return anomalous(x, D, alpha, dt=dt) steps, N = MSD.shape n = np.linspace(1, steps, steps) # For arrays that contain NaNs mask = MSD > -10000 cutoff = steps*np.average(mask, axis=0) Ds = np.zeros((steps, N)) alphas = np.zeros((steps, N)) for i in range(N): for frame in range(10, steps, skips): cut = int(cutoff[i]) if cut < frame: frame = cut ps, _ = curve_fit(anom, n[:frame], MSD[:frame, i], p0=[6,1]) Ds[frame, i] = ps[0] alphas[frame, i] = ps[1] return Ds, alphas def asym(x, y): # Calculates three asymmetry features based on the eigenvectors # of the radius of gyration tensor for a single trajectory # Calculuates the eigenvalues of the radius of gyration tensor # This tensor is just the covariance matrix of the x, y coordinates n = x.shape[0] # Modified n for trajectories that have NaNs mask = x > -10000 n = n*np.average(mask) x, y = x[:int(n)], y[:int(n)] eigs, vecs = np.linalg.eig(np.cov(x, y)) a1 = (eigs[0]**2 - eigs[1]**2)**2/(eigs[0]**2 + eigs[1]**2)**2 a2 = min(eigs)/max(eigs) a3 = -np.log(1 - 0.5*(eigs[0] - eigs[1])**2/(eigs[0] + eigs[1])**2) # kurtosis, which requires the eigenvectors xi, yi = x.reshape((-1,1)), y.reshape((-1,1)) xy = np.concatenate((xi, yi), axis=1) xp = np.dot(xy, vecs[:,0]) K = np.sum((xp - np.mean(xp))**4/np.std(xp)**4)/n return [a1, a2, a3], eigs, vecs, K def asyms(x, y): steps, N = x.shape a1, a2, a3, Ks = np.zeros(N), np.zeros(N), np.zeros(N), np.zeros(N) for i in range(N): a123, eigs, vecs, Ks[i] = asym(x[:, i], y[:, i]) a1[i], a2[i], a3[i] = a123[0], a123[1], a123[2] return a1, a2, a3, Ks def minBoundRect(x, y): """ Find the smallest bounding rectangle for a set of points. Returns a set of points representing the corners of the bounding box. :param points: an nx2 matrix of coordinates :rval: an nx2 matrix of coordinates """ n = x.shape[0] # Modified n for trajectories that have NaNs mask = x > -10000 n = n*np.average(mask) x, y = x[:int(n)], y[:int(n)] points = np.concatenate((x.reshape((-1, 1)), y.reshape((-1, 1))), axis=1) pi2 = np.pi/2. # get the convex hull for the points hull_points = points[ConvexHull(points).vertices] # calculate edge angles edges = np.zeros((len(hull_points)-1, 2)) edges = hull_points[1:] - hull_points[:-1] angles = np.zeros((len(edges))) angles = np.arctan2(edges[:, 1], edges[:, 0]) angles = np.abs(np.mod(angles, pi2)) angles = np.unique(angles) # find rotation matrices # XXX both work rotations = np.vstack([ np.cos(angles), np.cos(angles-pi2), np.cos(angles+pi2), np.cos(angles)]).T # rotations = np.vstack([ # np.cos(angles), # -np.sin(angles), # np.sin(angles), # np.cos(angles)]).T rotations = rotations.reshape((-1, 2, 2)) # apply rotations to the hull rot_points = np.dot(rotations, hull_points.T) # find the bounding points min_x = np.nanmin(rot_points[:, 0], axis=1) max_x = np.nanmax(rot_points[:, 0], axis=1) min_y = np.nanmin(rot_points[:, 1], axis=1) max_y = np.nanmax(rot_points[:, 1], axis=1) # find the box with the best area areas = (max_x - min_x) * (max_y - min_y) best_idx = np.argmin(areas) # return the best box x1 = max_x[best_idx] x2 = min_x[best_idx] y1 = max_y[best_idx] y2 = min_y[best_idx] r = rotations[best_idx] rval = np.zeros((4, 2)) rval[0] = np.dot([x1, y2], r) rval[1] = np.dot([x2, y2], r) rval[2] = np.dot([x2, y1], r) rval[3] =
np.dot([x1, y1], r)
numpy.dot
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 21 18:19:27 2020 @author: <NAME> """ import logging import numpy as np import pandas as pd from numpy import linalg as LA from numpy.core.umath_tests import inner1d from scipy.spatial.transform import Rotation as R from scipy.interpolate import Rbf import sys logger = logging.getLogger(__name__) class Mesh_Def: def __init__(self,args,aeroframeSettings,lattice): """ *_p : lattice points *r_ p: lattice points reshaped array for ease of use *_v : horseshoe vortex points *r_v : horseshoe vortex points reshaped for ease of use *_c : cell collocation points *_n : normal vector directions *_b : bound leg midpoints f_a : final area of each individual panels u_* : defomation of the given type of point. follows the same naming pattern as for the previous 5 items """ self.args = args self.aeroframeSettings = aeroframeSettings self.lattice = lattice # stores lattice shapes (only theses two are needed, the others are # of identical shape) self.s_p = lattice.p.shape self.s_v = lattice.v.shape self.s_c = lattice.c.shape self.s_b = lattice.bound_leg_midpoints.shape self.s_n = lattice.n.shape # stores lattice intitial (i_) data self.i_p = np.copy(lattice.p) self.ir_p = self.i_p.reshape((self.s_p[0] * self.s_p[1], self.s_p[2])) self.i_v = np.copy(lattice.v) self.ir_v = self.i_v.reshape((self.s_v[0] * self.s_v[1], self.s_v[2])) self.i_c = np.copy(lattice.c) self.i_n = np.copy(lattice.n) self.i_b = np.copy(lattice.bound_leg_midpoints) # stores lattice final (f_) data self.f_p = np.zeros([self.s_p[0], self.s_p[1], self.s_p[2]]) self.fr_p = np.zeros([self.s_p[0] * self.s_p[1], self.s_p[2]]) self.f_v = np.zeros([self.s_p[0], self.s_p[1], self.s_p[2]]) self.fr_v = np.zeros([self.s_p[0] * self.s_p[1], self.s_p[2]]) self.f_c = np.zeros([self.s_c[0] * self.s_c[1]]) self.f_n = np.zeros([self.s_c[0] * self.s_c[1]]) self.f_b = np.zeros([self.s_c[0] * self.s_c[1]]) self.f_a = np.zeros([self.s_c[0] * self.s_c[1]]) # Cells absolute y corrdinates (needed for testing and debug) self.y_p = np.abs(self.ir_p[:,1]) self.y_v = np.abs(self.ir_v[:,1]) self.y_c = np.abs(self.i_c[:,1]) self.y_b =
np.abs(self.i_b[:,1])
numpy.abs
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common utilities for data preprocessing.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import scipy.sparse as sp def filter_sparse_rows(sp_mat, max_cols): """Filter rows of a CSR sparse matrix to retain upto max_cols.""" all_remove_idx = [] num_removed = np.zeros((sp_mat.indptr.shape[0] - 1,), dtype=np.int64) for ii in range(sp_mat.shape[0]): row_st = sp_mat.indptr[ii] row_en = sp_mat.indptr[ii + 1] my_scores = sp_mat.data[row_st:row_en] if len(my_scores) > max_cols: remove =
np.argpartition(-my_scores, max_cols)
numpy.argpartition
import cv2 import warnings import numpy as np from tqdm import tqdm from PIL import Image from os import listdir import skimage.io as io import tensorflow as tf import matplotlib.pyplot as plt import matplotlib.image as mpimg from os.path import join as pjoin from skimage.filters import gaussian from skimage.util import random_noise from skimage.transform import rotate, AffineTransform, warp warnings.filterwarnings('ignore') def normalize(arr): ''' Function to scale an input array to [-1, 1] arr : Array that is to be normalized return: Normalized array''' arr_min = arr.min() arr_max = arr.max() arr_range = arr_max - arr_min scaled = np.array((arr - arr_min) / float(arr_range), dtype='f') arr_new = -1 + (scaled * 2) return arr_new def section_and_masks_to_npy(line, low, high, image_type="plt"): '''get section and mask from image folder and save it in npy format line : "inlines"/"crosslines" low & high : section number image_type : "plt"/"PIL" Returns : npy file''' sections = [] masks = [] for i, filename in enumerate(listdir(line)): if filename.split('.')[1] == 'tiff': line_num = int((filename.split('.')[0]).split('_')[1]) if (line_num > low) and (line_num <= high): if image_type == "plt": seismic_section = plt.imread(pjoin(line, filename))[:, :, 0] elif image_type == "PIL": seismic_section = Image.open(pjoin(line, filename)) else: 'Unknown image type! possible input: ["plt", "PIL"]' seismic_section = np.array(seismic_section) seismic_section = normalize(seismic_section) sections.append(seismic_section) mask_filename = filename.split('.')[0] + '_mask.png' seismic_facies = Image.open(pjoin('masks', mask_filename)) seismic_facies = np.array(seismic_facies) masks.append(seismic_facies) npy_sections = np.asarray(sections) npy_masks = np.asarray(masks) print("Section Shape\t:{0}\nMask Shape\t:{1}".format(npy_sections.shape, npy_masks.shape)) return npy_sections, npy_masks def plot_section_mask(section, mask, vmin = None, vmax = None, figsize = (25, 8)): '''Plot section and corresponding mask, works for both section based and patch based section : Seismic Sections in 3D array mask : Corresponding Mask vmin, vmax : Normalize Section array between vmin, vmax value for visualization purpose''' idx = np.random.randint(0, mask.shape[0], (20)) _, ax = plt.subplots(2, 20, figsize = figsize) for i in range(len(ax[0])): ax[0][i].imshow(mask[idx[i]], vmin = vmin, vmax = vmax) ax[0][i].set_yticks([]) ax[0][i].set_xticks([]) ax[1][i].imshow(section[idx[i]]) ax[1][i].set_yticks([]) ax[1][i].set_xticks([]) plt.tight_layout() def extract_patch(section, mask, stride = 50, patch = 99, padding = "VALID"): '''Extract patch from section and mask array using TesorFlow patch : size of patch to be extracted Stride : stride of patch window padding : Don't use "SAME" as it will pad with 0''' images = section[:,:,:] labels = mask[:,:,:] images = np.expand_dims(images, axis=3) labels = np.expand_dims(labels, axis=3) patch_images = tf.image.extract_patches(images, (1,patch,patch,1), (1,stride,stride,1), (1,1,1,1), padding = padding, name=None) patch_labels = tf.image.extract_patches(labels, (1,patch,patch,1), (1,stride,stride,1), (1,1,1,1), padding = padding, name=None) patch_images = tf.reshape(patch_images, (-1,patch,patch)).numpy() patch_labels = tf.reshape(patch_labels, (-1,patch,patch)).numpy() print("Patch Images Shape\t:{0}\nPatch Masks Shape\t:{1}".format(patch_images.shape, patch_labels.shape)) return patch_images, patch_labels def labels_conversion_canada_new(labels): '''Converts unwanted labels (0, 5, 6, 7) to 255 and renames (1, 2, 3, 4) to (0, 1, 2, 3) for Penobscot dataset''' labels = np.where(labels == 1, 255, labels) labels = np.where(labels == 0, 255, labels) labels = np.where(labels == 5, 255, labels) labels = np.where(labels == 6, 255, labels) labels = np.where(labels == 7, 255, labels) labels = np.where(labels == 2, 0, labels) labels = np.where(labels == 3, 1, labels) labels = np.where(labels == 4, 2, labels) return labels def labels_conversion_canada_new_class_1_2_from_sections(labels): '''Converts unwanted labels (0, 5, 6, 7) to 255 and renames (1, 2, 3, 4) to (0, 1, 2, 3) for Penobscot dataset''' labels = np.where(labels == 1, 255, labels) labels =
np.where(labels == 2, 255, labels)
numpy.where