prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os from PIL import Image, ImageDraw import numpy as np import mindspore.ops as P from mindspore import Tensor import mindspore.dataset.vision.py_transforms as V from src.dataset import get_rotate_mat import lanms def resize_img(img): """resize image to be divisible by 32 """ w, h = img.size resize_w = w resize_h = h resize_h = resize_h if resize_h % 32 == 0 else int(resize_h / 32) * 32 resize_w = resize_w if resize_w % 32 == 0 else int(resize_w / 32) * 32 img = img.resize((resize_w, resize_h), Image.BILINEAR) ratio_h = resize_h / h ratio_w = resize_w / w return img, ratio_h, ratio_w def load_pil(img): """convert PIL Image to Tensor """ img = V.ToTensor()(img) img = V.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(img) img = Tensor(img) img = P.ExpandDims()(img, 0) return img def is_valid_poly(res, score_shape, scale): """check if the poly in image scope Input: res : restored poly in original image score_shape: score map shape scale : feature map -> image Output: True if valid """ cnt = 0 for i in range(res.shape[1]): if res[0, i] < 0 or res[0, i] >= score_shape[1] * scale or \ res[1, i] < 0 or res[1, i] >= score_shape[0] * scale: cnt += 1 return cnt <= 1 def restore_polys(valid_pos, valid_geo, score_shape, scale=4): """restore polys from feature maps in given positions Input: valid_pos : potential text positions <numpy.ndarray, (n,2)> valid_geo : geometry in valid_pos <numpy.ndarray, (5,n)> score_shape: shape of score map scale : image / feature map Output: restored polys <numpy.ndarray, (n,8)>, index """ polys = [] index = [] valid_pos *= scale d = valid_geo[:4, :] # 4 x N angle = valid_geo[4, :] # N, for i in range(valid_pos.shape[0]): x = valid_pos[i, 0] y = valid_pos[i, 1] y_min = y - d[0, i] y_max = y + d[1, i] x_min = x - d[2, i] x_max = x + d[3, i] rotate_mat = get_rotate_mat(-angle[i]) temp_x = np.array([[x_min, x_max, x_max, x_min]]) - x temp_y = np.array([[y_min, y_min, y_max, y_max]]) - y coordidates = np.concatenate((temp_x, temp_y), axis=0) res = np.dot(rotate_mat, coordidates) res[0, :] += x res[1, :] += y if is_valid_poly(res, score_shape, scale): index.append(i) polys.append([res[0, 0], res[1, 0], res[0, 1], res[1, 1], res[0, 2], res[1, 2], res[0, 3], res[1, 3]]) return np.array(polys), index def get_boxes(score, geo, score_thresh=0.9, nms_thresh=0.2): """get boxes from feature map Input: score : score map from model <numpy.ndarray, (1,row,col)> geo : geo map from model <numpy.ndarray, (5,row,col)> score_thresh: threshold to segment score map nms_thresh : threshold in nms Output: boxes : final polys <numpy.ndarray, (n,9)> """ score = score[0, :, :] xy_text = np.argwhere(score > score_thresh) # n x 2, format is [r, c] if xy_text.size == 0: return None xy_text = xy_text[np.argsort(xy_text[:, 0])] valid_pos = xy_text[:, ::-1].copy() # n x 2, [x, y] valid_geo = geo[:, xy_text[:, 0], xy_text[:, 1]] # 5 x n polys_restored, index = restore_polys(valid_pos, valid_geo, score.shape) if polys_restored.size == 0: return None boxes =
np.zeros((polys_restored.shape[0], 9), dtype=np.float32)
numpy.zeros
# Copyright 2020 The FedLearner Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import os import math import queue import time import logging import multiprocessing as mp import collections import numpy as np from google.protobuf import text_format import tensorflow.compat.v1 as tf from fedlearner.model.tree.loss import LogisticLoss from fedlearner.model.crypto import paillier, fixed_point_number from fedlearner.common import tree_model_pb2 as tree_pb2 from fedlearner.common import common_pb2 BST_TYPE = np.float32 PRECISION = 1e38 EXPONENT = math.floor( math.log(PRECISION, fixed_point_number.FixedPointNumber.BASE)) KEY_NBITS = 1024 CIPHER_NBYTES = (KEY_NBITS * 2)//8 MAX_PARTITION_SIZE = 4096 def _send_public_key(bridge, public_key): msg = tree_pb2.EncryptedNumbers() msg.ciphertext.append(public_key.n.to_bytes(KEY_NBITS//8, 'little')) bridge.send_proto(bridge.current_iter_id, 'public_key', msg) def _receive_public_key(bridge): msg = tree_pb2.EncryptedNumbers() bridge.receive_proto(bridge.current_iter_id, 'public_key').Unpack(msg) return paillier.PaillierPublicKey( int.from_bytes(msg.ciphertext[0], 'little')) def _encode_encrypted_numbers(numbers): return [ i.ciphertext(False).to_bytes(CIPHER_NBYTES, 'little') \ for i in numbers] def _encrypt_numbers(public_key, numbers): return _encode_encrypted_numbers( [public_key.encrypt(i, PRECISION) for i in numbers]) def _decrypt_number(private_key, numbers): return [private_key.decrypt(i) for i in numbers] def _from_ciphertext(public_key, ciphertext): return [ paillier.PaillierEncryptedNumber( public_key, int.from_bytes(i, 'little'), EXPONENT) for i in ciphertext] def _encrypt_and_send_numbers(bridge, name, public_key, numbers): num_parts = (len(numbers) + MAX_PARTITION_SIZE - 1)//MAX_PARTITION_SIZE bridge.send_proto( bridge.current_iter_id, '%s_partition_info'%name, tree_pb2.PartitionInfo(num_partitions=num_parts) ) for i in range(num_parts): part = numbers[i*MAX_PARTITION_SIZE:(i+1)*MAX_PARTITION_SIZE] msg = tree_pb2.EncryptedNumbers() msg.ciphertext.extend(_encrypt_numbers(public_key, part)) bridge.send_proto( bridge.current_iter_id, '%s_part_%d'%(name, i), msg) def _receive_encrypted_numbers(bridge, name, public_key): part_info = tree_pb2.PartitionInfo() bridge.receive_proto( bridge.current_iter_id, '%s_partition_info'%name).Unpack(part_info) ret = [] for i in range(part_info.num_partitions): msg = tree_pb2.EncryptedNumbers() bridge.receive_proto( bridge.current_iter_id, '%s_part_%d'%(name, i)).Unpack(msg) ret.extend(_from_ciphertext(public_key, msg.ciphertext)) return ret def _get_dtype_for_max_value(max_value): if max_value < np.iinfo(np.int8).max: return np.int8 if max_value < np.iinfo(np.int16).max: return np.int16 return np.int32 class BinnedFeatures(object): def __init__(self, features, max_bins, cat_features=None): super(BinnedFeatures, self).__init__() self._max_bins = max_bins self.features = features self.binned, self.thresholds = self._bin_features(features) self.num_bins = [len(i) + 2 for i in self.thresholds] if cat_features is None: cat_features = np.zeros((features.shape[0], 0), dtype=np.int32) self.cat_features = cat_features self.cat_num_bins = [ cat_features[:, i].max()+1 for i in range(cat_features.shape[1])] self.num_features = self.features.shape[1] self.num_cat_features = self.cat_features.shape[1] self.num_all_features = self.num_features + self.num_cat_features def _bin_features(self, features): thresholds = [] binned = np.zeros_like(features, dtype=np.uint8, order='F') for i in range(features.shape[1]): x = features[:, i] missing_mask = np.isnan(x) nonmissing_x = x if missing_mask.any(): nonmissing_x = x[~missing_mask] nonmissing_x = np.ascontiguousarray( nonmissing_x, dtype=BST_TYPE) unique_x = np.unique(nonmissing_x) if len(unique_x) <= self._max_bins: threshold = (unique_x[:-1] + unique_x[1:]) * 0.5 else: percentiles = np.linspace(0, 100, num=self._max_bins + 1) percentiles = percentiles[1:-1] threshold = np.percentile( nonmissing_x, percentiles, interpolation='midpoint') assert threshold.size == self._max_bins - 1 thresholds.append(threshold) binned[:, i] = np.searchsorted(threshold, x, side='right') binned[missing_mask, i] = threshold.size + 1 return binned, thresholds def _compute_histogram_helper(args): base, values, binned_features, num_bins, zero = args hists = [] for i, num in enumerate(num_bins): logging.debug('Computing histogram for feature %d', base + i) hist = np.asarray([zero for _ in range(num)]) np.add.at(hist, binned_features[:, i], values) hists.append(hist) return hists class HistogramBuilder(object): def __init__(self, binned_features, dtype=BST_TYPE, num_parallel=1, pool=None): self._bins = binned_features self._dtype = dtype self._zero = dtype(0.0) self._num_parallel = num_parallel self._pool = pool def compute_histogram(self, values, sample_ids): if not self._pool: hists = _compute_histogram_helper( (0, values[sample_ids], self._bins.binned[sample_ids], self._bins.num_bins, self._zero)) cat_hists = _compute_histogram_helper( (self._bins.num_features, values[sample_ids], self._bins.cat_features[sample_ids], self._bins.cat_num_bins, self._zero)) return hists + cat_hists num_jobs = self._num_parallel job_size = \ (self._bins.num_features + num_jobs - 1)//num_jobs cat_job_size = \ (self._bins.num_cat_features + num_jobs - 1)//num_jobs args = [ (job_size*i, values[sample_ids], self._bins.binned[ sample_ids, job_size*i:job_size*(i+1)], self._bins.num_bins[job_size*i:job_size*(i+1)], self._zero) for i in range(self._num_parallel) ] + [ (self._bins.num_features + cat_job_size*i, values[sample_ids], self._bins.cat_features[ sample_ids, cat_job_size*i:cat_job_size*(i+1)], self._bins.cat_num_bins[cat_job_size*i:cat_job_size*(i+1)], self._zero) for i in range(self._num_parallel) ] rets = self._pool.map(_compute_histogram_helper, args) return sum(rets, []) class GrowerNode(object): def __init__(self, node_id): self.node_id = node_id self.num_features = None self.feature_id = None self.is_cat_feature = None self.threshold = None self.cat_threshold = None self.default_left = None self.is_owner = None self.owner_id = None self.weight = None self.parent = None self.left_child = None self.right_child = None self.sample_ids = [] self.grad_hists = None self.hess_hists = None # node impurity and entropy self.gini = None self.entropy = None # information gain and node importance self.IG = None self.NI = None def is_left_sample(self, binned, idx): assert self.is_owner if self.is_cat_feature: x = binned.cat_features[ idx, self.feature_id - self.num_features] return np.in1d(x, self.cat_threshold) x = binned.features[idx, self.feature_id] isnan = np.isnan(x) return np.where(isnan, self.default_left, x < self.threshold) def to_proto(self): return tree_pb2.RegressionTreeNodeProto( node_id=self.node_id, left_child=self.left_child, right_child=self.right_child, parent=self.parent, is_owner=self.is_owner, owner_id=self.owner_id, feature_id=self.feature_id, is_cat_feature=self.is_cat_feature, threshold=self.threshold, cat_threshold=self.cat_threshold, default_left=self.default_left, weight=self.weight) class BaseGrower(object): def __init__(self, binned, labels, grad, hess, grow_policy='depthwise', max_leaves=None, max_depth=None, learning_rate=0.3, l2_regularization=1.0, dtype=BST_TYPE, num_parallel=1, pool=None): self._binned = binned self._labels = labels self._num_samples = binned.features.shape[0] self._is_cat_feature = \ [False] * binned.num_features + [True] * binned.num_cat_features self._grad = grad self._hess = hess self._grow_policy = grow_policy if grow_policy == 'depthwise': self._split_candidates = queue.Queue() assert max_depth is not None, \ "max_depth must be set when grow_policy is depthwise" self._max_depth = max_depth self._max_leaves = 2**max_depth else: self._split_candidates = queue.PriorityQueue() assert max_leaves, \ "max_leaves must be set when grow_policy is lossguided" self._max_leaves = max_leaves self._max_depth = max_depth if max_depth is not None else 2**31 self._learning_rate = learning_rate self._l2_regularization = l2_regularization self._num_parallel = num_parallel self._pool = pool assert self._pool or self._num_parallel == 1 self._hist_builder = HistogramBuilder( binned, dtype, num_parallel, self._pool) self._nodes = [] self._add_node(0) self._nodes[0].sample_ids = list(range(binned.features.shape[0])) self._num_leaves = 1 def _initialize_feature_importance(self): self._feature_importance = np.zeros(len(self._is_cat_feature)) def _compute_Gini_Entropy(self, node): ''' compute gini and entropy ''' if node.gini is not None: return node_labels = self._labels[node.sample_ids] total = len(node_labels) if total == 0: node.gini = 0.0 node.entropy = 0.0 return labels_counter = collections.Counter(node_labels) gini = 0.0 entropy = 0.0 for _, value in labels_counter.items(): label_freq = value / total if label_freq == 0: entropy += 0 else: entropy += -label_freq*math.log(label_freq) gini += label_freq*(1-label_freq) node.gini = gini node.entropy = entropy def _compute_IG_NI(self, node, left_child, right_child): ''' compute information gain and node importance ''' #compute node gini and entropy self._compute_Gini_Entropy(node) self._compute_Gini_Entropy(left_child) self._compute_Gini_Entropy(right_child) node_len = len(node.sample_ids) node_right_len = len(right_child.sample_ids) node_left_len = len(left_child.sample_ids) if node_len == 0: node.IG = 0 node.NI = 0 return IG = node.entropy - \ node_left_len / node_len * left_child.entropy - \ node_right_len / node_len * right_child.entropy NI = node_len / self._num_samples * node.gini - \ node_right_len / self._num_samples * right_child.gini - \ node_left_len / self._num_samples * left_child.gini node.IG = IG node.NI = NI def _normalize_feature_importance(self): if self._feature_importance.sum() != 0.0: self._feature_importance = self._feature_importance/ \ self._feature_importance.sum() self._feature_importance = self._feature_importance/ \ self._feature_importance.sum() def _compute_histogram(self, node): node.grad_hists = self._hist_builder.compute_histogram( self._grad, node.sample_ids) node.hess_hists = self._hist_builder.compute_histogram( self._hess, node.sample_ids) def _compute_histogram_from_sibling(self, node, sibling): parent = self._nodes[node.parent] node.grad_hists = [ p - l for p, l in zip(parent.grad_hists, sibling.grad_hists)] node.hess_hists = [ p - l for p, l in zip(parent.hess_hists, sibling.hess_hists)] def _compare_split(self, split_info, default_left, feature_id, split_point, left_g, left_h, right_g, right_h): lam = self._l2_regularization lr = self._learning_rate sum_g = left_g + right_g sum_h = left_h + right_h gain = left_g*left_g/(left_h + lam) + \ right_g*right_g/(right_h + lam) - \ sum_g*sum_g/(sum_h + lam) if gain > split_info.gain: split_info.gain = gain split_info.feature_id = feature_id split_info.split_point[:] = split_point split_info.default_left = default_left split_info.left_weight = - lr * left_g/(left_h + lam) split_info.right_weight = - lr * right_g/(right_h + lam) def _find_split_and_push(self, node): assert len(self._is_cat_feature) == len(node.grad_hists) split_info = tree_pb2.SplitInfo( node_id=node.node_id, gain=-1e38) for fid, is_cat in enumerate(self._is_cat_feature): if is_cat: self._find_cat_split(node, fid, split_info) else: self._find_cont_split(node, fid, split_info) self._split_candidates.put((-split_info.gain, split_info)) return split_info.gain, split_info def _find_cont_split(self, node, fid, split_info): grad_hist = node.grad_hists[fid] hess_hist = node.hess_hists[fid] sum_g = sum(grad_hist) sum_h = sum(hess_hist) left_g = 0.0 left_h = 0.0 nan_g = grad_hist[-1] nan_h = hess_hist[-1] for i in range(len(grad_hist) - 2): left_g += grad_hist[i] left_h += hess_hist[i] self._compare_split( split_info, True, fid, [i], left_g + nan_g, left_h + nan_h, sum_g - left_g - nan_g, sum_h - left_h - nan_h) self._compare_split( split_info, False, fid, [i], left_g, left_h, sum_g - left_g, sum_h - left_h) def _find_cat_split(self, node, fid, split_info): grad_hist = node.grad_hists[fid] hess_hist = node.hess_hists[fid] sum_g = sum(grad_hist) sum_h = sum(hess_hist) left_g = 0.0 left_h = 0.0 split_point = [] order = [ (i, g/h + self._l2_regularization) for i, (g, h) in enumerate(zip(grad_hist, hess_hist))] order.sort(key=lambda x: x[1]) for i, _ in order: split_point.append(i) left_g += grad_hist[i] left_h += hess_hist[i] self._compare_split( split_info, True, fid, split_point, left_g, left_h, sum_g - left_g, sum_h) def _add_node(self, parent_id): node_id = len(self._nodes) node = GrowerNode(node_id) node.parent = parent_id node.num_features = self._binned.num_features self._nodes.append(node) return node_id def _set_node_partition(self, node, split_info): node.is_owner = True node.feature_id = split_info.feature_id if node.feature_id < self._binned.num_features: node.is_cat_feature = False node.threshold = self._binned.thresholds[ node.feature_id][split_info.split_point[0]] else: node.is_cat_feature = True node.cat_threshold = split_info.split_point node.default_left = split_info.default_left left_child = self._nodes[node.left_child] right_child = self._nodes[node.right_child] is_left = node.is_left_sample(self._binned, node.sample_ids) left_child.sample_ids = list(np.asarray(node.sample_ids)[is_left]) right_child.sample_ids = list(np.asarray(node.sample_ids)[~is_left]) def _split_next(self): _, split_info = self._split_candidates.get() node = self._nodes[split_info.node_id] node.left_child = self._add_node(node.node_id) left_child = self._nodes[node.left_child] left_child.weight = split_info.left_weight node.right_child = self._add_node(node.node_id) right_child = self._nodes[node.right_child] right_child.weight = split_info.right_weight self._num_leaves += 1 self._set_node_partition(node, split_info) self._compute_IG_NI(node, \ left_child, right_child) self._feature_importance[split_info.feature_id] += node.NI return left_child, right_child, split_info def _log_split(self, left_child, right_child, split_info): parent = self._nodes[split_info.node_id] logging.info( "Split node %d at feature %d with threshold %s for gain=%f. " \ "Node gini_impurity=%f, entropy=%f. " \ "Split information_gain=%f, node_importance=%f." \ "Left(w=%f, nsamples=%d), Right(w=%f, nsamples=%d). " \ "nan goes to %s.", split_info.node_id, split_info.feature_id, split_info.split_point, split_info.gain, parent.gini, parent.entropy, parent.IG, parent.NI, left_child.weight, len(left_child.sample_ids), right_child.weight, len(right_child.sample_ids), split_info.default_left and 'left' or 'right') assert len(left_child.sample_ids) + len(right_child.sample_ids) \ == len(parent.sample_ids) def _log_feature_importance(self): logging.info("For current tree, " \ "feature importance(>0) is %s, " \ "feature indices(>0) is %s ", \ self._feature_importance[self._feature_importance > 0], \ np.nonzero(self._feature_importance)) def to_proto(self): proto = tree_pb2.RegressionTreeProto( feature_importance=self._feature_importance) for node in self._nodes: proto.nodes.append(node.to_proto()) return proto def get_prediction(self): prediction = np.zeros(self._binned.features.shape[0], dtype=BST_TYPE) for node in self._nodes: if node.left_child is not None: continue prediction[node.sample_ids] = node.weight return prediction def grow(self): self._compute_histogram(self._nodes[0]) self._initialize_feature_importance() self._find_split_and_push(self._nodes[0]) while self._num_leaves < self._max_leaves: left_child, right_child, split_info = self._split_next() self._log_split(left_child, right_child, split_info) self._compute_histogram(left_child) self._find_split_and_push(left_child) self._compute_histogram_from_sibling(right_child, left_child) self._find_split_and_push(right_child) self._normalize_feature_importance() self._log_feature_importance() def _decrypt_histogram_helper(args): base, public_key, private_key, hists = args rets = [] for i, hist in enumerate(hists): logging.debug('Decrypting histogram for feature %d', base + i) hist = _from_ciphertext(public_key, hist.ciphertext) rets.append(np.asarray(_decrypt_number(private_key, hist))) return rets class LeaderGrower(BaseGrower): def __init__(self, bridge, public_key, private_key, binned, labels, grad, hess, **kwargs): super(LeaderGrower, self).__init__( binned, labels, grad, hess, dtype=np.float32, **kwargs) self._bridge = bridge self._public_key = public_key self._private_key = private_key bridge.start(bridge.new_iter_id()) follower_num_features, follower_num_cat_features = \ bridge.receive(bridge.current_iter_id, 'feature_dim') bridge.commit() self._is_cat_feature.extend( [False] * follower_num_features + \ [True] * follower_num_cat_features) def _initialize_feature_importance(self): self._feature_importance = np.zeros(len(self._nodes[0].grad_hists)) def _receive_and_decrypt_histogram(self, name): msg = tree_pb2.Histograms() self._bridge.receive_proto( self._bridge.current_iter_id, name).Unpack(msg) if not self._pool: return _decrypt_histogram_helper( (0, self._public_key, self._private_key, msg.hists)) job_size = (len(msg.hists) + self._num_parallel - 1)//self._num_parallel args = [ (i*job_size, self._public_key, self._private_key, msg.hists[i*job_size:(i+1)*job_size]) for i in range(self._num_parallel) ] hists = self._pool.map(_decrypt_histogram_helper, args) return sum(hists, []) def _compute_histogram(self, node): self._bridge.start(self._bridge.new_iter_id()) grad_hists = self._hist_builder.compute_histogram( self._grad, node.sample_ids) hess_hists = self._hist_builder.compute_histogram( self._hess, node.sample_ids) follower_grad_hists = self._receive_and_decrypt_histogram('grad_hists') follower_hess_hists = self._receive_and_decrypt_histogram('hess_hists') node.grad_hists = grad_hists + follower_grad_hists node.hess_hists = hess_hists + follower_hess_hists self._bridge.commit() def _split_next(self): self._bridge.start(self._bridge.new_iter_id()) _, split_info = self._split_candidates.get() node = self._nodes[split_info.node_id] node.left_child = self._add_node(node.node_id) left_child = self._nodes[node.left_child] left_child.weight = split_info.left_weight node.right_child = self._add_node(node.node_id) right_child = self._nodes[node.right_child] right_child.weight = split_info.right_weight self._num_leaves += 1 if split_info.feature_id < self._binned.num_all_features: self._set_node_partition(node, split_info) self._compute_IG_NI(node, \ left_child, right_child) self._feature_importance[split_info.feature_id] += node.NI self._bridge.send_proto( self._bridge.current_iter_id, 'split_info', tree_pb2.SplitInfo( node_id=split_info.node_id, feature_id=-1, left_samples=left_child.sample_ids, right_samples=right_child.sample_ids)) else: node.is_owner = False fid = split_info.feature_id - self._binned.num_all_features self._bridge.send_proto( self._bridge.current_iter_id, 'split_info', tree_pb2.SplitInfo( node_id=split_info.node_id, feature_id=fid, split_point=split_info.split_point, default_left=split_info.default_left)) follower_split_info = tree_pb2.SplitInfo() self._bridge.receive_proto( self._bridge.current_iter_id, 'follower_split_info') \ .Unpack(follower_split_info) left_child.sample_ids = list(follower_split_info.left_samples) right_child.sample_ids = list(follower_split_info.right_samples) self._compute_IG_NI(node, \ left_child, right_child) self._feature_importance[split_info.feature_id] += node.NI split_info.feature_id = -1 self._bridge.commit() return left_child, right_child, split_info class FollowerGrower(BaseGrower): def __init__(self, bridge, public_key, binned, labels, grad, hess, **kwargs): dtype = lambda x: public_key.encrypt(x, PRECISION) super(FollowerGrower, self).__init__( binned, labels, grad, hess, dtype=dtype, **kwargs) self._bridge = bridge self._public_key = public_key bridge.start(bridge.new_iter_id()) bridge.send( bridge.current_iter_id, 'feature_dim', [binned.num_features, binned.num_cat_features]) bridge.commit() def _compute_histogram_from_sibling(self, node, sibling): pass def _normalize_feature_importance(self): pass def _find_split_and_push(self, node): pass def _send_histograms(self, name, hists): msg = tree_pb2.Histograms() for hist in hists: ciphertext = _encode_encrypted_numbers(hist) msg.hists.append( tree_pb2.EncryptedNumbers(ciphertext=ciphertext)) self._bridge.send_proto(self._bridge.current_iter_id, name, msg) def _compute_histogram(self, node): self._bridge.start(self._bridge.new_iter_id()) grad_hists = self._hist_builder.compute_histogram( self._grad, node.sample_ids) hess_hists = self._hist_builder.compute_histogram( self._hess, node.sample_ids) self._send_histograms('grad_hists', grad_hists) self._send_histograms('hess_hists', hess_hists) self._bridge.commit() def _split_next(self): self._bridge.start(self._bridge.new_iter_id()) split_info = tree_pb2.SplitInfo() self._bridge.receive_proto( self._bridge.current_iter_id, 'split_info') \ .Unpack(split_info) node = self._nodes[split_info.node_id] node.left_child = self._add_node(node.node_id) left_child = self._nodes[node.left_child] left_child.weight = float('nan') node.right_child = self._add_node(node.node_id) right_child = self._nodes[node.right_child] right_child.weight = float('nan') self._num_leaves += 1 if split_info.feature_id >= 0: self._set_node_partition(node, split_info) self._bridge.send_proto( self._bridge.current_iter_id, 'follower_split_info', tree_pb2.SplitInfo( left_samples=left_child.sample_ids, right_samples=right_child.sample_ids)) else: node.is_owner = False left_child.sample_ids = list(split_info.left_samples) right_child.sample_ids = list(split_info.right_samples) node.gini = float('nan') node.entropy = float('nan') node.IG = float('nan') node.NI = float('nan') self._bridge.commit() return left_child, right_child, split_info def _vectorize_tree(tree): vec = {} vec['is_owner'] = np.asarray([n.is_owner for n in tree.nodes]) vec['feature_id'] = np.asarray([n.feature_id for n in tree.nodes]) vec['is_cat_feature'] = np.asarray([n.is_cat_feature for n in tree.nodes]) vec['threshold'] = np.asarray([n.threshold for n in tree.nodes]) vec['cat_threshold'] = [np.asarray(n.cat_threshold) for n in tree.nodes] vec['default_left'] = np.asarray( [n.default_left for n in tree.nodes], dtype=np.bool) vec['is_leaf'] = np.asarray([n.left_child == 0 for n in tree.nodes]) vec['weight'] = np.asarray([n.weight for n in tree.nodes]) vec['children'] = np.asarray([ [n.left_child for n in tree.nodes], [n.right_child for n in tree.nodes]]) return vec def _vectorized_direction(vec, features, cat_features, assignment): fid = vec['feature_id'][assignment] is_cont = fid < features.shape[1] cont_fid = np.where(is_cont, fid, 0) cont_X = features[np.arange(features.shape[0]), cont_fid] is_nan = np.isnan(cont_X) less = cont_X < vec['threshold'][assignment] d = ~np.where(is_nan, vec['default_left'][assignment], less) if is_cont.sum() < is_cont.size: cond_list = [] choice_list = [] is_cat = ~is_cont cat_assignment = assignment[is_cat] cat_fid = fid[is_cat] - features.shape[1] cat_X = cat_features[is_cat, cat_fid] for i, cat_threshold in enumerate(vec['cat_threshold']): if vec['is_leaf'][i]: continue cond_list.append(cat_assignment == i) choice_list.append(~np.in1d(cat_X, cat_threshold)) d[is_cat] = np.select(cond_list, choice_list) return d def _vectorized_assignment(vec, assignment, direction, peer_direction=None): if peer_direction is not None: is_owner = vec['is_owner'][assignment] direction = np.where(is_owner, direction, peer_direction) new_assignment = vec['children'][direction.astype(np.int32), assignment] return np.where(vec['is_leaf'][assignment], assignment, new_assignment) class BoostingTreeEnsamble(object): def __init__(self, bridge, learning_rate=0.3, max_iters=50, max_depth=6, max_leaves=0, l2_regularization=1.0, max_bins=33, grow_policy='depthwise', num_parallel=1): self._learning_rate = learning_rate self._max_iters = max_iters self._max_depth = max_depth self._max_leaves = max_leaves self._l2_regularization = l2_regularization self._grow_policy = grow_policy self._num_parallel = num_parallel self._pool = None if self._num_parallel > 1: self._pool = mp.Pool(num_parallel) assert max_bins < 255, "Only support max_bins < 255" self._max_bins = max_bins self._loss = LogisticLoss() self._trees = [] self._feature_names = None self._cat_feature_names = None self._bridge = bridge if bridge is not None: self._role = self._bridge.role self._bridge.connect() self._make_key_pair() else: self._role = 'local' @property def loss(self): return self._loss def _make_key_pair(self): # make key pair self._bridge.start(self._bridge.new_iter_id()) if self._role == 'leader': self._public_key, self._private_key = \ paillier.PaillierKeypair.generate_keypair(KEY_NBITS) _send_public_key(self._bridge, self._public_key) else: self._public_key = _receive_public_key(self._bridge) self._private_key = None self._bridge.commit() def _verify_params(self, example_ids, is_training, validation=False, leader_no_data=False): assert self._bridge is not None self._bridge.start(self._bridge.new_iter_id()) if self._role == 'leader': msg = tree_pb2.VerifyParams( example_ids=example_ids, learning_rate=self._learning_rate, max_iters=self._max_iters, max_depth=self._max_depth, max_leaves=self._max_leaves, l2_regularization=self._l2_regularization, max_bins=self._max_bins, grow_policy=self._grow_policy, validation=validation, num_trees=len(self._trees), leader_no_data=leader_no_data) self._bridge.send_proto( self._bridge.current_iter_id, 'verify', msg) status = common_pb2.Status() self._bridge.receive_proto( self._bridge.current_iter_id, 'status').Unpack(status) assert status.code == common_pb2.STATUS_SUCCESS, \ "Parameters mismatch between leader and follower: \n%s" \ %status.error_message else: msg = tree_pb2.VerifyParams() self._bridge.receive_proto( self._bridge.current_iter_id, 'verify').Unpack(msg) def check(name, left, right): if left == right or \ (isinstance(left, float) and np.isclose(left, right)): return '' return 'Error:%s mismatch between leader and follower: ' \ '%s vs %s\n'%(name, left, right) err_msg = '' if example_ids and msg.example_ids and \ list(example_ids) != list(msg.example_ids): err_msg += "Error: example_ids mismatch between leader and " \ "follower\n" if len(example_ids) != len(msg.example_ids): err_msg += "Error: example_ids length: %d vs %d"%( len(example_ids), len(msg.example_ids)) else: for i, a, b in enumerate(zip(example_ids, msg.example_ids)): if a != b: err_msg += "Error: first mismatching example at " \ "%d: %s vs %s"%(i, a, b) err_msg += check( 'num_trees', msg.num_trees, len(self._trees)) if is_training: err_msg += check( 'learning_rate', msg.learning_rate, self._learning_rate) err_msg += check( 'max_iters', msg.max_iters, self._max_iters) err_msg += check( 'max_depth', msg.max_depth, self._max_depth) err_msg += check( 'max_leaves', msg.max_leaves, self._max_leaves) err_msg += check( 'l2_regularization', msg.l2_regularization, self._l2_regularization) err_msg += check( 'max_bins', msg.max_bins, self._max_bins) err_msg += check( 'grow_policy', msg.grow_policy, self._grow_policy) err_msg += check( 'validation', msg.validation, validation) if err_msg: self._bridge.send_proto( self._bridge.current_iter_id, 'status', common_pb2.Status( code=common_pb2.STATUS_UNKNOWN_ERROR, error_message=err_msg)) self._bridge.commit() raise RuntimeError(err_msg) self._bridge.send_proto( self._bridge.current_iter_id, 'status', common_pb2.Status( code=common_pb2.STATUS_SUCCESS)) self._bridge.commit() return msg def save_model(self, path): fout = tf.io.gfile.GFile(path, 'w') model = tree_pb2.BoostingTreeEnsambleProto( feature_importance=self._feature_importance, feature_names=self._feature_names, cat_feature_names=self._cat_feature_names) model.trees.extend(self._trees) fout.write(text_format.MessageToString(model)) def load_saved_model(self, path): fin = tf.io.gfile.GFile(path, 'r') model = tree_pb2.BoostingTreeEnsambleProto() text_format.Parse(fin.read(), model) self._trees = list(model.trees) self._feature_importance = np.asarray(model.feature_importance) self._feature_names = list(model.feature_names) self._cat_feature_names = list(model.cat_feature_names) def save_checkpoint(self, path, num_iter): filename = os.path.join( path, 'checkpoint-%04d.proto'%num_iter) logging.info( "Saving checkpoint of iteration %d to %s", num_iter, filename) self.save_model(filename) return filename def load_last_checkpoint(self, path): files = tf.io.gfile.listdir(path) if files: last_checkpoint = os.path.join( path, sorted(files)[-1]) logging.info( "Restoring from previously saved checkpoint %s", \ last_checkpoint) self.load_saved_model(last_checkpoint) return True return False def batch_score(self, features, labels, example_ids): pred = self.batch_predict(features, example_ids=example_ids) return self._loss.metrics(pred, labels) def batch_predict(self, features, cat_features=None, get_raw_score=False, example_ids=None, feature_names=None, cat_feature_names=None): if feature_names and self._feature_names: assert feature_names == self._feature_names, \ "Predict data's feature names does not match loaded model" if cat_feature_names and self._cat_feature_names: assert cat_feature_names == self._cat_feature_names, \ "Predict data's feature names does not match loaded model" if features is not None and cat_features is None: cat_features = np.zeros((features.shape[0], 0), dtype=np.int32) if self._bridge is None: return self._batch_predict_local( features, cat_features, get_raw_score) if self._role == 'leader': leader_no_data = True for tree in self._trees: for node in tree.nodes: if node.is_owner: leader_no_data = False else: leader_no_data = False msg = self._verify_params( example_ids, False, leader_no_data=leader_no_data) if msg.leader_no_data: if self._role == 'leader': return self._batch_predict_one_side_leader(get_raw_score) return self._batch_predict_one_side_follower( features, cat_features, get_raw_score) return self._batch_predict_two_side( features, cat_features, get_raw_score) def _batch_predict_local(self, features, cat_features, get_raw_score): N = features.shape[0] raw_prediction =
np.zeros(N, dtype=BST_TYPE)
numpy.zeros
import sys from numpy.testing import * import numpy.core.umath as ncu import numpy as np class _FilterInvalids(object): def setUp(self): self.olderr = np.seterr(invalid='ignore') def tearDown(self): np.seterr(**self.olderr) class TestDivision(TestCase): def test_division_int(self): # int division should follow Python x = np.array([5, 10, 90, 100, -5, -10, -90, -100, -120]) if 5 / 10 == 0.5: assert_equal(x / 100, [0.05, 0.1, 0.9, 1, -0.05, -0.1, -0.9, -1, -1.2]) else: assert_equal(x / 100, [0, 0, 0, 1, -1, -1, -1, -1, -2]) assert_equal(x // 100, [0, 0, 0, 1, -1, -1, -1, -1, -2]) assert_equal(x % 100, [5, 10, 90, 0, 95, 90, 10, 0, 80]) def test_division_complex(self): # check that implementation is correct msg = "Complex division implementation check" x = np.array([1. + 1.*1j, 1. + .5*1j, 1. + 2.*1j], dtype=np.complex128) assert_almost_equal(x**2/x, x, err_msg=msg) # check overflow, underflow msg = "Complex division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = x**2/x assert_almost_equal(y/x, [1, 1], err_msg=msg) def test_zero_division_complex(self): err = np.seterr(invalid="ignore", divide="ignore") try: x = np.array([0.0], dtype=np.complex128) y = 1.0/x assert_(np.isinf(y)[0]) y = complex(np.inf, np.nan)/x assert_(np.isinf(y)[0]) y = complex(np.nan, np.inf)/x assert_(np.isinf(y)[0]) y = complex(np.inf, np.inf)/x assert_(np.isinf(y)[0]) y = 0.0/x assert_(np.isnan(y)[0]) finally: np.seterr(**err) def test_floor_division_complex(self): # check that implementation is correct msg = "Complex floor division implementation check" x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128) y = np.array([0., -1., 0., 0.], dtype=np.complex128) assert_equal(np.floor_divide(x**2,x), y, err_msg=msg) # check overflow, underflow msg = "Complex floor division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = np.floor_divide(x**2, x) assert_equal(y, [1.e+110, 0], err_msg=msg) class TestPower(TestCase): def test_power_float(self): x = np.array([1., 2., 3.]) assert_equal(x**0, [1., 1., 1.]) assert_equal(x**1, x) assert_equal(x**2, [1., 4., 9.]) y = x.copy() y **= 2 assert_equal(y, [1., 4., 9.]) assert_almost_equal(x**(-1), [1., 0.5, 1./3]) assert_almost_equal(x**(0.5), [1., ncu.sqrt(2), ncu.sqrt(3)]) def test_power_complex(self): x = np.array([1+2j, 2+3j, 3+4j]) assert_equal(x**0, [1., 1., 1.]) assert_equal(x**1, x) assert_almost_equal(x**2, [-3+4j, -5+12j, -7+24j]) assert_almost_equal(x**3, [(1+2j)**3, (2+3j)**3, (3+4j)**3]) assert_almost_equal(x**4, [(1+2j)**4, (2+3j)**4, (3+4j)**4]) assert_almost_equal(x**(-1), [1/(1+2j), 1/(2+3j), 1/(3+4j)]) assert_almost_equal(x**(-2), [1/(1+2j)**2, 1/(2+3j)**2, 1/(3+4j)**2]) assert_almost_equal(x**(-3), [(-11+2j)/125, (-46-9j)/2197, (-117-44j)/15625]) assert_almost_equal(x**(0.5), [ncu.sqrt(1+2j), ncu.sqrt(2+3j), ncu.sqrt(3+4j)]) norm = 1./((x**14)[0]) assert_almost_equal(x**14 * norm, [i * norm for i in [-76443+16124j, 23161315+58317492j, 5583548873 + 2465133864j]]) # Ticket #836 def assert_complex_equal(x, y): assert_array_equal(x.real, y.real) assert_array_equal(x.imag, y.imag) for z in [complex(0, np.inf), complex(1, np.inf)]: err = np.seterr(invalid="ignore") z = np.array([z], dtype=np.complex_) try: assert_complex_equal(z**1, z) assert_complex_equal(z**2, z*z) assert_complex_equal(z**3, z*z*z) finally: np.seterr(**err) def test_power_zero(self): # ticket #1271 zero = np.array([0j]) one = np.array([1+0j]) cinf = np.array([complex(np.inf, 0)]) cnan = np.array([complex(np.nan, np.nan)]) def assert_complex_equal(x, y): x, y = np.asarray(x), np.asarray(y) assert_array_equal(x.real, y.real) assert_array_equal(x.imag, y.imag) # positive powers for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: assert_complex_equal(np.power(zero, p), zero) # zero power assert_complex_equal(np.power(zero, 0), one) assert_complex_equal(np.power(zero, 0+1j), cnan) # negative power for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: assert_complex_equal(np.power(zero, -p), cnan) assert_complex_equal(np.power(zero, -1+0.2j), cnan) def test_fast_power(self): x=np.array([1,2,3], np.int16) assert (x**2.00001).dtype is (x**2.0).dtype class TestLog2(TestCase): def test_log2_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.log2(xf), yf) class TestExp2(TestCase): def test_exp2_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.exp2(yf), xf) class TestLogAddExp2(_FilterInvalids): # Need test for intermediate precisions def test_logaddexp2_values(self) : x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec in zip(['f','d','g'],[6, 15, 15]) : xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec) def test_logaddexp2_range(self) : x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf) def test_inf(self) : err = np.seterr(invalid='ignore') inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] try: for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf) finally: np.seterr(**err) def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan))) class TestLog(TestCase): def test_log_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : log2_ = 0.69314718055994530943 xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt)*log2_ assert_almost_equal(np.log(xf), yf) class TestExp(TestCase): def test_exp_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : log2_ = 0.69314718055994530943 xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt)*log2_ assert_almost_equal(np.exp(yf), xf) class TestLogAddExp(_FilterInvalids): def test_logaddexp_values(self) : x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec in zip(['f','d','g'],[6, 15, 15]) : xf = np.log(np.array(x, dtype=dt)) yf = np.log(np.array(y, dtype=dt)) zf = np.log(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp(xf, yf), zf, decimal=dec) def test_logaddexp_range(self) : x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp(logxf, logyf), logzf) def test_inf(self) : err = np.seterr(invalid='ignore') inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] try: for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp(logxf, logyf), logzf) finally: np.seterr(**err) def test_nan(self): assert_(np.isnan(np.logaddexp(np.nan, np.inf))) assert_(np.isnan(np.logaddexp(np.inf, np.nan))) assert_(np.isnan(np.logaddexp(np.nan, 0))) assert_(np.isnan(np.logaddexp(0, np.nan))) assert_(np.isnan(np.logaddexp(np.nan, np.nan))) class TestLog1p(TestCase): def test_log1p(self): assert_almost_equal(ncu.log1p(0.2), ncu.log(1.2)) assert_almost_equal(ncu.log1p(1e-6), ncu.log(1+1e-6)) class TestExpm1(TestCase): def test_expm1(self): assert_almost_equal(ncu.expm1(0.2), ncu.exp(0.2)-1) assert_almost_equal(ncu.expm1(1e-6), ncu.exp(1e-6)-1) class TestHypot(TestCase, object): def test_simple(self): assert_almost_equal(ncu.hypot(1, 1), ncu.sqrt(2)) assert_almost_equal(ncu.hypot(0, 0), 0) def assert_hypot_isnan(x, y): err = np.seterr(invalid='ignore') try: assert_(np.isnan(ncu.hypot(x, y)), "hypot(%s, %s) is %s, not nan" % (x, y, ncu.hypot(x, y))) finally: np.seterr(**err) def assert_hypot_isinf(x, y): err = np.seterr(invalid='ignore') try: assert_(np.isinf(ncu.hypot(x, y)), "hypot(%s, %s) is %s, not inf" % (x, y, ncu.hypot(x, y))) finally: np.seterr(**err) class TestHypotSpecialValues(TestCase): def test_nan_outputs(self): assert_hypot_isnan(np.nan, np.nan) assert_hypot_isnan(np.nan, 1) def test_nan_outputs(self): assert_hypot_isinf(np.nan, np.inf) assert_hypot_isinf(np.inf, np.nan) assert_hypot_isinf(np.inf, 0) assert_hypot_isinf(0, np.inf) def assert_arctan2_isnan(x, y): assert_(np.isnan(ncu.arctan2(x, y)), "arctan(%s, %s) is %s, not nan" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_ispinf(x, y): assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) > 0), "arctan(%s, %s) is %s, not +inf" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_isninf(x, y): assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) < 0), "arctan(%s, %s) is %s, not -inf" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_ispzero(x, y): assert_((ncu.arctan2(x, y) == 0 and not np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not +0" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_isnzero(x, y): assert_((ncu.arctan2(x, y) == 0 and np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not -0" % (x, y, ncu.arctan2(x, y))) class TestArctan2SpecialValues(TestCase): def test_one_one(self): # atan2(1, 1) returns pi/4. assert_almost_equal(ncu.arctan2(1, 1), 0.25 * np.pi) assert_almost_equal(ncu.arctan2(-1, 1), -0.25 * np.pi) assert_almost_equal(ncu.arctan2(1, -1), 0.75 * np.pi) def test_zero_nzero(self): # atan2(+-0, -0) returns +-pi. assert_almost_equal(ncu.arctan2(np.PZERO, np.NZERO), np.pi) assert_almost_equal(ncu.arctan2(np.NZERO, np.NZERO), -np.pi) def test_zero_pzero(self): # atan2(+-0, +0) returns +-0. assert_arctan2_ispzero(np.PZERO, np.PZERO) assert_arctan2_isnzero(np.NZERO, np.PZERO) def test_zero_negative(self): # atan2(+-0, x) returns +-pi for x < 0. assert_almost_equal(ncu.arctan2(np.PZERO, -1), np.pi) assert_almost_equal(ncu.arctan2(np.NZERO, -1), -np.pi) def test_zero_positive(self): # atan2(+-0, x) returns +-0 for x > 0. assert_arctan2_ispzero(np.PZERO, 1) assert_arctan2_isnzero(np.NZERO, 1) def test_positive_zero(self): # atan2(y, +-0) returns +pi/2 for y > 0. assert_almost_equal(ncu.arctan2(1, np.PZERO), 0.5 * np.pi) assert_almost_equal(ncu.arctan2(1, np.NZERO), 0.5 * np.pi) def test_negative_zero(self): # atan2(y, +-0) returns -pi/2 for y < 0. assert_almost_equal(ncu.arctan2(-1, np.PZERO), -0.5 * np.pi) assert_almost_equal(ncu.arctan2(-1, np.NZERO), -0.5 * np.pi) def test_any_ninf(self): # atan2(+-y, -infinity) returns +-pi for finite y > 0. assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi) assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi) def test_any_pinf(self): # atan2(+-y, +infinity) returns +-0 for finite y > 0. assert_arctan2_ispzero(1, np.inf) assert_arctan2_isnzero(-1, np.inf) def test_inf_any(self): # atan2(+-infinity, x) returns +-pi/2 for finite x. assert_almost_equal(ncu.arctan2( np.inf, 1), 0.5 * np.pi) assert_almost_equal(ncu.arctan2(-np.inf, 1), -0.5 * np.pi) def test_inf_ninf(self): # atan2(+-infinity, -infinity) returns +-3*pi/4. assert_almost_equal(ncu.arctan2( np.inf, -np.inf), 0.75 * np.pi) assert_almost_equal(ncu.arctan2(-np.inf, -np.inf), -0.75 * np.pi) def test_inf_pinf(self): # atan2(+-infinity, +infinity) returns +-pi/4. assert_almost_equal(ncu.arctan2( np.inf, np.inf), 0.25 * np.pi) assert_almost_equal(ncu.arctan2(-np.inf, np.inf), -0.25 * np.pi) def test_nan_any(self): # atan2(nan, x) returns nan for any x, including inf assert_arctan2_isnan(np.nan, np.inf) assert_arctan2_isnan(np.inf, np.nan) assert_arctan2_isnan(np.nan, np.nan) class TestLdexp(TestCase): def _check_ldexp(self, tp): assert_almost_equal(ncu.ldexp(np.array(2., np.float32), np.array(3, tp)), 16.) assert_almost_equal(ncu.ldexp(np.array(2., np.float64), np.array(3, tp)), 16.) assert_almost_equal(ncu.ldexp(np.array(2., np.longdouble), np.array(3, tp)), 16.) def test_ldexp(self): # The default Python int type should work assert_almost_equal(ncu.ldexp(2., 3), 16.) # The following int types should all be accepted self._check_ldexp(np.int8) self._check_ldexp(np.int16) self._check_ldexp(np.int32) self._check_ldexp('i') self._check_ldexp('l') @dec.knownfailureif(sys.platform == 'win32' and sys.version_info < (2, 6), "python.org < 2.6 binaries have broken ldexp in the " "C runtime") def test_ldexp_overflow(self): # silence warning emitted on overflow err = np.seterr(over="ignore") try: imax = np.iinfo(np.dtype('l')).max imin = np.iinfo(np.dtype('l')).min assert_equal(ncu.ldexp(2., imax), np.inf) assert_equal(ncu.ldexp(2., imin), 0) finally: np.seterr(**err) class TestMaximum(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.maximum.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), np.nan) assert_equal(func(tmp2), np.nan) def test_reduce_complex(self): assert_equal(np.maximum.reduce([1,2j]),1) assert_equal(np.maximum.reduce([1+3j,2j]),1+3j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([nan, nan, nan]) assert_equal(np.maximum(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([nan, nan, nan], dtype=np.complex) assert_equal(np.maximum(arg1, arg2), out) def test_object_array(self): arg1 = np.arange(5, dtype=np.object) arg2 = arg1 + 1 assert_equal(np.maximum(arg1, arg2), arg2) class TestMinimum(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.minimum.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), np.nan) assert_equal(func(tmp2), np.nan) def test_reduce_complex(self): assert_equal(np.minimum.reduce([1,2j]),2j) assert_equal(np.minimum.reduce([1+3j,2j]),2j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([nan, nan, nan]) assert_equal(np.minimum(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([nan, nan, nan], dtype=np.complex) assert_equal(np.minimum(arg1, arg2), out) def test_object_array(self): arg1 = np.arange(5, dtype=np.object) arg2 = arg1 + 1 assert_equal(np.minimum(arg1, arg2), arg1) class TestFmax(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmax.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 9) assert_equal(func(tmp2), 9) def test_reduce_complex(self): assert_equal(np.fmax.reduce([1,2j]),1) assert_equal(np.fmax.reduce([1+3j,2j]),1+3j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([0, 0, nan]) assert_equal(np.fmax(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([0, 0, nan], dtype=np.complex) assert_equal(np.fmax(arg1, arg2), out) class TestFmin(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1) def test_reduce_complex(self): assert_equal(np.fmin.reduce([1,2j]),2j) assert_equal(np.fmin.reduce([1+3j,2j]),2j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([0, 0, nan]) assert_equal(np.fmin(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([0, 0, nan], dtype=np.complex) assert_equal(np.fmin(arg1, arg2), out) class TestFloatingPoint(TestCase): def test_floating_point(self): assert_equal(ncu.FLOATING_POINT_SUPPORT, 1) class TestDegrees(TestCase): def test_degrees(self): assert_almost_equal(ncu.degrees(np.pi), 180.0) assert_almost_equal(ncu.degrees(-0.5*np.pi), -90.0) class TestRadians(TestCase): def test_radians(self): assert_almost_equal(ncu.radians(180.0), np.pi) assert_almost_equal(ncu.radians(-90.0), -0.5*np.pi) class TestSign(TestCase): def test_sign(self): a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0]) out = np.zeros(a.shape) tgt = np.array([1., -1., np.nan, 0.0, 1.0, -1.0]) olderr = np.seterr(invalid='ignore') try: res = ncu.sign(a) assert_equal(res, tgt) res = ncu.sign(a, out) assert_equal(res, tgt) assert_equal(out, tgt) finally: np.seterr(**olderr) class TestSpecialMethods(TestCase): def test_wrap(self): class with_wrap(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): r = with_wrap() r.arr = arr r.context = context return r a = with_wrap() x = ncu.minimum(a, a) assert_equal(x.arr, np.zeros(1)) func, args, i = x.context self.assertTrue(func is ncu.minimum) self.assertEqual(len(args), 2) assert_equal(args[0], a) assert_equal(args[1], a) self.assertEqual(i, 0) def test_wrap_with_iterable(self): # test fix for bug #1026: class with_wrap(np.ndarray): __array_priority__ = 10 def __new__(cls): return np.asarray(1).view(cls).copy() def __array_wrap__(self, arr, context): return arr.view(type(self)) a = with_wrap() x = ncu.multiply(a, (1, 2, 3)) self.assertTrue(isinstance(x, with_wrap)) assert_array_equal(x, np.array((1, 2, 3))) def test_priority_with_scalar(self): # test fix for bug #826: class A(np.ndarray): __array_priority__ = 10 def __new__(cls): return np.asarray(1.0, 'float64').view(cls).copy() a = A() x = np.float64(1)*a self.assertTrue(isinstance(x, A)) assert_array_equal(x, np.array(1)) def test_old_wrap(self): class with_wrap(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr): r = with_wrap() r.arr = arr return r a = with_wrap() x = ncu.minimum(a, a) assert_equal(x.arr, np.zeros(1)) def test_priority(self): class A(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): r = type(self)() r.arr = arr r.context = context return r class B(A): __array_priority__ = 20. class C(A): __array_priority__ = 40. x = np.zeros(1) a = A() b = B() c = C() f = ncu.minimum self.assertTrue(type(f(x,x)) is np.ndarray) self.assertTrue(type(f(x,a)) is A) self.assertTrue(type(f(x,b)) is B) self.assertTrue(type(f(x,c)) is C) self.assertTrue(type(f(a,x)) is A) self.assertTrue(type(f(b,x)) is B) self.assertTrue(type(f(c,x)) is C) self.assertTrue(type(f(a,a)) is A) self.assertTrue(type(f(a,b)) is B) self.assertTrue(type(f(b,a)) is B) self.assertTrue(type(f(b,b)) is B) self.assertTrue(type(f(b,c)) is C) self.assertTrue(type(f(c,b)) is C) self.assertTrue(type(f(c,c)) is C) self.assertTrue(type(ncu.exp(a) is A)) self.assertTrue(type(ncu.exp(b) is B)) self.assertTrue(type(ncu.exp(c) is C)) def test_failing_wrap(self): class A(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): raise RuntimeError a = A() self.assertRaises(RuntimeError, ncu.maximum, a, a) def test_default_prepare(self): class with_wrap(object): __array_priority__ = 10 def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): return arr a = with_wrap() x = ncu.minimum(a, a) assert_equal(x, np.zeros(1)) assert_equal(type(x), np.ndarray) def test_prepare(self): class with_prepare(np.ndarray): __array_priority__ = 10 def __array_prepare__(self, arr, context): # make sure we can return a new return np.array(arr).view(type=with_prepare) a = np.array(1).view(type=with_prepare) x = np.add(a, a) assert_equal(x, np.array(2)) assert_equal(type(x), with_prepare) def test_failing_prepare(self): class A(object): def __array__(self): return np.zeros(1) def __array_prepare__(self, arr, context=None): raise RuntimeError a = A() self.assertRaises(RuntimeError, ncu.maximum, a, a) def test_array_with_context(self): class A(object): def __array__(self, dtype=None, context=None): func, args, i = context self.func = func self.args = args self.i = i return np.zeros(1) class B(object): def __array__(self, dtype=None): return np.zeros(1, dtype) class C(object): def __array__(self): return np.zeros(1) a = A() ncu.maximum(np.zeros(1), a) self.assertTrue(a.func is ncu.maximum) assert_equal(a.args[0], 0) self.assertTrue(a.args[1] is a) self.assertTrue(a.i == 1) assert_equal(ncu.maximum(a, B()), 0) assert_equal(ncu.maximum(a, C()), 0) class TestChoose(TestCase): def test_mixed(self): c = np.array([True,True]) a = np.array([True,True]) assert_equal(np.choose(c, (a, 1)), np.array([1,1])) def is_longdouble_finfo_bogus(): info = np.finfo(np.longcomplex) return not np.isfinite(np.log10(info.tiny/info.eps)) class TestComplexFunctions(object): funcs = [np.arcsin, np.arccos, np.arctan, np.arcsinh, np.arccosh, np.arctanh, np.sin, np.cos, np.tan, np.exp, np.exp2, np.log, np.sqrt, np.log10, np.log2, np.log1p] def test_it(self): for f in self.funcs: if f is np.arccosh : x = 1.5 else : x = .5 fr = f(x) fz = f(np.complex(x)) assert_almost_equal(fz.real, fr, err_msg='real part %s'%f) assert_almost_equal(fz.imag, 0., err_msg='imag part %s'%f) def test_precisions_consistent(self) : z = 1 + 1j for f in self.funcs : fcf = f(np.csingle(z)) fcd = f(np.cdouble(z)) fcl = f(np.clongdouble(z)) assert_almost_equal(fcf, fcd, decimal=6, err_msg='fch-fcd %s'%f) assert_almost_equal(fcl, fcd, decimal=15, err_msg='fch-fcl %s'%f) def test_branch_cuts(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1 yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1 yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1 yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1 yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1 yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, -1j], 1, -1 yield _check_branch_cut, np.arccos, [ -2, 2], [1j, -1j], 1, -1 yield _check_branch_cut, np.arctan, [-2j, 2j], [1, -1 ], -1, 1 yield _check_branch_cut, np.arcsinh, [-2j, 2j], [-1, 1], -1, 1 yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1 yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, -1j], 1, -1 # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arccos, [-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1 ], 1, 1 yield _check_branch_cut, np.arccosh, [-2j, 2j, 2], [1, 1, 1j], 1, 1 yield _check_branch_cut, np.arctanh, [-2j, 2j, 0], [1, 1, 1j], 1, 1 @dec.knownfailureif(True, "These branch cuts are known to fail") def test_branch_cuts_failing(self): # XXX: signed zero not OK with ICC on 64-bit platform for log, see # http://permalink.gmane.org/gmane.comp.python.numeric.general/25335 yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True # XXX: signed zeros are not OK for sqrt or for the arc* functions yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, -1j], 1, -1, True yield _check_branch_cut, np.arccos, [ -2, 2], [1j, -1j], 1, -1, True yield _check_branch_cut, np.arctan, [-2j, 2j], [1, -1 ], -1, 1, True yield _check_branch_cut, np.arcsinh, [-2j, 2j], [-1, 1], -1, 1, True yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, -1j], 1, -1, True def test_against_cmath(self): import cmath, sys # cmath.asinh is broken in some versions of Python, see # http://bugs.python.org/issue1381 broken_cmath_asinh = False if sys.version_info < (2,6): broken_cmath_asinh = True points = [-1-1j, -1+1j, +1-1j, +1+1j] name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} atol = 4*np.finfo(np.complex).eps for func in self.funcs: fname = func.__name__.split('.')[-1] cname = name_map.get(fname, fname) try: cfunc = getattr(cmath, cname) except AttributeError: continue for p in points: a = complex(func(np.complex_(p))) b = cfunc(p) if cname == 'asinh' and broken_cmath_asinh: continue assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s"%(fname,p,a,b)) def check_loss_of_precision(self, dtype): """Check loss of precision in complex arc* functions""" # Check against known-good functions info = np.finfo(dtype) real_dtype = dtype(0.).real.dtype eps = info.eps def check(x, rtol): x = x.astype(real_dtype) z = x.astype(dtype) d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1) assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(), 'arcsinh')) z = (1j*x).astype(dtype) d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1) assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(), 'arcsin')) z = x.astype(dtype) d = np.absolute(np.arctanh(x)/np.arctanh(z).real - 1) assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(), 'arctanh')) z = (1j*x).astype(dtype) d = np.absolute(np.arctanh(x)/np.arctan(z).imag - 1) assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(), 'arctan')) # The switchover was chosen as 1e-3; hence there can be up to # ~eps/1e-3 of relative cancellation error before it x_series = np.logspace(-20, -3.001, 200) x_basic = np.logspace(-2.999, 0, 10, endpoint=False) if dtype is np.longcomplex: # It's not guaranteed that the system-provided arc functions # are accurate down to a few epsilons. (Eg. on Linux 64-bit) # So, give more leeway for long complex tests here: check(x_series, 50*eps) else: check(x_series, 2*eps) check(x_basic, 2*eps/1e-3) # Check a few points z = np.array([1e-5*(1+1j)], dtype=dtype) p = 9.999999999333333333e-6 + 1.000000000066666666e-5j d = np.absolute(1-np.arctanh(z)/p) assert_(np.all(d < 1e-15)) p = 1.0000000000333333333e-5 + 9.999999999666666667e-6j d = np.absolute(1-np.arcsinh(z)/p) assert_(np.all(d < 1e-15)) p = 9.999999999333333333e-6j + 1.000000000066666666e-5 d = np.absolute(1-np.arctan(z)/p) assert_(np.all(d < 1e-15)) p = 1.0000000000333333333e-5j + 9.999999999666666667e-6 d = np.absolute(1-np.arcsin(z)/p) assert_(np.all(d < 1e-15)) # Check continuity across switchover points def check(func, z0, d=1): z0 = np.asarray(z0, dtype=dtype) zp = z0 + abs(z0) * d * eps * 2 zm = z0 - abs(z0) * d * eps * 2 assert_(np.all(zp != zm), (zp, zm)) # NB: the cancellation error at the switchover is at least eps good = (abs(func(zp) - func(zm)) < 2*eps) assert_(np.all(good), (func, z0[~good])) for func in (np.arcsinh,np.arcsinh,np.arcsin,np.arctanh,np.arctan): pts = [rp+1j*ip for rp in (-1e-3,0,1e-3) for ip in(-1e-3,0,1e-3) if rp != 0 or ip != 0] check(func, pts, 1) check(func, pts, 1j) check(func, pts, 1+1j) def test_loss_of_precision(self): for dtype in [np.complex64, np.complex_]: yield self.check_loss_of_precision, dtype @dec.knownfailureif(is_longdouble_finfo_bogus(), "Bogus long double finfo") def test_loss_of_precision_longcomplex(self): self.check_loss_of_precision(np.longcomplex) class TestAttributes(TestCase): def test_attributes(self): add = ncu.add assert_equal(add.__name__, 'add') assert_(add.__doc__.startswith('add(x1, x2[, out])\n\n')) self.assertTrue(add.ntypes >= 18) # don't fail if types added self.assertTrue('ii->i' in add.types) assert_equal(add.nin, 2) assert_equal(add.nout, 1) assert_equal(add.identity, 0) class TestSubclass(TestCase): def test_subclass_op(self): class simple(np.ndarray): def __new__(subtype, shape): self = np.ndarray.__new__(subtype, shape, dtype=object) self.fill(0) return self a = simple((3,4)) assert_equal(a+a, a) def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False, dtype=np.complex): """ Check for a branch cut in a function. Assert that `x0` lies on a branch cut of function `f` and `f` is continuous from the direction `dx`. Parameters ---------- f : func Function to check x0 : array-like Point on branch cut dx : array-like Direction to check continuity in re_sign, im_sign : {1, -1} Change of sign of the real or imaginary part expected sig_zero_ok : bool Whether to check if the branch cut respects signed zero (if applicable) dtype : dtype Dtype to check (should be complex) """ x0 = np.atleast_1d(x0).astype(dtype) dx = np.atleast_1d(dx).astype(dtype) scale = np.finfo(dtype).eps * 1e3 atol = 1e-4 y0 = f(x0) yp = f(x0 + dx*scale*np.absolute(x0)/np.absolute(dx)) ym = f(x0 - dx*scale*np.absolute(x0)/np.absolute(dx)) assert_(np.all(np.absolute(y0.real - yp.real) < atol), (y0, yp)) assert_(np.all(np.absolute(y0.imag - yp.imag) < atol), (y0, yp)) assert_(np.all(np.absolute(y0.real - ym.real*re_sign) < atol), (y0, ym)) assert_(np.all(np.absolute(y0.imag - ym.imag*im_sign) < atol), (y0, ym)) if sig_zero_ok: # check that signed zeros also work as a displacement jr = (x0.real == 0) & (dx.real != 0) ji = (x0.imag == 0) & (dx.imag != 0) x = -x0 x.real[jr] = 0.*dx.real x.imag[ji] = 0.*dx.imag x = -x ym = f(x) ym = ym[jr | ji] y0 = y0[jr | ji] assert_(np.all(np.absolute(y0.real - ym.real*re_sign) < atol), (y0, ym)) assert_(np.all(np.absolute(y0.imag - ym.imag*im_sign) < atol), (y0, ym)) def test_copysign(): assert_(np.copysign(1, -1) == -1) old_err = np.seterr(divide="ignore") try: assert_(1 / np.copysign(0, -1) < 0) assert_(1 / np.copysign(0, 1) > 0) finally: np.seterr(**old_err) assert_(np.signbit(np.copysign(np.nan, -1))) assert_(not np.signbit(np.copysign(np.nan, 1))) def _test_nextafter(t): one = t(1) two = t(2) zero = t(0) eps = np.finfo(t).eps assert_(np.nextafter(one, two) - one == eps) assert_(np.nextafter(one, zero) - one < 0) assert_(np.isnan(np.nextafter(np.nan, one))) assert_(np.isnan(np.nextafter(one, np.nan))) assert_(np.nextafter(one, one) == one) def test_nextafter(): return _test_nextafter(np.float64) def test_nextafterf(): return _test_nextafter(np.float32) @dec.knownfailureif(sys.platform == 'win32', "Long double support buggy on win32") def test_nextafterl(): return _test_nextafter(np.longdouble) def _test_spacing(t): err = np.seterr(invalid='ignore') one = t(1) eps = np.finfo(t).eps nan = t(np.nan) inf = t(np.inf) try: assert_(np.spacing(one) == eps) assert_(np.isnan(np.spacing(nan))) assert_(np.isnan(np.spacing(inf))) assert_(np.isnan(np.spacing(-inf))) assert_(np.spacing(t(1e30)) != 0) finally: np.seterr(**err) def test_spacing(): return _test_spacing(np.float64) def test_spacingf(): return _test_spacing(np.float32) @dec.knownfailureif(sys.platform == 'win32', "Long double support buggy on win32") def test_spacingl(): return _test_spacing(np.longdouble) def test_spacing_gfortran(): # Reference from this fortran file, built with gfortran 4.3.3 on linux # 32bits: # PROGRAM test_spacing # INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37) # INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200) # # WRITE(*,*) spacing(0.00001_DBL) # WRITE(*,*) spacing(1.0_DBL) # WRITE(*,*) spacing(1000._DBL) # WRITE(*,*) spacing(10500._DBL) # # WRITE(*,*) spacing(0.00001_SGL) # WRITE(*,*) spacing(1.0_SGL) # WRITE(*,*) spacing(1000._SGL) # WRITE(*,*) spacing(10500._SGL) # END PROGRAM ref = {} ref[np.float64] = [1.69406589450860068E-021, 2.22044604925031308E-016, 1.13686837721616030E-013, 1.81898940354585648E-012] ref[np.float32] = [ 9.09494702E-13, 1.19209290E-07, 6.10351563E-05, 9.76562500E-04] for dt, dec in zip([np.float32, np.float64], (10, 20)): x = np.array([1e-5, 1, 1000, 10500], dtype=dt) assert_array_almost_equal(np.spacing(x), ref[dt], decimal=dec) def test_nextafter_vs_spacing(): # XXX: spacing does not handle long double yet for t in [np.float32, np.float64]: for _f in [1, 1e-5, 1000]: f = t(_f) f1 = t(_f + 1) assert_(np.nextafter(f, f1) - f == np.spacing(f)) def test_pos_nan(): """Check np.nan is a positive nan.""" assert_(np.signbit(np.nan) == 0) def test_reduceat(): """Test bug in reduceat when structured arrays are not copied.""" db = np.dtype([('name', 'S11'),('time', np.int64), ('value', np.float32)]) a = np.empty([100], dtype=db) a['name'] = 'Simple' a['time'] = 10 a['value'] = 100 indx = [0,7,15,25] h2 = [] val1 = indx[0] for val2 in indx[1:]: h2.append(np.add.reduce(a['value'][val1:val2])) val1 = val2 h2.append(np.add.reduce(a['value'][val1:])) h2 = np.array(h2) # test buffered -- this should work h1 = np.add.reduceat(a['value'], indx) assert_array_almost_equal(h1, h2) # This is when the error occurs. # test no buffer res = np.setbufsize(32) h1 = np.add.reduceat(a['value'], indx)
np.setbufsize(np.UFUNC_BUFSIZE_DEFAULT)
numpy.setbufsize
# -*- coding: utf-8 -*- # --------------------------------------------------------------------------- # Parameteric Functions of Time # --------------------------------------------------------------------------- '''{begin_markdown param_time_fun} {spell_markdown params expit gaussian_cdf gaussian_pdf dgaussian_pdf param } # Predefined Parametric Functions of Time ## head Syntax `result = app.tools.curvefit.core.functions.fun(t, params)` ## t This is a `list` or one dimensional `numpy.array`. ## params This is either a `list`, or `numpy.array` with one or two dimensions. In any case, `len(params) == 3`. If `params` is a two dimensional array, `params.shape[1] == len(t)`. We use the notation below for the values in `params`: Notation | Definition --- | --- \( \alpha \) | `params[0]` \( \beta \) | `params[1]` \( p \) | `params[2]` ## fun The possible values for *fun* are listed in the subheadings below: ### expit This is the generalized logistic function which is defined by \[ \mbox{expit} ( t , \alpha , \beta , p ) = \frac{p}{ 1.0 + \exp [ - \alpha ( t - \beta ) ] } \] ### ln_expit This is the log of the generalized logistic function which is defined by \[ \mbox{ln_expit} ( t , \alpha , \beta , p ) = \log \circ \; \mbox{expit} ( t , \alpha , \beta , p ) \] ### gaussian_cdf This is the generalized Gaussian cumulative distribution function which is defined by \[ \mbox{gaussian_cdf} ( t , \alpha , \beta , p ) = \frac{p}{2} \left[ 1.0 + \frac{2}{\pi} \int_0^{\alpha(t-\beta)} \exp ( - \tau^2 ) d \tau \right] \] ### ln_gaussian_cdf This is the log of the generalized Gaussian cumulative distribution function which is defined by \[ \mbox{ln_gaussian_cdf} ( t , \alpha , \beta , p ) = \log \circ \; \mbox{gaussian_cdf} ( t , \alpha , \beta , p ) \] ### gaussian_pdf This is the derivative of the generalized Gaussian cumulative distribution function which is defined by \[ \mbox{gaussian_pdf} ( t , \alpha , \beta , p ) = \partial_t \; \mbox{gaussian_cdf} ( t , \alpha , \beta , p ) \] ### ln_gaussian_pdf This is the log of the derivative of the generalized Gaussian cumulative distribution function which is defined by \[ \mbox{ln_gaussian_cdf} ( t , \alpha , \beta , p ) = \log \circ \; \mbox{gaussian_pdf} ( t , \alpha , \beta , p ) \] ### dgaussian_pdf This is the second derivative of the generalized Gaussian cumulative distribution function which is defined by \[ \mbox{dgaussian_pdf} ( t , \alpha , \beta , p ) = \partial_t \; \mbox{gaussian_pdf} ( t , \alpha , \beta , p ) \] ## result The result is a `list` or one dimensional `numpy.array` with `len(result) == len(t)`. If *params* is a `list` or one dimensional array ```python result[i] = fun(t[i], alpha, beta, p) ``` If *params* is a two dimensional array ```python result[i] = fun(t[i], alpha[i], beta[i], p[i]) ``` ## Example [param_time_fun_xam](param_time_fun_xam.md) {end_markdown param_time_fun}''' # ---------------------------------------------------------------------------- import numpy as np from scipy import special # logistic function def expit(t, params): tmp = params[0]*(t - params[1]) negidx = tmp < 0.0 posidx = ~negidx result = np.zeros(t.size, dtype=params.dtype) if params.ndim == 2: result[negidx] = params[2][negidx]*
np.exp(tmp[negidx])
numpy.exp
from __future__ import division import numpy, pandas from scipy.signal import butter from scipy import interpolate import scipy import csv import click import sys, os, re, pprint from scipy.optimize import curve_fit from scipy.fftpack import fft from scipy.signal import butter, lfilter, find_peaks_cwt, detrend, periodogram, remez, iirfilter from scipy.interpolate import CubicSpline, interp1d, UnivariateSpline from src.utils import metadataExtractor, cxpPrinter import collections def gcamp_interpolate(gcamp, number_of_additional_timepoints): gcamp_len = len(gcamp) timelabels = range(0, gcamp_len) cs = scipy.interpolate.CubicSpline(timelabels, gcamp) timelabels_spline = numpy.arange(0, gcamp_len-1, 1/number_of_additional_timepoints) gcamp_spline = cs(timelabels_spline) return gcamp_spline def gcamp_normalize(gcamp, gcamp_min, gcamp_max): # signal min already remove during extraction return numpy.asarray(gcamp) / (gcamp_max - gcamp_min) def gcamp_fwhm(gcamp, window_length, peak_ind, original_gcamp_length): win_rise = peak_ind - window_length if peak_ind >= window_length else 0 win_fall = peak_ind + window_length + 1 if peak_ind < len(gcamp) - window_length else len(gcamp) gcamp_windowed = gcamp[win_rise:win_fall] # look for a minimum within the window # argrelextrema requires an *order* less than or equal to half the length of the input array if window_length > len(gcamp_windowed) / 2: min_ind = scipy.signal.argrelextrema(gcamp_windowed, numpy.less, order=numpy.floor(len(gcamp_windowed) / 2).astype(int)) else: min_ind = scipy.signal.argrelextrema(gcamp_windowed, numpy.less, order=window_length) if len(min_ind[0]) == 0: min_ind = numpy.where(gcamp_windowed == numpy.min(gcamp_windowed)) fwhm_cutoff = (gcamp[peak_ind] - numpy.min(gcamp_windowed[min_ind])) / 2 + numpy.min(gcamp_windowed[min_ind]) window_length_expanded = window_length * 2 # after determining a cutoff expand the search in case of assymettry between rise and fall # a fold change of 2 implies the decay of a signal could take twice as long as the activation of length *window_length* # alternatively, the entire time-series could be searched. This might be better since processing costs for this length of signal are neglgible win_rise_expanded = peak_ind - window_length_expanded if peak_ind >= window_length_expanded else 0 win_fall_expanded = peak_ind + window_length_expanded + 1 if peak_ind < len( gcamp) - window_length_expanded else len(gcamp) gcamp_windowed_expanded = gcamp[win_rise_expanded:win_fall_expanded] peak_ind_expanded = peak_ind - win_rise_expanded # There are special cases when the signal in the window does not reach the *fwhm_cutoff*. # When this happens the fwhm will just use the ends of the window. # The first point past the cutoff is chosen by numpy.min() and numpy.max(). # To choose the closest index, the first point just before the closet index must also be considered. fwhm_rise_ind = numpy.where(gcamp_windowed_expanded[:peak_ind_expanded] < fwhm_cutoff) if len(fwhm_rise_ind[0]) == 0: fwhm_rise = peak_ind - win_rise_expanded else: fwhm_riseA = numpy.asscalar(peak_ind_expanded - numpy.max(fwhm_rise_ind)) fwhm_rise_testA = abs(gcamp_windowed_expanded[peak_ind_expanded - fwhm_riseA] - fwhm_cutoff) fwhm_rise_testB = abs(gcamp_windowed_expanded[peak_ind_expanded - fwhm_riseA + 1] - fwhm_cutoff) fwhm_rise = fwhm_riseA if fwhm_rise_testA <= fwhm_rise_testB else fwhm_riseA - 1 fwhm_fall_ind = numpy.where(gcamp_windowed_expanded[peak_ind_expanded:] < fwhm_cutoff) if len(fwhm_fall_ind[0]) == 0: fwhm_fall = win_fall_expanded - peak_ind - 1 # the *-1* is to correct for an offset else: fwhm_fallA = numpy.asscalar(numpy.min(fwhm_fall_ind)) fwhm_fall_testA = abs(gcamp_windowed_expanded[fwhm_fallA + peak_ind_expanded] - fwhm_cutoff) fwhm_fall_testB = abs(gcamp_windowed_expanded[fwhm_fallA + peak_ind_expanded - 1] - fwhm_cutoff) fwhm_fall = fwhm_fallA if fwhm_fall_testA <= fwhm_fall_testB else fwhm_fallA - 1 # fwhm_rise and fwhm_fall should be greater than zero fwhm_rise = 1 if fwhm_rise == 0 else fwhm_rise fwhm_fall = 1 if fwhm_fall == 0 else fwhm_fall # peak width peak_start_ind = (peak_ind - fwhm_rise) if (peak_ind - fwhm_rise) > 0 else 0 peak_end_ind = (peak_ind + fwhm_fall) if (peak_ind + fwhm_fall) < len(gcamp) else len(gcamp)-1 peak_width = peak_end_ind - peak_start_ind # same as fwhm_rise + fwhm_fall # area under the curve (area under the peak only) area_under_curve = numpy.trapz(gcamp[peak_start_ind:peak_end_ind+1], dx=original_gcamp_length/len(gcamp)) return fwhm_rise, fwhm_fall, fwhm_cutoff, peak_width, area_under_curve # To find in array the element closest to value def find_nearest(array,value,startIdx,endIdx): if endIdx < len(array)-1: endIdx = endIdx+1 idx = (numpy.abs(array[startIdx:endIdx]-value)).argmin() + startIdx return idx # - To obtain half maximum points, peak start/end, height # - Half max data not used currently, this method also returns other important # metrics such as peak height, etc. def getPeakDefiningPoints(signal, peaks, valleys, wellmin): half_maximums, peak_halfmax_starts, peak_halfmax_ends = [],[],[] # halfmax values (halfmax,halfmax start, halfmax end) peak_rise_starts, peak_fall_ends= [],[] peak_heights_localmin, peak_heights_signalmin, peak_heights_wellmin = [],[],[] for idx,peak in enumerate(peaks): # Step 1: Get valleys between previous and current peak if len(peaks) > 1 and idx > 0: valleys_considered = valleys[(valleys > peaks[idx - 1]) & (valleys < peak)] else: valleys_considered = valleys[(valleys < peak)] # Step 2: Determine peak start index if len(valleys_considered) > 0: peak_start = valleys_considered[-1] # 1st valley to the left of current peak else: peak_start = 0 peak_rise_starts.append(peak_start) # Step 3: Determine peak end idx if idx <= len(peaks) - 2: # if there is at least 1 more peak in peaks # valleys between current and next peak nextValleys = valleys[(valleys > peak) & (valleys < peaks[idx + 1])] else: # valleys between current peak and end of signal nextValleys = valleys[(valleys > peak) & (valleys < (len(signal)-1))] # take 1st valley to the right of current peak if len(nextValleys) > 0: peak_end = nextValleys[0] else: peak_end = len(signal) - 1 peak_fall_ends.append(peak_end) # Step 4: Compute halfmax and approximate corresponding halfmax start/end index halfmax = (max(signal[peak] - signal[peak_start], signal[peak] - signal[peak_end]))/2.0 + signal[peak_start] half_maximums.append(halfmax) halfmax_start = find_nearest(signal, halfmax, peak_start, peak) peak_halfmax_starts.append(halfmax_start) peak_halfmax_ends.append(find_nearest(signal, signal[halfmax_start], peak, peak_end)) # Step 5: Compute peak height # Method 1: Difference between gcamp signal and minimum value of that same gcamp signal. peakheight_signalmin = signal[peak] - min(signal) peak_heights_signalmin.append(peakheight_signalmin) # Method 2: Difference between gcamp signal and local minimum of the peak under analysis. peakheight_localmin = max(signal[peak] - signal[peak_start], signal[peak] - signal[peak_end]) peak_heights_localmin.append(peakheight_localmin) # Method 3: Difference between gcamp signal and minimum gcamp value (avg background intensity of well) # This difference correspond to the height of the signal itself as it is corrected for background intensity already. peakheight_wellmin = signal[peak] peak_heights_wellmin.append(peakheight_wellmin) return half_maximums, peak_halfmax_starts, peak_halfmax_ends, peak_rise_starts, peak_fall_ends, peak_heights_signalmin, peak_heights_localmin, peak_heights_wellmin def wavelet_peak(gcamp, max_scale, min_length_0, min_snr_0, noise_perc_0): widths = numpy.arange(1,max_scale,1) peakind = find_peaks_cwt(detrend(gcamp), widths, max_distances=widths/2, gap_thresh=3, min_length=min_length_0, min_snr=min_snr_0, noise_perc=noise_perc_0) if len(peakind) == 0: peakind = [0] return peakind """ x: signal min_peak_height: anything smaller than that will be rejected edge: {'rising','falling','both'} --> determine which indices to keep for irregular peaks, plateaus, etc. valley: if true, will returns indices of valleys instead of peaks min_rel_height_neighbor: specifies a minimum relative height difference between peaks and their immediate neighbors min_peak_distance: minimum distance that must separate each peak for them to be valid keep_peaks_same_height: keep peaks of same height even if closer than min_peak_distance Returns indices of identified peaks """ def find_peaks(x, min_peak_height=None, edge='rising', valley=False, min_rel_height_neighbor=0, min_peak_distance=1, keep_peaks_same_height=False): # need at least 3 points to identify valid peaks if x.size < 3: return numpy.array([], dtype=int) # if looking for valleys, invert the signal and look for peaks if valley: x = -x # identify the different types of peaks dx = numpy.diff(x) singlePointPeaks, risingEdgePeaks, fallingEdgePeaks = numpy.array([[], [], []], dtype=int) if not edge: singlePointPeaks = numpy.where((numpy.hstack((dx, 0)) < 0) & (numpy.hstack((0, dx)) > 0))[0] else: if edge.lower() in ['rising', 'both']: risingEdgePeaks = numpy.where((numpy.hstack((dx, 0)) <= 0) & (numpy.hstack((0, dx)) > 0))[0] if edge.lower() in ['falling', 'both']: fallingEdgePeaks = numpy.where((numpy.hstack((dx, 0)) < 0) & (numpy.hstack((0, dx)) >= 0))[0] ind = numpy.unique(numpy.hstack((singlePointPeaks, risingEdgePeaks, fallingEdgePeaks))) # first and last values of x cannot be peaks if ind.size and ind[0] == 0: ind = ind[1:] if ind.size and ind[-1] == x.size - 1: ind = ind[:-1] # keep only peaks > minimum peak height if ind.size and min_peak_height is not None: ind = ind[x[ind] >= min_peak_height] # remove peaks that are less than "neighbor_threshold" higher than their neighbors if ind.size and min_rel_height_neighbor > 0: dx_neighbors = numpy.min(numpy.vstack([x[ind] - x[ind - 1], x[ind] - x[ind + 1]]), axis=0) ind = numpy.delete(ind, numpy.where(dx_neighbors < min_rel_height_neighbor)[0]) # identify peaks closer to one another than min_peak_distance if ind.size and min_peak_distance > 1: ind = ind[numpy.argsort(x[ind])][::-1] # sort ind by peak height idel = numpy.zeros(ind.size, dtype=bool) for i in range(ind.size): if not idel[i]: # keep peaks with the same height if kpsh is True idel = idel | (ind >= ind[i] - min_peak_distance) & (ind <= ind[i] + min_peak_distance) \ & (x[ind[i]] > x[ind] if keep_peaks_same_height else True) idel[i] = 0 # Keep current peak # remove the small peaks and sort back the indexes by their occurrence ind = numpy.sort(ind[~idel]) return ind # Returns wavelet analysis and periodogram stored in ordered dictionary def wavelet_periodogram_extraction(gcamp, original_gcamp_length): d = collections.OrderedDict() # correction factor to account for interpolation correction_factor = original_gcamp_length / len(gcamp) # Wavelet 8 (8 is better as a general peak identifier) window_length_wavelet8 = 15 peak_ind_wavelet8 = wavelet_peak(gcamp, 8, 5, 2, 10) # peak_ind_wavelet8 = [i for i in peak_ind_wavelet8 if gcamp[i] >= threshold] if len(peak_ind_wavelet8) == 0 or (len(peak_ind_wavelet8) == 1 and peak_ind_wavelet8[0] == 0): d["wavelet8_peak_count"] = 0 d["wavelet8_firing_rate"] = 0 else: # full-width half-maximum computations fwhm_wavelet8 = [gcamp_fwhm(gcamp, window_length_wavelet8, pk, original_gcamp_length) for pk in peak_ind_wavelet8] fwhm_wavelet8_arr = numpy.asarray(fwhm_wavelet8) fwhm_wavelet8_average = numpy.average(fwhm_wavelet8_arr, 0) fwhm_wavelet8_sum = numpy.sum(fwhm_wavelet8_arr, 0) # used for total AUC # add features to dictionary d["wavelet8_peak_count"] = len(peak_ind_wavelet8) d["wavelet8_firing_rate"] = len(peak_ind_wavelet8) / original_gcamp_length d["wavelet8_amplitude"] =
numpy.mean(gcamp[peak_ind_wavelet8])
numpy.mean
import numpy as np
np.random.seed(2019)
numpy.random.seed
import numpy as np import scipy.io as scio from tqdm import tqdm from . import rank_metrics as MET def calc_hammingDist(B1, B2): """B1 and B2 are sign vectors""" q = B2.shape[1] distH = 0.5 * (q - np.dot(B1,B2.transpose())) return distH def one_hot_label(single_label): num_label = np.max(single_label)+1 num_samples = single_label.size one_hot_label = np.zeros([num_samples, num_label], int) for i in range(num_samples): one_hot_label[i, single_label[i]] = 1 return one_hot_label def precision_recall_curve(database_code, database_labels, validation_code, validation_labels, dist_type='hamming'): """Calculate precision code is vector of -1 and 1 labels is OHE """ assert set(np.unique(database_code).tolist()) == set([-1, 1]) assert set(np.unique(validation_code).tolist()) == set([-1, 1]) assert len(database_labels.shape) == 2 assert len(validation_labels.shape) == 2 db_num = database_code.shape[0] query_num = validation_code.shape[0] if dist_type == 'hamming': dist = calc_hammingDist(database_code, validation_code) ids = np.argsort(dist, axis=0) elif dist_type == 'cosine': sim = np.dot(database_code, validation_code.T) ids = np.argsort(-sim, axis=0) else: raise Exception('Unsupported distance type: {}'.format(dist_type)) APx = [] ARx = [] for i in tqdm(range(query_num)): label = validation_labels[i] idx = ids[:, i] imatch = (np.dot(database_labels[idx, :], label) > 0).astype(np.int) relevant_num = np.sum(imatch) Lx = np.cumsum(imatch) Px = Lx.astype(float) / np.arange(1, db_num+1, 1) Rx = Lx.astype(float) / relevant_num APx.append(Px) ARx.append(Rx) return np.mean(np.asarray(APx), axis=0), np.mean(np.asarray(ARx), axis=0) def precision_curve(database_code, database_labels, validation_code, validation_labels, max_R, dist_type='hamming'): """Calculate precision curve at various thresholds""" return precision(database_code, database_labels, validation_code, validation_labels, range(1, max_R + 1), dist_type='hamming') def precision(database_code, database_labels, validation_code, validation_labels, Rs, dist_type='hamming'): """Calculate precision code is vector of -1 and 1 labels is OHE """ assert set(np.unique(database_code).tolist()) == set([-1, 1]) assert set(np.unique(validation_code).tolist()) == set([-1, 1]) assert len(database_labels.shape) == 2 assert len(validation_labels.shape) == 2 query_num = validation_code.shape[0] if dist_type == 'hamming': dist = calc_hammingDist(database_code, validation_code) ids = np.argsort(dist, axis=0) elif dist_type == 'cosine': sim = np.dot(database_code, validation_code.T) ids = np.argsort(-sim, axis=0) else: raise Exception('Unsupported distance type: {}'.format(dist_type)) APx = {R: [] for R in Rs} for i in tqdm(range(query_num)): label = validation_labels[i] idx = ids[:, i] imatch = (np.dot(database_labels[idx, :], label) > 0).astype(np.int) for R in Rs: relevant_num = np.sum(imatch[:R]) if relevant_num != 0: APx[R].append(float(relevant_num) / R) #Compute 2 types of precisions: one ignores 0-relevant and one includes 0-relevant return {R: (np.mean(np.array(APxR)), np.sum(np.array(APxR)) / query_num) for (R, APxR) in APx.items()} # def mean_average_precision(database_code, database_labels, validation_code, validation_labels, Rs, dist_type='hamming'): # """Compute mAP # code is vector of -1 and 1 # labels is OHE # """ # assert set(np.unique(database_code).tolist()) == set([-1, 1]) # assert set(np.unique(validation_code).tolist()) == set([-1, 1]) # assert len(database_labels.shape) == 2 # assert len(validation_labels.shape) == 2 # query_num, db_num = validation_code.shape[0], database_code.shape[0] # if dist_type == 'hamming': # dist = calc_hammingDist(database_code, validation_code) # elif dist_type == 'cosine': # sim = np.dot(database_code, validation_code.T) # dist = -sim # else: # raise Exception('Unsupported distance type: {}'.format(dist_type)) # APx = [] # for i in tqdm(range(query_num)): # label = validation_labels[i] # idx = np.lexsort((np.arange(db_num), dist[:, i])) # imatch = (np.dot(database_labels[idx, :], label) > 0).astype(np.int) # Lx = np.cumsum(imatch) # R = Rs[0] # relevant_num = np.sum(imatch[:R]) # Px = Lx[:R].astype(float) / np.arange(1, R+1, 1) # if relevant_num != 0: # APx.append((np.sum(Px * imatch[:R]) / relevant_num, relevant_num)) # return APx # def mean_average_precision(database_code, database_labels, validation_code, validation_labels, Rs, dist_type='hamming'): # """Compute mAP # code is vector of -1 and 1 # labels is OHE # """ # assert set(np.unique(database_code).tolist()) == set([-1, 1]) # assert set(np.unique(validation_code).tolist()) == set([-1, 1]) # assert len(database_labels.shape) == 2 # assert len(validation_labels.shape) == 2 # query_num, db_num = validation_code.shape[0], database_code.shape[0] # if dist_type == 'hamming': # dist = calc_hammingDist(database_code, validation_code) # elif dist_type == 'cosine': # sim = np.dot(database_code, validation_code.T) # dist = -sim # else: # raise Exception('Unsupported distance type: {}'.format(dist_type)) # APx = {R: [] for R in Rs} # for i in tqdm(range(query_num)): # label = validation_labels[i] # idx = np.lexsort((np.arange(db_num), dist[:, i])) # imatch = (np.dot(database_labels[idx, :], label) > 0).astype(np.int) # Lx = np.cumsum(imatch) # for R in Rs: # relevant_num = np.sum(imatch[:R]) # Px = Lx[:R].astype(float) / np.arange(1, R+1, 1) # if relevant_num != 0: # APx[R].append(np.sum(Px * imatch[:R]) / relevant_num) # return {R: np.mean(np.array(APxR)) for (R, APxR) in APx.items()} def mean_average_precision(database_code, database_labels, validation_code, validation_labels, Rs, dist_type='hamming'): """Compute mAP code is vector of -1 and 1 labels is OHE """ assert set(np.unique(database_code).tolist()) == set([-1, 1]) assert set(np.unique(validation_code).tolist()) == set([-1, 1]) assert len(database_labels.shape) == 2 assert len(validation_labels.shape) == 2 query_num = validation_code.shape[0] if dist_type == 'hamming': dist = calc_hammingDist(database_code, validation_code) ids = np.argsort(dist, axis=0) elif dist_type == 'cosine': sim = np.dot(database_code, validation_code.T) ids = np.argsort(-sim, axis=0) else: raise Exception('Unsupported distance type: {}'.format(dist_type)) APx = {R: [] for R in Rs} for i in tqdm(range(query_num)): label = validation_labels[i] idx = ids[:, i] imatch = (np.dot(database_labels[idx, :], label) > 0).astype(np.int) Lx = np.cumsum(imatch) for R in Rs: relevant_num = np.sum(imatch[:R]) Px = Lx[:R].astype(float) / np.arange(1, R+1, 1) if relevant_num != 0: APx[R].append(np.sum(Px * imatch[:R]) / relevant_num) #Compute 2 types of mAP: one ignores 0-relevant and one includes 0-relevant return {R: (np.mean(np.array(APxR)), np.sum(np.array(APxR)) / query_num) for (R, APxR) in APx.items()} def calculate_distances(database_code, validation_code, dist_type='hamming'): assert set(np.unique(database_code).tolist()) == set([-1, 1]) assert set(np.unique(validation_code).tolist()) == set([-1, 1]) # assert len(database_labels.shape) == 2 # assert len(validation_labels.shape) == 2 query_num = validation_code.shape[0] if dist_type == 'hamming': dist = calc_hammingDist(database_code, validation_code) ids = np.argsort(dist, axis=0) elif dist_type == 'cosine': sim = np.dot(database_code, validation_code.T) dist = -sim ids = np.argsort(dist, axis=0) else: raise Exception('Unsupported distance type: {}'.format(dist_type)) return dist, ids def calculate_all_metrics(database_code, database_labels, validation_code, validation_labels, Rs, dist_type='hamming'): assert set(np.unique(database_code).tolist()) == set([-1, 1]) assert set(np.unique(validation_code).tolist()) == set([-1, 1]) assert len(database_labels.shape) == 2 assert len(validation_labels.shape) == 2 query_num = validation_code.shape[0] if dist_type == 'hamming': dist = calc_hammingDist(database_code, validation_code) ids = np.argsort(dist, axis=0) elif dist_type == 'cosine': sim = np.dot(database_code, validation_code.T) ids = np.argsort(-sim, axis=0) else: raise Exception('Unsupported distance type: {}'.format(dist_type)) mean_Px = {R: [] for R in Rs} #mean_precision mean_APx = {R: [] for R in Rs} #mean_average_precision for i in tqdm(range(query_num)): label = validation_labels[i] idx = ids[:, i] imatch = (np.dot(database_labels[idx, :], label) > 0).astype(np.int) Lx = np.cumsum(imatch) for R in Rs: relevant_num = np.sum(imatch[:R]) Px = Lx[:R].astype(float) / np.arange(1, R+1, 1) if relevant_num != 0: mean_APx[R].append(np.sum(Px * imatch[:R]) / relevant_num) mean_Px[R].append(float(relevant_num) / R) mean_Px = {R: (np.mean(np.array(xR)), np.sum(np.array(xR)) / query_num) for (R, xR) in mean_Px.items()} mean_APx = {R: (np.mean(np.array(xR)), np.sum(np.array(xR)) / query_num) for (R, xR) in mean_APx.items()} return mean_Px, mean_APx import concurrent.futures def calculate_all_metrics_parallel(database_code, database_labels, validation_code, validation_labels, Rs, dist_type='hamming'): assert set(np.unique(database_code).tolist()) == set([-1, 1]) assert set(np.unique(validation_code).tolist()) == set([-1, 1]) assert len(database_labels.shape) == 2 assert len(validation_labels.shape) == 2 query_num = validation_code.shape[0] print('Compute distance') if dist_type == 'hamming': dist = calc_hammingDist(database_code, validation_code) ids = np.argsort(dist, axis=0) elif dist_type == 'cosine': sim = np.dot(database_code, validation_code.T) ids = np.argsort(-sim, axis=0) else: raise Exception('Unsupported distance type: {}'.format(dist_type)) mean_Px = {R: [] for R in Rs} #mean_precision mean_APx = {R: [] for R in Rs} #mean_average_precision def compute_result(Rs, label, ranked_items): imatch = (np.dot(ranked_items, label) > 0).astype(np.int) Lx = np.cumsum(imatch) APx_R = {} Px_R = {} for R in Rs: relevant_num = np.sum(imatch[:R]) Px = Lx[:R].astype(float) / np.arange(1, R+1, 1) if relevant_num != 0: APx_R[R] = np.sum(Px * imatch[:R]) / relevant_num Px_R[R] = float(relevant_num) / R else: APx_R[R] = 0 Px_R[R] = 0 return (APx_R, Px_R) with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor: print('Submit query eval') # future_to_results = {} # for i in tqdm(range(query_num)): # label = validation_labels[i] # idx = ids[:, i] # ranked_items = database_labels[idx, :] # future_to_results[executor.submit(compute_result, Rs, label, ranked_items)] = i future_to_results = {executor.submit(compute_result, Rs, validation_labels[i], database_labels[ids[:, i], :]): i for i in range(query_num)} print('Get results') for future in tqdm(concurrent.futures.as_completed(future_to_results)): i = future_to_results[future] try: APx_R, Px_R = future.result() except Exception as exc: print('%r generated an exception: %s' % (i, exc)) else: for R, v in Px_R.item(): if v != 0: mean_Px[R].append(v) for R, v in APx_R.item(): if v != 0: mean_APx[R].append(v) mean_Px = {R: (np.mean(
np.array(xR)
numpy.array
import time import datetime import numpy as np import multiprocessing def write_to_output(string: str, output_file: str = 'otf_run.out'): with open(output_file, 'a') as f: f.write(string) def write_header(cutoffs, kernel_name, hyps, algo, dt, Nsteps, structure, output_name, std_tolerance): with open(output_name, 'w') as f: f.write(str(datetime.datetime.now()) + '\n') if std_tolerance < 0: std_string = \ 'uncertainty tolerance: {} eV/A\n'.format(np.abs(std_tolerance)) elif std_tolerance > 0: std_string = \ 'uncertainty tolerance: {} times noise \n'\ .format(np.abs(std_tolerance)) else: std_string = '' headerstring = '' headerstring += \ 'number of cpu cores: {}\n'.format(multiprocessing.cpu_count()) headerstring += 'cutoffs: {}\n'.format(cutoffs) headerstring += 'kernel: {}\n'.format(kernel_name) headerstring += 'number of hyperparameters: {}\n'.format(len(hyps)) headerstring += 'hyperparameters: {}' \ '\n'.format(hyps) headerstring += 'hyperparameter optimization algorithm: {}' \ '\n'.format(algo) headerstring += std_string headerstring += 'timestep (ps): {}\n'.format(dt) headerstring += 'number of frames: {}\n'.format(Nsteps) headerstring += 'number of atoms: {}\n'.format(structure.nat) headerstring += \ 'system species: {}\n'.format(set(structure.species_labels)) headerstring += 'periodic cell: \n' headerstring += str(structure.cell) # report previous positions headerstring += '\nprevious positions (A):\n' for i in range(len(structure.positions)): headerstring += str(structure.species_labels[i]) + ' ' for j in range(3): headerstring += str("%.8f" % structure.prev_positions[i][j]) + ' ' headerstring += '\n' headerstring += '-' * 80 + '\n' write_to_output(headerstring, output_name) def write_md_config(dt, curr_step, structure, temperature, KE, local_energies, start_time, output_name, dft_step, velocities): string = '' # Mark if a frame had DFT forces with an asterisk if not dft_step: string += '-' * 80 + '\n' string += "-Frame: " + str(curr_step) else: string += "\n*-Frame: " + str(curr_step) string += '\nSimulation Time: %.3f ps \n' % (dt * curr_step) # Construct Header line string += 'El Position (A) \t\t\t\t ' if not dft_step: string += 'GP Force (ev/A) ' else: string += 'DFT Force (ev/A) ' string += '\t\t\t\t Std. Dev (ev/A) \t' string += '\t\t\t\t Velocities (A/ps) \n' # Construct atom-by-atom description for i in range(len(structure.positions)): string += str(structure.species_labels[i]) + ' ' for j in range(3): string += str("%.8f" % structure.positions[i][j]) + ' ' string += '\t' for j in range(3): string += str("%.8f" % structure.forces[i][j]) + ' ' string += '\t' for j in range(3): string += str("%.8e" % structure.stds[i][j]) + ' ' string += '\t' for j in range(3): string += str("%.8e" % velocities[i][j]) + ' ' string += '\n' string += '\n' string += 'temperature: %.2f K \n' % temperature string += 'kinetic energy: %.6f eV \n' % KE # calculate potential and total energy if local_energies is not None: pot_en =
np.sum(local_energies)
numpy.sum
""" Classes for specifying different injectors for Warp simulations of cathodes. Authors: <NAME> and <NAME> 04/25/2017 """ from __future__ import division import numpy as np from rswarp.cathode import sources # Specify constants from scipy.constants import e, m_e, c, k kb_eV = 8.6173324e-5 # Bolztmann constant in eV/K kb_J = k # Boltzmann constant in J/K m = m_e # mass of electron class UserInjectors(object): def __init__(self, species, w3d, gchange, cathode_temperature, cathode_radius, ptcl_per_step, accelerating_voltage=0., zmin_scale=10.): self.species = species self.w3d = w3d self.gchange = gchange self.cathode_temperature = cathode_temperature self.cathode_radius = cathode_radius self.ptcl_per_step = ptcl_per_step self.accelerating_voltage = accelerating_voltage self.zmin_scale = zmin_scale dz = (w3d.zmmax - w3d.zmmin) / w3d.nz assert dz > 0, "Must define w3d.zmmin and w3d.zmmax before initializing injector" self.z_part_min = dz / self.zmin_scale def inject_thermionic(self): """ Define particle coordinates for thermionic injection. Note that this does not specify current, just macroparticle coordinates Returns: """ v_coords = sources.get_MB_velocities(self.ptcl_per_step, self.cathode_temperature) x_vals = self.cathode_radius * (np.random.rand(self.ptcl_per_step) - 0.5) y_vals = self.cathode_radius * (np.random.rand(self.ptcl_per_step) - 0.5) z_vals = np.zeros(self.ptcl_per_step) + self.z_part_min # Add a minimum z coordinate to prevent absorption ptclArray = np.asarray([x_vals, v_coords[:, 0], y_vals, v_coords[:, 1], z_vals, v_coords[:, 2]]).T self.species.addparticles(x=ptclArray[:, 0], y=ptclArray[:, 2], z=ptclArray[:, 4], vx=ptclArray[:, 1], vy=ptclArray[:, 3], vz=ptclArray[:, 5]) def inject_constant(self): """ Same as inject thermionic but with a very low default (4 K) temperature and no transverse velocities Returns: """ v_coords = sources.get_MB_velocities(self.ptcl_per_step,4) v_coords[:, 0] = np.zeros(self.ptcl_per_step) # no transverse v_coords[:, 1] = np.zeros(self.ptcl_per_step) # no transverse x_vals = self.cathode_radius * (np.random.rand(self.ptcl_per_step) - 0.5) y_vals = self.cathode_radius * (np.random.rand(self.ptcl_per_step) - 0.5) z_vals = np.zeros(self.ptcl_per_step) + self.z_part_min # Add a minimum z coordinate to prevent absorption ptclArray = np.asarray([x_vals, v_coords[:, 0], y_vals, v_coords[:, 1], z_vals, v_coords[:, 2]]).T self.species.addparticles(x=ptclArray[:, 0], y=ptclArray[:, 2], z=ptclArray[:, 4], vx=ptclArray[:, 1], vy=ptclArray[:, 3], vz=ptclArray[:, 5]) def inject_thermionic_egun(self): """ Define particle coordinates for thermionic injection. Note that this does not specify current, just macroparticle coordinates. The "egun" mode modifies the injector call to adjust certain top quantities after a single particle addition. Returns: """ v_coords = sources.get_MB_velocities(self.ptcl_per_step, self.cathode_temperature) x_vals = self.cathode_radius * (np.random.rand(self.ptcl_per_step) - 0.5) y_vals = self.cathode_radius * (np.random.rand(self.ptcl_per_step) - 0.5) z_vals = np.zeros(self.ptcl_per_step) + self.z_part_min # Add a minimum z coordinate to prevent absorption ptclArray = np.asarray([x_vals, v_coords[:, 0], y_vals, v_coords[:, 1], z_vals, v_coords[:, 2]]).T self.species.addparticles(x=ptclArray[:, 0], y=ptclArray[:, 2], z=ptclArray[:, 4], vx=ptclArray[:,1], vy=ptclArray[:,3], vz=ptclArray[:,5], lallindomain=True) def thermionic_rz_injector(self, return_coordinates=False): """ Injector for imitating thermionic injection and dc acceleration of a beam up to relativistic energy. Will create a beam with energy spread based on `cathode_temperature` and then apply a uniform Ez field to accelerate up to voltage set by `accelerating_voltage`. Args: return_coordinates: If true, the function will return an array of the particle coordinates. otherwise the coordinates are just added directly to the Species object. Returns: Array of 6D phase space (optional) """ mass = self.species.mass / e * c**2 # mass in eV/c**2 # Emission from thermal source velocity_coords = sources.get_MB_velocities(self.ptcl_per_step, self.cathode_temperature) # Particles are accelerated by a force F=(0, 0, Fz) generated by potential V def kinetic_energy(velocity_vector): velocity_magnitude = velocity_vector[:, 0]**2 + velocity_vector[:, 1]**2 + velocity_vector[:, 2]**2 gamma = 1. / np.sqrt(1. - velocity_magnitude / c**2) kinetic_energy = mass * (gamma - 1.) return kinetic_energy # Assume only Fz so vx and vy unchanged, can find new vz after acceleration based on this ke = kinetic_energy(velocity_coords) final_ke = ke + self.accelerating_voltage final_velocity =
np.sqrt(1. - 1. / (final_ke / mass + 1.)**2)
numpy.sqrt
import numpy as np from scipy.special import logsumexp import params def forward_backward(lls, tr, ip): """ Inputs: lls - matrix of per-frame log HMM state output probabilities tr - transition probability matrix ip - vector of initial state probabilities (i.e. statrting in the state) Outputs: sp - matrix of per-frame state occupation posteriors tll - total (forward) log-likelihood lfw - log forward probabilities lfw - log backward probabilities """ ltr = np.log(tr) lfw = np.empty_like(lls) lbw = np.empty_like(lls) lfw[:] = -np.inf lbw[:] = -np.inf lfw[0] = lls[0] + np.log(ip) lbw[-1] = 0.0 for ii in range(1, len(lls)): lfw[ii] = lls[ii] + logsumexp(lfw[ii - 1] + ltr.T, axis=1) for ii in reversed(range(len(lls) - 1)): lbw[ii] = logsumexp(ltr + lls[ii + 1] + lbw[ii + 1], axis=1) tll = logsumexp(lfw[-1]) sp = np.exp(lfw + lbw - tll) return sp, tll, lfw, lbw def mean_filter(arr, k): """Process mean filter over array of k-elements on each side, changing filter size on start and end of array to smoother output""" kernel = np.ones(2 * k + 1) / (2 * k + 1) if kernel.shape[0] > arr.shape[0]: kernel = np.zeros(arr.shape[0]) front =
np.empty(k)
numpy.empty
import pandas as pd import numpy as np from sklearn.metrics import * import matplotlib.pyplot as plt import sugeno_integral def getfile(filename, root="../"): file = root+filename+'.csv' df = pd.read_csv(file,header=None) df = np.asarray(df) labels=[] for i in range(376): labels.append(0) for i in range(369): labels.append(1) labels = np.asarray(labels) return df,labels def predicting(ensemble_prob): prediction =
np.zeros((ensemble_prob.shape[0],))
numpy.zeros
# taken from https://github.com/teddyroland/python-biplot/blob/master/biplot.py import pandas as pd from sklearn.decomposition import PCA from matplotlib import pyplot as plt import os import numpy as np import seaborn as sns from collections import Counter from matplotlib import cm import matplotlib.cm as cm import joypy from sklearn import preprocessing import matplotlib import sys import joypy def heatmap(corr, size): x = corr['x'] y = corr['y'] fig, ax = plt.subplots(figsize=(24,20)) # Mapping from column names to integer coordinates x_labels = [v for v in x.unique()] y_labels = [v for v in y.unique()] x_to_num = {p[1]:p[0] for p in enumerate(x_labels)} y_to_num = {p[1]:p[0] for p in enumerate(y_labels)} size_scale = 450 s = ax.scatter( x=x.map(x_to_num), # Use mapping for x y=y.map(y_to_num), # Use mapping for y s=size * size_scale, # Vector of square sizes, proportional to size parameter c=corr['value'], cmap='coolwarm', marker='s', # Use square as scatterplot marker vmin=-1, vmax=1 ) cbar = fig.colorbar(s, orientation='vertical') cbar.ax.tick_params(size=0) #cbar.set_label('Correlation', rotation=270) cbarax = cbar.ax cbarax.text(3,-0.12,'Correlation',rotation=-90, fontsize=30) # Show column labels on the axes #print([x_to_num[v]+0.5 for v in x_labels]) plt.xlim((-0.5, 24.5)) plt.ylim((-0.5, 24.5)) ax.set_xticks([x_to_num[v]+0.5 for v in x_labels]) ax.set_xticklabels(x_labels, rotation=90, horizontalalignment='left') ax.invert_yaxis() ax.set_yticks([y_to_num[v]+0.5 for v in y_labels]) ##plt.setp( ax.xaxis.get_majorticklabels(), rotation=90, ha="left" ) ax.set_yticklabels(y_labels) dx = -0.3; dy = 0; offset_x = matplotlib.transforms.ScaledTranslation(dx, dy, fig.dpi_scale_trans) dx = 0; dy = +0.2; offset_y = matplotlib.transforms.ScaledTranslation(dx, dy, fig.dpi_scale_trans) # apply offset transform to all x ticklabels. for label in ax.xaxis.get_majorticklabels(): label.set_transform(label.get_transform() + offset_x) for label in ax.yaxis.get_majorticklabels(): label.set_transform(label.get_transform() + offset_y) def preprocess_df(dataML, save=0): dataML['rAp-Kron'] = dataML['rApMag_rKronMag'] del dataML['rApMag_rKronMag'] #del dataML['7DCD'] dataML = dataML.drop(['objAltName1','objAltName2','objAltName3'], axis=1) dataML = dataML.drop(['objID'], axis=1) dataML = dataML.drop(['objName','uniquePspsOBid','ippObjID','surveyID','htmID','zoneID','tessID','projectionID','skyCellID'], axis=1) dataML = dataML.drop(['randomID','batchID','dvoRegionID','processingVersion','objInfoFlag','qualityFlag','raStack','decStack'], axis=1) dataML = dataML.drop(['raStackErr', 'decStackErr', 'raMean', 'decMean', 'raMeanErr', 'decMeanErr'], axis=1) dataML = dataML.drop(['gra', 'gdec', 'graErr', 'gdecErr', 'rra', 'rdec', 'rraErr', 'rdecErr','ira', 'idec', 'iraErr', 'idecErr','zra', 'zdec', 'zraErr', 'zdecErr','yra', 'ydec', 'yraErr', 'ydecErr'], axis=1) dataML = dataML.drop(['l','b','nStackObjectRows'],axis=1) dataML = dataML.drop(['nStackDetections','nDetections'],axis=1) dataML = dataML.drop(['gippDetectID', 'gstackDetectID', 'gstackImageID','rippDetectID', 'rstackDetectID', 'rstackImageID','iippDetectID', 'istackDetectID', 'istackImageID','zippDetectID', 'zstackDetectID', 'zstackImageID','yippDetectID', 'ystackDetectID', 'ystackImageID'], axis=1) dataML = dataML.drop(['bestDetection'],axis=1) dataML = dataML.drop(['epochMean'],axis=1) dataML = dataML.drop(['ng','nr','ni','nz'],axis=1) dataML = dataML.drop(['ny'],axis=1) dataML = dataML.drop(['uniquePspsSTid','primaryDetection','gEpoch'],axis=1) dataML = dataML.drop(['rEpoch','iEpoch','zEpoch', 'yEpoch'],axis=1) dataML = dataML.drop(['cx','cy'],axis=1) dataML = dataML.drop(['cz'],axis=1) #dataML = dataML.drop(['host_logmass', 'host_logmass_min', 'host_logmass_max'],axis=1) dataML = dataML.drop(['lambda','beta'],axis=1) dataML = dataML.drop(['gpsfChiSq','rpsfChiSq','ipsfChiSq','zpsfChiSq','ypsfChiSq', 'ginfoFlag', 'ginfoFlag2', 'ginfoFlag3', 'rinfoFlag', 'rinfoFlag2', 'rinfoFlag3', 'iinfoFlag', 'iinfoFlag2', 'iinfoFlag3', 'zinfoFlag', 'zinfoFlag2', 'zinfoFlag3', 'yinfoFlag', 'yinfoFlag2', 'yinfoFlag3'],axis=1) dataML = dataML.drop(['gxPos', 'gxPosErr','rxPos', 'rxPosErr','ixPos', 'ixPosErr','zxPos', 'zxPosErr','yxPos', 'yxPosErr' ],axis=1) dataML = dataML.drop(['gyPos', 'gyPosErr','ryPos', 'ryPosErr','iyPos', 'iyPosErr','zyPos', 'zyPosErr','yyPos', 'yyPosErr' ],axis=1) dataML = dataML.drop(['gexpTime','rexpTime','iexpTime','zexpTime','yexpTime','gnFrames','rnFrames','inFrames','znFrames','ynFrames'],axis=1) dataML = dataML.drop(['gzp','rzp','izp','zzp','yzp'],axis=1) dataML = dataML.drop(['gPlateScale','rPlateScale','iPlateScale','zPlateScale','yPlateScale'],axis=1) dataML = dataML.drop(['posMeanChisq'],axis=1) dataML = dataML.drop(['gpsfQf','ipsfQf', 'zpsfQf', 'ypsfQf'], axis=1) dataML = dataML.drop(['gApFillFac', 'yApFillFac', 'iApFillFac', 'zApFillFac'], axis=1) dataML = dataML.drop(['gpsfQfPerfect', 'ipsfQfPerfect', 'zpsfQfPerfect', 'ypsfQfPerfect'], axis=1) #dataML = dataML.drop(['level_0'], axis=1) dataML = dataML.drop(['gpsfTheta', 'ipsfTheta', 'zpsfTheta', 'ypsfTheta'], axis=1) dataML = dataML.drop(['gsky', 'isky', 'zsky', 'ysky'], axis=1) dataML = dataML.drop(['gskyErr', 'iskyErr', 'zskyErr', 'yskyErr'], axis=1) dataML = dataML.drop(['gpsfCore', 'ipsfCore', 'zpsfCore', 'ypsfCore'], axis=1) dataML = dataML.drop(['rpsfTheta', 'rsky', 'rskyErr', 'rpsfCore'], axis=1) dataML = dataML.drop(['gpsfLikelihood', 'rpsfLikelihood', 'ipsfLikelihood', 'zpsfLikelihood','ypsfLikelihood'], axis=1) dataML = dataML.drop(['rpsfQf'], axis=1) dataML = dataML.drop(['rpsfQfPerfect'], axis=1) dataML = dataML.drop(['rApFillFac'], axis=1) #dataML.drop(['objID'], inplace=True, axis=1) dataML = dataML.drop(['NED_redshift', 'NED_type', 'NED_mag', 'NED_name', 'NED_vel', 'TransientDEC', 'TransientDiscoveryDate', 'TransientDiscoveryMag', 'TransientDiscoveryYear', 'TransientRA'], axis=1) dataML = dataML.drop(['TransientRedshift', 'TransientRedshift', 'Transient AltName', 'host_logmass', 'host_logmass_min', 'host_logmass_max', 'Hubble Residual'], axis=1) dataML = dataML.dropna() # Labels are the values we want to predict dataML.loc[dataML['TransientClass'] == 'SN Ib\n SN Ib', 'TransientClass'] = 'SN Ib' dataML.loc[dataML['TransientClass'] == 'SN Ia\n SN Ia', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'SN II-pec', 'TransientClass'] = 'SN II Pec' dataML.loc[dataML['TransientClass'] == 'SN Ic-BL', 'TransientClass'] = 'SN Ic' dataML.loc[dataML['TransientClass'] == 'SN Ia-91T-like', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'SN Ia-pec', 'TransientClass'] = 'SN Ia Pec' dataML.loc[dataML['TransientClass'] == 'SN Ib-pec', 'TransientClass'] = 'SN Ib' dataML.loc[dataML['TransientClass'] == 'SN Ic', 'TransientClass'] = 'SN Ib/c' dataML.loc[dataML['TransientClass'] == 'SN Iax[02cx-like]', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'SN Ib-Ca-rich', 'TransientClass'] = 'SN Ib' dataML.loc[dataML['TransientClass'] == 'SN Ia-91bg-like', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'SN Ia-CSM', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'SN Ic-pec', 'TransientClass'] = 'SN Ic' dataML.loc[dataML['TransientClass'] == 'SN IIn', 'TransientClass'] = 'SN II' dataML.loc[dataML['TransientClass'] == 'SN Ibn', 'TransientClass'] = 'SN Ib' dataML.loc[dataML['TransientClass'] == 'SN Ib', 'TransientClass'] = 'SN Ib/c' dataML.loc[dataML['TransientClass'] == 'SN Ia Pec', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'SN Ia-91bg', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'SN Ic', 'TransientClass'] = 'SN Ib/c' #dataML.loc[dataML['TransientClass'] == 'SN Ib/c', 'TransientClass'] = 'SN Ib' dataML.loc[dataML['TransientClass'] == 'SN IIP', 'TransientClass'] = 'SN II' dataML.loc[dataML['TransientClass'] == 'SN IIL', 'TransientClass'] = 'SN II' #dataML.loc[dataML['TransientClass'] == 'SLSN-I', 'TransientClass'] = 'SLSN' #dataML.loc[dataML['TransientClass'] == 'SN IIb', 'TransientClass'] = 'SN II' dataML.loc[dataML['TransientClass'] == 'SN I', 'TransientClass'] = 'SN I?' #dataML.loc[dataML['TransientClass'] == 'SN II', 'TransientClass'] = 'Core Collapse' dataML.loc[dataML['TransientClass'] == 'SN Ib', 'TransientClass'] = 'SN Ib/c' dataML.loc[dataML['TransientClass'] == 'SN Ic', 'TransientClass'] = 'SN Ib/c' #dataML.loc[dataML['TransientClass'] == 'SN Ib/c', 'TransientClass'] = 'Core Collapse' dataML.loc[dataML['TransientClass'] == 'SLSN-I', 'TransientClass'] = 'SLSN' dataML.loc[dataML['TransientClass'] == 'SLSN-II', 'TransientClass'] = 'SLSN' dataML.loc[dataML['TransientClass'] == 'Ia Pec', 'TransientClass'] = 'SN Ia Pec' dataML.loc[dataML['TransientClass'] == 'II Pec', 'TransientClass'] = 'SN II Pec' dataML.loc[dataML['TransientClass'] == 'Ia*', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'Ia-02cx', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'Ia-91T', 'TransientClass'] = 'SN Ia-91T-like' dataML.loc[dataML['TransientClass'] == 'Ia-91bg', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'Ia-99aa', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'SLSN-II', 'TransientClass'] = 'SLSN' dataML.loc[dataML['TransientClass'] == 'CC', 'TransientClass'] = 'SN II' dataML.loc[dataML['TransientClass'] == 'II', 'TransientClass'] = 'SN II' dataML.loc[dataML['TransientClass'] == 'SLSN-I-R', 'TransientClass'] = 'SLSN' dataML.loc[dataML['TransientClass'] == 'SLSN-R', 'TransientClass'] = 'SLSN' dataML.loc[dataML['TransientClass'] == 'II/IIb', 'TransientClass'] = 'SN II' #dataML.loc[dataML['TransientClass'] == 'II L', 'TransientClass'] = 'SN II' dataML.loc[dataML['TransientClass'] == 'II P', 'TransientClass'] = 'SN IIP' dataML.loc[dataML['TransientClass'] == 'Ib', 'TransientClass'] = 'SN Ib/c' dataML.loc[dataML['TransientClass'] == 'Ic', 'TransientClass'] = 'SN Ib/c' dataML.loc[dataML['TransientClass'] == 'II-p', 'TransientClass'] = 'SN II P' #dataML.loc[dataML['TransientClass'] == 'II/LBV', 'TransientClass'] = 'SN II' dataML.loc[dataML['TransientClass'] == 'IIb', 'TransientClass'] = 'SN IIb' #dataML.loc[dataML['TransientClass'] == 'Ic Pec', 'TransientClass'] = 'SN Ib/c' dataML.loc[dataML['TransientClass'] == 'SN Ia Pec', 'TransientClass'] = 'SN Ia' #dataML.loc[dataML['TransientClass'] == 'Ib/Ic (Ca rich?)?', 'TransientClass'] = 'SN Ib/c' #dataML.loc[dataML['TransientClass'] == 'Ia CSM', 'TransientClass'] = 'SN Ia' #dataML.loc[dataML['TransientClass'] == 'Ic BL', 'TransientClass'] = 'SN Ib/c' dataML.loc[dataML['TransientClass'] == 'Ia', 'TransientClass'] = 'SN Ia' dataML.loc[dataML['TransientClass'] == 'Ib/c', 'TransientClass'] = 'SN Ib/c' dataML.loc[dataML['TransientClass'] == 'IIn', 'TransientClass'] = 'SN IIn' #dataML.loc[dataML['TransientClass'] == 'Ib Pec', 'TransientClass'] = 'SN Ib/c' #dataML.loc[dataML['TransientClass'] == 'Ibn', 'TransientClass'] = 'SN Ib/c' #dataML.loc[dataML['TransientClass'] == 'IIn Pec', 'TransientClass'] = 'SN IIn' dataML.loc[dataML['TransientClass'] == 'Ia/Ic', 'TransientClass'] = 'SN Ia/c' dataML.loc[dataML['TransientClass'] == 'SN II P', 'TransientClass'] = 'SN IIP' dataML.loc[dataML['TransientClass'] == 'SN II Pec', 'TransientClass'] = 'SN II' dataML.loc[dataML['TransientClass'] == 'Ia/c', 'TransientClass'] = 'SN Ia/c' dataML.loc[dataML['TransientClass'] == 'I', 'TransientClass'] = 'SN I' #dataML.loc[dataML['TransientClass'] == 'SN Ia-91T-like', 'TransientClass'] = 'SN Ia Pec' #dataML.loc[dataML['TransientClass'] == 'SN Iax[02cx-like]', 'TransientClass'] = 'SN Ia Pec' #dataML.loc[dataML['TransientClass'] == 'SLSN-I?', 'TransientClass'] = 'SLSN' #put that back in there, along with the SLSN-I-R #dataML.loc[dataML['TransientClass'] == 'SLSN-IIn', 'TransientClass'] = 'SLSN' # only for the 2 component class #dataML.loc[dataML['TransientClass'] == 'SN Ib/c', 'TransientClass'] = 'Core Collapse' #dataML.loc[dataML['TransientClass'] == 'SN IIP', 'TransientClass'] = 'Core Collapse' #dataML.loc[dataML['TransientClass'] == 'SN IIb', 'TransientClass'] = 'Core Collapse' #dataML.loc[dataML['TransientClass'] == 'SN IIn', 'TransientClass'] = 'Core Collapse' #dataML.loc[dataML['TransientClass'] == 'SN II', 'TransientClass'] = 'Core Collapse' #'SN Ia': 6279, 'SN II': 2061, 'SN Ib/c': 528, 'SN IIP': 307, 'SN IIn': 265, 'SN IIb': 94, 'SLSN': 38 # 'SN II', 'SN IIb', 'SN IIn', # Delete the rows where we have no set detection dataML = dataML[dataML['TransientClass'] != 'SN'] #dataML = dataML[dataML['TransientClass'] != 'SLSN'] dataML = dataML[dataML['TransientClass'] != 'Ia-09dc'] dataML = dataML[dataML['TransientClass'] != 'SN I?'] dataML = dataML[dataML['TransientClass'] != 'SNIa?'] dataML = dataML[dataML['TransientClass'] != 'SLSN?'] dataML = dataML[dataML['TransientClass'] != 'Ic Pec'] dataML = dataML[dataML['TransientClass'] != 'PISN?'] dataML = dataML[dataML['TransientClass'] != 'I?'] dataML = dataML[dataML['TransientClass'] != 'Ib/Ic (Ca rich?)?'] dataML = dataML[dataML['TransientClass'] != 'II Pec?'] dataML = dataML[dataML['TransientClass'] != 'IIn?'] dataML = dataML[dataML['TransientClass'] != 'IIb?'] dataML = dataML[dataML['TransientClass'] != 'SLSN?'] dataML = dataML[dataML['TransientClass'] != 'SN Ic-BL'] #dataML = dataML[dataML['TransientClass'] != 'SN IIb'] #dataML = dataML[dataML['TransientClass'] != 'SN Ia Pec'] #dataML = dataML[dataML['TransientClass'] != 'SN IIn'] #'SLSN', 'SN II', 'SN II Pec', 'SN IIP', 'SN IIb', 'SN IIn', # 'SN Ia', 'SN Ia Pec', 'SN Ia-91T-like', 'SN Ib/c' dataML = dataML[dataML['TransientClass'] != 'Ic?'] dataML = dataML[dataML['TransientClass'] != 'II?'] dataML = dataML[dataML['TransientClass'] != 'Ib/IIb'] dataML = dataML[dataML['TransientClass'] != 'IIb/Ib'] dataML = dataML[dataML['TransientClass'] != 'II/Ib/c'] dataML = dataML[dataML['TransientClass'] != 'Ib/c?'] dataML = dataML[dataML['TransientClass'] != 'SLSN-II?'] dataML = dataML[dataML['TransientClass'] != 'Ia?'] # only for the 4-component class dataML = dataML[dataML['TransientClass'] != 'SN I'] dataML = dataML[dataML['TransientClass'] != 'LBV to IIn'] dataML = dataML[dataML['TransientClass'] != 'LBV'] dataML = dataML[dataML['TransientClass'] != 'SN Ia/c'] dataML = dataML[dataML['TransientClass'] != 'Ca-rich'] dataML = dataML[dataML['TransientClass'] != 'Pec'] dataML = dataML[dataML['TransientClass'] != 'CN'] dataML = dataML[dataML['TransientClass'] != 'II L?'] dataML = dataML[dataML['TransientClass'] != 'Ib-Ca'] dataML = dataML[dataML['TransientClass'] != 'Pec'] dataML = dataML[dataML['TransientClass'] != 'nIa'] dataML = dataML[dataML['TransientClass'] != 'SLSN-I?'] dataML = dataML[dataML['TransientClass'] != 'SLSN-IIn'] dataML = dataML[dataML['TransientClass'] != 'SN Iax[02cx-like]'] dataML = dataML[dataML['TransientClass'] != 'SN Ia-91T-like'] dataML = dataML[dataML['TransientClass'] != 'Ia-02cx'] dataML = dataML[dataML['TransientClass'] != 'Ia-91T'] dataML = dataML[dataML['TransientClass'] != 'Ia-91bg'] dataML = dataML[dataML['TransientClass'] != 'IIn Pec'] dataML_orig = dataML dataML = dataML.drop(['TransientName'],axis=1) dataML = dataML.drop(['TransientClass'],axis=1) dataML.dropna(inplace=True) if save: dataML.to_csv("pre_PCA_features.csv",index=False) return dataML_orig, dataML def plot_heatmap(dataML, save=0, corr_type='pearson'): dataML["gSNR"] = 1/dataML["gApMagErr"] dataML["rSNR"] = 1/dataML["rApMagErr"] dataML["iSNR"] = 1/dataML["iApMagErr"] dataML["zSNR"] = 1/dataML["zApMagErr"] dataML["ySNR"] = 1/dataML["yApMagErr"] dataML['4DCD'] = dataML['7DCD'] dataML[r'$\theta$'] = dataML['dist'] dataML[r'$\theta/d_{DLR}$'] = dataML['dist/DLR'] dataML[r'Ap - Kron'] = dataML['gApMag_gKronMag'] dataML[r'KronRad'] = dataML['gKronRad'] dataML[r'PSFMag'] = dataML['gPSFMag'] dataML[r'PSFMagErr'] = dataML['gPSFMagErr'] dataML[r'ApMag'] = dataML['gApMag'] dataML[r'ApMagErr'] = dataML['gApMagErr'] dataML[r'KronMag'] = dataML['gKronMag'] dataML[r'KronMagErr'] = dataML['gKronMagErr'] dataML[r'psfMajorFWHM'] = dataML['gpsfMajorFWHM'] dataML[r'psfMinorFWHM'] = dataML['gpsfMinorFWHM'] dataML[r'momentXX'] = dataML['gmomentXX'] dataML[r'momentXY'] = dataML['gmomentXY'] dataML[r'momentYY'] = dataML['gmomentYY'] dataML[r'momentR1'] = dataML['gmomentR1'] dataML[r'momentRH'] = dataML['gmomentRH'] dataML[r'ApRadius'] = dataML['gApRadius'] dataML[r'ExtNSigma'] = dataML['gExtNSigma'] dataML[r'PSFFlux'] = dataML['gPSFFlux'] dataML[r'PSFFluxErr'] = dataML['gPSFFluxErr'] dataML[r'ApFlux'] = dataML['gApFlux'] dataML[r'ApFluxErr'] = dataML['gApFluxErr'] dataML[r'KronFlux'] = dataML['gKronFlux'] dataML[r'KronFluxErr'] = dataML['gKronFluxErr'] dataML_corr = dataML[[r'PSFMag',r'PSFMagErr','ApMag','ApMagErr',r'KronMag','KronMagErr','psfMajorFWHM','psfMinorFWHM', 'momentXX','momentXY','momentYY','momentR1','momentRH','PSFFlux','PSFFluxErr','ApFlux','ApFluxErr','ApRadius', 'KronFlux','KronFluxErr',r'KronRad','ExtNSigma',r'Ap - Kron', 'g-r','r-i','i-z','z-y','4DCD',r'$\theta$',r'$\theta/d_{DLR}$',r'g-rErr']] dataML.drop(['rAp-Kron', 'ApRadius', 'Ap - Kron','KronRad','PSFMag','PSFMagErr','ApMag','ApMagErr','KronMag','KronMagErr','psfMajorFWHM','psfMinorFWHM','momentXX','momentXY','momentYY','momentR1','momentRH'],axis=1, inplace=True) dataML.drop(['ExtNSigma','PSFFlux','PSFFluxErr','ApFlux','ApFluxErr','KronFlux','KronFluxErr', '4DCD', r'$\theta$', r'$\theta/d_{DLR}$'], axis=1, inplace=True) cols = dataML.columns.values cols = ['g-r', 'gApFlux', 'gApFluxErr', 'gApMag', 'gApMagErr', #g 'gApMag_gKronMag', 'gApRadius', 'gExtNSigma', 'gKronFlux', 'gKronFluxErr', 'gKronMag', 'gKronMagErr', 'gKronRad', 'gPSFFlux', 'gPSFFluxErr', 'gPSFMag', 'gPSFMagErr', 'gmomentR1', 'gmomentRH', 'gmomentXX', 'gmomentXY', 'gmomentYY', 'gpsfMajorFWHM', 'gpsfMinorFWHM','g-rErr', 'r-i', 'rApFlux', 'rApFluxErr', #r 'rApMag', 'rApMagErr', 'rApRadius', 'rExtNSigma', 'rKronFlux', 'rKronFluxErr', 'rKronMag', 'rKronMagErr', 'rKronRad', 'rPSFFlux', 'rPSFFluxErr', 'rPSFMag', 'rPSFMagErr', 'rmomentR1', 'rmomentRH', 'rmomentXX', 'rmomentXY', 'rmomentYY', 'rpsfMajorFWHM', 'rpsfMinorFWHM','r-iErr', 'i-z', 'iApFlux', 'iApFluxErr', 'iApMag', #i 'iApMagErr', 'iApMag_iKronMag', 'iApRadius', 'iExtNSigma', 'iKronFlux', 'iKronFluxErr', 'iKronMag', 'iKronMagErr', 'iKronRad', 'iPSFFlux', 'iPSFFluxErr', 'iPSFMag', 'iPSFMagErr', 'imomentR1', 'imomentRH', 'imomentXX', 'imomentXY', 'imomentYY', 'ipsfMajorFWHM', 'ipsfMinorFWHM','i-zErr', 'z-y','zApFlux', 'zApFluxErr', 'zApMag', 'zApMagErr', #z 'zApMag_zKronMag', 'zApRadius', 'zExtNSigma', 'zKronFlux', 'zKronFluxErr', 'zKronMag', 'zKronMagErr', 'zKronRad', 'zPSFFlux', 'zPSFFluxErr', 'zPSFMag', 'zPSFMagErr', 'zmomentR1', 'zmomentRH', 'zmomentXX', 'zmomentXY', 'zmomentYY', 'zpsfMajorFWHM', 'zpsfMinorFWHM','z-yErr', 'yApFlux', 'yApFluxErr', 'yApMag', 'yApMagErr', #y 'yApMag_yKronMag', 'yApRadius', 'yExtNSigma', 'yKronFlux', 'yKronFluxErr', 'yKronMag', 'yKronMagErr', 'yKronRad', 'yPSFFlux', 'yPSFFluxErr', 'yPSFMag', 'yPSFMagErr', 'ymomentR1', 'ymomentRH', 'ymomentXX', 'ymomentXY', 'ymomentYY', 'ypsfMajorFWHM', 'ypsfMinorFWHM', 'dist/DLR', 'dist'] dataML_shifted = dataML[cols] sns.set_context("poster") plt.figure(figsize=(250, 200)) sns.heatmap(dataML_shifted.corr(method=corr_type), annot=False, cmap='coolwarm', vmin=-1, vmax=1, linecolor='white', linewidths=0.3,annot_kws={"fontsize": "5"},cbar_kws={'label': 'Correlation'}) if save: plt.savefig("heatmap_fullTable_%s.png"%corr_type, bbox_inches='tight') dataML.corr(method=corr_type).to_csv("GHOST_fullTable_correlations_%s.tar.gz"%corr_type, index=False) #dataML_corr_sorted = dataML_corr[['g-r', 'momentR1', 'KronRad', 'Ap - Kron', 'momentXX', '4DCD', # 'ExtNSigma', 'PSFFlux', 'r-i', 'momentYY','momentRH', # 'PSFMag', 'PSFMagErr', 'ApMag', # 'ApMagErr', 'KronMag', # 'KronMagErr', 'psfMajorFWHM', 'psfMinorFWHM', # 'momentXY', # 'PSFFluxErr', 'ApFlux', 'ApFluxErr', 'ApRadius', 'KronFlux', # 'KronFluxErr', # 'i-z', 'z-y', '$\\theta$', '$\\theta/d_{DLR}$']] dataML_corr_sorted = dataML_corr[['g-r', 'ApFlux', 'ApFluxErr', 'ApMag', 'ApMagErr', #g 'Ap - Kron', 'ApRadius', 'ExtNSigma', 'KronFlux', 'KronFluxErr', 'KronMag', 'KronMagErr', 'KronRad', 'PSFFlux', 'PSFFluxErr', 'PSFMag', 'PSFMagErr', 'momentR1', 'momentRH', 'momentXX', 'momentXY', 'momentYY', 'psfMajorFWHM', 'psfMinorFWHM','g-rErr']] data = dataML_corr_sorted columns = dataML_corr_sorted.columns corr = data[columns].corr(method=corr_type) corr = pd.melt(corr.reset_index(), id_vars='index') # Unpivot the dataframe, so we can get pair of arrays for x and y corr.columns = ['x', 'y', 'value'] heatmap( corr, size=corr['value'].abs() ) if save: plt.savefig("heatmap_withScaledSquares_%s.png" %corr_type, dpi=300, bbox_inches='tight') #matrix = np.triu(dataML_corr.dropna().corr(method=corr_type)) #plt.figure(figsize=(20, 14)) #sns.heatmap(dataML_corr.corr(method=corr_type), annot=False, mask=matrix, cmap='coolwarm', vmin=-1, vmax=1, linecolor='white', linewidths=0.3,annot_kws={"fontsize": "30"},cbar_kws={'label': 'Correlation'}) #if save: # plt.savefig("heatmap_triangle_%s.pdf"%corr_type,dpi=300, bbox_inches='tight') dataML = dataML.drop(['gSNR', 'rSNR', 'iSNR', 'zSNR', 'ySNR'], axis=1) dataML_sub = dataML[['r-i', 'iApMag_iKronMag', 'zApMag_zKronMag', 'g-r']] bestFeatures = np.array(['r-i', 'iApMag_iKronMag', 'zApMag_zKronMag', 'g-r', 'gApMag_gKronMag', 'yApMag_yKronMag', 'gExtNSigma', '7DCD', 'rPSFMag_rKronMag', 'yExtNSigma', 'zExtNSigma', 'iPSFMag_zPSFMag', 'gmomentRH', 'i-z']) #del dataML['Unnamed: 0'] dataML['4DCD'] = dataML['7DCD'] del dataML['7DCD'] #get rid of color for now del dataML['4DCD'] dataML[r'$\theta$'] = dataML['dist'] del dataML['dist'] dataML[r'$\theta/d_{DLR}$'] = dataML['dist/DLR'] del dataML['dist/DLR'] def tsne_ghost(dataML): dataML_orig, dataML = preprocess_df(dataML) plot_heatmap(dataML, save=0, corr_type='spearman') #scaling with standardscaler dataML_scaled = preprocessing.scale(dataML) ## perform PCA n = len(dataML.columns) pca = PCA(n_components = 2) df_plot = pca.fit(dataML_scaled) ## project data into PC space xvector = pca.components_[0] # see 'prcomp(my_data)$rotation' in R yvector = pca.components_[1] xs = pca.transform(dataML_scaled)[:,0] # see 'prcomp(my_data)$x' in R ys = pca.transform(dataML_scaled)[:,1] plt.figure(figsize=(10,7)) sns.kdeplot(df_plot.loc[df_plot['TransientClass']=='SN Ia','xs'], shade=True, shade_lowest=False, alpha=0.6, label='SN Ia',color='tab:blue') plt.axvline(np.median(df_plot.loc[df_plot['TransientClass']=='SN Ia','xs']), linestyle='--',color='tab:blue') sns.kdeplot(df_plot.loc[df_plot['TransientClass']=='SN Ib/c','xs'], shade=True, shade_lowest=False, alpha=0.6, label='SN Ib/c',color='tab:green') plt.axvline(np.median(df_plot.loc[df_plot['TransientClass']=='SN Ib/c','xs']), linestyle='--',color='tab:green') sns.kdeplot(df_plot.loc[df_plot['TransientClass']=='SLSN','xs'], shade=True, shade_lowest=False, alpha=0.6, label='SLSN', color='tab:orange') plt.axvline(np.median(df_plot.loc[df_plot['TransientClass']=='SLSN','xs']), linestyle='--',color='tab:orange') plt.legend(fontsize=16) plt.xlabel("PC1 (71.5%)",fontsize=16) plt.xlim((-20,20)) plt.savefig("PCA_axis1Only_withMedians_scaler.png", dpi=300) Counter(df_plot['TransientClass']) dropClass =
np.array(['II L', 'II/LBV', 'Ia CSM', 'Ib Pec', 'Ibn', 'Ic BL','SN IIL','SN Ia-91bg-like', 'SN Ia-CSM', 'SN Ib-Ca-rich', 'SN Ib-pec', 'SN Ibn', 'SN Ic-pec'])
numpy.array
# coding: UTF-8 import numpy as np import torch import gym import pandas as pd from src.models import QNet from src.config import acrobot_config from src.train_pipeline_acrobat import train_pipeline from src.utils import load_qnet, error_info from src.utils import load_qnet, error_info_step from collections import deque from joblib import Parallel, delayed from src.config import gpu_config # if gpu is to be used if gpu_config.gpu_false_enforce == True: use_cuda = False else: use_cuda = torch.cuda.is_available() print(use_cuda) FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor Tensor = FloatTensor def parallel_train_pipeline(config, methods, env, eval_qnet, bhv_qnet, seedvec, max_name_length): num_method = len(methods) mse = np.zeros(len(methods)) ind_mse = np.zeros(len(methods)) mse_w = np.zeros(len(methods)) results, target = train_pipeline(env, config, eval_qnet, bhv_qnet, seedvec) for i_method in range(num_method): mse_1, mse_2, mse_3 = error_info(results[i_method], target, methods[i_method].ljust(max_name_length)) mse[i_method] = mse_1 ind_mse[i_method] = mse_2 mse_w[i_method] = mse_3 return(mse, ind_mse, mse_w) if __name__ == "__main__": env = gym.make("Acrobot-v1") config = acrobot_config noise_dim = config.noise_dim state_dim = config.state_dim + noise_dim eval_qnet = QNet(state_dim, config.dqn_hidden_dims, config.action_size) load_qnet(eval_qnet, filename='acrobat.pth.tar') # target policy eval_qnet.eval() # 読み込んだモデルのモードを切り替える bhv_qnet = QNet(state_dim, config.dqn_hidden_dims, config.action_size) load_qnet(bhv_qnet, filename='acrobat.pth.tar') # target policy bhv_qnet.eval() # 読み込んだモデルのモードを切り替える methods = ['DML-DR-CROSS-K-ND', 'dml_dr_cross_k_estpz_nd', 'dml_dr_cross_k_estpz_wis_nd', 'dml_dr_cross_k_estpz_sis_nd', 'dml_dr_cross_k_estpz_swis_nd', 'dml_dr_cross_k_chunk_nd', 'Model Bsl', 'DR Bsl', 'DR EstPz Bsl', 'WDR EstPz Bsl', 'WDR Bsl', 'Soft DR Bsl', 'Soft WDR Bsl', 'IS', 'WIS', 'Soft IS', 'Soft WIS', 'PDIS', 'WPDIS', 'Soft PDIS', 'Soft WPDIS'] np.random.seed(seed=100) seedvec = np.random.randint(0, config.MAX_SEED, config.sample_num_traj_eval) num_method = len(methods) max_name_length = len(max(methods,key=len)) result_parallel = Parallel(n_jobs=-1)([delayed(parallel_train_pipeline)(config, methods, env, eval_qnet, bhv_qnet, seedvec, max_name_length) for i in range(config.N)]) mse = np.vstack(x[0] for x in result_parallel) mse_ind = np.vstack(x[1] for x in result_parallel) mse_w = np.vstack(x[2] for x in result_parallel) mse_mean = mse.mean(0) mse_ind_mean = mse_ind.mean(0) mse_w_mean = mse_w.mean(0) mse_sd = mse.std(0) mse_ind_sd = mse_ind.std(0) mse_w_sd = mse_w.std(0) mse_result = [] mse_table = np.zeros((num_method,4)) print('Average result over {} runs:'.format(config.N)) for i in range(num_method): print('{}: Root mse of mean is {:.3e}±{:.2e}, root mse of individual is {:.3e}±{:.2e}' .format(methods[i].ljust(max_name_length), np.sqrt(mse_mean[i]), np.sqrt(mse_mean[i]), np.sqrt(mse_ind_mean[i]), np.sqrt(mse_ind_sd[i]))) mse_table[i, 0] = np.sqrt(mse_mean[i]) mse_table[i, 1] =
np.sqrt(mse_sd[i])
numpy.sqrt
# -*- coding: utf-8 -*- # @Author: <NAME> # @Date: 2020-04-07 13:09:23 # @Last Modified by: <NAME> # @Last Modified time: 2020-04-10 20:56:45 """ Plottings """ import matplotlib.pyplot as plt from matplotlib.ticker import (FormatStrFormatter, MultipleLocator, AutoMinorLocator, FixedLocator, FixedFormatter, MaxNLocator) from mpl_toolkits.axes_grid1.inset_locator import inset_axes from matplotlib.markers import MarkerStyle from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap from acc.stack import linear_stack from acc.profile import profile, get_profile_boxes from acc.io import _load_json from acc.migration import mig_one_station import numpy as np import warnings from obspy import Stream from obspy import read from obspy.geodetics import gps2dist_azimuth from collections import OrderedDict import os import glob import math def plot_acc_one_station(stream, fname=None, fig_width=7., trace_height=0.5, stack_height=0.5, scale=2, scale_stack=10, fillcolors=("red", "blue"), # trim=None, info=(('back_azimuth', u'baz (°)', 'C0'), ('distance', u'dist (°)', 'C3'))): """ Plot auto- or correlogram for one station. Reproduced from the `rf` package. :param stream: stream to plot :param fname: filename to save plot to. Can be None. In this case the figure is left open. :param fig_width: width of figure in inches :param trace_height: height of one trace in inches :param stack_height: height of stack axes in inches :param scale: scale for individual traces :param fillcolors: fill colors for positive and negative wiggles :param info: Plot one additional axes showing maximal two entries of the stats object. Each entry in this list is a list consisting of three entries: key, label and color. info can be None. In this case no additional axes is plotted. """ # :param trim: trim stream relative to onset before plotting using # `~.rfstream.RFStream.slice2()` if len(stream) == 0: return stream.sort(keys=["slowness"]) # if trim: # stream = stream.slice2(*trim, reftime='onset') N = len(stream) # calculate lag times # stats = stream[0].stats # print(stats) # times = stream[0].times() - (stats.onset - stats.starttime) times = stream[0].times() # calculate axes and figure dimensions # big letters: inches, small letters: figure fraction H = trace_height HS = stack_height FB = 0.5 FT = 0.2 DW = 0.2 FH = H * (N + 2) + HS + FB + FT + DW h = H / FH hs = HS / FH fb = FB / FH ft = FT / FH FL = 0.5 # figure left FR = 0.2 # figure right FW = fig_width # figure width FW3 = 0.8 FW2 = FW - FL - FR - (DW + FW3) * bool(info) fl = FL / FW fr = FR / FW fw2 = FW2 / FW fw3 = FW3 / FW # init figure and axes fig = plt.figure(figsize=(FW, FH)) ax1 = fig.add_axes([fl, fb, fw2, h * (N + 2)]) if info: ax3 = fig.add_axes( [1 - fr - fw3, fb, fw3, h * (N + 2)], sharey=ax1) info = list(info) info[0] = [ax3] + list(info[0]) if len(info) > 1: ax4 = ax3.twiny() info[1] = [ax4] + list(info[1]) # plot individual receiver functions def _plot(ax, t, d, i): c1, c2 = fillcolors if c1: ax.fill_between(t, d + i, i, where=d >= 0, lw=0., facecolor=c1) if c2: ax.fill_between(t, d + i, i, where=d < 0, lw=0., facecolor=c2) ax.plot(t, d + i, 'k') # max_ = max(np.max(np.abs(tr.data)) for tr in stream) for i, tr in enumerate(stream): # _plot(ax1, times, tr.data / max_ * scale, i + 1) tr.normalize() _plot(ax1, times, tr.data * scale, i + 1) # plot right axes with header information for ax, header, label, color in info: data = [tr.stats[header] for tr in stream] ax.plot(data, 1 + np.arange(len(stream)), '.' + color, mec=color) ax.set_xlabel(label, color=color, size='small') if header == 'back_azimuth': ax.set_xticks(np.arange(5) * 90) ax.set_xticklabels(['0', '', '180', '', '360'], size='small') else: ax.xaxis.set_major_locator(MaxNLocator(4)) for l in ax.get_xticklabels(): l.set_fontsize('small') ax.xaxis.set_minor_locator(AutoMinorLocator()) # set x and y limits ax1.set_xlim(times[0], times[-1]) ax1.set_xlim(times[0], times[-1]/2) ax1.set_ylim(-0.5, N + 1.5) ax1.set_yticklabels('') ax1.set_xlabel('time (s)') ax1.xaxis.set_minor_locator(AutoMinorLocator()) # plot stack # stack = stream.stack() trace = linear_stack(stream=stream, normalize=True) stack = Stream([trace]) if len(stack) > 1: warnings.warn('Different stations or channels in one RF plot.') elif len(stack) == 1: stack.normalize() ax2 = fig.add_axes([fl, 1 - ft - hs, fw2, hs], sharex=ax1) _plot(ax2, times, stack[0].data * scale_stack, 0) for l in ax2.get_xticklabels(): l.set_visible(False) ax2.yaxis.set_major_locator(MaxNLocator(4)) for l in ax2.get_yticklabels(): l.set_fontsize('small') # annotate plot with seed id bbox = dict(boxstyle='round', facecolor='white', alpha=0.8, lw=0) text = '%s traces %s' % (len(stream), stack[0].id) ax2.annotate(text, (1 - 0.5 * fr, 1 - 0.5 * ft), xycoords='figure fraction', va='top', ha='right', bbox=bbox, clip_on=False) ax2.set_ylim(-1., 1.) # save plot if fname: fig.savefig(fname) plt.close(fig) else: return fig def plot_ppoint(stream, fname="pp.pdf", depths=[30, 50, 80, 100, 150, 200]): colors = ["gray", "red", "blue", "orange", "green", "magenta", "cyan", "chocolate", "pink", "royalblue"] if len(depths) > 10: raise Exception("too many depths. Should be less than 10.") fig, ax = plt.subplots() for tr in stream: df = tr.stats.mig ax.scatter(tr.stats.station_longitude, tr.stats.station_latitude, c="black", marker="v", s=100) for i, depth in enumerate(depths): df2 = df[df["depth"] == depth] lat = df2["lat"].to_numpy() lon = df2["lon"].to_numpy() ax.scatter(lon, lat, c=colors[i], label=depth) handles, labels = plt.gca().get_legend_handles_labels() by_label = OrderedDict(zip(labels, handles)) ax.legend(by_label.values(), by_label.keys(), title="Depth (km)") plt.tight_layout() plt.savefig(fname) def plot_profile(jsonfile): kwargs = _load_json(jsonfile) paras = kwargs["profile"] latlon0 = paras["latlon0"] if latlon0 is None: # for a single station azimuth = 0 dist = 400 else: # for profile latlon1 = paras["latlon1"] lat1 = latlon0[0] lon1 = latlon0[1] lat2 = latlon1[0] lon2 = latlon1[1] dist, azimuth, baz = gps2dist_azimuth(lat1, lon1, lat2, lon2) dist /= 1000 # from m to km # padding 100 km on each side dist += 400 lat0 = lat1 + math.cos((azimuth + 180)*math.pi/180) * 200 / 111.195 lon0 = lon1 + math.sin((azimuth + 180)*math.pi/180) * 200 / 111.195 latlon0 = (lat0, lon0) binsize = paras["binsize"] binwidth = paras["binwidth"] nbins = int(dist / binsize + 0.5) + 1 dist = (nbins - 1) * binsize bins = np.linspace(0, dist, nbins) # print(bins) profile_id = paras["profile_id"] path = kwargs["io"]["outpath"] depth_range = kwargs["plot"]["depth_range"] # each stations if latlon0 is None: files = glob.glob(path + "/migration_1station/*.pkl") files.sort() for file in files: stmig = read(file) lat0 = stmig[0].stats.station_latitude - \ 0.5 * (bins[-1] + bins[0]) / 111.195 lon0 = stmig[0].stats.station_longitude latlon0 = (lat0, lon0) boxes = _plot_1station(stmig, latlon0, azimuth, bins, width=binwidth, savepath=path, depth_range=depth_range, **kwargs) # profile else: wc = paras["wild_card"] files = glob.glob(path + "/migration_1station/*%s*.pkl" % wc) print("number of stations to stack: ", len(files)) # stmig = Stream() # for file in files: # st = read(file) # stmig += st # parallel reading print("Loading data from disk") from tqdm import tqdm import multiprocessing stmig = Stream() stlst = [] pool = multiprocessing.Pool() for st in tqdm(pool.imap_unordered(read, files), total=len(files)): stlst.append(st) pool.close() pool.join() for st in stlst: stmig += st boxes = _plot_stations(stmig, latlon0, azimuth, bins, width=binwidth, savepath=path, depth_range=depth_range, profile_id=profile_id, **kwargs) # write the pos and latlon path = os.path.join(kwargs["io"]["outpath"], "pos") try: os.makedirs(path) except: pass # in some case, user do not set the name profile_id leading to the filename of '.dat', # which is invisible under Linux systems. if profile_id != "": fn = os.path.join(path, profile_id + ".dat") else: fn = os.path.join(path, "pos.dat") fp = open(fn, "w") fp.write("pos lat lon\n") for b in boxes: fp.write("%.1f %.4f %.4f\n" % (b["pos"], b["latlon"][0], b["latlon"][1])) print(b["pos"], b["latlon"][0], b["latlon"][1]) fp.close() def _plot_1station(stmig, latlon0, azimuth, bins, width, savepath, depth_range, **kwargs): # get boxes for mig-stacking boxes = get_profile_boxes(latlon0, azimuth=azimuth, bins=bins, width=width) # depth and stack array pos, depth, stack = profile(stream=stmig, boxes=boxes) # the setting makes the station location in the center of the image pos -= 0.5 * (bins[-1] - bins[0]) dist_range = [-100, 100] # get station id tr = stmig[0] if tr.stats.location == "": station_id = ".".join([tr.stats.network, tr.stats.station]) else: station_id = ".".join( [tr.stats.network, tr.stats.station, tr.stats.location]) print("Plotting - station id: ", station_id) # latitude corresponding to pos lats = [] for b in boxes: # print(b["pos"], b["latlon"]) lats.append(b["latlon"][0]) extent = [np.min(pos), np.max(pos), np.min(depth), np.max(depth)] # extent = [np.min(lats), np.max(lats), np.min(depth), np.max(depth)] # normalization stack /= np.max(np.abs(stack)) amp = np.sum(stack, axis=1) amp /= np.max(np.abs(amp)) # print(extent) paras = kwargs["plot"] # image factor iclip = paras["image_scale"] # waveform factor wclip = paras["wavef_scale"] figsize = tuple(paras["figsize"]) width_ratios = paras["width_ratios"] # return amp, stack, extent _plot(amp, depth, stack, extent, dist_range, depth_range, savepath, profile_id=station_id, wclip=wclip, iclip=iclip, figsize=figsize, width_ratios=width_ratios) # save netcdf path = os.path.join(kwargs["io"]["outpath"], "netcdf4") try: os.makedirs(path) except: pass filen = os.path.join(kwargs["io"]["outpath"], "netcdf4", station_id+".nc") write_netcdf4(pos=pos, dep=depth, data=stack, file=filen) return boxes def _plot_stations(stmig, latlon0, azimuth, bins, width, savepath, depth_range, profile_id, **kwargs): paras = kwargs["plot"] iclip = paras["image_scale"] wclip = paras["wavef_scale"] figsize = tuple(paras["figsize"]) width_ratios = paras["width_ratios"] # get boxes for mig-stacking boxes = get_profile_boxes(latlon0, azimuth=azimuth, bins=bins, width=width) # print("get boxes for mig-stacking done") # depth and stack array print("\nCRP migration and stacking") pos, depth, stack = profile(stream=stmig, boxes=boxes) # print("stacking done") # the setting makes the station location in the center of the image # pos -= 0.5*(bins[-1]-bins[0]) if paras["dist_range"] is None: dist_range = [np.min(pos), np.max(pos)] else: dist_range = paras["dist_range"] # get station id # tr = stmig[0] # if tr.stats.location == "": # station_id = ".".join([tr.stats.network, tr.stats.station]) # else: # station_id = ".".join([tr.stats.network, tr.stats.station, tr.stats.location]) print("Plotting - profile id: ", profile_id) # latitude corresponding to pos lats = [] for b in boxes: # print(b["pos"], b["latlon"]) lats.append(b["latlon"][0]) extent = [np.min(pos), np.max(pos), np.min(depth), np.max(depth)] # extent = [np.min(lats), np.max(lats), np.min(depth), np.max(depth)] # normalization stack /= np.max(np.abs(stack)) amp =
np.sum(stack, axis=1)
numpy.sum
import torch from torchvision import datasets, transforms from tqdm import tqdm import argparse import plotly.graph_objects as go import numpy as np from PIL.ImageOps import grayscale from VAE import VAE BATCH_SIZE = 32 image_height = 84 image_width = 84 z_dim = 256 plot_data = list() def create_parser(): parser = argparse.ArgumentParser() parser.add_argument('--epochs', type=int, default=3, required=False) parser.add_argument('--restart', type=lambda x: (str(x).lower() in ['true','1', 'yes']), default=False, required=False) parser.add_argument('--device', type=str, default='cpu', required=False) parser.add_argument('--lr', type=float, default=1e-3, required=False) return parser def train(epochs, restart, device, dataloader, lr): model = VAE(image_height=image_height, image_width=image_width, image_channels=1, z_dim=z_dim, device=device) optimizer = torch.optim.Adam(model.parameters(), lr=lr) if not restart: model.load_state_dict(torch.load("generated/vae.torch", map_location='cpu')) pbar = tqdm(range(epochs)) for epoch in pbar: pbar.set_description("Epoch [{}/{}]".format(epoch + 1, epochs)) for idx, (images, _) in tqdm(enumerate(dataloader)): images = images.to(device) recon_images, mu, logstd = model(images) loss = VAE.calculate_loss(recon_images, images, mu, logstd) optimizer.zero_grad() loss.backward() optimizer.step() plot_data.append(loss.item() / BATCH_SIZE) pbar.write("Loss: {:.3f}".format(loss.item() / BATCH_SIZE)) model.save_model('generated/vae.torch') if __name__ == "__main__": dataset = datasets.ImageFolder(root='generated/assault', transform=transforms.Compose([ transforms.Grayscale(), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ])) dataloader = torch.utils.data.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True) args = create_parser().parse_args() train(args.epochs, args.restart, torch.device(args.device), dataloader, args.lr) plot = go.Figure() plot.add_trace(go.Scatter(x=np.arange(len(plot_data)), y=
np.array(plot_data)
numpy.array
"""The WaveBlocks Project This file contains code to represent linear combinations of compatible Hagedorn wavepackets in a more efficient and storage friendly way than the general linear combination class. @author: <NAME> @copyright: Copyright (C) 2013, 2014 <NAME> @license: Modified BSD License """ from numpy import zeros, ones, eye, complexfloating, atleast_2d, concatenate, hstack, vstack, squeeze from numpy import pi, dot, einsum, conjugate, delete from scipy import exp, sqrt from scipy.linalg import det, inv from WaveBlocksND.LinearCombinationOfWavepackets import LinearCombinationOfWavepackets from WaveBlocksND.HagedornWavepacket import HagedornWavepacket from WaveBlocksND.AbstractGrid import AbstractGrid from WaveBlocksND.GridWrapper import GridWrapper __all__ = ["LinearCombinationOfHAWPs"] class LinearCombinationOfHAWPs(LinearCombinationOfWavepackets): r"""This class represents linear combinations of compatible Hagedorn wavepackets. """ def __init__(self, dimension, number_components, eps, number_packets=0): r"""Initialize a new linear combination of Hagedorn wavepackets. This object represents :math:`\Upsilon := \sum_{j=0}^{J-1} c_j \Psi_j`. All :math:`J` wavepackets :math:`\Psi_j` have the same number :math:`N` components and are defined in the :math:`D` dimensional space. :param dimension: The space dimension :math:`D` the packets have. :param ncomponents: The number :math:`N` of components the packets have. :return: An instance of :py:class:`LinearCombinationOfHAWPs`. """ self._dimension = dimension self._number_components = number_components self._number_packets = number_packets # Epsilon self._eps = eps # Basis shapes self._basis_shapes_hashes = [] self._basis_shapes = {} # Coefficients of individual packets self._wp_coefficients = zeros((number_packets, 0), dtype=complexfloating) self._basis_sizes = [] # Default parameters of harmonic oscillator eigenstates q = zeros((self._number_packets, self._dimension), dtype=complexfloating) p = zeros((self._number_packets, self._dimension), dtype=complexfloating) Q = ones((self._number_packets, 1, 1)) * eye(self._dimension, dtype=complexfloating) P = 1.0j *
ones((self._number_packets, 1, 1))
numpy.ones
import sys from frenet_path import * from trajectory import * from model_curvatures import * from maths_utils import * from optimization_utils import * from alignment_utils import * from tracking_utils import * from smoothing_frenet_path import * from visu_utils import * import numpy as np from scipy.linalg import expm, polar, logm from scipy.integrate import cumtrapz from scipy.interpolate import splrep, splder, sproot, splev, interp1d from geomstats.learning.frechet_mean import FrechetMean from geomstats.geometry.matrices import Matrices import geomstats.backend as gs from geomstats.geometry.special_orthogonal import SpecialOrthogonal from geomstats.geometry.riemannian_metric import RiemannianMetric import matplotlib.pyplot as plt import plotly.graph_objs as go from sklearn.model_selection import KFold from skopt import gp_minimize from skopt.plots import plot_convergence from skfda.representation.grid import FDataGrid from skfda.preprocessing.registration import ElasticRegistration, ShiftRegistration, landmark_registration_warping from skfda.preprocessing.registration.elastic import elastic_mean from skfda.misc import metrics import fdasrsf as fs from joblib import Parallel, delayed from timeit import default_timer as timer import torch from numba.experimental import jitclass from numba import int32, float64, cuda, float32, objmode, njit, prange np.warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning) """ Computing the raw curvatures estimates """ @njit def compute_sort_unique_val(S, Omega, Kappa, Tau): """ Step of function Compute Raw Curvature, compute the re-ordering of the data. ... """ uniqueS = np.unique(S) nb_unique_val = len(uniqueS) mOmega = np.zeros(nb_unique_val) mKappa = np.zeros(nb_unique_val) mTau = np.zeros(nb_unique_val) for ijq in range(nb_unique_val): id_ijq = np.where(S==uniqueS[ijq])[0] Omega_ijq = Omega[id_ijq] Kappa_ijq = Kappa[id_ijq] Tau_ijq = Tau[id_ijq] mOmega[ijq] = np.sum(Omega_ijq) if mOmega[ijq]>0: mKappa[ijq] = (np.ascontiguousarray(Omega_ijq[np.where(Omega_ijq>0)]) @ np.ascontiguousarray(np.transpose(Kappa_ijq[np.where(Omega_ijq>0)])))/mOmega[ijq] mTau[ijq] = (np.ascontiguousarray(Omega_ijq[np.where(Omega_ijq>0)]) @ np.ascontiguousarray(np.transpose(Tau_ijq[np.where(Omega_ijq>0)])))/mOmega[ijq] else: mKappa[ijq] = 0 mTau[ijq] = 0 return uniqueS, mOmega, mKappa, mTau @njit def compute_Rq_boucle(dim, N_q, Obs_q, data, u_q, q, nb_grid): """ Step of function Compute Raw Curvature ... """ R_q = np.zeros((dim,dim,N_q)) for j in range(N_q): if (q!=0 or j!=0) and (q!=nb_grid-1 or j!=N_q-1): R_q[:,:,j] = -my_log_M3(np.transpose(np.ascontiguousarray(data))@np.ascontiguousarray(Obs_q[:,:,j]))/u_q[j] return R_q def compute_Rq(q, FrenetPath, SmoothFrenetPath): """ Step of function Compute Raw Curvature ... """ N_q = len(FrenetPath.neighbor_obs[q]) Obs_q = FrenetPath.data[:,:,FrenetPath.neighbor_obs[q]] w_q = FrenetPath.weight[q] u_q = np.copy(FrenetPath.delta[q]) omega_q = np.multiply(w_q,np.power(u_q,2)) if q!=0 and q!=FrenetPath.nb_grid_eval-1: v_q = np.where(u_q==0)[0] u_q[u_q==0] = 1 R_q = compute_Rq_boucle(FrenetPath.dim, N_q, Obs_q, SmoothFrenetPath.data[:,:,q], u_q, q, FrenetPath.nb_grid_eval) if q!=0 and q!=FrenetPath.nb_grid_eval-1: R_q[:,:,v_q] = np.abs(0*R_q[:,:,v_q]) kappa = np.squeeze(R_q[1,0,:]) tau = np.squeeze(R_q[2,1,:]) return omega_q.tolist(), kappa.tolist(), tau.tolist() def compute_raw_curvatures_without_alignement(PopulationFrenetPath, h, PopulationSmoothFrenetPath): """ Compute the weighted instantaneous rate of change of the Frenet frames without alignment between samples. They are noisy and often needs to be smoothed by splines ... """ N_samples = PopulationFrenetPath.nb_samples PopulationFrenetPath.compute_neighbors(h) if N_samples==1: Omega, S, Kappa, Tau = [], [], [], [] for q in range(PopulationFrenetPath.nb_grid_eval): if q==0: # s = np.zeros(len(PopulationFrenetPath.neighbor_obs[q])) s = PopulationFrenetPath.grid_obs[0]*np.ones(len(PopulationFrenetPath.neighbor_obs[q])) elif q==PopulationFrenetPath.nb_grid_eval-1: # s = PopulationFrenetPath.length*np.ones(len(PopulationFrenetPath.neighbor_obs[q])) s = PopulationFrenetPath.grid_obs[-1]*np.ones(len(PopulationFrenetPath.neighbor_obs[q])) else: s = PopulationFrenetPath.grid_double[q] S += list(s) omega_q, kappa, tau = compute_Rq(q, PopulationFrenetPath, PopulationSmoothFrenetPath) Omega = np.append(Omega, omega_q) Kappa = np.append(Kappa, kappa) Tau =
np.append(Tau, tau)
numpy.append
from numba import njit import numpy as np from numpy import pi, inf, NINF, float64, finfo from numpy.random import rand import math from math import isnan, cos, log, exp import random from tpg.utils import flip import uuid import copy """ A program that is executed to help obtain the bid for a learner. """ class ConfProgram: def init_def(self, instructions=None, maxProgramLength=128, nOperations=5, nDestinations=8, inputSize=30720, initParams=None): if instructions is not None: # copy from existing self.instructions = np.array(instructions, dtype=np.int32) else: # create random new self.instructions = np.array([ (random.randint(0,1), random.randint(0, nOperations-1), random.randint(0, nDestinations-1), random.randint(0, inputSize-1)) for _ in range(random.randint(1, maxProgramLength))], dtype=np.int32) self.id = uuid.uuid4() """ Executes the program which returns a single final value. """ @njit def execute_def(inpt, regs, modes, ops, dsts, srcs): regSize = len(regs) inptLen = len(inpt) for i in range(len(modes)): # first get source if modes[i] == 0: src = regs[srcs[i]%regSize] else: src = inpt[srcs[i]%inptLen] # get data for operation op = ops[i] x = regs[dsts[i]] y = src dest = dsts[i]%regSize # do an operation if op == 0: regs[dest] = x+y elif op == 1: regs[dest] = x-y elif op == 2: regs[dest] = x*2 elif op == 3: regs[dest] = x/2 elif op == 4: if x < y: regs[dest] = x*(-1) if math.isnan(regs[dest]): regs[dest] = 0 elif regs[dest] == np.inf: regs[dest] = np.finfo(np.float64).max elif regs[dest] == np.NINF: regs[dest] = np.finfo(np.float64).min """ Executes the program which returns a single final value using shared memory. """ @njit def execute_mem(inpt, regs, modes, ops, dsts, srcs, memMatrix, memRows, memCols, memWriteProbFunc): regSize = len(regs) inptLen = len(inpt) for i in range(len(modes)): # first get source if modes[i] == 0: src = regs[srcs[i]%regSize] else: src = inpt[srcs[i]%inptLen] # get data for operation op = ops[i] x = regs[dsts[i]] y = src dest = dsts[i]%regSize # do an operation if op == 0: regs[dest] = x+y elif op == 1: regs[dest] = x-y elif op == 2: regs[dest] = x*2 elif op == 3: regs[dest] = x/2 elif op == 4: if x < y: regs[dest] = x*(-1) elif op == 5: index = srcs[i] index %= (memRows*memCols) row = int(index / memRows) col = index % memCols regs[dest] = memMatrix[row, col] elif op == 6: # row offset (start from center, go to edges) halfRows = int(memRows/2) # halfRows for i in range(halfRows): # probability to write (gets smaller as i increases) # TODO: swap out write prob func by passing in an array of values for that row. writeProb = memWriteProbFunc(i) # column to maybe write corresponding value into for col in range(memCols): # try write to lower half if rand(1)[0] < writeProb: row = (halfRows - i) - 1 memMatrix[row,col] = regs[col] # try write to upper half if rand(1)[0] < writeProb: row = halfRows + i memMatrix[row,col] = regs[col] if isnan(regs[dest]): regs[dest] = 0 elif regs[dest] == inf: regs[dest] = finfo(float64).max elif regs[dest] == NINF: regs[dest] = finfo(float64).min """ Executes the program which returns a single final value. """ @njit def execute_full(inpt, regs, modes, ops, dsts, srcs): regSize = len(regs) inptLen = len(inpt) for i in range(len(modes)): # first get source if modes[i] == 0: src = regs[srcs[i]%regSize] else: src = inpt[srcs[i]%inptLen] # get data for operation op = ops[i] x = regs[dsts[i]] y = src dest = dsts[i]%regSize # do an operation if op == 0: regs[dest] = x+y elif op == 1: regs[dest] = x-y elif op == 2: regs[dest] = x*2 elif op == 3: regs[dest] = x/2 elif op == 4: if x < y: regs[dest] = x*(-1) elif op == 5: regs[dest] = cos(y) elif op == 6: if y > 0: regs[dest] = log(y) elif op == 7: regs[dest] = exp(y) if isnan(regs[dest]): regs[dest] = 0 elif regs[dest] == inf: regs[dest] = finfo(float64).max elif regs[dest] == NINF: regs[dest] = finfo(float64).min """ Executes the program which returns a single final value using shared memory. """ @njit def execute_mem_full(inpt, regs, modes, ops, dsts, srcs, memMatrix, memRows, memCols, memWriteProbFunc): regSize = len(regs) inptLen = len(inpt) for i in range(len(modes)): # first get source if modes[i] == 0: src = regs[srcs[i]%regSize] else: src = inpt[srcs[i]%inptLen] # get data for operation op = ops[i] x = regs[dsts[i]] y = src dest = dsts[i]%regSize # do an operation if op == 0: regs[dest] = x+y elif op == 1: regs[dest] = x-y elif op == 2: regs[dest] = x*2 elif op == 3: regs[dest] = x/2 elif op == 4: if x < y: regs[dest] = x*(-1) elif op == 5: regs[dest] = cos(y) elif op == 6: if y > 0: regs[dest] = log(y) elif op == 7: regs[dest] = exp(y) elif op == 8: index = srcs[i] index %= (memRows*memCols) row = int(index / memRows) col = index % memCols regs[dest] = memMatrix[row, col] elif op == 9: # row offset (start from center, go to edges) halfRows = int(memRows/2) # halfRows for i in range(halfRows): # probability to write (gets smaller as i increases) # TODO: swap out write prob func by passing in an array of values for that row. writeProb = memWriteProbFunc(i) # column to maybe write corresponding value into for col in range(memCols): # try write to lower half if rand(1)[0] < writeProb: row = (halfRows - i) - 1 memMatrix[row,col] = regs[col] # try write to upper half if rand(1)[0] < writeProb: row = halfRows + i memMatrix[row,col] = regs[col] if isnan(regs[dest]): regs[dest] = 0 elif regs[dest] == inf: regs[dest] = finfo(float64).max elif regs[dest] == NINF: regs[dest] = finfo(float64).min """ Executes the program which returns a single final value. """ @njit def execute_robo(inpt, regs, modes, ops, dsts, srcs): regSize = len(regs) inptLen = len(inpt) for i in range(len(modes)): # first get source if modes[i] == 0: src = regs[srcs[i]%regSize] else: src = inpt[srcs[i]%inptLen] # get data for operation op = ops[i] x = regs[dsts[i]] y = src dest = dsts[i]%regSize # do an operation if op == 0: regs[dest] = x+y elif op == 1: regs[dest] = x-y elif op == 2: regs[dest] = x*y elif op == 3: if y != 0: regs[dest] = x/y elif op == 4: if x < y: regs[dest] = x*(-1) elif op == 5: regs[dest] = cos(y) if isnan(regs[dest]): regs[dest] = 0 elif regs[dest] == inf: regs[dest] = finfo(float64).max elif regs[dest] == NINF: regs[dest] = finfo(float64).min """ Executes the program which returns a single final value. """ @njit def execute_mem_robo(inpt, regs, modes, ops, dsts, srcs, memMatrix, memRows, memCols, memWriteProbFunc): regSize = len(regs) inptLen = len(inpt) for i in range(len(modes)): # first get source if modes[i] == 0: src = regs[srcs[i]%regSize] else: src = inpt[srcs[i]%inptLen] # get data for operation op = ops[i] x = regs[dsts[i]] y = src dest = dsts[i]%regSize # do an operation if op == 0: regs[dest] = x+y elif op == 1: regs[dest] = x-y elif op == 2: regs[dest] = x*y elif op == 3: if y != 0: regs[dest] = x/y elif op == 4: if x < y: regs[dest] = x*(-1) elif op == 5: regs[dest] = cos(y) elif op == 6: index = srcs[i] index %= (memRows*memCols) row = int(index / memRows) col = index % memCols regs[dest] = memMatrix[row, col] elif op == 7: # row offset (start from center, go to edges) halfRows = int(memRows/2) # halfRows for i in range(halfRows): # probability to write (gets smaller as i increases) # TODO: swap out write prob func by passing in an array of values for that row. writeProb = memWriteProbFunc(i) # column to maybe write corresponding value into for col in range(memCols): # try write to lower half if rand(1)[0] < writeProb: row = (halfRows - i) - 1 memMatrix[row,col] = regs[col] # try write to upper half if rand(1)[0] < writeProb: row = halfRows + i memMatrix[row,col] = regs[col] if isnan(regs[dest]): regs[dest] = 0 elif regs[dest] == inf: regs[dest] = finfo(float64).max elif regs[dest] == NINF: regs[dest] =
finfo(float64)
numpy.finfo
''' DESCRIPTION ---------- An assortment of code written for sanity checks on our 2017 TESS GI proposal about difference imaging of clusters. Most of this involving parsing Kharchenko et al (2013)'s table, hence the name `parse_MWSC.py`. The tools here do things like: * Find how many open clusters we could observe * Find how many member stars within those we could observe * Compute TESS mags for everything (mostly via `ticgen`) * Estimate blending effects, mainly through the dilution (computed just by summing magnitudes appropriately) * Using K+13's King profile fits, estimate the surface density of member stars. It turns out that this radically underestimates the actual surface density of stars (because of all the background blends). Moreover, for purposes of motivating our difference imaging, "the number of stars in your aperture" is more relevant than "a surface density", and even more relevant than both of those is dilution. So I settled on the dilution calculation. The plotting scripts here also make the skymap figure of the proposal. (Where are the clusters on the sky?) USAGE ---------- From /src/, select desired functions from __main__ below. Then: >>> python parse_MWSC.py > output.log ''' import matplotlib.pyplot as plt, seaborn as sns import pandas as pd, numpy as np from astropy.table import Table from astropy.io import ascii from astropy.coordinates import SkyCoord import astropy.units as u from math import pi import pickle, os from scipy.interpolate import interp1d global COLORS COLORS = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] # cite: # # <NAME>. & <NAME>. 2017, ticgen: A tool for calculating a TESS # magnitude, and an expected noise level for stars to be observed by TESS., # v1.0.0, Zenodo, doi:10.5281/zenodo.888217 # # and Stassun & friends (2017). #import ticgen as ticgen # # These two, from the website # # http://dc.zah.uni-heidelberg.de/mwsc/q/clu/form # # are actually outdated or something. They provided too few resuls.. # close_certain = pd.read_csv('../data/MWSC_search_lt_2000_pc_type_certain.csv') # close_junk = pd.read_csv('../data/MWSC_search_lt_2000_pc_type_certain.csv') def get_cluster_data(): # Downloaded the MWSC from # http://cdsarc.u-strasbg.fr/viz-bin/Cat?cat=J%2FA%2BA%2F558%2FA53&target=http& tab = Table.read('../data/Kharchenko_2013_MWSC.vot', format='votable') df = tab.to_pandas() for colname in ['Type', 'Name', 'n_Type', 'SType']: df[colname] = [e.decode('utf-8') for e in list(df[colname])] # From erratum: # For the Sun-like star, a 4 Re planet produces a transit depth of 0.13%. The # limiting magnitude for transits to be detectable is about I_C = 11.4 . This # also corresponds to K_s ~= 10.6 and a maximum distance of 290 pc, assuming no # extinction. cinds = np.array(df['d']<500) close = df[cinds] finds = np.array(df['d']<1000) far = df[finds] N_c_r0 = int(np.sum(close['N1sr0'])) N_c_r1 = int(np.sum(close['N1sr1'])) N_c_r2 = int(np.sum(close['N1sr2'])) N_f_r0 = int(np.sum(far['N1sr0'])) N_f_r1 = int(np.sum(far['N1sr1'])) N_f_r2 = int(np.sum(far['N1sr2'])) type_d = {'a':'association', 'g':'globular cluster', 'm':'moving group', 'n':'nebulosity/presence of nebulosity', 'r':'remnant cluster', 's':'asterism', '': 'no label'} ntype_d = {'o':'object','c':'candidate','':'no label'} print('*'*50) print('\nMilky Way Star Clusters (close := <500pc)' '\nN_clusters: {:d}'.format(len(close))+\ '\nN_stars (in core): {:d}'.format(N_c_r0)+\ '\nN_stars (in central part): {:d}'.format(N_c_r1)+\ '\nN_stars (in cluster): {:d}'.format(N_c_r2)) print('\n'+'*'*50) print('\nMilky Way Star Clusters (far := <1000pc)' '\nN_clusters: {:d}'.format(len(far))+\ '\nN_stars (in core): {:d}'.format(N_f_r0)+\ '\nN_stars (in central part): {:d}'.format(N_f_r1)+\ '\nN_stars (in cluster): {:d}'.format(N_f_r2)) print('\n'+'*'*50) #################### # Post-processing. # #################### # Compute mean density mean_N_star_per_sqdeg = df['N1sr2'] / (pi * df['r2']**2) df['mean_N_star_per_sqdeg'] = mean_N_star_per_sqdeg # Compute King profiles king_profiles, theta_profiles = [], [] for rt, rc, k, d in zip(np.array(df['rt']), np.array(df['rc']), np.array(df['k']), np.array(df['d'])): sigma, theta = get_king_proj_density_profile(rt, rc, k, d) king_profiles.append(sigma) theta_profiles.append(theta) df['king_profile'] = king_profiles df['theta'] = theta_profiles ra = np.array(df['RAJ2000']) dec = np.array(df['DEJ2000']) c = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs') galactic_long = np.array(c.galactic.l) galactic_lat = np.array(c.galactic.b) ecliptic_long = np.array(c.barycentrictrueecliptic.lon) ecliptic_lat = np.array(c.barycentrictrueecliptic.lat) df['galactic_long'] = galactic_long df['galactic_lat'] = galactic_lat df['ecliptic_long'] = ecliptic_long df['ecliptic_lat'] = ecliptic_lat cinds = np.array(df['d']<500) close = df[cinds] finds = np.array(df['d']<1000) far = df[finds] return close, far, df def distance_histogram(df): plt.close('all') f,ax = plt.subplots(figsize=(4,4)) hist, bin_edges = np.histogram( df['d'], bins=np.append(np.logspace(1,6,1e3), 1e7), normed=False) ax.step(bin_edges[:-1], np.cumsum(hist), 'k-', where='post') ax.set_xlabel('distance [pc]') ax.set_ylabel('cumulative N clusters in MWSC') ax.set_xlim([5e1,1e4]) ax.set_xscale('log') ax.set_yscale('log') f.tight_layout() f.savefig('d_cumdistribn_MWSC.pdf', dpi=300, bbox_inches='tight') def angular_scale_cumdist(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f,ax = plt.subplots(figsize=(4,4)) axt = ax.twiny() scale_d = {'r0': 'angular radius of the core (0 if no core)', 'r1': '"central" radius', 'r2': 'cluster radius'} ix = 0 for t, dat in [('$d<0.5$ kpc',close), ('$d<1$ kpc',far)]: for k in ['r2']: hist, bin_edges = np.histogram( dat[k], bins=np.append(np.logspace(-2,1,1e3), 1e7), normed=False) ax.step(bin_edges[:-1], np.cumsum(hist), where='post', label=t+' '+scale_d[k]) ix += 1 def tick_function(angle_deg): tess_px = 21*u.arcsec vals = angle_deg/tess_px.to(u.deg).value return ['%.1f' % z for z in vals] ax.legend(loc='upper left', fontsize='xx-small') ax.set_xlabel('ang scale [deg]') ax.set_ylabel('cumulative N clusters in MWSC') ax.set_xscale('log') #ax.set_yscale('log') axt.set_xscale('log') axt.set_xlim(ax.get_xlim()) new_tick_locations = np.array([1e-2, 1e-1, 1e0, 1e1]) axt.set_xticks(new_tick_locations) axt.set_xticklabels(tick_function(new_tick_locations)) axt.set_xlabel('angular scale [TESS pixels]') f.tight_layout() f.savefig('angscale_cumdistribn_MWSC.pdf', dpi=300, bbox_inches='tight') def angular_scale_hist(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f,ax = plt.subplots(figsize=(4,4)) axt = ax.twiny() scale_d = {'r0': 'angular radius of the core (0 if no core)', 'r1': '"central" radius', 'r2': 'cluster radius'} ix = 0 for t, dat in [('$d<0.5$ kpc',close), ('$d<1$ kpc',far)]: for k in ['r2']: hist, bin_edges = np.histogram( dat[k], bins=np.append(np.logspace(-2,1,7), 1e7), normed=False) ax.step(bin_edges[:-1], hist, where='post', label=t+' '+scale_d[k], alpha=0.7) ix += 1 def tick_function(angle_deg): tess_px = 21*u.arcsec vals = angle_deg/tess_px.to(u.deg).value return ['%.1f' % z for z in vals] ax.legend(loc='best', fontsize='xx-small') ax.set_xlabel('ang scale [deg]') ax.set_ylabel('N clusters in MWSC') ax.set_xscale('log') #ax.set_yscale('log') axt.set_xscale('log') axt.set_xlim(ax.get_xlim()) new_tick_locations = np.array([1e-2, 1e-1, 1e0, 1e1]) axt.set_xticks(new_tick_locations) axt.set_xticklabels(tick_function(new_tick_locations)) axt.set_xlabel('angular scale [TESS pixels]') f.tight_layout() f.savefig('angscale_distribn_MWSC.pdf', dpi=300, bbox_inches='tight') def mean_density_hist(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f,ax = plt.subplots(figsize=(4,4)) axt = ax.twiny() ix = 0 for t, dat in [('$d<0.5$ kpc',close), ('$d<1$ kpc',far)]: hist, bin_edges = np.histogram( dat['mean_N_star_per_sqdeg'], bins=np.append(np.logspace(0,4,9), 1e7), normed=False) ax.step(bin_edges[:-1], hist, where='post', label=t, alpha=0.7) ix += 1 def tick_function(N_star_per_sqdeg): tess_px = 21*u.arcsec tess_px_area = tess_px**2 deg_per_tess_px = tess_px_area.to(u.deg**2).value vals = N_star_per_sqdeg * deg_per_tess_px outstrs = ['%.1E'%z for z in vals] outstrs = ['$'+o[0] + r'\! \cdot \! 10^{\mathrm{-}' + o[-1] + r'}$' \ for o in outstrs] return outstrs ax.legend(loc='best', fontsize='xx-small') ax.set_xlabel('mean areal density [stars/$\mathrm{deg}^{2}$]') ax.set_ylabel('N clusters in MWSC') ax.set_xscale('log') #ax.set_yscale('log') axt.set_xscale('log') axt.set_xlim(ax.get_xlim()) new_tick_locations = np.logspace(0,4,5) axt.set_xticks(new_tick_locations) axt.set_xticklabels(tick_function(new_tick_locations)) axt.set_xlabel('mean areal density [stars/$\mathrm{(TESS\ px)}^{2}$]') f.tight_layout() f.savefig('mean_density_distribn_MWSC.pdf', dpi=300, bbox_inches='tight') def plot_king_profiles(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f, axs = plt.subplots(figsize=(4,7), nrows=2, ncols=1, sharex=True) for theta, profile in zip(close['theta'], close['king_profile']): axs[0].plot(theta, profile, alpha=0.2, c=colors[0]) for theta, profile in zip(far['theta'], far['king_profile']): axs[1].plot(theta, profile, alpha=0.1, c=colors[1]) # Add text in top right. axs[0].text(0.95, 0.95, '$d < 500\ \mathrm{pc}$', verticalalignment='top', horizontalalignment='right', transform=axs[0].transAxes, fontsize='large') axs[1].text(0.95, 0.95, '$d < 1\ \mathrm{kpc}$', verticalalignment='top', horizontalalignment='right', transform=axs[1].transAxes, fontsize='large') xmin, xmax = 1, 1e3 for ax in axs: ax.set_xscale('log') ax.set_xlim([xmin, xmax]) if ax == axs[1]: ax.xaxis.set_ticks_position('both') ax.set_xlabel('angular distance [TESS px]') ax.tick_params(which='both', direction='in', zorder=0) ax.set_ylabel(r'$\Sigma(r)$ [stars/$\mathrm{(TESS\ px)}^{2}$]') f.tight_layout(h_pad=0) f.savefig('king_density_profiles_close_MWSC.pdf', dpi=300, bbox_inches='tight') def get_king_proj_density_profile(r_t, r_c, k, d): ''' r_t: King's tidal radius [pc] r_c: King's core radius [pc] k: normalization [pc^{-2}] d: distance [pc] returns density profile in number per sq tess pixel ''' # Eq 4 of Ernst et al, 2010 https://arxiv.org/pdf/1009.0710.pdf # citing King (1962). r = np.logspace(-2, 2.4, num=int(2e4)) X = 1 + (r/r_c)**2 C = 1 + (r_t/r_c)**2 vals = k * (X**(-1/2) - C**(-1/2))**2 #NOTE: this fails when r_t does not exist. This might be important... vals[r>r_t] = 0 # vals currently in number per square parsec. want in number per TESS px. # first convert to number per square arcsec # N per sq arcsec. First term converts to 1/AU^2. Then the angular surface # density scales as the square of the distance (same number of things, # smaller angle) sigma = vals * 206265**(-2) * d**2 tess_px = 21*u.arcsec arcsec_per_px = 21 sigma_per_sq_px = sigma * arcsec_per_px**2 # N per px^2 # r is in pc. we want the profile vs angular distance. AU_per_pc = 206265 r *= AU_per_pc # r now in AU theta = r / d # angular distance in arcsec tess_px = 21 # arcsec per px theta *= (1/tess_px) # angular distance in px return sigma_per_sq_px, theta def make_wget_script(df): ''' to download stellar data for each cluster, need to run a script of wgets. this function makes the script. ''' # get MWSC ids in "0012", "0007" format mwsc = np.array(df['MWSC']) mwsc_ids = np.array([str(int(f)).zfill(4) for f in mwsc]) names = np.array(df['Name']) f = open('../data/MWSC_stellar_data/get_stellar_data.sh', 'w') outstrs = [] for mwsc_id, name in zip(mwsc_ids, names): startstr = 'wget '+\ 'ftp://cdsarc.u-strasbg.fr/pub/cats/J/A%2BA/558/A53/stars/2m_' middlestr = str(mwsc_id) + '_' + str(name) endstr = '.dat.bz2 ;\n' outstr = startstr + middlestr + endstr outstrs.append(outstr) f.writelines(outstrs) f.close() print('made wget script!') def get_stellar_data_too(df, savstr, p_0=61): ''' args: savstr (str): gets the string used to ID the output pickle p_0: probability for inclusion. See Eqs in Kharchenko+ 2012. p_0=61 (not sure why not 68.27) is 1 sigma members by kinematic and photometric membership probability, also accounting for spatial step function and proximity within stated cluster radius. call after `get_cluster_data`. This function reads the Kharchenko+ 2013 "stars/*" tables for each cluster, and selects the stars that are "most probably cluster members, that is, stars with kinematic and photometric membership probabilities >61%". (See Kharchenko+ 2012 for definitions of these probabilities) It then computes T mags for all of the members. For each cluster, it computes surface density vs angular distance from cluster center. %%%Method 1 (outdated): %%%Interpolating these results over the King profiles, it associates a surface %%% density with each star. %%%(WARNING: how many clusters do not have King profiles?) Method 2 (used): Associate a surface density with each star by counting stars in annuli. This is also not very useful. It then returns "close", "far", and the entire dataframe ''' names = np.array(df['Name']) r2s = np.array(df['r2']) # cluster radius (deg) # get MWSC ids in "0012", "0007" format mwsc = np.array(df['MWSC']) mwsc_ids = np.array([str(int(f)).zfill(4) for f in mwsc]) readme = '../data/stellar_data_README' outd = {} # loop over clusters ix = 0 for mwsc_id, name, r2 in list(zip(mwsc_ids, names, r2s)): print('\n'+50*'*') print('{:d}. {:s}: {:s}'.format(ix, str(mwsc_id), str(name))) outd[name] = {} middlestr = str(mwsc_id) + '_' + str(name) fpath = '../data/MWSC_stellar_data/2m_'+middlestr+'.dat' if name != 'Melotte_20': tab = ascii.read(fpath, readme=readme) else: continue # Select 1-sigma cluster members by photometry & kinematics. # From Kharchenko+ 2012, also require that: # * the 2MASS flag Qflg is "A" (i.e., signal-to-noise ratio # S/N > 10) in each photometric band for stars fainter than # Ks = 7.0; # * the mean errors of proper motions are smaller than 10 mas/yr # for stars with δ ≥ −30deg , and smaller than 15 mas/yr for # δ < −30deg. inds = (tab['Ps'] == 1) inds &= (tab['Pkin'] > p_0) inds &= (tab['PJKs'] > p_0) inds &= (tab['PJH'] > p_0) inds &= (tab['Rcl'] < r2) inds &= ( ((tab['Ksmag']>7) & (tab['Qflg']=='AAA')) | (tab['Ksmag']<7)) pm_inds = ((tab['e_pm'] < 10) & (tab['DEdeg']>-30)) | \ ((tab['e_pm'] < 15) & (tab['DEdeg']<=-30)) inds &= pm_inds members = tab[inds] mdf = members.to_pandas() # Compute T mag and 1-sigma, 1 hour integration noise using Mr Tommy # B's ticgen utility. NB relevant citations are listed at top. # NB I also modified his code to fix the needlessly complicated # np.savetxt formatting. mags = mdf[['Bmag', 'Vmag', 'Jmag', 'Hmag', 'Ksmag']] mags.to_csv('temp.csv', index=False) ticgen.ticgen_csv({'input_fn':'temp.csv'}) temp = pd.read_csv('temp.csv-ticgen.csv') member_T_mags = np.array(temp['Tmag']) noise = np.array(temp['noise_1sig']) mdf['Tmag'] = member_T_mags mdf['noise_1hr'] = noise ######################################################################### ## METHOD #1 to assign surface densities: ## The King profile for the cluster is already known. Assign each member ## star a surface density from the King profile evaluated at the member ## star's angular position. #king_profile = np.array(df.loc[df['Name']==name, 'king_profile'])[0] #king_theta = np.array(df.loc[df['Name']==name, 'theta'])[0] ## theta is saved in units of TESS px. Get each star's distance from the ## center in TESS pixels. #arcsec_per_tesspx = 21 #Rcl = np.array(mdf['Rcl'])*u.deg #dists_from_center = np.array(Rcl.to(u.arcsec).value/arcsec_per_tesspx) ## interpolate over the King profile #func = interp1d(theta, king_profile, fill_value='extrapolate') #try: # density_per_sq_px = func(dists_from_center) #except: # print('SAVED OUTPUT TO ../data/Kharachenko_full.p') # pickle.dump(outd, open('../data/Kharachenko_full.p', 'wb')) # print('interpolation failed. check!') # import IPython; IPython.embed() #mdf['density_per_sq_px'] = density_per_sq_px ######################################################################### ######################################################################### # METHOD #2 for surface densities (because Method #1 only counts # member stars!). # Just count stars in annuli. king_profile = np.array(df.loc[df['Name']==name, 'king_profile'])[0] king_theta = np.array(df.loc[df['Name']==name, 'theta'])[0] inds = (tab['Rcl'] < r2) stars_in_annulus = tab[inds] sia = stars_in_annulus.to_pandas() arcsec_per_tesspx = 21 Rcl = np.array(sia['Rcl'])*u.deg dists_from_center = np.array(Rcl.to(u.arcsec).value/arcsec_per_tesspx) maxdist = ((r2*u.deg).to(u.arcsec).value/arcsec_per_tesspx) n_pts = np.min((50, int(len(sia)/2))) angsep_grid = np.linspace(0, maxdist, num=n_pts) # Attempt to compute Tmags for everything. Only count stars with # T<limiting magnitude as "contaminants" (anything else is probably too # faint to really matter!) mags = sia[['Bmag', 'Vmag', 'Jmag', 'Hmag', 'Ksmag']] mags.to_csv('temp.csv', index=False) ticgen.ticgen_csv({'input_fn':'temp.csv'}) temp = pd.read_csv('temp.csv-ticgen.csv') T_mags = np.array(temp['Tmag']) all_dists = dists_from_center[(T_mags > 0) & (T_mags < 17) & \ (np.isfinite(T_mags))] N_in_bin, edges = np.histogram( all_dists, bins=angsep_grid, normed=False) # compute empirical surface density, defined on the midpoints outer, inner = angsep_grid[1:], angsep_grid[:-1] sigma = N_in_bin / (pi * (outer**2 - inner**2)) midpoints = angsep_grid[:-1] + np.diff(angsep_grid)/2 # interpolate over the empirical surface density as a function of # angular separation to assign surface densities to member stars. func = interp1d(midpoints, sigma, fill_value='extrapolate') member_Rcl = np.array(mdf['Rcl'])*u.deg member_dists_from_center = np.array(member_Rcl.to(u.arcsec).value/\ arcsec_per_tesspx) try: member_density_per_sq_px = func(member_dists_from_center) except: print('SAVED OUTPUT TO ../data/Kharachenko_full_{:s}.p'.format(savstr)) pickle.dump(outd, open( '../data/Kharachenko_full_{:s}.p'.format(savstr), 'wb')) print('interpolation failed. check!') import IPython; IPython.embed() mdf['density_per_sq_px'] = member_density_per_sq_px ######################################################################### N_catalogd = int(df.loc[df['Name']==name, 'N1sr2']) N_my_onesigma = int(len(mdf)) got_Tmag = (np.array(mdf['Tmag']) > 0) N_with_Tmag = len(mdf[got_Tmag]) print('N catalogued as in cluster: {:d}'.format(N_catalogd)) print('N I got as in cluster: {:d}'.format(N_my_onesigma)) print('N of them with Tmag: {:d}'.format(N_with_Tmag)) diff = abs(N_catalogd - N_with_Tmag) if diff > 5: print('\nWARNING: my cuts different from Kharachenko+ 2013!!') lens = np.array([len(member_T_mags), len(noise), len(member_dists_from_center), len(member_density_per_sq_px)]) np.testing.assert_equal(lens, lens[0]*np.ones_like(lens)) # for members outd[name]['Tmag'] = np.array(mdf['Tmag']) outd[name]['noise_1hr'] = np.array(mdf['noise_1hr']) outd[name]['Rcl'] = member_dists_from_center outd[name]['density_per_sq_px'] = member_density_per_sq_px # Ocassionally, do some output plots to compare profiles if ix%50 == 0: plt.close('all') f, ax=plt.subplots() ax.scatter(member_dists_from_center, member_density_per_sq_px) ax.plot(king_theta, king_profile) ax.set_ylim([0,np.max((np.max(member_density_per_sq_px), np.max(king_profile) ) )]) ax.set_xlim([0, 1.02*np.max(member_dists_from_center)]) ax.set_xlabel('angular sep [TESS px]') ax.set_ylabel('surface density (line: King model, dots: empirical' ' [per tess px area]', fontsize='xx-small') f.savefig('king_v_empirical/{:s}_{:d}.pdf'.format(name, ix), bbox_inches='tight') del mdf ix += 1 print(50*'*') print('SAVED OUTPUT TO ../data/Kharchenko_full_{:s}.p'.format(savstr)) pickle.dump(outd, open( '../data/Kharchenko_full_{:s}.p'.format(savstr), 'wb')) print(50*'*') close = df[df['d'] < 500] far = df[df['d'] < 1000] return close, far, df def get_dilutions_and_distances(df, savstr, faintest_Tmag=16, p_0=61): ''' args: savstr (str): gets the string used to ID the output pickle p_0: probability for inclusion. See Eqs in Kharchenko+ 2012. p_0=61 (not sure why not 68.27) is 1 sigma members by kinematic and photometric membership probability, also accounting for spatial step function and proximity within stated cluster radius. call after `get_cluster_data`. This function reads the Kharchenko+ 2013 "stars/*" tables for each cluster, and selects the stars that are "most probably cluster members, that is, stars with kinematic and photometric membership probabilities >61%". (See Kharchenko+ 2012 for definitions of these probabilities) It then computes T mags for all of the members. For each cluster member, it then finds all cataloged stars (not necessarily cluster members) within 2, 3, 4, 5, 6 TESS pixels. It sums the fluxes, and computes a dilution. It saves (for each cluster member): * number of stars in various apertures * dilution for various apertures * distance of cluster member * Tmag of cluster member * noise_1hr for cluster member * ra,dec for cluster member ''' names = np.array(df['Name']) r2s = np.array(df['r2']) # get MWSC ids in "0012", "0007" format mwsc = np.array(df['MWSC']) mwsc_ids = np.array([str(int(f)).zfill(4) for f in mwsc]) readme = '../data/stellar_data_README' outd = {} # loop over clusters ix = 0 start, step = 3, 7 for mwsc_id, name, r2 in list(zip(mwsc_ids, names, r2s))[start::step]: print('\n'+50*'*') print('{:d}. {:s}: {:s}'.format(ix, str(mwsc_id), str(name))) outd[name] = {} outpath = '../data/MWSC_dilution_calc/{:s}.csv'.format(str(name)) if os.path.exists(outpath): print('found {:s}, continue'.format(outpath)) continue middlestr = str(mwsc_id) + '_' + str(name) fpath = '../data/MWSC_stellar_data/2m_'+middlestr+'.dat' if name not in ['Melotte_20', 'Sco_OB4']: tab = ascii.read(fpath, readme=readme) else: continue # Select 1-sigma cluster members by photometry & kinematics. # From Kharchenko+ 2012, also require that: # * the 2MASS flag Qflg is "A" (i.e., signal-to-noise ratio # S/N > 10) in each photometric band for stars fainter than # Ks = 7.0; # * the mean errors of proper motions are smaller than 10 mas/yr # for stars with δ ≥ −30deg , and smaller than 15 mas/yr for # δ < −30deg. inds = (tab['Ps'] == 1) inds &= (tab['Pkin'] > p_0) inds &= (tab['PJKs'] > p_0) inds &= (tab['PJH'] > p_0) inds &= (tab['Rcl'] < r2) inds &= ( ((tab['Ksmag']>7) & (tab['Qflg']=='AAA')) | (tab['Ksmag']<7)) pm_inds = ((tab['e_pm'] < 10) & (tab['DEdeg']>-30)) | \ ((tab['e_pm'] < 15) & (tab['DEdeg']<=-30)) inds &= pm_inds members = tab[inds] mdf = members.to_pandas() # Compute T mag and 1-sigma, 1 hour integration noise using Mr Tommy # B's ticgen utility. NB relevant citations are listed at top. # NB I also modified his code to fix the needlessly complicated # np.savetxt formatting. mags = mdf[['Bmag', 'Vmag', 'Jmag', 'Hmag', 'Ksmag']] mags.to_csv('temp{:s}.csv'.format(name), index=False) ticgen.ticgen_csv({'input_fn':'temp{:s}.csv'.format(name)}) temp = pd.read_csv('temp{:s}.csv-ticgen.csv'.format(name)) member_T_mags = np.array(temp['Tmag']) member_noise = np.array(temp['noise_1sig']) mdf['Tmag'] = member_T_mags mdf['noise_1hr'] = member_noise desired_Tmag_inds = ((member_T_mags > 0) & (member_T_mags < faintest_Tmag) & \ (np.isfinite(member_T_mags)) ) sel_members = mdf[desired_Tmag_inds] # Compute T mag for everything in this cluster field. NOTE this # consistently seems to fail for ~10% of the stars. This is not # precision science (we are getting coarse estimates), so ignore this # likely bug. mags = tab[['Bmag', 'Vmag', 'Jmag', 'Hmag', 'Ksmag']] mags.to_pandas().to_csv('temp{:s}.csv'.format(name), index=False) ticgen.ticgen_csv({'input_fn':'temp{:s}.csv'.format(name)}) temp = pd.read_csv('temp{:s}.csv-ticgen.csv'.format(name)) all_Tmag = np.array(temp['Tmag']) tab['Tmag'] = all_Tmag Tmag_inds = ((all_Tmag>0) & (all_Tmag<28) & (np.isfinite(all_Tmag))) sel_in_field = tab[Tmag_inds] # Want, for all cluster members with T<faintest_Tmag # * distance of cluster member # * Tmag of cluster member # * noise_1hr for cluster member # * ra,dec for cluster member # * number of stars in various apertures # * dilution for various apertures sel_members['dist'] = np.ones_like(np.array(sel_members['RAhour']))*\ float(df.loc[df['Name']==name, 'd']) Nstar_dict, dil_dict = {}, {} arcsec_per_px = 21 for aper_radius in [2,3,4,5,6]: Nstar_str = 'Nstar_{:d}px'.format(aper_radius) dil_str = 'dil_{:d}px'.format(aper_radius) Nstar_dict[Nstar_str] = [] dil_dict[dil_str] = [] # Iterate over members, then over apertures. print('finding all neighbors and computing dilutions') for sm_ra, sm_dec, sm_Tmag in zip(sel_members['RAhour'], sel_members['DEdeg'], sel_members['Tmag']): member_c = SkyCoord(ra=sm_ra*u.hourangle, dec=sm_dec*u.degree) nbhr_RAs = np.array(sel_in_field['RAhour'])*u.hourangle nbhr_DECs = np.array(sel_in_field['DEdeg'])*u.degree c = SkyCoord(ra=nbhr_RAs, dec=nbhr_DECs) seps = c.separation(member_c) # Find neighboring stars in aperture. for aper_radius in [2,3,4,5,6]: Nstar_str = 'Nstar_{:d}px'.format(aper_radius) dil_str = 'dil_{:d}px'.format(aper_radius) aper_radius_in_as = aper_radius * arcsec_per_px * u.arcsecond in_aperture = (seps < aper_radius_in_as) stars_in_aperture = sel_in_field[in_aperture] Nstar_in_aperture = len(stars_in_aperture) # NB this list includes the target star. Tmags_in_aperture = np.array(stars_in_aperture['Tmag']) # Compute dilution. numerator = 10**(-0.4 * sm_Tmag) denominator = np.sum( 10**(-0.4 * Tmags_in_aperture) ) dilution = numerator/denominator Nstar_dict[Nstar_str].append(Nstar_in_aperture) dil_dict[dil_str].append(dilution) for aper_radius in [2,3,4,5,6]: Nstar_str = 'Nstar_{:d}px'.format(aper_radius) dil_str = 'dil_{:d}px'.format(aper_radius) sel_members[Nstar_str] = Nstar_dict[Nstar_str] sel_members[dil_str] = dil_dict[dil_str] print('done computing dilutions') out = sel_members[ ['dist','Tmag','noise_1hr','RAhour','DEdeg', 'Nstar_2px','Nstar_3px','Nstar_4px','Nstar_5px','Nstar_6px', 'dil_2px','dil_3px','dil_4px','dil_5px','dil_6px' ] ] ######################################################################### N_catalogd = int(df.loc[df['Name']==name, 'N1sr2']) N_my_onesigma = len(mdf) N_with_Tmag = len(out) print('N catalogued as in cluster: {:d}'.format(N_catalogd)) print('N I got as in cluster: {:d}'.format(N_my_onesigma)) print('N of them with Tmag: {:d}'.format(N_with_Tmag)) diff = abs(N_catalogd - N_with_Tmag) if diff > 5: print('\nWARNING: my cuts different from Kharachenko+ 2013!!') ######################################################################### fpath = '../data/MWSC_dilution_calc/{:s}.csv'.format(str(name)) print('saving to {:s}'.format(fpath)) out.to_csv(fpath, index=False) print('done with dilution calculation') def plot_King_density_vs_Tmag_scatter(close, far): c_names = np.sort(close['Name']) f_names = np.sort(far['Name']) obj = pickle.load(open('../data/Kharachenko_full.p','rb')) colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] # Close clusters Tmags, densities = np.array([]), np.array([]) for c_name in c_names: c = obj[c_name] #XXX FIXME THIS IS WRONG!!!!!!!! Tmags = np.concatenate((Tmags, c['Tmag'])) densities = np.concatenate((densities, c['density_per_sq_px'])) inds = (Tmags > 0) & (np.isfinite(densities)) & (densities < 1e10) inds &= (densities > 1e-20) df = pd.DataFrame({'Tmag':Tmags[inds], 'log10_density_per_sq_px':np.log10(densities[inds])}) plt.close('all') g = sns.jointplot(x='Tmag', y='log10_density_per_sq_px', data=df, kind='hex', color=colors[0], size=4, space=0, stat_func=None, xlim=[9,17], ylim=[-6,0]) g.set_axis_labels('TESS-band magnitude', '$\log_{10}$($\Sigma_{\mathrm{King}}\ [\mathrm{member\ stars/TESS\ px}^2]$)') g.savefig('king_density_vs_Tmag_scatter_close.pdf', dpi=300, bbox_inches='tight') # Far clusters Tmags, densities = np.array([]), np.array([]) for f_name in f_names: c = obj[f_name] #XXX FIXME THIS IS WRONG Tmags = np.concatenate((Tmags, c['Tmag'])) densities = np.concatenate((densities, c['density_per_sq_px'])) inds = (Tmags > 0) & (np.isfinite(densities)) & (densities < 1e10) inds &= (densities > 1e-20) df = pd.DataFrame({'Tmag':Tmags[inds], 'log10_density_per_sq_px':np.log10(densities[inds])}) plt.close('all') g = sns.jointplot(x='Tmag', y='log10_density_per_sq_px', data=df, kind='hex', color=colors[1], size=4, space=0, stat_func=None, xlim=[9,17], ylim=[-6,0]) g.set_axis_labels('TESS-band magnitude', '$\log_{10}$($\Sigma_{\mathrm{King}}\ [\mathrm{member\ stars/TESS\ px}^2]$)') g.savefig('king_density_vs_Tmag_scatter_far.pdf', dpi=300, bbox_inches='tight') def plot_empirical_density_vs_Tmag_scatter(close, far): c_names = np.sort(close['Name']) f_names = np.sort(far['Name']) obj = pickle.load(open('../data/Kharchenko_full_Tmag_lt_18.p','rb')) colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] # Close clusters Tmags, densities = np.array([]), np.array([]) for c_name in c_names: c = obj[c_name] Tmags = np.concatenate((Tmags, c['Tmag'])) densities = np.concatenate((densities, c['density_per_sq_px'])) inds = (Tmags > 0) & (np.isfinite(densities)) & (densities < 1e10) inds &= (densities > 1e-20) df = pd.DataFrame({'Tmag':Tmags[inds], 'log10_density_per_sq_px':np.log10(densities[inds])}) plt.close('all') g = sns.jointplot(x='Tmag', y='log10_density_per_sq_px', data=df, kind='kde', color=colors[0], size=4, space=0, stat_func=None, xlim=[9,17], ylim=[-1.5,0.5]) g.set_axis_labels('TESS-band magnitude', '$\log_{10}$($\Sigma_{\mathrm{empirical}}\ [\mathrm{obsd\ stars/TESS\ px}^2]$)') g.savefig('empirical_density_vs_Tmag_scatter_close.pdf', dpi=300, bbox_inches='tight') # Far clusters Tmags, densities = np.array([]), np.array([]) for f_name in f_names: c = obj[f_name] #XXX FIXME THIS IS WRONG!! Tmags = np.concatenate((Tmags, c['Tmag'])) densities = np.concatenate((densities, c['density_per_sq_px'])) inds = (Tmags > 0) & (np.isfinite(densities)) & (densities < 1e10) inds &= (densities > 1e-20) df = pd.DataFrame({'Tmag':Tmags[inds], 'log10_density_per_sq_px':np.log10(densities[inds])}) plt.close('all') g = sns.jointplot(x='Tmag', y='log10_density_per_sq_px', data=df, kind='kde', color=colors[1], size=4, space=0, stat_func=None, xlim=[9,17], ylim=[-1.5,0.5]) g.set_axis_labels('TESS-band magnitude', '$\log_{10}$($\Sigma_{\mathrm{empirical}}\ [\mathrm{obsd\ stars/TESS\ px}^2]$)') g.savefig('empirical_density_vs_Tmag_scatter_far.pdf', dpi=300, bbox_inches='tight') def plot_cluster_positions(close, far): ''' Show the positions on Kavrayskiy VII, a global projection similar to Robinson, used widely in the former Soviet Union. ''' import matplotlib as mpl from mpl_toolkits.basemap import Basemap colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] for coord in ['galactic','ecliptic']: plt.close('all') f, ax = plt.subplots(figsize=(4,4)) m = Basemap(projection='kav7',lon_0=0, resolution='c', ax=ax) lats = np.array(close[coord+'_lat']) lons = np.array(close[coord+'_long']) x, y = m(lons, lats) m.scatter(x,y,3,marker='o',color=colors[0], label='$d<0.5$kpc', zorder=4) lats = np.array(far[coord+'_lat']) lons = np.array(far[coord+'_long']) x, y = m(lons, lats) m.scatter(x,y,3,marker='o',color=colors[1], label='$0.5<d<1$kpc', zorder=3) parallels = np.arange(-90.,120.,30.) meridians = np.arange(0.,420.,60.) # labels = [left,right,top,bottom] m.drawparallels(parallels, labels=[1,0,0,0], zorder=2, fontsize='small') ms = m.drawmeridians(meridians, labels=[0,0,0,1], zorder=2, fontsize='small') # Shrink current axis's height by 10% on the bottom box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9]) # Put a legend below current axis ax.legend(loc='upper center', bbox_to_anchor=(0.91, -0.07), fancybox=True, ncol=1, fontsize='x-small') for _m in ms: try: ms[_m][1][0].set_rotation(45) except: pass ax.set_xlabel(coord+' long', labelpad=25, fontsize='small') ax.set_ylabel(coord+' lat', labelpad=25, fontsize='small') #################### # add TESS footprint dat = np.genfromtxt('../data/fig4_bundle/nhemi_shemi.csv', delimiter=',') dat = pd.DataFrame(np.transpose(dat), columns=['icSys', 'tSys', 'teff', 'logg', 'r', 'm', 'eLat', 'eLon', 'micSys', 'mvSys', 'mic', 'mv', 'stat', 'nPntg']) eLon, eLat = np.array(dat.eLon), np.array(dat.eLat) nPntg = np.array(dat.nPntg) if coord=='galactic': c = SkyCoord(lat=eLat*u.degree, lon=eLon*u.degree, frame='barycentrictrueecliptic') lon = np.array(c.galactic.l) lat = np.array(c.galactic.b) elif coord=='ecliptic': lon, lat = eLon, eLat nPntg[nPntg >= 4] = 4 ncolor = 4 cmap1 = mpl.colors.ListedColormap( sns.color_palette("Greys", n_colors=ncolor, desat=1)) bounds= list(np.arange(0.5,ncolor+1,1)) norm1 = mpl.colors.BoundaryNorm(bounds, cmap1.N) x, y = m(lon, lat) out = m.scatter(x,y,s=0.2,marker='s',c=nPntg, zorder=1, cmap=cmap1, norm=norm1, rasterized=True, alpha=0.5) out = m.scatter(x,y,s=0, marker='s',c=nPntg, zorder=-1, cmap=cmap1, norm=norm1, rasterized=True, alpha=1) m.drawmapboundary() cbar = f.colorbar(out, cmap=cmap1, norm=norm1, boundaries=bounds, fraction=0.025, pad=0.05, ticks=np.arange(ncolor)+1, orientation='vertical') ylabels = np.arange(1,ncolor+1,1) cbarlabels = list(map(str, ylabels))[:-1] cbarlabels.append('$\geq 4$') cbar.ax.set_yticklabels(cbarlabels) cbar.set_label('N pointings', rotation=270, labelpad=5) #################### f.savefig('cluster_positions_'+coord+'.pdf', bbox_inches='tight') def plot_cluster_positions_scicase(df): ''' Show the positions of d<2kpc clusters, and highlight those with rotation period measurements & transiting planets. ''' rotn_clusters = ['NGC_1976', # AKA the orion nebula cluster 'NGC_6530', 'NGC_2264', 'Cep_OB3', 'NGC_2362', 'NGC_869', # h Per, one of the double cluster 'NGC_2547', 'IC_2391', 'Melotte_20', # alpha Persei cluster, alpha Per 'Melotte_22', # AKA Pleiades 'NGC_2323', # M 50 'NGC_2168', #M 35 'NGC_2516', 'NGC_1039', #M 34 'NGC_2099', # M 37 #'NGC_2632', #Praesepe, comment out to avoid overlap #'NGC_6811', #comment out to avoid overlap 'NGC_2682' ] #M 67 transiting_planet_clusters = [ 'NGC_6811', 'NGC_2632' #Praesepe ] df = df[df['d'] < 2000] df_rotn = df.loc[df['Name'].isin(rotn_clusters)] df_rotn = df_rotn[ ['ecliptic_lat','ecliptic_long','galactic_lat','galactic_long', 'Name'] ] df_tra = df.loc[df['Name'].isin(transiting_planet_clusters)] # Above rotation lists were from Table 1 of Gallet & Bouvier 2015, # including M67 which was observed by K2. Transiting planets from the few # papers that have them. They are cross-matching MWSC's naming scheme. I # could not find the Hyades or ScoCen OB. They both have transiting # planets, and the former has rotation studies done. c_Hyades = SkyCoord(ra='4h27m', dec=15*u.degree + 52*u.arcminute) df_hyades = pd.DataFrame({ 'Name':'Hyades', 'ecliptic_long':float(c_Hyades.barycentrictrueecliptic.lon.value), 'ecliptic_lat':float(c_Hyades.barycentrictrueecliptic.lat.value), 'galactic_long':float(c_Hyades.galactic.l.value), 'galactic_lat':float(c_Hyades.galactic.b.value)}, index=[0]) c_ScoOB2 = SkyCoord(ra='16h10m14.73s', dec='-19d19m09.38s') # Mann+2016's position df_ScoOB2 = pd.DataFrame({ 'Name':'Sco_OB2', 'ecliptic_long':float(c_ScoOB2.barycentrictrueecliptic.lon.value), 'ecliptic_lat':float(c_ScoOB2.barycentrictrueecliptic.lat.value), 'galactic_long':float(c_ScoOB2.galactic.l.value), 'galactic_lat':float(c_ScoOB2.galactic.b.value)}, index=[0]) df_tra = df_tra.append(df_hyades, ignore_index=True) df_tra = df_tra.append(df_ScoOB2, ignore_index=True) #df_rotn = df_rotn.append(df_hyades, ignore_index=True) #avoid overlap # End of data wrangling. import matplotlib as mpl from mpl_toolkits.basemap import Basemap for coord in ['galactic','ecliptic']: plt.close('all') #f, ax = plt.subplots(figsize=(4,4)) f = plt.figure(figsize=(0.7*5,0.7*4)) ax = plt.gca() m = Basemap(projection='kav7',lon_0=0, resolution='c', ax=ax) lats = np.array(df[coord+'_lat']) lons = np.array(df[coord+'_long']) x, y = m(lons, lats) m.scatter(x,y,2,marker='o',facecolor=COLORS[0], zorder=4, alpha=0.9,edgecolors=COLORS[0], lw=0) lats = np.array(df_rotn[coord+'_lat']) lons = np.array(df_rotn[coord+'_long']) x, y = m(lons, lats) m.scatter(x,y,42,marker='*',color=COLORS[1],edgecolors='k', label='have rotation studies', zorder=5,lw=0.4) lats = np.array(df_tra[coord+'_lat']) lons = np.array(df_tra[coord+'_long']) x, y = m(lons, lats) m.scatter(x,y,13,marker='s',color=COLORS[1],edgecolors='k', label='also have transiting planets', zorder=6, lw=0.45) parallels = np.arange(-90.,120.,30.) meridians = np.arange(0.,420.,60.) # labels = [left,right,top,bottom] ps = m.drawparallels(parallels, labels=[1,0,0,0], zorder=2, fontsize='x-small') ms = m.drawmeridians(meridians, labels=[0,0,0,1], zorder=2, fontsize='x-small') # Shrink current axis's height by 10% on the bottom box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9]) # Put a legend below current axis #ax.legend(loc='upper center', bbox_to_anchor=(0.01, 0.02), # fancybox=True, ncol=1, fontsize='x-small') for _m in ms: try: #ms[_m][1][0].set_rotation(45) if '60' in ms[_m][1][0].get_text(): ms[_m][1][0].set_text('') except: pass for _p in ps: try: if '30' in ps[_p][1][0].get_text(): ps[_p][1][0].set_text('') except: pass ax.set_xlabel(coord+' long', labelpad=13, fontsize='x-small') ax.set_ylabel(coord+' lat', labelpad=13, fontsize='x-small') ###################### # add TESS footprint # ###################### dat = np.genfromtxt('../data/fig4_bundle/nhemi_shemi.csv', delimiter=',') dat = pd.DataFrame(np.transpose(dat), columns=['icSys', 'tSys', 'teff', 'logg', 'r', 'm', 'eLat', 'eLon', 'micSys', 'mvSys', 'mic', 'mv', 'stat', 'nPntg']) eLon, eLat = np.array(dat.eLon), np.array(dat.eLat) nPntg = np.array(dat.nPntg) if coord=='galactic': c = SkyCoord(lat=eLat*u.degree, lon=eLon*u.degree, frame='barycentrictrueecliptic') lon = np.array(c.galactic.l) lat = np.array(c.galactic.b) elif coord=='ecliptic': lon, lat = eLon, eLat nPntg[nPntg >= 4] = 4 ncolor = 4 cmap1 = mpl.colors.ListedColormap( sns.color_palette("Greys", n_colors=ncolor, desat=1)) bounds= list(np.arange(0.5,ncolor+1,1)) norm1 = mpl.colors.BoundaryNorm(bounds, cmap1.N) x, y = m(lon, lat) out = m.scatter(x,y,s=0.2,marker='s',c=nPntg, zorder=1, cmap=cmap1, norm=norm1, rasterized=True, alpha=0.5) out = m.scatter(x,y,s=0, marker='s',c=nPntg, zorder=-1, cmap=cmap1, norm=norm1, rasterized=True, alpha=1) m.drawmapboundary() #cbar = f.colorbar(out, cmap=cmap1, norm=norm1, boundaries=bounds, # fraction=0.025, pad=0.05, ticks=np.arange(ncolor)+1, # orientation='vertical') #ylabels = np.arange(1,ncolor+1,1) #cbarlabels = list(map(str, ylabels))[:-1] #cbarlabels.append('$\geq\! 4$') #cbar.ax.set_yticklabels(cbarlabels, fontsize='x-small') #cbar.set_label('N pointings', rotation=270, labelpad=5, fontsize='x-small') #################### f.tight_layout() f.savefig('cluster_positions_'+coord+'_scicase.pdf', bbox_inches='tight') def plot_HATS_field_positions(): ''' Show the positions on Kavrayskiy VII, a global projection similar to Robinson, used widely in the former Soviet Union. N.B. we're just markering the HATS field center (13x13 deg each) ''' import matplotlib as mpl from mpl_toolkits.basemap import Basemap colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] df = pd.read_csv('../data/HATPI_field_ids.txt', delimiter='|') ra = df['ra'] dec = df['decl'] fieldnums = df['field_num'] c = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs') lons = np.array(c.barycentrictrueecliptic.lon) lats = np.array(c.barycentrictrueecliptic.lat) for coord in ['ecliptic']: plt.close('all') f, ax = plt.subplots(figsize=(4,4)) m = Basemap(projection='kav7',lon_0=0, resolution='c', ax=ax) x, y = m(lons, lats) m.scatter(x,y,13,marker='s',color=colors[0], label='HATPI fields', zorder=4) for s, _x, _y in list(zip(fieldnums, x,y)): ax.text(x=_x, y=_y, s=s, fontsize='xx-small', verticalalignment='center', horizontalalignment='center', zorder=6) parallels = np.arange(-90.,120.,30.) meridians = np.arange(0.,420.,60.) # labels = [left,right,top,bottom] m.drawparallels(parallels, labels=[1,0,0,0], zorder=2, fontsize='small') ms = m.drawmeridians(meridians, labels=[0,0,0,1], zorder=2, fontsize='small') # Shrink current axis's height by 10% on the bottom box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9]) # Put a legend below current axis ax.legend(loc='upper center', bbox_to_anchor=(0.91, -0.07), fancybox=True, ncol=1, fontsize='x-small') for _m in ms: try: ms[_m][1][0].set_rotation(45) except: pass ax.set_xlabel(coord+' long', labelpad=25, fontsize='small') ax.set_ylabel(coord+' lat', labelpad=25, fontsize='small') #################### # add TESS footprint dat = np.genfromtxt('../data/fig4_bundle/nhemi_shemi.csv', delimiter=',') dat = pd.DataFrame(np.transpose(dat), columns=['icSys', 'tSys', 'teff', 'logg', 'r', 'm', 'eLat', 'eLon', 'micSys', 'mvSys', 'mic', 'mv', 'stat', 'nPntg']) eLon, eLat = np.array(dat.eLon), np.array(dat.eLat) nPntg = np.array(dat.nPntg) if coord=='galactic': c = SkyCoord(lat=eLat*u.degree, lon=eLon*u.degree, frame='barycentrictrueecliptic') lon = np.array(c.galactic.l) lat = np.array(c.galactic.b) elif coord=='ecliptic': lon, lat = eLon, eLat nPntg[nPntg >= 4] = 4 ncolor = 4 cmap1 = mpl.colors.ListedColormap( sns.color_palette("Greys", n_colors=ncolor, desat=1)) bounds= list(np.arange(0.5,ncolor+1,1)) norm1 = mpl.colors.BoundaryNorm(bounds, cmap1.N) x, y = m(lon, lat) out = m.scatter(x,y,s=0.2,marker='s',c=nPntg, zorder=1, cmap=cmap1, norm=norm1, rasterized=True, alpha=0.5) out = m.scatter(x,y,s=0, marker='s',c=nPntg, zorder=-1, cmap=cmap1, norm=norm1, rasterized=True, alpha=1) m.drawmapboundary() cbar = f.colorbar(out, cmap=cmap1, norm=norm1, boundaries=bounds, fraction=0.025, pad=0.05, ticks=np.arange(ncolor)+1, orientation='vertical') ylabels = np.arange(1,ncolor+1,1) cbarlabels = list(map(str, ylabels))[:-1] cbarlabels.append('$\geq 4$') cbar.ax.set_yticklabels(cbarlabels) cbar.set_label('N pointings', rotation=270, labelpad=5) #################### f.savefig('HATPI_field_positions_'+coord+'.pdf', bbox_inches='tight') def plot_dilution_vs_dist_and_Tmag(): ''' 2d distribution plots: dil_2px vs dist dil_3px vs dist dil_4px vs dist dil_2px vs Tmag dil_3px vs Tmag dil_4px vs Tmag ''' # Collect all dilutions, distances, Tmags data_dir = '../data/MWSC_dilution_calc/' csv_paths = [data_dir+f for f in os.listdir(data_dir)] df = pd.concat((pd.read_csv(f) for f in csv_paths), ignore_index=True) df['log10_dist'] = np.log10(df['dist']) # vs dist plots for ydim in ['dil_2px', 'dil_3px', 'dil_4px']: plt.close('all') g = sns.jointplot(x='log10_dist', y=ydim, data=df[::5], kind='kde', color=COLORS[0], size=4, space=0, stat_func=None, xlim=[1.8,4.2], ylim=[0, 1]) g.set_axis_labels('$\log_{10}$ distance [pc]', 'dilution, {:s} aperture'.format(ydim[-3:])) outname = '{:s}_vs_log10dist_Tmaglt16_members.pdf'.format(ydim) print('saving {:s}'.format(outname)) g.savefig(outname, dpi=300, bbox_inches='tight') # vs Tmag plots for ydim in ['dil_2px', 'dil_3px', 'dil_4px']: plt.close('all') g = sns.jointplot(x='Tmag', y=ydim, data=df[::5], kind='kde', color=COLORS[0], size=4, space=0, stat_func=None, xlim=[9,16.5], ylim=[0, 1]) g.set_axis_labels('T mag', 'dilution, {:s} aperture'.format(ydim[-3:])) outname = '{:s}_vs_Tmag_Tmaglt16_members.pdf'.format(ydim) print('saving {:s}'.format(outname)) g.savefig(outname, dpi=300, bbox_inches='tight') def plot_dilution_scicase(): ''' Make the plot of log10(dilution [2px aperture]) vs log10(distance [pc]) for T<16 mag, d<2kpc cluster members. ''' # Collect all dilutions, distances, Tmags data_dir = '../data/MWSC_dilution_calc/' csv_paths = [data_dir+f for f in os.listdir(data_dir)] df = pd.concat((pd.read_csv(f) for f in csv_paths), ignore_index=True) inds = df['dist'] < 2000 df = df[inds] dil_2px = np.array(df['dil_2px']) # y dil_2px[dil_2px > 0.999 ] = 0.999 plt.close('all') fig, ax = plt.subplots(figsize=(4,4)) ax.set_xscale('log') ax.set_xlabel('(target flux)/(total flux in 2px TESS aperture)') ax.set_ylabel('probability density') ax.set_xlim((10**(-2.05), 1.1)) ax.tick_params(which='both', direction='in', zorder=0) xmin, xmax = 10**(-3), 10**1 log_dil_2px_bins = np.linspace(np.log10(xmin), np.log10(xmax), 17) x = 10**log_dil_2px_bins y = np.histogram(np.log10(dil_2px), log_dil_2px_bins)[0] x = np.array(list(zip(x[:-1], x[1:]))).flatten() y = np.array(list(zip(y, y))).flatten() ax.plot(x, y, lw=1, color='black') inds = (x <= 0.1) ax.fill_between(x[inds], y[inds], np.zeros_like(y[inds]), facecolor='none', hatch='/', edgecolor='gray', lw=0) frac_not_ok = np.sum(y[inds]) / np.sum(y) nonrecov_str = r'$\approx$'+'{:d}%\ntoo crowded'.format(int(100*frac_not_ok)) recov_str = r'$\approx$'+'{:d}%\nrecoverable'.format( int(round(100*(1-frac_not_ok)))) t = ax.text(10**(-0.5), 11500, recov_str, verticalalignment='center',horizontalalignment='center',fontsize='large') t.set_bbox(dict(facecolor='white', alpha=1, edgecolor='gray')) t= ax.text(10**(-1.5), 11500, nonrecov_str, verticalalignment='center',horizontalalignment='center',fontsize='large') t.set_bbox(dict(facecolor='white', alpha=1, edgecolor='gray')) #ax.set_xticklabels([]) ax.set_yticklabels([]) ax.yaxis.set_major_locator(plt.MaxNLocator(5)) ax.tick_params(which='both', direction='in', zorder=0) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylim((0, max(ax.get_ylim()))) ax.set_ylim((0, max(ax.get_ylim()))) outname = 'dil_Tmaglt16_dlt2kpc_members.pdf' print('saving {:s}'.format(outname)) fig.savefig(outname, dpi=400, bbox_inches='tight') plt.close(fig) def plot_dilution_fancy(): ''' Make the marginalized pllot of log10(dilution [2px aperture])for T<16 mag, d<2kpc cluster members. This one is to be included with the proposal. ''' # Collect all dilutions, distances, Tmags data_dir = '../data/MWSC_dilution_calc/' csv_paths = [data_dir+f for f in os.listdir(data_dir)] df = pd.concat((pd.read_csv(f) for f in csv_paths), ignore_index=True) inds = df['dist'] < 2000 df = df[inds] dist = np.array(df['dist']) # x dil_2px = np.array(df['dil_2px']) # y dil_2px[dil_2px > 0.999 ] = 0.999 plt.close('all') fig = plt.figure(figsize=(4,4)) ##################### # Scatter and lines # ##################### ax = plt.axes([0.1, 0.1, 0.6, 0.6]) ax.plot( dist, dil_2px, 'o', color=COLORS[0], ms=3, alpha=0.02, rasterized=True, markeredgewidth=0, fillstyle='full' ) ax.set_xscale('log') ax.set_yscale('log') xmin, xmax = 10**(1.8), 10**(3.4) ymin, ymax = 10**(-3), 10**1 ax.set_xlabel('distance [pc]') ax.set_ylabel('dilution, 2px TESS aperture') ax.xaxis.set_label_coords(0.5, -0.07) ax.set_xlim((10**1.8, 2050)) ax.set_ylim((10**(-2.5), 1.1)) ax.tick_params(which='both', direction='in', zorder=0) ############## # Histograms # ############## log_dil_2px_bins = np.linspace(np.log10(ymin), np.log10(ymax), 17) log_dist_bins = np.linspace(np.log10(xmin), np.log10(xmax), 17) n_bins, log_dil_2px_bins, log_dist_bins = np.histogram2d( np.log10(dil_2px), np.log10(dist), (log_dil_2px_bins, log_dist_bins), ) # Top: ax = plt.axes([0.1, 0.71, 0.6, 0.15]) x = 10**log_dist_bins y = np.histogram(np.log10(dist), log_dist_bins)[0] x = np.array(list(zip(x[:-1], x[1:]))).flatten() y = np.array(list(zip(y, y))).flatten() ax.plot(x, y, lw=1, color=COLORS[0]) ax.fill_between(x, y, np.zeros_like(y), color=COLORS[0], alpha=0.2) ax.set_xscale('log') ax.set_xlim((10**1.8, 2050)) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.tick_params(which='both', direction='in', zorder=0) ax.yaxis.set_major_locator(plt.MaxNLocator(3)) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylim((0, max(ax.get_ylim()))) # Right: ax = plt.axes([0.71, 0.1, 0.15, 0.6]) x = 10**log_dil_2px_bins y = np.histogram(
np.log10(dil_2px)
numpy.log10
import numpy as np from sklearn.metrics import confusion_matrix from sklearn.utils import Bunch from dku_model_fairness_report.constants import DkuFairnessConstants class ModelFairnessMetric(object): @staticmethod def get_available_metric_names(): return [ModelFairnessMetric.demographic_parity.__name__, ModelFairnessMetric.equality_of_opportunity.__name__, ModelFairnessMetric.equalized_odds.__name__, ModelFairnessMetric.predictive_rate_parity.__name__] @staticmethod def get_available_metric_functions(): return [ModelFairnessMetric.demographic_parity, ModelFairnessMetric.equality_of_opportunity, ModelFairnessMetric.equalized_odds, ModelFairnessMetric.predictive_rate_parity ] @staticmethod def _compute_confusion_matrix_metrics(y_true, y_pred, label_list, sample_weight=None): conf_matrix = confusion_matrix(y_true, y_pred, labels=label_list, sample_weight=sample_weight) true_negative = conf_matrix[0][0] false_negative = conf_matrix[1][0] true_positive = conf_matrix[1][1] false_positive = conf_matrix[0][1] return true_negative, false_negative, true_positive, false_positive @staticmethod def demographic_parity(y_true, y_pred, label_list, sample_weight=None): """ demographic_parity just care about y_pred, but we keep y_true to have a homogeneous api """ # last label is the advantageous one return np.round(np.sum(y_pred == label_list[-1], dtype=float) / len(y_pred), DkuFairnessConstants.NUMBER_OF_DECIMALS) @staticmethod def equality_of_opportunity(y_true, y_pred, label_list, sample_weight=None): true_negative, false_negative, true_positive, false_positive = ModelFairnessMetric._compute_confusion_matrix_metrics(y_true, y_pred, label_list, sample_weight) # Sensitivity, hit rate, recall, or true positive rate true_positive_rate = np.round(true_positive / (true_positive + false_negative), DkuFairnessConstants.NUMBER_OF_DECIMALS) return true_positive_rate @staticmethod def equalized_odds(y_true, y_pred, label_list, sample_weight=None): true_negative, false_negative, true_positive, false_positive = ModelFairnessMetric._compute_confusion_matrix_metrics(y_true, y_pred, label_list, sample_weight) true_positive_rate = np.round(true_positive / (true_positive + false_negative), DkuFairnessConstants.NUMBER_OF_DECIMALS) false_positive_rate =
np.round(false_positive / (true_negative + false_positive), DkuFairnessConstants.NUMBER_OF_DECIMALS)
numpy.round
"""Some utils for SSD.""" import numpy as np import tensorflow as tf class BBoxUtility(object): """Utility class to do some stuff with bounding boxes and priors. # Arguments num_classes: Number of classes including background. priors: Priors and variances, numpy tensor of shape (num_priors, 8), priors[i] = [xmin, ymin, xmax, ymax, varxc, varyc, varw, varh]. overlap_threshold: Threshold to assign box to a prior. nms_thresh: Nms threshold. top_k: Number of total bboxes to be kept per image after nms step. # References https://arxiv.org/abs/1512.02325 """ # TODO add setter methods for nms_thresh and top_K def __init__(self, num_classes, priors=None, overlap_threshold=0.5, nms_thresh=0.45, top_k=400): self.num_classes = num_classes self.priors = priors self.num_priors = 0 if priors is None else len(priors) self.overlap_threshold = overlap_threshold self._nms_thresh = nms_thresh self._top_k = top_k self.boxes = tf.placeholder(dtype='float32', shape=(None, 4)) self.scores = tf.placeholder(dtype='float32', shape=(None,)) self.nms = tf.image.non_max_suppression(self.boxes, self.scores, self._top_k, iou_threshold=self._nms_thresh) self.sess = tf.Session(config=tf.ConfigProto(device_count={'GPU': 0})) @property def nms_thresh(self): return self._nms_thresh @nms_thresh.setter def nms_thresh(self, value): self._nms_thresh = value self.nms = tf.image.non_max_suppression(self.boxes, self.scores, self._top_k, iou_threshold=self._nms_thresh) @property def top_k(self): return self._top_k @top_k.setter def top_k(self, value): self._top_k = value self.nms = tf.image.non_max_suppression(self.boxes, self.scores, self._top_k, iou_threshold=self._nms_thresh) def iou(self, box): """Compute intersection over union for the box with all priors. # Arguments box: Box, numpy tensor of shape (4,). # Return iou: Intersection over union, numpy tensor of shape (num_priors). """ # compute intersection inter_upleft =
np.maximum(self.priors[:, :2], box[:2])
numpy.maximum
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import mindspore.common.dtype as mstype import mindspore.nn as nn from mindspore import Tensor from mindspore.context import set_auto_parallel_context, ParallelMode from mindspore import context from mindspore.ops import composite as C from mindspore.ops import functional as F import mindspore.ops as P from mindspore.parallel.nn import TransformerEncoder, TransformerDecoder, Transformer, TransformerOpParallelConfig, \ VocabEmbedding, CrossEntropyLoss, OpParallelConfig, EmbeddingOpParallelConfig, FixedSparseAttention from mindspore.nn import Dense as Linear from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell from mindspore.nn.optim import AdamWeightDecay from mindspore.nn.wrap.cell_wrapper import PipelineCell, _VirtualDatasetCell, TrainOneStepCell from mindspore.nn.wrap.loss_scale import _TrainPipelineWithLossScaleCell from mindspore.train import Model from mindspore.parallel import set_algo_parameters from tests.dataset_mock import MindData from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class Dataset(MindData): def __init__(self, *inputs, length=3): super(Dataset, self).__init__(size=length) self.inputs = inputs self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.inputs def reset(self): self.index = 0 class TransformerNet(nn.Cell): def __init__(self, en_layer, de_layer, parallel_config): super(TransformerNet, self).__init__() self.embedding = VocabEmbedding(vocab_size=240, embedding_size=20, parallel_config=config.embedding_dp_mp_config) self.network = Transformer(encoder_layers=en_layer, decoder_layers=de_layer, batch_size=2, src_seq_length=20, tgt_seq_length=10, hidden_size=64, num_heads=8, ffn_hidden_size=64, parallel_config=parallel_config) self.head = Linear(in_channels=64, out_channels=200) self.loss = CrossEntropyLoss(parallel_config=config.dp_mp_config) def construct(self, x1, x2, x3, x4, x5, y, mask): predict, _, _ = self.network(x1, x2, x3, x4, x5) predict = P.Reshape()(predict, (-1, F.shape(predict)[-1])) return self.loss(predict, y, mask) config = TransformerOpParallelConfig(data_parallel=1, model_parallel=8, vocab_emb_dp=False) pipeline_config = TransformerOpParallelConfig(data_parallel=1, model_parallel=8, pipeline_stage=4, micro_batch_num=4, vocab_emb_dp=False) class NetWithLossFiveInputs(nn.Cell): def __init__(self, network): super(NetWithLossFiveInputs, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x1, x2, x3, x4, x5): predict, _, _ = self.network(x1, x2, x3, x4, x5) return self.loss(predict) def run_total_transformer_model_head(e_layer, d_layer, arg_parallel_config, mode=ParallelMode.SEMI_AUTO_PARALLEL): dp = arg_parallel_config.data_parallel mp = arg_parallel_config.model_parallel pp = arg_parallel_config.pipeline_stage if dp * mp * pp != 1: set_auto_parallel_context(device_num=8, full_batch=True, global_rank=0, parallel_mode=mode) encoder_input_value = Tensor(np.ones((2, 20, 64)), mstype.float32) encoder_input_mask = Tensor(np.ones((2, 20, 20)), mstype.float16) decoder_input_value = Tensor(np.ones((2, 10, 64)), mstype.float32) decoder_input_mask = Tensor(np.ones((2, 10, 10)), mstype.float16) memory_mask = Tensor(np.ones((2, 10, 20)), mstype.float16) seq = 20 if d_layer > 0: seq = 10 label = Tensor(np.ones((2 * seq,)), mstype.int32) input_mask = Tensor(
np.ones((2 * seq,))
numpy.ones
import matplotlib.pyplot as plt import numpy as np from scipy.optimize import curve_fit from astropy.io import ascii from uncertainties import ufloat import uncertainties.unumpy as unp def y(x, m, b): return m * x + b ########################################################################################## # E-Feld x=np.linspace(-12,38) n_, v_säge = np.genfromtxt("Messdaten/frequenzsaege.txt",unpack=True) ascii.write([n_, v_säge], 'Messdaten/tab_saegi.tex', format="latex", names=['Frequenzverhältnis','frequenz']) vwechsel=v_säge/n_ vwechsel=ufloat(np.mean(vwechsel),np.std(vwechsel, ddof=1) / np.sqrt(len(vwechsel))) print(vwechsel) D, Ud400, Ud300, Ud200 = np.genfromtxt("Messdaten/efeld.txt",unpack=True) ascii.write([D*2.54, Ud400, Ud300, Ud200], 'Messdaten/tab_efeld.tex', format="latex") D=D*2.54 params400, covariance400 = curve_fit(y,Ud400,D) errors400 = np.sqrt(np.diag(covariance400)) params300, covariance300 = curve_fit(y, Ud300,D) errors300 = np.sqrt(np.diag(covariance300)) params200, covariance200 = curve_fit(y, Ud200,D) errors200 = np.sqrt(np.diag(covariance200)) print('m400 = ', params400[0], '+/-', errors400[0]) print('m300 = ', params300[0], '+/-', errors300[0]) print('m200 = ', params200[0], '+/-', errors200[0]) m=[params200[0],params300[0],params400[0]] Ud=[10**3/200,10**3/300,10**3/400] paramsud, covarianceud = curve_fit(y,Ud,m) errorsud = np.sqrt(np.diag(covarianceud)) print('m_ud = ', paramsud[0], '+/-', errorsud[0]) Uud=np.linspace(1/160,1/460) Uud=Uud*10**3 plt.plot(Uud,paramsud[0]*Uud+paramsud[1], 'b-',label=r'Regressionsgrade') plt.plot(Ud,m, 'rx', label=r'Messwerte') plt.ylabel(r"$\frac{D}{U_\mathrm{d}}$/$\si{\centi\meter\per\volt}$") plt.xlabel(r"$\frac{1}{U_\mathrm{B}}\cdot 10^3$/$\si{\per\volt}$") plt.xlim(2.2,6.0) #plt.ylim(-2,14) plt.legend() plt.tight_layout() plt.savefig('Messdaten/plotm.pdf') plt.clf() plt.plot(x, params200[0]*x+params200[1], 'g-',label=r'Regression $U_\mathrm{B}=\SI{200}{Volt}$') plt.plot(Ud200,D, 'gx', label=r'Messwerte $U_\mathrm{B}=\SI{200}{Volt}$') plt.plot(x, params300[0]*x+params300[1], 'b-',label=r'Regression $U_\mathrm{B}=\SI{300}{Volt}$ ') plt.plot(Ud300,D, 'bx', label=r'Messwerte $U_\mathrm{B}=\SI{300}{Volt}$') plt.plot(x, params400[0]*x+params400[1], 'r-',label=r'Regression $U_\mathrm{B}=\SI{400}{Volt}$ ') plt.plot(Ud400,D, 'rx', label=r'Messwerte $U_\mathrm{B}=\SI{400}{Volt}$') plt.ylabel(r"$D$/$\si{\centi\meter}$") plt.xlabel(r"$U_\mathrm{d}$/$\si{\volt}$") plt.xlim(-12,38) plt.ylim(-2,14) plt.legend() plt.tight_layout() plt.savefig('Messdaten/plotefeld.pdf') plt.clf() ######################################################################################### # B-Feld I250, D_, I450 = np.genfromtxt("Messdaten/messdaten502a.txt",unpack=True) ascii.write([D_*2.54, I250, I450], 'Messdaten/tab_bfeld.tex', format="latex") params, covariance = curve_fit(y, 4*np.pi*10**(-7)*8/np.sqrt(125)*20*I250/0.282, D_/(D_**2+0.143**2)) errors = np.sqrt(
np.diag(covariance)
numpy.diag
# -*- coding: utf-8 -*- """ Created on Tue Nov 3 15:07:16 2017 @author: <NAME> """ from __future__ import division, print_function, unicode_literals, absolute_import import unittest import os import sys import h5py import numpy as np import dask.array as da import matplotlib as mpl # Attempting to get things to work for all versions of python on Travis mpl.use('Agg') from sidpy.hdf.hdf_utils import get_attr sys.path.append("../../pyUSID/") from pyUSID.io import USIDataset from pyUSID.io.hdf_utils.model import reshape_to_n_dims, get_dimensionality from pyUSID.io.write_utils import Dimension from . import data_utils skip_viz_tests = True if sys.version_info.major == 3: unicode = str if sys.version_info.minor > 4: skip_viz_tests = False test_h5_file_path = data_utils.std_beps_path class TestBEPS(unittest.TestCase): def setUp(self): data_utils.make_beps_file() self.orig_labels_order = ['X', 'Y', 'Cycle', 'Bias'] self.h5_file = h5py.File(data_utils.std_beps_path, mode='r') h5_grp = self.h5_file['/Raw_Measurement/'] self.source_nd_s2f = h5_grp['n_dim_form'][()] self.source_nd_f2s = self.source_nd_s2f.transpose(1, 0, 3, 2) self.h5_source = USIDataset(h5_grp['source_main']) self.pos_dims=[] self.spec_dims=[] for dim_name, dim_units in zip(self.h5_source.pos_dim_labels, get_attr(self.h5_source.h5_pos_inds, 'units')): self.pos_dims.append( Dimension(dim_name, dim_units, h5_grp[dim_name][()])) for dim_name, dim_units in zip(self.h5_source.spec_dim_labels, get_attr(self.h5_source.h5_spec_inds, 'units')): self.spec_dims.append( Dimension(dim_name, dim_units, h5_grp[dim_name][()])) res_grp_0 = h5_grp['source_main-Fitter_000'] self.results_0_nd_s2f = res_grp_0['n_dim_form'][()] self.results_0_nd_f2s = self.results_0_nd_s2f.transpose(1, 0, 3, 2) self.h5_compound = USIDataset(res_grp_0['results_main']) res_grp_1 = h5_grp['source_main-Fitter_001'] self.results_1_nd_s2f = res_grp_1['n_dim_form'][()] self.results_1_nd_f2s = self.results_1_nd_s2f.transpose(1, 0, 3, 2) self.h5_complex = USIDataset(res_grp_1['results_main']) def tearDown(self): self.h5_file.close() os.remove(data_utils.std_beps_path) class TestUSIDatasetReal(unittest.TestCase): def setUp(self): self.rev_spec = False data_utils.make_beps_file(rev_spec=self.rev_spec) self.orig_labels_order = ['X', 'Y', 'Cycle', 'Bias'] if self.rev_spec else ['X', 'Y', 'Bias', 'Cycle'] def tearDown(self): os.remove(test_h5_file_path) def get_expected_n_dim(self, h5_f): nd_slow_to_fast = h5_f['/Raw_Measurement/n_dim_form'][()] nd_fast_to_slow = nd_slow_to_fast.transpose(1, 0, 3, 2) if self.rev_spec: nd_fast_to_slow = nd_fast_to_slow.transpose(0, 1, 3, 2) return nd_slow_to_fast, nd_fast_to_slow class TestStringRepr(TestBEPS): def test_string_representation(self): usi_dset = self.h5_source h5_main = self.h5_file[usi_dset.name] actual = usi_dset.__repr__() actual = [line.strip() for line in actual.split("\n")] actual = [actual[line_ind] for line_ind in [0, 2, 4, 7, 8, 10, 11]] expected = list() expected.append(h5_main.__repr__()) expected.append(h5_main.name) expected.append(get_attr(h5_main, "quantity") + " (" + get_attr(h5_main, "units") + ")") for h5_inds in [usi_dset.h5_pos_inds, usi_dset.h5_spec_inds]: for dim_name, dim_size in zip(get_attr(h5_inds, "labels"), get_dimensionality(h5_inds)): expected.append(dim_name + ' - size: ' + str(dim_size)) self.assertTrue(np.all([x == y for x, y in zip(actual, expected)])) class TestEquality(TestBEPS): def test_correct_USIDataset(self): expected = USIDataset(self.h5_source) self.assertTrue(expected == expected) def test_correct_h5_dataset(self): h5_main = self.h5_file[self.h5_source.name] expected = USIDataset(h5_main) self.assertTrue(expected == h5_main) def test_incorrect_USIDataset(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: h5_main = h5_f['/Raw_Measurement/source_main'] expected = USIDataset(h5_main) incorrect = USIDataset(h5_f['/Raw_Measurement/source_main-Fitter_000/results_main']) self.assertFalse(expected == incorrect) def test_incorrect_h5_dataset(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: h5_main = h5_f['/Raw_Measurement/source_main'] expected = USIDataset(h5_main) incorrect = h5_f['/Raw_Measurement/source_main-Fitter_000/Spectroscopic_Indices'] self.assertFalse(expected == incorrect) def test_incorrect_object(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: h5_main = h5_f['/Raw_Measurement/source_main'] expected = USIDataset(h5_main) incorrect = np.zeros(shape=(1, 2, 3, 4)) self.assertFalse(expected == incorrect) class TestGetNDimFormExistsReal(TestUSIDatasetReal): def test_sorted_and_unsorted(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_dset = USIDataset(h5_f['/Raw_Measurement/source_main']) nd_slow_to_fast, nd_fast_to_slow = self.get_expected_n_dim(h5_f) actual_f2s = usi_dset.get_n_dim_form(lazy=False) self.assertTrue(np.allclose(nd_fast_to_slow, actual_f2s)) nd_form, success = reshape_to_n_dims(usi_dset, sort_dims=True) print(nd_form.shape) usi_dset.toggle_sorting() actual_s2f = usi_dset.get_n_dim_form(lazy=False) self.assertTrue(np.allclose(nd_slow_to_fast, actual_s2f)) class TestPosSpecSlicesReal(TestUSIDatasetReal): def test_empty_dict(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({}) self.assertTrue(np.allclose(np.expand_dims(np.arange(14), axis=1), actual_spec)) self.assertTrue(np.allclose(np.expand_dims(np.arange(15), axis=1), actual_pos)) def test_non_existent_dim(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(KeyError): _ = usi_main._get_pos_spec_slices({'blah': 4, 'X': 3, 'Y': 1}) def test_incorrect_type(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(TypeError): _ = usi_main._get_pos_spec_slices({'X': 'fdfd', 'Y': 1}) def test_negative_index(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(ValueError): _ = usi_main._get_pos_spec_slices({'X': -4, 'Y': 1}) def test_out_of_bounds(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(IndexError): _ = usi_main._get_pos_spec_slices({'X': 15, 'Y': 1}) def test_one_pos_dim_removed(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) # orig_pos = np.vstack([np.tile(np.arange(5), 3), np.repeat(np.arange(3), 5)]).T # orig_spec = np.vstack([np.tile(np.arange(7), 2), np.repeat(np.arange(2), 7)]) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': 3}) # we want every fifth position starting from 3 expected_pos = np.expand_dims(np.arange(3, 15, 5), axis=1) expected_spec = np.expand_dims(np.arange(14), axis=1) self.assertTrue(np.allclose(expected_spec, actual_spec)) self.assertTrue(np.allclose(expected_pos, actual_pos)) def test_one_pos_dim_sliced(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': slice(1, 5, 2)}) # we want every fifth position starting from 3 positions = [] for row_ind in range(3): for col_ind in range(1, 5, 2): positions.append(5 * row_ind + col_ind) expected_pos = np.expand_dims(positions, axis=1) expected_spec = np.expand_dims(np.arange(14), axis=1) self.assertTrue(np.allclose(expected_spec, actual_spec)) self.assertTrue(np.allclose(expected_pos, actual_pos)) def test_two_pos_dim_sliced(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': slice(1, 5, 2), 'Y': 1}) # we want every fifth position starting from 3 positions = [] for row_ind in range(1, 2): for col_ind in range(1, 5, 2): positions.append(5 * row_ind + col_ind) expected_pos = np.expand_dims(positions, axis=1) expected_spec = np.expand_dims(np.arange(14), axis=1) self.assertTrue(np.allclose(expected_spec, actual_spec)) self.assertTrue(np.allclose(expected_pos, actual_pos)) def test_two_pos_dim_sliced_list(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': [1, 2, 4], 'Y': 1}) # we want every fifth position starting from 3 positions = [] for row_ind in range(1, 2): for col_ind in [1, 2, 4]: positions.append(5 * row_ind + col_ind) expected_pos = np.expand_dims(positions, axis=1) expected_spec = np.expand_dims(np.arange(14), axis=1) self.assertTrue(np.allclose(expected_spec, actual_spec)) self.assertTrue(
np.allclose(expected_pos, actual_pos)
numpy.allclose
#Ligthning data module from . import __file__ from skimage import io from distributed import as_completed from PIL import Image import glob import geopandas as gpd import numpy as np import os import pandas as pd from pytorch_lightning import LightningDataModule from src import generate from src import CHM from shapely.geometry import Point import torch from torch.utils.data import Dataset import yaml def filter_data(path, config): """Transform raw NEON data into clean shapefile Args: config: DeepTreeAttention config dict, see config.yml """ field = pd.read_csv(path) field = field[~field.elevation.isnull()] field = field[~field.growthForm.isin(["liana","small shrub"])] field = field[~field.growthForm.isnull()] field = field[~field.plantStatus.isnull()] field = field[field.plantStatus.str.contains("Live")] groups = field.groupby("individualID") shaded_ids = [] for name, group in groups: shaded = any([x in ["Full shade", "Mostly shaded"] for x in group.canopyPosition.values]) if shaded: if any([x in ["Open grown", "Full sun"] for x in group.canopyPosition.values]): continue else: shaded_ids.append(group.individualID.unique()[0]) field = field[~(field.individualID.isin(shaded_ids))] field = field[(field.height > 3) | (field.height.isnull())] field = field[field.stemDiameter > config["min_stem_diameter"]] field = field[~field.taxonID.isin(["BETUL", "FRAXI", "HALES", "PICEA", "PINUS", "QUERC", "ULMUS", "2PLANT"])] field = field[~(field.eventID.str.contains("2014"))] with_heights = field[~field.height.isnull()] with_heights = with_heights.loc[with_heights.groupby('individualID')['height'].idxmax()] missing_heights = field[field.height.isnull()] missing_heights = missing_heights[~missing_heights.individualID.isin(with_heights.individualID)] missing_heights = missing_heights.groupby("individualID").apply(lambda x: x.sort_values(["eventID"],ascending=False).head(1)).reset_index(drop=True) field = pd.concat([with_heights,missing_heights]) #remove multibole field = field[~(field.individualID.str.contains('[A-Z]$',regex=True))] #List of hand cleaned errors known_errors = ["NEON.PLA.D03.OSBS.03422","NEON.PLA.D03.OSBS.03422","NEON.PLA.D03.OSBS.03382", "NEON.PLA.D17.TEAK.01883"] field = field[~(field.individualID.isin(known_errors))] field = field[~(field.plotID == "SOAP_054")] #Create shapefile field["geometry"] = [Point(x,y) for x,y in zip(field["itcEasting"], field["itcNorthing"])] shp = gpd.GeoDataFrame(field) #HOTFIX, BLAN has some data in 18N UTM, reproject to 17N update columns BLAN_errors = shp[(shp.siteID == "BLAN") & (shp.utmZone == "18N")] BLAN_errors.set_crs(epsg=32618, inplace=True) BLAN_errors.to_crs(32617,inplace=True) BLAN_errors["utmZone"] = "17N" BLAN_errors["itcEasting"] = BLAN_errors.geometry.apply(lambda x: x.coords[0][0]) BLAN_errors["itcNorthing"] = BLAN_errors.geometry.apply(lambda x: x.coords[0][1]) #reupdate shp.loc[BLAN_errors.index] = BLAN_errors #Oak Right Lab has no AOP data shp = shp[~(shp.siteID.isin(["PUUM","ORNL"]))] return shp def sample_plots(shp, test_fraction=0.1, min_samples=5): """Sample and split a pandas dataframe based on plotID Args: shp: pandas dataframe of filtered tree locations test_fraction: proportion of plots in test datasets min_samples: minimum number of samples per class """ #split by plot level test_plots = shp.plotID.drop_duplicates().sample(frac=test_fraction) #in case of debug, there may be not enough plots to sample, grab the first for testing if test_plots.empty: test_plots = [shp.plotID.drop_duplicates().values[0]] test = shp[shp.plotID.isin(test_plots)] train = shp[~shp.plotID.isin(test_plots)] test = test.groupby("taxonID").filter(lambda x: x.shape[0] > min_samples) train = train[train.taxonID.isin(test.taxonID)] test = test[test.taxonID.isin(train.taxonID)] return train, test def train_test_split(shp, savedir, config, client = None, regenerate=False): """Create the train test split Args: shp: a filter pandas dataframe (or geodataframe) savedir: directly to save train/test and metadata csv files client: optional dask client regenerate: recreate the train_test split Returns: None: train.shp and test.shp are written as side effect """ #set seed.
np.random.seed(1)
numpy.random.seed
#!/usr/bin/env python3 import sys import os import numpy as np sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from math_helpers.constants import * from traj.meeus_alg import meeus from traj.conics import get_rv_frm_elements, get_orbital_elements import pytest @pytest.mark.skip(reason="spiceypy does not work with mac's m1") def test_meeus(): import spiceypy as sp sp.furnsh(['spice/kernels/solarsystem/naif0012.tls', 'spice/kernels/solarsystem/de438s.bsp']) # r2d = np.rad2deg # testing hw2_1 test case 1: earth to venus # departure # JPL data rvec_jpl = [1.470888856132856E+08, -3.251960759819394E+07, 6.064054554197937E+02] vvec_jpl = [5.943716349475999E+00, 2.898771456759873E+01, -8.218653820915023E-04] # earth Lambert check values e_state = [147084764.907217, -32521189.649751, 467.190091, 5.946239, 28.974641, -0.000716] # using meeus and custom script jde = 2455450 elements = meeus(jde, planet='earth') a, e, i, Om, w, ta = elements # print('meeus elements', a, e, r2d(i), r2d(Om), r2d(w), r2d(ta)) assert np.allclose([a, e, r2d(i), r2d(Om), r2d(w), r2d(ta)], [149598022.99063239, 0.0167041242823, 0.00139560094726, 174.84739870, 288.12443643, 244.560366626]) # intertial j2000 center = 'sun' state = get_rv_frm_elements(elements, center, method='sma') assert np.allclose(state, [1.47081462e+08,-3.25372777e+07, 4.67587601e+02, 5.94941002e+00, 2.89739400e+01, -7.15905071e-04], rtol=1e-3) # inertial ecliptic j2000 T0 = sp.utc2et(f'jd {jde}') dcm = sp.sxform('j2000', 'ECLIPJ2000', et=T0) state_eclp =
np.dot(dcm, state)
numpy.dot
import numpy as np from pypex.base.conf import PRECISION, ROUND_PRECISION from pypex.poly2d.intersection import sat from pypex.poly2d.point import Point from pypex.utils import det_2d, multiple_determinants def intersection(p1, p2, p3, p4, in_touch=False, tol=PRECISION, round_tol=ROUND_PRECISION): """ defs:: x1, y1 = p1 + u * (p2 - p1) = p1 + u * dp1 x2, y2 = a + v * (b - a) = a + v * dp2 dp1 = p2 - p1 = (p2_x - p1_x, p2_y - p1_y) dp2 = pt4 - pt3 = (pt4_x - pt3_x, pt4_y - pt3_y) intersection:: x1, y1 = x2, y2 p1 + u * dp1 = a + v * dp2 in coo p1_x + u * dp1_x = pt3_x + v * dp2_x p1_y + u * dp1_y = pt3_y + v * dp2_y variables:: u, v solution:: d = (dp1_x * dp2_y) - (dp1_y * dp2_x) u = (((p1_y - pt3_y) * dp2_x) - (dp2_y * (p1_x - pt3_x))) / d v = (((p1_y - pt3_y) * dp1_x) - (dp1_y * (p1_x - pt3_x))) / d :param p1: numpy.array; first point of first segment :param p2: numpy.array; second point of first segment :param p3: numpy.array; first point of second segment :param p4: numpy.array; second point of second segment :param round_tol: int; consider two numbers as same if match up to `round_tol` decimal numbers :param tol: float; consider number as zero if smaller than 'tol' :param in_touch: bool :return: tuple 0: intersection_status:: False: parallel True: intersection 1: segment intersection (if segments share common point/s):: False: no intersection True: intersection between defined points or overlap numpy.nan: uknown 2: intersection Point 3: distance if parallel 4: string representation/description """ p1, p2, p3, p4 = np.array(p1), np.array(p2), np.array(p3), np.array(p4) # first line dp1 = p2 - p1 # second line dp2 = p4 - p3 # determinant matrix = np.array([dp1, dp2]) d = det_2d(matrix) # test if d < 1e-10 # testing on zero, but precission should cause p3 problem if np.abs(d) < tol: # test distance between lines # if general form is known (ax + by + c1 = 0 and ax + by + c2 = 0), # d = abs(c1 - c2) / sqrt(a**2 + b**2) # parametric equation in general: # x, y = [p1_x, p1_y] + u * [T_x, T_y], where T is tangential vector defined as p2 - p1 # N = (a, b) represent normal vector of line; `p3`, `p4` (method parametres) from general equation of line # N = [-Ty, Tx], can be obtained # general equation: # -Ty * x + Tx * y + c = 0, then # c = Ty * p1_x - Tx * p1_y # finaly, general equation: # -Ty * x + Tx * y + (Ty * p1_x - Tx * p1_y) = 0 # # # a1, b1, c1 = -dp1_y, dp1_x, (dp1_y * pt1_x) - (dp1_x * pt1_y) # a2, b2, c2 = -dp2_y, dp2_x, (dp2_y * pt3_x) - (dp2_x * pt3_y) a1, b1, c1 = -dp1[1], dp1[0], det_2d(np.array([p1, dp1])) # second line has to be definable with same tangential and normal vector as first line # since ax + by + c = 0 and in our case [x, y] = p3 or p4 for second equation, then for c2 # we have c2 = - (a1 * p3[0] + b1 * p3[1]) c2 = - (a1 * p3[0] + b1 * p3[1]) d = abs(c2 - c1) / (np.sqrt(a1 ** 2 + b1 ** 2)) intersects, msg = (True, "OVERLAP") if abs(d) < tol else (False, "PARALLEL") int_in_segment = False if msg in ["PARALLEL"] \ else sat.intersects(np.array([p1, p2]), np.array([p3, p4]), in_touch, round_tol) return intersects, int_in_segment, np.nan, d, msg # +0 because of negative zero (-0.0 is incorrect) formatting on output u = (det_2d([dp2, p1 - p3]) / d) + 0. v = (det_2d([dp1, p1 - p3]) / d) + 0. eval_method = np.less_equal if in_touch else np.less int_x, int_y = p1[0] + (u * dp1[0]), p1[1] + (u * dp1[1]) int_segment = True if np.logical_and(eval_method(0.0, u), eval_method(u, 1.0)) and \ np.logical_and(eval_method(0.0, v), eval_method(v, 1.0)) else False return True, int_segment, Point(int_x, int_y), np.nan, "INTERSECT" def intersections(poly1, poly2, in_touch=False, tol=PRECISION, round_tol=ROUND_PRECISION): """ Vectorised implementaion of lines intersection function. Compute intersections of all combination of supplied arrays of points which define convex polygon :param poly1: numpy.array; clokwise ordered numpy array of points :param poly2: numpy.array; clokwise ordered numpy array of points :param in_touch: bool; consider touch in one point as intersection :param tol: consider all numbers as zero when abs(number) < tol :param round_tol: consider two numbers as same if match up to round_tol deciaml numbers :return: tuple; """ m1, _ = poly1.shape m2, _ = poly2.shape n1, n2 = 2, 2 # mask to origin idx_mask = _index_map(m1, m2) intersection_status, intersection_segment = np.zeros(m1 * m2, dtype=bool), np.zeros(m1 * m2, dtype=bool) intr_ptx = np.full_like(np.empty((m1 * m2, 2), dtype=float), np.nan) distance = np.full_like(np.empty(m1 * m2, dtype=float), np.nan) msg = np.chararray(m1 * m2, itemsize=9) poly1_edges = polygon_hull_to_edges(poly1) poly2_edges = polygon_hull_to_edges(poly2) dif_poly1 = poly1_edges[:, 1, :] - poly1_edges[:, 0, :] dif_poly2 = poly2_edges[:, 1, :] - poly2_edges[:, 0, :] # make all possible determinants matrix for all combination of lines (needs for equation solver 1/D) corr_dpoly1 = np.repeat(dif_poly1, m2, axis=0) corr_dpoly2 = np.tile(dif_poly2, (m1, 1)) det_matrix = np.empty((m1 * m2, n1, n2)) det_matrix[:, 0, :] = corr_dpoly1 det_matrix[:, 1, :] = corr_dpoly2 determinants = multiple_determinants(det_matrix) non_intersections = np.abs(determinants) < tol if non_intersections.any(): problem_poly1 = np.repeat(poly1, m2, axis=0)[non_intersections] problem_dif_poly1 = np.repeat(dif_poly1, m2, axis=0)[non_intersections] a1, b1 = -problem_dif_poly1[:, 1], problem_dif_poly1[:, 0] face_dface = np.empty((problem_poly1.shape[0], 2, problem_poly1.shape[1]), dtype=problem_poly1.dtype) face_dface[:, 0, :] = problem_poly1 face_dface[:, 1, :] = problem_dif_poly1 c1 = multiple_determinants(face_dface) problem_poly2_edges = np.tile(poly2_edges, (poly1.shape[0], 1, 1))[non_intersections] c2 = -(a1 * problem_poly2_edges[:, 1, 0] + b1 * problem_poly2_edges[:, 1, 1]) dist = np.abs(c2 - c1) / (np.sqrt(np.power(a1, 2) + np.sqrt(np.power(b1, 2)))) # fill output distance[non_intersections] = dist msg[non_intersections] = str('PARALLEL') overlaps = non_intersections.copy() overlaps[non_intersections] = np.abs(dist) < tol intersection_status[overlaps] = True if np.any(overlaps): # assume that in real life, there will neglible amount of parallel lines with zero distance (overlap lines) # so we can use for loop without any significant loose of performance poly1_comb_overlap = np.repeat(poly1_edges, m2, axis=0)[overlaps] poly2_comb_overlap = np.tile(poly2_edges, (m1, 1, 1))[overlaps] intersection_segment[overlaps] = np.array([sat.intersects(a, b, in_touch=in_touch, round_tol=round_tol) for a, b in zip(poly1_comb_overlap, poly2_comb_overlap)]) msg[overlaps] = 'OVERLAP' ints = ~non_intersections ok_dif_poly1, ok_dif_poly2 = corr_dpoly1[ints], corr_dpoly2[ints] ok_poly1_edges, ok_poly2_edges = np.repeat(poly1_edges, m2, axis=0)[ints], np.tile(poly2_edges, (m1, 1, 1))[ints] p1_p3 = ok_poly1_edges[:, 0, :] - ok_poly2_edges[:, 0, :] dp2_p1_p3matrix = _dpx_p1_p3matrix(p1_p3, ok_dif_poly1, ok_dif_poly2) dp1_p1_p3matrix = _dpx_p1_p3matrix(p1_p3, ok_dif_poly1, ok_dif_poly1) d = determinants[ints] u = (multiple_determinants(dp2_p1_p3matrix) / d) + 0.0 v = (multiple_determinants(dp1_p1_p3matrix) / d) + 0.0 eval_method = np.less_equal if in_touch else np.less intersect_in = ok_poly1_edges[:, 0, :] + (u[:, np.newaxis] * ok_dif_poly1) u_in_range = np.logical_and(eval_method(0.0, u), eval_method(u, 1.0)) v_in_range = np.logical_and(eval_method(0.0, v), eval_method(v, 1.0)) segments_intersection_status = np.logical_and(u_in_range, v_in_range) # fill output intersection_status[ints] = True intersection_segment[ints] = segments_intersection_status msg[ints] = 'INTERSECT' intr_ptx[ints] = intersect_in return intersection_status, intersection_segment, intr_ptx, distance, msg, idx_mask def _index_map(m1, m2): x = np.empty((m1, 2), dtype=int) x[:, 0] = np.arange(m1) x[:, 1] = np.roll(x[:, 0], axis=0, shift=-1) y = np.empty((m2, 2)) y[:, 0] = np.arange(m2) y[:, 1] = np.roll(y[:, 0], axis=0, shift=-1) idx_map = np.empty((m1 * m2, 4)) idx_map[:, :2] = np.repeat(x, m2, axis=0) idx_map[:, 2:] = np.tile(y, (m1, 1)) return idx_map def polygon_hull_to_edges(hull: np.array): edges =
np.zeros((hull.shape[0], 2, 2))
numpy.zeros
import torch import numpy as np import pandas as pd from .dataloader import RadiationDataset from .data_utils import define_data class Runner: def __init__( self, data :pd.DataFrame, feature_cols : list, target_cols : list, batch_size :int, shuffle :bool, num_workers :int, epochs :int, mode :str ): """Runner for performing experiments """ self.data = data self.feature_cols = feature_cols self.target_cols = target_cols self.batch_size = batch_size self.shuffle = shuffle self.num_workers = num_workers self.epochs = epochs self.mode = mode def get_algo_mode(self): return self.mode def run_training(self, model, fold, return_scores='best', direction='minimize'): """ Parameters -------------------------------------------- model : Model to train fold : Which fold of dataset to validate return_scores : How to return scores direction : How to select best scores -------------------------------------------- return_scores can take values: ['best','all'] direction can take values: ['minimize','maximize'] """ train_data = self.data[self.data.kfold != fold].reset_index(drop=True) val_data = self.data[self.data.kfold == fold].reset_index(drop=True) # Get train and validation features and target train_features, train_target = define_data( df = train_data, feature_cols=self.feature_cols, target_cols=self.target_cols ) val_features, val_target = define_data( df = val_data, feature_cols=self.feature_cols, target_cols=self.target_cols ) del train_data, val_data train_loader = torch.utils.data.DataLoader( dataset=RadiationDataset( features = train_features, target = train_target, mode = self.mode ), batch_size=self.batch_size, shuffle=self.shuffle, num_workers=self.num_workers ) valid_loader = torch.utils.data.DataLoader( dataset=RadiationDataset( features = val_features, target = val_target, mode = self.mode ), batch_size=self.batch_size, shuffle=self.shuffle, num_workers=self.num_workers ) del train_features, train_target, val_features, val_target # Fit the model train_scores, valid_scores = model.fit(train_loader, valid_loader, self.epochs) # Return scores if return_scores=='all': return train_scores, valid_scores elif return_scores=='best': if direction=='minimize': return np.min(train_scores),
np.min(valid_scores)
numpy.min
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from .metrics import (plot_predicted_scores,precision_recall_curve, save_fig, AXIS, TITLE, TICKS) class ChartMaker(object): """docstring for ChartMaker""" def __init__(self, config, viz_dir): self.config = config self.viz_dir = viz_dir # def plot_pr(self, data): # """ # Generates precision/recall graphs # Inputs: # - data (tuple): paramaters for visualisation. see params below # Returns: # Nothing # """ # y_score, baseline, dir_path, title, train_x, train_y, params = data # self.plot_precision_recall(train_y, y_score, baseline, dir_path, title) def plot_precision_recall(self, y_true, y_score, baseline, dir_path, title=""): """ Generates plots for precision and recall curve. This function is adapted from https://github.com/rayidghani/magicloops. Inputs: - y_true (Series): the Series of true target values - y_score (Series): the Series of scores for the model - baseline (float): the proportion of positive observations in the sample - dir_path (str): path of the directory for training visualization - title (string): the name of the model """ print('saving ', title) pr, re, thresholds = precision_recall_curve(y_true, y_score) pr = pr[:-1] re = re[:-1] pct_above_per_thresh = [] number_scored = len(y_score) for value in thresholds: num_above_thresh = len(y_score[y_score >= value]) pct_above_thresh = num_above_thresh / float(number_scored) pct_above_per_thresh.append(pct_above_thresh) pct_above_per_thresh =
np.array(pct_above_per_thresh)
numpy.array
from numpy import array, allclose, linspace, exp, sin, cos, zeros, ones from numpy.random import default_rng from inference.likelihoods import ( GaussianLikelihood, CauchyLikelihood, LogisticLikelihood, ) import pytest def finite_difference(func=None, x0=None, delta=1e-5, vectorised_arguments=False): grad = zeros(x0.size) for i in range(x0.size): x1 = x0.copy() x2 = x0.copy() dx = x0[i] * delta x1[i] -= dx x2[i] += dx if vectorised_arguments: f1 = func(x1) f2 = func(x2) else: f1 = func(*x1) f2 = func(*x2) grad[i] = 0.5 * (f2 - f1) / dx return grad class ModelTesting(object): def __init__(self): self.x = linspace(0, 10, 51) self.N_data = self.x.size self.N_params = 3 def forward(self, theta): A, k, f = theta return A * exp(-k * self.x) * sin(f * self.x) def jacobian(self, theta): A, k, f = theta partials = zeros([self.N_data, self.N_params]) exp_term = exp(-k * self.x) sin_term = sin(f * self.x) partials[:, 0] = exp_term * sin_term partials[:, 1] = -self.x * A * exp_term * sin_term partials[:, 2] = self.x * A * exp_term * cos(f * self.x) return partials def generate_test_data(self, theta, error=1.0): return ( self.forward(theta) + error * default_rng(1324).normal(size=self.N_data), zeros(self.N_data) + error, ) def test_GaussianLikelihood(): model = ModelTesting() y, sigma = model.generate_test_data([10.0, 0.2, 2.0], error=1.5) GL = GaussianLikelihood( y_data=y, sigma=sigma, forward_model=model.forward, forward_model_jacobian=model.jacobian, ) assert GL.gradient_available test_point = array([12.0, 0.25, 1.4]) test_likelihood = GL(test_point) assert test_likelihood < 0.0 analytic_gradient = GL.gradient(test_point) numeric_gradient = finite_difference( func=GL, x0=test_point, vectorised_arguments=True ) assert allclose(analytic_gradient, numeric_gradient) def test_GaussianLikelihood_needs_callable_forward_model(): with pytest.raises(ValueError): GaussianLikelihood(y_data=zeros(1), sigma=ones(1), forward_model=None) def test_GaussianLikelihood_needs_callable_forward_model_jacobian(): with pytest.raises(ValueError): GaussianLikelihood( y_data=zeros(1), sigma=zeros(1), forward_model=lambda x: None, forward_model_jacobian=1, ) def test_GaussianLikelihood_gradient_raises_error_without_jacobian(): likelihood = GaussianLikelihood( y_data=ones(1), sigma=ones(1), forward_model=lambda x: None, forward_model_jacobian=None, ) assert not likelihood.gradient_available with pytest.raises(ValueError): likelihood.gradient(4) def test_GaussianLikelihood_inconsistent_sizes(): with pytest.raises(ValueError): GaussianLikelihood(y_data=ones(3), sigma=ones(1), forward_model=lambda: None) def test_GaussianLikelihood_too_many_dims(): with pytest.raises(ValueError): GaussianLikelihood( y_data=ones((2, 2)), sigma=
ones(4)
numpy.ones
""" Unit tests for neural.py""" # Author: <NAME> # License: BSD 3 clause import unittest import numpy as np # The following functions/classes are not automatically imported at # initialization, so must be imported explicitly from neural.py and # activation.py. from mlrose.neural import (flatten_weights, unflatten_weights, gradient_descent, NetworkWeights, ContinuousOpt, NeuralNetwork, LogisticRegression, LinearRegression) from mlrose.activation import identity, sigmoid, softmax class TestNeural(unittest.TestCase): """Tests for neural.py functions.""" @staticmethod def test_flatten_weights(): """Test flatten_weights function""" x = np.arange(12) y = np.arange(6) z = np.arange(16) a = np.reshape(x, (4, 3)) b = np.reshape(y, (3, 2)) c = np.reshape(z, (2, 8)) weights = [a, b, c] flat = list(x) + list(y) + list(z) assert np.array_equal(np.array(flatten_weights(weights)), np.array(flat)) @staticmethod def test_unflatten_weights(): """Test unflatten_weights function""" x = np.arange(12) y = np.arange(6) z = np.arange(16) a = np.reshape(x, (4, 3)) b = np.reshape(y, (3, 2)) c = np.reshape(z, (2, 8)) flat = list(x) + list(y) + list(z) nodes = [4, 3, 2, 8] weights = unflatten_weights(flat, nodes) assert (np.array_equal(weights[0], a) and np.array_equal(weights[1], b) and np.array_equal(weights[2], c)) @staticmethod def test_gradient_descent(): """Test gradient_descent function""" X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) nodes = [4, 2, 1] fitness = NetworkWeights(X, y, nodes, activation=identity, bias=False, is_classifier=False, learning_rate=0.1) problem = ContinuousOpt(10, fitness, maximize=False, min_val=-1, max_val=1, step=0.1) test_weights = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) test_fitness = -1*problem.eval_fitness(test_weights) best_state, best_fitness = gradient_descent(problem) assert (len(best_state) == 10 and min(best_state) >= -1 and max(best_state) <= 1 and best_fitness < test_fitness) @staticmethod def test_gradient_descent_iter1(): """Test gradient_descent function gets the correct answer after a single iteration""" X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) nodes = [4, 2, 1] fitness = NetworkWeights(X, y, nodes, activation=identity, bias=False, is_classifier=False, learning_rate=0.1) problem = ContinuousOpt(10, fitness, maximize=False, min_val=-1, max_val=1, step=0.1) init_weights = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) best_state, best_fitness = gradient_descent(problem, max_iters=1, init_state=init_weights) x = np.array([-0.7, -0.7, -0.9, -0.9, -0.9, -0.9, -1, -1, -1, -1]) assert (np.allclose(best_state, x, atol=0.001) and round(best_fitness, 2) == 19.14) class TestNeuralWeights(unittest.TestCase): """Tests for NeuralWeights class.""" @staticmethod def test_evaluate_no_bias_classifier(): """Test evaluate method for binary classifier with no bias term""" X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) nodes = [4, 2, 1] fitness = NetworkWeights(X, y, nodes, activation=identity, bias=False) a = list(np.arange(8) + 1) b = list(0.01*(np.arange(2) + 1)) weights = a + b assert round(fitness.evaluate(weights), 4) == 0.7393 @staticmethod def test_evaluate_no_bias_multi(): """Test evaluate method for multivariate classifier with no bias term""" X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.array([[1, 1], [1, 0], [0, 0], [0, 0], [1, 0], [1, 1]]) nodes = [4, 2, 2] fitness = NetworkWeights(X, y, nodes, activation=identity, bias=False) a = list(np.arange(8) + 1) b = list(0.01*(np.arange(4) + 1)) weights = a + b assert round(fitness.evaluate(weights), 4) == 0.7183 @staticmethod def test_evaluate_no_bias_regressor(): """Test evaluate method for regressor with no bias term""" X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) nodes = [4, 2, 1] fitness = NetworkWeights(X, y, nodes, activation=identity, bias=False, is_classifier=False) a = list(np.arange(8) + 1) b = list(0.01*(np.arange(2) + 1)) weights = a + b assert round(fitness.evaluate(weights), 4) == 0.5542 @staticmethod def test_evaluate_bias_regressor(): """Test evaluate method for regressor with bias term""" X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) nodes = [5, 2, 1] fitness = NetworkWeights(X, y, nodes, activation=identity, bias=True, is_classifier=False) a = list(np.arange(10) + 1) b = list(0.01*(np.arange(2) + 1)) weights = a + b assert round(fitness.evaluate(weights), 4) == 0.4363 @staticmethod def test_calculate_updates(): """Test calculate_updates method""" X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) nodes = [4, 2, 1] fitness = NetworkWeights(X, y, nodes, activation=identity, bias=False, is_classifier=False, learning_rate=1) a = list(np.arange(8) + 1) b = list(0.01*(np.arange(2) + 1)) weights = a + b fitness.evaluate(weights) updates = fitness.calculate_updates() update1 = np.array([[-0.0017, -0.0034], [-0.0046, -0.0092], [-0.0052, -0.0104], [0.0014, 0.0028]]) update2 = np.array([[-3.17], [-4.18]]) assert (np.allclose(updates[0], update1, atol=0.001) and np.allclose(updates[1], update2, atol=0.001)) class TestNeuralNetwork(unittest.TestCase): """Tests for NeuralNetwork class.""" @staticmethod def test_fit_random_hill_climb(): """Test fit method using the random hill climbing algorithm""" network = NeuralNetwork(hidden_nodes=[2], activation='identity', algorithm='random_hill_climb', bias=False, is_classifier=True, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) weights = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) network.fit(X, y, init_weights=weights) fitted = network.fitted_weights assert (sum(fitted) < 10 and len(fitted) == 10 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_fit_simulated_annealing(): """Test fit method using the simulated_annealing algorithm""" network = NeuralNetwork(hidden_nodes=[2], activation='identity', algorithm='simulated_annealing', bias=False, is_classifier=True, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) weights = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) network.fit(X, y, init_weights=weights) fitted = network.fitted_weights assert (sum(fitted) < 10 and len(fitted) == 10 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_fit_genetic_alg(): """Test fit method using the genetic_alg algorithm""" network = NeuralNetwork(hidden_nodes=[2], activation='identity', algorithm='genetic_alg', bias=False, is_classifier=True, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) network.fit(X, y) fitted = network.fitted_weights assert (sum(fitted) < 10 and len(fitted) == 10 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_fit_gradient_descent(): """Test fit method using the gradient_descent algorithm""" network = NeuralNetwork(hidden_nodes=[2], activation='identity', algorithm='gradient_descent', bias=False, is_classifier=True, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) weights = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) network.fit(X, y, init_weights=weights) fitted = network.fitted_weights assert (sum(fitted) < 10 and len(fitted) == 10 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_predict_no_bias(): """Test predict method with no bias term""" network = NeuralNetwork(hidden_nodes=[2], activation='identity', algorithm='random_hill_climb', bias=False, is_classifier=True, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) network.fitted_weights = np.array([0.2, 0.5, 0.3, 0.4, 0.4, 0.3, 0.5, 0.2, -1, 1, 1, -1]) network.node_list = [4, 2, 2] network.output_activation = softmax probs = np.array([[0.40131, 0.59869], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.31003, 0.68997], [0.64566, 0.35434]]) labels = np.array([[0, 1], [1, 0], [1, 0], [1, 0], [0, 1], [1, 0]]) assert (np.array_equal(network.predict(X), labels) and np.allclose(network.predicted_probs, probs, atol=0.0001)) @staticmethod def test_predict_bias(): """Test predict method with bias term""" network = NeuralNetwork(hidden_nodes=[2], activation='identity', algorithm='random_hill_climb', bias=True, is_classifier=True, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) network.fitted_weights = np.array([0.2, 0.5, 0.3, 0.4, 0.4, 0.3, 0.5, 0.2, 1, -1, -0.1, 0.1, 0.1, -0.1]) network.node_list = [5, 2, 2] network.output_activation = softmax probs = np.array([[0.39174, 0.60826], [0.40131, 0.59869], [0.40131, 0.59869], [0.40131, 0.59869], [0.38225, 0.61775], [0.41571, 0.58419]]) labels = np.array([[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]]) assert (np.array_equal(network.predict(X), labels) and np.allclose(network.predicted_probs, probs, atol=0.0001)) class TestLinearRegression(unittest.TestCase): """Tests for LinearRegression class.""" @staticmethod def test_fit_random_hill_climb(): """Test fit method using the random hill climbing algorithm""" network = LinearRegression(algorithm='random_hill_climb', bias=False, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) weights = np.array([1, 1, 1, 1]) network.fit(X, y, init_weights=weights) fitted = network.fitted_weights assert (sum(fitted) < 4 and len(fitted) == 4 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_fit_simulated_annealing(): """Test fit method using the simulated_annealing algorithm""" network = LinearRegression(algorithm='simulated_annealing', bias=False, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) weights = np.array([1, 1, 1, 1]) network.fit(X, y, init_weights=weights) fitted = network.fitted_weights assert (sum(fitted) < 4 and len(fitted) == 4 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_fit_genetic_alg(): """Test fit method using the genetic_alg algorithm""" network = LinearRegression(algorithm='genetic_alg', bias=False, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) network.fit(X, y) fitted = network.fitted_weights assert (sum(fitted) < 4 and len(fitted) == 4 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_fit_gradient_descent(): """Test fit method using the gradient_descent algorithm""" network = LinearRegression(algorithm='gradient_descent', bias=False, learning_rate=0.1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) weights = np.array([1, 1, 1, 1]) network.fit(X, y, init_weights=weights) fitted = network.fitted_weights assert (sum(fitted) <= 4 and len(fitted) == 4 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_predict_no_bias(): """Test predict method with no bias term""" network = LinearRegression(algorithm='random_hill_climb', bias=False, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) network.fitted_weights = np.array([1, 1, 1, 1]) network.node_list = [4, 1] network.output_activation = identity x = np.reshape(np.array([2, 0, 4, 4, 2, 1]), [6, 1]) assert np.array_equal(network.predict(X), x) @staticmethod def test_predict_bias(): """Test predict method with bias term""" network = LinearRegression(algorithm='random_hill_climb', bias=True, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) network.fitted_weights = np.array([1, 1, 1, 1, 1]) network.node_list = [5, 1] network.output_activation = identity x = np.reshape(np.array([3, 1, 5, 5, 3, 2]), [6, 1]) assert np.array_equal(network.predict(X), x) class TestLogisticRegression(unittest.TestCase): """Tests for LogisticRegression class.""" @staticmethod def test_fit_random_hill_climb(): """Test fit method using the random hill climbing algorithm""" network = LogisticRegression(algorithm='random_hill_climb', bias=False, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) weights = np.array([1, 1, 1, 1]) network.fit(X, y, init_weights=weights) fitted = network.fitted_weights assert (sum(fitted) < 4 and len(fitted) == 4 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_fit_simulated_annealing(): """Test fit method using the simulated_annealing algorithm""" network = LogisticRegression(algorithm='simulated_annealing', bias=False, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) weights = np.array([1, 1, 1, 1]) network.fit(X, y, init_weights=weights) fitted = network.fitted_weights assert (sum(fitted) < 4 and len(fitted) == 4 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_fit_genetic_alg(): """Test fit method using the genetic_alg algorithm""" network = LogisticRegression(algorithm='genetic_alg', bias=False, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) network.fit(X, y) fitted = network.fitted_weights assert (sum(fitted) < 4 and len(fitted) == 4 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_fit_gradient_descent(): """Test fit method using the gradient_descent algorithm""" network = LogisticRegression(algorithm='gradient_descent', bias=False, learning_rate=0.1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) weights = np.array([1, 1, 1, 1]) network.fit(X, y, init_weights=weights) fitted = network.fitted_weights assert (sum(fitted) <= 4 and len(fitted) == 4 and min(fitted) >= -1 and max(fitted) <= 1) @staticmethod def test_predict_no_bias(): """Test predict method with no bias term""" network = LogisticRegression(algorithm='random_hill_climb', bias=False, learning_rate=1, clip_max=1, max_attempts=100) X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) network.fitted_weights = np.array([-1, 1, 1, 1]) network.node_list = [4, 1] network.output_activation = sigmoid probs = np.reshape(np.array([0.88080, 0.5, 0.88080, 0.88080, 0.88080, 0.26894]), [6, 1]) labels = np.reshape(
np.array([1, 0, 1, 1, 1, 0])
numpy.array
import numpy as np test_data_1 = np.load("cobotta_ik_jnt1_min_max.npy", allow_pickle=True) test_data_2 = np.load("cobotta_ik_jnt2_min_max.npy", allow_pickle=True) test_data_3 = np.load("cobotta_ik_jnt3_min_max.npy", allow_pickle=True) test_data_4 = np.load("cobotta_ik_jnt4_min_max.npy", allow_pickle=True) test_data_5 = np.load("cobotta_ik_jnt5_min_max.npy", allow_pickle=True) test_data_6 = np.load("cobotta_ik_jnt6_min_max.npy", allow_pickle=True) test_data_7 = np.load("cobotta_ik_jnt7_min_max.npy", allow_pickle=True) test_data_8 = np.load("cobotta_ik_jnt8_min_max.npy", allow_pickle=True) res_min_max = np.concatenate((test_data_1, test_data_2), axis=0) res_min_max = np.concatenate((res_min_max, test_data_3), axis=0) res_min_max = np.concatenate((res_min_max, test_data_4), axis=0) res_min_max = np.concatenate((res_min_max, test_data_5), axis=0) res_min_max = np.concatenate((res_min_max, test_data_6), axis=0) res_min_max = np.concatenate((res_min_max, test_data_7), axis=0) res_min_max = np.concatenate((res_min_max, test_data_8), axis=0) res_min_max = np.array([np.min(res_min_max, 0), np.max(res_min_max, 0)]) print(res_min_max, res_min_max.shape) np.save("cobotta_ik_min_max", res_min_max) train_data_1 = np.load("cobotta_ik_jnt1.npy", allow_pickle=True) train_data_2 = np.load("cobotta_ik_jnt2.npy", allow_pickle=True) train_data_3 = np.load("cobotta_ik_jnt3.npy", allow_pickle=True) train_data_4 = np.load("cobotta_ik_jnt4.npy", allow_pickle=True) train_data_5 = np.load("cobotta_ik_jnt5.npy", allow_pickle=True) train_data_6 = np.load("cobotta_ik_jnt6.npy", allow_pickle=True) train_data_7 = np.load("cobotta_ik_jnt7.npy", allow_pickle=True) train_data_8 = np.load("cobotta_ik_jnt8.npy", allow_pickle=True) res = np.concatenate((train_data_1, train_data_2), axis=0) res = np.concatenate((res, train_data_3), axis=0) res = np.concatenate((res, train_data_4), axis=0) res = np.concatenate((res, train_data_5), axis=0) res = np.concatenate((res, train_data_6), axis=0) res = np.concatenate((res, train_data_7), axis=0) res =
np.concatenate((res, train_data_8), axis=0)
numpy.concatenate
from shapely.geometry import Polygon import numpy as np def _tf_rot2d(theta, pt): _c, _s = np.cos(theta), np.sin(theta) R = np.array(((_c, -_s), (_s, _c))) return np.dot(R, pt.reshape((2, 1))) def IoU3drot(Z0, Z1): """ Compute the IoU between two boxes in 3d, with one angle along a given axis Z0, Z1: [c,l,r,rad_r], c - is the center of the boxe l - is the size of the boxe r - axis or rotation, must be one of {'x','y','z'}, must be the same for Z0 and Z1 rad_r - angle of rotation, in radian, in the natural convention (counter-clockwise) for example: c = np.array([10.1,3.2,2.0]), l = np.array([10.1,3.2,2.0]), r = 'x', rad_r = np.pi/6.0 r is one of {'x','y','z'}, both boxes must have the same """ c0, l0, theta0 = Z0[0], Z0[1], Z0[3] c1, l1, theta1 = Z1[0], Z1[1], Z1[3] distance = ((c0[0]-c1[0])**2 + (c0[1]-c1[1])**2 + (c0[2]-c1[2])**2)**0.5 if distance > (max(l0)+max(l1))/2**0.5: return 0 if Z0[2] == 'x': i, j, k = 0, 1, 2 if Z0[2] == 'y': i, j, k = 1, 2, 0 if Z0[2] == 'z': i, j, k = 2, 0, 1 l_i = np.minimum(c0[i]+0.5*l0[i], c1[i]+0.5*l1[i]) - \ np.maximum(c0[i]-0.5*l0[i], c1[i]-0.5*l1[i]) l_i = np.maximum(l_i, 0) if l_i > 0: pts0 = [np.array([-0.5*l0[j], 0.5*l0[k]]), np.array([0.5*l0[j], 0.5*l0[k]]), np.array([0.5*l0[j], -0.5*l0[k]]), np.array([-0.5*l0[j], -0.5*l0[k]])] pts1 = [np.array([-0.5*l1[j], 0.5*l1[k]]), np.array([0.5*l1[j], 0.5*l1[k]]), np.array([0.5*l1[j], -0.5*l1[k]]), np.array([-0.5*l1[j], -0.5*l1[k]])] polyg0 = Polygon([
np.array([c0[j], c0[k]])
numpy.array
import matplotlib.pyplot as plt import matplotlib as mpl from mpl_toolkits.axes_grid1.inset_locator import TransformedBbox, BboxPatch, BboxConnector from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.axes_grid1 import make_axes_locatable, AxesGrid from mpl_toolkits.mplot3d import proj3d import numpy as np from warnings import warn from Utilities import timer from numba import njit, jit, prange class BaseFigure: def __init__(self, list_x, list_y, name='UntitledFigure', font_size=8, x_labels=('$x$',), y_labels=('$y$',), save_dir='./', show=True, save=True, equal_ax=False, x_lims=(None,), y_lims=(None,), fig_span='infer', fig_height_multiplier=1., subplots='infer', colors=('tableau10',)): self.list_x, self.list_y = ((list_x,), (list_y,)) if isinstance(list_x, np.ndarray) else (list_x, list_y) # Assume number of plots is number of x provided by default self.nplots = len(list_x) self.name, self.save_dir, self.save, self.show = name, save_dir, save, show if not self.show: plt.ioff() else: plt.ion() self.x_labels = self._ensureEqualTupleElements(x_labels) self.y_labels = self._ensureEqualTupleElements(y_labels) self.equal_ax = equal_ax self.x_lims, self.y_lims = x_lims, y_lims self.colors, self.gray = self._setColors(which=colors[0]) if colors[0] in ('tableau10', 'tableau20') else (colors, (89/255., 89/255., 89/255.)) # If subplots is provided, use it, otherwise use nplots as number of plot columns self.subplots = tuple(subplots) if isinstance(subplots, (list, tuple)) else (1, self.nplots) # If only (1, 1) subplots and fig_span is "infer", then set figure span to half page width self.fig_span = 'half' if (subplots == (1, 1) and fig_span == 'infer') else 'full' self.fig_span, self.fig_height_multiplier, self.font_size = fig_span, fig_height_multiplier, font_size # By default number of lines in a plot is 1 (dummy value) self.nlines = self._ensureEqualTupleElements(1) def _ensureEqualTupleElements(self, input): """ Make sure the input is converted not only a tuple but also having the length of number of plots. If input is not a list/tuple already, str/int/float/ndarray type will be detected. :param input: Input to be converted to tuple of length equal to number of plots. :type input: list/tuple/str/int/float/ndarray :return: Tuple equal to number of plots. :rtype: tuple """ # If input is one of str/int/float/ndarray type, then put it in a tuple equal to number of plots if isinstance(input, (str, int, float, np.ndarray)): outputs = (input,)*self.nplots # Else if input is list/tuple of 1 element while number of plots > 1, # then make it equal number of plots elif len(input) == 1 and self.nplots > 1: outputs = tuple(input*self.nplots) # Otherwise, return input else: outputs = tuple(input) return outputs @staticmethod def _setColors(which='qualitative'): """ Set colors (not colormap) preference. Choices are "qualitative", "tableau10", and "tableau20". :param which: Which set of colors to use. :type which: "qualitative"/"tableau10"/"tableau20", optional (default="qualitative") :return: Color set of preference and specific color for gray. :rtype: (list, tuple) """ # These are the "Tableau 20" colors as RGB. tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] tableau10 = [(31, 119, 180), (255, 127, 14), (44, 160, 44), (23, 190, 207), (214, 39, 40), (188, 189, 34), (148, 103, 189), (140, 86, 75), (227, 119, 194), (127, 127, 127)] # Orange, blue, magenta, cyan, red, teal, grey qualitative = [(238, 119, 51), (0, 119, 187), (238, 51, 119), (51, 187, 238), (204, 51, 117), (0, 153, 136), (187, 187, 187)] colors_dict = {'tableau20': tableau20, 'tableau10': tableau10, 'qualitative': qualitative} # Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts. colors = colors_dict[which] for i in range(len(colors)): r, g, b = colors[i] colors[i] = (r/255., g/255., b/255.) tableau_gray = (89/255., 89/255., 89/255.) return colors, tableau_gray @staticmethod def _latexify(fig_width=None, fig_height=None, fig_span='half', linewidth=1, font_size=8, subplots=(1, 1), fig_height_multiplier= 1.): """Set up matplotlib's RC params for LaTeX plotting. Call this before plotting a figure. Parameters ---------- fig_width : float, optional (default=None), inches fig_height : float, optional (default=None), inches """ # Code adapted from http://www.scipy.org/Cookbook/Matplotlib/LaTeX_Examples # Width and max height in inches for IEEE journals taken from # computer.org/cms/Computer.org/Journal%20templates/transactions_art_guide.pdf if fig_width is None: if subplots[1] == 1: fig_width = 3.39 if fig_span is 'half' else 6.9 # inches else: fig_width = 6.9 # inches if fig_height is None: golden_mean = (np.sqrt(5) - 1.0)/2.0 # Aesthetic ratio # In case subplots option is not applicable e.g. normal Plot2D and you still want elongated height fig_height = fig_width*golden_mean*fig_height_multiplier # height in inches # fig_height *= (0.25 + (subplots[0] - 1)) if subplots[0] > 1 else 1 fig_height *= subplots[0] MAX_HEIGHT_INCHES = 8.0 if fig_height > MAX_HEIGHT_INCHES: warn("\nfig_height too large:" + str(fig_height) + ". Will reduce to " + str(MAX_HEIGHT_INCHES) + " inches", stacklevel=2) fig_height = MAX_HEIGHT_INCHES tableauGray = (89/255., 89/255., 89/255.) mpl.rcParams.update({ 'backend': 'Qt5Agg', 'text.latex.preamble': [r"\usepackage{gensymb,amsmath}"], 'axes.labelsize': font_size, # fontsize for x and y labels (was 10) 'axes.titlesize': font_size + 2., 'font.size': font_size, # was 10 'legend.fontsize': font_size - 2., # was 10 'xtick.labelsize': font_size - 2., 'ytick.labelsize': font_size - 2., 'xtick.color': tableauGray, 'ytick.color': tableauGray, 'xtick.direction': 'out', 'ytick.direction': 'out', 'text.usetex': True, 'figure.figsize': (fig_width, fig_height), 'font.family': 'serif', "legend.framealpha": 0.5, 'legend.edgecolor': 'none', 'lines.linewidth': linewidth, 'lines.markersize': 2, "axes.spines.top": False, "axes.spines.right": False, 'axes.edgecolor': tableauGray, 'lines.antialiased': True, 'patch.antialiased': True, 'text.antialiased': True}) def initializeFigure(self): self._latexify(font_size=self.font_size, fig_span=self.fig_span, subplots=self.subplots, fig_height_multiplier=self.fig_height_multiplier) self.fig, self.axes = plt.subplots(self.subplots[0], self.subplots[1], num=self.name, constrained_layout=True) # If no multiple axes, still make self.axes index-able if not isinstance(self.axes, np.ndarray): self.axes = (self.axes,) print('\nFigure ' + self.name + ' initialized') def plotFigure(self): print('\nPlotting ' + self.name + '...') def _ensureMeshGrid(self): if len(np.array(self.list_x[0]).shape) == 1: warn('\nX and Y are 1D, contour/contourf requires mesh grid. Converting X and Y to mesh grid ' 'automatically...\n', stacklevel = 2) # Convert tuple to list self.list_x, self.list_y = list(self.list_x), list(self.list_y) self.list_x[0], self.list_y[0] = np.meshgrid(self.list_x[0], self.list_y[0], sparse = False) def finalizeFigure(self, xy_scale=(None,), grid=True, transparent_bg=False, legloc='best'): for i in range(self.nplots): if self.nlines[i] > 1 and legloc is not None: ncol = 2 if self.nlines[i] > 3 else 1 self.axes[i].legend(loc=legloc, shadow=False, fancybox=False, ncol=ncol) if grid: self.axes[i].grid(which = 'major', alpha = 0.25) self.axes[i].set_xlabel(self.x_labels) self.axes[i].set_ylabel(self.y_labels) if self.equal_ax: # Only execute 2D equal axis if the figure is actually 2D try: self.view_angles except AttributeError: self.axes[i].set_aspect('equal', 'box') if self.x_lims[0] is not None: self.axes[i].set_xlim(self.x_lims) if self.y_lims[0] is not None: self.axes[i].set_ylim(self.y_lims) if xy_scale[0] is not None: self.axes[i].set_xscale(xy_scale[0]), self.axes[i].set_yscale(xy_scale[1]) print('\nFigure ' + self.name + ' finalized') if self.save: # plt.savefig(self.save_dir + '/' + self.name + '.png', transparent = transparent_bg, bbox_inches = 'tight', dpi = 1000) plt.savefig(self.save_dir + '/' + self.name + '.png', transparent=transparent_bg, dpi=1000) print('\nFigure ' + self.name + '.png saved in ' + self.save_dir) if self.show: plt.show() # Close current figure window # so that the next figure will be based on a new figure window even if the same name else: plt.close() class Plot2D(BaseFigure): def __init__(self, list_x, list_y, z2D = (None,), type = 'infer', alpha = 0.75, zLabel = '$z$', cmap = 'plasma', gradientBg = False, gradientBgRange = (None, None), gradientBgDir = 'x', **kwargs): self.z2D = z2D self.lines, self.markers = ("-", "--", "-.", ":")*5, ('o', 'D', 'v', '^', '<', '>', 's', '8', 'p')*3 self.alpha, self.cmap = alpha, cmap self.zLabel = zLabel self.gradientBg, self.gradientBgRange, self.gradientBgDir = gradientBg, gradientBgRange, gradientBgDir super().__init__(list_x, list_y, **kwargs) # If multiple data provided, make sure type is a tuple of the same length if type == 'infer': self.type = ('contourf',)*len(list_x) if z2D[0] is not None else ('line',)*len(list_x) else: self.type = (type,)*len(list_x) if isinstance(type, str) else type def plotFigure(self, plotsLabel = (None,), contourLvl = 10): # Gradient background, only for line and scatter plots if self.gradientBg and self.type[0] in ('line', 'scatter'): x2D, y2D = np.meshgrid(np.linspace(self.x_lims[0], self.x_lims[1], 3), np.linspace(self.y_lims[0], self.y_lims[1], 3)) z2D = (np.meshgrid(np.linspace(self.x_lims[0], self.x_lims[1], 3), np.arange(3)))[0] if self.gradientBgDir is 'x' else (np.meshgrid(np.arange(3), np.linspace(self.y_lims[0], self.y_lims[1], 3)))[1] self.axes[0].contourf(x2D, y2D, z2D, 500, cmap = 'gray', alpha = 0.33, vmin = self.gradientBgRange[0], vmax = self.gradientBgRange[1]) super().plotFigure() self.plotsLabel = np.arange(1, len(self.list_x) + 1) if plotsLabel[0] is None else plotsLabel self.plots = [None]*len(self.list_x) for i in range(len(self.list_x)): if self.type[i] == 'line': self.plots[i] = self.axes[0].plot(self.list_x[i], self.list_y[i], ls = self.lines[i], label = str(self.plotsLabel[i]), color = self.colors[i], alpha = self.alpha) elif self.type[i] == 'scatter': self.plots[i] = self.axes[0].scatter(self.list_x[i], self.list_y[i], lw = 0, label = str(self.plotsLabel[i]), alpha = self.alpha, color = self.colors[i], marker = self.markers[i]) elif self.type[i] == 'contourf': self._ensureMeshGrid() self.plots[i] = self.axes[0].contourf(self.list_x[i], self.list_y[i], self.z2D, levels = contourLvl, cmap = self.cmap, extend = 'both', antialiased = False) elif self.type[i] == 'contour': self._ensureMeshGrid() self.plots[i] = self.axes[0].contour(self.list_x[i], self.list_y[i], self.z2D, levels = contourLvl, cmap = self.cmap, extend = 'both') else: warn("\nUnrecognized plot type! type must be one/list of ('infer', 'line', 'scatter', 'contourf', 'contour').\n", stacklevel = 2) return def finalizeFigure(self, cbarOrientate = 'horizontal', **kwargs): if self.type in ('contourf', 'contour') and len(self.axes) == 1: cb = plt.colorbar(self.plots[0], ax = self.axes[0], orientation = cbarOrientate) cb.set_label(self.zLabel) super().finalizeFigure(grid = False, **kwargs) else: super().finalizeFigure(**kwargs) class Plot2D_InsetZoom(Plot2D): def __init__(self, list_x, list_y, zoomBox, subplots = (2, 1), **kwargs): super().__init__(list_x, list_y, fig_width = 'full', subplots = subplots, **kwargs) self.zoomBox = zoomBox @staticmethod def _mark_inset(parent_axes, inset_axes, loc1a = 1, loc1b = 1, loc2a = 2, loc2b = 2, **kwargs): # Draw a bbox of the region of the inset axes in the parent axes and # connecting lines between the bbox and the inset axes area # loc1, loc2 : {1, 2, 3, 4} rect = TransformedBbox(inset_axes.viewLim, parent_axes.transData) pp = BboxPatch(rect, fill = False, **kwargs) parent_axes.add_patch(pp) p1 = BboxConnector(inset_axes.bbox, rect, loc1 = loc1a, loc2 = loc1b, **kwargs) inset_axes.add_patch(p1) p1.set_clip_on(False) p2 = BboxConnector(inset_axes.bbox, rect, loc1 = loc2a, loc2 = loc2b, **kwargs) inset_axes.add_patch(p2) p2.set_clip_on(False) print('\nInset created') return pp, p1, p2 def plotFigure(self, plotsLabel = (None,), contourLvl = 10): super().plotFigure(plotsLabel, contourLvl) for i in range(len(self.list_x)): if self.type is 'line': self.axes[1].plot(self.list_x[i], self.list_y[i], ls = self.lines[i], label = str(self.plotsLabel[i]), alpha = self.alpha, color = self.colors[i]) elif self.type is 'scatter': self.axes[1].scatter(self.list_x[i], self.list_y[i], lw = 0, label = str(self.plotsLabel[i]), alpha = self.alpha, marker = self.markers[i]) elif self.type is 'contourf': self.axes[1].contourf(self.list_x[i], self.list_y[i], self.z2D, levels = contourLvl, cmap = self.cmap, extend = 'both') elif self.type is 'contour': self.axes[1].contour(self.list_x[i], self.list_y[i], self.z2D, levels = contourLvl, cmap = self.cmap, extend = 'both') def finalizeFigure(self, cbarOrientate = 'vertical', setXYlabel = (False, True), xy_scale = ('linear', 'linear'), **kwargs): self.axes[1].set_xlim(self.zoomBox[0], self.zoomBox[1]), self.axes[1].set_ylim(self.zoomBox[2], self.zoomBox[3]) self.axes[1].set_xlabel(self.x_labels), self.axes[1].set_ylabel(self.y_labels) if self.equal_ax: self.axes[1].set_aspect('equal', 'box') self.axes[1].set_xscale(xy_scale[0]), self.axes[1].set_yscale(xy_scale[1]) self._mark_inset(self.axes[0], self.axes[1], loc1a = 1, loc1b = 4, loc2a = 2, loc2b = 3, fc = "none", ec = self.gray, ls = ':') if self.type in ('contour', 'contourf'): for ax in self.axes: ax.tick_params(axis = 'both', direction = 'out') else: self.axes[1].grid(which = 'both', alpha = 0.25) if len(self.list_x) > 1: ncol = 2 if len(self.list_x) > 3 else 1 self.axes[1].legend(loc = 'best', shadow = False, fancybox = False, ncol = ncol) for spine in ('top', 'bottom', 'left', 'right'): if self.type in ('contour', 'contourf'): self.axes[0].spines[spine].set_visible(False) self.axes[1].spines[spine].set_visible(True) self.axes[1].spines[spine].set_linestyle(':') # plt.draw() # Single colorbar if self.type in ('contour', 'contourf'): self.fig.subplots_adjust(bottom = 0.1, top = 0.9, left = 0.1, right = 0.8) # , wspace = 0.02, hspace = 0.2) cbar_ax = self.fig.add_axes((0.83, 0.1, 0.02, 0.8)) cb = plt.colorbar(self.plots[0], cax = cbar_ax, orientation = 'vertical') cb.set_label(self.zLabel) cb.ax.tick_params(axis = 'y', direction = 'out') super().finalizeFigure(tightLayout = False, cbarOrientate = cbarOrientate, setXYlabel = setXYlabel, xy_scale = xy_scale, grid = False, **kwargs) class BaseFigure3D(BaseFigure): def __init__(self, list_x2D, list_y2D, zLabel = '$z$', alpha = 1, viewAngles = (15, -115), zLim = (None,), cmap = 'plasma', cmapLabel = '$U$', grid = True, cbarOrientate = 'horizontal', **kwargs): super(BaseFigure3D, self).__init__(list_x = list_x2D, list_y = list_y2D, **kwargs) # The name of list_x and list_y becomes list_x2D and list_y2D since they are 2D self.list_x2D, self.list_y2D = self.list_x, self.list_y self.zLabel, self.zLim = zLabel, zLim self.cmapLabel, self.cmap = cmapLabel, cmap self.alpha, self.grid, self.viewAngles = alpha, grid, viewAngles self.plot, self.cbarOrientate = None, cbarOrientate def initializeFigure(self, figSize = (1, 1)): # Update Matplotlib rcparams self.latexify(font_size = self.font_size, fig_width = self.fig_width, subplots = figSize) self.fig = plt.figure(self.name) self.axes = (self.fig.gca(projection = '3d'),) def plotFigure(self): super(BaseFigure3D, self).plotFigure() self._ensureMeshGrid() def finalizeFigure(self, fraction = 0.06, pad = 0.08, showCbar = True, reduceNtick = True, tightLayout = True, **kwargs): self.axes[0].set_zlabel(self.zLabel) self.axes[0].set_zlim(self.zLim) # Color bar if showCbar: cb = plt.colorbar(self.plot, fraction = fraction, pad = pad, orientation = self.cbarOrientate, extend = 'both', aspect = 25, shrink = 0.75) cb.set_label(self.cmapLabel) # Turn off background on all three panes self._format3D_Axes(self.axes[0]) # Equal axes # [REQUIRES SOURCE CODE MODIFICATION] Equal axis # Edit the get_proj function inside site-packages\mpl_toolkits\mplot3d\axes3d.py: # try: self.localPbAspect=self.pbaspect # except AttributeError: self.localPbAspect=[1,1,1] # xmin, xmax = np.divide(self.get_xlim3d(), self.localPbAspect[0]) # ymin, ymax = np.divide(self.get_ylim3d(), self.localPbAspect[1]) # zmin, zmax = np.divide(self.get_zlim3d(), self.localPbAspect[2]) if self.equal_ax: try: arZX = abs((self.zLim[1] - self.zLim[0])/(self.x_lims[1] - self.x_lims[0])) arYX = abs((self.y_lims[1] - self.y_lims[0])/(self.x_lims[1] - self.x_lims[0])) # Constrain AR from getting too large arYX, arZX = np.min((arYX, 2)), np.min((arZX, 2)) # Axes aspect ratio doesn't really work properly self.axes[0].pbaspect = (1, arYX, arZX) # auto_scale_xyz is not preferable since it does it by setting a cubic box # scaling = np.array([getattr(self.axes[0], 'get_{}lim'.format(dim))() for dim in 'xyz']) # self.axes[0].auto_scale_xyz(*[[np.min(scaling), np.max(scaling)]]*3) except AttributeError: warn('\nTo set custom aspect ratio of the 3D plot, you need modification of the source code axes3d.py. The aspect ratio might be incorrect for ' + self.name + '\n', stacklevel = 2) pass if reduceNtick: self.axes[0].set_xticks(np.linspace(self.x_lims[0], self.x_lims[1], 3)) self.axes[0].set_yticks(np.linspace(self.y_lims[0], self.y_lims[1], 3)) self.axes[0].set_zticks(np.linspace(self.zLim[0], self.zLim[1], 3)) # # Strictly equal axis of all three axis # _, _, _, _, _, _ = self.get3D_AxesLimits(self.axes[0]) # 3D grid self.axes[0].grid(self.grid) self.axes[0].view_init(self.viewAngles[0], self.viewAngles[1]) # # View distance # self.axes[0].dist = 11 super().finalizeFigure(grid = False, legShow = False, **kwargs) @timer @jit(parallel = True, fastmath = True) def getSlicesLimits(self, list_x2D, list_y2D, listZ2D =
np.empty(100)
numpy.empty
""" Kiviat in 3D ------------ """ import copy import warnings import numpy as np from scipy.optimize import fmin from sklearn.preprocessing import MinMaxScaler from sklearn.neighbors import KernelDensity from sklearn.model_selection import (GridSearchCV, cross_val_score) from matplotlib import pyplot as plt import matplotlib.backends.backend_pdf from matplotlib import cm import matplotlib.animation as manimation from matplotlib.colors import Normalize from matplotlib.patches import FancyArrowPatch from matplotlib.lines import Line2D from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import proj3d from mpl_toolkits.mplot3d.art3d import Poly3DCollection def kernel_smoothing(data, optimize=False): """Create gaussian kernel. The optimization option could lead to longer computation of the PDF. :param array_like data: output sample to draw a PDF from (n_samples, n_features). :param bool optimize: use global optimization of grid search. :return: gaussian kernel. :rtype: :class:`sklearn.neighbors.KernelDensity`. """ n_samples, dim = data.shape cv = n_samples if n_samples < 5 else 5 var = np.std(data, ddof=1) scott = 1.06 * n_samples ** (-1. / (dim + 4)) * var if optimize: def bw_score(bw): """Get the cross validation score for a given bandwidth.""" bw[bw <= 0] = 1e-10 score = cross_val_score(KernelDensity(bandwidth=bw), data, cv=cv, n_jobs=-1) return - score.mean() bw = fmin(bw_score, x0=scott, maxiter=1e3, maxfun=1e3, xtol=1e-3, disp=0) bw[bw < 0] = 1e-10 ks_gaussian = KernelDensity(bandwidth=bw) ks_gaussian.fit(data) else: silverman = (n_samples * (dim + 2) / 4.) ** (-1. / (dim + 4)) * var bandwidth = np.hstack([np.logspace(-1, 1.0, 10) * var, scott, silverman]) grid = GridSearchCV(KernelDensity(), {'bandwidth': bandwidth}, cv=cv, n_jobs=-1) # n-fold cross-validation grid.fit(data) ks_gaussian = grid.best_estimator_ return ks_gaussian def save_show(fname, figures, **kwargs): """Either show or save the figure[s]. If :attr:`fname` is `None` the figure will show. :param str fname: whether to export to filename or display the figures. :param list(Matplotlib figure instance) figures: Figures to handle. """ with warnings.catch_warnings(): warnings.simplefilter("ignore") for fig in figures: try: fig.tight_layout() except ValueError: pass if fname is not None: pdf = matplotlib.backends.backend_pdf.PdfPages(fname) for fig in figures: pdf.savefig(fig, transparent=True, bbox_inches='tight', **kwargs) pdf.close() else: plt.show() plt.close('all') class Arrow3D(FancyArrowPatch): """Render 3D arrows.""" def __init__(self, xs, ys, zs, *args, **kwargs): """Create a FancyArrow from two points' coordinates.""" FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): """Overright drawing methods.""" xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0], ys[0]), (xs[1], ys[1])) FancyArrowPatch.draw(self, renderer) class Kiviat3D(object): """3D version of the Kiviat plot. Each realization is stacked on top of each other. The axis represent the parameters used to perform the realization. """ def __init__(self, sample, data, idx=None, bounds=None, plabels=None, range_cbar=None, stack_order='qoi', cbar_order='qoi'): """Prepare params for Kiviat plot. :param array_like sample: Sample of parameters of Shape (n_samples, n_params). :param array_like data: Sample of realization which corresponds to the sample of parameters :attr:`sample` (n_samples, n_features). :param int idx: Index on the functional data to consider. :param array_like bounds: Boundaries to scale the colors shape ([min, n_features], [max, n_features]). :param list(str) plabels: Names of each parameters (n_features). :param array_like range_cbar: Minimum and maximum values for output function (2 values). :param str/int stack_order: Set stacking order ['qoi', 'hdr']. If an integer, it represents the input variable to take into account. :param str cbar_order: Set color mapping order ['qoi', 'hdr']. """ self.sample = np.asarray(sample) self.data =
np.asarray(data)
numpy.asarray
import numpy as np def rotate_2d(img,angels_deg): angels_deg=np.array(angels_deg) T=[[0,0,0,1,2,3,0,0,0,0,0,0],[0,0,90,2,1,3,0,1,0,0,2,1],[0,0,180,1,2,3,1,1,0,2,2,2],[0,0,270,2,1,3,1,0,0,2,0,3], [0,90,0,3,2,1,1,0,0,1,1,1],[0,90,90,2,3,1,0,0,0,1,1,2],[0,90,180,3,2,1,0,1,0,1,1,3],[0,90,270,2,3,1,1,1,0,1,1,0], [0,180,0,1,2,3,1,0,1,0,2,2],[0,180,90,2,1,3,0,0,1,2,2,3],[0,180,180,1,2,3,0,1,1,2,0,0],[0,180,270,2,1,3,1,1,1,0,0,1], [0,270,0,3,2,1,0,0,1,3,3,1],[0,270,90,2,3,1,0,1,1,3,3,2],[0,270,180,3,2,1,1,1,1,3,3,3],[0,270,270,2,3,1,1,0,1,3,3,0], [90,0,0,1,3,2,0,0,1,1,0,0],[90,0,90,3,1,2,0,1,1,0,1,1],[90,0,180,1,3,2,1,1,1,1,2,2],[90,0,270,3,1,2,1,0,1,2,1,3], [90,90,0,2,3,1,0,0,0,1,1,2],[90,90,90,3,2,1,0,1,0,1,1,3],[90,90,180,2,3,1,1,1,0,1,1,0],[90,90,270,3,2,1,1,0,0,1,1,1], [90,180,0,1,3,2,1,0,0,3,2,2],[90,180,90,3,1,2,0,0,0,2,3,3],[90,180,180,1,3,2,0,1,0,3,0,0],[90,180,270,3,1,2,1,1,0,0,3,1], [90,270,0,2,3,1,1,0,1,3,3,0],[90,270,90,3,2,1,0,0,1,3,3,1],[90,270,180,2,3,1,0,1,1,3,3,2],[90,270,270,3,2,1,1,1,1,3,3,3], [180,0,0,1,2,3,0,1,1,2,0,0],[180,0,90,2,1,3,1,1,1,0,0,1],[180,0,180,1,2,3,1,0,1,0,2,2],[180,0,270,2,1,3,0,0,1,2,2,3], [180,90,0,3,2,1,0,1,0,1,1,3],[180,90,90,2,3,1,1,1,0,1,1,0],[180,90,180,3,2,1,1,0,0,1,1,1],[180,90,270,2,3,1,0,0,0,1,1,2], [180,180,0,1,2,3,1,1,0,2,2,2],[180,180,90,2,1,3,1,0,0,2,0,3],[180,180,180,1,2,3,0,0,0,0,0,0],[180,180,270,2,1,3,0,1,0,0,2,1], [180,270,0,3,2,1,1,1,1,3,3,3],[180,270,90,2,3,1,1,0,1,3,3,0],[180,270,180,3,2,1,0,0,1,3,3,1],[180,270,270,2,3,1,0,1,1,3,3,2], [270,0,0,1,3,2,0,1,0,3,0,0],[270,0,90,3,1,2,1,1,0,0,3,1],[270,0,180,1,3,2,1,0,0,3,2,2],[270,0,270,3,1,2,0,0,0,2,3,3], [270,90,0,2,3,1,1,1,0,1,1,0],[270,90,90,3,2,1,1,0,0,1,1,1],[270,90,180,2,3,1,0,0,0,1,1,2],[270,90,270,3,2,1,0,1,0,1,1,3], [270,180,0,1,3,2,1,1,1,1,2,2],[270,180,90,3,1,2,1,0,1,2,1,3],[270,180,180,1,3,2,0,0,1,1,0,0],[270,180,270,3,1,2,0,1,1,0,1,1], [270,270,0,2,3,1,0,1,1,3,3,2],[270,270,90,3,2,1,1,1,1,3,3,3],[270,270,180,2,3,1,1,0,1,3,3,0],[270,270,270,3,2,1,0,0,1,3,3,1]] T=np.array(T) rots_3d=T[:,0:3] for k in range(rots_3d.shape[0]): if all(rots_3d[k,:]==angels_deg): ind=k break rot_3d=rots_3d[ind,:] zrc1=T[ind,6] zrc2=T[ind,7] zrc3=T[ind,8] rot1=T[ind,9] rot2=T[ind,10] rot3=T[ind,11] p=T[ind,3:6]-1 img=img[:,:,p] if zrc1==1: img[:,:,0]=np.fliplr(img[:,:,0]); if zrc2==1: img[:,:,1]=np.fliplr(img[:,:,1]); if zrc3==1: img[:,:,2]=np.fliplr(img[:,:,2]); img[:,:,0]=np.rot90(img[:,:,0],rot1) img[:,:,1]=np.rot90(img[:,:,1],rot2) img[:,:,2]=
np.rot90(img[:,:,2],rot3)
numpy.rot90
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys sys.path.append("..") import unittest import math import numpy as np import paddle.fluid.core as core from op_test import OpTest, skip_check_grad_ci import paddle import paddle.fluid as fluid from paddle.fluid import Program, program_guard @skip_check_grad_ci(reason="There is no grad kernel for roi_align_xpu kernel.") class TestROIAlignOp(OpTest): def set_data(self): self.init_test_case() self.make_rois() self.calc_roi_align() self.inputs = { 'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod), } self.attrs = { 'spatial_scale': self.spatial_scale, 'pooled_height': self.pooled_height, 'pooled_width': self.pooled_width, 'sampling_ratio': self.sampling_ratio } self.outputs = {'Out': self.out_data} def init_test_case(self): self.batch_size = 3 self.channels = 3 self.height = 8 self.width = 6 # n, c, h, w self.x_dim = (self.batch_size, self.channels, self.height, self.width) self.spatial_scale = 1.0 / 2.0 self.pooled_height = 2 self.pooled_width = 2 self.sampling_ratio = -1 self.x = np.random.random(self.x_dim).astype('float64') def pre_calc(self, x_i, roi_xmin, roi_ymin, roi_bin_grid_h, roi_bin_grid_w, bin_size_h, bin_size_w): count = roi_bin_grid_h * roi_bin_grid_w bilinear_pos = np.zeros( [self.channels, self.pooled_height, self.pooled_width, count, 4], np.float64) bilinear_w = np.zeros( [self.pooled_height, self.pooled_width, count, 4], np.float64) for ph in range(self.pooled_width): for pw in range(self.pooled_height): c = 0 for iy in range(roi_bin_grid_h): y = roi_ymin + ph * bin_size_h + (iy + 0.5) * \ bin_size_h / roi_bin_grid_h for ix in range(roi_bin_grid_w): x = roi_xmin + pw * bin_size_w + (ix + 0.5) * \ bin_size_w / roi_bin_grid_w if y < -1.0 or y > self.height or \ x < -1.0 or x > self.width: continue if y <= 0: y = 0 if x <= 0: x = 0 y_low = int(y) x_low = int(x) if y_low >= self.height - 1: y = y_high = y_low = self.height - 1 else: y_high = y_low + 1 if x_low >= self.width - 1: x = x_high = x_low = self.width - 1 else: x_high = x_low + 1 ly = y - y_low lx = x - x_low hy = 1 - ly hx = 1 - lx for ch in range(self.channels): bilinear_pos[ch, ph, pw, c, 0] = x_i[ch, y_low, x_low] bilinear_pos[ch, ph, pw, c, 1] = x_i[ch, y_low, x_high] bilinear_pos[ch, ph, pw, c, 2] = x_i[ch, y_high, x_low] bilinear_pos[ch, ph, pw, c, 3] = x_i[ch, y_high, x_high] bilinear_w[ph, pw, c, 0] = hy * hx bilinear_w[ph, pw, c, 1] = hy * lx bilinear_w[ph, pw, c, 2] = ly * hx bilinear_w[ph, pw, c, 3] = ly * lx c = c + 1 return bilinear_pos, bilinear_w def calc_roi_align(self): self.out_data = np.zeros( (self.rois_num, self.channels, self.pooled_height, self.pooled_width)).astype('float64') for i in range(self.rois_num): roi = self.rois[i] roi_batch_id = int(roi[0]) x_i = self.x[roi_batch_id] roi_xmin = roi[1] * self.spatial_scale roi_ymin = roi[2] * self.spatial_scale roi_xmax = roi[3] * self.spatial_scale roi_ymax = roi[4] * self.spatial_scale roi_width = max(roi_xmax - roi_xmin, 1) roi_height = max(roi_ymax - roi_ymin, 1) bin_size_h = float(roi_height) / float(self.pooled_height) bin_size_w = float(roi_width) / float(self.pooled_width) roi_bin_grid_h = self.sampling_ratio if self.sampling_ratio > 0 else \ math.ceil(roi_height / self.pooled_height) roi_bin_grid_w = self.sampling_ratio if self.sampling_ratio > 0 else \ math.ceil(roi_width / self.pooled_width) count = int(roi_bin_grid_h * roi_bin_grid_w) pre_size = count * self.pooled_width * self.pooled_height bilinear_pos, bilinear_w = self.pre_calc(x_i, roi_xmin, roi_ymin, int(roi_bin_grid_h), int(roi_bin_grid_w), bin_size_h, bin_size_w) for ch in range(self.channels): align_per_bin = (bilinear_pos[ch] * bilinear_w).sum(axis=-1) output_val = align_per_bin.mean(axis=-1) self.out_data[i, ch, :, :] = output_val def make_rois(self): rois = [] self.rois_lod = [[]] for bno in range(self.batch_size): self.rois_lod[0].append(bno + 1) for i in range(bno + 1): x1 = np.random.random_integers( 0, self.width // self.spatial_scale - self.pooled_width) y1 = np.random.random_integers( 0, self.height // self.spatial_scale - self.pooled_height) x2 = np.random.random_integers(x1 + self.pooled_width, self.width // self.spatial_scale) y2 = np.random.random_integers( y1 + self.pooled_height, self.height // self.spatial_scale) roi = [bno, x1, y1, x2, y2] rois.append(roi) self.rois_num = len(rois) self.rois =
np.array(rois)
numpy.array
import unittest import numpy import test_utils class TestBasicAddition(unittest.TestCase): # Test basic addition of all combinations of all types, not checking for any edge cases specifically. ZERO = numpy.float32(0) ONE = numpy.float32(1) MIN_SUBNORM = numpy.float32(1e-45) MAX_SUBNORM = numpy.float32(1.1754942e-38) MIN_NORM = numpy.float32(1.1754944e-38) MAX_NORM = numpy.float32(3.4028235e38) INF = numpy.float32(numpy.inf) NAN = numpy.float32(numpy.nan) # Initialise the tester object used to run the assembled code. @classmethod def setUpClass(cls): cls.tester = test_utils.SubroutineTester("test_addition.s") cls.tester.initialise() # Run a test to compare the expected sum of two floats to the actual sum. def run_test(self, float1: numpy.float32, float2: numpy.float32): expected = float1 + float2 if numpy.isnan(expected): self.assertTrue(numpy.isnan(TestBasicAddition.tester.run_test(float1, float2))) else: self.assertEqual(float1 + float2, TestBasicAddition.tester.run_test(float1, float2)) def test_zero(self): # Test that ±0 + x = x for all types of x. self.run_test(self.ZERO, self.ZERO) self.run_test(self.ZERO, -self.ZERO) self.run_test(-self.ZERO, self.ZERO) self.run_test(-self.ZERO, -self.ZERO) self.run_test(self.ZERO, self.ONE) self.run_test(self.ZERO, -self.ONE) self.run_test(-self.ZERO, self.ONE) self.run_test(-self.ZERO, -self.ONE) self.run_test(self.ZERO, self.MIN_SUBNORM) self.run_test(self.ZERO, -self.MIN_SUBNORM) self.run_test(-self.ZERO, self.MIN_SUBNORM) self.run_test(-self.ZERO, -self.MIN_SUBNORM) self.run_test(self.ZERO, numpy.float32(9.060464e-39)) self.run_test(self.ZERO, -numpy.float32(9.060464e-39)) self.run_test(-self.ZERO, numpy.float32(9.060464e-39)) self.run_test(-self.ZERO, -numpy.float32(9.060464e-39)) self.run_test(self.ZERO, self.MAX_SUBNORM) self.run_test(self.ZERO, -self.MAX_SUBNORM) self.run_test(-self.ZERO, self.MAX_SUBNORM) self.run_test(-self.ZERO, -self.MAX_SUBNORM) self.run_test(self.ZERO, self.MIN_NORM) self.run_test(self.ZERO, -self.MIN_NORM) self.run_test(-self.ZERO, self.MIN_NORM) self.run_test(-self.ZERO, -self.MIN_NORM) self.run_test(self.ZERO, numpy.float32(395.6166)) self.run_test(self.ZERO, -numpy.float32(395.6166)) self.run_test(-self.ZERO, numpy.float32(395.6166)) self.run_test(-self.ZERO, -numpy.float32(395.6166)) self.run_test(self.ZERO, self.MAX_NORM) self.run_test(self.ZERO, -self.MAX_NORM) self.run_test(-self.ZERO, self.MAX_NORM) self.run_test(-self.ZERO, -self.MAX_NORM) self.run_test(self.ZERO, self.INF) self.run_test(self.ZERO, -self.INF) self.run_test(-self.ZERO, self.INF) self.run_test(-self.ZERO, -self.INF) self.run_test(self.ZERO, self.NAN) self.run_test(-self.ZERO, self.NAN) def test_one(self): # Test ±1 + x for all types of x. self.run_test(self.ONE, self.ZERO) self.run_test(self.ONE, -self.ZERO) self.run_test(-self.ONE, self.ZERO) self.run_test(-self.ONE, -self.ZERO) self.run_test(self.ONE, self.ONE) self.run_test(self.ONE, -self.ONE) self.run_test(-self.ONE, self.ONE) self.run_test(-self.ONE, -self.ONE) self.run_test(self.ONE, self.MIN_SUBNORM) self.run_test(self.ONE, -self.MIN_SUBNORM) self.run_test(-self.ONE, self.MIN_SUBNORM) self.run_test(-self.ONE, -self.MIN_SUBNORM) self.run_test(self.ONE, numpy.float32(1.902965e-39)) self.run_test(self.ONE, -numpy.float32(1.902965e-39)) self.run_test(-self.ONE, numpy.float32(1.902965e-39)) self.run_test(-self.ONE, -numpy.float32(1.902965e-39)) self.run_test(self.ONE, self.MAX_SUBNORM) self.run_test(self.ONE, -self.MAX_SUBNORM) self.run_test(-self.ONE, self.MAX_SUBNORM) self.run_test(-self.ONE, -self.MAX_SUBNORM) self.run_test(self.ONE, self.MIN_NORM) self.run_test(self.ONE, -self.MIN_NORM) self.run_test(-self.ONE, self.MIN_NORM) self.run_test(-self.ONE, -self.MIN_NORM) self.run_test(self.ONE, numpy.float32(7918.158)) self.run_test(self.ONE, -numpy.float32(7918.158)) self.run_test(-self.ONE, numpy.float32(7918.158)) self.run_test(-self.ONE, -numpy.float32(7918.158)) self.run_test(self.ONE, self.MAX_NORM) self.run_test(self.ONE, -self.MAX_NORM) self.run_test(-self.ONE, self.MAX_NORM) self.run_test(-self.ONE, -self.MAX_NORM) self.run_test(self.ONE, self.INF) self.run_test(self.ONE, -self.INF) self.run_test(-self.ONE, self.INF) self.run_test(-self.ONE, -self.INF) self.run_test(self.ONE, self.NAN) self.run_test(-self.ONE, self.NAN) def test_min_subnorm(self): # Test ±MIN_SUBNORM + x for all types of x. self.run_test(self.MIN_SUBNORM, self.ZERO) self.run_test(self.MIN_SUBNORM, -self.ZERO) self.run_test(-self.MIN_SUBNORM, self.ZERO) self.run_test(-self.MIN_SUBNORM, -self.ZERO) self.run_test(self.MIN_SUBNORM, self.ONE) self.run_test(self.MIN_SUBNORM, -self.ONE) self.run_test(-self.MIN_SUBNORM, self.ONE) self.run_test(-self.MIN_SUBNORM, -self.ONE) self.run_test(self.MIN_SUBNORM, self.MIN_SUBNORM) self.run_test(self.MIN_SUBNORM, -self.MIN_SUBNORM) self.run_test(-self.MIN_SUBNORM, self.MIN_SUBNORM) self.run_test(-self.MIN_SUBNORM, -self.MIN_SUBNORM) self.run_test(self.MIN_SUBNORM, numpy.float32(6.927885e-39)) self.run_test(self.MIN_SUBNORM, -numpy.float32(6.927885e-39)) self.run_test(-self.MIN_SUBNORM, numpy.float32(6.927885e-39)) self.run_test(-self.MIN_SUBNORM, -numpy.float32(6.927885e-39)) self.run_test(self.MIN_SUBNORM, self.MAX_SUBNORM) self.run_test(self.MIN_SUBNORM, -self.MAX_SUBNORM) self.run_test(-self.MIN_SUBNORM, self.MAX_SUBNORM) self.run_test(-self.MIN_SUBNORM, -self.MAX_SUBNORM) self.run_test(self.MIN_SUBNORM, self.MIN_NORM) self.run_test(self.MIN_SUBNORM, -self.MIN_NORM) self.run_test(-self.MIN_SUBNORM, self.MIN_NORM) self.run_test(-self.MIN_SUBNORM, -self.MIN_NORM) self.run_test(self.MIN_SUBNORM, numpy.float32(466603.3)) self.run_test(self.MIN_SUBNORM, -numpy.float32(466603.3)) self.run_test(-self.MIN_SUBNORM, numpy.float32(466603.3)) self.run_test(-self.MIN_SUBNORM, -numpy.float32(466603.3)) self.run_test(self.MIN_SUBNORM, self.MAX_NORM) self.run_test(self.MIN_SUBNORM, -self.MAX_NORM) self.run_test(-self.MIN_SUBNORM, self.MAX_NORM) self.run_test(-self.MIN_SUBNORM, -self.MAX_NORM) self.run_test(self.MIN_SUBNORM, self.INF) self.run_test(self.MIN_SUBNORM, -self.INF) self.run_test(-self.MIN_SUBNORM, self.INF) self.run_test(-self.MIN_SUBNORM, -self.INF) self.run_test(self.MIN_SUBNORM, self.NAN) self.run_test(-self.MIN_SUBNORM, self.NAN) def test_subnorm(self): # Test ±x + y for subnormal x and all types of y. self.run_test(numpy.float32(7.518523e-39), self.ZERO) self.run_test(numpy.float32(7.518523e-39), -self.ZERO) self.run_test(-numpy.float32(7.518523e-39), self.ZERO) self.run_test(-numpy.float32(7.518523e-39), -self.ZERO) self.run_test(numpy.float32(2.028916e-39), self.ONE) self.run_test(numpy.float32(2.028916e-39), -self.ONE) self.run_test(-numpy.float32(2.028916e-39), self.ONE) self.run_test(-numpy.float32(2.028916e-39), -self.ONE) self.run_test(numpy.float32(4.042427e-39), self.MIN_SUBNORM) self.run_test(numpy.float32(4.042427e-39), -self.MIN_SUBNORM) self.run_test(-numpy.float32(4.042427e-39), self.MIN_SUBNORM) self.run_test(-numpy.float32(4.042427e-39), -self.MIN_SUBNORM) self.run_test(numpy.float32(9.636327e-39), numpy.float32(1.0185049e-38)) self.run_test(numpy.float32(9.636327e-39), -numpy.float32(1.0185049e-38)) self.run_test(-numpy.float32(9.636327e-39), numpy.float32(1.0185049e-38)) self.run_test(-numpy.float32(9.636327e-39), -numpy.float32(1.0185049e-38)) self.run_test(numpy.float32(1.989006e-39), self.MAX_SUBNORM) self.run_test(numpy.float32(1.989006e-39), -self.MAX_SUBNORM) self.run_test(-numpy.float32(1.989006e-39), self.MAX_SUBNORM) self.run_test(-numpy.float32(1.989006e-39), -self.MAX_SUBNORM) self.run_test(numpy.float32(2.952435e-39), self.MIN_NORM) self.run_test(numpy.float32(2.952435e-39), -self.MIN_NORM) self.run_test(-numpy.float32(2.952435e-39), self.MIN_NORM) self.run_test(-numpy.float32(2.952435e-39), -self.MIN_NORM) self.run_test(numpy.float32(1.154907e-38), numpy.float32(4.0687437e-36)) self.run_test(numpy.float32(1.154907e-38), -numpy.float32(4.0687437e-36)) self.run_test(-numpy.float32(1.154907e-38), numpy.float32(4.0687437e-36)) self.run_test(-numpy.float32(1.154907e-38), -numpy.float32(4.0687437e-36)) self.run_test(numpy.float32(9.79494e-39), self.MAX_NORM) self.run_test(numpy.float32(9.79494e-39), -self.MAX_NORM) self.run_test(-numpy.float32(9.79494e-39), self.MAX_NORM) self.run_test(-numpy.float32(9.79494e-39), -self.MAX_NORM) self.run_test(numpy.float32(1.54569e-39), self.INF) self.run_test(numpy.float32(1.54569e-39), -self.INF) self.run_test(-numpy.float32(1.54569e-39), self.INF) self.run_test(-numpy.float32(1.54569e-39), -self.INF) self.run_test(numpy.float32(3.974073e-39), self.NAN) self.run_test(-numpy.float32(3.974073e-39), self.NAN) def test_max_subnorm(self): # Test ±MAX_SUBNORM + x for all types of x. self.run_test(self.MAX_SUBNORM, self.ZERO) self.run_test(self.MAX_SUBNORM, -self.ZERO) self.run_test(-self.MAX_SUBNORM, self.ZERO) self.run_test(-self.MAX_SUBNORM, -self.ZERO) self.run_test(self.MAX_SUBNORM, self.ONE) self.run_test(self.MAX_SUBNORM, -self.ONE) self.run_test(-self.MAX_SUBNORM, self.ONE) self.run_test(-self.MAX_SUBNORM, -self.ONE) self.run_test(self.MAX_SUBNORM, self.MIN_SUBNORM) self.run_test(self.MAX_SUBNORM, -self.MIN_SUBNORM) self.run_test(-self.MAX_SUBNORM, self.MIN_SUBNORM) self.run_test(-self.MAX_SUBNORM, -self.MIN_SUBNORM) self.run_test(self.MAX_SUBNORM, numpy.float32(2.736488e-39)) self.run_test(self.MAX_SUBNORM, -numpy.float32(2.736488e-39)) self.run_test(-self.MAX_SUBNORM, numpy.float32(2.736488e-39)) self.run_test(-self.MAX_SUBNORM, -numpy.float32(2.736488e-39)) self.run_test(self.MAX_SUBNORM, self.MAX_SUBNORM) self.run_test(self.MAX_SUBNORM, -self.MAX_SUBNORM) self.run_test(-self.MAX_SUBNORM, self.MAX_SUBNORM) self.run_test(-self.MAX_SUBNORM, -self.MAX_SUBNORM) self.run_test(self.MAX_SUBNORM, self.MIN_NORM) self.run_test(self.MAX_SUBNORM, -self.MIN_NORM) self.run_test(-self.MAX_SUBNORM, self.MIN_NORM) self.run_test(-self.MAX_SUBNORM, -self.MIN_NORM) self.run_test(self.MAX_SUBNORM, numpy.float32(8.027242e-35)) self.run_test(self.MAX_SUBNORM, -numpy.float32(8.027242e-35)) self.run_test(-self.MAX_SUBNORM, numpy.float32(8.027242e-35)) self.run_test(-self.MAX_SUBNORM, -numpy.float32(8.027242e-35)) self.run_test(self.MAX_SUBNORM, self.MAX_NORM) self.run_test(self.MAX_SUBNORM, -self.MAX_NORM) self.run_test(-self.MAX_SUBNORM, self.MAX_NORM) self.run_test(-self.MAX_SUBNORM, -self.MAX_NORM) self.run_test(self.MAX_SUBNORM, self.INF) self.run_test(self.MAX_SUBNORM, -self.INF) self.run_test(-self.MAX_SUBNORM, self.INF) self.run_test(-self.MAX_SUBNORM, -self.INF) self.run_test(self.MAX_SUBNORM, self.NAN) self.run_test(-self.MAX_SUBNORM, self.NAN) def test_min_norm(self): # Test ±MIN_NORM + x for all types of x. self.run_test(self.MIN_NORM, self.ZERO) self.run_test(self.MIN_NORM, -self.ZERO) self.run_test(-self.MIN_NORM, self.ZERO) self.run_test(-self.MIN_NORM, -self.ZERO) self.run_test(self.MIN_NORM, self.ONE) self.run_test(self.MIN_NORM, -self.ONE) self.run_test(-self.MIN_NORM, self.ONE) self.run_test(-self.MIN_NORM, -self.ONE) self.run_test(self.MIN_NORM, self.MIN_SUBNORM) self.run_test(self.MIN_NORM, -self.MIN_SUBNORM) self.run_test(-self.MIN_NORM, self.MIN_SUBNORM) self.run_test(-self.MIN_NORM, -self.MIN_SUBNORM) self.run_test(self.MIN_NORM, numpy.float32(7.235862e-39)) self.run_test(self.MIN_NORM, -numpy.float32(7.235862e-39)) self.run_test(-self.MIN_NORM, numpy.float32(7.235862e-39)) self.run_test(-self.MIN_NORM, -numpy.float32(7.235862e-39)) self.run_test(self.MIN_NORM, self.MAX_SUBNORM) self.run_test(self.MIN_NORM, -self.MAX_SUBNORM) self.run_test(-self.MIN_NORM, self.MAX_SUBNORM) self.run_test(-self.MIN_NORM, -self.MAX_SUBNORM) self.run_test(self.MIN_NORM, self.MIN_NORM) self.run_test(self.MIN_NORM, -self.MIN_NORM) self.run_test(-self.MIN_NORM, self.MIN_NORM) self.run_test(-self.MIN_NORM, -self.MIN_NORM) self.run_test(self.MIN_NORM, numpy.float32(3.0655702e-37)) self.run_test(self.MIN_NORM, -numpy.float32(3.0655702e-37)) self.run_test(-self.MIN_NORM, numpy.float32(3.0655702e-37)) self.run_test(-self.MIN_NORM, -numpy.float32(3.0655702e-37)) self.run_test(self.MIN_NORM, self.MAX_NORM) self.run_test(self.MIN_NORM, -self.MAX_NORM) self.run_test(-self.MIN_NORM, self.MAX_NORM) self.run_test(-self.MIN_NORM, -self.MAX_NORM) self.run_test(self.MIN_NORM, self.INF) self.run_test(self.MIN_NORM, -self.INF) self.run_test(-self.MIN_NORM, self.INF) self.run_test(-self.MIN_NORM, -self.INF) self.run_test(self.MIN_NORM, self.NAN) self.run_test(-self.MIN_NORM, self.NAN) def test_norm(self): # Test ±x + y for normal x and all types of y. self.run_test(numpy.float32(3.2528998e8), self.ZERO) self.run_test(numpy.float32(3.2528998e8), -self.ZERO) self.run_test(-numpy.float32(3.2528998e8), self.ZERO) self.run_test(-numpy.float32(3.2528998e8), -self.ZERO) self.run_test(numpy.float32(5781.5137), self.ONE) self.run_test(numpy.float32(5781.5137), -self.ONE) self.run_test(-numpy.float32(5781.5137), self.ONE) self.run_test(-numpy.float32(5781.5137), -self.ONE) self.run_test(numpy.float32(4.0233208e-35), self.MIN_SUBNORM) self.run_test(numpy.float32(4.0233208e-35), -self.MIN_SUBNORM) self.run_test(-numpy.float32(4.0233208e-35), self.MIN_SUBNORM) self.run_test(-numpy.float32(4.0233208e-35), -self.MIN_SUBNORM) self.run_test(numpy.float32(3.4244755e-37), numpy.float32(7.951416e-39)) self.run_test(numpy.float32(3.4244755e-37), -numpy.float32(7.951416e-39)) self.run_test(-numpy.float32(3.4244755e-37), numpy.float32(7.951416e-39)) self.run_test(-numpy.float32(3.4244755e-37), -numpy.float32(7.951416e-39)) self.run_test(numpy.float32(1.772688e-35), self.MAX_SUBNORM) self.run_test(numpy.float32(1.772688e-35), -self.MAX_SUBNORM) self.run_test(-numpy.float32(1.772688e-35), self.MAX_SUBNORM) self.run_test(-numpy.float32(1.772688e-35), -self.MAX_SUBNORM) self.run_test(numpy.float32(9.7266296e-36), self.MIN_NORM) self.run_test(numpy.float32(9.7266296e-36), -self.MIN_NORM) self.run_test(-numpy.float32(9.7266296e-36), self.MIN_NORM) self.run_test(-numpy.float32(9.7266296e-36), -self.MIN_NORM) self.run_test(numpy.float32(9.964942e17), numpy.float32(3.0321312e16)) self.run_test(numpy.float32(9.964942e17), -numpy.float32(3.0321312e16)) self.run_test(-numpy.float32(9.964942e17), numpy.float32(3.0321312e16)) self.run_test(-numpy.float32(9.964942e17), -numpy.float32(3.0321312e16)) self.run_test(numpy.float32(3.3541464e35), self.MAX_NORM) self.run_test(numpy.float32(3.3541464e35), -self.MAX_NORM) self.run_test(-
numpy.float32(3.3541464e35)
numpy.float32
from math import sqrt, log from numpy import asarray, dot, outer, identity, matmul, array, transpose from numpy.random import uniform from numpy.linalg import inv from data import x, d, N, K, theta, gamma, delta, R, L, A_inv # function that returns a reward = scalar product + noise def pull(i): return dot(x[i], theta) +
uniform(-R, R)
numpy.random.uniform
# Copyright 2021 <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Filters and filter banks""" import abc from typing import Mapping, Optional, Tuple, Union import numpy as np from pydrobert.speech import AliasedFactory from pydrobert.speech import config from pydrobert.speech.scales import MelScaling from pydrobert.speech.scales import ScalingFunction from pydrobert.speech.util import alias_factory_subclass_from_arg from pydrobert.speech.util import angular_to_hertz from pydrobert.speech.util import hertz_to_angular __all__ = [ "LinearFilterBank", "TriangularOverlappingFilterBank", "GaborFilterBank", "ComplexGammatoneFilterBank", "WindowFunction", "BartlettWindow", "BlackmanWindow", "HammingWindow", "HannWindow", "GammaWindow", ] # banks class LinearFilterBank(AliasedFactory): """A collection of linear, time invariant filters A :class:`LinearFilterBank` instance is expected to provide factory methods for instantiating a fixed number of LTI filters in either the time or frequency domain. Filters should be organized lowest frequency first. Attributes ---------- is_real : bool is_analytic : bool is_zero_phase : bool num_filts : int sampling_rate : float centers_hz : tuple supports_hz : tuple supports : tuple supports_ms : tuple """ @abc.abstractproperty def is_real(self) -> bool: """Whether the filters are real or complex""" pass @abc.abstractproperty def is_analytic(self) -> bool: """Whether the filters are (approximately) analytic""" pass @abc.abstractproperty def is_zero_phase(self) -> bool: """Whether the filters are zero phase or not Zero phase filters are even functions with no imaginary part in the fourier domain. Their impulse responses center around 0. """ pass @abc.abstractproperty def num_filts(self) -> int: """Number of filters in the bank""" pass @abc.abstractproperty def sampling_rate(self) -> float: """Number of samples in a second of a target recording""" pass @abc.abstractproperty def supports_hz(self) -> Tuple: """Boundaries of effective support of filter freq responses, in Hz. Returns a tuple of length `num_filts` containing pairs of floats of the low and high frequencies. Frequencies outside the span have a response of approximately (with magnitude up to :obj:`pydrobert.speech.EFFECTIVE_SUPPORT_SIGNAL`) zero. The boundaries need not be tight, i.e. the region inside the boundaries could be zero. It is more important to guarantee that the region outside the boundaries is approximately zero. The boundaries ignore the Hermitian symmetry of the filter if it is real. Bounds of ``(10, 20)`` for a real filter imply that the region ``(-20, -10)`` could also be nonzero. The user is responsible for adjusting the for the periodicity induced by sampling. For example, if the boundaries are ``(-5, 10)`` and the filter is sampled at 15Hz, then all bins of an associated DFT could be nonzero. """ pass @abc.abstractproperty def supports(self) -> Tuple: """Boundaries of effective support of filter impulse resps, in samples Returns a tuple of length `num_filts` containing pairs of integers of the first and last (effectively) nonzero samples. The boundaries need not be tight, i.e. the region inside the boundaries could be zero. It is more important to guarantee that the region outside the boundaries is approximately zero. If a filter is instantiated using a buffer that is unable to fully contain the supported region, samples will wrap around the boundaries of the buffer. Noncausal filters will have start indices less than 0. These samples will wrap to the end of the filter buffer when the filter is instantiated. """ pass @property def supports_ms(self) -> tuple: """Boundaries of effective support of filter impulse resps, in ms""" return tuple( (s[0] * 1000 / self.sampling_rate, s[1] * 1000 / self.sampling_rate,) for s in self.supports ) @abc.abstractmethod def get_impulse_response(self, filt_idx: int, width: int) -> np.ndarray: """Construct filter impulse response in a fixed-width buffer Construct the filter in the time domain. Parameters ---------- filt_idx : int The index of the filter to generate. Less than `num_filts` width : int The length of the buffer, in samples. If less than the support of the filter, the filter will alias. Returns ------- array-like 1D float64 or complex128 numpy array of length `width` """ pass @abc.abstractmethod def get_frequency_response( self, filt_idx: int, width: int, half: bool = False ) -> np.ndarray: """Construct filter frequency response in a fixed-width buffer Construct the 2pi-periodized filter in the frequency domain. Zero-phase filters `is_zero_phase` are returned as 8-byte float arrays. Otherwise, they will be 16-byte complex floats. Parameters ---------- filt_idx : int The index of the filter to generate. Less than `num_filts` width : int The length of the DFT to output half : bool, optional Whether to return only the DFT bins between [0,pi] Results ------- array-like If `half` is `False`, returns a 1D float64 or complex128 numpy array of length `width`. If `half` is `True` and `width` is even, the returned array is of length ``width // 2 + 1``. If `width` is odd, the returned array is of length ``(width + 1) // 2``. """ pass @abc.abstractmethod def get_truncated_response( self, filt_idx: int, width: int ) -> Tuple[int, np.ndarray]: """Get nonzero region of filter frequency response Many filters will be compactly supported in frequency (or approximately so). This method generates a tuple `(bin_idx, buf)` of the nonzero region. In the case of a complex filter, ``bin_idx + len(buf)`` may be greater than `width`; the filter wraps around in this case. The full frequency response can be calculated from the truncated response by: >>> bin_idx, trnc = bank.get_truncated_response(filt_idx, width) >>> full = numpy.zeros(width, dtype=trnc.dtype) >>> wrap = min(bin_idx + len(trnc), width) - bin_idx >>> full[bin_idx:bin_idx + wrap] = trnc[:wrap] >>> full[:len(trnc) - wrap] = tnc[wrap:] In the case of a real filter, only the nonzero region between ``[0, pi]`` (half-spectrum) is returned. No wrapping can occur since it would inevitably interfere with itself due to conjugate symmetry. The half-spectrum can easily be recovered by: >>> half_width = (width + width % 2) // 2 + 1 - width % 2 >>> half = numpy.zeros(half_width, dtype=trnc.dtype) >>> half[bin_idx:bin_idx + len(trnc)] = trnc And the full spectrum by: >>> full[bin_idx:bin_idx + len(trnc)] = trnc >>> full[width - bin_idx - len(trnc) + 1:width - bin_idx + 1] = \\ ... trnc[:None if bin_idx else 0:-1].conj() (the embedded if-statement is necessary when bin_idx is 0, as the full fft excludes its symmetric bin) Parameters ---------- filt_idx : int The index of the filter to generate. Less than `num_filts` width : int The length of the DFT to output Returns ------- tuple of int, array """ pass class TriangularOverlappingFilterBank(LinearFilterBank): """Triangular frequency response whose vertices are along the scale The vertices of the filters are sampled uniformly along the passed scale. If the scale is nonlinear, the triangles will be asymmetrical. This is closely related to, but not identical to, the filters described in [povey2011]_ and [young]_. Parameters ---------- scaling_function : pydrobert.speech.ScalingFunction, str, or dict Dictates the layout of filters in the Fourier domain. Can be a :class:`ScalingFunction` or something compatible with :func:`pydrobert.speech.alias_factory_subclass_from_arg` num_filts : int, optional The number of filters in the bank high_hz, low_hz : float, optional The topmost and bottommost edge of the filters, respectively. The default for `high_hz` is the Nyquist sampling_rate : float, optional The sampling rate (cycles/sec) of the target recordings analytic : bool, optional Whether to use an analytic form of the bank. The analytic form is easily derived from the real form in [povey2011]_ and [young]_. Since the filter is compactly supported in frequency, the analytic form is simply the suppression of the ``[-pi, 0)`` frequencies Attributes ---------- centers_hz : tuple is_real : bool is_analytic : bool num_filts : int sampling_rate : float supports_hz : tuple supports : tuple supports_ms : tuple Raises ------ ValueError If `high_hz` is above the Nyquist, or `low_hz` is below 0, or ``high_hz <= low_hz`` """ aliases = {"tri", "triangular"} def __init__( self, scaling_function: Union[ScalingFunction, Mapping, str], num_filts: int = 40, high_hz: Optional[float] = None, low_hz: float = 20.0, sampling_rate: float = 16000, analytic: bool = False, ): scaling_function = alias_factory_subclass_from_arg( ScalingFunction, scaling_function ) if low_hz < 0 or ( high_hz and (high_hz <= low_hz or high_hz > sampling_rate // 2) ): raise ValueError( "Invalid frequency range: ({:.2f},{:.2f}".format(low_hz, high_hz) ) self._rate = sampling_rate if high_hz is None: high_hz = sampling_rate // 2 # compute vertices scale_low = scaling_function.hertz_to_scale(low_hz) scale_high = scaling_function.hertz_to_scale(high_hz) scale_delta = (scale_high - scale_low) / (num_filts + 1) self._vertices = tuple( scaling_function.scale_to_hertz(scale_low + scale_delta * idx) for idx in range(0, num_filts + 2) ) self._analytic = analytic @property def is_real(self) -> bool: return not self._analytic @property def is_analytic(self) -> bool: return self._analytic @property def is_zero_phase(self) -> bool: return True @property def num_filts(self) -> int: return len(self._vertices) - 2 @property def sampling_rate(self) -> float: return self._rate @property def centers_hz(self) -> Tuple[float]: """The point of maximum gain in each filter's frequency response, in Hz This property gives the so-called "center frequencies" - the point of maximum gain - of each filter. """ return self._vertices[1:-1] @property def supports_hz(self) -> tuple: return tuple( (low, high) for low, high in zip(self._vertices[:-2], self._vertices[2:]) ) @property def supports(self) -> tuple: # A given filter is bound from above by # 2(w_r - w_l) / ((w_c - w_l)(w_r - w_c)t^2pi) supports = [] for idx in range(len(self._vertices) - 2): left = hertz_to_angular(self._vertices[idx], self._rate) mid = hertz_to_angular(self._vertices[idx + 1], self._rate) right = hertz_to_angular(self._vertices[idx + 2], self._rate) K = np.sqrt(8 * (right - left) / np.pi) K /= np.sqrt(config.EFFECTIVE_SUPPORT_THRESHOLD) K /= np.sqrt(mid - left) * np.sqrt(right - mid) K = int(np.ceil(K)) supports.append((-K // 2 - 1, K // 2 + 1)) return tuple(supports) def get_impulse_response(self, filt_idx: int, width: int) -> np.ndarray: left = hertz_to_angular(self._vertices[filt_idx], self._rate) mid = hertz_to_angular(self._vertices[filt_idx + 1], self._rate) right = hertz_to_angular(self._vertices[filt_idx + 2], self._rate) res = np.zeros(width, dtype=np.complex128 if self._analytic else np.float64) # for numerical stability (angles can get pretty small) if right - mid > mid - left: denom = right - mid div_term = mid - left else: denom = mid - left div_term = right - mid denom *= (int(self._analytic) + 1) * np.pi for t in range(1, width + 1): if self._analytic: numer = (right - left) / div_term * np.exp(1j * mid * t) numer -= (right - mid) / div_term * np.exp(1j * left * t) numer -= (mid - left) / div_term *
np.exp(1j * right * t)
numpy.exp
# -*- coding: utf-8 -*- # _predictSNR.py # Module providing predictSNR # Copyright 2013 <NAME> # This file is part of python-deltasigma. # # python-deltasigma is a 1:1 Python replacement of Richard Schreier's # MATLAB delta sigma toolbox (aka "delsigma"), upon which it is heavily based. # The delta sigma toolbox is (c) 2009, <NAME>. # # python-deltasigma is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # LICENSE file for the licensing terms. """Module providing the predictSNR function. """ from __future__ import division import numpy as np from scipy.interpolate import interp1d from scipy.signal import dimpulse, freqz from scipy.special import erfinv from ._dbp import dbp from ._utils import _get_num_den def predictSNR(ntf, OSR=64, amp=None, f0=0.): """Predict the SNR curve of a binary delta-sigma modulator. The prediction is performed using the describing function method of Ardalan and Paulos [2]_ . **Parameters:** ntf : lti object, or zpk or (num, den) or (A,B,C,D) tuples The noise transfer function specifying the modulator. OSR : scalar, optional The oversampling ratio, defaults to 64. amp : ndarray-like, optional The magnitudes to be used for the input signal. They are expressed in dB, where 0 dB means a full-scale (peak value = 1) sine wave. Defaults to [-120 -110 ... -20 -15 -10 -9 -8 ... 0]. f0 : scalar, optional The normalized input signal frequency. Defaults to 0. **Notes:** The band of interest is defined by the oversampling ratio (``OSR``) and the center frequency (``f0``). The algorithm assumes that the ``amp`` vector is sorted in increasing order; once instability is detected, the remaining SNR values are set to ``-Inf``. Future versions may accommodate STFs. **Returns:** snr : ndarray A vector of SNR values, in dB. amp : ndarray A vector of amplitudes, in dB. k0 : ndarray The quantizer signal gain. k1: ndarray The quantizer noise gain. sigma_e2 : scalar The power of the quantizer noise (not in dB). .. rubric:: Implementation details: The describing function method of A&P treats the quantizer processes signal and noise components separately. The quantizer is modeled as two (not necessarily equal) linear gains, :math:`k_0` (``k0`` in the code) and :math:`k_1` (``k1``), and an additive white Gaussian noise source of power :math:`\\sigma_e^2` (``sigma_e2``), as shown in the figure below. :math:`k_0`, :math:`k_1` and :math:`\\sigma_e^2` are calculated as functions of the input. .. image:: ../doc/_static/predictSNR.png :align: center :alt: modulator model for predictSNR The modulator's loop filter is assumed to have nearly infinite gain at the test frequency. .. rubric:: Example: See :func:`simulateSNR` for an example use of this function. .. rubric:: References .. [2] <NAME>.; <NAME>., "An analysis of nonlinear behavior in delta - sigma modulators," Circuits and Systems, IEEE Transactions on, vol.34, no.6, pp.593,603, Jun 1987 """ # extract num, den if (hasattr(ntf, 'inputs') and not ntf.inputs == 1) or \ (hasattr(ntf, 'outputs') and not ntf.outputs == 1): raise TypeError("The supplied TF isn't a SISO transfer function.") num, den = _get_num_den(ntf) Nb = 100 if f0 == 0: band_of_interest = np.linspace(0, np.pi/OSR, Nb) else: band_of_interest = np.linspace(2*np.pi*(f0 - 0.25/OSR), 2*np.pi*(f0 + 0.25/OSR), Nb) XTAB = np.linspace(-2, 0, 21) YTAB = np.array([ [0.46575960516930, 0.67366999387741], [0.47904652357101, 0.68426650762558], [0.49316295981407, 0.69527947902679], [0.50817364454269, 0.70673173666000], [0.52414894104004, 0.71864765882492], [0.54116523265839, 0.73105299472809], [0.55930554866791, 0.74397552013397], [0.57866013050079, 0.75744456052780], [0.59932720661163, 0.77149158716202], [0.62141352891922, 0.78615015745163], [0.64503526687622, 0.80145609378815], [0.67031890153885, 0.81744754314423], [0.69740217924118, 0.83416539430618], [0.72643494606018, 0.85165339708328], [0.75758063793182, 0.86995816230774], [0.79101717472076, 0.88912981748581], [0.82693856954575, 0.90922164916992], [0.86555624008179, 0.93029111623764], [0.90710091590881, 0.95239937305450], [0.95182400941849, 0.97561222314835], [1.00000000000000, 1.00000000000000]]) if amp is None: amp = np.concatenate((np.arange(- 120, -20 + 1, 10), np.array((-15,)), np.arange(-10, 1) )) num = np.real_if_close(num) den = np.real_if_close(den) num1 = num - den N = max(amp.shape) snr = np.zeros((1, N)) - np.Inf k0 = np.zeros((1, N)) k1 = np.zeros((1, N)) sigma_e2 = np.zeros((1, N)) u = 10.0**(amp/20) Nimp = 100 unstable = False for n in range(N): # Calculate sigma_e2 if f0 == 0: erfinvu = erfinv(u[n]) sigma_e2[0, n] = 1 - u[n]**2 - 2/np.pi * np.exp(-2*erfinvu**2) else: # % Sinusoidal input. # Solve sqrt(pi)*u/2 = rho * hypergeo(0.5,2,-rho^2); # Formulate as solve f(rho) = 0, f = rho*M(0.5,2,-rho^2)-K # and use the secant method. K = 0.5*np.sqrt(np.pi)*u[n] if n == 0: # Initial guess; otherwise use previous value. rho = u[n]**2 fprime = 1 drho = 1 f_prev = None for itn in range(0, 20): m0 = interp1d(XTAB, YTAB[:, 1], kind='cubic')(-rho**2) f = rho*m0 - K if itn > 0: fprime = max((f - f_prev)/drho, 0.5) #Secant approx. if abs(f) < 1e-08: break #!Converged drho = -f/fprime if abs(drho) > 0.2: drho =
np.sign(drho)
numpy.sign
import pytest import numpy as np from numpy.testing import assert_almost_equal import matplotlib.pyplot as plt from rolldecayestimators.estimator import RollDecay T0 = 20 omega0 = 2 * np.pi / T0 zeta = 0.044 def simulator(estimator): phi0 = np.deg2rad(2) phi1d0 = 0 t =
np.arange(0, 120, 0.01)
numpy.arange
from __future__ import print_function import os import numpy as np import kaldi_io as ko """ Reads a kaldi scp file and slice the feature matrix Jeff, 2018 """ def tensor_cnn_frame(mat, M): """Construct a tensor of shape (C x H x W) given an utterance matrix for CNN """ slice_mat = [] for index in np.arange(len(mat)): if index < M: to_left = np.tile(mat[index], M).reshape((M,-1)) rest = mat[index:index+M+1] context = np.vstack((to_left, rest)) elif index >= len(mat)-M: to_right = np.tile(mat[index], M).reshape((M,-1)) rest = mat[index-M:index+1] context = np.vstack((rest, to_right)) else: context = mat[index-M:index+M+1] slice_mat.append(context) slice_mat =
np.array(slice_mat)
numpy.array
# USAGE # python test_pi_tracking.py --prototxt ../data/MobileNetSSD_deploy.prototxt.txt --model ../data/MobileNetSSD_deploy.caffemodel # A script based on https://www.pyimagesearch.com/2017/10/16/raspberry-pi-deep-learning-object-detection-with-opencv/ # import the necessary packages from imutils.video import VideoStream from imutils.video import FPS from multiprocessing import Process from multiprocessing import Queue import numpy as np import argparse import imutils import time import cv2 from context import tracking from tracking.models.gmphd_filter import GMPHDFilter from tracking.utils.utils import Detection def classify_frame(net, inputQueue, outputQueue): while True: if not inputQueue.empty(): frame = inputQueue.get() frame = cv2.resize(frame, (300, 300)) blob = cv2.dnn.blobFromImage(frame, 0.007843, (300, 300), 127.5) net.setInput(blob) detections = net.forward() outputQueue.put(detections) if __name__ == '__main__': ap = argparse.ArgumentParser() ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) print("[INFO] loading model...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) verbose = False draw = True filter = GMPHDFilter(verbose) inputQueue = Queue(maxsize=1) outputQueue = Queue(maxsize=1) detections = None print("[INFO] starting process...") p = Process(target=classify_frame, args=(net, inputQueue, outputQueue,)) p.daemon = True p.start() print("[INFO] starting video stream...") vs = VideoStream(src=0).start() # vs = VideoStream(usePiCamera=True).start() time.sleep(2.0) fps = FPS().start() while True: frame = vs.read() frame = imutils.resize(frame, width=400) (frame_height, frame_width, n_channels) = frame.shape (fH, fW) = frame.shape[:2] if inputQueue.empty(): inputQueue.put(frame) if not outputQueue.empty(): detections = outputQueue.get() if detections is not None: box_detections = [] for i in
np.arange(0, detections.shape[2])
numpy.arange
# ======================================== # library # ======================================== import pandas as pd import numpy as np import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from transformers import AutoTokenizer, AutoModel, AutoConfig import transformers from transformers import RobertaModel, RobertaTokenizer from transformers import AlbertModel, AlbertTokenizer from transformers import DebertaModel, DebertaTokenizer from transformers import ElectraModel, ElectraTokenizer, ElectraForSequenceClassification from transformers import BartModel, BertTokenizer from transformers import MPNetModel, MPNetTokenizer from transformers import FunnelBaseModel, FunnelTokenizer, FunnelModel from transformers import GPT2Model, GPT2Tokenizer from transformers import T5EncoderModel, T5Tokenizer import logging import sys from contextlib import contextmanager import time from tqdm import tqdm import pickle import gc # ================== # Constant # ================== ex = "_predict" TEST_PATH = "../data/test.csv" SUB_PATH = "../data/sample_submission.csv" SAVE_PATH = "../output/submission.csv" LOGGER_PATH = f"ex{ex}.txt" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # =============== # Settings # =============== BATCH_SIZE = 8 max_len = 256 roberta_large_MODEL_PATH = '../models/roberta/roberta-large' roberta_large_tokenizer = RobertaTokenizer.from_pretrained( roberta_large_MODEL_PATH) roberta_base_MODEL_PATH = '../models/roberta/roberta-base' roberta_base_tokenizer = RobertaTokenizer.from_pretrained( roberta_base_MODEL_PATH) roberta_base_MODEL_PATH2 = '../output/ex/ex_mlm_roberta_base/mlm_roberta_base' roberta_base_tokenizer2 = AutoTokenizer.from_pretrained( roberta_base_MODEL_PATH2) deberta_large_MODEL_PATH = "../models/deberta/large" deberta_large_tokenizer = DebertaTokenizer.from_pretrained( deberta_large_MODEL_PATH) electra_large_MODEL_PATH = "../models/electra/large-discriminator" electra_large_tokenizer = ElectraTokenizer.from_pretrained( electra_large_MODEL_PATH) bart_large_MODEL_PATH = '../models/bart/bart-large' bart_large_tokenizer = RobertaTokenizer.from_pretrained( roberta_large_MODEL_PATH) deberta_xlarge_MODEL_PATH = "../models/deberta/v2-xlarge" deberta_xlarge_tokenizer = AutoTokenizer.from_pretrained( deberta_xlarge_MODEL_PATH) mpnet_base_MODEL_PATH = 'microsoft/mpnet-base' mpnet_base_tokenizer = MPNetTokenizer.from_pretrained(mpnet_base_MODEL_PATH) deberta_v2_xxlarge_MODEL_PATH = "../models/deberta/v2-xxlarge" deberta_v2_xxlarge_tokenizer = AutoTokenizer.from_pretrained( deberta_v2_xxlarge_MODEL_PATH) funnel_large_base_MODEL_PATH = 'funnel-transformer/large-base' funnel_large_base_tokenizer = FunnelTokenizer.from_pretrained( funnel_large_base_MODEL_PATH) muppet_roberta_large_MODEL_PATH = 'facebook/muppet-roberta-large' muppet_roberta_large_tokenizer = RobertaTokenizer.from_pretrained( muppet_roberta_large_MODEL_PATH) funnel_large_MODEL_PATH = 'funnel-transformer/large' funnel_large_tokenizer = FunnelTokenizer.from_pretrained( funnel_large_MODEL_PATH) gpt2_medium_MODEL_PATH = "gpt2-medium" gpt2_medium_tokenizer = GPT2Tokenizer.from_pretrained( "gpt2-medium", bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>') gpt2_medium_tokenizer.pad_token = gpt2_medium_tokenizer.eos_token albert_v2_xxlarge_MODEL_PATH = 'albert-xxlarge-v2' albert_v2_xxlarge_tokenizer = AlbertTokenizer.from_pretrained( albert_v2_xxlarge_MODEL_PATH) electra_base_MODEL_PATH = "../models/electra/base-discriminator" electra_base_tokenizer = ElectraTokenizer.from_pretrained( electra_base_MODEL_PATH) bert_base_uncased_MODEL_PATH = 'bert-base-uncased' bert_base_uncased_tokenizer = BertTokenizer.from_pretrained( bert_base_uncased_MODEL_PATH) t5_large_MODEL_PATH = 't5-large' t5_large_tokenizer = T5Tokenizer.from_pretrained(t5_large_MODEL_PATH) distil_bart_MODEL_PATH = 'sshleifer/distilbart-cnn-12-6' distil_bart_tokenizer = RobertaTokenizer.from_pretrained( distil_bart_MODEL_PATH) # =============== # Functions # =============== class CommonLitDataset(Dataset): def __init__(self, excerpt, tokenizer, max_len, target=None): self.excerpt = excerpt self.tokenizer = tokenizer self.max_len = max_len self.target = target def __len__(self): return len(self.excerpt) def __getitem__(self, item): text = str(self.excerpt[item]) inputs = self.tokenizer( text, max_length=self.max_len, padding="max_length", truncation=True, return_attention_mask=True, return_token_type_ids=True ) ids = inputs["input_ids"] mask = inputs["attention_mask"] token_type_ids = inputs["token_type_ids"] if self.target is not None: return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), "target": torch.tensor(self.target[item], dtype=torch.float32) } else: return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long) } class roberta_large_model(nn.Module): def __init__(self): super(roberta_large_model, self).__init__() self.roberta = RobertaModel.from_pretrained( roberta_large_MODEL_PATH, hidden_dropout_prob=0, attention_probs_dropout_prob=0 ) # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(1024) self.out = nn.Linear(1024, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.roberta(ids, attention_mask=mask, token_type_ids=token_type_ids)[ "last_hidden_state"] emb = torch.mean(emb, axis=1) output = self.ln(emb) # output = self.dropout(output) output = self.out(output) return output class roberta_base_model(nn.Module): def __init__(self): super(roberta_base_model, self).__init__() self.roberta = RobertaModel.from_pretrained( roberta_base_MODEL_PATH, ) self.drop = nn.Dropout(0.2) self.fc = nn.Linear(768, 256) self.layernorm = nn.LayerNorm(256) self.drop2 = nn.Dropout(0.2) self.relu = nn.ReLU() self.out = nn.Linear(256, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.roberta(ids, attention_mask=mask, token_type_ids=token_type_ids)[ 'pooler_output'] output = self.drop(emb) output = self.fc(output) output = self.layernorm(output) output = self.drop2(output) output = self.relu(output) output = self.out(output) return output, emb class roberta_base_model2(nn.Module): def __init__(self): super().__init__() config = AutoConfig.from_pretrained(roberta_base_MODEL_PATH2) config.update({"output_hidden_states": True, "hidden_dropout_prob": 0.0, "layer_norm_eps": 1e-7}) self.roberta = AutoModel.from_pretrained( roberta_base_MODEL_PATH, config=config) self.attention = nn.Sequential( nn.Linear(768, 512), nn.Tanh(), nn.Linear(512, 1), nn.Softmax(dim=1) ) self.regressor = nn.Sequential( nn.Linear(768, 1) ) def forward(self, input_ids, attention_mask): roberta_output = self.roberta(input_ids=input_ids, attention_mask=attention_mask) last_layer_hidden_states = roberta_output.hidden_states[-1] weights = self.attention(last_layer_hidden_states) context_vector = torch.sum(weights * last_layer_hidden_states, dim=1) return self.regressor(context_vector) class deberta_large_model(nn.Module): def __init__(self): super(deberta_large_model, self).__init__() self.deberta_model = DebertaModel.from_pretrained(deberta_large_MODEL_PATH, hidden_dropout_prob=0, attention_probs_dropout_prob=0, hidden_act="gelu_new") # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(1024) self.out = nn.Linear(1024, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.deberta_model(ids, attention_mask=mask, token_type_ids=token_type_ids)[ 'last_hidden_state'][:, 0, :] output = self.ln(emb) # output = self.dropout(output) output = self.out(output) return output class electra_large_model(nn.Module): def __init__(self): super(electra_large_model, self).__init__() self.electra = ElectraForSequenceClassification.from_pretrained( electra_large_MODEL_PATH, hidden_dropout_prob=0, attention_probs_dropout_prob=0, summary_last_dropout=0, num_labels=1 ) def forward(self, ids, mask, token_type_ids): # pooler output = self.electra(ids, attention_mask=mask, token_type_ids=token_type_ids)["logits"] return output class bart_large_model(nn.Module): def __init__(self): super(bart_large_model, self).__init__() self.bart = BartModel.from_pretrained( bart_large_MODEL_PATH, dropout=0.0, attention_dropout=0.0 ) # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(1024) self.out = nn.Linear(1024, 1) def forward(self, ids, mask): # pooler emb = self.bart(ids, attention_mask=mask)['last_hidden_state'] emb = torch.mean(emb, axis=1) output = self.ln(emb) # output = self.dropout(output) output = self.out(output) return output class deberta_xlarge_model(nn.Module): def __init__(self): super(deberta_xlarge_model, self).__init__() self.deberta_model = AutoModel.from_pretrained(deberta_xlarge_MODEL_PATH, hidden_dropout_prob=0, attention_probs_dropout_prob=0) # self.dropout = nn.Dropout(p=0.2) # self.ln = nn.LayerNorm(1536) self.out = nn.Linear(1536, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.deberta_model(ids, attention_mask=mask, token_type_ids=token_type_ids)[ 'last_hidden_state'][:, 0, :] # output = self.ln(emb) # output = self.dropout(output) output = self.out(emb) return output class mpnet_base_model(nn.Module): def __init__(self): super(mpnet_base_model, self).__init__() self.mpnet = MPNetModel.from_pretrained( mpnet_base_MODEL_PATH, hidden_dropout_prob=0, attention_probs_dropout_prob=0 ) # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(768) self.out = nn.Linear(768, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.mpnet(ids, attention_mask=mask, token_type_ids=token_type_ids)[ "last_hidden_state"] emb = torch.mean(emb, axis=1) output = self.ln(emb) # output = self.dropout(output) output = self.out(output) return output class deberta_v2_xxlarge_model(nn.Module): def __init__(self): super(deberta_v2_xxlarge_model, self).__init__() self.deberta_model = AutoModel.from_pretrained(deberta_v2_xxlarge_MODEL_PATH, hidden_dropout_prob=0, attention_probs_dropout_prob=0) # self.dropout = nn.Dropout(p=0.2) # self.ln = nn.LayerNorm(1536) self.out = nn.Linear(1536, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.deberta_model(ids, attention_mask=mask, token_type_ids=token_type_ids)[ 'last_hidden_state'][:, 0, :] # output = self.ln(emb) # output = self.dropout(output) output = self.out(emb) return output class funnel_large_base_model(nn.Module): def __init__(self): super(funnel_large_base_model, self).__init__() self.funnel = FunnelBaseModel.from_pretrained( funnel_large_base_MODEL_PATH, hidden_dropout=0, attention_dropout=0, hidden_act="gelu" ) # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(1024) self.out = nn.Linear(1024, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.funnel(ids, attention_mask=mask, token_type_ids=token_type_ids)[ "last_hidden_state"] emb = torch.mean(emb, axis=1) # output = self.ln(emb) # output = self.dropout(output) output = self.out(emb) return output class muppet_roberta_large_model(nn.Module): def __init__(self): super(muppet_roberta_large_model, self).__init__() self.roberta = RobertaModel.from_pretrained( muppet_roberta_large_MODEL_PATH, hidden_dropout_prob=0, attention_probs_dropout_prob=0 ) # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(1024) self.out = nn.Linear(1024, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.roberta(ids, attention_mask=mask, token_type_ids=token_type_ids)[ "last_hidden_state"] emb = torch.mean(emb, axis=1) output = self.ln(emb) # output = self.dropout(output) output = self.out(output) return output class funnel_large_model(nn.Module): def __init__(self): super(funnel_large_model, self).__init__() self.funnel = FunnelModel.from_pretrained( funnel_large_MODEL_PATH, hidden_dropout=0, attention_dropout=0 ) # self.dropout = nn.Dropout(p=0.2) # self.ln = nn.LayerNorm(1024) self.out = nn.Linear(1024, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.funnel(ids, attention_mask=mask, token_type_ids=token_type_ids)[ "last_hidden_state"] emb = torch.mean(emb, axis=1) # output = self.ln(emb) # output = self.dropout(output) output = self.out(emb) return output class gpt2_medium_model(nn.Module): def __init__(self): super(gpt2_medium_model, self).__init__() self.gpt2_model = GPT2Model.from_pretrained(gpt2_medium_MODEL_PATH, attn_pdrop=0, embd_pdrop=0, resid_pdrop=0, summary_first_dropout=0) self.gpt2_model.resize_token_embeddings(len(gpt2_medium_tokenizer)) # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(1024) self.out = nn.Linear(1024, 1) def forward(self, ids, mask): # pooler emb = self.gpt2_model(ids, attention_mask=mask)["last_hidden_state"] emb = torch.mean(emb, axis=1) output = self.ln(emb) # output = self.dropout(output) output = self.out(output) return output class albert_v2_xxlarge_model(nn.Module): def __init__(self): super(albert_v2_xxlarge_model, self).__init__() self.albert = AlbertModel.from_pretrained( albert_v2_xxlarge_MODEL_PATH, hidden_dropout_prob=0, attention_probs_dropout_prob=0 ) # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(4096) self.out = nn.Linear(4096, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.albert(ids, attention_mask=mask, token_type_ids=token_type_ids)[ "last_hidden_state"] emb = torch.mean(emb, axis=1) output = self.ln(emb) # output = self.dropout(output) output = self.out(output) return output class electra_base_model(nn.Module): def __init__(self): super(electra_base_model, self).__init__() self.electra = ElectraModel.from_pretrained( electra_base_MODEL_PATH, hidden_dropout_prob=0, attention_probs_dropout_prob=0 ) # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(768) self.out = nn.Linear(768, 1) def forward(self, ids, mask, token_type_ids): # pooler emb = self.electra(ids, attention_mask=mask, token_type_ids=token_type_ids)[ "last_hidden_state"] emb = torch.mean(emb, axis=1) output = self.ln(emb) # output = self.dropout(output) output = self.out(output) return output class bert_base_uncased_model(nn.Module): def __init__(self): super(bert_base_uncased_model, self).__init__() self.bert = transformers.BertModel.from_pretrained(bert_base_uncased_MODEL_PATH, hidden_dropout_prob=0, attention_probs_dropout_prob=0) # self.bert = transformers.BertForSequenceClassification.from_pretrained(BERT_MODEL,num_labels=1) self.ln = nn.LayerNorm(768) self.out = nn.Linear(768, 1) def forward(self, ids, mask, token_type_ids): # pooler emb, _ = self.bert(ids, attention_mask=mask, token_type_ids=token_type_ids, return_dict=False) emb = torch.mean(emb, axis=1) output = self.ln(emb) output = self.out(output) return output class t5_large_model(nn.Module): def __init__(self): super(t5_large_model, self).__init__() self.t5 = T5EncoderModel.from_pretrained(t5_large_MODEL_PATH, dropout_rate=0) # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(1024) self.out = nn.Linear(1024, 1) def forward(self, ids, mask): # pooler emb = self.t5(ids, attention_mask=mask)['last_hidden_state'] emb = torch.mean(emb, axis=1) output = self.ln(emb) # output = self.dropout(output) output = self.out(output) return output class distil_bart_model(nn.Module): def __init__(self): super(distil_bart_model, self).__init__() self.bart = BartModel.from_pretrained( distil_bart_MODEL_PATH, activation_dropout=0.0, attention_dropout=0.0, classif_dropout=0, classifier_dropout=0 ) # self.dropout = nn.Dropout(p=0.2) self.ln = nn.LayerNorm(1024) self.out = nn.Linear(1024, 1) def forward(self, ids, mask): # pooler emb = self.bart(ids, attention_mask=mask)['last_hidden_state'] emb = torch.mean(emb, axis=1) output = self.ln(emb) # output = self.dropout(output) output = self.out(output) return output class CommonLitDataset_gpt(Dataset): def __init__(self, excerpt, tokenizer, max_len, target=None): self.excerpt = excerpt self.tokenizer = tokenizer self.max_len = max_len self.target = target def __len__(self): return len(self.excerpt) def __getitem__(self, item): text = str(self.excerpt[item]) inputs = self.tokenizer('<|startoftext|>' + text + '<|endoftext|>', truncation=True, max_length=self.max_len, padding="max_length") ids = inputs["input_ids"] mask = inputs["attention_mask"] # token_type_ids = inputs["token_type_ids"] if self.target is not None: return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), # "token_type_ids" : torch.tensor(token_type_ids, dtype=torch.long), "target": torch.tensor(self.target[item], dtype=torch.float32) } else: return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), # "token_type_ids" : torch.tensor(token_type_ids, dtype=torch.long) } def setup_logger(out_file=None, stderr=True, stderr_level=logging.INFO, file_level=logging.DEBUG): LOGGER.handlers = [] LOGGER.setLevel(min(stderr_level, file_level)) if stderr: handler = logging.StreamHandler(sys.stderr) handler.setFormatter(FORMATTER) handler.setLevel(stderr_level) LOGGER.addHandler(handler) if out_file is not None: handler = logging.FileHandler(out_file) handler.setFormatter(FORMATTER) handler.setLevel(file_level) LOGGER.addHandler(handler) LOGGER.info("logger set up") return LOGGER @contextmanager def timer(name): t0 = time.time() yield LOGGER.info(f'[{name}] done in {time.time() - t0:.0f} s') LOGGER = logging.getLogger() FORMATTER = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") setup_logger(out_file=LOGGER_PATH) # ================================ # Main # ================================ test = pd.read_csv(TEST_PATH) # ================================ # roberta base -> svr + ridge # ================================ if len(test) > 0: with timer("roberta base -> svr + ridge"): y_test_roberta_base = [] # dataset test_ = CommonLitDataset( test["excerpt"].values, roberta_base_tokenizer, max_len, None) # loader test_loader = DataLoader( dataset=test_, batch_size=BATCH_SIZE, shuffle=False, num_workers=2) for fold in range(5): # model model = roberta_base_model() model.load_state_dict(torch.load( f"../output/ex/ex014/ex014_model/ex014_{fold}.pth")) model.to(device) model.eval() test_emb = np.ndarray((0, 768)) # svr svr = pickle.load( open(f"../output/ex/ex015/ex015_model/ex015_svr_roberta_emb_{fold}.pkl", "rb")) # ridge ridge = pickle.load( open(f"../output/ex/ex015/ex015_model/ex015_ridge_roberta_emb_{fold}.pkl", "rb")) with torch.no_grad(): # Predicting on validation set for d in test_loader: # ========================= # data loader # ========================= input_ids = d['input_ids'] mask = d['attention_mask'] token_type_ids = d["token_type_ids"] input_ids = input_ids.to(device) mask = mask.to(device) token_type_ids = token_type_ids.to(device) _, output = model(input_ids, mask, token_type_ids) test_emb = np.concatenate( [test_emb, output.detach().cpu().numpy()], axis=0) x_test = pd.DataFrame(test_emb) x_test.columns = [f"emb_{i}" for i in range(len(x_test.columns))] test_preds_svr = svr.predict(x_test) test_preds_ridge = ridge.predict(x_test) test_preds = (test_preds_svr + test_preds_ridge)/2 y_test_roberta_base.append(test_preds) del x_test, model, test_emb gc.collect() y_test_roberta_base = np.mean(y_test_roberta_base, axis=0) del test_, test_loader gc.collect() # ================================ # roberta base # ================================ if len(test) > 0: with timer("roberta base"): y_test_roberta_base2 = [] # dataset test_ = CommonLitDataset( test["excerpt"].values, roberta_base_tokenizer2, max_len, None) # loader test_loader = DataLoader( dataset=test_, batch_size=BATCH_SIZE, shuffle=False, num_workers=2) for fold in range(5): # model model = roberta_base_model2() model.load_state_dict(torch.load( f"../output/ex/ex237/ex237_model/ex237_{fold}.pth")) model.to(device) model.eval() test_preds = np.ndarray((0, 1)) with torch.no_grad(): # Predicting on validation set for d in test_loader: # ========================= # data loader # ========================= input_ids = d['input_ids'] mask = d['attention_mask'] token_type_ids = d["token_type_ids"] input_ids = input_ids.to(device) mask = mask.to(device) token_type_ids = token_type_ids.to(device) output = model(input_ids, mask) test_preds = np.concatenate( [test_preds, output.detach().cpu().numpy()], axis=0) y_test_roberta_base2.append(test_preds) del model gc.collect() y_test_roberta_base2 =
np.mean(y_test_roberta_base2, axis=0)
numpy.mean
"""Check functions that can apply to any descendant of DynamicTable.""" from numbers import Real from typing import List, Optional import numpy as np from hdmf.common import DynamicTable, DynamicTableRegion, VectorIndex from hdmf.utils import get_data_shape from pynwb.file import TimeIntervals, Units from ..register_checks import register_check, InspectorMessage, Importance from ..utils import ( format_byte_size, is_ascending_series, is_dict_in_string, is_string_json_loadable, ) @register_check(importance=Importance.CRITICAL, neurodata_type=DynamicTableRegion) def check_dynamic_table_region_data_validity(dynamic_table_region: DynamicTableRegion, nelems=200): """Check if a DynamicTableRegion is valid.""" if np.any(np.asarray(dynamic_table_region.data[:nelems]) > len(dynamic_table_region.table)): return InspectorMessage( message=( f"Some elements of {dynamic_table_region.name} are out of range because they are greater than the " "length of the target table. Note that data should contain indices, not ids." ) ) if np.any(np.asarray(dynamic_table_region.data[:nelems]) < 0): return InspectorMessage( message=f"Some elements of {dynamic_table_region.name} are out of range because they are less than 0." ) @register_check(importance=Importance.BEST_PRACTICE_VIOLATION, neurodata_type=DynamicTable) def check_empty_table(table: DynamicTable): """Check if a DynamicTable is empty.""" if len(table.id) == 0: return InspectorMessage(message="This table has no data added to it.") @register_check(importance=Importance.BEST_PRACTICE_VIOLATION, neurodata_type=TimeIntervals) def check_time_interval_time_columns(time_intervals: TimeIntervals, nelems: int = 200): """ Check that time columns are in ascending order. Parameters ---------- time_intervals: TimeIntervals nelems: int Only check the first {nelems} elements. This is useful in case there columns are very long so you don't need to load the entire array into memory. Use None to load the entire arrays. """ unsorted_cols = [] for column in time_intervals.columns: if column.name[-5:] == "_time": if not is_ascending_series(column, nelems): unsorted_cols.append(column.name) if unsorted_cols: return InspectorMessage( message=( f"{unsorted_cols} are time columns but the values are not in ascending order." "All times should be in seconds with respect to the session start time." ) ) @register_check(importance=Importance.BEST_PRACTICE_VIOLATION, neurodata_type=TimeIntervals) def check_time_intervals_stop_after_start(time_intervals: TimeIntervals, nelems: int = 200): """ Check that all stop times on a TimeInterval object occur after their corresponding start times. Parameters ---------- time_intervals: TimeIntervals nelems: int Only check the first {nelems} elements. This is useful in case there columns are very long so you don't need to load the entire array into memory. Use None to load the entire arrays. """ if np.any(np.asarray(time_intervals["stop_time"][:nelems]) - np.asarray(time_intervals["start_time"][:nelems]) < 0): return InspectorMessage( message=( "stop_times should be greater than start_times. Make sure the stop times are with respect to the " "session start time." ) ) @register_check(importance=Importance.BEST_PRACTICE_SUGGESTION, neurodata_type=DynamicTable) def check_column_binary_capability(table: DynamicTable, nelems: int = 200): """ Check each column of a table to see if the data could be set as a boolean dtype. Parameters ---------- time_intervals: DynamicTable nelems: int Only check the first {nelems} elements. This is useful in case there columns are very long so you don't need to load the entire array into memory. Use None to load the entire arrays. """ for column in table.columns: if hasattr(column, "data") and not isinstance(column, VectorIndex): if
np.asarray(column.data[0])
numpy.asarray
#!/usr/bin/env python # coding: utf-8 # # Risk Premia Estimation using GMM # Start by importing the modules and functions needed # In[ ]: from numpy import hstack, ones, array, mat, tile, reshape, squeeze, eye, asmatrix from numpy.linalg import inv from pandas import read_csv, Series from scipy.linalg import kron from scipy.optimize import minimize import numpy as np import statsmodels.api as sm # Next a callable function is used to produce iteration-by-iteration output when using the non-linear optimizer. # In[ ]: iteration = 0 last_value = 0 function_count = 0 def iter_print(params): global iteration, last_value, function_count iteration += 1 print(f'Func value: {last_value:6.6g}, Iteration: {iteration}, Function Count: {function_count}') # The GMM objective, which is minimized, is defined next. # In[ ]: def gmm_objective(params, p_rets, f_rets, Winv, out=False): global last_value, function_count t,n = p_rets.shape t,k = f_rets.shape beta = squeeze(array(params[:(n*k)])) lam = squeeze(array(params[(n*k):])) beta = reshape(beta,(n,k)) lam = reshape(lam,(k,1)) betalam = beta @ lam expected_ret = f_rets @ beta.T e = p_rets - expected_ret instr = tile(f_rets,n) moments1 = kron(e,ones((1,k))) moments1 = moments1 * instr moments2 = p_rets - betalam.T moments = hstack((moments1,moments2)) avg_moment = moments.mean(axis=0) J = t * mat(avg_moment) * mat(Winv) * mat(avg_moment).T J = J[0,0] last_value = J function_count += 1 if not out: return J else: return J, moments # The `G` matrix, which is the derivative of the GMM moments with respect to the parameters, is defined. # In[ ]: def gmm_G(params, p_rets, f_rets): t,n = p_rets.shape t,k = f_rets.shape beta = squeeze(
array(params[:(n*k)])
numpy.array
""" This module defines various classes that can serve as the `input` to an interface. Each class must inherit from `InputComponent`, and each class must define a path to its template. All of the subclasses of `InputComponent` are automatically added to a registry, which allows them to be easily referenced in other parts of the code. """ import json import warnings from gradio.component import Component import numpy as np import PIL from gradio import processing_utils, test_data import pandas as pd from ffmpy import FFmpeg import math import tempfile import csv class InputComponent(Component): """ Input Component. All input components subclass this. """ def __init__(self, label, requires_permissions=False): self.set_interpret_parameters() super().__init__(label, requires_permissions) def preprocess(self, x): """ Any preprocessing needed to be performed on function input. """ return x def serialize(self, x, called_directly): """ Convert from a human-readable version of the input (path of an image, URL of a video, etc.) into the interface to a serialized version (e.g. base64) to pass into an API. May do different things if the interface is called() vs. used via GUI. Parameters: x (Any): Input to interface called_directly (bool): if true, the interface was called(), otherwise, it is being used via the GUI """ return x def preprocess_example(self, x): """ Any preprocessing needed to be performed on an example before being passed to the main function. """ return x def set_interpret_parameters(self): ''' Set any parameters for interpretation. ''' return self def get_interpretation_neighbors(self, x): ''' Generates values similar to input to be used to interpret the significance of the input in the final output. Parameters: x (Any): Input to interface Returns: (neighbor_values, interpret_kwargs, interpret_by_removal) neighbor_values (List[Any]): Neighboring values to input x to compute for interpretation interpret_kwargs (Dict[Any]): Keyword arguments to be passed to get_interpretation_scores interpret_by_removal (bool): If True, returned neighbors are values where the interpreted subsection was removed. If False, returned neighbors are values where the interpreted subsection was modified to a different value. ''' pass def get_interpretation_scores(self, x, neighbors, scores, **kwargs): ''' Arrange the output values from the neighbors into interpretation scores for the interface to render. Parameters: x (Any): Input to interface neighbors (List[Any]): Neighboring values to input x used for interpretation. scores (List[float]): Output value corresponding to each neighbor in neighbors kwargs (Dict[str, Any]): Any additional arguments passed from get_interpretation_neighbors. Returns: (List[Any]): Arrangement of interpretation scores for interfaces to render. ''' pass def generate_sample(self): """ Returns a sample value of the input that would be accepted by the api. Used for api documentation. """ pass class Textbox(InputComponent): """ Component creates a textbox for user to enter input. Provides a string as an argument to the wrapped function. Input type: str Demos: hello_world, diff_texts """ def __init__(self, lines=1, placeholder=None, default="", numeric=False, type="str", label=None): """ Parameters: lines (int): number of line rows to provide in textarea. placeholder (str): placeholder hint to provide behind textarea. default (str): default text to provide in textarea. numeric (bool): DEPRECATED. Whether the input should be parsed as a number instead of a string. type (str): DEPRECATED. Type of value to be returned by component. "str" returns a string, "number" returns a float value. Use Number component in place of number type. label (str): component name in interface. """ self.lines = lines self.placeholder = placeholder self.default = default if numeric or type == "number": warnings.warn( "The 'numeric' type has been deprecated. Use the Number input component instead.", DeprecationWarning) self.type = "number" else: self.type = type if default == "": self.test_input = { "str": "the quick brown fox jumped over the lazy dog", "number": 786.92, }.get(type) else: self.test_input = default self.interpret_by_tokens = True super().__init__(label) def get_template_context(self): return { "lines": self.lines, "placeholder": self.placeholder, "default": self.default, **super().get_template_context() } @classmethod def get_shortcut_implementations(cls): return { "text": {}, "textbox": {"lines": 7}, } def preprocess(self, x): """ Parameters: x (str): text input """ if self.type == "str": return x elif self.type == "number": return float(x) else: raise ValueError("Unknown type: " + str(self.type) + ". Please choose from: 'str', 'number'.") def preprocess_example(self, x): """ Returns: (str): Text representing function input """ return x def set_interpret_parameters(self, separator=" ", replacement=None): """ Calculates interpretation score of characters in input by splitting input into tokens, then using a "leave one out" method to calculate the score of each token by removing each token and measuring the delta of the output value. Parameters: separator (str): Separator to use to split input into tokens. replacement (str): In the "leave one out" step, the text that the token should be replaced with. """ self.interpretation_separator = separator self.interpretation_replacement = replacement return self def tokenize(self, x): """ Tokenizes an input string by dividing into "words" delimited by self.interpretation_separator """ tokens = x.split(self.interpretation_separator) leave_one_out_strings = [] for index in range(len(tokens)): leave_one_out_set = list(tokens) if self.interpretation_replacement is None: leave_one_out_set.pop(index) else: leave_one_out_set[index] = self.interpretation_replacement leave_one_out_strings.append( self.interpretation_separator.join(leave_one_out_set)) return tokens, leave_one_out_strings, None def get_masked_inputs(self, tokens, binary_mask_matrix): """ Constructs partially-masked sentences for SHAP interpretation """ masked_inputs = [] for binary_mask_vector in binary_mask_matrix: masked_input = np.array(tokens)[np.array( binary_mask_vector, dtype=bool)] masked_inputs.append( self.interpretation_separator.join(masked_input)) return masked_inputs def get_interpretation_scores(self, x, neighbors, scores, tokens, masks=None): """ Returns: (List[Tuple[str, float]]): Each tuple set represents a set of characters and their corresponding interpretation score. """ result = [] for token, score in zip(tokens, scores): result.append((token, score)) result.append((self.interpretation_separator, 0)) return result def generate_sample(self): return "Hello World" class Number(InputComponent): """ Component creates a field for user to enter numeric input. Provides a number as an argument to the wrapped function. Input type: float Demos: tax_calculator, titanic_survival """ def __init__(self, default=None, label=None): ''' Parameters: default (float): default value. label (str): component name in interface. ''' self.default = default self.test_input = default if default is not None else 1 self.interpret_by_tokens = False super().__init__(label) def get_template_context(self): return { "default": self.default, **super().get_template_context() } @classmethod def get_shortcut_implementations(cls): return { "number": {}, } def preprocess(self, x): """ Parameters: x (number): numeric input Returns: (float): number representing function input """ return float(x) def preprocess_example(self, x): """ Returns: (float): Number representing function input """ return x def set_interpret_parameters(self, steps=3, delta=1, delta_type="percent"): """ Calculates interpretation scores of numeric values close to the input number. Parameters: steps (int): Number of nearby values to measure in each direction (above and below the input number). delta (float): Size of step in each direction between nearby values. delta_type (str): "percent" if delta step between nearby values should be a calculated as a percent, or "absolute" if delta should be a constant step change. """ self.interpretation_steps = steps self.interpretation_delta = delta self.interpretation_delta_type = delta_type return self def get_interpretation_neighbors(self, x): x = float(x) neighbors = [] if self.interpretation_delta_type == "percent": delta = 1.0 * self.interpretation_delta * x / 100 elif self.interpretation_delta_type == "absolute": delta = self.interpretation_delta negatives = (x + np.arange(-self.interpretation_steps, 0) * delta).tolist() positives = (x + np.arange(1, self.interpretation_steps+1) * delta).tolist() return negatives + positives, {} def get_interpretation_scores(self, x, neighbors, scores): """ Returns: (List[Tuple[float, float]]): Each tuple set represents a numeric value near the input and its corresponding interpretation score. """ interpretation = list(zip(neighbors, scores)) interpretation.insert(int(len(interpretation) / 2), [x, None]) return interpretation def generate_sample(self): return 1.0 class Slider(InputComponent): """ Component creates a slider that ranges from `minimum` to `maximum`. Provides a number as an argument to the wrapped function. Input type: float Demos: sentence_builder, generate_tone, titanic_survival """ def __init__(self, minimum=0, maximum=100, step=None, default=None, label=None): ''' Parameters: minimum (float): minimum value for slider. maximum (float): maximum value for slider. step (float): increment between slider values. default (float): default value. label (str): component name in interface. ''' self.minimum = minimum self.maximum = maximum if step is None: difference = maximum - minimum power = math.floor(math.log10(difference) - 2) step = 10 ** power self.step = step self.default = minimum if default is None else default self.test_input = self.default self.interpret_by_tokens = False super().__init__(label) def get_template_context(self): return { "minimum": self.minimum, "maximum": self.maximum, "step": self.step, "default": self.default, **super().get_template_context() } @classmethod def get_shortcut_implementations(cls): return { "slider": {}, } def preprocess(self, x): """ Parameters: x (number): numeric input Returns: (number): numeric input """ return x def preprocess_example(self, x): """ Returns: (float): Number representing function input """ return x def set_interpret_parameters(self, steps=8): """ Calculates interpretation scores of numeric values ranging between the minimum and maximum values of the slider. Parameters: steps (int): Number of neighboring values to measure between the minimum and maximum values of the slider range. """ self.interpretation_steps = steps return self def get_interpretation_neighbors(self, x): return np.linspace(self.minimum, self.maximum, self.interpretation_steps).tolist(), {} def get_interpretation_scores(self, x, neighbors, scores): """ Returns: (List[float]): Each value represents the score corresponding to an evenly spaced range of inputs between the minimum and maximum slider values. """ return scores def generate_sample(self): return self.maximum class Checkbox(InputComponent): """ Component creates a checkbox that can be set to `True` or `False`. Provides a boolean as an argument to the wrapped function. Input type: bool Demos: sentence_builder, titanic_survival """ def __init__(self, default=False, label=None): """ Parameters: label (str): component name in interface. default (bool): default value. """ self.test_input = True self.default = default self.interpret_by_tokens = False super().__init__(label) def get_template_context(self): return { "default": self.default, **super().get_template_context() } @classmethod def get_shortcut_implementations(cls): return { "checkbox": {}, } def preprocess(self, x): """ Parameters: x (bool): boolean input Returns: (bool): boolean input """ return x def preprocess_example(self, x): """ Returns: (bool): Boolean representing function input """ return x def set_interpret_parameters(self): """ Calculates interpretation score of the input by comparing the output against the output when the input is the inverse boolean value of x. """ return self def get_interpretation_neighbors(self, x): return [not x], {} def get_interpretation_scores(self, x, neighbors, scores): """ Returns: (Tuple[float, float]): The first value represents the interpretation score if the input is False, and the second if the input is True. """ if x: return scores[0], None else: return None, scores[0] def generate_sample(self): return True class CheckboxGroup(InputComponent): """ Component creates a set of checkboxes of which a subset can be selected. Provides a list of strings representing the selected choices as an argument to the wrapped function. Input type: Union[List[str], List[int]] Demos: sentence_builder, titanic_survival, fraud_detector """ def __init__(self, choices, default=[], type="value", label=None): ''' Parameters: choices (List[str]): list of options to select from. default (List[str]): default selected list of options. type (str): Type of value to be returned by component. "value" returns the list of strings of the choices selected, "index" returns the list of indicies of the choices selected. label (str): component name in interface. ''' self.choices = choices self.default = default self.type = type self.test_input = self.choices self.interpret_by_tokens = False super().__init__(label) def get_template_context(self): return { "choices": self.choices, "default": self.default, **super().get_template_context() } def preprocess(self, x): """ Parameters: x (List[str]): list of selected choices Returns: (Union[List[str], List[int]]): list of selected choices as strings or indices within choice list """ if self.type == "value": return x elif self.type == "index": return [self.choices.index(choice) for choice in x] else: raise ValueError("Unknown type: " + str(self.type) + ". Please choose from: 'value', 'index'.") def set_interpret_parameters(self): """ Calculates interpretation score of each choice in the input by comparing the output against the outputs when each choice in the input is independently either removed or added. """ return self def get_interpretation_neighbors(self, x): leave_one_out_sets = [] for choice in self.choices: leave_one_out_set = list(x) if choice in leave_one_out_set: leave_one_out_set.remove(choice) else: leave_one_out_set.append(choice) leave_one_out_sets.append(leave_one_out_set) return leave_one_out_sets, {} def get_interpretation_scores(self, x, neighbors, scores): """ Returns: (List[Tuple[float, float]]): For each tuple in the list, the first value represents the interpretation score if the input is False, and the second if the input is True. """ final_scores = [] for choice, score in zip(self.choices, scores): if choice in x: score_set = [score, None] else: score_set = [None, score] final_scores.append(score_set) return final_scores def save_flagged(self, dir, label, data, encryption_key): """ Returns: (List[str]]) """ return json.dumps(data) def restore_flagged(self, dir, data, encryption_key): return json.loads(data) def generate_sample(self): return self.choices class Radio(InputComponent): """ Component creates a set of radio buttons of which only one can be selected. Provides string representing selected choice as an argument to the wrapped function. Input type: Union[str, int] Demos: sentence_builder, tax_calculator, titanic_survival """ def __init__(self, choices, type="value", default=None, label=None): ''' Parameters: choices (List[str]): list of options to select from. type (str): Type of value to be returned by component. "value" returns the string of the choice selected, "index" returns the index of the choice selected. default (str): default value. label (str): component name in interface. ''' self.choices = choices self.type = type self.test_input = self.choices[0] self.default = default if default is not None else self.choices[0] self.interpret_by_tokens = False super().__init__(label) def get_template_context(self): return { "choices": self.choices, "default": self.default, **super().get_template_context() } def preprocess(self, x): """ Parameters: x (str): selected choice Returns: (Union[str, int]): selected choice as string or index within choice list """ if self.type == "value": return x elif self.type == "index": return self.choices.index(x) else: raise ValueError("Unknown type: " + str(self.type) + ". Please choose from: 'value', 'index'.") def set_interpret_parameters(self): """ Calculates interpretation score of each choice by comparing the output against each of the outputs when alternative choices are selected. """ return self def get_interpretation_neighbors(self, x): choices = list(self.choices) choices.remove(x) return choices, {} def get_interpretation_scores(self, x, neighbors, scores): """ Returns: (List[float]): Each value represents the interpretation score corresponding to each choice. """ scores.insert(self.choices.index(x), None) return scores def generate_sample(self): return self.choices[0] class Dropdown(InputComponent): """ Component creates a dropdown of which only one can be selected. Provides string representing selected choice as an argument to the wrapped function. Input type: Union[str, int] Demos: sentence_builder, filter_records, titanic_survival """ def __init__(self, choices, type="value", default=None, label=None): ''' Parameters: choices (List[str]): list of options to select from. type (str): Type of value to be returned by component. "value" returns the string of the choice selected, "index" returns the index of the choice selected. default (str): default value. label (str): component name in interface. ''' self.choices = choices self.type = type self.test_input = self.choices[0] self.default = default if default is not None else self.choices[0] self.interpret_by_tokens = False super().__init__(label) def get_template_context(self): return { "choices": self.choices, "default": self.default, **super().get_template_context() } def preprocess(self, x): """ Parameters: x (str): selected choice Returns: (Union[str, int]): selected choice as string or index within choice list """ if self.type == "value": return x elif self.type == "index": return self.choices.index(x) else: raise ValueError("Unknown type: " + str(self.type) + ". Please choose from: 'value', 'index'.") def set_interpret_parameters(self): """ Calculates interpretation score of each choice by comparing the output against each of the outputs when alternative choices are selected. """ return self def get_interpretation_neighbors(self, x): choices = list(self.choices) choices.remove(x) return choices, {} def get_interpretation_scores(self, x, neighbors, scores): """ Returns: (List[float]): Each value represents the interpretation score corresponding to each choice. """ scores.insert(self.choices.index(x), None) return scores def generate_sample(self): return self.choices[0] class Image(InputComponent): """ Component creates an image upload box with editing capabilities. Input type: Union[numpy.array, PIL.Image, file-object] Demos: image_classifier, image_mod, webcam, digit_classifier """ def __init__(self, shape=None, image_mode='RGB', invert_colors=False, source="upload", tool="editor", type="numpy", label=None, optional=False): ''' Parameters: shape (Tuple[int, int]): (width, height) shape to crop and resize image to; if None, matches input image size. image_mode (str): "RGB" if color, or "L" if black and white. invert_colors (bool): whether to invert the image as a preprocessing step. source (str): Source of image. "upload" creates a box where user can drop an image file, "webcam" allows user to take snapshot from their webcam, "canvas" defaults to a white image that can be edited and drawn upon with tools. tool (str): Tools used for editing. "editor" allows a full screen editor, "select" provides a cropping and zoom tool. type (str): Type of value to be returned by component. "numpy" returns a numpy array with shape (width, height, 3) and values from 0 to 255, "pil" returns a PIL image object, "file" returns a temporary file object whose path can be retrieved by file_obj.name, "filepath" returns the path directly. label (str): component name in interface. optional (bool): If True, the interface can be submitted with no uploaded image, in which case the input value is None. ''' self.shape = shape self.image_mode = image_mode self.source = source requires_permissions = source == "webcam" self.tool = tool self.type = type self.optional = optional self.invert_colors = invert_colors self.test_input = test_data.BASE64_IMAGE self.interpret_by_tokens = True super().__init__(label, requires_permissions) @classmethod def get_shortcut_implementations(cls): return { "image": {}, "webcam": {"source": "webcam"}, "sketchpad": {"image_mode": "L", "source": "canvas", "shape": (28, 28), "invert_colors": True}, } def get_template_context(self): return { "image_mode": self.image_mode, "shape": self.shape, "source": self.source, "tool": self.tool, "optional": self.optional, **super().get_template_context() } def preprocess(self, x): """ Parameters: x (str): base64 url data Returns: (Union[numpy.array, PIL.Image, file-object]): image in requested format """ if x is None: return x im = processing_utils.decode_base64_to_image(x) fmt = im.format with warnings.catch_warnings(): warnings.simplefilter("ignore") im = im.convert(self.image_mode) if self.shape is not None: im = processing_utils.resize_and_crop(im, self.shape) if self.invert_colors: im = PIL.ImageOps.invert(im) if self.type == "pil": return im elif self.type == "numpy": return np.array(im) elif self.type == "file" or self.type == "filepath": file_obj = tempfile.NamedTemporaryFile(delete=False, suffix=( "."+fmt.lower() if fmt is not None else ".png")) im.save(file_obj.name) if self.type == "file": warnings.warn( "The 'file' type has been deprecated. Set parameter 'type' to 'filepath' instead.", DeprecationWarning) return file_obj else: return file_obj.name else: raise ValueError("Unknown type: " + str(self.type) + ". Please choose from: 'numpy', 'pil', 'filepath'.") def preprocess_example(self, x): return processing_utils.encode_file_to_base64(x) def serialize(self, x, called_directly=False): # if called directly, can assume it's a URL or filepath if self.type == "filepath" or called_directly: return processing_utils.encode_url_or_file_to_base64(x) elif self.type == "file": return processing_utils.encode_url_or_file_to_base64(x.name) elif self.type in ("numpy", "pil"): if self.type == "numpy": x = PIL.Image.fromarray(np.uint8(x)).convert('RGB') fmt = x.format file_obj = tempfile.NamedTemporaryFile(delete=False, suffix=( "."+fmt.lower() if fmt is not None else ".png")) x.save(file_obj.name) return processing_utils.encode_url_or_file_to_base64(file_obj.name) else: raise ValueError("Unknown type: " + str(self.type) + ". Please choose from: 'numpy', 'pil', 'filepath'.") def set_interpret_parameters(self, segments=16): """ Calculates interpretation score of image subsections by splitting the image into subsections, then using a "leave one out" method to calculate the score of each subsection by whiting out the subsection and measuring the delta of the output value. Parameters: segments (int): Number of interpretation segments to split image into. """ self.interpretation_segments = segments return self def _segment_by_slic(self, x): """ Helper method that segments an image into superpixels using slic. Parameters: x: base64 representation of an image """ x = processing_utils.decode_base64_to_image(x) if self.shape is not None: x = processing_utils.resize_and_crop(x, self.shape) resized_and_cropped_image = np.array(x) try: from skimage.segmentation import slic except (ImportError, ModuleNotFoundError): raise ValueError( "Error: running this interpretation for images requires scikit-image, please install it first.") try: segments_slic = slic( resized_and_cropped_image, self.interpretation_segments, compactness=10, sigma=1, start_label=1) except TypeError: # For skimage 0.16 and older segments_slic = slic( resized_and_cropped_image, self.interpretation_segments, compactness=10, sigma=1) return segments_slic, resized_and_cropped_image def tokenize(self, x): """ Segments image into tokens, masks, and leave-one-out-tokens Parameters: x: base64 representation of an image Returns: tokens: list of tokens, used by the get_masked_input() method leave_one_out_tokens: list of left-out tokens, used by the get_interpretation_neighbors() method masks: list of masks, used by the get_interpretation_neighbors() method """ segments_slic, resized_and_cropped_image = self._segment_by_slic(x) tokens, masks, leave_one_out_tokens = [], [], [] replace_color =
np.mean(resized_and_cropped_image, axis=(0, 1))
numpy.mean
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ Process Hi-C output into AGP for chromosomal-scale scaffolding. """ from __future__ import print_function import array import json import logging import math import os import os.path as op import sys from collections import defaultdict from functools import partial from multiprocessing import Pool import numpy as np from jcvi.algorithms.ec import GA_run, GA_setup from jcvi.algorithms.formula import outlier_cutoff from jcvi.algorithms.matrix import get_signs from jcvi.apps.base import ActionDispatcher, OptionParser, backup, iglob, mkdir, symlink from jcvi.apps.console import green, red from jcvi.apps.grid import Jobs from jcvi.assembly.allmaps import make_movie from jcvi.compara.synteny import check_beds, get_bed_filenames from jcvi.formats.agp import order_to_agp from jcvi.formats.base import LineFile, must_open from jcvi.formats.bed import Bed from jcvi.formats.blast import Blast from jcvi.formats.sizes import Sizes from jcvi.graphics.base import ( markup, normalize_axes, plt, savefig, ticker, human_readable, ) from jcvi.graphics.dotplot import dotplot from jcvi.utils.cbook import gene_name, human_size from jcvi.utils.natsort import natsorted # Map orientations to ints FF = {"+": 1, "-": -1, "?": 1} RR = {"+": -1, "-": 1, "?": -1} LB = 18 # Lower bound for golden_array() UB = 29 # Upper bound for golden_array() BB = UB - LB + 1 # Span for golden_array() ACCEPT = green("ACCEPT") REJECT = red("REJECT") BINSIZE = 50000 class ContigOrderingLine(object): """Stores one line in the ContigOrdering file """ def __init__(self, line, sep="|"): args = line.split() self.contig_id = args[0] self.contig_name = args[1].split(sep)[0] contig_rc = args[2] assert contig_rc in ("0", "1") self.strand = "+" if contig_rc == "0" else "-" self.orientation_score = args[3] self.gap_size_after_contig = args[4] class ContigOrdering(LineFile): """ContigOrdering file as created by LACHESIS, one per chromosome group. Header contains summary information per group, followed by list of contigs with given ordering. """ def __init__(self, filename): super(ContigOrdering, self).__init__(filename) fp = open(filename) for row in fp: if row[0] == "#": continue orderline = ContigOrderingLine(row) self.append(orderline) def write_agp( self, obj, sizes, fw=sys.stdout, gapsize=100, gaptype="contig", evidence="map" ): """Converts the ContigOrdering file into AGP format """ contigorder = [(x.contig_name, x.strand) for x in self] order_to_agp( obj, contigorder, sizes, fw, gapsize=gapsize, gaptype=gaptype, evidence=evidence, ) class CLMFile: """CLM file (modified) has the following format: tig00046211+ tig00063795+ 1 53173 tig00046211+ tig00063795- 1 116050 tig00046211- tig00063795+ 1 71155 tig00046211- tig00063795- 1 134032 tig00030676+ tig00077819+ 5 136407 87625 87625 106905 102218 tig00030676+ tig00077819- 5 126178 152952 152952 35680 118923 tig00030676- tig00077819+ 5 118651 91877 91877 209149 125906 tig00030676- tig00077819- 5 108422 157204 157204 137924 142611 """ def __init__(self, clmfile, skiprecover=False): self.name = op.basename(clmfile).rsplit(".", 1)[0] self.clmfile = clmfile self.idsfile = clmfile.rsplit(".", 1)[0] + ".ids" self.parse_ids(skiprecover) self.parse_clm() self.signs = None def parse_ids(self, skiprecover): """IDS file has a list of contigs that need to be ordered. 'recover', keyword, if available in the third column, is less confident. tig00015093 46912 tig00035238 46779 recover tig00030900 119291 """ idsfile = self.idsfile logging.debug("Parse idsfile `{}`".format(idsfile)) fp = open(idsfile) tigs = [] for row in fp: if row[0] == "#": # Header continue atoms = row.split() tig, _, size = atoms size = int(size) if skiprecover and len(atoms) == 3 and atoms[2] == "recover": continue tigs.append((tig, size)) # Arrange contig names and sizes _tigs, _sizes = zip(*tigs) self.contigs = set(_tigs) self.sizes = np.array(_sizes) self.tig_to_size = dict(tigs) # Initially all contigs are considered active self.active = set(_tigs) def parse_clm(self): clmfile = self.clmfile logging.debug("Parse clmfile `{}`".format(clmfile)) fp = open(clmfile) contacts = {} contacts_oriented = defaultdict(dict) orientations = defaultdict(list) for row in fp: atoms = row.strip().split("\t") assert len(atoms) == 3, "Malformed line `{}`".format(atoms) abtig, links, dists = atoms atig, btig = abtig.split() at, ao = atig[:-1], atig[-1] bt, bo = btig[:-1], btig[-1] if at not in self.tig_to_size: continue if bt not in self.tig_to_size: continue dists = [int(x) for x in dists.split()] contacts[(at, bt)] = len(dists) gdists = golden_array(dists) contacts_oriented[(at, bt)][(FF[ao], FF[bo])] = gdists contacts_oriented[(bt, at)][(RR[bo], RR[ao])] = gdists strandedness = 1 if ao == bo else -1 orientations[(at, bt)].append((strandedness, dists)) self.contacts = contacts self.contacts_oriented = contacts_oriented # Preprocess the orientations dict for (at, bt), dists in orientations.items(): dists = [(s, d, hmean_int(d)) for (s, d) in dists] strandedness, md, mh = min(dists, key=lambda x: x[-1]) orientations[(at, bt)] = (strandedness, len(md), mh) self.orientations = orientations def calculate_densities(self): """ Calculate the density of inter-contig links per base. Strong contigs considered to have high level of inter-contig links in the current partition. """ active = self.active densities = defaultdict(int) for (at, bt), links in self.contacts.items(): if not (at in active and bt in active): continue densities[at] += links densities[bt] += links logdensities = {} for x, d in densities.items(): s = self.tig_to_size[x] logd = np.log10(d * 1.0 / min(s, 500000)) logdensities[x] = logd return logdensities def report_active(self): logging.debug( "Active contigs: {} (length={})".format(self.N, self.active_sizes.sum()) ) def activate(self, tourfile=None, minsize=10000, backuptour=True): """ Select contigs in the current partition. This is the setup phase of the algorithm, and supports two modes: - "de novo": This is useful at the start of a new run where no tours available. We select the strong contigs that have significant number of links to other contigs in the partition. We build a histogram of link density (# links per bp) and remove the contigs that appear as outliers. The orientations are derived from the matrix decomposition of the pairwise strandedness matrix O. - "hotstart": This is useful when there was a past run, with a given tourfile. In this case, the active contig list and orientations are derived from the last tour in the file. """ if tourfile and (not op.exists(tourfile)): logging.debug("Tourfile `{}` not found".format(tourfile)) tourfile = None if tourfile: logging.debug("Importing tourfile `{}`".format(tourfile)) tour, tour_o = iter_last_tour(tourfile, self) self.active = set(tour) tig_to_idx = self.tig_to_idx tour = [tig_to_idx[x] for x in tour] signs = sorted([(x, FF[o]) for (x, o) in zip(tour, tour_o)]) _, signs = zip(*signs) self.signs = np.array(signs, dtype=int) if backuptour: backup(tourfile) tour = array.array("i", tour) else: self.report_active() while True: logdensities = self.calculate_densities() lb, ub = outlier_cutoff(list(logdensities.values())) logging.debug("Log10(link_densities) ~ [{}, {}]".format(lb, ub)) remove = set( x for x, d in logdensities.items() if (d < lb and self.tig_to_size[x] < minsize * 10) ) if remove: self.active -= remove self.report_active() else: break logging.debug("Remove contigs with size < {}".format(minsize)) self.active = set(x for x in self.active if self.tig_to_size[x] >= minsize) tour = range(self.N) # Use starting (random) order otherwise tour = array.array("i", tour) # Determine orientations self.flip_all(tour) self.report_active() self.tour = tour return tour def evaluate_tour_M(self, tour): """ Use Cythonized version to evaluate the score of a current tour """ from .chic import score_evaluate_M return score_evaluate_M(tour, self.active_sizes, self.M) def evaluate_tour_P(self, tour): """ Use Cythonized version to evaluate the score of a current tour, with better precision on the distance of the contigs. """ from .chic import score_evaluate_P return score_evaluate_P(tour, self.active_sizes, self.P) def evaluate_tour_Q(self, tour): """ Use Cythonized version to evaluate the score of a current tour, taking orientation into consideration. This may be the most accurate evaluation under the right condition. """ from .chic import score_evaluate_Q return score_evaluate_Q(tour, self.active_sizes, self.Q) def flip_log(self, method, score, score_flipped, tag): logging.debug("{}: {} => {} {}".format(method, score, score_flipped, tag)) def flip_all(self, tour): """ Initialize the orientations based on pairwise O matrix. """ if self.signs is None: # First run score = 0 else: old_signs = self.signs[: self.N] (score,) = self.evaluate_tour_Q(tour) # Remember we cannot have ambiguous orientation code (0 or '?') here self.signs = get_signs(self.O, validate=False, ambiguous=False) (score_flipped,) = self.evaluate_tour_Q(tour) if score_flipped >= score: tag = ACCEPT else: self.signs = old_signs[:] tag = REJECT self.flip_log("FLIPALL", score, score_flipped, tag) return tag def flip_whole(self, tour): """ Test flipping all contigs at the same time to see if score improves. """ (score,) = self.evaluate_tour_Q(tour) self.signs = -self.signs (score_flipped,) = self.evaluate_tour_Q(tour) if score_flipped > score: tag = ACCEPT else: self.signs = -self.signs tag = REJECT self.flip_log("FLIPWHOLE", score, score_flipped, tag) return tag def flip_one(self, tour): """ Test flipping every single contig sequentially to see if score improves. """ n_accepts = n_rejects = 0 any_tag_ACCEPT = False for i, t in enumerate(tour): if i == 0: (score,) = self.evaluate_tour_Q(tour) self.signs[t] = -self.signs[t] (score_flipped,) = self.evaluate_tour_Q(tour) if score_flipped > score: n_accepts += 1 tag = ACCEPT else: self.signs[t] = -self.signs[t] n_rejects += 1 tag = REJECT self.flip_log( "FLIPONE ({}/{})".format(i + 1, len(self.signs)), score, score_flipped, tag, ) if tag == ACCEPT: any_tag_ACCEPT = True score = score_flipped logging.debug("FLIPONE: N_accepts={} N_rejects={}".format(n_accepts, n_rejects)) return ACCEPT if any_tag_ACCEPT else REJECT def prune_tour(self, tour, cpus): """ Test deleting each contig and check the delta_score; tour here must be an array of ints. """ while True: (tour_score,) = self.evaluate_tour_M(tour) logging.debug("Starting score: {}".format(tour_score)) active_sizes = self.active_sizes M = self.M args = [] for i, t in enumerate(tour): stour = tour[:i] + tour[i + 1 :] args.append((t, stour, tour_score, active_sizes, M)) # Parallel run p = Pool(processes=cpus) results = list(p.imap(prune_tour_worker, args)) assert len(tour) == len( results ), "Array size mismatch, tour({}) != results({})".format( len(tour), len(results) ) # Identify outliers active_contigs = self.active_contigs idx, log10deltas = zip(*results) lb, ub = outlier_cutoff(log10deltas) logging.debug("Log10(delta_score) ~ [{}, {}]".format(lb, ub)) remove = set(active_contigs[x] for (x, d) in results if d < lb) self.active -= remove self.report_active() tig_to_idx = self.tig_to_idx tour = [active_contigs[x] for x in tour] tour = array.array("i", [tig_to_idx[x] for x in tour if x not in remove]) if not remove: break self.tour = tour self.flip_all(tour) return tour @property def active_contigs(self): return list(self.active) @property def active_sizes(self): return np.array([self.tig_to_size[x] for x in self.active]) @property def N(self): return len(self.active) @property def oo(self): return range(self.N) @property def tig_to_idx(self): return dict((x, i) for (i, x) in enumerate(self.active)) @property def M(self): """ Contact frequency matrix. Each cell contains how many inter-contig links between i-th and j-th contigs. """ N = self.N tig_to_idx = self.tig_to_idx M = np.zeros((N, N), dtype=int) for (at, bt), links in self.contacts.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] M[ai, bi] = M[bi, ai] = links return M @property def O(self): """ Pairwise strandedness matrix. Each cell contains whether i-th and j-th contig are the same orientation +1, or opposite orientation -1. """ N = self.N tig_to_idx = self.tig_to_idx O = np.zeros((N, N), dtype=int) for (at, bt), (strandedness, md, mh) in self.orientations.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] score = strandedness * md O[ai, bi] = O[bi, ai] = score return O @property def P(self): """ Contact frequency matrix with better precision on distance between contigs. In the matrix M, the distance is assumed to be the distance between mid-points of two contigs. In matrix Q, however, we compute harmonic mean of the links for the orientation configuration that is shortest. This offers better precision for the distance between big contigs. """ N = self.N tig_to_idx = self.tig_to_idx P = np.zeros((N, N, 2), dtype=int) for (at, bt), (strandedness, md, mh) in self.orientations.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] P[ai, bi, 0] = P[bi, ai, 0] = md P[ai, bi, 1] = P[bi, ai, 1] = mh return P @property def Q(self): """ Contact frequency matrix when contigs are already oriented. This is s a similar matrix as M, but rather than having the number of links in the cell, it points to an array that has the actual distances. """ N = self.N tig_to_idx = self.tig_to_idx signs = self.signs Q = np.ones((N, N, BB), dtype=int) * -1 # Use -1 as the sentinel for (at, bt), k in self.contacts_oriented.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] ao = signs[ai] bo = signs[bi] Q[ai, bi] = k[(ao, bo)] return Q def hmean_int(a, a_min=5778, a_max=1149851): """ Harmonic mean of an array, returns the closest int """ from scipy.stats import hmean return int(round(hmean(np.clip(a, a_min, a_max)))) def golden_array(a, phi=1.61803398875, lb=LB, ub=UB): """ Given list of ints, we aggregate similar values so that it becomes an array of multiples of phi, where phi is the golden ratio. phi ^ 14 = 843 phi ^ 33 = 7881196 So the array of counts go between 843 to 788196. One triva is that the exponents of phi gets closer to integers as N grows. See interesting discussion here: <https://www.johndcook.com/blog/2017/03/22/golden-powers-are-nearly-integers/> """ counts = np.zeros(BB, dtype=int) for x in a: c = int(round(math.log(x, phi))) if c < lb: c = lb if c > ub: c = ub counts[c - lb] += 1 return counts def prune_tour_worker(arg): """ Worker thread for CLMFile.prune_tour() """ from .chic import score_evaluate_M t, stour, tour_score, active_sizes, M = arg (stour_score,) = score_evaluate_M(stour, active_sizes, M) delta_score = tour_score - stour_score log10d = np.log10(delta_score) if delta_score > 1e-9 else -9 return t, log10d def main(): actions = ( # LACHESIS output processing ("agp", "generate AGP file based on LACHESIS output"), ("score", "score the current LACHESIS CLM"), # Simulation ("simulate", "simulate CLM data"), # Scaffolding ("optimize", "optimize the contig order and orientation"), ("density", "estimate link density of contigs"), # Plotting ("movieframe", "plot heatmap and synteny for a particular tour"), ("movie", "plot heatmap optimization history in a tourfile"), # Reference-based analytics ("bam2mat", "convert bam file to .npy format used in plotting"), ("mergemat", "combine counts from multiple .npy data files"), ("heatmap", "plot heatmap based on .npy file"), ("dist", "plot distance distribution based on .dist.npy file"), ) p = ActionDispatcher(actions) p.dispatch(globals()) def fit_power_law(xs, ys): """ Fit power law distribution. See reference: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html Assumes the form Y = A * X^B, returns Args: xs ([int]): X vector ys ([float64]): Y vector Returns: (A, B), the coefficients """ import math sum_logXlogY, sum_logXlogX, sum_logX, sum_logY = 0, 0, 0, 0 N = len(xs) for i in range(N): if not xs[i] or not ys[i]: continue logXs, logYs = math.log(xs[i]), math.log(ys[i]) sum_logXlogY += logXs * logYs sum_logXlogX += logXs * logXs sum_logX += logXs sum_logY += logYs B = (N * sum_logXlogY - sum_logX * sum_logY) / ( N * sum_logXlogX - sum_logX * sum_logX ) A = math.exp((sum_logY - B * sum_logX) / N) logging.debug("Power law Y = {:.1f} * X ^ {:.4f}".format(A, B)) label = "$Y={:.1f} \\times X^{{ {:.4f} }}$".format(A, B) return A, B, label def dist(args): """ %prog dist input.dist.npy genome.json Plot histogram based on .dist.npy data file. The .npy file stores an array with link counts per dist bin, with the bin starts stored in the genome.json. """ import seaborn as sns import pandas as pd from jcvi.graphics.base import human_base_formatter, markup p = OptionParser(dist.__doc__) p.add_option("--title", help="Title of the histogram") p.add_option("--xmin", default=300, help="Minimum distance") p.add_option("--xmax", default=6000000, help="Maximum distance") opts, args, iopts = p.set_image_options(args, figsize="6x6") if len(args) != 2: sys.exit(not p.print_help()) npyfile, jsonfile = args pf = npyfile.rsplit(".", 1)[0] header = json.loads(open(jsonfile).read()) distbin_starts = np.array(header["distbinstarts"], dtype="float64") distbin_sizes = np.array(header["distbinsizes"], dtype="float64") a = np.load(npyfile) xmin, xmax = opts.xmin, opts.xmax (size,) = min(distbin_sizes.shape, distbin_starts.shape, a.shape) df = pd.DataFrame() xstart, xend = ( np.searchsorted(distbin_starts, xmin), np.searchsorted(distbin_starts, xmax), ) df["BinStart"] = distbin_starts[xstart:xend] df["LinkDensity"] = a[xstart:xend] / distbin_sizes[xstart:xend] ax = sns.lineplot( x="BinStart", y="LinkDensity", data=df, lw=3, color="lightslategray" ) tx = df["BinStart"] A, B, label = fit_power_law(tx, df["LinkDensity"]) ty = A * tx ** B ax.plot(tx, ty, "r:", lw=3, label=label) ax.legend() if opts.title: ax.set_title(markup(opts.title)) ax.set_xlabel("Link size (bp)") ax.set_ylabel("Density (\# of links per bp)") ax.set_xscale("log", nonposx="clip") ax.set_yscale("log", nonposy="clip") ax.xaxis.set_major_formatter(human_base_formatter) image_name = pf + "." + opts.format savefig(image_name, dpi=iopts.dpi, iopts=iopts) def generate_groups(groupsfile): """ Parse 'groups' file. The 'groups' file has the following format, for example: seq1,seq2 b seq1 g seq2 g Args: groupsfile (str): Path to the groups file """ data = [] with open(groupsfile) as fp: for row in fp: seqids, color = row.split() yield seqids, color def heatmap(args): """ %prog heatmap input.npy genome.json Plot heatmap based on .npy data file. The .npy stores a square matrix with bins of genome, and cells inside the matrix represent number of links between bin i and bin j. The `genome.json` contains the offsets of each contig/chr so that we know where to draw boundary lines, or extract per contig/chromosome heatmap. If a 'groups' file is given (with --groups), we will draw squares on the heatmap. The 'groups' file has the following format, for example: seq1,seq2 b seq1 g seq2 g This will first draw a square around seq1+seq2 with blue color, then seq1 and seq2 individually with green color. """ p = OptionParser(heatmap.__doc__) p.add_option("--title", help="Title of the heatmap") p.add_option("--groups", help="Groups file, see doc") p.add_option("--vmin", default=1, type="int", help="Minimum value in the heatmap") p.add_option("--vmax", default=6, type="int", help="Maximum value in the heatmap") p.add_option("--chr", help="Plot this contig/chr only") p.add_option( "--nobreaks", default=False, action="store_true", help="Do not plot breaks (esp. if contigs are small)", ) opts, args, iopts = p.set_image_options( args, figsize="11x11", style="white", cmap="coolwarm", format="png", dpi=120 ) if len(args) != 2: sys.exit(not p.print_help()) npyfile, jsonfile = args contig = opts.chr groups = list(generate_groups(opts.groups)) if opts.groups else [] # Load contig/chromosome starts and sizes header = json.loads(open(jsonfile).read()) resolution = header.get("resolution") assert resolution is not None, "`resolution` not found in `{}`".format(jsonfile) logging.debug("Resolution set to {}".format(resolution)) # Load the matrix A = np.load(npyfile) # Select specific submatrix if contig: contig_start = header["starts"][contig] contig_size = header["sizes"][contig] contig_end = contig_start + contig_size A = A[contig_start:contig_end, contig_start:contig_end] # Convert seqids to positions for each group new_groups = [] for seqids, color in groups: seqids = seqids.split(",") assert all( x in header["starts"] for x in seqids ), f"{seqids} contain ids not found in starts" assert all( x in header["sizes"] for x in seqids ), f"{seqids} contain ids not found in sizes" start = min(header["starts"][x] for x in seqids) end = max(header["starts"][x] + header["sizes"][x] for x in seqids) position_seqids = [] for seqid in seqids: seqid_start = header["starts"][seqid] seqid_size = header["sizes"][seqid] position_seqids.append((seqid_start + seqid_size / 2, seqid)) new_groups.append((start, end, position_seqids, color)) # Several concerns in practice: # The diagonal counts may be too strong, this can either be resolved by # masking them. Or perform a log transform on the entire heatmap. B = A.astype("float64") B += 1.0 B = np.log(B) vmin, vmax = opts.vmin, opts.vmax B[B < vmin] = vmin B[B > vmax] = vmax print(B) logging.debug( "Matrix log-transformation and thresholding ({}-{}) done".format(vmin, vmax) ) # Canvas fig = plt.figure(1, (iopts.w, iopts.h)) root = fig.add_axes([0, 0, 1, 1]) # whole canvas ax = fig.add_axes([0.05, 0.05, 0.9, 0.9]) # just the heatmap breaks = list(header["starts"].values()) breaks += [header["total_bins"]] # This is actually discarded breaks = sorted(breaks)[1:] if contig or opts.nobreaks: breaks = [] plot_heatmap(ax, B, breaks, iopts, groups=new_groups, binsize=resolution) # Title pf = npyfile.rsplit(".", 1)[0] title = opts.title if contig: title += "-{}".format(contig) root.text( 0.5, 0.98, markup(title), color="darkslategray", size=18, ha="center", va="center", ) normalize_axes(root) image_name = pf + "." + iopts.format # macOS sometimes has way too verbose output logging.getLogger().setLevel(logging.CRITICAL) savefig(image_name, dpi=iopts.dpi, iopts=iopts) def mergemat(args): """ %prog mergemat *.npy Combine counts from multiple .npy data files. """ p = OptionParser(mergemat.__doc__) p.set_outfile(outfile="out") opts, args = p.parse_args(args) if len(args) < 1: sys.exit(not p.print_help()) npyfiles = args A = np.load(npyfiles[0]) logging.debug( "Load `{}`: matrix of shape {}:; sum={}".format(npyfiles[0], A.shape, A.sum()) ) for npyfile in npyfiles[1:]: B = np.load(npyfile) A += B logging.debug("Load `{}`: sum={}".format(npyfiles[0], A.sum())) pf = opts.outfile np.save(pf, A) logging.debug("Combined {} files into `{}.npy`".format(len(npyfiles), pf)) def get_seqstarts(bamfile, N, seqids=None): """ Go through the SQ headers and pull out all sequences with size greater than the resolution settings, i.e. contains at least a few cells """ import pysam bamfile = pysam.AlignmentFile(bamfile, "rb") seqsize = {} for kv in bamfile.header["SQ"]: if kv["LN"] < 10 * N: continue seqsize[kv["SN"]] = kv["LN"] // N + 1 allseqs = seqids or natsorted(seqsize.keys()) allseqsizes = np.array([seqsize[x] for x in allseqs]) seqstarts = np.cumsum(allseqsizes) seqstarts = np.roll(seqstarts, 1) total_bins = seqstarts[0] seqstarts[0] = 0 seqstarts = dict(zip(allseqs, seqstarts)) seqid_sizes = dict((x, seqsize[x]) for x in allseqs) return seqstarts, seqid_sizes, total_bins def get_distbins(start=100, bins=2000, ratio=1.01): """ Get exponentially sized bins for link length """ b = np.ones(bins, dtype="float64") b[0] = 100 for i in range(1, bins): b[i] = b[i - 1] * ratio bins = np.around(b).astype(dtype="int") binsizes = np.diff(bins) return bins, binsizes def bam2mat(args): """ %prog bam2mat input.bam Convert bam file to .mat format, which is simply numpy 2D array. Important parameter is the resolution, which is the cell size. Small cell size lead to more fine-grained heatmap, but leads to large .mat size and slower plotting. """ import pysam from jcvi.utils.cbook import percentage p = OptionParser(bam2mat.__doc__) p.add_option( "--resolution", default=500000, type="int", help="Resolution when counting the links", ) p.add_option( "--seqids", default=None, help="Use a given seqids file, a single line with seqids joined by comma", ) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) (bamfilename,) = args pf = bamfilename.rsplit(".", 1)[0] N = opts.resolution pf += f".resolution_{N}" bins = 1500 # Distance distribution bins minsize = 100 # Record distance if it is at least minsize seqids = ( open(opts.seqids).readline().strip().split(",") if op.exists(opts.seqids) else None ) seqstarts, seqsize, total_bins = get_seqstarts(bamfilename, N, seqids=seqids) distbinstarts, distbinsizes = get_distbins(start=minsize, bins=bins) # Store the starts and sizes into a JSON file jsonfile = pf + ".json" fwjson = open(jsonfile, "w") header = { "starts": seqstarts, "sizes": seqsize, "total_bins": total_bins, "distbinstarts": list(distbinstarts), "distbinsizes": list(distbinsizes), "resolution": N, } # int64 will not be able to deserialize with Python 3 # Here is a workaround: # https://stackoverflow.com/questions/11942364/typeerror-integer-is-not-json-serializable-when-serializing-json-in-python def default(o): if isinstance(o, np.int64): return int(o) raise TypeError json.dump(header, fwjson, sort_keys=True, indent=4, default=default) fwjson.close() logging.debug("Contig bin starts written to `{}`".format(jsonfile)) print(sorted(seqstarts.items(), key=lambda x: x[-1])) logging.debug("Initialize matrix of size {}x{}".format(total_bins, total_bins)) A = np.zeros((total_bins, total_bins), dtype="int") B = np.zeros(bins, dtype="int") # Find the bin ID of each read def bin_number(chr, pos): return seqstarts[chr] + pos // N def distbin_number(dist, start=minsize, ratio=1.01): return int(round(math.log(dist * 1.0 / start, ratio))) bamfile = pysam.AlignmentFile(bamfilename, "rb") # Check all reads, rules borrowed from LACHESIS # https://github.com/shendurelab/LACHESIS/blob/master/src/GenomeLinkMatrix.cc#L1476 j = k = 0 for c in bamfile: j += 1 if j % 100000 == 0: print("{} reads counted".format(j), file=sys.stderr) if c.is_qcfail and c.is_duplicate: continue if c.is_secondary and c.is_supplementary: continue if c.mapping_quality == 0: continue if not c.is_paired: continue if c.is_read2: # Take only one read continue # pysam v0.8.3 does not support keyword reference_name achr = bamfile.getrname(c.reference_id) apos = c.reference_start bchr = bamfile.getrname(c.next_reference_id) bpos = c.next_reference_start if achr not in seqstarts or bchr not in seqstarts: continue if achr == bchr: dist = abs(apos - bpos) if dist < minsize: continue db = distbin_number(dist) B[db] += 1 abin, bbin = bin_number(achr, apos), bin_number(bchr, bpos) A[abin, bbin] += 1 if abin != bbin: A[bbin, abin] += 1 k += 1 logging.debug("Total reads counted: {}".format(percentage(2 * k, j))) bamfile.close() np.save(pf, A) logging.debug("Link counts written to `{}.npy`".format(pf)) np.save(pf + ".dist", B) logging.debug("Link dists written to `{}.dist.npy`".format(pf)) def simulate(args): """ %prog simulate test Simulate CLM and IDS files with given names. The simulator assumes several distributions: - Links are distributed uniformly across genome - Log10(link_size) are distributed normally - Genes are distributed uniformly """ p = OptionParser(simulate.__doc__) p.add_option("--genomesize", default=10000000, type="int", help="Genome size") p.add_option("--genes", default=1000, type="int", help="Number of genes") p.add_option("--contigs", default=100, type="int", help="Number of contigs") p.add_option("--coverage", default=10, type="int", help="Link coverage") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) (pf,) = args GenomeSize = opts.genomesize Genes = opts.genes Contigs = opts.contigs Coverage = opts.coverage PE = 500 Links = int(GenomeSize * Coverage / PE) # Simulate the contig sizes that sum to GenomeSize # See also: # <https://en.wikipedia.org/wiki/User:Skinnerd/Simplex_Point_Picking> (ContigSizes,) = np.random.dirichlet([1] * Contigs, 1) * GenomeSize ContigSizes = np.array(np.round_(ContigSizes, decimals=0), dtype=int) ContigStarts = np.zeros(Contigs, dtype=int) ContigStarts[1:] = np.cumsum(ContigSizes)[:-1] # Write IDS file idsfile = pf + ".ids" fw = open(idsfile, "w") print("#Contig\tRECounts\tLength", file=fw) for i, s in enumerate(ContigSizes): print("tig{:04d}\t{}\t{}".format(i, s // (4 ** 4), s), file=fw) fw.close() # Simulate the gene positions GenePositions = np.sort(np.random.randint(0, GenomeSize, size=Genes)) write_last_and_beds(pf, GenePositions, ContigStarts) # Simulate links, uniform start, with link distances following 1/x, where x # is the distance between the links. As an approximation, we have links # between [1e3, 1e7], so we map from uniform [1e-7, 1e-3] LinkStarts = np.sort(
np.random.randint(1, GenomeSize, size=Links)
numpy.random.randint
# Top of main python script import os os.environ["PYOPENGL_PLATFORM"] = "egl" import sys import random import argparse import numpy as np import trimesh import imageio import open3d as o3d from mathutils import Matrix import h5py import json from mesh_to_sdf import get_surface_point_cloud import pyrender import util np.random.seed(12433) random.seed(12433) train_categories = [ "04379243", "02958343", "03001627", "02691156", "04256520", "04090263", "03636649", "04530566", "02828884", "03691459", "02933112", "03211117", "04401088", ] val_categories = [ "02924116", "02808440", "03467517", "03325088", "03046257", "03991062", "03593526", "02876657", "02871439", "03642806", "03624134", "04468005", "02747177", "03790512", "03948459", "03337140", "02818832", "03928116", "04330267", "03797390", "02880940", "04554684", "04004475", "03513137", "03761084", "04225987", "04460130", "02942699", "02801938", "02946921", "03938244", "03710193", "03207941", "04099429", "02773838", "02843684", "03261776", "03759954", "04074963", "03085013", "02992529", "02954340", ] p = argparse.ArgumentParser( description="Renders given obj file by rotation a camera around it." ) p.add_argument( "--data_dir", type=str, default="/labdata/nicolai/data/ShapeNetCore.v2", help="Data directory containing meshes.", ) p.add_argument( "--output_dir", type=str, default="./images", help="The path the output will be dumped to.", ) p.add_argument( "--num_views", type=int, default=25, help="Number of images to render", ) p.add_argument("--resolution", type=int, default=256, help="output image resolution.") p.add_argument( "--sphere_radius", type=float, default=1.2, help="Radius of the viewing sphere", ) p.add_argument("--val", action="store_true", help="Use to render validation split") p.add_argument( "--save_png", action="store_true", help="Save output images for visualization", ) p.add_argument( "--show_3d", action="store_true", help="Save output images for visualization", ) def normalize_mesh(mesh): # Center the mesh matrix = np.eye(4) bounds = mesh.bounds centroid = (bounds[1, :] + bounds[0, :]) / 2 matrix[:3, -1] = -centroid mesh.apply_transform(matrix) # Scale the model to unit diagonal lenght matrix = np.eye(4) extents = mesh.extents diag = np.sqrt(extents[0] ** 2 + extents[1] ** 2 + extents[2] ** 2) matrix[:3, :3] *= 1.0 / diag mesh.apply_transform(matrix) return mesh def main(): args = p.parse_args() instance_names = [] shapenet_categories = train_categories + val_categories folders = sorted(os.listdir(args.data_dir)) for cat in shapenet_categories: path = os.path.join(args.data_dir, cat) new_instances = [ os.path.join(cat, f) for f in sorted(os.listdir(path)) if os.path.isdir(os.path.join(path, f)) ] instance_names = instance_names + new_instances instance_names = instance_names[0:10000] if len(instance_names) == 0: print("Data dir does not contain any instances") raise NotImplementedError # instance_names = instance_names[32000:] if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) print(f"Number of files: {len(instance_names)}") # Load n meshes count = 0 mesh_errors = {} for instance_name in instance_names: runtime_error = False category, instance_name = instance_name.split("/") if os.path.exists(os.path.join(args.output_dir, f"{instance_name}.h5")): continue try: mesh = trimesh.load( os.path.join( args.data_dir, category, instance_name, "models", "model_normalized.obj", ), force="mesh", ) except ValueError: if category not in mesh_errors.keys(): mesh_errors[category] = [] mesh_errors[category].append(instance_name) print(f"ValueError with instance {instance_name}. Skipping....") continue # Normalize the mesh to unit diagonal mesh = normalize_mesh(mesh) cam_locations = util.sample_spherical(args.num_views, args.sphere_radius) obj_location = np.zeros((1, 3)) cv_poses = util.look_at(cam_locations, obj_location) cam_locations = [util.cv_cam2world_to_bcam2world(m) for m in cv_poses] image_size = (args.resolution, args.resolution) K = np.array([[262.5, 0.0, 128.0], [0.0, 262.5, 128.0], [0.0, 0.0, 1.0]]) camera = pyrender.IntrinsicsCamera( fx=K[0, 0], fy=K[1, 1], cx=K[0, 2], cy=K[1, 2], znear=0.01, zfar=100 ) rgbs = [] depths = [] masks = [] c2ws = [] normals = [] scene = pyrender.Scene.from_trimesh_scene( trimesh.Scene(mesh), ambient_light=(1, 1, 1) ) for ii, w2c in enumerate(cam_locations): # Add camera roll theta = random.random() * np.pi roll_matrix = Matrix( ( (np.cos(theta), -np.sin(theta), 0, 0), (np.sin(theta), np.cos(theta), 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), ) ) w2c = roll_matrix @ w2c if ii == 0: cam_node = scene.add(camera, pose=np.array(w2c)) else: scene.set_pose(cam_node, pose=np.array(w2c)) try: r = pyrender.OffscreenRenderer(*image_size) color, depth = r.render( scene, flags=pyrender.constants.RenderFlags.FLAT ) if np.all(color == 255): raise RuntimeError("No texture rendered") except Exception as e: print(f"RuntimeError with instance: {instance_name}. Skipping...") runtime_error = True r.delete() if category not in mesh_errors.keys(): mesh_errors[category] = [] mesh_errors[category].append(instance_name) break normals.append(util.depth_2_normal(depth, depth == 0.0, K)) mask = depth != 0 w2c = np.array(util.get_world2cam_from_blender_cam(w2c)) rgbs.append(color) depths.append(depth) masks.append(mask) c2ws.append(np.linalg.inv(w2c)) r.delete() if args.save_png: imageio.imwrite( os.path.join( args.output_dir, f"{instance_name}_{str(ii).zfill(3)}.png" ), color, ) if runtime_error: runtime_error = False continue rgbs = np.stack([r for r in rgbs]) # Check if all images are white. If yes, continue without saving the model depths = np.stack([r for r in depths]) masks = np.stack([r for r in masks]) poses = np.stack([r for r in c2ws]) normals = np.stack([r for r in normals]) # Generate 3D supervision data for the prior number_of_points = 100000 surface_pcd = get_surface_point_cloud( mesh, "scan", args.sphere_radius, 100, 400, 10000000, calculate_normals=True ) pts, sdf = surface_pcd.sample_sdf_near_surface( number_of_points, 1, sign_method="normal", normal_sample_count=11, min_size=0, return_gradients=False, ) sdf_pts =
np.concatenate([pts, sdf[:, None]], axis=-1)
numpy.concatenate
# File: tensor.py # Creation: Wednesday August 19th 2020 # Author: <NAME> # Contact: <EMAIL> # <EMAIL> # -------- # Copyright (c) 2020 <NAME> """ Defines tensors for deep learning application. A tensor is a multi-dimensional array, similar to ``numpy`` arrays. """ # Basic imports import numpy as np try: import cupy as cp except ModuleNotFoundError: pass # NETS package import nets from nets.cuda import numpy_or_cupy, cuda_available from nets.utils import BackwardCallError, CUDANotAvailableError, deprecated def tensor2string(tensor, prefix="", precision=4, separator=', ', floatmode=None, edgeitems=3, threshold=100, max_line_width=100, suppress_small=True): # Representation nc = numpy_or_cupy(tensor) array_str = nc.array_str(tensor.data, precision=precision, max_line_width=max_line_width, suppress_small=suppress_small) # Prefix array_str = f"\n{prefix}".join(array_str.split("\n")) return array_str def to_numpy(arrayable): """Convert an object to a ``numpy.ndarray`` if possible. Args: arrayable: object to convert Returns: numpy.ndarray Example: >>> import numpy as np >>> from nets.tensor import to_numpy >>> from nets import Tensor >>> array = [0, 1, 2, 3, 4, 4, 6, 7, 8, 9] >>> assert isinstance(to_numpy(array), numpy.ndarray) True >>> tensor = Tensor([0, 1, 2, 3, 4, 4, 6, 7, 8, 9]) >>> assert isinstance(to_numpy(tensor), numpy.ndarray) True """ if isinstance(arrayable, Tensor): return np.array(arrayable.data) elif isinstance(arrayable, np.ndarray): return arrayable elif cuda_available() and isinstance(arrayable, cp.ndarray): return cp.asnumpy(arrayable) else: return
np.array(arrayable)
numpy.array
from .layer import Layer from ..activation import Activation import numpy as np class ParticleDipoleInput(object): """ Dipole approximated as 2 coupled charges of equal magnitude """ def __init__(self, output_size, k_bond=1.0, k_eq=0.1, s=1.0, cut=3.0): self.output_size = output_size # Harmonic constraint coefficient and equilibrium self.k_bond = k_bond self.k_eq = k_eq self.cut = cut self.cut2 = cut*cut # Positive charge positions self.rx_pos = np.random.normal(0.0, s, output_size) self.ry_pos = np.random.normal(0.0, s, output_size) self.rz_pos = np.random.normal(0.0, s, output_size) # Negative charge positions # Copy of positive charge position with small added noise # s = 1.1 * k_eq # self.rx_neg = np.copy(self.rx_pos) + np.random.uniform(-s, s, output_size) # self.ry_neg = np.copy(self.ry_pos) + np.random.uniform(-s, s, output_size) # self.rz_neg = np.copy(self.rz_pos) + np.random.uniform(-s, s, output_size) # Random self.rx_neg = np.random.normal(0.0, s, output_size) self.ry_neg = np.random.normal(0.0, s, output_size) self.rz_neg = np.random.normal(0.0, s, output_size) def set_cut(self, cut): self.cut = cut self.cut2 = cut*cut def get_rxyz(self): return self.rx_pos, self.ry_pos, self.rz_pos, self.rx_neg, self.ry_neg, self.rz_neg def feed_forward(self, a_in): """ Just scales the input by the charges Turned off for now """ return a_in, (self.get_rxyz()) def compute_bond_cost(self): dx = self.rx_pos - self.rx_neg dy = self.ry_pos - self.ry_neg dz = self.rz_pos - self.rz_neg dd = (np.sqrt(dx**2 + dy**2 + dz**2) - self.k_eq)**2 return 0.5 * self.k_bond * np.sum(dd) def compute_bond_cost_gradient(self): dx = self.rx_pos - self.rx_neg dy = self.ry_pos - self.ry_neg dz = self.rz_pos - self.rz_neg dd = np.sqrt(dx**2 + dy**2 + dz**2) tmp = self.k_bond * (dd - self.k_eq) / dd tx = tmp * dx ty = tmp * dy tz = tmp * dz return tx, ty, tz class ParticleDipole(object): """ Dipole approximated as 2 coupled charges of equal magnitude """ def __init__(self, input_size=0, output_size=0, activation="sigmoid", k_bond=1.0, k_eq=0.1, s=1.0, cut=3.0, q=None, b=None): self.input_size = input_size self.output_size = output_size self.activation_name = activation.lower() self.activation = Activation.get(activation) self.d_activation = Activation.get_d(activation) self.w = None # Harmonic constraint coefficient and equilibrium self.k_bond = k_bond self.k_eq = k_eq self.cut = cut self.cut2 = cut*cut # Weight initialization g = np.sqrt(2.0 / (input_size + output_size)) if b is None: b = g self.b = np.random.uniform(-b, b, (1, output_size)) # Charges if q is None: q = g # self.q = np.random.uniform(-q, q, output_size) self.q = np.random.choice([q, -q], size=output_size) # Positive charge positions self.rx_pos = np.random.uniform(-s, s, output_size) self.ry_pos = np.random.uniform(-s, s, output_size) self.rz_pos = np.random.uniform(-s, s, output_size) # Negative charge positions # Copy of positive charge position with small added noise # s = 1.1 * k_eq # self.rx_neg = np.copy(self.rx_pos) + np.random.uniform(-s, s, output_size) # self.ry_neg = np.copy(self.ry_pos) + np.random.uniform(-s, s, output_size) # self.rz_neg = np.copy(self.rz_pos) + np.random.uniform(-s, s, output_size) # Random self.rx_neg = np.random.uniform(-s, s, output_size) self.ry_neg = np.random.uniform(-s, s, output_size) self.rz_neg = np.random.uniform(-s, s, output_size) def set_cut(self, cut): self.cut = cut self.cut2 = cut*cut def compute_bond_cost(self): dx = self.rx_pos - self.rx_neg dy = self.ry_pos - self.ry_neg dz = self.rz_pos - self.rz_neg dd = (np.sqrt(dx**2 + dy**2 + dz**2) - self.k_eq)**2 return 0.5 * self.k_bond * np.sum(dd) def compute_bond_cost_gradient(self): dx = self.rx_pos - self.rx_neg dy = self.ry_pos - self.ry_neg dz = self.rz_pos - self.rz_neg dd = np.sqrt(dx**2 + dy**2 + dz**2) tmp = self.k_bond * (dd - self.k_eq) / dd tx = tmp * dx ty = tmp * dy tz = tmp * dz return tx, ty, tz def get_rxyz(self): return self.rx_pos, self.ry_pos, self.rz_pos, self.rx_neg, self.ry_neg, self.rz_neg def feed_forward(self, a_in, r_in): return self.compute_a(self.compute_z(a_in, r_in)), self.get_rxyz() def compute_z(self, a_in, r_in): """ Vectorized v2.0 :param a_in: :param r_in: :return: """ atrans = a_in.transpose() z = np.zeros((self.output_size, len(a_in))) r_in_x_pos = r_in[0] r_in_y_pos = r_in[1] r_in_z_pos = r_in[2] r_in_x_neg = r_in[3] r_in_y_neg = r_in[4] r_in_z_neg = r_in[5] for j in range(self.output_size): dx = r_in_x_pos - self.rx_pos[j] dy = r_in_y_pos - self.ry_pos[j] dz = r_in_z_pos - self.rz_pos[j] # potential = 1.0 / np.sqrt(dx**2 + dy**2 + dz**2) potential = np.exp(-(dx**2 + dy**2 + dz**2)) # d2 = dx**2 + dy**2 + dz**2 # potential = np.piecewise(d2, [d2 <= self.cut2, d2 > self.cut2], [lambda x: np.exp(-x), 0.0]) dx = r_in_x_pos - self.rx_neg[j] dy = r_in_y_pos - self.ry_neg[j] dz = r_in_z_pos - self.rz_neg[j] # potential += -1.0 / np.sqrt(dx**2 + dy**2 + dz**2) potential -= np.exp(-(dx**2 + dy**2 + dz**2)) # d2 = dx**2 + dy**2 + dz**2 # potential -= np.piecewise(d2, [d2 <= self.cut2, d2 > self.cut2], [lambda x: np.exp(-x), 0.0]) dx = r_in_x_neg - self.rx_pos[j] dy = r_in_y_neg - self.ry_pos[j] dz = r_in_z_neg - self.rz_pos[j] # potential += -1.0 / np.sqrt(dx**2 + dy**2 + dz**2) potential -= np.exp(-(dx**2 + dy**2 + dz**2)) # d2 = dx**2 + dy**2 + dz**2 # potential -= np.piecewise(d2, [d2 <= self.cut2, d2 > self.cut2], [lambda x: np.exp(-x), 0.0]) dx = r_in_x_neg - self.rx_neg[j] dy = r_in_y_neg - self.ry_neg[j] dz = r_in_z_neg - self.rz_neg[j] # potential += 1.0 / np.sqrt(dx**2 + dy**2 + dz**2) potential +=
np.exp(-(dx**2 + dy**2 + dz**2))
numpy.exp
from typing import Any import numpy as np import pandas as pd import pytest from etna.datasets import TSDataset from etna.transforms.math import MADTransform from etna.transforms.math import MaxTransform from etna.transforms.math import MeanTransform from etna.transforms.math import MedianTransform from etna.transforms.math import MinTransform from etna.transforms.math import QuantileTransform from etna.transforms.math import StdTransform @pytest.fixture def simple_df_for_agg() -> pd.DataFrame: n = 10 df = pd.DataFrame({"timestamp": pd.date_range("2020-01-01", periods=n)}) df["target"] = list(range(n)) df["segment"] = "segment_1" df = TSDataset.to_dataset(df) return df @pytest.fixture def df_for_agg() -> pd.DataFrame: n = 10 df = pd.DataFrame({"timestamp": pd.date_range("2020-01-01", periods=n)}) df["target"] = [-1, 1, 3, 2, 4, 9, 8, 5, 6, 0] df["segment"] = "segment_1" df = TSDataset.to_dataset(df) return df @pytest.fixture def df_for_agg_with_nan() -> pd.DataFrame: n = 10 df = pd.DataFrame({"timestamp": pd.date_range("2020-01-01", periods=n)}) df["target"] = [-1, 1, 3, None, 4, 9, 8, 5, 6, 0] df["segment"] = "segment_1" df = TSDataset.to_dataset(df) return df @pytest.mark.parametrize( "class_name,out_column", ( (MaxTransform, None), (MaxTransform, "test_max"), (MinTransform, None), (MinTransform, "test_min"), (MedianTransform, None), (MedianTransform, "test_median"), (MeanTransform, None), (MeanTransform, "test_mean"), (StdTransform, None), (StdTransform, "test_std"), (MADTransform, None), (MADTransform, "test_mad"), ), ) def test_interface_simple(simple_df_for_agg: pd.DataFrame, class_name: Any, out_column: str): transform = class_name(window=3, out_column=out_column, in_column="target") res = transform.fit_transform(df=simple_df_for_agg) result_column = out_column if out_column is not None else transform.__repr__() assert sorted(res["segment_1"]) == sorted([result_column] + ["target"]) @pytest.mark.parametrize("out_column", (None, "test_q")) def test_interface_quantile(simple_df_for_agg: pd.DataFrame, out_column: str): transform = QuantileTransform(quantile=0.7, window=4, out_column=out_column, in_column="target") res = transform.fit_transform(df=simple_df_for_agg) result_column = out_column if out_column is not None else transform.__repr__() assert sorted(res["segment_1"]) == sorted([result_column] + ["target"]) @pytest.mark.parametrize( "window,seasonality,alpha,periods,fill_na,expected", ( (10, 1, 1, 1, 0, np.array([0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4])), (-1, 1, 1, 1, 0, np.array([0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4])), (3, 1, 1, 1, -17, np.array([-17, 0, 0.5, 1, 2, 3, 4, 5, 6, 7])), (3, 1, 0.5, 1, -17, np.array([-17, 0, 0.5, 2.5 / 3, 4.25 / 3, 2, 7.75 / 3, 9.5 / 3, 11.25 / 3, 13 / 3])), (3, 1, 0.5, 3, -12, np.array([-12, -12, -12, 2.5 / 3, 4.25 / 3, 2, 7.75 / 3, 9.5 / 3, 11.25 / 3, 13 / 3])), (3, 2, 1, 1, -17, np.array([-17, 0, 1, 1, 2, 2, 3, 4, 5, 6])), ), ) def test_mean_feature( simple_df_for_agg: pd.DataFrame, window: int, seasonality: int, alpha: float, periods: int, fill_na: float, expected: np.array, ): transform = MeanTransform( window=window, seasonality=seasonality, alpha=alpha, min_periods=periods, fillna=fill_na, in_column="target", out_column="result", ) res = transform.fit_transform(simple_df_for_agg) res["expected"] = expected assert (res["expected"] == res["segment_1"]["result"]).all() @pytest.mark.parametrize( "window,seasonality,periods,fill_na,expected", ( (10, 1, 1, 0, np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])), (-1, 1, 1, 0, np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])), (3, 1, 1, -17, np.array([-17, 0, 0, 0, 1, 2, 3, 4, 5, 6])), (3, 2, 1, -17, np.array([-17, 0, 1, 0, 1, 0, 1, 2, 3, 4])), ), ) def test_min_feature( simple_df_for_agg: pd.DataFrame, window: int, seasonality: int, periods: int, fill_na: float, expected: np.array ): transform = MinTransform( window=window, seasonality=seasonality, min_periods=periods, fillna=fill_na, in_column="target", out_column="result", ) res = transform.fit_transform(simple_df_for_agg) res["expected"] = expected assert (res["expected"] == res["segment_1"]["result"]).all() @pytest.mark.parametrize( "window,periods,fill_na,expected", ( (10, 1, 0, np.array([0, 0, 1, 2, 3, 4, 5, 6, 7, 8])), (-1, 1, 0, np.array([0, 0, 1, 2, 3, 4, 5, 6, 7, 8])), (3, 2, -17, np.array([-17, -17, 1, 2, 3, 4, 5, 6, 7, 8])), ), ) def test_max_feature(simple_df_for_agg: pd.DataFrame, window: int, periods: int, fill_na: float, expected: np.array): transform = MaxTransform( window=window, min_periods=periods, fillna=fill_na, in_column="target", out_column="result" ) res = transform.fit_transform(simple_df_for_agg) res["expected"] = expected assert (res["expected"] == res["segment_1"]["result"]).all() @pytest.mark.parametrize( "window,periods,fill_na,expected", ( (3, 3, -17, np.array([-17, -17, -17, 1, 2, 3, 4, 5, 6, 7])), (-1, 1, -17, np.array([-17, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4])), ), ) def test_median_feature(simple_df_for_agg: pd.DataFrame, window: int, periods: int, fill_na: float, expected: np.array): transform = MedianTransform( window=window, min_periods=periods, fillna=fill_na, in_column="target", out_column="result" ) res = transform.fit_transform(simple_df_for_agg) res["expected"] = expected assert (res["expected"] == res["segment_1"]["result"]).all() @pytest.mark.parametrize( "window,periods,fill_na,expected", ( (3, 3, -17, np.array([-17, -17, -17, 1, 1, 1, 1, 1, 1, 1])), (3, 1, -17, np.array([-17, -17, np.sqrt(0.5 ** 2 * 2), 1, 1, 1, 1, 1, 1, 1])), ), ) def test_std_feature(simple_df_for_agg: pd.DataFrame, window: int, periods: int, fill_na: float, expected: np.array): transform = StdTransform( window=window, min_periods=periods, fillna=fill_na, in_column="target", out_column="result" ) res = transform.fit_transform(simple_df_for_agg) res["expected"] = expected assert (res["expected"] == res["segment_1"]["result"]).all() @pytest.mark.parametrize( "window,periods,fill_na,expected", ( (3, 3, -17, [-17, -17, -17, 4 / 3, 2 / 3, 2 / 3, 8 / 3, 2, 14 / 9, 10 / 9]), (4, 1, -17, [-17, 0, 1, 4 / 3, 1.25, 1, 2.25, 2.75, 2, 1.5]), (-1, 1, 0, [0, 0, 1, 4 / 3, 1.25, 1.44, 7 / 3, 138 / 49, 2.625, 208 / 81]), ), ) def test_mad_transform(df_for_agg: pd.DataFrame, window: int, periods: int, fill_na: float, expected: np.ndarray): transform = MADTransform( window=window, min_periods=periods, fillna=fill_na, in_column="target", out_column="result" ) res = transform.fit_transform(df_for_agg) np.testing.assert_array_almost_equal(expected, res["segment_1"]["result"]) @pytest.mark.parametrize( "window,periods,fill_na,expected", ((3, 3, -17, [-17, -17, -17, 4 / 3, -17, -17, -17, 2, 14 / 9, 10 / 9]),), ) def test_mad_transform_with_nans( df_for_agg_with_nan: pd.DataFrame, window: int, periods: int, fill_na: float, expected: np.ndarray ): transform = MADTransform( window=window, min_periods=periods, fillna=fill_na, in_column="target", out_column="result" ) res = transform.fit_transform(df_for_agg_with_nan)
np.testing.assert_array_almost_equal(expected, res["segment_1"]["result"])
numpy.testing.assert_array_almost_equal
import cv2 as cv import argparse import numpy as np import sys backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE) targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL) parser = argparse.ArgumentParser(description='Use this script to run semantic segmentation deep learning networks using OpenCV.') parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') parser.add_argument('--model', required=True, help='Path to a binary file of model contains trained weights. ' 'It could be a file with extensions .caffemodel (Caffe), ' '.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet)') parser.add_argument('--config', help='Path to a text file of model contains network configuration. ' 'It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet)') parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'], help='Optional name of an origin framework of the model. ' 'Detect it automatically if it does not set.') parser.add_argument('--classes', help='Optional path to a text file with names of classes.') parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. ' 'An every color is represented with three values from 0 to 255 in BGR channels order.') parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0], help='Preprocess input image by subtracting mean values. ' 'Mean values should be in BGR order.') parser.add_argument('--scale', type=float, default=1.0, help='Preprocess input image by multiplying on a scale factor.') parser.add_argument('--width', type=int, required=True, help='Preprocess input image by resizing to a specific width.') parser.add_argument('--height', type=int, required=True, help='Preprocess input image by resizing to a specific height.') parser.add_argument('--rgb', action='store_true', help='Indicate that model works with RGB input images instead BGR ones.') parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, help="Choose one of computation backends: " "%d: default C++ backend, " "%d: Halide language (http://halide-lang.org/), " "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit)" % backends) parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, help='Choose one of target computation devices: ' '%d: CPU target (by default), ' '%d: OpenCL' % targets) args = parser.parse_args() np.random.seed(324) # Load names of classes classes = None if args.classes: with open(args.classes, 'rt') as f: classes = f.read().rstrip('\n').split('\n') # Load colors colors = None if args.colors: with open(args.colors, 'rt') as f: colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')] legend = None def showLegend(classes): global legend if not classes is None and legend is None: blockHeight = 30 assert(len(classes) == len(colors)) legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8) for i in range(len(classes)): block = legend[i * blockHeight:(i + 1) * blockHeight] block[:,:] = colors[i] cv.putText(block, classes[i], (0, blockHeight/2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) cv.namedWindow('Legend', cv.WINDOW_NORMAL) cv.imshow('Legend', legend) classes = None # Load a network net = cv.dnn.readNet(args.model, args.config, args.framework) net.setPreferableBackend(args.backend) net.setPreferableTarget(args.target) winName = 'Deep learning image classification in OpenCV' cv.namedWindow(winName, cv.WINDOW_NORMAL) cap = cv.VideoCapture(args.input if args.input else 0) legend = None while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: cv.waitKey() break # Create a 4D blob from a frame. blob = cv.dnn.blobFromImage(frame, args.scale, (args.width, args.height), args.mean, args.rgb, crop=False) # Run a model net.setInput(blob) score = net.forward() numClasses = score.shape[1] height = score.shape[2] width = score.shape[3] # Draw segmentation if not colors: # Generate colors colors = [np.array([0, 0, 0], np.uint8)] for i in range(1, numClasses): colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2) classIds =
np.argmax(score[0], axis=0)
numpy.argmax
""" Dataset loader for the Charades-STA dataset """ import os import csv import h5py import numpy as np import torch from torch import nn import torch.nn.functional as F import torch.utils.data as data import torchtext from . import average_to_fixed_length from core.eval import iou from core.config import config import datasets class Charades(data.Dataset): vocab = torchtext.vocab.pretrained_aliases["glove.6B.300d"]() vocab.itos.extend(['<unk>']) vocab.stoi['<unk>'] = vocab.vectors.shape[0] vocab.vectors = torch.cat([vocab.vectors, torch.zeros(1, vocab.dim)], dim=0) word_embedding = nn.Embedding.from_pretrained(vocab.vectors) def __init__(self, split, rand_clip=False, training=False): super(Charades, self).__init__() self.vis_input_type = config.DATASET.VIS_INPUT_TYPE self.data_dir = config.DATA_DIR self.split = split self.durations = {} with open(os.path.join(self.data_dir, 'Charades_v1_{}.csv'.format(split))) as f: reader = csv.DictReader(f) for row in reader: self.durations[row['id']] = float(row['length']) anno_file = open(os.path.join(self.data_dir, "charades_sta_{}.txt".format(self.split)), 'r') annotations = [] for line in anno_file: anno, sent = line.split("##") sent = sent.split('.\n')[0] vid, s_time, e_time = anno.split(" ") s_time = float(s_time) e_time = min(float(e_time), self.durations[vid]) if s_time < e_time: annotations.append( {'video': vid, 'times': [s_time, e_time], 'description': sent, 'duration': self.durations[vid]}) anno_file.close() self.annotations = annotations self.rand_clip = rand_clip def __getitem__(self, index): video_id = self.annotations[index]['video'] gt_s_time, gt_e_time = self.annotations[index]['times'] description = self.annotations[index]['description'] duration = self.durations[video_id] word_idxs = torch.tensor([self.vocab.stoi.get(w.lower(), 400000) for w in description.split()], dtype=torch.long) word_vectors = self.word_embedding(word_idxs) visual_input, visual_mask = self.get_video_features(video_id) if self.rand_clip: visual_input, duration, gt_s_time, gt_e_time = random_clip(visual_input, duration, gt_s_time, gt_e_time) # Time scaled to fixed size # visual_input = sample_to_fixed_length(visual_input, random_sampling=True) # visual_input = interpolate_to_fixed_length(visual_input) visual_input = average_to_fixed_length(visual_input) num_clips = config.DATASET.NUM_SAMPLE_CLIPS // config.DATASET.TARGET_STRIDE # 16 s_times = torch.arange(0, num_clips).float() * duration / num_clips e_times = torch.arange(1, num_clips + 1).float() * duration / num_clips overlaps = iou(torch.stack([s_times[:, None].expand(-1, num_clips), e_times[None, :].expand(num_clips, -1)], dim=2).view(-1, 2).tolist(), torch.tensor([gt_s_time, gt_e_time]).tolist()).reshape(num_clips, num_clips) gt_s_idx = np.argmax(overlaps) // num_clips gt_e_idx =
np.argmax(overlaps)
numpy.argmax
import nixio import numpy as np import matplotlib.pyplot as plt def record_data(samples, channels, dt): data =
np.zeros((samples, channels))
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Fri Jan 8 12:35:52 2021 @author: harik """ import os import numpy as np import pandas as pd import scipy from scipy.io import wavfile from numpy.fft import fft from sklearn.model_selection import train_test_split import logging def get_data(DATA_NAME): if DATA_NAME == "Jackson-speech": source = 'free-spoken-digit-dataset/free-spoken-digit-dataset-master/FSDD/'+DATA_NAME+'/' data_instances = len(os.listdir(source)) labels = np.zeros((data_instances, 1), dtype='int') data_length = [] for fileno, filename in enumerate(os.listdir(source)): sampling_frequency, data = wavfile.read(os.path.join(source,filename)) data_length.append(len(data)) input_features = np.min(data_length) fourier_data = np.zeros((data_instances, input_features)) normal_data = np.zeros((data_instances, input_features)) # Applying FFT for fileno, filename in enumerate(os.listdir(source)): sampling_frequency, data = wavfile.read(os.path.join(source,filename)) data_length.append(len(data)) normal_data[fileno, :] = data[0:input_features] fourier_data[fileno, :] = np.abs(fft(data[0:input_features])) labels[fileno, 0] = filename[0] ''' if preprocessing == "fourier": DATA = fourier_data elif preprocessing == "no-preprocessing": DATA = normal_data ''' DATA = fourier_data X_TRAIN, X_TEST, Y_TRAIN, Y_TEST = train_test_split(DATA, labels, test_size=0.2, random_state=21) X_TRAIN_NORM = ((X_TRAIN.T - np.min(X_TRAIN, axis = 1))/(np.max(X_TRAIN, axis= 1) - np.min(X_TRAIN, axis = 1))).T X_TEST_NORM = ((X_TEST.T - np.min(X_TEST, axis = 1))/(np.max(X_TEST, axis= 1) - np.min(X_TEST, axis = 1))).T print("Shape of Train data: ", X_TRAIN_NORM.shape) print("Shape of Test data: ", X_TEST_NORM.shape) return X_TRAIN_NORM, Y_TRAIN, X_TEST_NORM, Y_TEST elif DATA_NAME == "concentric_circle": folder_path = "Data/" + DATA_NAME + "/" # Load Train data X_train = np.array( pd.read_csv(folder_path+"X_train.csv", header = None) ) # Load Train label trainlabel = np.array( pd.read_csv(folder_path+"y_train.csv", header = None) ) # Load Test data X_test = np.array( pd.read_csv(folder_path+"X_test.csv", header = None) ) # Load Test label testlabel = np.array( pd.read_csv(folder_path+"y_test.csv", header = None) ) ## Data_normalization - A Compulsory step # Normalization is done along each column X_train_norm = (X_train - np.min(X_train, 0))/(np.max(X_train, 0) - np.min(X_train, 0)) X_test_norm = (X_test - np.min(X_test, 0))/(np.max(X_test, 0) - np.min(X_test, 0)) try: assert np.min(X_train_norm) >= 0.0 and np.max(X_train_norm <= 1.0) except AssertionError: logging.error("Train Data is NOT normalized. Hint: Go to get_data() function and normalize the data to lie in the range [0, 1]", exc_info=True) try: assert np.min(X_test_norm) >= 0.0 and np.max(X_test_norm <= 1.0) except AssertionError: logging.error("Test Data is NOT normalized. Hint: Go to get_data() function and normalize the data to lie in the range [0, 1]", exc_info=True) return X_train_norm, trainlabel, X_test_norm, testlabel elif DATA_NAME == "concentric_circle_noise": folder_path = "Data/" + DATA_NAME + "/" # Load Train data X_train = np.array( pd.read_csv(folder_path+"X_train.csv", header = None) ) # Load Train label trainlabel = np.array( pd.read_csv(folder_path+"y_train.csv", header = None) ) # Load Test data X_test = np.array( pd.read_csv(folder_path+"X_test.csv", header = None) ) # Load Test label testlabel = np.array( pd.read_csv(folder_path+"y_test.csv", header = None) ) ## Data_normalization - A Compulsory step # Normalization is done along each column X_train_norm = (X_train - np.min(X_train, 0))/(np.max(X_train, 0) - np.min(X_train, 0)) X_test_norm = (X_test - np.min(X_test, 0))/(np.max(X_test, 0) - np.min(X_test, 0)) try: assert np.min(X_train_norm) >= 0.0 and np.max(X_train_norm <= 1.0) except AssertionError: logging.error("Train Data is NOT normalized. Hint: Go to get_data() function and normalize the data to lie in the range [0, 1]", exc_info=True) try: assert np.min(X_test_norm) >= 0.0 and np.max(X_test_norm <= 1.0) except AssertionError: logging.error("Test Data is NOT normalized. Hint: Go to get_data() function and normalize the data to lie in the range [0, 1]", exc_info=True) return X_train_norm, trainlabel, X_test_norm, testlabel elif DATA_NAME == "single_variable_classification": t = 0*np.linspace(0,1,100) np.random.seed(42) class_0 = np.random.rand(100, 1) * 0.499
np.random.seed(32)
numpy.random.seed
from scipy import ndimage import tensorflow as tf from spatial_transformer import AffineVolumeTransformer import numpy as np import scipy.misc import binvox_rw import sys def read_binvox(f): class Model: pass model = Model() line = f.readline().strip() if not line.startswith(b'#binvox'): raise IOError('Not a binvox file') model.dims = list(map(int, f.readline().strip().split(b' ')[1:])) model.translate = list(map(float, f.readline().strip().split(b' ')[1:])) model.scale = float(f.readline().strip().split(b' ')[1]) _ = f.readline() raw_data = np.frombuffer(f.read(), dtype=np.uint8) values, counts = raw_data[::2], raw_data[1::2] # xzy (binvox) -> zyx (tensorflow) model.data = np.transpose(np.repeat(values, counts).astype(np.bool).reshape(model.dims), (1,2,0)) # zxy -> zyx (should all be equal, so doesn't matter) model.dims = [model.dims[i] for i in [0,2,1]] return model def write_binvox(model, f): f.write(b'#binvox 1\n') f.write(('dim '+' '.join(map(str, [model.dims[i] for i in [0,2,1]]))+'\n').encode()) f.write(('translate '+' '.join(map(str, model.translate))+'\n').encode()) f.write(('scale'+str(model.scale)+'\n').encode()) f.write(b'data\n') # zyx (tensorflow) -> xzy (binvox) voxels =
np.transpose(model.data, (2, 0, 1))
numpy.transpose
#!/usr/bin/python # encoding: utf-8 """ @author: Ian @contact:<EMAIL> @file: model3.py @time: 2019/2/27 14:48 """ import pandas as pd from mayiutils.file_io.os_wrapper import OsWrapper as osw from mayiutils.file_io.pickle_wrapper import PickleWrapper as pkw import numpy as np import cv2 from keras.utils import np_utils # from keras.layers import Dense,Dropout,Convolution3D,MaxPooling3D,Flatten # from keras.optimizers import Adam from tensorflow.keras.layers import Conv3D, MaxPooling3D, Flatten, Dense from tensorflow.keras.optimizers import Adam from keras.utils import Sequence from keras.callbacks import TensorBoard from keras.callbacks import ModelCheckpoint from keras.callbacks import ReduceLROnPlateau import sys class DataGenerator(Sequence): def __init__(self, batch_size, filepath, imgsize=128, maxSlicesNum=587, clip1=96, clip2=384): self._batch_size = batch_size self._filepath = filepath self._imgsize = imgsize self._maxSlicesNum = maxSlicesNum self._clip1 = clip1 self._clip2 = clip2 def __len__(self): return 3500 def __getitem__(self, index): print('index:{}'.format(index)) return self.dataGeneration(index) def dataGeneration(self, index): filepath = self._filepath imgsize = self._imgsize maxSlicesNum = self._maxSlicesNum clip1 = self._clip1 clip2 = self._clip2 train_set = list() train_label = list() df1 = pd.read_csv(osw.join(filepath, 'train1_label.csv')) df2 = pd.read_csv(osw.join(filepath, 'train2_label.csv')) df = pd.concat([df1, df2]) for i in range(self._batch_size): num1 = index*self._batch_size+i aa = 'train1' if num1 > (df1.shape[0]-1): aa = 'train2' imagepath1 = osw.join(filepath, aa + '_jpg', df.iloc[num1, 0]) num = len(osw.listDir(imagepath1)) if num < maxSlicesNum: destArr = np.zeros(((maxSlicesNum - num) // 2, imgsize, imgsize)) else: destArr = np.array([-1]) for i in osw.listDir(imagepath1): img = cv2.imread(osw.join(imagepath1, i), cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (imgsize, imgsize)) if np.all(destArr == -1): destArr = np.array([img]) else: destArr = np.vstack((destArr, np.array([img]))) if destArr.shape[0] < maxSlicesNum: destArr = np.vstack((destArr, np.zeros(((maxSlicesNum - destArr.shape[0]), imgsize, imgsize)))) elif destArr.shape[0] > maxSlicesNum: destArr = destArr[:maxSlicesNum, :, :] train_set.append(destArr[:clip2, :clip1, :clip1]) train_label.append(df.iloc[num1, 1]) train_set.append(destArr[:clip2, -1 * clip1:, :clip1]) train_label.append(df.iloc[num1, 1]) train_set.append(destArr[:clip2, -1 * clip1:, -1 * clip1:]) train_label.append(df.iloc[num1, 1]) train_set.append(destArr[:clip2, :clip1:, -1 * clip1:]) train_label.append(df.iloc[num1, 1]) train_set.append(destArr[-clip2:, :clip1, :clip1]) train_label.append(df.iloc[num1, 1]) train_set.append(destArr[-clip2:, -1 * clip1:, :clip1]) train_label.append(df.iloc[num1, 1]) train_set.append(destArr[-clip2:, -1 * clip1:, -1 * clip1:]) train_label.append(df.iloc[num1, 1]) train_set.append(destArr[-clip2:, :clip1:, -1 * clip1:]) train_label.append(df.iloc[num1, 1]) # 打乱数据 permutation = np.random.permutation(np.array(train_set).shape[0]) train_set = np.array(train_set)[permutation, :, :] train_label = np.array(train_label)[permutation] train_arr = train_set.reshape(-1, clip2, clip1, clip1, 1) train_label1 = np_utils.to_categorical(train_label, num_classes=2) train_arr = train_arr / 255.0 return train_arr, train_label1 class Model: def loadValData(self, filepath, imgsize=128, maxSlicesNum=587, clip1=96, clip2=384): train_set = list() train_label = list() for f in ['train2_label.csv']: df = pd.read_csv(osw.join(filepath, f)) count1 = 0 for line in df.itertuples(): # 每个csv的前150条数据不参加训练,留作验证集 if count1 < 3400: count1 += 1 continue print('val{}_{}'.format(f, count1)) count1 += 1 imagepath1 = osw.join(filepath, f.split('_')[0]+'_jpg', line[1]) num = len(osw.listDir(imagepath1)) if num < maxSlicesNum: destArr = np.zeros(((maxSlicesNum - num) // 2, imgsize, imgsize)) else: destArr = np.array([-1]) for i in osw.listDir(imagepath1): img = cv2.imread(osw.join(imagepath1, i), cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (imgsize, imgsize)) if np.all(destArr == -1): destArr = np.array([img]) else: destArr = np.vstack((destArr, np.array([img]))) if destArr.shape[0] < maxSlicesNum: destArr = np.vstack((destArr, np.zeros(((maxSlicesNum - destArr.shape[0]), imgsize, imgsize)))) elif destArr.shape[0] > maxSlicesNum: destArr = destArr[:maxSlicesNum, :, :] train_set.append(destArr[:clip2, :clip1, :clip1]) train_label.append(line[2]) # train_set.append(destArr[:clip2, -1*clip1:, :clip1]) # train_label.append(line[2]) train_set = np.array(train_set) train_label = np.array(train_label) train_arr = train_set.reshape(-1, clip2, clip1, clip1, 1) train_arr = train_arr / 255.0 train_label1 = np_utils.to_categorical(train_label, num_classes=2) return (train_arr, train_label1) def trainDataGenerator(self, filepath, imgsize=128, maxSlicesNum=587, clip1=96, clip2=384): count0 = 0 train_set = list() train_label = list() while True: for f in ['train1_label.csv', 'train2_label.csv']: df = pd.read_csv(osw.join(filepath, f)) count1 = 0 for line in df.itertuples(): # 每个csv的前150条数据不参加训练,留作验证集 if count1 < 150: count1 += 1 continue print('{}_{}'.format(f, count1)) count1 += 1 imagepath1 = osw.join(filepath, f.split('_')[0]+'_jpg', line[1]) num = len(osw.listDir(imagepath1)) if num < maxSlicesNum: destArr = np.zeros(((maxSlicesNum - num) // 2, imgsize, imgsize)) else: destArr = np.array([-1]) for i in osw.listDir(imagepath1): img = cv2.imread(osw.join(imagepath1, i), cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (imgsize, imgsize)) if np.all(destArr == -1): destArr = np.array([img]) else: destArr = np.vstack((destArr, np.array([img]))) if destArr.shape[0] < maxSlicesNum: destArr = np.vstack((destArr, np.zeros(((maxSlicesNum - destArr.shape[0]), imgsize, imgsize)))) elif destArr.shape[0] > maxSlicesNum: destArr = destArr[:maxSlicesNum, :, :] train_set.append(destArr[:clip2, :clip1, :clip1]) train_label.append(line[2]) train_set.append(destArr[:clip2, -1*clip1:, :clip1]) train_label.append(line[2]) train_set.append(destArr[:clip2, -1*clip1:, -1*clip1:]) train_label.append(line[2]) train_set.append(destArr[:clip2, :clip1:, -1*clip1:]) train_label.append(line[2]) train_set.append(destArr[-clip2:, :clip1, :clip1]) train_label.append(line[2]) train_set.append(destArr[-clip2:, -1*clip1:, :clip1]) train_label.append(line[2]) train_set.append(destArr[-clip2:, -1*clip1:, -1*clip1:]) train_label.append(line[2]) train_set.append(destArr[-clip2:, :clip1:, -1*clip1:]) train_label.append(line[2]) if count0 == 1: #打乱数据 permutation = np.random.permutation(np.array(train_set).shape[0]) train_set =
np.array(train_set)
numpy.array
import numpy as np from optools import precompute_ops from cy.tensorutils import atensorcontract #from cy.wftools import spf_innerprod,overlap_matrices2,compute_projector # TODO this also needs to be generalized to many-mode operators def compute_expect(op,wf,pbfs): """Computes the expectation value of a generic operator. """ # get wf info nmodes = wf.nmodes nel = wf.nel nspfs = wf.nspfs npbfs = wf.npbfs spfstart = wf.spfstart spfend = wf.spfend psistart = wf.psistart psiend = wf.psiend psi = wf.psi # reshpae y into A tensor and spfs A = np.zeros(2, dtype=np.ndarray) spfs = np.zeros(2, dtype=np.ndarray) for alpha in range(nel): shaper = () for mode in range(nmodes): shaper += (nspfs[alpha,mode],) # set A ind0 = psistart[0,alpha] indf = psiend[0,alpha] A[alpha] =
np.reshape(wf.psi[ind0:indf], shaper, order='C')
numpy.reshape
import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider import matplotlib.animation as animation # to get the distance of wave # y = kx + b # ax+by+cz+d = 0 class F: def __init__(self, a, b, c, d): self.a = a self.b = b self.c = c self.d = d def distance(self, x, y, z): return np.abs((self.a*x + self.b*y+self.c*z+self.d)/(np.sqrt(self.a**2+self.b**2+self.c**2))) # become real axic def axic(x, y, z): _x = x * _w / _N _y = y * _l / _M _z = z * _h / _O return _x, _y, _z # var L = 9 # const var _pi = 3.1415926 # wave _u = 343 _v = 40000 _lambda = _u / _v _w = 2*_pi*_v # degree _N, _M, _O = 20, 20, 20 # create zero array array = np.zeros((_N, _M, _O)) # length _l = L * _lambda / 2 _w = L * _lambda / 2 _h = L * _lambda / 2 f1 = F(0, 0, 1, 0) f2 = F(0, 0, 1, -_h) for i in range(0, _N): for j in range(0, _M): for k in range(0, _O): _x, _y, _z = axic(i, j, k) array[i][j][k] = _pi * (f1.distance(_x, _y, _z)+_lambda/2-f2.distance(_x, _y, _z)) / _lambda array = np.cos(array) array =
np.abs(array)
numpy.abs
"""Functions for calculating the accuracy of individual units on the template motifs for this project""" from __future__ import absolute_import from __future__ import print_function import pickle import pandas as pd import numpy as np from joblib import Parallel, delayed from sklearn.cross_validation import StratifiedKFold from sklearn.linear_model import LogisticRegression import morphs CLUSTER_ACCURACY_CUTOFF = 0.6 def cluster_accuracy( cluster, cluster_group, morph_dims, max_num_reps, n_folds=10, n_dim=50, tau=0.01, stim_length=0.4, ): """Helper function to calculate the pairwise classification accuracy of template motifs""" accuracies = pd.DataFrame( index=np.arange(len(morph_dims) * n_folds), columns=["cluster", "morph", "i", "accuracy"], ) filtered_responses = {} for motif, motif_group in cluster_group.groupby("stim_id"): trial_groups = motif_group.groupby(["recording", "stim_presentation"]) filtered_responses[motif] = trial_groups["stim_aligned_time"].apply( lambda x: morphs.spikes.filtered_response(x.values, tau=tau) ) t = np.linspace(0, stim_length, n_dim) x = {} for motif in "abcdefgh": x[motif] =
np.zeros((max_num_reps, n_dim))
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Fri Jun 19 13:16:25 2015 @author: hbanks Brevity required, prudence preferred """ import os import io import glob import errno import copy import json import time import warnings import numpy as np from scipy.optimize import curve_fit import scipy.interpolate as spi import scipy.optimize as spo import scipy.integrate as intgt import scipy.fftpack as fft import scipy.special as spl import matplotlib.pyplot as plt import scipy.ndimage as ndimage import itertools as itt import multiprocessing as mp import sys sys.path.append('/Users/marketing/Desktop/HSG-turbo/') import hsganalysis.QWPProcessing as qwp from hsganalysis.QWPProcessing.extractMatrices import makeT,saveT np.set_printoptions(linewidth=500) # One of the main results is the HighSidebandCCD.sb_results array. These are the # various mappings between index and real value # I deally, this code should be converted to pandas to avoid this issue, # but that's outside the scope of current work. # [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] # [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] class sbarr(object): SBNUM = 0 CENFREQ = 1 CENFREQERR = 2 AREA = 3 AREAERR = 4 WIDTH = 5 WIDTHERR = 6 #################### # Objects #################### class CCD(object): def __init__(self, fname, spectrometer_offset=None): """ This will read the appropriate file and make a basic CCD object. Fancier things will be handled with the sub classes. Creates: self.parameters = Dictionary holding all of the information from the data file, which comes from the JSON encoded header in the data file self.description = string that is the text box from data taking GUI self.raw_data = raw data output by measurement software, wavelength vs. data, errors. There may be text for some of the entries corresponding to text used for Origin imports, but they should appear as np.nan self.ccd_data = semi-processed 1600 x 3 array of photon energy vs. data with standard error of mean at that pixel calculated by taking multiple images. Standard error is calculated from the data collection software Most subclasses should make a self.proc_data, which will do whatever processing is required to the ccd_data, such as normalizing, taking ratios, etc. :param fname: file name where the data is saved :type fname: str :param spectrometer_offset: if the spectrometer won't go where it's told, use this to correct the wavelengths (nm) :type spectrometer_offset: float """ self.fname = fname # Checking restrictions from Windows path length limits. Check if you can # open the file: try: with open(fname) as f: pass except FileNotFoundError: # Couldn't find the file. Could be you passed the wrong one, but I'm # finding with a large number of subfolders for polarimetry stuff, # you end up exceeding Windows' filelength limit. # Haven't tested on Mac or UNC moutned drives (e.g \\128.x.x.x\Sherwin\) fname = r"\\?\\" + os.path.abspath(fname) # Read in the JSON-formatted parameter string. # The lines are all prepended by '#' for easy numpy importing # so loop over all those lines with open(fname, 'r') as f: param_str = '' line = f.readline() while line[0] == '#': ### changed 09/17/18 # This line assumed there was a single '#' # param_str += line[1:] # while this one handles everal (because I found old files # which had '## <text>...' param_str += line.replace("#", "") line = f.readline() # Parse the JSON string try: self.parameters = json.loads(param_str) except json.JSONDecodeError: # error from _really_ old data where comments were dumped after a # single-line json dumps self.parameters=json.loads(param_str.splitlines()[0]) # Spec[trometer] steps are set to define the same physical data, but taken at # different spectrometer center wavelengths. This value is used later # for stitching these scans together try: self.parameters["spec_step"] = int(self.parameters["spec_step"]) except (ValueError, KeyError): # If there isn't a spe self.parameters["spec_step"] = 0 # Slice through 3 to get rid of comments/origin info. # Would likely be better to check np.isnan() and slicing out those nans. # I used flipup so that the x-axis is an increasing function of frequency self.raw_data = np.flipud(np.genfromtxt(fname, comments='#', delimiter=',')[3:]) # The camera chip is 1600 pixels wide. This line was redudent with the [3:] # slice above and served to make sure there weren't extra stray bad lines # hanging around. # # This should also be updated some day to compensate for any horizontal bining # on the chip, or masking out points that are bad (cosmic ray making it # through processing, room lights or monitor lines interfering with signal) self.ccd_data = np.array(self.raw_data[:1600, :]) # Check to see if the spectrometer offset is set. This isn't specified # during data collection. This is a value that can be appended # when processing if it's realized the data is offset. # This allows the offset to be specified and kept with the data file itself, # instead of trying to do it in individual processing scripts # # It's allowed as a kwarg parameter in this script for trying to determine # what the correct offset should be if spectrometer_offset is not None or "offset" in self.parameters: try: self.ccd_data[:, 0] += float(self.parameters["offset"]) except: self.ccd_data[:, 0] += spectrometer_offset # Convert from nm to eV # self.ccd_data[:, 0] = 1239.84 / self.ccd_data[:, 0] self.ccd_data[:, 0] = photon_converter["nm"]["eV"](self.ccd_data[:, 0]) class Photoluminescence(CCD): def __init__(self, fname): """ This object handles PL-type data. The only distinction from the parent class is that the CCD data gets normalized to the exposure time to make different exposures directly comparable. creates: self.proc_data = self.ccd_data divided by the exposure time units: PL counts / second :param fname: name of the file :type fname: str """ super(Photoluminescence, self).__init__(fname) # Create a copy of the array , and then normalize the signal and the errors # by the exposure time self.proc_data = np.array(self.ccd_data) self.proc_data[:, 1] = self.proc_data[:, 1] / self.parameters['exposure'] self.proc_data[:, 2] = self.proc_data[:, 2] / self.parameters['exposure'] class Absorbance(CCD): def __init__(self, fname): """ There are several ways Absorbance data can be loaded You could try to load the abs data output from data collection directly, which has the wavelength, raw, blank and actual absorbance data itself. This is best way to do it. Alternatively, you could want to load the raw transmission/reference data, ignoring (or maybe not even having) the abs calculated from the data collection software. If you want to do it this way, you should pass fname as a list where the first element is the file name for the reference data, and the second is the absorbance data At first, it didn't really seem to make sense to let you pass just the raw reference or raw abs data, Creates: self.ref_data = np array of the reference, freq (eV) vs. reference (counts) self.raw_data = np.array of the raw absorption spectrum, freq (eV) vs. reference (counts) self.proc_data = np.array of the absorption spectrum freq (eV) vs. "absorbance" (dB) Note, the error bars for this data haven't been defined. :param fname: either an absorbance filename, or a length 2 list of filenames :type fname: str :return: None """ if "abs_" in fname: super(Absorbance, self).__init__(fname) # Separate into the separate data sets # The raw counts of the reference data self.ref_data = np.array(self.ccd_data[:, [0, 1]]) # Raw counts of the sample self.raw_data = np.array(self.ccd_data[:, [0, 2]]) # The calculated absorbance data (-10*log10(raw/ref)) self.proc_data = np.array(self.ccd_data[:, [0, 3]]) # Already in dB's else: # Should be here if you pass the reference/trans filenames try: super(Absorbance, self).__init__(fname[0]) self.ref_data = np.array(self.ccd_data) super(Absorbance, self).__init__(fname[1]) self.raw_data = np.array(self.ccd_data) except ValueError: # ValueError gets thrown when importing older data # which had more headers than data columns. Enforce # only loading first two columns to avoid numpy trying # to parse all of the data # See CCD.__init__ for what's going on. self.ref_data = np.flipud(np.genfromtxt(fname[0], comments='#', delimiter=',', usecols=(0, 1))) self.ref_data = np.array(self.ref_data[:1600, :]) self.ref_data[:, 0] = 1239.84 / self.ref_data[:, 0] self.raw_data = np.flipud(np.genfromtxt(fname[1], comments='#', delimiter=',', usecols=(0, 1))) self.raw_data = np.array(self.raw_data[:1600, :]) self.raw_data[:, 0] = 1239.84 / self.raw_data[:, 0] except Exception as e: print("Exception opening absorbance data,", e) # Calculate the absorbance from the raw camera counts. self.proc_data = np.empty_like(self.ref_data) self.proc_data[:, 0] = self.ref_data[:, 0] self.proc_data[:, 1] = -10*np.log10(self.raw_data[:, 1] / self.ref_data[:, 1]) def abs_per_QW(self, qw_number): """ :param qw_number: number of quantum wells in the sample. :type qw_number: int :return: None """ """ This method turns the absorption to the absorbance per quantum well. Is that how this data should be reported? Also, I'm not sure if columns 1 and 2 are correct. """ temp_abs = -np.log(self.proc_data[:, 1] / self.proc_data[:, 2]) / qw_number self.proc_data = np.hstack((self.proc_data, temp_abs)) def fft_smooth(self, cutoff, inspectPlots=False): """ This function removes the Fabry-Perot that affects the absorption data creates: self.clean = np.array of the Fourier-filtered absorption data, freq (eV) vs. absorbance (dB!) self.parameters['fourier cutoff'] = the low pass cutoff frequency, in eV**(-1) :param cutoff: Fourier frequency of the cut off for the low pass filter :type cutoff: int or float :param inspectPlots: Do you want to see the results? :type inspectPlots: bool :return: None """ # self.fixed = -np.log10(abs(self.raw_data[:, 1]) / abs(self.ref_data[:, 1])) # self.fixed = np.nan_to_num(self.proc_data[:, 1]) # self.fixed = np.column_stack((self.raw_data[:, 0], self.fixed)) self.parameters['fourier cutoff'] = cutoff self.clean = low_pass_filter(self.proc_data[:, 0], self.proc_data[:, 1], cutoff, inspectPlots) def save_processing(self, file_name, folder_str, marker='', index=''): """ This bad boy saves the absorption spectrum that has been manipulated. Saves 100 lines of comments. :param file_name: The base name of the file to be saved :type file_name: str :param folder_str: The name of the folder where the file will be saved :type folder_str: str :param marker: A further label that might be the series tag or something :type marker: str :param index: If multiple files are being saved with the same name, include an integer to append to the end of the file :type index: int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' self.save_name = spectra_fname try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: EMCCD_image.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count('#') # Make the number of lines constant so importing into Origin is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.' spec_header = '#' + parameter_str + origin_import_spec # spec_header = '#' + parameter_str + '\n#' + self.description[:-2] + origin_import_spec np.savetxt(os.path.join(folder_str, spectra_fname), self.proc_data, delimiter=',', header=spec_header, comments='', fmt='%0.6e') spectra_fname = 'clean ' + spectra_fname np.savetxt(os.path.join(folder_str, spectra_fname), self.clean, delimiter=',', header=spec_header, comments='', fmt='%0.6e') print("Save image.\nDirectory: {}".format(os.path.join(folder_str, spectra_fname))) # class LaserLineCCD(HighSidebandCCD): # """ # Class for use when doing alinging/testing by sending the laser # directly into the CCD. Modifies how "sidebands" and guess and fit, # simply looking at the max signal. # """ # def guess_sidebands(self, cutoff=8, verbose=False, plot=False): # pass class NeonNoiseAnalysis(CCD): """ This class is used to make handling neon calibration lines easier. It's not great. """ def __init__(self, fname, spectrometer_offset=None): # print 'opening', fname super(NeonNoiseAnalysis, self).__init__(fname, spectrometer_offset=spectrometer_offset) self.addenda = self.parameters['addenda'] self.subtrahenda = self.parameters['subtrahenda'] self.noise_and_signal() self.process_stuff() def noise_and_signal(self): """ This bad boy calculates the standard deviation of the space between the neon lines. The noise regions are, in nm: high: 784-792 low1: 795-806 low2: 815-823 low3: 831-834 the peaks are located at, in nm: #1, weak: 793.6 #2, medium: 794.3 #3, medium: 808.2 #4, weak: 825.9 #5, strong: 830.0 """ print('\n\n') self.ccd_data = np.flipud(self.ccd_data) # self.high_noise_region = np.array(self.ccd_data[30:230, :]) self.high_noise_region = np.array(self.ccd_data[80:180, :]) # for dark current measurements self.low_noise_region1 = np.array(self.ccd_data[380:700, :]) self.low_noise_region2 = np.array(self.ccd_data[950:1200, :]) self.low_noise_region3 = np.array(self.ccd_data[1446:1546, :]) # self.high_noise = np.std(self.high_noise_region[:, 1]) self.high_noise_std = np.std(self.high_noise_region[:, 1]) self.high_noise_sig = np.mean(self.high_noise_region[:, 1]) self.low_noise1 = np.std(self.low_noise_region1[:, 1]) self.low_noise2 = np.std(self.low_noise_region2[:, 1]) self.low_noise_std = np.std(self.low_noise_region2[:, 1]) self.low_noise_sig = np.mean(self.low_noise_region2[:, 1]) self.low_noise3 = np.std(self.low_noise_region3[:, 1]) # self.noise_list = [self.high_noise, self.low_noise1, self.low_noise2, self.low_noise3] self.peak1 = np.array(self.ccd_data[303:323, :]) self.peak2 = np.array(self.ccd_data[319:339, :]) self.peak3 = np.array(self.ccd_data[736:746, :]) self.peak4 = np.array(self.ccd_data[1268:1288, :]) self.peak5 = np.array(self.ccd_data[1381:1421, :]) temp_max = np.argmax(self.peak1[:, 1]) self.signal1 = np.sum(self.peak1[temp_max - 1:temp_max + 2, 1]) self.error1 = np.sqrt(np.sum(self.peak1[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak2[:, 1]) self.signal2 = np.sum(self.peak2[temp_max - 1:temp_max + 2, 1]) self.error2 = np.sqrt(np.sum(self.peak2[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak3[:, 1]) self.signal3 = np.sum(self.peak3[temp_max - 1:temp_max + 2, 1]) self.error3 = np.sqrt(np.sum(self.peak3[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak4[:, 1]) self.signal4 = np.sum(self.peak4[temp_max - 1:temp_max + 2, 1]) self.error4 = np.sqrt(np.sum(self.peak4[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak5[:, 1]) self.signal5 = np.sum(self.peak5[temp_max - 1:temp_max + 2, 1]) self.error5 = np.sqrt(np.sum(self.peak5[temp_max - 1:temp_max + 2, 2] ** 2)) self.signal_list = [self.signal1, self.signal2, self.signal3, self.signal4, self.signal5] self.error_list = [self.error1, self.error2, self.error3, self.error4, self.error5] print("Signal list:", self.signal_list) self.ccd_data = np.flipud(self.ccd_data) def process_stuff(self): """ This one puts high_noise, low_noise1, signal2, and error2 in a nice horizontal array """ # self.results = np.array([self.high_noise, self.low_noise1, self.signal5, self.error5]) # average = np.mean([self.low_noise1, self.low_noise2, self.low_noise3]) # self.results = np.array([self.high_noise, self.low_noise1, self.low_noise2, self.low_noise3, self.high_noise/average]) self.results = np.array([self.high_noise_sig, self.high_noise_std, self.low_noise_sig, self.low_noise_std]) def collect_noise(neon_list, param_name, folder_name, file_name, name='Signal'): """ This function acts like save parameter sweep. param_name = string that we're gonna save! """ # param_array = None for elem in neon_list: print("pname: {}".format(elem.parameters[param_name])) print("results:", elem.results) temp = np.insert(elem.results, 0, elem.parameters[param_name]) try: param_array = np.row_stack((param_array, temp)) except UnboundLocalError: param_array = np.array(temp) if len(param_array.shape) == 1: print("I don't think you want this file") return # append the relative peak error print('\n', param_array, '\n') param_array = np.column_stack((param_array, param_array[:, 4] / param_array[:, 3])) # append the snr param_array = np.column_stack((param_array, param_array[:, 3] / param_array[:, 2])) try: param_array = param_array[param_array[:, 0].argsort()] except: print("param_array shape", param_array.shape) raise try: os.mkdir(folder_name) except OSError as e: if e.errno == errno.EEXIST: pass else: raise file_name = file_name + '.txt' origin_import1 = param_name + ",Noise,Noise,Signal,error,rel peak error,peak signal-to-noise" # origin_import1 = param_name + ",Noise,Noise,Noise,Noise,Ratio" origin_import2 = ",counts,counts,counts,counts,," # origin_import2 = ",counts,counts,counts,," origin_import3 = ",High noise region,Low noise region,{},{} error,{} rel error, {}".format(name, name, name, name) # origin_import3 = ",High noise region,Low noise region 1,Low noise region 2,Low noise region 3,High/low" header_total = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 # print "Spec header: ", spec_header print("the param_array is:", param_array) np.savetxt(os.path.join(folder_name, file_name), param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') print("Saved the file.\nDirectory: {}".format(os.path.join(folder_name, file_name))) class HighSidebandCCD(CCD): def __init__(self, hsg_thing, parameter_dict=None, spectrometer_offset=None): """ This will read the appropriate file. The header needs to be fixed to reflect the changes to the output header from the Andor file. Because another helper file will do the cleaning and background subtraction, those are no longer part of this init. This also turns all wavelengths from nm (NIR ones) or cm-1 (THz ones) into eV. OR, if an array is thrown in there, it'll handle the array and dict Input: For post-processing analysis: hsg_thing = file name of the hsg spectrum from CCD superclass spectrometer_offset = number of nanometers the spectrometer is off by, should be 0.0...but can be 0.2 or 1.0 For Live-software: hsg_thing = np array of spectrum from camera parameter_dict = equipment dict generated by software Internal: self.hsg_thing = the filename self.parameters = string with all the relevant experimental perameters self.description = the description we added to the file as the data was being taken self.proc_data = processed data that has gone is frequency vs counts/pulse self.dark_stdev = this is not currently handled appropriately self.addenda = the list of things that have been added to the file, in form of [constant, *spectra_added] self.subtrahenda = the list of spectra that have been subtracted from the file. Constant subtraction is dealt with with self.addenda :param hsg_thing: file name for the file to be opened. OR the actually hsg np.ndarray. Fun! :type hsg_thing: str OR np.ndarray :param parameter_dict: If being loaded through the data acquisition GUI, throw the dict in here :type parameter_dict: dict :param spectrometer_offset: Number of nm the spectrometer is off by :type spectrometer_offset: float :return: None, technically """ if isinstance(hsg_thing, str): super(HighSidebandCCD, self).__init__(hsg_thing, spectrometer_offset=spectrometer_offset) # TODO: fix addenda bullshit self.addenda = [] self.subtrahenda = [] elif isinstance(hsg_thing, np.ndarray): self.parameters = parameter_dict.copy() # Probably shouldn't shoehorn this in this way self.addenda = [] self.subtrahenda = [] self.ccd_data = np.array(hsg_thing) self.ccd_data[:, 0] = 1239.84 / self.ccd_data[:, 0] # This data won't have an error column, so attached a column of ones self.ccd_data = np.column_stack((self.ccd_data, np.ones_like(self.ccd_data[:,1]))) self.ccd_data = np.flipud(self.ccd_data) # Because turning into eV switches direction self.fname = "Live Data" else: raise Exception("I don't know what this file type is {}, type: {}".format( hsg_thing, type(hsg_thing) )) self.proc_data = np.array(self.ccd_data) # proc_data is now a 1600 long array with [frequency (eV), signal (counts / FEL pulse), S.E. of signal mean] # self.parameters["nir_freq"] = 1239.84 / float(self.parameters["nir_lambda"]) self.parameters["nir_freq"] = 1239.84 / float(self.parameters.get("nir_lambda", -1)) # self.parameters["thz_freq"] = 0.000123984 * float(self.parameters["fel_lambda"]) self.parameters["thz_freq"] = 0.000123984 * float(self.parameters.get("fel_lambda", -1)) # self.parameters["nir_power"] = float(self.parameters["nir_power"]) self.parameters["nir_power"] = float(self.parameters.get("nir_power", -1)) try: # This is the new way of doing things. Also, now it's power self.parameters["thz_energy"] = float(self.parameters["pulseEnergies"]["mean"]) self.parameters["thz_energy_std"] = float(self.parameters["pulseEnergies"]["std"]) except: # This is the old way TODO: DEPRECATE THIS self.parameters["thz_energy"] = float(self.parameters.get("fel_power", -1)) # things used in fitting/guessing self.sb_list = np.array([]) self.sb_index = np.array([]) self.sb_dict = {} self.sb_results = np.array([]) self.full_dict = {} def __add__(self, other): """ Add together the image data from self.proc_data, or add a constant to that np.array. It will then combine the addenda and subtrahenda lists, as well as add the fel_pulses together. If type(other) is a CCD object, then it will add the errors as well. Input: self = CCD-like object other = int, float or CCD object Internal: ret.proc_data = the self.proc_data + other(.proc_data) ret.addenda = combination of two input addenda lists This raises a FutureWarning because these were designed early on and haven't been used much. :param other: The thing to be added, it's either a int/float or a HighSidebandCCD object :type other: int/float or HighSidebandCCD :return: Sum of self and other :rtype: HighSidebandCCD """ raise FutureWarning ret = copy.deepcopy(self) # Add a constant offset to the data if type(other) in (int, float): ret.proc_data[:, 1] = self.proc_data[:, 1] + other ret.addenda[0] = ret.addenda[0] + other # or add the data of two hsg_spectra together else: if np.isclose(ret.parameters['center_lambda'], other.parameters['center_lambda']): ret.proc_data[:, 1] = self.proc_data[:, 1] + other.proc_data[:, 1] ret.proc_data[:, 2] = np.sqrt(self.proc_data[:, 1] ** 2 + other.proc_data[:, 1] ** 2) ret.addenda[0] = ret.addenda[0] + other.addenda[0] ret.addenda.extend(other.addenda[1:]) ret.subtrahenda.extend(other.subtrahenda) ret.parameters['fel_pulses'] += other.parameters['fel_pulses'] else: raise Exception('Source: Spectrum.__add__:\nThese are not from the same grating settings') return ret def __sub__(self, other): """ This subtracts constants or other data sets between self.proc_data. I think it even keeps track of what data sets are in the file and how they got there. See how __add__ works for more information. This raises a FutureWarning because these were designed early on and haven't been used much. :param other: The thing to be subtracted, it's either a int/float or a HighSidebandCCD object :type other: int/float or HighSidebandCCD :return: Sum of self and other :rtype: HighSidebandCCD """ raise FutureWarning ret = copy.deepcopy(self) # Subtract a constant offset to the data if type(other) in (int, float): ret.proc_data[:, 1] = self.proc_data[:, 1] - other # Need to choose a name ret.addenda[0] = ret.addenda[0] - other # Subtract the data of two hsg_spectra from each other else: if np.isclose(ret.proc_data[0, 0], other.proc_data[0, 0]): ret.proc_data[:, 1] = self.proc_data[:, 1] - other.proc_data[:, 1] ret.proc_data[:, 2] = np.sqrt(self.proc_data[:, 1] ** 2 + other.proc_data[:, 1] ** 2) ret.subtrahenda.extend(other.addenda[1:]) ret.addenda.extend(other.subtrahenda) else: raise Exception('Source: Spectrum.__sub__:\nThese are not from the same grating settings') return ret def __repr__(self): base = """ fname: {}, Series: {series}, spec_step: {spec_step}, fel_lambda: {fel_lambda}, nir_lambda: {nir_lambda}""".format(os.path.basename(self.fname),**self.parameters) return base __str__ = __repr__ def calc_approx_sb_order(self, test_nir_freq): """ This simple method will simply return a float approximating the order of the frequency input. We need this because the CCD wavelength calibration is not even close to perfect. And it shifts by half a nm sometimes. :param test_nir_freq: the frequency guess of the nth sideband :type test_nir_freq: float :return: The approximate order of the sideband in question :rtype: float """ nir_freq = self.parameters['nir_freq'] thz_freq = self.parameters['thz_freq'] # If thz = 0, prevent error if not thz_freq: thz_freq = 1 approx_order = (test_nir_freq - nir_freq) / thz_freq return approx_order def guess_sidebands(self, cutoff=4.5, verbose=False, plot=False, **kwargs): """ Update 05/24/18: Hunter had two different loops for negative order sidebands, then positive order sidebands. They're done pretty much identically, so I've finally merged them into one. Finds the locations of all the sidebands in the proc_data array to be able to seed the fitting method. This works by finding the maximum data value in the array and guessing what sideband it is. It creates an array that includes this information. It will then step down, initially by one THz frequency, then by twos after it hasn't found any odd ones. It then goes up from the max and finds everything above in much the same way. There is currently no rhyme or reason to a cutoff of 8. I don't know what it should be changed to, though. Input: cutoff = signal-to-noise threshold to count a sideband candidate. kwargs: window_size: how big of a window (in pixels) to use for checking for sidebands. Specified in half-width default: 15 Internal: self.sb_list = List of all of the orders the method found self.sb_index = index of all of the peaks of the sidebands self.sb_guess = three-part list including the frequency, amplitude and error guesses for each sideband """ # TODO: this isn't commented appropriately. Will it be made more readable first? if "cutoff" in self.parameters: cutoff = self.parameters["cutoff"] else: self.parameters['cutoff for guess_sidebands'] = cutoff if verbose: print("=" * 15) print() print("Guessing CCD Sideband parameters") print(os.path.basename(self.fname)) print("\tCutoff = {}".format(cutoff)) print() print("=" * 15) x_axis = np.array(self.proc_data[:, 0]) y_axis = np.array(self.proc_data[:, 1]) try: error = np.array(self.proc_data[:, 2]) except IndexError: # Happens on old data where spectra weren't calculated in the live # software. error = np.ones_like(x_axis) min_sb = int(self.calc_approx_sb_order(x_axis[0])) + 1 try: max_sb = int(self.calc_approx_sb_order(x_axis[-1])) except ValueError: print(x_axis) nir_freq = self.parameters["nir_freq"] thz_freq = self.parameters["thz_freq"] if verbose: print("min_sb: {} | max_sb: {}".format(min_sb, max_sb)) # Find max strength sideband and it's order global_max = np.argmax(y_axis) order_init = int(round(self.calc_approx_sb_order(x_axis[global_max]))) # if verbose: # print "The global max is at index", global_max if global_max < 15: check_y = y_axis[:global_max + 15] check_y = np.concatenate((np.zeros(15 - global_max), check_y)) elif global_max > 1585: check_y = y_axis[global_max - 15:] check_y = np.concatenate((check_y, np.zeros(global_max - 1585))) else: check_y = y_axis[global_max - 15:global_max + 15] check_max_index = np.argmax(check_y) check_max_area = np.sum(check_y[check_max_index - 2:check_max_index + 3]) check_ave = np.mean(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_stdev = np.std(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_ratio = (check_max_area - 3 * check_ave) / check_stdev if verbose: print(("{:^16}" * 5).format( "global_max idx", "check_max_area", "check_ave", "check_stdev", "check_ratio")) print(("{:^16.5g}" * 5).format( global_max, check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: self.sb_list = [order_init] self.sb_index = [global_max] sb_freq_guess = [x_axis[global_max]] sb_amp_guess = [y_axis[global_max]] sb_error_est = [ np.sqrt(sum([i ** 2 for i in error[global_max - 2:global_max + 3]])) / ( check_max_area - 5 * check_ave)] else: print("There are no sidebands in", self.fname) raise RuntimeError if verbose: print("\t Looking for sidebands with f < {:.6f}".format(sb_freq_guess[0])) last_sb = sb_freq_guess[0] index_guess = global_max # keep track of how many consecutive sidebands we've skipped. Sometimes one's # noisy or something, so we want to keep looking after skipping one consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init - 1, min_sb - 1, -1): # Check to make sure we're not looking at an odd when # we've decided to skip them. if no_more_odds == True and order % 2 == 1: last_sb = last_sb - thz_freq if verbose: print("I skipped", order) continue # Window size to look for next sideband. Needs to be order dependent # because higher orders get wider, so we need to look at more. # Values are arbitrary. window_size = 0.45 + 0.0004 * order # used to be last_sb? lo_freq_bound = last_sb - thz_freq * ( 1 + window_size) # Not sure what to do about these hi_freq_bound = last_sb - thz_freq * (1 - window_size) if verbose: print("\nSideband", order) print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) # Get the indices where the energies lie within the bounds for this SB sliced_indices = \ np.where((x_axis > lo_freq_bound) & (x_axis < hi_freq_bound))[0] start_index, end_index = sliced_indices.min(), sliced_indices.max() # Get a slice of the y_data which is only in the region of interest check_y = y_axis[sliced_indices] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical # Calculate the "area" of the sideband by looking at the peak value # within the range, and the pixel above/below it check_max_area = np.sum(check_y[check_max_index - 1:check_max_index + 2]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label="{} Box".format(order)) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) # get the slice that doesn't have the peak in it to compare statistics check_region = np.append(check_y[:check_max_index - 1], check_y[check_max_index + 2:]) check_ave = check_region.mean() check_stdev = check_region.std() # Calculate an effective SNR, where check_ave is roughly the # background level check_ratio = (check_max_area - 3 * check_ave) / check_stdev if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 1.5 if verbose: print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.5g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("I just found", last_sb) sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - 3 * check_ave) error_est = np.sqrt( sum( [i ** 2 for i in error[found_index - 1:found_index + 2]] )) / (check_max_area - 3 * check_ave) if verbose: print("My error estimate is:", error_est) sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb - thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break # Look for higher sidebands if verbose: print("\nLooking for higher energy sidebands") last_sb = sb_freq_guess[0] index_guess = global_max consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init + 1, max_sb + 1): if no_more_odds == True and order % 2 == 1: last_sb = last_sb + thz_freq continue window_size = 0.45 + 0.001 * order # used to be 0.28 and 0.0004 lo_freq_bound = last_sb + thz_freq * ( 1 - window_size) # Not sure what to do about these hi_freq_bound = last_sb + thz_freq * (1 + window_size) start_index = False end_index = False if verbose: print("\nSideband", order) # print "The low frequency bound is", lo_freq_bound # print "The high frequency bound is", hi_freq_bound print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) for i in range(index_guess, 1600): if start_index == False and i == 1599: # print "I'm all out of space, captain!" break_condition = True break elif start_index == False and x_axis[i] > lo_freq_bound: # print "start_index is", i start_index = i elif i == 1599: end_index = 1599 # print "hit end of data, end_index is 1599" elif end_index == False and x_axis[i] > hi_freq_bound: end_index = i # print "end_index is", i index_guess = i break if break_condition: break check_y = y_axis[start_index:end_index] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical octant = len(check_y) // 8 # To be able to break down check_y into eighths if octant < 1: octant = 1 check_max_area = np.sum( check_y[check_max_index - octant - 1:check_max_index + octant + 1]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label=order) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) no_peak = (2 * len( check_y)) // 6 # The denominator is in flux, used to be 5 # if verbose: print "\tcheck_y length", len(check_y) check_ave = np.mean(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_stdev = np.std(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_ratio = (check_max_area - (2 * octant + 1) * check_ave) / check_stdev if verbose: print("\tIndices: {}->{} (d={})".format(start_index, end_index, len(check_y))) # print "check_y is", check_y # print "\ncheck_max_area is", check_max_area # print "check_ave is", check_ave # print "check_stdev is", check_stdev # print "check_ratio is", check_ratio print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.6g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 2 if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("\tI'm counting this SB at index {} (f={:.4f})".format( found_index, last_sb), end=' ') # print "\tI found", order, "at index", found_index, "at freq", last_sb sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - (2 * octant + 1) * check_ave) error_est = np.sqrt(sum([i ** 2 for i in error[ found_index - octant:found_index + octant]])) / ( check_max_area - (2 * octant + 1) * check_ave) # This error is a relative error. if verbose: print(". Err = {:.3g}".format(error_est)) # print "\tMy error estimate is:", error_est # print "My relative error is:", error_est / sb_amp_guess sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb + thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if verbose: print("\t\tI did not count this sideband") if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break if verbose: print("I found these sidebands:", self.sb_list) print('-' * 15) print() print() self.sb_guess = np.array([np.asarray(sb_freq_guess), np.asarray(sb_amp_guess), np.asarray(sb_error_est)]).T # self.sb_guess = [frequency guess, amplitude guess, relative error of amplitude] for each sideband. def guess_sidebandsOld(self, cutoff=4.5, verbose=False, plot=False, **kwargs): """ 05/24/18 Old code from Hunter's days (or nearly, I've already started cleaning some stuff up). keeping it around in case I break too much stuff Finds the locations of all the sidebands in the proc_data array to be able to seed the fitting method. This works by finding the maximum data value in the array and guessing what sideband it is. It creates an array that includes this information. It will then step down, initially by one THz frequency, then by twos after it hasn't found any odd ones. It then goes up from the max and finds everything above in much the same way. There is currently no rhyme or reason to a cutoff of 8. I don't know what it should be changed to, though. Input: cutoff = signal-to-noise threshold to count a sideband candidate. kwargs: window_size: how big of a window (in pixels) to use for checking for sidebands. Specified in half-width default: 15 Internal: self.sb_list = List of all of the orders the method found self.sb_index = index of all of the peaks of the sidebands self.sb_guess = three-part list including the frequency, amplitude and error guesses for each sideband """ # TODO: this isn't commented appropriately. Will it be made more readable first? if "cutoff" in self.parameters: cutoff = self.parameters["cutoff"] else: self.parameters['cutoff for guess_sidebands'] = cutoff if verbose: print("=" * 15) print() print("Guessing CCD Sideband parameters") print(os.path.basename(self.fname)) print("\tCutoff = {}".format(cutoff)) print() print("=" * 15) x_axis = np.array(self.proc_data[:, 0]) y_axis = np.array(self.proc_data[:, 1]) error = np.array(self.proc_data[:, 2]) min_sb = int(self.calc_approx_sb_order(x_axis[0])) + 1 try: max_sb = int(self.calc_approx_sb_order(x_axis[-1])) except ValueError: print(x_axis) nir_freq = self.parameters["nir_freq"] thz_freq = self.parameters["thz_freq"] if verbose: print("min_sb: {} | max_sb: {}".format(min_sb, max_sb)) # Find max strength sideband and it's order global_max = np.argmax(y_axis) order_init = int(round(self.calc_approx_sb_order(x_axis[global_max]))) # if verbose: # print "The global max is at index", global_max if global_max < 15: check_y = y_axis[:global_max + 15] check_y = np.concatenate((np.zeros(15 - global_max), check_y)) elif global_max > 1585: check_y = y_axis[global_max - 15:] check_y = np.concatenate((check_y, np.zeros(global_max - 1585))) else: check_y = y_axis[global_max - 15:global_max + 15] check_max_index = np.argmax(check_y) check_max_area = np.sum(check_y[check_max_index - 2:check_max_index + 3]) check_ave = np.mean(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_stdev = np.std(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_ratio = (check_max_area - 3 * check_ave) / check_stdev if verbose: print(("{:^16}" * 5).format( "global_max idx", "check_max_area", "check_ave", "check_stdev", "check_ratio")) print(("{:^16.5g}" * 5).format( global_max, check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: self.sb_list = [order_init] self.sb_index = [global_max] sb_freq_guess = [x_axis[global_max]] sb_amp_guess = [y_axis[global_max]] sb_error_est = [ np.sqrt(sum([i ** 2 for i in error[global_max - 2:global_max + 3]])) / ( check_max_area - 5 * check_ave)] else: print("There are no sidebands in", self.fname) raise RuntimeError if verbose: print("\t Looking for sidebands with f < {:.6f}".format(sb_freq_guess[0])) last_sb = sb_freq_guess[0] index_guess = global_max # keep track of how many consecutive sidebands we've skipped. Sometimes one's # noisy or something, so we want to keep looking after skipping one consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init - 1, min_sb - 1, -1): # Check to make sure we're not looking at an odd when # we've decided to skip them. if no_more_odds == True and order % 2 == 1: last_sb = last_sb - thz_freq if verbose: print("I skipped", order) continue # Window size to look for next sideband. Needs to be order dependent # because higher orders get wider, so we need to look at more. # Values are arbitrary. window_size = 0.45 + 0.0004 * order # used to be last_sb? lo_freq_bound = last_sb - thz_freq * ( 1 + window_size) # Not sure what to do about these hi_freq_bound = last_sb - thz_freq * (1 - window_size) if verbose: print("\nSideband", order) print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) # Get the indices where the energies lie within the bounds for this SB sliced_indices = \ np.where((x_axis > lo_freq_bound) & (x_axis < hi_freq_bound))[0] start_index, end_index = sliced_indices.min(), sliced_indices.max() # Get a slice of the y_data which is only in the region of interest check_y = y_axis[sliced_indices] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical # Calculate the "area" of the sideband by looking at the peak value # within the range, and the pixel above/below it check_max_area = np.sum(check_y[check_max_index - 1:check_max_index + 2]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label="{} Box".format(order)) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) # get the slice that doesn't have the peak in it to compare statistics check_region = np.append(check_y[:check_max_index - 1], check_y[check_max_index + 2:]) check_ave = check_region.mean() check_stdev = check_region.std() # Calculate an effective SNR, where check_ave is roughly the # background level check_ratio = (check_max_area - 3 * check_ave) / check_stdev if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 1.5 if verbose: print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.5g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("I just found", last_sb) sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - 3 * check_ave) error_est = np.sqrt( sum( [i ** 2 for i in error[found_index - 1:found_index + 2]] )) / (check_max_area - 3 * check_ave) if verbose: print("My error estimate is:", error_est) sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb - thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break # Look for higher sidebands if verbose: print("\nLooking for higher energy sidebands") last_sb = sb_freq_guess[0] index_guess = global_max consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init + 1, max_sb + 1): if no_more_odds == True and order % 2 == 1: last_sb = last_sb + thz_freq continue window_size = 0.45 + 0.001 * order # used to be 0.28 and 0.0004 lo_freq_bound = last_sb + thz_freq * ( 1 - window_size) # Not sure what to do about these hi_freq_bound = last_sb + thz_freq * (1 + window_size) start_index = False end_index = False if verbose: print("\nSideband", order) # print "The low frequency bound is", lo_freq_bound # print "The high frequency bound is", hi_freq_bound print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) for i in range(index_guess, 1600): if start_index == False and i == 1599: # print "I'm all out of space, captain!" break_condition = True break elif start_index == False and x_axis[i] > lo_freq_bound: # print "start_index is", i start_index = i elif i == 1599: end_index = 1599 # print "hit end of data, end_index is 1599" elif end_index == False and x_axis[i] > hi_freq_bound: end_index = i # print "end_index is", i index_guess = i break if break_condition: break check_y = y_axis[start_index:end_index] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical octant = len(check_y) // 8 # To be able to break down check_y into eighths if octant < 1: octant = 1 check_max_area = np.sum( check_y[check_max_index - octant - 1:check_max_index + octant + 1]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label=order) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) no_peak = (2 * len( check_y)) // 6 # The denominator is in flux, used to be 5 # if verbose: print "\tcheck_y length", len(check_y) check_ave = np.mean(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_stdev = np.std(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_ratio = (check_max_area - (2 * octant + 1) * check_ave) / check_stdev if verbose: print("\tIndices: {}->{} (d={})".format(start_index, end_index, len(check_y))) # print "check_y is", check_y # print "\ncheck_max_area is", check_max_area # print "check_ave is", check_ave # print "check_stdev is", check_stdev # print "check_ratio is", check_ratio print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.6g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 2 if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("\tI'm counting this SB at index {} (f={:.4f})".format( found_index, last_sb), end=' ') # print "\tI found", order, "at index", found_index, "at freq", last_sb sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - (2 * octant + 1) * check_ave) error_est = np.sqrt(sum([i ** 2 for i in error[ found_index - octant:found_index + octant]])) / ( check_max_area - (2 * octant + 1) * check_ave) # This error is a relative error. if verbose: print(". Err = {:.3g}".format(error_est)) # print "\tMy error estimate is:", error_est # print "My relative error is:", error_est / sb_amp_guess sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb + thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if verbose: print("\t\tI did not count this sideband") if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break if verbose: print("I found these sidebands:", self.sb_list) print('-' * 15) print() print() self.sb_guess = np.array([np.asarray(sb_freq_guess), np.asarray(sb_amp_guess), np.asarray(sb_error_est)]).T # self.sb_guess = [frequency guess, amplitude guess, relative error of amplitude] for each sideband. def fit_sidebands(self, plot=False, verbose=False): """ This takes self.sb_guess and fits to each maxima to get the details of each sideband. It's really ugly, but it works. The error of the sideband area is approximated from the data, not the curve fit. All else is from the curve fit. Which is definitely underestimating the error, but we don't care too much about those errors (at this point). self.sb_guess = [frequency guess, amplitude guess, relative error of amplitude] for each sideband. Temporary stuff: sb_fits = holder of the fitting results until all spectra have been fit window = an integer that determines the "radius" of the fit window, proportional to thz_freq. Attributes created: self.sb_results = the money maker. Column order: [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] self.full_dict = a dictionary similar to sb_results, but now the keys are the sideband orders. Column ordering is otherwise the same. :param plot: Do you want to see the fits plotted with the data? :type plot: bool :param verbose: Do you want to see the details AND the initial guess fits? :type verbose: bool :return: None """ # print "Trying to fit these" sb_fits = [] if verbose: print("=" * 15) print() print("Fitting CCD Sidebands") print(os.path.basename(self.fname)) print() print("=" * 15) # pretty sure you want this up here so things don't break # when no sidebands found self.full_dict = {} thz_freq = self.parameters["thz_freq"] window = 15 + int(15 * thz_freq / 0.0022) # Adjust the fit window based on the sideband spacing # The 15's are based on empirical knowledge that for # 540 GHz (2.23 meV), the best window size is 30 and # that it seems like the window size should grow slowly? for elem, peakIdx in enumerate(self.sb_index): # Have to do this because guess_sidebands # doesn't out put data in the most optimized way if peakIdx < window: data_temp = self.proc_data[:peakIdx + window, :] elif (1600 - peakIdx) < window: data_temp = self.proc_data[peakIdx - window:, :] else: data_temp = self.proc_data[peakIdx - window:peakIdx + window, :] width_guess = 0.0001 + 0.000001 * self.sb_list[elem] # so the width guess gets wider as order goes up p0 = np.array([self.sb_guess[elem, 0], self.sb_guess[elem, 1] * width_guess, width_guess, 0.1]) # print "Let's fit this shit!" if verbose: print("Fitting SB {}. Peak index: {}, {}th peak in spectra".format( self.sb_list[elem], peakIdx, elem )) # print "\nnumber:", elem, num # print "data_temp:", data_temp # print "p0:", p0 print(' '*20 +"p0 = " + np.array_str(p0, precision=4)) # plot_guess = True # This is to disable plotting the guess function if verbose and plot: plt.figure('CCD data') linewidth = 3 x_vals = np.linspace(data_temp[0, 0], data_temp[-1, 0], num=500) if elem != 0: try: plt.plot(x_vals, gauss(x_vals, *p0), plt.gca().get_lines()[-1].get_color() + '--' # I don't really know. Mostly # just looked around at what functions # matplotlib has... , linewidth=linewidth) except: # to prevent weird mac issues with the matplotlib things? plt.plot(x_vals, gauss(x_vals, *p0), '--', linewidth=linewidth) else: plt.plot(x_vals, gauss(x_vals, *p0), '--', linewidth=linewidth) try: # 11/1/16 # needed to bump maxfev up to 2k because a sideband wasn't being fit # Fix for sb 106 # 05-23 Loren 10nm\hsg_640_Perp352seq_spectrum.txt coeff, var_list = curve_fit( gauss, data_temp[:, 0], data_temp[:, 1], p0=p0, maxfev = 2000) except Exception as e: if verbose: print("\tThe fit failed:") print("\t\t", e) print("\tFitting region: {}->{}".format(peakIdx-window, peakIdx+window)) # print "I couldn't fit", elem # print "It's sideband", num # print "In file", self.fname # print "because", e # print "wanted to fit xindx", peakIdx, "+-", window self.sb_list[elem] = None continue # This will ensure the rest of the loop is not run without an actual fit. coeff[1] = abs(coeff[1]) # The amplitude could be negative if the linewidth is negative coeff[2] = abs(coeff[2]) # The linewidth shouldn't be negative if verbose: print("\tFit successful: ", end=' ') print("p = " + np.array_str(coeff, precision=4)) # print "coeffs:", coeff # print "sigma for {}: {}".format(self.sb_list[elem], coeff[2]) if 10e-4 > coeff[2] > 10e-6: try: sb_fits.append(np.hstack((self.sb_list[elem], coeff, np.sqrt(np.diag(var_list))))) except RuntimeWarning: sb_fits.append(np.hstack((self.sb_list[elem], coeff, np.sqrt(np.abs(np.diag(var_list)))))) # the var_list wasn't approximating the error well enough, even when using sigma and absoluteSigma # self.sb_guess[elem, 2] is the relative error as calculated by the guess_sidebands method # coeff[1] is the area from the fit. Therefore, the product should be the absolute error # of the integrated area of the sideband. The other errors are still underestimated. # # 1/12/18 note: So it looks like what hunter did is calculate an error estimate # for the strength/area by the quadrature sum of errors of the points in the peak # (from like 813 in guess_sidebands: # error_est = np.sqrt(sum([i ** 2 for i in error[found_index - 1:found_index + 2]])) / ( # Where the error is what comes from the CCD by averaging 4 spectra. As far as I can tell, # it doesn't currently pull in the dark counts or anything like that, except maybe # indirectly since it'll cause the variations in the peaks sb_fits[-1][6] = self.sb_guess[elem, 2] * coeff[1] if verbose: print("\tRel.Err: {:.4e} | Abs.Err: {:.4e}".format( self.sb_guess[elem, 2], coeff[1] * self.sb_guess[elem, 2] )) print() # print "The rel. error guess is", self.sb_guess[elem, 2] # print "The abs. error guess is", coeff[1] * self.sb_guess[elem, 2] # The error from self.sb_guess[elem, 2] is a relative error if plot and verbose: plt.figure('CCD data') linewidth = 5 x_vals = np.linspace(data_temp[0, 0], data_temp[-1, 0], num=500) if elem != 0: try: plt.plot(x_vals, gauss(x_vals, *coeff), plt.gca().get_lines()[-1].get_color() + '--' # I don't really know. Mostly # just looked around at what functions # matplotlib has... , linewidth=linewidth) except: # to prevent weird mac issues with the matplotlib things? plt.plot(x_vals, gauss(x_vals, *coeff), '--', linewidth=linewidth) else: plt.plot(x_vals, gauss(x_vals, *coeff), '--', linewidth=linewidth) sb_fits_temp = np.asarray(sb_fits) reorder = [0, 1, 5, 2, 6, 3, 7, 4, 8] # Reorder the list to put the error of the i-th parameter as the i+1th. try: sb_fits = sb_fits_temp[:, reorder] # if verbose: print "The abs. error guess is", sb_fits[:, 0:5] except: raise RuntimeError("No sidebands to fit?") # Going to label the appropriate row with the sideband self.sb_list = sorted(list([x for x in self.sb_list if x is not None])) sb_names = np.vstack(self.sb_list) # Sort by SB order sorter = np.argsort(sb_fits[:, 0]) self.sb_results = np.array(sb_fits[sorter, :7]) if verbose: print("\tsb_results:") print("\t\t" + ("{:^5s}" + ("{:^12s}")*(self.sb_results.shape[1]-1)).format( "SB", "Cen.En.", "", "Area", "", "Width","")) for line in self.sb_results: print('\t\t[' + ("{:^5.0f}"+ "{:<12.4g}"*(line.size-1)).format(*line) + ']') print('-'*19) self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) def infer_frequencies(self, nir_units="wavenumber", thz_units="GHz", bad_points=-2): """ This guy tries to fit the results from fit_sidebands to a line to get the relevant frequencies :param nir_units: What units do you want this to output? :type nir_units: 'nm', 'wavenumber', 'eV', 'THz' :param thz_units: What units do you want this to output for the THz? :type thz_units: 'GHz', 'wavenumber', 'meV' :param bad_points: How many more-positive order sidebands shall this ignore? :type bad_points: int :return: freqNIR, freqTHz, the frequencies in the appropriate units """ # force same units for in dict freqNIR, freqTHz = calc_laser_frequencies(self, "wavenumber", "wavenumber", bad_points) self.parameters["calculated NIR freq (cm-1)"] = "{}".format(freqNIR, nir_units) self.parameters["calculated THz freq (cm-1)"] = "{}".format(freqTHz, freqTHz) freqNIR, freqTHz = calc_laser_frequencies(self, nir_units, thz_units, bad_points) return freqNIR, freqTHz def save_processing(self, file_name, folder_str, marker='', index='', verbose=''): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files: self.proc_data = the continuous spectrum self.sb_results = the individual sideband details :param file_name: The base name for the saved file :type file_name: str :param folder_str: The full name for the folder hte file is saved it. Folder can be created :type folder_str: str :param marker: Marker for the file, appended to file_name, often the self.parameters['series'] :type marker: str :param index: used to keep these files from overwriting themselves when marker is the same :type index: str or int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise temp = np.array(self.sb_results) ampli = np.array([temp[:, 3] / temp[:, 5]]) # But [:, 3] is already area? # (The old name was area) # I think it must be amplitude temp[:, 5:7] = temp[:, 5:7] * 1000 # For meV linewidths if verbose: print("sb_results", self.sb_results.shape) print("ampli", ampli.shape) save_results = np.hstack((temp, ampli.T)) spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' self.save_name = spectra_fname self.parameters['addenda'] = self.addenda self.parameters['subtrahenda'] = self.subtrahenda try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: EMCCD_image.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count('#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.' spec_header = '#' + parameter_str + origin_import_spec origin_import_fits = '\nSideband,Center energy,error,Sideband strength,error,Linewidth,error,Amplitude' origin_import_fits += '\norder,eV,,arb. u.,,meV,,arb. u.' origin_import_fits += "\n{},,,{},,,".format(marker, marker) fits_header = '#' + parameter_str + origin_import_fits # print "DEBUG: in saving", folder_str, ",", spectra_fname np.savetxt(os.path.join(folder_str, spectra_fname), self.proc_data, delimiter=',', header=spec_header, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, fit_fname), save_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') if verbose: print("Save image.\nDirectory: {}".format(os.path.join(folder_str, spectra_fname))) class HighSidebandCCDRaw(HighSidebandCCD): """ This class is meant for passing in an image file (currently supports a 2x1600) Which it does all the processing on. """ def __init__(self, hsg_thing, parameter_dict=None, spectrometer_offset=None): # let the supers do the hard work of importing the json dict and all that jazz super(HighSidebandCCDRaw, self).__init__(hsg_thing, parameter_dict=None, spectrometer_offset=None) self.ccd_data = np.genfromtxt(hsg_thing, delimiter=',').T self.proc_data = np.column_stack(( self.gen_wavelengths(self.parameters["center_lambda"], self.parameters["grating"]), np.array(self.ccd_data[:,1], dtype=float)-np.median(self.ccd_data[:,1]), np.ones_like(self.ccd_data[:,1], dtype=float) )) self.proc_data[:, 0] = 1239.84 / self.proc_data[:, 0] self.proc_data = np.flipud(self.proc_data) @staticmethod def gen_wavelengths(center_lambda, grating): ''' This returns a 1600 element list of wavelengths for each pixel in the EMCCD based on grating and center wavelength grating = which grating, 1 or 2 center = center wavelength in nanometers ''' b = 0.75 # length of spectrometer, in m k = -1.0 # order looking at r = 16.0e-6 # distance between pixles on CCD if grating == 1: d = 1. / 1800000. gamma = 0.213258508834 delta = 1.46389935365 elif grating == 2: d = 1. / 1200000. gamma = 0.207412628027 delta = 1.44998344749 elif grating == 3: d = 1. / 600000. gamma = 0.213428934011 delta = 1.34584754696 else: print("What a dick, that's not a valid grating") return None center = center_lambda * 10 ** -9 wavelength_list = np.arange(-799.0, 801.0) output = d * k ** (-1) * ((-1) * np.cos(delta + gamma + (-1) * np.arccos( (-1 / 4) * (1 / np.cos((1 / 2) * gamma)) ** 2 * ( 2 * (np.cos((1 / 2) * gamma) ** 4 * (2 + (-1) * d ** (-2) * k ** 2 * center ** 2 + 2 * np.cos(gamma))) ** ( 1 / 2) + d ** (-1) * k * center * np.sin(gamma))) + np.arctan( b ** (-1) * (r * wavelength_list + b * np.cos(delta + gamma)) * (1 / np.sin(delta + gamma)))) + ( 1 + (-1 / 16) * (1 / np.cos((1 / 2) * gamma)) ** 4 * (2 * ( np.cos((1 / 2) * gamma) ** 4 * ( 2 + (-1) * d ** (-2) * k ** 2 * center ** 2 + 2 * np.cos(gamma))) ** (1 / 2) + d ** ( -1) * k * center * np.sin( gamma)) ** 2) ** (1 / 2)) output = (output + center) * 10 ** 9 return output class PMT(object): def __init__(self, file_name): """ Initializes a SPEX spectrum. It'll open a file, and bring in the details of a sideband spectrum into the object. There isn't currently any reason to use inheritance here, but it could be extended later to include PLE or something of the sort. attributes: self.parameters - dictionary of important experimental parameters this will not necessarily be the same for each file in the object self.fname - the current file path :param file_name: The name of the PMT file :type file_name: str :return: None """ # print "This started" self.fname = file_name # self.files_included = [file_name] with open(file_name, 'r') as f: param_str = '' line = f.readline() # Needed to move past the first line, which is the sideband order. Not generally useful line = f.readline() while line[0] == '#': param_str += line[1:] line = f.readline() self.parameters = json.loads(param_str) class HighSidebandPMT(PMT): def __init__(self, file_path, verbose=False): """ Initializes a SPEX spectrum. It'll open a single file, then read the data from that file using .add_sideband(). The super's init will handle the parameters and the description. attributes: self.parameters - dictionary of important experimental parameters, created in PMT self.sb_dict - keys are sideband order, values are PMT data arrays self.sb_list - sorted list of included sidebands :param file_path: path to the current file :type file_path: str :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: """ super(HighSidebandPMT, self).__init__( file_path) # Creates the json parameters dictionary self.fname = file_path self.parameters["files included"] = [file_path] with open(file_path, 'r') as f: sb_num = int(f.readline()[1:]) raw_temp = np.genfromtxt(file_path, comments='#', delimiter=',')[3:, :] if self.parameters.get("photon counted", False): # The scale factor for photon counting to generic # PMT data depends on... things. It's different each # day. Unfortunately, the overlap in dynamic range between # the two is small, and generally only one sideband # can been seen by both methods. I don't really have # the motivation to automatically calculate the # appropriate factor, so this is your reminder to find # it yourself. import time # assert time.strftime("%x") == "03/15/17" assert self.parameters.get("pc ratio", -1) != -1, self.fname raw_temp[:,3] *= self.parameters["pc ratio"] pass raw_temp[:, 0] = raw_temp[:, 0] / 8065.6 # turn NIR freq into eV self.parameters["thz_freq"] = 0.000123984 * float( self.parameters.get("fel_lambda", -1)) self.parameters["nir_freq"] = float( self.parameters.get("nir_lambda", -1))/8065.6 self.initial_sb = sb_num self.initial_data = np.array(raw_temp) self.sb_dict = {sb_num: np.array(raw_temp)} self.sb_list = [sb_num] def add_sideband(self, other): """ This bad boy will add another PMT sideband object to the sideband spectrum of this object. It handles when you measure the same sideband twice. It assumes both are equally "good" NOTE: This means that if both aren't equally "good" (taking a second scan with higher gain/photon counting because you didn't see it), you need to not add the file (remove/rename the file, etc.) I'd love to overhall the data collection/analysis so this can be more intelligent (Effectively offload a lot of the processing (especially not saving 10 arbitrary points to process later) onto the live software and add sideband strengths alone, like the CCD works. But this would be a bigger change that I can seem to find time for). It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could, if you have two incomplete dictionaries :param other: the new sideband data to add to the larger spectrum. Add means append, no additino is performed :type other: HighSidebandPMT :return: """ """ This bad boy will add another PMT sideband object to the sideband spectrum of this object It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could """ self.parameters["files included"].append(other.fname) if other.initial_sb in self.sb_list: self.sb_list.append(other.initial_sb) # Make things comma delimited? try: self.sb_dict[other.initial_sb] = np.row_stack( (self.sb_dict[other.initial_sb], other.initial_data) ) except KeyError: self.sb_dict[other.initial_sb] = np.array(other.initial_data) except Exception as e: print("THIS IS THE OTHER ERROR", e) raise def process_sidebands(self, verbose=False, baselineCorr = False): """ This bad boy will clean up the garbled mess that is the object before hand, including clearing out misfired shots and doing the averaging. Affects: self.sb_dict = Averages over sidebands Creates: self.sb_list = The sideband orders included in this object. :param verbose: Flag to see the nitty gritty details. :type verbose: bool :param baselineCorr: Whether to subtract the average across the two endpoints :return: None """ for sb_num, sb in list(self.sb_dict.items()): if sb_num == 0: fire_condition = -np.inf # This way the FEL doesn't need to be on during laser line measurement else: fire_condition = np.mean(sb[:, 2]) / 2 # Say FEL fired if the # cavity dump signal is # more than half the mean # of the cavity dump signal frequencies = sorted(list(set(sb[:, 0]))) temp = None for freq in frequencies: data_temp = np.array([]) for point in sb: if point[0] == freq and point[2] > fire_condition: data_temp = np.hstack((data_temp, point[3])) try: temp = np.vstack( (temp, np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]))) except: temp = np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]) # temp[:, 0] = temp[:, 0] / 8065.6 # turn NIR freq into eV temp = temp[temp[:, 0].argsort()] if baselineCorr: x = temp[[0, -1], 0] y = temp[[0, -1], 1] p = np.polyfit(x, y, 1) temp[:, 1] -= np.polyval(p, temp[:,0]) self.sb_dict[sb_num] = np.array(temp) self.sb_list = sorted(self.sb_dict.keys()) if verbose: print("Sidebands included", self.sb_list) def integrate_sidebands(self, verbose=False, cutoff=1.0, **kwargs): """ This method will integrate the sidebands to find their strengths, and then use a magic number to define the width, since they are currently so utterly undersampled for fitting. cutoff is the ratio of area/error which must be exceeded to count It is currently the preferred method for calculating sideband strengths. self.fit_sidebands is probably better with better-sampled lines. Creates: self.sb_results = full list of integrated data. Column order is: [sb order, Freq (eV), "error" (eV), Integrate area (arb.), area error, "Linewidth" (eV), "Linewidth error" (eV) self.full_dict = Dictionary where the SB order column is removed and turned into the keys. The values are the rest of that sideband's results. :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ if verbose: print("="*15) print() print("Integrating PMT Sidebands") print("Cutoff: {}".format(cutoff)) print(os.path.basename(self.fname)) print() print("=" * 15) self.full_dict = {} for sideband in list(self.sb_dict.items()): index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] # stroff = np.nan_to_num(sideband[1][[0,1,-2,1], 1]).sum()/4. area = np.trapz(np.nan_to_num(sideband[1][:, 1]), sideband[1][:, 0]) error = np.sqrt(np.sum(np.nan_to_num( sideband[1][:, 2]) ** 2)) / 8065.6 # Divide by the step size? if verbose: print("\torder: {}, area: {:.3g}, error: {:.3g}, ratio: {:.3f}".format( sideband[0], area, error, area/error )) details = np.array( [sideband[0], nir_frequency, 1 / 8065.6, area, error, 2 / 8065.6, 1 / 8065.6]) if area < 0: if verbose: print("\t\tarea < 0") continue elif area < cutoff/5 * error: # Two seems like a good cutoff? if verbose: print("\t\tI did not keep sideband") continue try: self.sb_results = np.vstack((self.sb_results, details)) except: self.sb_results = np.array(details) self.full_dict[sideband[0]] = details[1:] try: self.sb_results = self.sb_results[self.sb_results[:, 0].argsort()] except (IndexError, AttributeError): # IndexError where there's only one sideband # AttributeError when there aren't any (one sb which wasn't fit) pass if verbose: print('-'*19) def fit_sidebands(self, plot=False, verbose=False): """ This method will fit a gaussian to each of the sidebands provided in the self.sb_dict and make a list just like in the EMCCD version. It will also use the standard error of the integral of the PMT peak as the error of the gaussian area instead of that element from the covariance matrix. Seems more legit. attributes: self.sb_results: the numpy array that contains all of the fit info just like it does in the CCD class. self.full_dict = A dictionary version of self.sb_results :param plot: Flag to see the results plotted :type plot: bool :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ sb_fits = {} for sideband in list(self.sb_dict.items()): if verbose: print("Sideband number", sideband[0]) print("Sideband data:\n", sideband[1]) index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] peak = sideband[1][index, 1] width_guess = 0.0001 # Yep, another magic number p0 = [nir_frequency, peak * width_guess, width_guess, 0.00001] if verbose: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *p0), label="fit :{}".format(sideband[1])) print("p0:", p0) try: coeff, var_list = curve_fit(gauss, sideband[1][:, 0], sideband[1][:, 1], sigma=sideband[1][:, 2], p0=p0) coeff[1] = abs(coeff[1]) coeff[2] = abs(coeff[2]) if verbose: print("coeffs:", coeff) print("stdevs:", np.sqrt(np.diag(var_list))) print("integral", np.trapz(sideband[1][:, 1], sideband[1][:, 0])) if np.sqrt(np.diag(var_list))[0] / coeff[ 0] < 0.5: # The error on where the sideband is should be small sb_fits[sideband[0]] = np.concatenate( (np.array([sideband[0]]), coeff, np.sqrt(np.diag(var_list)))) # print "error then:", sb_fits[sideband[0]][6] relative_error = np.sqrt(sum([x ** 2 for x in sideband[1][index - 1:index + 2, 2]])) / np.sum( sideband[1][index - 1:index + 2, 1]) if verbose: print("relative error:", relative_error) sb_fits[sideband[0]][6] = coeff[1] * relative_error # print "error now:", sb_fits[sideband[0]][6] if plot: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *coeff)) # plt.plot(x_vals, gauss(x_vals, *p0)) else: print("what happened?") except: print("God damn it, Leroy.\nYou couldn't fit this.") sb_fits[sideband[0]] = None for result in sorted(sb_fits.keys()): try: self.sb_results = np.vstack((self.sb_results, sb_fits[result])) except: self.sb_results = np.array(sb_fits[result]) self.sb_results = self.sb_results[:, [0, 1, 5, 2, 6, 3, 7, 4, 8]] self.sb_results = self.sb_results[:, :7] if verbose: print("And the results, please:\n", self.sb_results) self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) def laser_line(self, verbose=False, **kwargs): """ This method is designed to scale everything in the PMT to the conversion efficiency based on our measurement of the laser line with a fixed attenuation. Creates: self.parameters['normalized?'] = Flag to specify if the laser has been accounted for. :return: None """ if 0 not in self.sb_list: self.parameters['normalized?'] = False return else: laser_index = np.where(self.sb_results[:,0] == 0)[0][0] if verbose: print("sb_results", self.sb_results) print("laser_index", laser_index) laser_strength = np.array(self.sb_results[laser_index, 3:5]) if verbose: print("Laser_strength", laser_strength) for sb in self.sb_results: if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) sb[4] = (sb[3] / laser_strength[0]) * np.sqrt( (sb[4] / sb[3]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[3] = sb[3] / laser_strength[0] if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) for sb in list(self.full_dict.values()): sb[3] = (sb[2] / laser_strength[0]) * np.sqrt( (sb[3] / sb[2]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[2] = sb[2] / laser_strength[0] self.parameters['normalized?'] = True def save_processing(self, file_name, folder_str, marker='', index='', verbose=False): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files: self.proc_data = the continuous spectrum self.sb_results = the individual sideband details :param file_name: The base name for the saved file :type file_name: str :param folder_str: The full name for the folder hte file is saved it. Folder can be created :type folder_str: str :param marker: Marker for the file, appended to file_name, often the self.parameters['series'] :type marker: str :param index: used to keep these files from overwriting themselves when marker is the same :type index: str or int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' self.save_name = spectra_fname # self.parameters["files included"] = list(self.files) try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: PMT.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count( '#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.\n,{:.3f},'.format( self.parameters["fieldStrength"]["mean"]) spec_header = '#' + parameter_str + origin_import_spec origin_import_fits = '\nIndex,Center energy,error,Amplitude,error,Linewidth,error\nInt,eV,,arb. u.,,eV,,\n,,' # + marker fits_header = '#' + parameter_str + origin_import_fits for sideband in sorted(self.sb_dict.keys()): try: complete = np.vstack((complete, self.sb_dict[sideband])) except: complete = np.array(self.sb_dict[sideband]) np.savetxt(os.path.join(folder_str, spectra_fname), complete, delimiter=',', header=spec_header, comments='', fmt='%0.6e') try: np.savetxt(os.path.join(folder_str, fit_fname), self.sb_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') except AttributeError: # Catch the error that happens if you save something without files print("warning, couldn't save fit file (no sidebands found?)") if verbose: print("Saved PMT spectrum.\nDirectory: {}".format( os.path.join(folder_str, spectra_fname))) class HighSidebandPMTOld(PMT): """ Old version: Replaced March 01, 2017 Class initialized by loading in data set. Multiple copies of the same sideband were stacked as raw data and combined, effectively causing (2) 10-pt scans to be treated the same as (1) 20pt scan. This works well until you have photon counted pulses. """ def __init__(self, file_path, verbose=False): """ Initializes a SPEX spectrum. It'll open a single file, then read the data from that file using .add_sideband(). The super's init will handle the parameters and the description. attributes: self.parameters - dictionary of important experimental parameters, created in PMT self.sb_dict - keys are sideband order, values are PMT data arrays self.sb_list - sorted list of included sidebands :param file_path: path to the current file :type file_path: str :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: """ super(HighSidebandPMT, self).__init__( file_path) # Creates the json parameters dictionary self.fname = file_path self.parameters["files included"] = [file_path] with open(file_path, 'r') as f: sb_num = int(f.readline()[1:]) raw_temp = np.genfromtxt(file_path, comments='#', delimiter=',')[3:, :] self.initial_sb = sb_num self.initial_data = np.array(raw_temp) self.sb_dict = {sb_num: np.array(raw_temp)} self.sb_list = [sb_num] def add_sideband(self, other): """ This bad boy will add another PMT sideband object to the sideband spectrum of this object. It handles when you measure the same sideband twice. It assumes both are equally "good" It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could, if you have two incomplete dictionaries :param other: the new sideband data to add to the larger spectrum. Add means append, no additino is performed :type other: HighSidebandPMT :return: """ """ This bad boy will add another PMT sideband object to the sideband spectrum of this object It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could """ self.parameters["files included"].append(other.fname) if other.initial_sb in self.sb_list: self.sb_list.append(other.initial_sb) # Make things comma delimited? try: self.sb_dict[other.initial_sb].vstack((other.initial_data)) except: self.sb_dict[other.initial_sb] = np.array(other.initial_data) def process_sidebands(self, verbose=False): """ This bad boy will clean up the garbled mess that is the object before hand, including clearing out misfired shots and doing the averaging. Affects: self.sb_dict = Averages over sidebands Creates: self.sb_list = The sideband orders included in this object. :param verbose: Flag to see the nitty gritty details. :type verbose: bool :return: None """ for sb_num, sb in list(self.sb_dict.items()): if sb_num == 0: fire_condition = -np.inf # This way the FEL doesn't need to be on during laser line measurement else: fire_condition = np.mean(sb[:, 2]) / 2 # Say FEL fired if the # cavity dump signal is # more than half the mean # of the cavity dump signal frequencies = sorted(list(set(sb[:, 0]))) temp = None for freq in frequencies: data_temp = np.array([]) for point in sb: if point[0] == freq and point[2] > fire_condition: data_temp = np.hstack((data_temp, point[3])) try: temp = np.vstack( (temp, np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]))) except: temp = np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]) temp[:, 0] = temp[:, 0] / 8065.6 # turn NIR freq into eV temp = temp[temp[:, 0].argsort()] self.sb_dict[sb_num] = np.array(temp) self.sb_list = sorted(self.sb_dict.keys()) if verbose: print("Sidebands included", self.sb_list) def integrate_sidebands(self, verbose=False): """ This method will integrate the sidebands to find their strengths, and then use a magic number to define the width, since they are currently so utterly undersampled for fitting. It is currently the preferred method for calculating sideband strengths. self.fit_sidebands is probably better with better-sampled lines. Creates: self.sb_results = full list of integrated data. Column order is: [sb order, Freq (eV), "error" (eV), Integrate area (arb.), area error, "Linewidth" (eV), "Linewidth error" (eV) self.full_dict = Dictionary where the SB order column is removed and turned into the keys. The values are the rest of that sideband's results. :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ self.full_dict = {} for sideband in list(self.sb_dict.items()): index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] area = np.trapz(np.nan_to_num(sideband[1][:, 1]), sideband[1][:, 0]) error = np.sqrt(np.sum(np.nan_to_num( sideband[1][:, 2]) ** 2)) / 8065.6 # Divide by the step size? if verbose: print("order", sideband[0]) print("area", area) print("error", error) print("ratio", area / error) details = np.array( [sideband[0], nir_frequency, 1 / 8065.6, area, error, 2 / 8065.6, 1 / 8065.6]) if area < 0: if verbose: print("area less than 0", sideband[0]) continue elif area < 1.0 * error: # Two seems like a good cutoff? if verbose: print("I did not keep sideband ", sideband[0]) continue try: self.sb_results = np.vstack((self.sb_results, details)) except: self.sb_results = np.array(details) self.full_dict[sideband[0]] = details[1:] try: self.sb_results = self.sb_results[self.sb_results[:, 0].argsort()] except (IndexError, AttributeError): # IndexError where there's only one sideband # AttributeError when there aren't any (one sb which wasn't fit) pass def fit_sidebands(self, plot=False, verbose=False): """ This method will fit a gaussian to each of the sidebands provided in the self.sb_dict and make a list just like in the EMCCD version. It will also use the standard error of the integral of the PMT peak as the error of the gaussian area instead of that element from the covariance matrix. Seems more legit. attributes: self.sb_results: the numpy array that contains all of the fit info just like it does in the CCD class. self.full_dict = A dictionary version of self.sb_results :param plot: Flag to see the results plotted :type plot: bool :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ sb_fits = {} for sideband in list(self.sb_dict.items()): if verbose: print("Sideband number", sideband[0]) print("Sideband data:\n", sideband[1]) index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] peak = sideband[1][index, 1] width_guess = 0.0001 # Yep, another magic number p0 = [nir_frequency, peak * width_guess, width_guess, 0.00001] if verbose: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *p0), label="fit :{}".format(sideband[1])) print("p0:", p0) try: coeff, var_list = curve_fit(gauss, sideband[1][:, 0], sideband[1][:, 1], sigma=sideband[1][:, 2], p0=p0) coeff[1] = abs(coeff[1]) coeff[2] = abs(coeff[2]) if verbose: print("coeffs:", coeff) print("stdevs:", np.sqrt(np.diag(var_list))) print("integral", np.trapz(sideband[1][:, 1], sideband[1][:, 0])) if np.sqrt(np.diag(var_list))[0] / coeff[ 0] < 0.5: # The error on where the sideband is should be small sb_fits[sideband[0]] = np.concatenate( (np.array([sideband[0]]), coeff, np.sqrt(np.diag(var_list)))) # print "error then:", sb_fits[sideband[0]][6] relative_error = np.sqrt(sum([x ** 2 for x in sideband[1][index - 1:index + 2, 2]])) / np.sum( sideband[1][index - 1:index + 2, 1]) if verbose: print("relative error:", relative_error) sb_fits[sideband[0]][6] = coeff[1] * relative_error # print "error now:", sb_fits[sideband[0]][6] if plot: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *coeff)) # plt.plot(x_vals, gauss(x_vals, *p0)) else: print("what happened?") except: print("God damn it, Leroy.\nYou couldn't fit this.") sb_fits[sideband[0]] = None for result in sorted(sb_fits.keys()): try: self.sb_results = np.vstack((self.sb_results, sb_fits[result])) except: self.sb_results = np.array(sb_fits[result]) self.sb_results = self.sb_results[:, [0, 1, 5, 2, 6, 3, 7, 4, 8]] self.sb_results = self.sb_results[:, :7] if verbose: print("And the results, please:\n", self.sb_results) self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) def laser_line(self, verbose=False): """ This method is designed to scale everything in the PMT to the conversion efficiency based on our measurement of the laser line with a fixed attenuation. Creates: self.parameters['normalized?'] = Flag to specify if the laser has been accounted for. :return: None """ if 0 not in self.sb_list: self.parameters['normalized?'] = False return else: laser_index = np.where(self.sb_results[:, 0] == 0)[0][0] if verbose: print("sb_results", self.sb_results[laser_index, :]) print("laser_index", laser_index) laser_strength = np.array(self.sb_results[laser_index, 3:5]) if verbose: print("Laser_strength", laser_strength) for sb in self.sb_results: if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) sb[4] = (sb[3] / laser_strength[0]) * np.sqrt( (sb[4] / sb[3]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[3] = sb[3] / laser_strength[0] if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) for sb in list(self.full_dict.values()): sb[3] = (sb[2] / laser_strength[0]) * np.sqrt( (sb[3] / sb[2]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[2] = sb[2] / laser_strength[0] self.parameters['normalized?'] = True def save_processing(self, file_name, folder_str, marker='', index=''): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files: self.proc_data = the continuous spectrum self.sb_results = the individual sideband details :param file_name: The base name for the saved file :type file_name: str :param folder_str: The full name for the folder hte file is saved it. Folder can be created :type folder_str: str :param marker: Marker for the file, appended to file_name, often the self.parameters['series'] :type marker: str :param index: used to keep these files from overwriting themselves when marker is the same :type index: str or int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' self.save_name = spectra_fname # self.parameters["files included"] = list(self.files) try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: PMT.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count( '#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.\n,{:.3f},'.format( self.parameters["fieldStrength"]["mean"]) spec_header = '#' + parameter_str + origin_import_spec origin_import_fits = '\nCenter energy,error,Amplitude,error,Linewidth,error\neV,,arb. u.,,eV,,\n,,' # + marker fits_header = '#' + parameter_str + origin_import_fits for sideband in sorted(self.sb_dict.keys()): try: complete = np.vstack((complete, self.sb_dict[sideband])) except: complete = np.array(self.sb_dict[sideband]) np.savetxt(os.path.join(folder_str, spectra_fname), complete, delimiter=',', header=spec_header, comments='', fmt='%0.6e') try: np.savetxt(os.path.join(folder_str, fit_fname), self.sb_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') except AttributeError: # Catch the error that happens if you save something without files print("warning, couldn't save fit file (no sidebands found?)") print("Saved PMT spectrum.\nDirectory: {}".format( os.path.join(folder_str, spectra_fname))) class TimeTrace(PMT): """ This class will be able to handle time traces output by the PMT softare. """ def __init__(self, file_path): super(HighSidebandPMT, self).__init__(file_path) class FullSpectrum(object): def __init__(self): pass class FullAbsorbance(FullSpectrum): """ I'm imagining this will sew up absorption spectra, but I'm not at all sure how to do that at the moment. """ def __init__(self): pass class FullHighSideband(FullSpectrum): """ I'm imagining this class is created with a base CCD file, then gobbles up other spectra that belong with it, then grabs the PMT object to normalize everything, assuming that PMT object exists. """ def __init__(self, initial_CCD_piece): """ Initialize a full HSG spectrum. Starts with a single CCD image, then adds more on to itself using stitch_hsg_dicts. Creates: self.fname = file name of the initial_CCD_piece self.sb_results = The sideband details from the initializing data self.parameters = The parameter dictionary of the initializing data. May not have all details of spectrum pieces added later. self.full_dict = a copy of the sb_results without the zeroth column, which is SB order :param initial_CCD_piece: The starting part of the spectrum, often the lowest orders seen by CCD :type initial_CCD_piece: HighSidebandCCD :return: None """ self.fname = initial_CCD_piece.fname try: self.sb_results = initial_CCD_piece.sb_results except AttributeError: print(initial_CCD_piece.full_dict) raise self.parameters = initial_CCD_piece.parameters self.parameters['files_here'] = [initial_CCD_piece.fname.split('/')[-1]] self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) @staticmethod def parse_sb_array(arr): """ Check to make sure the first even order sideband in an array is not weaker than the second even order. If this happens, it's likely because the SB was in the short pass filter and isn't work counting. We cut it out to prevent it from itnerfering with calculating overlaps :param arr: :return: """ arr = np.array(arr) if (arr[0, sbarr.SBNUM]>0 and arr[1, sbarr.SBNUM]>0 and # make sure they're both pos arr[0, sbarr.AREA] < arr[1, sbarr.AREA]): # and the fact the area is less # print "REMOVING FIRST SIDEBAND FROM FULLSIDEBAND" # print arr[0] # print arr[1] arr = arr[1:] full_dict = {} for sb in arr: full_dict[sb[0]] = np.asarray(sb[1:]) return full_dict, arr def add_CCD(self, ccd_object, verbose=False, force_calc=None, **kwargs): """ This method will be called by the stitch_hsg_results function to add another CCD image to the spectrum. :param ccd_object: The CCD object that will be stiched into the current FullHighSideband object :type ccd_object: HighSidebandCCD :return: None """ if self.parameters["gain"] == ccd_object.parameters["gain"]: calc = False else: calc = True if force_calc is not None: calc = force_calc if "need_ratio" in kwargs: #cascading it through, starting to think # everything should be in a kwarg calc = kwargs.pop("need_ratio") try: # self.full_dict = stitch_hsg_dicts(self.full_dict, ccd_object.full_dict, # need_ratio=calc, verbose=verbose) self.full_dict = stitch_hsg_dicts(self, ccd_object, need_ratio=calc, verbose=verbose, **kwargs) self.parameters['files_here'].append(ccd_object.fname.split('/')[-1]) # update sb_results, too sb_results = [[k]+list(v) for k, v in list(self.full_dict.items())] sb_results = np.array(sb_results) self.sb_results = sb_results[sb_results[:,0].argsort()] except AttributeError: print('Error, not enough sidebands to fit here! {}, {}, {}, {}'.format( self.parameters["series"], self.parameters["spec_step"], ccd_object.parameters["series"], ccd_object.parameters["spec_step"] )) def add_PMT(self, pmt_object, verbose=True): """ This method will be called by the stitch_hsg_results function to add the PMT data to the spectrum. """ # print "I'm adding PMT once" # self.full_dict = stitch_hsg_dicts(pmt_object.full_dict, self.full_dict, # need_ratio=True, verbose=False) self.full_dict = stitch_hsg_dicts(pmt_object, self, need_ratio=True, verbose=verbose) # if verbose: # self.full_dict, ratio = self.full_dict # print "I'm done adding PMT data" self.parameters['files_here'].append(pmt_object.parameters['files included']) self.make_results_array() # if verbose: # return ratio def make_results_array(self): """ The idea behind this method is to create the sb_results array from the finished full_dict dictionary. """ self.sb_results = None # print "I'm making the results array:", sorted(self.full_dict.keys()) for sb in sorted(self.full_dict.keys()): # print "Going to add this", sb try: self.sb_results = np.vstack((self.sb_results, np.hstack((sb, self.full_dict[sb])))) except ValueError: # print "It didn't exist yet!" self.sb_results = np.hstack((sb, self.full_dict[sb])) # print "and I made this array:", self.sb_results[:, 0] def save_processing(self, file_name, folder_str, marker='', index='', verbose=''): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: fit_fname = file_name + '_' + marker + '_' + str(index) + '_full.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files, one that is self.proc_data, the other is self.sb_results """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise temp = np.array(self.sb_results) ampli = np.array([temp[:, 3] / temp[:, 5]]) # I'm pretty sure this is # amplitude, not area temp[:, 5:7] = temp[:, 5:7] * 1000 # For meV linewidths if verbose: print("sb_results", self.sb_results.shape) print("ampli", ampli.shape) save_results =
np.hstack((temp, ampli.T))
numpy.hstack
# -*- coding: utf-8 -*- import time from datetime import datetime import warnings from textwrap import dedent, fill import numpy as np import pandas as pd from numpy.linalg import norm, inv from scipy.linalg import solve as spsolve, LinAlgError from scipy.integrate import trapz from scipy import stats from lifelines.fitters import BaseFitter, Printer from lifelines.plotting import set_kwargs_drawstyle from lifelines.statistics import chisq_test, proportional_hazard_test, TimeTransformers, StatisticalResult from lifelines.utils.lowess import lowess from lifelines.utils.concordance import _concordance_summary_statistics, _concordance_ratio from lifelines.utils import ( _get_index, _to_list, _to_tuple, _to_1d_array, inv_normal_cdf, normalize, qth_survival_times, coalesce, check_for_numeric_dtypes_or_raise, check_low_var, check_complete_separation, check_nans_or_infs, StatError, ConvergenceWarning, StatisticalWarning, StepSizer, ConvergenceError, string_justify, interpolate_at_times_and_return_pandas, CensoringType, interpolate_at_times, format_p_value, ) __all__ = ["CoxPHFitter"] class BatchVsSingle: @staticmethod def decide(batch_mode, n_unique, n_total, n_vars): frac_dups = n_unique / n_total if batch_mode or ( # https://github.com/CamDavidsonPilon/lifelines/issues/591 for original issue. # new values from from perf/batch_vs_single script. (batch_mode is None) and ( ( 6.876218e-01 + -1.796993e-06 * n_total + -1.204271e-11 * n_total ** 2 + 1.912500e00 * frac_dups + -8.121036e-01 * frac_dups ** 2 + 4.916605e-06 * n_total * frac_dups + -5.888875e-03 * n_vars + 5.473434e-09 * n_vars * n_total ) < 1 ) ): return "batch" return "single" class CoxPHFitter(BaseFitter): r""" This class implements fitting Cox's proportional hazard model: .. math:: h(t|x) = h_0(t) \exp((x - \overline{x})' \beta) Parameters ---------- alpha: float, optional (default=0.05) the level in the confidence intervals. tie_method: string, optional specify how the fitter should deal with ties. Currently only 'Efron' is available. penalizer: float, optional (default=0.0) Attach an L2 penalizer to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates. For example, this shrinks the absolute value of :math:`\beta_i`. The penalty is :math:`\frac{1}{2} \text{penalizer} ||\beta||^2`. strata: list, optional specify a list of columns to use in stratification. This is useful if a categorical covariate does not obey the proportional hazard assumption. This is used similar to the `strata` expression in R. See http://courses.washington.edu/b515/l17.pdf. Examples -------- >>> from lifelines.datasets import load_rossi >>> from lifelines import CoxPHFitter >>> rossi = load_rossi() >>> cph = CoxPHFitter() >>> cph.fit(rossi, 'week', 'arrest') >>> cph.print_summary() Attributes ---------- params_ : Series The estimated coefficients. Changed in version 0.22.0: use to be ``.hazards_`` hazard_ratios_ : Series The exp(coefficients) confidence_intervals_ : DataFrame The lower and upper confidence intervals for the hazard coefficients durations: Series The durations provided event_observed: Series The event_observed variable provided weights: Series The event_observed variable provided variance_matrix_ : numpy array The variance matrix of the coefficients strata: list the strata provided standard_errors_: Series the standard errors of the estimates score_: float the concordance index of the model. baseline_hazard_: DataFrame baseline_cumulative_hazard_: DataFrame baseline_survival_: DataFrame """ _KNOWN_MODEL = True def __init__(self, alpha=0.05, tie_method="Efron", penalizer=0.0, strata=None): super(CoxPHFitter, self).__init__(alpha=alpha) if penalizer < 0: raise ValueError("penalizer parameter must be >= 0.") if tie_method != "Efron": raise NotImplementedError("Only Efron is available at the moment.") self.alpha = alpha self.tie_method = tie_method self.penalizer = penalizer self.strata = strata @CensoringType.right_censoring def fit( self, df, duration_col=None, event_col=None, show_progress=False, initial_point=None, strata=None, step_size=None, weights_col=None, cluster_col=None, robust=False, batch_mode=None, ): """ Fit the Cox proportional hazard model to a dataset. Parameters ---------- df: DataFrame a Pandas DataFrame with necessary columns `duration_col` and `event_col` (see below), covariates columns, and special columns (weights, strata). `duration_col` refers to the lifetimes of the subjects. `event_col` refers to whether the 'death' events was observed: 1 if observed, 0 else (censored). duration_col: string the name of the column in DataFrame that contains the subjects' lifetimes. event_col: string, optional the name of thecolumn in DataFrame that contains the subjects' death observation. If left as None, assume all individuals are uncensored. weights_col: string, optional an optional column in the DataFrame, df, that denotes the weight per subject. This column is expelled and not used as a covariate, but as a weight in the final regression. Default weight is 1. This can be used for case-weights. For example, a weight of 2 means there were two subjects with identical observations. This can be used for sampling weights. In that case, use `robust=True` to get more accurate standard errors. show_progress: boolean, optional (default=False) since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing. initial_point: (d,) numpy array, optional initialize the starting point of the iterative algorithm. Default is the zero vector. strata: list or string, optional specify a column or list of columns n to use in stratification. This is useful if a categorical covariate does not obey the proportional hazard assumption. This is used similar to the `strata` expression in R. See http://courses.washington.edu/b515/l17.pdf. step_size: float, optional set an initial step size for the fitting algorithm. Setting to 1.0 may improve performance, but could also hurt convergence. robust: boolean, optional (default=False) Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ. See "The Robust Inference for the Cox Proportional Hazards Model", Journal of the American Statistical Association, Vol. 84, No. 408 (Dec., 1989), pp. 1074- 1078 cluster_col: string, optional specifies what column has unique identifiers for clustering covariances. Using this forces the sandwich estimator (robust variance estimator) to be used. batch_mode: bool, optional enabling batch_mode can be faster for datasets with a large number of ties. If left as None, lifelines will choose the best option. Returns ------- self: CoxPHFitter self with additional new properties: ``print_summary``, ``hazards_``, ``confidence_intervals_``, ``baseline_survival_``, etc. Note ---- Tied survival times are handled using Efron's tie-method. Examples -------- >>> from lifelines import CoxPHFitter >>> >>> df = pd.DataFrame({ >>> 'T': [5, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> 'E': [1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0], >>> 'var': [0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], >>> 'age': [4, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> }) >>> >>> cph = CoxPHFitter() >>> cph.fit(df, 'T', 'E') >>> cph.print_summary() >>> cph.predict_median(df) >>> from lifelines import CoxPHFitter >>> >>> df = pd.DataFrame({ >>> 'T': [5, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> 'E': [1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0], >>> 'var': [0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], >>> 'weights': [1.1, 0.5, 2.0, 1.6, 1.2, 4.3, 1.4, 4.5, 3.0, 3.2, 0.4, 6.2], >>> 'month': [10, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> 'age': [4, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> }) >>> >>> cph = CoxPHFitter() >>> cph.fit(df, 'T', 'E', strata=['month', 'age'], robust=True, weights_col='weights') >>> cph.print_summary() >>> cph.predict_median(df) """ if duration_col is None: raise TypeError("duration_col cannot be None.") self._time_fit_was_called = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") + " UTC" self.duration_col = duration_col self.event_col = event_col self.robust = robust self.cluster_col = cluster_col self.weights_col = weights_col self._n_examples = df.shape[0] self._batch_mode = batch_mode self.strata = coalesce(strata, self.strata) X, T, E, weights, original_index, self._clusters = self._preprocess_dataframe(df) self.durations = T.copy() self.event_observed = E.copy() self.weights = weights.copy() if self.strata is not None: self.durations.index = original_index self.event_observed.index = original_index self.weights.index = original_index self._norm_mean = X.mean(0) self._norm_std = X.std(0) X_norm = normalize(X, self._norm_mean, self._norm_std) params_ = self._fit_model( X_norm, T, E, weights=weights, initial_point=initial_point, show_progress=show_progress, step_size=step_size ) self.params_ = pd.Series(params_, index=X.columns, name="coef") / self._norm_std self.hazard_ratios_ = pd.Series(np.exp(self.params_), index=X.columns, name="exp(coef)") self.variance_matrix_ = -inv(self._hessian_) / np.outer(self._norm_std, self._norm_std) self.standard_errors_ = self._compute_standard_errors(X_norm, T, E, weights) self.confidence_intervals_ = self._compute_confidence_intervals() self._predicted_partial_hazards_ = ( self.predict_partial_hazard(X) .rename(columns={0: "P"}) .assign(T=self.durations.values, E=self.event_observed.values, W=self.weights.values) .set_index(X.index) ) self.baseline_hazard_ = self._compute_baseline_hazards() self.baseline_cumulative_hazard_ = self._compute_baseline_cumulative_hazard() self.baseline_survival_ = self._compute_baseline_survival() if hasattr(self, "_concordance_score_"): # we have already fit the model. del self._concordance_score_ return self def _preprocess_dataframe(self, df): # this should be a pure function df = df.copy() if self.strata is not None: df = df.sort_values(by=_to_list(self.strata) + [self.duration_col]) original_index = df.index.copy() df = df.set_index(self.strata) else: df = df.sort_values(by=self.duration_col) original_index = df.index.copy() # Extract time and event T = df.pop(self.duration_col) E = ( df.pop(self.event_col) if (self.event_col is not None) else pd.Series(np.ones(self._n_examples), index=df.index, name="E") ) W = ( df.pop(self.weights_col) if (self.weights_col is not None) else pd.Series(np.ones((self._n_examples,)), index=df.index, name="weights") ) _clusters = df.pop(self.cluster_col).values if self.cluster_col else None X = df.astype(float) T = T.astype(float) # we check nans here because converting to bools maps NaNs to True.. check_nans_or_infs(E) E = E.astype(bool) self._check_values(X, T, E, W) return X, T, E, W, original_index, _clusters def _check_values(self, X, T, E, W): check_for_numeric_dtypes_or_raise(X) check_nans_or_infs(T) check_nans_or_infs(X) check_low_var(X) check_complete_separation(X, E, T, self.event_col) # check to make sure their weights are okay if self.weights_col: if (W.astype(int) != W).any() and not self.robust: warnings.warn( """It appears your weights are not integers, possibly propensity or sampling scores then? It's important to know that the naive variance estimates of the coefficients are biased. Instead a) set `robust=True` in the call to `fit`, or b) use Monte Carlo to estimate the variances. See paper "Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis" """, StatisticalWarning, ) if (W <= 0).any(): raise ValueError("values in weight column %s must be positive." % self.weights_col) def _fit_model( self, X, T, E, weights=None, initial_point=None, step_size=None, precision=1e-07, show_progress=True, max_steps=50, ): # pylint: disable=too-many-statements,too-many-branches """ Newton Rhaphson algorithm for fitting CPH model. Note ---- The data is assumed to be sorted on T! Parameters ---------- X: (n,d) Pandas DataFrame of observations. T: (n) Pandas Series representing observed durations. E: (n) Pandas Series representing death events. weights: (n) an iterable representing weights per observation. initial_point: (d,) numpy array of initial starting point for NR algorithm. Default 0. step_size: float, optional > 0.001 to determine a starting step size in NR algorithm. precision: float, optional the convergence halts if the norm of delta between successive positions is less than epsilon. show_progress: boolean, optional since the fitter is iterative, show convergence diagnostics. max_steps: int, optional the maximum number of iterations of the Newton-Rhaphson algorithm. Returns ------- beta: (1,d) numpy array. """ self.path = [] assert precision <= 1.0, "precision must be less than or equal to 1." _, d = X.shape # make sure betas are correct size. if initial_point is not None: assert initial_point.shape == (d,) beta = initial_point else: beta = np.zeros((d,)) step_sizer = StepSizer(step_size) step_size = step_sizer.next() # Method of choice is just efron right now if self.tie_method == "Efron": decision = BatchVsSingle.decide(self._batch_mode, T.nunique(), X.shape[0], X.shape[1]) get_gradients = getattr(self, "_get_efron_values_%s" % decision) self._batch_mode = decision == "batch" else: raise NotImplementedError("Only Efron is available.") i = 0 converging = True ll, previous_ll = 0, 0 start = time.time() while converging: self.path.append(beta.copy()) i += 1 if self.strata is None: h, g, ll = get_gradients(X.values, T.values, E.values, weights.values, beta) else: g = np.zeros_like(beta) h = np.zeros((beta.shape[0], beta.shape[0])) ll = 0 for _h, _g, _ll in self._partition_by_strata_and_apply(X, T, E, weights, get_gradients, beta): g += _g h += _h ll += _ll if i == 1 and np.all(beta == 0): # this is a neat optimization, the null partial likelihood # is the same as the full partial but evaluated at zero. # if the user supplied a non-trivial initial point, we need to delay this. self._ll_null_ = ll if self.penalizer > 0: # add the gradient and hessian of the l2 term g -= self.penalizer * beta h.flat[:: d + 1] -= self.penalizer # reusing a piece to make g * inv(h) * g.T faster later try: inv_h_dot_g_T = spsolve(-h, g, assume_a="pos", check_finite=False) except ValueError as e: if "infs or NaNs" in str(e): raise ConvergenceError( """Hessian or gradient contains nan or inf value(s). Convergence halted. Please see the following tips in the lifelines documentation: https://lifelines.readthedocs.io/en/latest/Examples.html#problems-with-convergence-in-the-cox-proportional-hazard-model """, e, ) else: # something else? raise e except LinAlgError as e: raise ConvergenceError( """Convergence halted due to matrix inversion problems. Suspicion is high collinearity. Please see the following tips in the lifelines documentation: https://lifelines.readthedocs.io/en/latest/Examples.html#problems-with-convergence-in-the-cox-proportional-hazard-model """, e, ) delta = inv_h_dot_g_T if np.any(np.isnan(delta)): raise ConvergenceError( """delta contains nan value(s). Convergence halted. Please see the following tips in the lifelines documentation: https://lifelines.readthedocs.io/en/latest/Examples.html#problems-with-convergence-in-the-cox-proportional-hazard-model """ ) # Save these as pending result hessian, gradient = h, g norm_delta = norm(delta) # reusing an above piece to make g * inv(h) * g.T faster. newton_decrement = g.dot(inv_h_dot_g_T) / 2 if show_progress: print( "\rIteration %d: norm_delta = %.5f, step_size = %.4f, ll = %.5f, newton_decrement = %.5f, seconds_since_start = %.1f" % (i, norm_delta, step_size, ll, newton_decrement, time.time() - start), end="", ) # convergence criteria if norm_delta < precision: converging, completed = False, True elif previous_ll != 0 and abs(ll - previous_ll) / (-previous_ll) < 1e-09: # this is what R uses by default converging, completed = False, True elif newton_decrement < precision: converging, completed = False, True elif i >= max_steps: # 50 iterations steps with N-R is a lot. # Expected convergence is ~10 steps converging, completed = False, False elif step_size <= 0.00001: converging, completed = False, False elif abs(ll) < 0.0001 and norm_delta > 1.0: warnings.warn( "The log-likelihood is getting suspiciously close to 0 and the delta is still large. There may be complete separation in the dataset. This may result in incorrect inference of coefficients. \ See https://stats.stackexchange.com/q/11109/11867 for more.\n", ConvergenceWarning, ) converging, completed = False, False beta += step_size * delta previous_ll = ll step_size = step_sizer.update(norm_delta).next() self._hessian_ = hessian self._score_ = gradient self.log_likelihood_ = ll if show_progress and completed: print("Convergence completed after %d iterations." % (i)) elif show_progress and not completed: print("Convergence failed. See any warning messages.") # report to the user problems that we detect. if completed and norm_delta > 0.1: warnings.warn( "Newton-Rhaphson convergence completed but norm(delta) is still high, %.3f. This may imply non-unique solutions to the maximum likelihood. Perhaps there is collinearity or complete separation in the dataset?\n" % norm_delta, ConvergenceWarning, ) elif not completed: warnings.warn( "Newton-Rhaphson failed to converge sufficiently in %d steps.\n" % max_steps, ConvergenceWarning ) return beta def _get_efron_values_single(self, X, T, E, weights, beta): """ Calculates the first and second order vector differentials, with respect to beta. Note that X, T, E are assumed to be sorted on T! A good explanation for Efron. Consider three of five subjects who fail at the time. As it is not known a priori that who is the first to fail, so one-third of (φ1 + φ2 + φ3) is adjusted from sum_j^{5} φj after one fails. Similarly two-third of (φ1 + φ2 + φ3) is adjusted after first two individuals fail, etc. From https://cran.r-project.org/web/packages/survival/survival.pdf: "Setting all weights to 2 for instance will give the same coefficient estimate but halve the variance. When the Efron approximation for ties (default) is employed replication of the data will not give exactly the same coefficients as the weights option, and in this case the weighted fit is arguably the correct one." Parameters ---------- X: array (n,d) numpy array of observations. T: array (n) numpy array representing observed durations. E: array (n) numpy array representing death events. weights: array (n) an array representing weights per observation. beta: array (1, d) numpy array of coefficients. Returns ------- hessian: (d, d) numpy array, gradient: (1, d) numpy array log_likelihood: float """ n, d = X.shape hessian = np.zeros((d, d)) gradient = np.zeros((d,)) log_lik = 0 # Init risk and tie sums to zero x_death_sum = np.zeros((d,)) risk_phi, tie_phi = 0, 0 risk_phi_x, tie_phi_x = np.zeros((d,)), np.zeros((d,)) risk_phi_x_x, tie_phi_x_x = np.zeros((d, d)), np.zeros((d, d)) # Init number of ties and weights weight_count = 0.0 tied_death_counts = 0 scores = weights * np.exp(np.dot(X, beta)) phi_x_is = scores[:, None] * X phi_x_x_i = np.empty((d, d)) # Iterate backwards to utilize recursive relationship for i in range(n - 1, -1, -1): # Doing it like this to preserve shape ti = T[i] ei = E[i] xi = X[i] w = weights[i] # Calculate phi values phi_i = scores[i] phi_x_i = phi_x_is[i] # https://stackoverflow.com/a/51481295/1895939 phi_x_x_i = np.multiply.outer(xi, phi_x_i) # Calculate sums of Risk set risk_phi = risk_phi + phi_i risk_phi_x = risk_phi_x + phi_x_i risk_phi_x_x = risk_phi_x_x + phi_x_x_i # Calculate sums of Ties, if this is an event if ei: x_death_sum = x_death_sum + w * xi tie_phi = tie_phi + phi_i tie_phi_x = tie_phi_x + phi_x_i tie_phi_x_x = tie_phi_x_x + phi_x_x_i # Keep track of count tied_death_counts += 1 weight_count += w if i > 0 and T[i - 1] == ti: # There are more ties/members of the risk set continue elif tied_death_counts == 0: # Only censored with current time, move on continue # There was atleast one event and no more ties remain. Time to sum. # This code is near identical to the _batch algorithm below. In fact, see _batch for comments. weighted_average = weight_count / tied_death_counts if tied_death_counts > 1: increasing_proportion = np.arange(tied_death_counts) / tied_death_counts denom = 1.0 / (risk_phi - increasing_proportion * tie_phi) numer = risk_phi_x - np.outer(increasing_proportion, tie_phi_x) a1 = np.einsum("ab,i->ab", risk_phi_x_x, denom) - np.einsum( "ab,i->ab", tie_phi_x_x, increasing_proportion * denom ) else: denom = 1.0 / np.array([risk_phi]) numer = risk_phi_x a1 = risk_phi_x_x * denom summand = numer * denom[:, None] a2 = summand.T.dot(summand) gradient = gradient + x_death_sum - weighted_average * summand.sum(0) log_lik = log_lik + np.dot(x_death_sum, beta) + weighted_average * np.log(denom).sum() hessian = hessian + weighted_average * (a2 - a1) # reset tie values tied_death_counts = 0 weight_count = 0.0 x_death_sum = np.zeros((d,)) tie_phi = 0 tie_phi_x = np.zeros((d,)) tie_phi_x_x = np.zeros((d, d)) return hessian, gradient, log_lik @staticmethod def _trivial_log_likelihood_batch(T, E, weights): # used for log-likelihood test n = T.shape[0] log_lik = 0 _, counts = np.unique(-T, return_counts=True) risk_phi = 0 pos = n for count_of_removals in counts: slice_ = slice(pos - count_of_removals, pos) weights_at_t = weights[slice_] phi_i = weights_at_t # Calculate sums of Risk set risk_phi = risk_phi + phi_i.sum() # Calculate the sums of Tie set deaths = E[slice_] tied_death_counts = deaths.astype(int).sum() if tied_death_counts == 0: # no deaths, can continue pos -= count_of_removals continue weights_deaths = weights_at_t[deaths] weight_count = weights_deaths.sum() if tied_death_counts > 1: tie_phi = phi_i[deaths].sum() factor = np.log(risk_phi - np.arange(tied_death_counts) * tie_phi / tied_death_counts).sum() else: factor = np.log(risk_phi) log_lik = log_lik - weight_count / tied_death_counts * factor pos -= count_of_removals return log_lik @staticmethod def _trivial_log_likelihood_single(T, E, weights): # assumes sorted on T! log_lik = 0 n = T.shape[0] # Init risk and tie sums to zero risk_phi, tie_phi = 0, 0 # Init number of ties and weights weight_count = 0.0 tied_death_counts = 0 # Iterate backwards to utilize recursive relationship for i in range(n - 1, -1, -1): # Doing it like this to preserve shape ti = T[i] ei = E[i] # Calculate phi values phi_i = weights[i] w = weights[i] # Calculate sums of Risk set risk_phi = risk_phi + phi_i # Calculate sums of Ties, if this is an event if ei: tie_phi = tie_phi + phi_i # Keep track of count tied_death_counts += 1 weight_count += w if i > 0 and T[i - 1] == ti: # There are more ties/members of the risk set continue elif tied_death_counts == 0: # Only censored with current time, move on continue if tied_death_counts > 1: factor = np.log(risk_phi - np.arange(tied_death_counts) * tie_phi / tied_death_counts).sum() else: factor = np.log(risk_phi) log_lik = log_lik - weight_count / tied_death_counts * factor # reset tie values tied_death_counts = 0 weight_count = 0.0 tie_phi = 0 return log_lik def _get_efron_values_batch(self, X, T, E, weights, beta): # pylint: disable=too-many-locals """ Assumes sorted on ascending on T Calculates the first and second order vector differentials, with respect to beta. A good explanation for how Efron handles ties. Consider three of five subjects who fail at the time. As it is not known a priori that who is the first to fail, so one-third of (φ1 + φ2 + φ3) is adjusted from sum_j^{5} φj after one fails. Similarly two-third of (φ1 + φ2 + φ3) is adjusted after first two individuals fail, etc. Returns ------- hessian: (d, d) numpy array, gradient: (1, d) numpy array log_likelihood: float """ n, d = X.shape hessian = np.zeros((d, d)) gradient = np.zeros((d,)) log_lik = 0 # weights = weights[:, None] # Init risk and tie sums to zero risk_phi, tie_phi = 0, 0 risk_phi_x, tie_phi_x = np.zeros((d,)), np.zeros((d,)) risk_phi_x_x, tie_phi_x_x = np.zeros((d, d)), np.zeros((d, d)) # counts are sorted by -T _, counts = np.unique(-T, return_counts=True) scores = weights * np.exp(
np.dot(X, beta)
numpy.dot
from functools import partial import numpy as np import pytest import sympy from openfermion import IsingOperator, QubitOperator, qubit_operator_sparse from zquantum.core.circuits import RX, RY, RZ, Circuit, H, X from zquantum.core.estimation import ( allocate_shots_proportionally, allocate_shots_uniformly, calculate_exact_expectation_values, estimate_expectation_values_by_averaging, evaluate_estimation_circuits, evaluate_non_measured_estimation_tasks, get_context_selection_circuit_for_group, group_greedily, group_individually, perform_context_selection, split_estimation_tasks_to_measure, ) from zquantum.core.interfaces.estimation import EstimationTask from zquantum.core.interfaces.mock_objects import MockQuantumBackend from zquantum.core.measurement import ExpectationValues from zquantum.core.openfermion._utils import change_operator_type from zquantum.core.symbolic_simulator import SymbolicSimulator class TestEstimatorUtils: def test_get_context_selection_circuit_for_group(self): group = QubitOperator("X0 Y1") - 0.5 * QubitOperator((1, "Y")) circuit, ising_operator = get_context_selection_circuit_for_group(group) # Need to convert to QubitOperator in order to get matrix representation qubit_operator = change_operator_type(ising_operator, QubitOperator) target_unitary = qubit_operator_sparse(group) transformed_unitary = ( circuit.to_unitary().conj().T @ qubit_operator_sparse(qubit_operator) @ circuit.to_unitary() ) assert np.allclose(target_unitary.todense(), transformed_unitary) def test_perform_context_selection(self): target_operators = [] target_operators.append(10.0 * QubitOperator("Z0")) target_operators.append(-3 * QubitOperator("Y0")) target_operators.append(1 * QubitOperator("X0")) target_operators.append(20 * QubitOperator("")) expected_operators = [] expected_operators.append(10.0 * QubitOperator("Z0")) expected_operators.append(-3 * QubitOperator("Z0")) expected_operators.append(1 * QubitOperator("Z0")) expected_operators.append(20 * QubitOperator("")) base_circuit = Circuit([X(0)]) x_term_circuit = Circuit([RY(-np.pi / 2)(0)]) y_term_circuit = Circuit([RX(np.pi / 2)(0)]) expected_circuits = [ base_circuit, base_circuit + y_term_circuit, base_circuit + x_term_circuit, base_circuit, ] estimation_tasks = [ EstimationTask(operator, base_circuit, None) for operator in target_operators ] tasks_with_context_selection = perform_context_selection(estimation_tasks) for task, expected_circuit, expected_operator in zip( tasks_with_context_selection, expected_circuits, expected_operators ): assert task.operator.terms == expected_operator.terms assert task.circuit == expected_circuit @pytest.fixture() def frame_operators(self): operators = [ 2.0 * IsingOperator((1, "Z")) * IsingOperator((2, "Z")), 1.0 * IsingOperator((3, "Z")) * IsingOperator((0, "Z")), -1.0 * IsingOperator((2, "Z")), ] return operators @pytest.fixture() def circuits(self): circuits = [Circuit() for _ in range(5)] circuits[1] += RX(1.2)(0) circuits[1] += RY(1.5)(1) circuits[1] += RX(-0.0002)(0) circuits[1] += RY(0)(1) for circuit in circuits[2:]: circuit += RX(sympy.Symbol("theta_0"))(0) circuit += RY(sympy.Symbol("theta_1"))(1) circuit += RX(sympy.Symbol("theta_2"))(0) circuit += RY(sympy.Symbol("theta_3"))(1) return circuits @pytest.mark.parametrize( "n_samples, target_n_samples_list", [ (100, [100, 100, 100]), (17, [17, 17, 17]), ], ) def test_allocate_shots_uniformly( self, frame_operators, n_samples, target_n_samples_list, ): allocate_shots = partial(allocate_shots_uniformly, number_of_shots=n_samples) circuit = Circuit() estimation_tasks = [ EstimationTask(operator, circuit, 1) for operator in frame_operators ] new_estimation_tasks = allocate_shots(estimation_tasks) for task, target_n_samples in zip(new_estimation_tasks, target_n_samples_list): assert task.number_of_shots == target_n_samples @pytest.mark.parametrize( "total_n_shots, prior_expectation_values, target_n_samples_list", [ (400, None, [200, 100, 100]), (400, ExpectationValues(np.array([0, 0, 0])), [200, 100, 100]), (400, ExpectationValues(np.array([1, 0.3, 0.3])), [0, 200, 200]), ], ) def test_allocate_shots_proportionally( self, frame_operators, total_n_shots, prior_expectation_values, target_n_samples_list, ): allocate_shots = partial( allocate_shots_proportionally, total_n_shots=total_n_shots, prior_expectation_values=prior_expectation_values, ) circuit = Circuit() estimation_tasks = [ EstimationTask(operator, circuit, 1) for operator in frame_operators ] new_estimation_tasks = allocate_shots(estimation_tasks) for task, target_n_samples in zip(new_estimation_tasks, target_n_samples_list): assert task.number_of_shots == target_n_samples @pytest.mark.parametrize( "n_samples", [-1], ) def test_allocate_shots_uniformly_invalid_inputs( self, n_samples, ): estimation_tasks = [] with pytest.raises(ValueError): allocate_shots_uniformly(estimation_tasks, number_of_shots=n_samples) @pytest.mark.parametrize( "total_n_shots, prior_expectation_values", [ (-1, ExpectationValues(np.array([0, 0, 0]))), ], ) def test_allocate_shots_proportionally_invalid_inputs( self, total_n_shots, prior_expectation_values, ): estimation_tasks = [] with pytest.raises(ValueError): _ = allocate_shots_proportionally( estimation_tasks, total_n_shots, prior_expectation_values ) def test_evaluate_estimation_circuits_no_symbols( self, circuits, ): evaluate_circuits = partial( evaluate_estimation_circuits, symbols_maps=[[] for _ in circuits] ) operator = QubitOperator() estimation_tasks = [ EstimationTask(operator, circuit, 1) for circuit in circuits ] new_estimation_tasks = evaluate_circuits(estimation_tasks) for old_task, new_task in zip(estimation_tasks, new_estimation_tasks): assert old_task.circuit == new_task.circuit def test_evaluate_estimation_circuits_all_symbols( self, circuits, ): symbols_maps = [ [ (sympy.Symbol("theta_0"), 0), (sympy.Symbol("theta_1"), 0), (sympy.Symbol("theta_2"), 0), (sympy.Symbol("theta_3"), 0), ] for _ in circuits ] evaluate_circuits = partial( evaluate_estimation_circuits, symbols_maps=symbols_maps, ) operator = QubitOperator() estimation_tasks = [ EstimationTask(operator, circuit, 1) for circuit in circuits ] new_estimation_tasks = evaluate_circuits(estimation_tasks) for new_task in new_estimation_tasks: assert len(new_task.circuit.free_symbols) == 0 def test_group_greedily_all_different_groups(self): target_operator = 10.0 * QubitOperator("Z0") target_operator -= 3.0 * QubitOperator("Y0") target_operator += 1.0 * QubitOperator("X0") target_operator += 20.0 * QubitOperator("") expected_operators = [ 10.0 * QubitOperator("Z0"), -3.0 * QubitOperator("Y0"), 1.0 * QubitOperator("X0"), 20.0 * QubitOperator(""), ] circuit = Circuit([X(0)]) estimation_tasks = [EstimationTask(target_operator, circuit, None)] grouped_tasks = group_greedily(estimation_tasks) for task, operator in zip(grouped_tasks, expected_operators): assert task.operator == operator for initial_task, modified_task in zip(estimation_tasks, grouped_tasks): assert modified_task.circuit == initial_task.circuit assert modified_task.number_of_shots == initial_task.number_of_shots def test_group_greedily_all_comeasureable(self): target_operator = 10.0 * QubitOperator("Y0") target_operator -= 3.0 * QubitOperator("Y0 Y1") target_operator += 1.0 * QubitOperator("Y1") target_operator += 20.0 * QubitOperator("Y0 Y1 Y2") circuit = Circuit([X(0), X(1), X(2)]) estimation_tasks = [EstimationTask(target_operator, circuit, None)] grouped_tasks = group_greedily(estimation_tasks) assert len(grouped_tasks) == 1 assert grouped_tasks[0].operator == target_operator for initial_task, modified_task in zip(estimation_tasks, grouped_tasks): assert modified_task.circuit == initial_task.circuit assert modified_task.number_of_shots == initial_task.number_of_shots def test_group_individually(self): target_operator = 10.0 * QubitOperator("Z0") target_operator += 5.0 * QubitOperator("Z1") target_operator -= 3.0 * QubitOperator("Y0") target_operator += 1.0 * QubitOperator("X0") target_operator += 20.0 * QubitOperator("") expected_operator_terms_per_frame = [ (10.0 * QubitOperator("Z0")).terms, (5.0 * QubitOperator("Z1")).terms, (-3.0 * QubitOperator("Y0")).terms, (1.0 * QubitOperator("X0")).terms, (20.0 * QubitOperator("")).terms, ] circuit = Circuit([X(0)]) estimation_tasks = [EstimationTask(target_operator, circuit, None)] grouped_tasks = group_individually(estimation_tasks) assert len(grouped_tasks) == 5 for task in grouped_tasks: assert task.operator.terms in expected_operator_terms_per_frame @pytest.mark.parametrize( ",".join( [ "estimation_tasks", "ref_estimation_tasks_to_measure", "ref_non_measured_estimation_tasks", "ref_indices_to_measure", "ref_non_measured_indices", ] ), [ ( [ EstimationTask( IsingOperator("2[Z0] + 3 [Z1 Z2]"), Circuit([X(0)]), 10 ), EstimationTask( IsingOperator("2[Z0] + 3 [Z1 Z2] + 4[]"), Circuit([RZ(np.pi / 2)(0)]), 1000, ), EstimationTask( IsingOperator("4[Z3]"), Circuit([RY(np.pi / 2)(0)]), 17, ), ], [ EstimationTask( IsingOperator("2[Z0] + 3 [Z1 Z2]"), Circuit([X(0)]), 10 ), EstimationTask( IsingOperator("2[Z0] + 3 [Z1 Z2] + 4 []"), Circuit([RZ(np.pi / 2)(0)]), 1000, ), EstimationTask( IsingOperator("4[Z3]"), Circuit([RY(np.pi / 2)(0)]), 17, ), ], [], [0, 1, 2], [], ), ( [ EstimationTask( IsingOperator("2[Z0] + 3 [Z1 Z2]"), Circuit([X(0)]), 10 ), EstimationTask( IsingOperator("4[] "), Circuit([RZ(np.pi / 2)(0)]), 1000, ), EstimationTask( IsingOperator("4[Z3]"), Circuit([RY(np.pi / 2)(0)]), 17, ), ], [ EstimationTask( IsingOperator("2[Z0] + 3 [Z1 Z2]"), Circuit([X(0)]), 10 ), EstimationTask( IsingOperator("4[Z3]"), Circuit([RY(np.pi / 2)(0)]), 17, ), ], [ EstimationTask( IsingOperator("4[]"), Circuit([RZ(np.pi / 2)(0)]), 1000 ) ], [0, 2], [1], ), ( [ EstimationTask(IsingOperator("- 3 []"), Circuit([X(0)]), 0), EstimationTask( IsingOperator("2[Z0] + 3 [Z1 Z2] + 4[]"), Circuit([RZ(np.pi / 2)(0)]), 1000, ), EstimationTask( IsingOperator("4[Z3]"), Circuit([RY(np.pi / 2)(0)]), 17, ), ], [ EstimationTask( IsingOperator("2[Z0] + 3 [Z1 Z2] + 4 []"), Circuit([RZ(np.pi / 2)(0)]), 1000, ), EstimationTask( IsingOperator("4[Z3]"), Circuit([RY(np.pi / 2)(0)]), 17, ), ], [ EstimationTask(IsingOperator("- 3 []"), Circuit([X(0)]), 0), ], [1, 2], [0], ), ( [ EstimationTask(IsingOperator("- 3 []"), Circuit([X(0)]), 0), EstimationTask( IsingOperator("2[Z0] + 3 [Z1 Z2] + 4[]"), Circuit([RZ(np.pi / 2)(0)]), 1000, ), EstimationTask( IsingOperator("4[Z3]"), Circuit([RY(np.pi / 2)(0)]), 0, ), ], [ EstimationTask( IsingOperator("2[Z0] + 3 [Z1 Z2] + 4 []"), Circuit([RZ(np.pi / 2)(0)]), 1000, ), ], [ EstimationTask(IsingOperator("- 3 []"), Circuit([X(0)]), 0), EstimationTask( IsingOperator("4[Z3]"), Circuit([RY(np.pi / 2)(0)]), 0, ), ], [1], [0, 2], ), ], ) def test_split_estimation_tasks_to_measure( self, estimation_tasks, ref_estimation_tasks_to_measure, ref_non_measured_estimation_tasks, ref_indices_to_measure, ref_non_measured_indices, ): ( estimation_task_to_measure, non_measured_estimation_tasks, indices_to_measure, indices_for_non_measureds, ) = split_estimation_tasks_to_measure(estimation_tasks) assert estimation_task_to_measure == ref_estimation_tasks_to_measure assert non_measured_estimation_tasks == ref_non_measured_estimation_tasks assert indices_to_measure == ref_indices_to_measure assert ref_non_measured_indices == indices_for_non_measureds @pytest.mark.parametrize( "estimation_tasks,ref_expectation_values", [ ( [ EstimationTask( IsingOperator("4[] "), Circuit([RZ(np.pi / 2)(0)]), 1000, ), ], [ ExpectationValues( np.asarray([4.0]), correlations=[np.asarray([[0.0]])], estimator_covariances=[np.asarray([[0.0]])], ), ], ), ( [ EstimationTask( IsingOperator("- 2.5 [] - 0.5 []"), Circuit([X(0)]), 0 ), EstimationTask( IsingOperator("0.001[] "), Circuit([RZ(np.pi / 2)(0)]), 2 ), EstimationTask( IsingOperator("2.5 [Z1] + 1.0 [Z2 Z3]"), Circuit([RY(np.pi / 2)(0)]), 0, ), ], [ ExpectationValues( np.asarray([-3.0]), correlations=[np.asarray([[0.0]])], estimator_covariances=[np.asarray([[0.0]])], ), ExpectationValues(
np.asarray([0.001])
numpy.asarray
# Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD-3-Clause import os.path as op import itertools as itt import sys from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal, assert_allclose) import pytest import numpy as np from scipy import linalg from mne.cov import (regularize, whiten_evoked, _auto_low_rank_model, prepare_noise_cov, compute_whitener, _regularized_covariance) from mne import (read_cov, write_cov, Epochs, merge_events, find_events, compute_raw_covariance, compute_covariance, read_evokeds, compute_proj_raw, pick_channels_cov, pick_types, make_ad_hoc_cov, make_fixed_length_events, create_info, compute_rank) from mne.channels import equalize_channels from mne.datasets import testing from mne.fixes import _get_args from mne.io import read_raw_fif, RawArray, read_raw_ctf, read_info from mne.io.pick import _DATA_CH_TYPES_SPLIT, pick_info from mne.preprocessing import maxwell_filter from mne.rank import _compute_rank_int from mne.utils import requires_sklearn, catch_logging, assert_snr base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data') cov_fname = op.join(base_dir, 'test-cov.fif') cov_gz_fname = op.join(base_dir, 'test-cov.fif.gz') cov_km_fname = op.join(base_dir, 'test-km-cov.fif') raw_fname = op.join(base_dir, 'test_raw.fif') ave_fname = op.join(base_dir, 'test-ave.fif') erm_cov_fname = op.join(base_dir, 'test_erm-cov.fif') hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif') ctf_fname = op.join(testing.data_path(download=False), 'CTF', 'testdata_ctf.ds') @pytest.mark.parametrize('proj', (True, False)) @pytest.mark.parametrize('pca', (True, 'white', False)) def test_compute_whitener(proj, pca): """Test properties of compute_whitener.""" raw = read_raw_fif(raw_fname).crop(0, 3).load_data() raw.pick_types(meg=True, eeg=True, exclude=()) if proj: raw.apply_proj() else: raw.del_proj() with pytest.warns(RuntimeWarning, match='Too few samples'): cov = compute_raw_covariance(raw) assert cov['names'] == raw.ch_names W, _, C = compute_whitener(cov, raw.info, pca=pca, return_colorer=True, verbose='error') n_channels = len(raw.ch_names) n_reduced = len(raw.ch_names) rank = n_channels - len(raw.info['projs']) n_reduced = rank if pca is True else n_channels assert W.shape == C.shape[::-1] == (n_reduced, n_channels) # round-trip mults round_trip = np.dot(W, C) if pca is True: assert_allclose(round_trip, np.eye(n_reduced), atol=1e-7) elif pca == 'white': # Our first few rows/cols are zeroed out in the white space assert_allclose(round_trip[-rank:, -rank:], np.eye(rank), atol=1e-7) else: assert pca is False assert_allclose(round_trip, np.eye(n_channels), atol=0.05) raw.info['bads'] = [raw.ch_names[0]] picks = pick_types(raw.info, meg=True, eeg=True, exclude=[]) with pytest.warns(RuntimeWarning, match='Too few samples'): cov2 = compute_raw_covariance(raw, picks=picks) cov3 = compute_raw_covariance(raw, picks=None) assert_allclose(cov2['data'][1:, 1:], cov3['data']) W2, _, C2 = compute_whitener(cov2, raw.info, pca=pca, return_colorer=True, picks=picks, verbose='error') W3, _, C3 = compute_whitener(cov3, raw.info, pca=pca, return_colorer=True, picks=None, verbose='error') # this tol is not great, but Windows needs it rtol = 1e-3 if sys.platform.startswith('win') else 1e-11 assert_allclose(W, W2, rtol=rtol) assert_allclose(C, C2, rtol=rtol) n_channels = len(raw.ch_names) - len(raw.info['bads']) n_reduced = len(raw.ch_names) - len(raw.info['bads']) rank = n_channels - len(raw.info['projs']) n_reduced = rank if pca is True else n_channels assert W3.shape == C3.shape[::-1] == (n_reduced, n_channels) def test_cov_mismatch(): """Test estimation with MEG<->Head mismatch.""" raw = read_raw_fif(raw_fname).crop(0, 5).load_data() events = find_events(raw, stim_channel='STI 014') raw.pick_channels(raw.ch_names[:5]) raw.add_proj([], remove_existing=True) epochs = Epochs(raw, events, None, tmin=-0.2, tmax=0., preload=True) for kind in ('shift', 'None'): epochs_2 = epochs.copy() # This should be fine compute_covariance([epochs, epochs_2]) if kind == 'shift': epochs_2.info['dev_head_t']['trans'][:3, 3] += 0.001 else: # None epochs_2.info['dev_head_t'] = None pytest.raises(ValueError, compute_covariance, [epochs, epochs_2]) compute_covariance([epochs, epochs_2], on_mismatch='ignore') with pytest.raises(RuntimeWarning, match='transform mismatch'): compute_covariance([epochs, epochs_2], on_mismatch='warn') with pytest.raises(ValueError, match='Invalid value'): compute_covariance(epochs, on_mismatch='x') # This should work epochs.info['dev_head_t'] = None epochs_2.info['dev_head_t'] = None compute_covariance([epochs, epochs_2], method=None) def test_cov_order(): """Test covariance ordering.""" raw = read_raw_fif(raw_fname) raw.set_eeg_reference(projection=True) info = raw.info # add MEG channel with low enough index number to affect EEG if # order is incorrect info['bads'] += ['MEG 0113'] ch_names = [info['ch_names'][pick] for pick in pick_types(info, meg=False, eeg=True)] cov = read_cov(cov_fname) # no avg ref present warning prepare_noise_cov(cov, info, ch_names, verbose='error') # big reordering cov_reorder = cov.copy() order = np.random.RandomState(0).permutation(np.arange(len(cov.ch_names))) cov_reorder['names'] = [cov['names'][ii] for ii in order] cov_reorder['data'] = cov['data'][order][:, order] # Make sure we did this properly _assert_reorder(cov_reorder, cov, order) # Now check some functions that should get the same result for both # regularize with pytest.raises(ValueError, match='rank, if str'): regularize(cov, info, rank='foo') with pytest.raises(TypeError, match='rank must be'): regularize(cov, info, rank=False) with pytest.raises(TypeError, match='rank must be'): regularize(cov, info, rank=1.) cov_reg = regularize(cov, info, rank='full') cov_reg_reorder = regularize(cov_reorder, info, rank='full') _assert_reorder(cov_reg_reorder, cov_reg, order) # prepare_noise_cov cov_prep = prepare_noise_cov(cov, info, ch_names) cov_prep_reorder = prepare_noise_cov(cov, info, ch_names) _assert_reorder(cov_prep, cov_prep_reorder, order=np.arange(len(cov_prep['names']))) # compute_whitener whitener, w_ch_names, n_nzero = compute_whitener( cov, info, return_rank=True) assert whitener.shape[0] == whitener.shape[1] whitener_2, w_ch_names_2, n_nzero_2 = compute_whitener( cov_reorder, info, return_rank=True) assert_array_equal(w_ch_names_2, w_ch_names) assert_allclose(whitener_2, whitener, rtol=1e-6) assert n_nzero == n_nzero_2 # with pca assert n_nzero < whitener.shape[0] whitener_pca, w_ch_names_pca, n_nzero_pca = compute_whitener( cov, info, pca=True, return_rank=True) assert_array_equal(w_ch_names_pca, w_ch_names) assert n_nzero_pca == n_nzero assert whitener_pca.shape == (n_nzero_pca, len(w_ch_names)) # whiten_evoked evoked = read_evokeds(ave_fname)[0] evoked_white = whiten_evoked(evoked, cov) evoked_white_2 = whiten_evoked(evoked, cov_reorder) assert_allclose(evoked_white_2.data, evoked_white.data, atol=1e-7) def _assert_reorder(cov_new, cov_orig, order): """Check that we get the same result under reordering.""" inv_order = np.argsort(order) assert_array_equal([cov_new['names'][ii] for ii in inv_order], cov_orig['names']) assert_allclose(cov_new['data'][inv_order][:, inv_order], cov_orig['data'], atol=1e-20) def test_ad_hoc_cov(tmpdir): """Test ad hoc cov creation and I/O.""" out_fname = tmpdir.join('test-cov.fif') evoked = read_evokeds(ave_fname)[0] cov = make_ad_hoc_cov(evoked.info) cov.save(out_fname) assert 'Covariance' in repr(cov) cov2 = read_cov(out_fname) assert_array_almost_equal(cov['data'], cov2['data']) std = dict(grad=2e-13, mag=10e-15, eeg=0.1e-6) cov = make_ad_hoc_cov(evoked.info, std) cov.save(out_fname) assert 'Covariance' in repr(cov) cov2 = read_cov(out_fname) assert_array_almost_equal(cov['data'], cov2['data']) cov['data'] = np.diag(cov['data']) with pytest.raises(RuntimeError, match='attributes inconsistent'): cov._get_square() cov['diag'] = False cov._get_square() cov['data'] = np.diag(cov['data']) with pytest.raises(RuntimeError, match='attributes inconsistent'): cov._get_square() def test_io_cov(tmpdir): """Test IO for noise covariance matrices.""" cov = read_cov(cov_fname) cov['method'] = 'empirical' cov['loglik'] = -np.inf cov.save(tmpdir.join('test-cov.fif')) cov2 = read_cov(tmpdir.join('test-cov.fif')) assert_array_almost_equal(cov.data, cov2.data) assert_equal(cov['method'], cov2['method']) assert_equal(cov['loglik'], cov2['loglik']) assert 'Covariance' in repr(cov) cov2 = read_cov(cov_gz_fname) assert_array_almost_equal(cov.data, cov2.data) cov2.save(tmpdir.join('test-cov.fif.gz')) cov2 = read_cov(tmpdir.join('test-cov.fif.gz')) assert_array_almost_equal(cov.data, cov2.data) cov['bads'] = ['EEG 039'] cov_sel = pick_channels_cov(cov, exclude=cov['bads']) assert cov_sel['dim'] == (len(cov['data']) - len(cov['bads'])) assert cov_sel['data'].shape == (cov_sel['dim'], cov_sel['dim']) cov_sel.save(tmpdir.join('test-cov.fif')) cov2 = read_cov(cov_gz_fname) assert_array_almost_equal(cov.data, cov2.data) cov2.save(tmpdir.join('test-cov.fif.gz')) cov2 = read_cov(tmpdir.join('test-cov.fif.gz')) assert_array_almost_equal(cov.data, cov2.data) # test warnings on bad filenames cov_badname = tmpdir.join('test-bad-name.fif.gz') with pytest.warns(RuntimeWarning, match='-cov.fif'): write_cov(cov_badname, cov) with pytest.warns(RuntimeWarning, match='-cov.fif'): read_cov(cov_badname) @pytest.mark.parametrize('method', (None, 'empirical', 'shrunk')) def test_cov_estimation_on_raw(method, tmpdir): """Test estimation from raw (typically empty room).""" if method == 'shrunk': try: import sklearn # noqa: F401 except Exception as exp: pytest.skip('sklearn is required, got %s' % (exp,)) raw = read_raw_fif(raw_fname, preload=True) cov_mne = read_cov(erm_cov_fname) method_params = dict(shrunk=dict(shrinkage=[0])) # The pure-string uses the more efficient numpy-based method, the # the list gets triaged to compute_covariance (should be equivalent # but use more memory) with pytest.warns(None): # can warn about EEG ref cov = compute_raw_covariance( raw, tstep=None, method=method, rank='full', method_params=method_params) assert_equal(cov.ch_names, cov_mne.ch_names) assert_equal(cov.nfree, cov_mne.nfree) assert_snr(cov.data, cov_mne.data, 1e6) # test equivalence with np.cov cov_np = np.cov(raw.copy().pick_channels(cov['names']).get_data(), ddof=1) if method != 'shrunk': # can check all off_diag = np.triu_indices(cov_np.shape[0]) else: # We explicitly zero out off-diag entries between channel types, # so let's just check MEG off-diag entries off_diag = np.triu_indices(len(pick_types(raw.info, meg=True, exclude=()))) for other in (cov_mne, cov): assert_allclose(np.diag(cov_np), np.diag(other.data), rtol=5e-6) assert_allclose(cov_np[off_diag], other.data[off_diag], rtol=4e-3) assert_snr(cov.data, other.data, 1e6) # tstep=0.2 (default) with pytest.warns(None): # can warn about EEG ref cov = compute_raw_covariance(raw, method=method, rank='full', method_params=method_params) assert_equal(cov.nfree, cov_mne.nfree - 120) # cutoff some samples assert_snr(cov.data, cov_mne.data, 170) # test IO when computation done in Python cov.save(tmpdir.join('test-cov.fif')) # test saving cov_read = read_cov(tmpdir.join('test-cov.fif')) assert cov_read.ch_names == cov.ch_names assert cov_read.nfree == cov.nfree assert_array_almost_equal(cov.data, cov_read.data) # test with a subset of channels raw_pick = raw.copy().pick_channels(raw.ch_names[:5]) raw_pick.info.normalize_proj() cov = compute_raw_covariance(raw_pick, tstep=None, method=method, rank='full', method_params=method_params) assert cov_mne.ch_names[:5] == cov.ch_names assert_snr(cov.data, cov_mne.data[:5, :5], 5e6) cov = compute_raw_covariance(raw_pick, method=method, rank='full', method_params=method_params) assert_snr(cov.data, cov_mne.data[:5, :5], 90) # cutoff samps # make sure we get a warning with too short a segment raw_2 = read_raw_fif(raw_fname).crop(0, 1) with pytest.warns(RuntimeWarning, match='Too few samples'): cov = compute_raw_covariance(raw_2, method=method, method_params=method_params) # no epochs found due to rejection pytest.raises(ValueError, compute_raw_covariance, raw, tstep=None, method='empirical', reject=dict(eog=200e-6)) # but this should work with pytest.warns(None): # sklearn cov = compute_raw_covariance( raw.copy().crop(0, 10.), tstep=None, method=method, reject=dict(eog=1000e-6), method_params=method_params, verbose='error') @pytest.mark.slowtest @requires_sklearn def test_cov_estimation_on_raw_reg(): """Test estimation from raw with regularization.""" raw = read_raw_fif(raw_fname, preload=True) with raw.info._unlock(): raw.info['sfreq'] /= 10. raw = RawArray(raw._data[:, ::10].copy(), raw.info) # decimate for speed cov_mne = read_cov(erm_cov_fname) with pytest.warns(RuntimeWarning, match='Too few samples'): # "diagonal_fixed" is much faster. Use long epochs for speed. cov = compute_raw_covariance(raw, tstep=5., method='diagonal_fixed') assert_snr(cov.data, cov_mne.data, 5) def _assert_cov(cov, cov_desired, tol=0.005, nfree=True):
assert_equal(cov.ch_names, cov_desired.ch_names)
numpy.testing.assert_equal
import numpy as np import xarray as xr import matplotlib.pyplot as plt from scipy.spatial import ConvexHull from shapely.geometry.polygon import Polygon from skimage import morphology import abc import warnings from numba import njit from . import mask from . import cube from . import section as dm_section from . import plot from . import utils class BasePlanform(abc.ABC): """Base planform object. Defines common attributes and methods of all planform objects. """ def __init__(self, planform_type, *args, name=None): """Instantiate for subclasses of BasePlanform. The base class instantiation handles setting the `name` attribute of the `Planform`, and defines the internal plotting routine via :obj:`_show`. Parameters ---------- planform_type : :obj`str` String identifying the *type* of `Planform` being instantiated. *args Arbitrary arguments, passed from the subclass, not used here. name : :obj:`str`, optional An optional name for the planform, helpful for maintaining and keeping track of multiple `Planform` objects of the same type. This is disctinct from the :obj:`planform_type`. The name is used internally if you use the :obj:`register_planform` method of a `Cube`. """ # begin unconnected self._shape = None self._variables = None self.planform_type = planform_type self._name = name @property def name(self): """Planform name. Helpful to differentiate multiple `Planform` objects. """ return self._name @name.setter def name(self, var): if (self._name is None): # _name is not yet set self._name = var or self.planform_type else: # _name is already set if not (var is None): warnings.warn( UserWarning("`name` argument supplied to instantiated " "`Planform` object. To change the name of " "a Planform, you must set the attribute " "directly with `plan._name = 'name'`.")) # do nothing @property def shape(self): """Planform shape. """ return self._shape def _show(self, field, varinfo, **kwargs): """Internal method for showing a planform. Each planform may implement it's own method to determine what field to show when called, and different calling options. Parameters ---------- field : :obj:`DataArray` The data to show. varinfo : :obj:`VariableInfo` A :obj:`VariableInfo` instance describing how to color `field`. **kwargs Acceptable kwargs are `ax`, `title`, `ticks`, `colorbar`, `colorbar_label`. See description for `DataPlanform.show` for more information. """ # process arguments and inputs ax = kwargs.pop('ax', None) title = kwargs.pop('title', None) ticks = kwargs.pop('ticks', False) colorbar = kwargs.pop('colorbar', True) colorbar_label = kwargs.pop('colorbar_label', False) if not ax: ax = plt.gca() # get the extent as arbitrary dimensions d0, d1 = field.dims d0_arr, d1_arr = field[d0], field[d1] _extent = [d1_arr[0], # dim1, 0 d1_arr[-1] + d1_arr[1], # dim1, end + dx d0_arr[-1] + d0_arr[1], # dim0, end + dx d0_arr[0]] # dim0, 0 im = ax.imshow(field, cmap=varinfo.cmap, norm=varinfo.norm, vmin=varinfo.vmin, vmax=varinfo.vmax, extent=_extent) if colorbar: cb = plot.append_colorbar(im, ax) if colorbar_label: _colorbar_label = \ varinfo.label if (colorbar_label is True) \ else str(colorbar_label) # use custom if passed cb.ax.set_ylabel(_colorbar_label, rotation=-90, va="bottom") if not ticks: ax.set_xticks([], minor=[]) ax.set_yticks([], minor=[]) if title: ax.set_title(str(title)) return im class Planform(BasePlanform): """Basic Planform object. This class is used to slice the `Cube` along the `dim0` axis. The object is akin to the various `Section` classes, but there is only the one way to slice as a Planform. """ def __init__(self, *args, z=None, t=None, idx=None, **kwargs): """ Identify coordinate defining the planform. Parameters ---------- CubeInstance : :obj:`~deltametrics.cube.BaseCube` subclass, optional Connect to this cube. No connection is made if cube is not provided. z : :obj:`float`, optional t : :obj:`float`, optional idx : :obj:`int`, optional Notes ----- If no positional arguments are passed, an empty `Planform` not connected to any cube is returned. This cube may need to be manually connected to have any functionality (via the :meth:`connect` method); this need will depend on the type of `Planform`. """ if (not (z is None)) and (not (idx is None)): raise TypeError('Cannot specify both `z` and `idx`.') if (not (t is None)) and (not (idx is None)): raise TypeError('Cannot specify both `t` and `idx`.') if (not (z is None)) and (not (t is None)): raise TypeError('Cannot specify both `z` and `t`.') self.cube = None self._dim0_idx = None self._input_z = z self._input_t = t self._input_idx = idx super().__init__('data', *args, **kwargs) if len(args) > 0: self.connect(args[0]) else: pass @property def variables(self): """List of variables. """ return self._variables @property def idx(self): """Index into underlying Cube along axis 0. """ return self._dim0_idx def connect(self, CubeInstance, name=None): """Connect this Planform instance to a Cube instance. """ if not issubclass(type(CubeInstance), cube.BaseCube): raise TypeError('Expected type is subclass of {_exptype}, ' 'but received was {_gottype}.'.format( _exptype=type(cube.BaseCube), _gottype=type(CubeInstance))) self.cube = CubeInstance self._variables = self.cube.variables self.name = name # use the setter to determine the _name self._shape = self.cube.shape[1:] self._compute_planform_coords() def _compute_planform_coords(self): """Should calculate vertical coordinate of the section. Sets the value ``self._dim0_idx`` according to the algorithm of a `Planform` initialization. .. warning:: When implementing a new planform type, be sure that ``self._dim0_idx`` is a *one-dimensional array*, or you will get an improperly shaped Planform array in return. """ # determine the index along dim0 to slice cube if (not (self._input_z is None)) or (not (self._input_t is None)): # z an t are treated the same internally, and either will be # silently used to interpolate the dim0 coordinates to find the # nearest index dim0_val = self._input_z or self._input_t self._dim0_idx = np.argmin(np.abs( np.array(self.cube.dim0_coords) - dim0_val)) else: # then idx must have been given self._dim0_idx = self._input_idx def __getitem__(self, var): """Get a slice of the planform. Slicing the planform instance creates an `xarray` `DataArray` instance from data for variable ``var``. .. note:: We only support slicing by string. Parameters ---------- var : :obj:`str` Which variable to slice. Returns ------- data : :obj:`DataArray` The undelrying data returned as an xarray `DataArray`, maintaining coordinates. """ if isinstance(self.cube, cube.DataCube): _xrDA = self.cube[var][self._dim0_idx, :, :] _xrDA.attrs = {'slicetype': 'data_planform', 'knows_stratigraphy': self.cube._knows_stratigraphy, 'knows_spacetime': True} if self.cube._knows_stratigraphy: _xrDA.strat.add_information( _psvd_mask=self.cube.strat_attr.psvd_idx[self._dim0_idx, :, :], # noqa: E501 _strat_attr=self.cube.strat_attr( 'planform', self._dim0_idx, None)) return _xrDA elif isinstance(self.cube, cube.StratigraphyCube): _xrDA = self.cube[var][self._dim0_idx, :, :] _xrDA.attrs = {'slicetype': 'stratigraphy_planform', 'knows_stratigraphy': True, 'knows_spacetime': False} return _xrDA elif (self.cube is None): raise AttributeError( 'No cube connected. Are you sure you ran `.connect()`?') else: raise TypeError('Unknown Cube type encountered: %s' % type(self.cube)) def show(self, var, ax=None, title=None, ticks=False, colorbar=True, colorbar_label=False): """Show the planform. Method enumerates convenient routines for visualizing planform data and slices of stratigraphy. Parameters ---------- var : :obj:`str` Which attribute to show. Can be a string for a named `Cube` attribute. label : :obj:`bool`, `str`, optional Display a label of the variable name on the plot. Default is False, display nothing. If ``label=True``, the label name from the :obj:`~deltametrics.plot.VariableSet` is used. Other arguments are attempted to coerce to `str`, and the literal is diplayed. colorbar : :obj:`bool`, optional Whether a colorbar is appended to the axis. colorbar_label : :obj:`bool`, `str`, optional Display a label of the variable name along the colorbar. Default is False, display nothing. If ``label=True``, the label name from the :obj:`~deltametrics.plot.VariableSet` is used. Other arguments are attempted to coerce to `str`, and the literal is diplayed. ax : :obj:`~matplotlib.pyplot.Axes` object, optional A `matplotlib` `Axes` object to plot the section. Optional; if not provided, a call is made to ``plt.gca()`` to get the current (or create a new) `Axes` object. Examples -------- Display the `eta` and `velocity` planform of a DataCube. .. plot:: :include-source: >>> golfcube = dm.sample_data.golf() >>> planform = dm.plan.Planform(golfcube, idx=70) ... >>> fig, ax = plt.subplots(1, 2) >>> planform.show('eta', ax=ax[0]) >>> planform.show('velocity', ax=ax[1]) >>> plt.show() """ # process the planform attribute to a field _varinfo = self.cube.varset[var] if \ issubclass(type(self.cube), cube.BaseCube) else \ plot.VariableSet()[var] _field = self[var] # call the internal _show method im = self._show( _field, _varinfo, ax=ax, title=title, ticks=ticks, colorbar=colorbar, colorbar_label=colorbar_label) return im class SpecialtyPlanform(BasePlanform): """A base class for All specialty planforms. .. hint:: All specialty planforms should subclass. Specialty planforms are planforms that hold some computation or attribute *about* some underlying data, rather than the actual data. As a general rule, anything that is not a DataPlanform is a SpecialtyPlanform. This base class implements a slicing method (it slices the `data` field), and a `show` method for displaying the planform (it displays the `data` field). .. rubric:: Developer Notes All subclassing objects must implement: * a property named `data` that points to some field (i.e., an attribute of the planform) that best characterizes the Planform. For example, the OAP planform `data` property points to the `sea_angles` field. All subclassing objects should consider implementing: * the `show` method takes (optionally) a string argument specifying the field to display, which can match any attriute of the `SpecialtyPlanform`. If no argument is passed to `show`, the `data` field is displayed. A :obj:`VariableInfo` object `self._default_varinfo` is created on instantiating a subclass, which will be used to style the displayed field. You can add different `VariableInfo` objects with the name matching any other field of the planform to use that style instead; for example, OAP implements `self._sea_angles_varinfo`, which is used if the `sea_angles` field is specified to :meth:`show`. * The `self._default_varinfo` can be overwritten in a subclass (after ``super().__init__``) to style the `show` default field (`data`) a certain way. For example, OAP sets ``self._default_varinfo = self._sea_angles_varinfo``. """ def __init__(self, planform_type, *args, **kwargs): """Initialize the SpecialtyPlanform. BaseClass, only called by subclassing methods. This `__init__` method calls the `BasePlanform.__init__`. Parameters ---------- planform_type : :obj:`str` A string specifying the type of planform being created. *args Passed to `BasePlanform.__init__`. *kwargs Passed to `BasePlanform.__init__`. """ super().__init__(planform_type, *args, **kwargs) self._default_varinfo = plot.VariableInfo( 'data', label='data') @property @abc.abstractmethod def data(self): """The public data field. This attribute *must* be implemented as an alias to another attribute. The choice of field is up to the developer. """ ... def __getitem__(self, slc): """Slice the planform. Implements basic slicing for `SpecialtyPlanform` by passing the `slc` to `self.data`. I.e., the returned slice is ``self.data[slc]``. """ return self.data[slc] def show(self, var=None, ax=None, title=None, ticks=False, colorbar=True, colorbar_label=False): """Show the planform. Display a field of the planform, called by attribute name. Parameters ---------- var : :obj:`str` Which field to show. Must be an attribute of the planform. `show` will look for another attribute describing the :obj:`VariableInfo` for that attribute named ``self._<var>_varinfo`` and use that to style the plot, if found. If this `VariableInfo` is not found, the default is used. label : :obj:`bool`, `str`, optional Display a label of the variable name on the plot. Default is False, display nothing. If ``label=True``, the label name from the :obj:`~deltametrics.plot.VariableSet` is used. Other arguments are attempted to coerce to `str`, and the literal is diplayed. colorbar : :obj:`bool`, optional Whether a colorbar is appended to the axis. colorbar_label : :obj:`bool`, `str`, optional Display a label of the variable name along the colorbar. Default is False, display nothing. If ``label=True``, the label name from the :obj:`~deltametrics.plot.VariableSet` is used. Other arguments are attempted to coerce to `str`, and the literal is diplayed. ax : :obj:`~matplotlib.pyplot.Axes` object, optional A `matplotlib` `Axes` object to plot the section. Optional; if not provided, a call is made to ``plt.gca()`` to get the current (or create a new) `Axes` object. """ if (var is None): _varinfo = self._default_varinfo _field = self.data elif (isinstance(var, str)): _field = self.__getattribute__(var) # will error if var not attr _expected_varinfo = '_' + var + '_varinfo' if hasattr(self, _expected_varinfo): _varinfo = self.__getattribute__(_expected_varinfo) else: _varinfo = self._default_varinfo else: raise TypeError('Bad value for `var`: {0}'.format(var)) self._show( _field, _varinfo, ax=ax, title=title, ticks=ticks, colorbar=colorbar, colorbar_label=colorbar_label) class OpeningAnglePlanform(SpecialtyPlanform): """Planform for handling the Shaw Opening Angle Method. This `Planform` (called `OAP` for short) is a wrapper/handler for the input and output from the :func:`shaw_opening_angle_method`. The `OAP` is a convenient way to manage extraction of a shoreline or a delta topset area. Moreover, the `OAP` can be used as the input for :doc:`many types of Mask </reference/mask/index>` objects, so it is often computationally advantageous to compute this `Planform` once, and then use it to create many different types of masks. Examples -------- Instantiate the `OpeningAnglePlanform` from an **inverted** binary mask of elevation data (i.e., from an :obj:`~deltametrics.mask.ElevationMask`). Note that the below example is the most verbose method for creating the `OAP`. Consider available static methods. .. plot:: :context: reset :include-source: >>> golfcube = dm.sample_data.golf() >>> _EM = dm.mask.ElevationMask( ... golfcube['eta'][-1, :, :], ... elevation_threshold=0) >>> # extract a mask of area below sea level as the >>> # inverse of the ElevationMask >>> below_mask = ~(_EM.mask) >>> OAP = dm.plan.OpeningAnglePlanform(below_mask) The OAP stores information computed from the :func:`shaw_opening_angle_method`. See the two properties of the OAP :obj:`below_mask` and :obj:`sea_angles`. .. plot:: :context: fig, ax = plt.subplots(1, 3, figsize=(10, 4)) golfcube.quick_show('eta', idx=-1, ax=ax[0]) im1 = ax[1].imshow(OAP.below_mask, cmap='Greys_r') im2 = ax[2].imshow(OAP.sea_angles, cmap='jet') dm.plot.append_colorbar(im2, ax=ax[2]) ax[0].set_title('input elevation data') ax[1].set_title('OAP.below_mask') ax[2].set_title('OAP.sea_angles') for i in range(1, 3): ax[i].set_xticks([]) ax[i].set_yticks([]) """ @staticmethod def from_arrays(*args): """Create directly from arrays. .. warning:: not implemented. """ raise NotImplementedError @staticmethod def from_elevation_data(elevation_data, **kwargs): """Create an `OpeningAnglePlanform` from elevation data. This process creates an ElevationMask from the input elevation array, and proceeds to make the OAP from the below sea level mask. .. note:: Keyword arguments are passed to the `ElevationMask` *and* to the `OpeningAnglePlanform`, and thus passed to :func:`shaw_opening_angle_method`. .. important:: The `elevation_threshold` argument is implicitly required in this method, because it is required to instantiate an :obj:`ElevationMask` from elevation data. Parameters ---------- elevation_data : :obj:`ndarray` The elevation data to create the `ElevationMask` that is in turn used to create the `OpeningAnglePlanform`. Examples -------- .. doctest:: >>> golfcube = dm.sample_data.golf() >>> OAP = dm.plan.OpeningAnglePlanform.from_elevation_data( ... golfcube['eta'][-1, :, :], ... elevation_threshold=0) """ # make a temporary mask _em = mask.ElevationMask( elevation_data, **kwargs) # invert the mask for the below sea level area _below_mask = ~(_em.mask) # compute from __init__ pathway return OpeningAnglePlanform(_below_mask, **kwargs) @staticmethod def from_ElevationMask(ElevationMask, **kwargs): """Create an `OpeningAnglePlanform` from an `ElevationMask`. .. note:: Keyword arguments are passed to the `OpeningAnglePlanform`, and thus passed to :func:`shaw_opening_angle_method`. Parameters ---------- ElevationMask : :obj:`~deltametrics.mask.ElevationMask` The :obj:`ElevationMask` to be used to create the `OpeningAnglePlanform`. Examples -------- .. doctest:: >>> golfcube = dm.sample_data.golf() >>> _EM = dm.mask.ElevationMask( ... golfcube['eta'][-1, :, :], ... elevation_threshold=0) >>> OAP = dm.plan.OpeningAnglePlanform.from_ElevationMask( ... _EM) """ if not isinstance(ElevationMask, mask.ElevationMask): raise TypeError('Must be type: ElevationMask.') # invert the mask for the below sea level area _below_mask = ~(ElevationMask.mask) # compute from __init__ pathway return OpeningAnglePlanform(_below_mask) @staticmethod def from_mask(UnknownMask, **kwargs): """Wraps :obj:`from_ElevationMask`. """ return OpeningAnglePlanform.from_ElevationMask( UnknownMask, **kwargs) def __init__(self, *args, **kwargs): """Init. EXPECTS A BINARY OCEAN MASK AS THE INPUT! .. note:: needs docstring. """ super().__init__('opening angle', *args) self._shape = None self._sea_angles = None self._below_mask = None # set variable info display options self._sea_angles_varinfo = plot.VariableInfo( 'sea_angles', cmap=plt.cm.jet, label='opening angle') self._below_mask_varinfo = plot.VariableInfo( 'below_mask', cmap=plt.cm.gray, label='where below') self._default_varinfo = self._sea_angles_varinfo # check for inputs to return or proceed if (len(args) == 0): _allow_empty = kwargs.pop('allow_empty', False) if _allow_empty: # do nothing and return partially instantiated object return else: raise ValueError( 'Expected 1 input, got 0.') if not (len(args) == 1): raise ValueError( 'Expected 1 input, got %s.' % str(len(args))) # process the argument to the omask needed for Shaw OAM if utils.is_ndarray_or_xarray(args[0]): _arr = args[0] # check that is boolean or integer binary if (_arr.dtype == bool): _below_mask = _arr elif (_arr.dtype == int): if np.all(np.logical_or(_arr == 0, _arr == 1)): _below_mask = _arr else: ValueError( 'The input was an integer array, but some elements in ' 'the array were not 0 or 1.') else: raise TypeError( 'The input was not an integer or boolean array, but was ' '{0}. If you are trying to instantiate an OAP from ' 'elevation data directly, see static method ' '`OpeningAnglePlanform.from_elevation_data`.') # now check the type and allocate the arrays as xr.DataArray if isinstance(_below_mask, xr.core.dataarray.DataArray): self._below_mask = xr.zeros_like(_below_mask, dtype=bool) self._below_mask.name = 'below_mask' self._sea_angles = xr.zeros_like(_below_mask, dtype=float) self._sea_angles.name = 'sea_angles' elif isinstance(_below_mask, np.ndarray): # this will use meshgrid to fill out with dx=1 in shape of array self._below_mask = xr.DataArray( data=np.zeros(_below_mask.shape, dtype=bool), name='below_mask') self._sea_angles = xr.DataArray( data=np.zeros(_below_mask.shape, dtype=float), name='sea_angles') else: raise TypeError('Invalid type {0}'.format(type(_below_mask))) elif issubclass(type(args[0]), cube.BaseCube): raise NotImplementedError( 'Instantiation from a Cube is not yet implemented.') else: # bad type supplied as argument raise TypeError('Invalid type for argument.') self._shape = _below_mask.shape self._compute_from_below_mask(_below_mask, **kwargs) def _compute_from_below_mask(self, below_mask, **kwargs): """Method for actual computation of the arrays. Parameters ---------- below_mask The binarized array of values that should be considered as the ocean pixels. **kwargs Passed to :func:`shaw_opening_angle_method`. """ sea_angles = np.zeros(self._shape) # check if there is any *land* if np.any(below_mask == 0): # need to convert type to integer below_mask = below_mask.astype(int) # pull out the shaw oam keywords shaw_kwargs = {} if 'numviews' in kwargs: shaw_kwargs['numviews'] = kwargs.pop('numviews') # pixels present in the mask shoreangles, seaangles = shaw_opening_angle_method( below_mask, **shaw_kwargs) # translate flat seaangles values to the shoreline image # this is a good target for optimization (return reshaped?) flat_inds = list(map( lambda x: np.ravel_multi_index(x, sea_angles.shape), seaangles[:2, :].T.astype(int))) sea_angles.flat[flat_inds] = seaangles[-1, :] # assign shore_image to the mask object with proper size self._sea_angles[:] = sea_angles # properly assign the oceanmap to the self.below_mask # set it to be bool regardless of input type self._below_mask[:] = below_mask.astype(bool) @property def sea_angles(self): """Maximum opening angle view of the sea from a pixel. See figure in main docstring for visual example. """ return self._sea_angles @property def below_mask(self): """Mask for below sea level pixels. This is the starting point for the Opening Angle Method solution. See figure in main docstring for visual example. """ return self._below_mask @property def composite_array(self): """Alias to `sea_angles`. This is the array that a contour is extracted from using some threshold value when making land and shoreline masks. """ return self._sea_angles @property def data(self): return self._sea_angles class MorphologicalPlanform(SpecialtyPlanform): """Planform for handling the morphological method. .. todo:: Expand docstring """ @staticmethod def from_elevation_data(elevation_data, max_disk, **kwargs): """Create a `MorphologicalPlanform` from elevation data. Creates an ElevationMask from the input elevation array that is used to create the MP. .. note:: Information about keyword arguments .. important:: The `elevation_threshold` argument is implicitly required in this method, because it is required to instantiate an :obj:`ElevationMask` from elevation data. Parameters ---------- elevation_data : :obj:`ndarray` The elevation data to create the `ElevationMask` that is in turn used to create the `MorphologicalPlanform`. max_disk : int Maximum disk size to use for the morphological operations. Examples -------- .. doctest:: >>> golfcube = dm.sample_data.golf() >>> MP = dm.plan.MorphologicalPlanform.from_elevation_data( ... golfcube['eta'][-1, :, :], ... elevation_threshold=0, ... max_disk=3) """ # make a temporary mask _em = mask.ElevationMask( elevation_data, **kwargs) # compute from __init__ pathway return MorphologicalPlanform(_em, max_disk, **kwargs) @staticmethod def from_mask(UnknownMask, max_disk, **kwargs): """Static method for creating a MorphologicalPlanform from a mask.""" return MorphologicalPlanform(UnknownMask, max_disk, **kwargs) def __init__(self, *args, **kwargs): """Initialize the MP. Expects first argument to be either an ElevationMask, or an array that represents some sort of elevation mask or land area for the delta. Second argument should be the inlet width (# pixels), if a cube is connected then this will be pulled from the cube directly. Method should work if a landmask is provided too, the morphological operations may just do less. .. todo:: Improve docstring. """ super().__init__('morphological method', *args) self._shape = None self._elevation_mask = None self._max_disk = None # set variable info display options self._mean_image_varinfo = plot.VariableInfo( 'mean_image', label='mean image') self._default_varinfo = self._mean_image_varinfo # check for input or allowable emptiness if (len(args) == 0): _allow_empty = kwargs.pop('allow_empty', False) if _allow_empty: # do nothing and return partially instantiated object return else: raise ValueError( 'Expected at least 1 input, got 0.') # assign first argument to attribute of self if issubclass(type(args[0]), mask.BaseMask): self._elevation_mask = args[0]._mask elif utils.is_ndarray_or_xarray(args[0]): self._elevation_mask = args[0] else: raise TypeError( 'Type of first argument is unrecognized or unsupported') # now check the type and allocate the arrays as xr.DataArray if isinstance(self._elevation_mask, xr.core.dataarray.DataArray): self._mean_image = xr.zeros_like(self._elevation_mask, dtype=float) self._mean_image.name = 'mean_image' elif isinstance(self._elevation_mask, np.ndarray): # this will use meshgrid to fill out with dx=1 in shape of array self._mean_image = xr.DataArray( data=np.zeros(self._elevation_mask.shape, dtype=float), name='mean_image') else: raise TypeError( 'Invalid type {0}'.format(type(self._elevation_mask))) # see if the inlet width is provided, if not see if cube is avail if (len(args) > 1): if isinstance(args[1], (int, float)): self._max_disk = int(args[1]) else: raise TypeError( 'Expected single number to set max inlet size, got: ' '{0}'.format(args[1])) elif isinstance(self.cube, cube.BaseCube): try: self._max_disk = self.cube.meta['N0'].data except Exception: raise TypeError( 'Data cube does not contain metadata, you must ' 'specify the inlet size.') else: raise TypeError( 'Something went wrong. Check second input argument for ' 'inlet width.') self._shape = self._elevation_mask.shape # run the computation all_images, mean_image = morphological_closing_method( self._elevation_mask, biggestdisk=self._max_disk) # assign arrays to object self._mean_image[:] = np.ones_like(mean_image) - mean_image self._all_images = all_images @property def mean_image(self): """Average of all binary closing arrays.""" return self._mean_image @property def all_images(self): """3-D array of all binary closed arrays.""" return self._all_images @property def composite_array(self): """Alias for `mean_image`. This is the array that a contour is extracted from using some threshold value when making land and shoreline masks. """ return self._mean_image @property def data(self): return self._mean_image def compute_shoreline_roughness(shore_mask, land_mask, **kwargs): """Compute shoreline roughness. Computes the shoreline roughness metric: .. math:: L_{shore} / \\sqrt{A_{land}} given binary masks of the shoreline and land area. The length of the shoreline is computed internally with :obj:`compute_shoreline_length`. Parameters ---------- shore_mask : :obj:`~deltametrics.mask.ShorelineMask`, :obj:`ndarray` Shoreline mask. Can be a :obj:`~deltametrics.mask.ShorelineMask` object, or a binarized array. land_mask : :obj:`~deltametrics.mask.LandMask`, :obj:`ndarray` Land mask. Can be a :obj:`~deltametrics.mask.LandMask` object, or a binarized array. **kwargs Keyword argument are passed to :obj:`compute_shoreline_length` internally. Returns ------- roughness : :obj:`float` Shoreline roughness, computed as described above. Examples -------- Compare the roughness of the shoreline early in the model simulation with the roughness later. Here, we use the `elevation_offset` parameter (passed to :obj:`~deltametrics.mask.ElevationMask`) to better capture the topography of the `pyDeltaRCM` model results. .. plot:: :include-source: :context: reset golf = dm.sample_data.golf() # early in model run lm0 = dm.mask.LandMask( golf['eta'][15, :, :], elevation_threshold=0, elevation_offset=-0.5) sm0 = dm.mask.ShorelineMask( golf['eta'][15, :, :], elevation_threshold=0, elevation_offset=-0.5) # late in model run lm1 = dm.mask.LandMask( golf['eta'][-1, :, :], elevation_threshold=0, elevation_offset=-0.5) sm1 = dm.mask.ShorelineMask( golf['eta'][-1, :, :], elevation_threshold=0, elevation_offset=-0.5) Let's take a quick peek at the masks that we have created. .. plot:: :include-source: :context: fig, ax = plt.subplots(1, 2, figsize=(8, 3)) lm0.show(ax=ax[0]) sm0.show(ax=ax[1]) plt.show() In order for these masks to work as expected in the shoreline roughness computation, we need to modify the mask values slightly, to remove the land-water boundary that is not really a part of the delta. We use the :meth:`~deltametrics.mask.BaseMask.trim_mask` method to trim a mask. .. plot:: :include-source: :context: close-figs lm0.trim_mask(length=golf.meta['L0'].data+1) sm0.trim_mask(length=golf.meta['L0'].data+1) lm1.trim_mask(length=golf.meta['L0'].data+1) sm1.trim_mask(length=golf.meta['L0'].data+1) fig, ax = plt.subplots(1, 2, figsize=(8, 3)) lm0.show(ax=ax[0]) sm0.show(ax=ax[1]) plt.show() And now, we can proceed with the calculation. .. plot:: :include-source: :context: close-figs # compute roughnesses rgh0 = dm.plan.compute_shoreline_roughness(sm0, lm0) rgh1 = dm.plan.compute_shoreline_roughness(sm1, lm1) # make the plot fig, ax = plt.subplots(1, 2, figsize=(6, 3)) golf.quick_show('eta', idx=15, ax=ax[0]) ax[0].set_title('roughness = {:.2f}'.format(rgh0)) golf.quick_show('eta', idx=-1, ax=ax[1]) ax[1].set_title('roughness = {:.2f}'.format(rgh1)) plt.show() """ # extract data from masks if isinstance(land_mask, mask.LandMask): land_mask = land_mask.mask _lm = land_mask.values _dx = float(land_mask[land_mask.dims[0]][1] - land_mask[land_mask.dims[0]][0]) elif isinstance(land_mask, xr.core.dataarray.DataArray): _lm = land_mask.values _dx = float(land_mask[land_mask.dims[0]][1] - land_mask[land_mask.dims[0]][0]) elif isinstance(land_mask, np.ndarray): _lm = land_mask _dx = 1 else: raise TypeError('Invalid type {0}'.format(type(land_mask))) _ = kwargs.pop('return_line', None) # trash this variable if passed shorelength = compute_shoreline_length( shore_mask, return_line=False, **kwargs) # compute the length of the shoreline and area of land shore_len_pix = shorelength land_area_pix = np.sum(_lm) * _dx * _dx if (land_area_pix > 0): # compute roughness rough = shore_len_pix / np.sqrt(land_area_pix) else: raise ValueError('No pixels in land mask.') return rough def compute_shoreline_length(shore_mask, origin=[0, 0], return_line=False): """Compute the length of a shoreline from a mask of the shoreline. Algorithm attempts to determine the sorted coordinates of the shoreline from a :obj:`~dm.mask.ShorelineMask`. .. warning:: Imperfect algorithm, which may not include all `True` pixels in the `ShorelineMask` in the determined shoreline. Parameters ---------- shore_mask : :obj:`~deltametrics.mask.ShorelineMask`, :obj:`ndarray` Shoreline mask. Can be a :obj:`~deltametrics.mask.ShorelineMask` object, or a binarized array. origin : :obj:`list`, :obj:`np.ndarray`, optional Determines the location from where the starting point of the line sorting is initialized. The starting point of the line is determined as the point nearest to `origin`. For non-standard data configurations, it may be important to set this to an appropriate value. Default is [0, 0]. return_line : :obj:`bool` Whether to return the sorted line as a second argument. If True, a ``Nx2`` array of x-y points is returned. Default is `False`. Returns ------- length : :obj:`float` Shoreline length, computed as described above. line : :obj:`np.ndarray` If :obj:`return_line` is `True`, the shoreline, as an ``Nx2`` array of x-y points, is returned. Examples -------- Compare the length of the shoreline early in the model simulation with the length later. Here, we use the `elevation_offset` parameter (passed to :obj:`~deltametrics.mask.ElevationMask`) to better capture the topography of the `pyDeltaRCM` model results. .. plot:: :include-source: golf = dm.sample_data.golf() # early in model run sm0 = dm.mask.ShorelineMask( golf['eta'][15, :, :], elevation_threshold=0, elevation_offset=-0.5) # late in model run sm1 = dm.mask.ShorelineMask( golf['eta'][-1, :, :], elevation_threshold=0, elevation_offset=-0.5) # compute lengths len0 = dm.plan.compute_shoreline_length(sm0) len1, line1 = dm.plan.compute_shoreline_length(sm1, return_line=True) # make the plot fig, ax = plt.subplots(1, 2, figsize=(6, 3)) golf.quick_show('eta', idx=15, ax=ax[0]) ax[0].set_title('length = {:.2f}'.format(len0)) golf.quick_show('eta', idx=-1, ax=ax[1]) ax[1].plot(line1[:, 0], line1[:, 1], 'r-') ax[1].set_title('length = {:.2f}'.format(len1)) plt.show() """ # check if mask or already array if isinstance(shore_mask, mask.ShorelineMask): shore_mask = shore_mask.mask _sm = shore_mask.values _dx = float(shore_mask[shore_mask.dims[0]][1] - shore_mask[shore_mask.dims[0]][0]) elif isinstance(shore_mask, xr.core.dataarray.DataArray): _sm = shore_mask.values _dx = float(shore_mask[shore_mask.dims[0]][1] - shore_mask[shore_mask.dims[0]][0]) elif isinstance(shore_mask, np.ndarray): _sm = shore_mask _dx = 1 # should we have a warning that no dx was found here? else: raise TypeError('Invalid type {0}'.format(type(shore_mask))) if not (np.sum(_sm) > 0): raise ValueError('No pixels in shoreline mask.') if _sm.ndim == 3: _sm = _sm.squeeze() # find where the mask is True (all x-y pairs along shore) _y, _x = np.argwhere(_sm).T # preallocate line arrays line_xs_0 = np.zeros(len(_x),) line_ys_0 = np.zeros(len(_y),) # determine a starting coordinate based on the proximity to the origin _closest = np.argmin( np.sqrt((_x - origin[0])**2 + (_y - origin[1])**2)) line_xs_0[0] = _x[_closest] line_ys_0[0] = _y[_closest] # preallocate an array to track whether a point has been used hit_pts = np.zeros(len(_x), dtype=bool) hit_pts[_closest] = True # compute the distance to the next point dists_pts = np.sqrt((_x[~hit_pts]-_x[_closest])**2 + (_y[~hit_pts]-_y[_closest])**2) dist_next = np.min(dists_pts) dist_max = np.sqrt(15) # # loop through all of the other points and organize into a line idx = 0 while (dist_next <= dist_max): idx += 1 # find where the distance is minimized (i.e., next point) _whr = np.argmin(dists_pts) # fill the line array with that point line_xs_0[idx] = _x[~hit_pts][_whr] line_ys_0[idx] = _y[~hit_pts][_whr] # find that point in the hit list and update it __whr = np.argwhere(~hit_pts) hit_pts[__whr[_whr]] = True # compute distance from ith point to all other points _xi, _yi = line_xs_0[idx], line_ys_0[idx] dists_pts = np.sqrt((_x[~hit_pts]-_xi)**2 + (_y[~hit_pts]-_yi)**2) if (not np.all(hit_pts)): dist_next = np.min(dists_pts) else: dist_next = np.inf # trim the list line_xs_0 = np.copy(line_xs_0[:idx+1]) line_ys_0 = np.copy(line_ys_0[:idx+1]) ############################################# # return to the first point and iterate again line_xs_1 = np.zeros(len(_x),) line_ys_1 = np.zeros(len(_y),) if (not np.all(hit_pts)): # compute dists from the intial point dists_pts = np.sqrt((_x[~hit_pts]-line_xs_0[0])**2 + (_y[~hit_pts]-line_ys_0[0])**2) dist_next = np.min(dists_pts) # loop through all of the other points and organize into a line idx = -1 while (dist_next <= dist_max): idx += 1 # find where the distance is minimized (i.e., next point) _whr = np.argmin(dists_pts) # fill the line array with that point line_xs_1[idx] = _x[~hit_pts][_whr] line_ys_1[idx] = _y[~hit_pts][_whr] # find that point in the hit list and update it __whr = np.argwhere(~hit_pts) hit_pts[__whr[_whr]] = True # compute distance from ith point to all other points _xi, _yi = line_xs_1[idx], line_ys_1[idx] dists_pts = np.sqrt((_x[~hit_pts]-_xi)**2 + (_y[~hit_pts]-_yi)**2) if (not np.all(hit_pts)): dist_next = np.min(dists_pts) else: dist_next = np.inf # trim the list line_xs_1 = np.copy(line_xs_1[:idx+1]) line_ys_1 = np.copy(line_ys_1[:idx+1]) else: line_xs_1 = np.array([]) line_ys_1 = np.array([]) # combine the lists line_xs = np.hstack((np.flip(line_xs_1), line_xs_0)) line_ys = np.hstack((np.flip(line_ys_1), line_ys_0)) # combine the xs and ys AND multiply by dx line = np.column_stack((line_xs, line_ys)) * _dx length = np.sum(np.sqrt((line_xs[1:]-line_xs[:-1])**2 + (line_ys[1:]-line_ys[:-1])**2)) * _dx if return_line: return length, line else: return length def compute_shoreline_distance(shore_mask, origin=[0, 0], return_distances=False): """Compute mean and stddev distance from the delta apex to the shoreline. Algorithm computes the mean distance from the delta apex/origin to all shoreline points. .. important:: This calculation is subtly different than the "mean delta radius", because the measurements are not sampled evenly along the opening angle of the delta. .. note:: uses `np.nanmean` and `np.nanstd`. Parameters ---------- shore_mask : :obj:`~deltametrics.mask.ShorelineMask`, :obj:`ndarray` Shoreline mask. Can be a :obj:`~deltametrics.mask.ShorelineMask` object, or a binarized array. origin : :obj:`list`, :obj:`np.ndarray`, optional Determines the location from where the distance to all shoreline points is computed. return_distances : :obj:`bool` Whether to return the sorted line as a second argument. If True, a ``Nx2`` array of x-y points is returned. Default is `False`. Returns ------- mean : :obj:`float` Mean shoreline distance. stddev : :obj:`float` Standard deviation of shoreline distance. distances : :obj:`np.ndarray` If :obj:`return_distances` is `True`, then distance to each point along the shoreline is *also* returned as an array (i.e., 3 arguments are returned). Examples -------- .. plot:: :include-source: golf = dm.sample_data.golf() sm = dm.mask.ShorelineMask( golf['eta'][-1, :, :], elevation_threshold=0, elevation_offset=-0.5) # compute mean and stddev distance mean, stddev = dm.plan.compute_shoreline_distance( sm, origin=[golf.meta['CTR'].data, golf.meta['L0'].data]) # make the plot fig, ax = plt.subplots() golf.quick_show('eta', idx=-1, ticks=True, ax=ax) ax.set_title('mean = {:.2f}'.format(mean)) plt.show() """ # check if mask or already array if isinstance(shore_mask, mask.ShorelineMask): shore_mask = shore_mask.mask _sm = shore_mask.values _dx = float(shore_mask[shore_mask.dims[0]][1] - shore_mask[shore_mask.dims[0]][0]) elif isinstance(shore_mask, xr.core.dataarray.DataArray): _sm = shore_mask.values _dx = float(shore_mask[shore_mask.dims[0]][1] - shore_mask[shore_mask.dims[0]][0]) elif isinstance(shore_mask, np.ndarray): _sm = shore_mask _dx = 1 else: raise TypeError('Invalid type {0}'.format(type(shore_mask))) if not (np.sum(_sm) > 0): raise ValueError('No pixels in shoreline mask.') if _sm.ndim == 3: _sm = _sm.squeeze() # find where the mask is True (all x-y pairs along shore) _y, _x = np.argwhere(_sm).T # determine the distances (multiply by dx) _dists = np.sqrt((_x - origin[0])**2 + (_y - origin[1])**2) * _dx if return_distances: return np.nanmean(_dists), np.nanstd(_dists), _dists else: return np.nanmean(_dists), np.nanstd(_dists) @njit def _compute_angles_between(c1, shoreandborder, Shallowsea, numviews): """Private helper for shaw_opening_angle_method. Good target for code style, organization, and optimization. """ maxtheta = np.zeros((numviews, c1)) for i in range(c1): shallow_reshape = np.atleast_2d(Shallowsea[:, i]).T diff = shoreandborder - shallow_reshape x = diff[0] y = diff[1] angles = np.arctan2(x, y) angles = np.sort(angles) * 180. / np.pi dangles = np.zeros_like(angles) dangles[:-1] = angles[1:] - angles[:-1] remangle = 360 - (angles.max() - angles.min()) dangles[-1] = remangle dangles = np.sort(dangles) maxtheta[:, i] = dangles[-numviews:] return maxtheta def shaw_opening_angle_method(below_mask, numviews=3): """Extract the opening angle map from an image. Applies the opening angle method [1]_ to compute the shoreline mask. Adapted from the Matlab implementation in [2]_. This *function* takes an image and extracts its opening angle map. .. [1] Shaw, <NAME>., et al. "An image‐based method for shoreline mapping on complex coasts." Geophysical Research Letters 35.12 (2008). .. [2] <NAME>, <NAME>, and <NAME>. "Quantifying the patterns and dynamics of river deltas under conditions of steady forcing and relative sea level rise." Journal of Geophysical Research: Earth Surface 121.2 (2016): 465-496. Parameters ---------- below_mask : ndarray Binary image that has been thresholded to split water/land. At minimum, this should be a thresholded elevation matrix, or some classification of land/water based on pixel color or reflectance intensity. This is the startin point (i.e., guess) for the opening angle method. numviews : int Defines the number of largest angles to consider for the opening angle map for each pixel. Default is 3, based on [1]_. Returns ------- shoreangles : ndarray Flattened values corresponding to the shoreangle detected for each 'look' of the opening angle method seaangles : ndarray Flattened values corresponding to the 'sea' angle detected for each 'look' of the opening angle method. The 'sea' region is the convex hull which envelops the shoreline as well as the delta interior. """ Sx, Sy = np.gradient(below_mask) G = np.sqrt((Sx*Sx) + (Sy*Sy)) # threshold the gradient to produce edges edges = np.logical_and((G > 0), (below_mask > 0)) if np.sum(edges) == 0: raise ValueError( 'No pixels identified in below_mask. ' 'Cannot compute the Opening Angle Method.') # extract coordinates of the edge pixels and define convex hull bordermap = np.pad(np.zeros_like(edges), 1, 'edge') bordermap[:-2, 1:-1] = edges bordermap[0, :] = 1 points = np.fliplr(np.array(np.where(edges > 0)).T) hull = ConvexHull(points, qhull_options='Qc') # identify set of points to evaluate sea = np.fliplr(np.array(np.where(below_mask > 0.5)).T) # identify set of points in both the convex hull polygon and # defined as points_to_test and put these binary points into seamap polygon = Polygon(points[hull.vertices]).buffer(0.01) In = utils._points_in_polygon(sea, np.array(polygon.exterior.coords)) In = In.astype(bool) Shallowsea_ = sea[In] seamap = np.zeros(bordermap.shape) flat_inds = list(map(lambda x: np.ravel_multi_index(x, seamap.shape), np.fliplr(Shallowsea_))) seamap.flat[flat_inds] = 1 seamap[:3, :] = 0 # define other points as these 'Deepsea' points Deepsea_ = sea[~In] Deepsea = np.zeros((numviews+2, len(Deepsea_))) Deepsea[:2, :] = np.flipud(Deepsea_.T) Deepsea[-1, :] = 180. # 180 is a background value for waves1s later # define points for the shallow sea and the shoreborder Shallowsea = np.array(np.where(seamap > 0.5)) shoreandborder = np.array(np.where(bordermap > 0.5)) c1 = len(Shallowsea[0]) maxtheta = np.zeros((numviews, c1)) # compute angle between each shallowsea and shoreborder point maxtheta = _compute_angles_between(c1, shoreandborder, Shallowsea, numviews) # set up arrays for tracking the shore points and their angles allshore = np.array(np.where(edges > 0)) c3 = len(allshore[0]) maxthetashore = np.zeros((numviews, c3)) # get angles between the shore points and shoreborder points maxthetashore = _compute_angles_between(c3, shoreandborder, allshore, numviews) # define the shoreangles and seaangles identified shoreangles = np.vstack([allshore, maxthetashore]) seaangles = np.hstack([np.vstack([Shallowsea, maxtheta]), Deepsea]) return shoreangles, seaangles def _custom_closing(img, disksize): """Private function for the binary closing.""" _changed = np.infty disk = morphology.disk(disksize) _iter = 0 # count number of closings, cap at 100 while (_changed != 0) and (_iter < 100): _iter += 1 _newimg = morphology.binary_closing(img, selem=disk) _changed = np.sum(_newimg.astype(float)-img.astype(float)) _closed = _newimg return _closed def morphological_closing_method(elevationmask, biggestdisk=None): """Compute an average morphological map from an image, Applies a morphological closing to the input image in a manner similar to / inspired by [1]_ for rapid identification of a shoreline. This *function* takes an image, and performs a morphological closing for a set of disk sizes up from 0 up to the parameter `biggestdisk`. .. [1] <NAME>., et al. "Characterization of river delta shorelines." Geophysical research letters 39.17 (2012). Parameters ---------- elevationmask : :obj:`~deltametrics.mask.ElevationMask` or :obj:`ndarray` or :obj:`xarray` Binary image that the morpholigical closing is performed upon. This is expected to be something like an elevation mask, although it doesn't have to be. biggestdisk : int, optional Defines the largest disk size to use for the binary closing method. The method starts 0 and iterates up to a disk size of biggestdisk. Returns ------- imageset : ndarray 3-D array of shape n-x-y where n is the number of different disk kernels used in the method. n = biggestdisk + 1 meanimage : ndarray 2-D array of shape x-y of the mean of imageset taken over the first axis. This approximates the `sea_angles` attribute of the OAM method. """ # coerce input image into 2-d ndarray if isinstance(elevationmask, mask.BaseMask): emsk = np.array(elevationmask.mask) elif utils.is_ndarray_or_xarray(elevationmask): emsk = np.array(elevationmask) else: raise TypeError( 'Input for `elevationmask` was unrecognized type: {}.'.format( type(elevationmask))) # check biggestdisk if biggestdisk is None: biggestdisk = 1 elif biggestdisk <= 0: biggestdisk = 1 # loop through and do binary closing for each disk size up to biggestdisk imageset = np.zeros((biggestdisk+1, emsk.shape[0], emsk.shape[1])) for i in range(biggestdisk+1): imageset[i, ...] = _custom_closing(emsk, i) return imageset, imageset.mean(axis=0) def compute_channel_width(channelmask, section=None, return_widths=False): """Compute channel width from a mask and section. Compute the width of channels identified in a ChannelMask along a section. This function identifies the individual channels that are crossed by the section and computes width of each channel as the along-section distance. In essence, this processing implicitly assumes that the section cuts each channel perpendicularly. We therefore recommend using this function with a `~dm.section.CircularSection` type, unless you know what you are doing. By default, only the mean and standard deviation are returned, but the list of widths can be returned with `return_widths=True`. .. note:: If a `numpy` array is passed for :obj:`section`, then the distance between points along the section is assumed to be `==1`. Parameters ---------- channelmask : :obj:`~deltametrics.mask.ChannelMask` or :obj:`ndarray` The channel mask (i.e., should be binary) to compute channel widths from. section : :obj:`~deltametrics.section.BaseSection` subclass, or :obj:`ndarray` The section along which to compute channel widths. If a `Section` type is passed, the `.idx_trace` attribute will be used to query the `ChannelMask` and determine widths. Otherwise, an `Nx2` array can be passed, which specified the `dim1-dim2` coordinate pairs to use as the trace. return_widths : bool, optional Whether to return (as third argument) a list of channel widths. Default is false (do not return list). Returns ------- mean : float Mean of measured widths. stddev : float Standard deviation of measured widths. widths : list List of width measurements. Returned only if `return_widths=True`. Examples -------- .. plot:: :include-source: # set up the cube, mask, and section golf = dm.sample_data.golf() cm = dm.mask.ChannelMask( golf['eta'][-1, :, :], golf['velocity'][-1, :, :], elevation_threshold=0, flow_threshold=0.3) sec = dm.section.CircularSection(golf, radius_idx=40) # compute the metric m, s, w = dm.plan.compute_channel_width( cm, section=sec, return_widths=True) fig, ax = plt.subplots() cm.show(ax=ax, ticks=True) sec.show_trace('r-', ax=ax) ax.set_title(f'mean: {m:.2f}; stddev: {s:.2f}') plt.show() """ if not (section is None): if issubclass(type(section), dm_section.BaseSection): section_trace = section.idx_trace section_coord = section._s.data elif isinstance(section, np.ndarray): section_trace = section section_coord = np.arange(len(section)) else: # create one by default based on the channelmask? raise NotImplementedError() # check that the section trace is a valid shape # todo... # coerce the channel mask to just the raw mask values if utils.is_ndarray_or_xarray(channelmask): if isinstance(channelmask, xr.core.dataarray.DataArray): _dx = float(channelmask[channelmask.dims[0]][1] - channelmask[channelmask.dims[0]][0]) elif isinstance(channelmask, np.ndarray): _dx = 1 elif isinstance(channelmask, mask.ChannelMask): channelmask = channelmask.mask _dx = float(channelmask[channelmask.dims[0]][1] - channelmask[channelmask.dims[0]][0]) channelmask = np.array(channelmask) else: raise TypeError( 'Input for `channelmask` was wrong type: {}.'.format( type(channelmask))) # get channel stars and ends _channelstarts, _channelends = \ _get_channel_starts_and_ends(channelmask, section_trace) # compute the metric # Note: channel widths are pulled from the coordinates of the section, # which incorporate grid-spacing information. So, we DO NOT multiply # the width by dx here. _channelwidths = (section_coord[_channelends - 1] - section_coord[_channelstarts - 1]) _m, _s = np.nanmean(_channelwidths), np.nanstd(_channelwidths) if return_widths: return _m, _s, _channelwidths else: return _m, _s def _get_channel_starts_and_ends(channelmask, section_trace): """Get channel start and end coordinates (internal function). .. important:: section_trace must be the index coordinates of the section trace, and not the coordinate values that are returned from `section.idx_trace`. """ _channelseries = channelmask[section_trace[:, 0], section_trace[:, 1]].astype(int) _padchannelseries = np.pad(_channelseries, (1,), 'constant', constant_values=(False)).astype(int) _channelseries_diff = _padchannelseries[1:] - _padchannelseries[:-1] _channelstarts = np.where(_channelseries_diff == 1)[0] _channelstarts = np.where(_channelstarts == 0, 1, _channelstarts) _channelends = np.where(_channelseries_diff == -1)[0] return _channelstarts, _channelends def compute_channel_depth(channelmask, depth, section=None, depth_type='thalweg', return_depths=False): """Compute channel depth from a mask and section. Compute the depth of channels identified in a ChannelMask along a section. This function identifies the individual channels that are crossed by the section and *computes depth of each*. The depths are then treated as samples for aggregating statistics in the return. By default, only the mean and standard deviation are returned, but the list of depths can be returned with `return_depths=True`. .. note:: If a `numpy` array is passed for :obj:`section`, then the distance between points along the section is assumed to be `==1`. Parameters ---------- channelmask : :obj:`~deltametrics.mask.ChannelMask` or :obj:`ndarray` The channel mask (i.e., should be binary) to compute channel depths from. depth : `xarray` or `ndarray` The depth field corresponding to the channelmask array. section : :obj:`~deltametrics.section.BaseSection` subclass, or :obj:`ndarray` The section along which to compute channel depths. If a `Section` type is passed, the `.idx_trace` attribute will be used to query the `ChannelMask` and determine depths. Otherwise, an `Nx2` array can be passed, which specified the `dim1-dim2` coordinate pairs to use as the trace. depth_type : :obj:`str` Flag indicating how to compute the depth of *each* channel (i.e., before aggregating). Valid flags are `'thalweg'`(default) and `'mean'`. return_depths : bool, optional Whether to return (as third argument) a list of channel depths. Default is false (do not return list). Returns ------- mean : float Mean of measured depths. stddev : float Standard deviation of measured depths. depths : list List of depth measurements. Returned only if `return_depths=True`. """ if not (section is None): if issubclass(type(section), dm_section.BaseSection): section_trace = section.idx_trace section_coord = section._s.data elif isinstance(section, np.ndarray): section_trace = section section_coord = np.arange(len(section)) else: # create one by default based on the channelmask? raise NotImplementedError() # check that the section trace is a valid shape # todo... if utils.is_ndarray_or_xarray(channelmask): pass elif isinstance(channelmask, mask.ChannelMask): channelmask = np.array(channelmask.mask) else: raise TypeError( 'Input for `channelmask` was wrong type: {}.'.format( type(channelmask))) # get channel stars and ends _channelstarts, _channelends = \ _get_channel_starts_and_ends(channelmask, section_trace) # compute channel widths _channelwidths = section_coord[_channelends-1] - section_coord[_channelstarts-1] # get the depth array along the section _depthslice =
np.copy(depth)
numpy.copy
import pandas as pd import numpy as np import librosa import os import time import sys import config from utilities import spec_augment_pytorch import matplotlib.pyplot as plt import pickle import torch def pad_truncate_sequence(x, max_len): if len(x) < max_len: return np.concatenate((x, np.zeros(max_len - len(x)))) else: return x[0 : max_len] def get_csv(csv_path): data = pd.read_csv(csv_path,sep='\t') data_dict={} for i in range(len(data['filename'])): data_dict[data['filename'][i]]=data['scene_label'][i] return data_dict def read_audio(audio_path, target_fs=None): (audio, fs) = librosa.load(audio_path) if audio.ndim > 1: audio = np.mean(audio, axis=1) if target_fs is not None and fs != target_fs: audio = librosa.resample(audio, orig_sr=fs, target_sr=target_fs) fs = target_fs return audio, fs def calculate_feature_for_all_audio_files(csv_path,file_name): sample_rate = config.sample_rate window_size = config.window_size hop_size = config.hop_size mel_bins = config.mel_bins fmin = config.fmin fmax = config.fmax frames_per_second = config.frames_per_second frames_num = config.frames_num total_samples = config.total_samples path = config.path # Read metadata csv_dict = get_csv(csv_path) i = 0 n = len(csv_dict.keys()) print('Find %d Audio in Csv_File' % n) # creat feature_dict feature_data =
np.ndarray([n, frames_num, mel_bins])
numpy.ndarray
#!/usr/bin/python #-*- coding: utf-8 -*- import numpy as np from scipy.integrate import RK45 class Simulator: def __init__(self): self.last_global_state = None self.last_local_state = None self.current_action = None self.steps = 0 self.time_span = 10 # 20 seconds for each iteration self.number_iterations = 100 # 100 iterations for each step self.integrator = None self.rk_mode = 'scipy_rk' ##Vessel Constants self.M = 115000 *10**3 self.Iz = 414000000 * 10 ** 3 self.M11 = 14840.4 * 10**3 self.M22 = 174050 * 10**3 self.M26 = 38369.6 * 10**3 self.M66 = 364540000 * 10**3 self.M62 = 36103 * 10**3 self.D11 = 0.35370 * 10**3 self.D22 = 1.74129 * 10**3 self.D26 = 1.95949 * 10**3 self.D62 = 1.85586 * 10**3 self.D66 = 3.23266 * 10**3 self.L = 244.74 #length self.Draft = 15.3 self.x_g = 2.2230# center mass self.x_prop = -112 #propulsor position self.force_prop_max = 1.6 * 10**6 # max porpulsor force self.x_rudder = -115 # rudder position self.rudder_area = 68 self.Cy = 0.06 # coeff de arrasto lateral self.lp = 7.65 # cross-flow center self.Cb = 0.85 # block coefficient self.B = 42 # Beam self.S = 27342 # wet surface ## Water constants self.pho = 1.025 * 10**3# water density self.mi = 10**-3 # water viscosity ## Rudder Constants self.A_rud = 68 # propulsor thrus self.delta_x = self.x_prop - self.x_rudder # distance between rudder and propulsor self.r_aspect = 2 # aspect ration ## Propulsor constants: self.D_prop = 7.2 # Diameter self.n_prop = 1.6 # rotation # some modes of simulator self.system_dynamics = 'complex' self.prop_dynamics = 'complex' def reset_start_pos(self, global_vector): x0, y0, theta0, vx0, vy0, theta_dot0 = global_vector[0], global_vector[1], global_vector[2], global_vector[3], global_vector[4], global_vector[5] self.last_global_state = np.array([x0, y0, theta0, vx0, vy0, theta_dot0]) self.last_local_state = self._global_to_local(self.last_global_state) if self.rk_mode == 'scipy_rk': self.current_action = np.zeros(2) self.integrator = self.scipy_runge_kutta(self.simulate_scipy, self.get_state(), t_bound=self.time_span) def step(self, angle_level, rot_level): self.current_action = np.array([angle_level, rot_level]) if self.rk_mode == 'ours_rk': for i in range(self.number_iterations): self.last_global_state = self.runge_kutta(self.get_state(), self.simulate_in_global, 6, self.time_span/self.number_iterations) return self.last_global_state if self.rk_mode == 'scipy_rk': while not (self.integrator.status == 'finished'): self.integrator.step() self.last_global_state = self.integrator.y self.last_local_state = self._global_to_local(self.last_global_state) self.integrator = self.scipy_runge_kutta(self.simulate_scipy, self.get_state(), t0=self.integrator.t, t_bound=self.integrator.t+self.time_span) return self.last_global_state def simulate_scipy(self, t, global_states): local_states = self._global_to_local(global_states) return self._local_ds_global_ds(global_states[2], self.simulate(local_states)) def simulate_in_global(self, global_states): local_states = self._global_to_local(global_states) return self._local_ds_global_ds(global_states[2], self.simulate(local_states)) def simulate(self, local_states): """ :param local_states: Space state :return df_local_states """ x1 = local_states[0] #u x2 = local_states[1] #v x3 = local_states[2] #theta (not used) x4 = local_states[3] #du x5 = local_states[4] #dv x6 = local_states[5] #dtheta beta = self.current_action[0]*np.pi/6 #leme (-30 à 30) alpha = self.current_action[1] #propulsor vc = np.sqrt(x4 ** 2 + x5 ** 2) gamma = np.pi+np.arctan2(x5, x4) # Composing resistivity forces Re = self.pho * vc * self.L / self.mi if Re == 0: C0=0 else: C0 = 0.0094 * self.S / (self.Draft * self.L) / (np.log10(Re) - 2) ** 2 C1 = C0 * np.cos(gamma) + (-np.cos(3 * gamma) + np.cos(gamma)) * np.pi * self.Draft / (8 * self.L) F1u = 0.5 * self.pho * vc ** 2 * self.L * self.Draft * C1 C2 = (self.Cy - 0.5 * np.pi * self.Draft / self.L) * np.sin(gamma) * np.abs(np.sin(gamma)) + 0.5 * np.pi * self.Draft / self.L * ( np.sin(gamma) ** 3) + np.pi * self.Draft / self.L * (1 + 0.4 * self.Cb * self.B / self.Draft) * np.sin(gamma) * np.abs(np.cos(gamma)) F1v = 0.5 * self.pho * vc ** 2 * self.L * self.Draft * C2 C6 = -self.lp / self.L * self.Cy * np.sin(gamma) * np.abs(np.sin(gamma)) C6 = C6 - np.pi * self.Draft / self.L * np.sin(gamma) * np.cos(gamma) C6 = C6 - (0.5 + 0.5 * np.abs(np.cos(gamma))) ** 2 * np.pi * self.Draft / self.L * (0.5 - 2.4 * self.Draft / self.L) * np.sin(gamma) * np.abs(
np.cos(gamma)
numpy.cos
from my_feature_extraction import extractFeatures import cv2 import numpy as np import os import random # ------------------TRAIN IMAGES------------------------------------------ def load_train(trainPath, imageSize, pixelType, histogramType): # initialize the raw pixel intensities matrix, the features matrix, # and labels list trainImages = [] #raw pixels features trainHistograms = [] #histograms features trainLabels = [] #given labels print("Reading training images...") # loop over the input images for (i, imagePath) in enumerate(trainPath): image = cv2.imread(imagePath) #read the image label = imagePath.split(os.path.sep)[1] #extract label from path("class"/0.jpg) #extract raw / mean pixel intensity features pixels = extractFeatures(image=image, size=(imageSize, imageSize), typeOfFeature=pixelType, bins=None) #extract histograms feature (color distribution throughout the image) histograms = extractFeatures(image=image, size=(imageSize, imageSize), typeOfFeature=histogramType, bins=256) trainImages.append(pixels) #append images (each "vectorized" image is put in a row) trainHistograms.append(histograms) #append features trainLabels.append(label) #append labels #show an update every 1000 images if i > 0 and i % 1000 == 0: print("[INFO] processed {}/{}".format(i, len(trainPath))) print("Finished reading training images.") trainImages =
np.array(trainImages)
numpy.array
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import os import sys import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') from skimage.transform import rescale, resize from tqdm import tqdm import cv2 import random # In[2]: os.environ['CUDA_VISIBLE_DEVICES'] = '0' # In[3]: from tqdm import tqdm_notebook, tnrange from itertools import chain from skimage.io import imread, imshow, concatenate_images from skimage.transform import resize from skimage.morphology import label from sklearn.model_selection import train_test_split # KERAS IMPORTS # import tensorflow as tf # from tensorflow import keras # from tensorflow.keras.layers import concatenate, add # from tensorflow.keras.models import Sequential, Model # from tensorflow.keras.layers import Input # from tensorflow.keras.layers import Input, BatchNormalization, Activation, Dense, Dropout # from tensorflow.keras.layers import Dense # from tensorflow.keras.layers import Conv2D # from tensorflow.keras.layers import Conv2DTranspose # from tensorflow.keras.layers import MaxPool2D, AvgPool2D # from tensorflow.keras.layers import UpSampling2D # from tensorflow.keras.layers import LeakyReLU # from tensorflow.keras.layers import LeakyReLU # from tensorflow.keras.layers import Activation # from tensorflow.keras.layers import BatchNormalization # from tensorflow.keras.layers import Lambda # from tensorflow.keras.layers import MaxPooling2D, GlobalMaxPool2D # from tensorflow.keras.layers import Flatten # from tensorflow.keras.layers import Reshape # from tensorflow.keras.utils import plot_model # from tensorflow.keras.layers import Add, Multiply # from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau # from tensorflow.keras.losses import mse, binary_crossentropy # from tensorflow.keras import initializers # import tensorflow.keras.backend as K # from tensorflow.keras.utils import multi_gpu_model import tensorflow as tf import keras from keras.layers import concatenate, add from keras.models import Sequential, Model from keras.layers import Input from keras.layers import Input, BatchNormalization, Activation, Dense, Dropout from keras.layers import Dense from keras.layers import Conv2D from keras.layers import Conv2DTranspose from keras.layers import MaxPool2D, AvgPool2D from keras.layers import UpSampling2D # from tensorflow.keras.layers.advanced_activations import LeakyReLU from keras.layers import LeakyReLU from keras.layers import Activation from keras.layers import BatchNormalization from keras.layers import Lambda from keras.layers import MaxPooling2D, GlobalMaxPool2D from keras.layers import Flatten from keras.layers import Reshape from keras.utils import plot_model from keras.layers import Add, Multiply from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.losses import mse, binary_crossentropy from keras import initializers import keras.backend as K from keras.utils import multi_gpu_model # In[4]: # Set some parameters im_width = 128 im_height = 128 n_channels = 3 border = 5 n_filters=8 dropout=0.05 batchnorm=True path_train = './Dataset/Compaq_orignal/Compaq_orignal/Compaq_orignal/train/' path_valid = './Dataset/Compaq_orignal/Compaq_orignal/Compaq_orignal/test/' path_test = './Dataset/Compaq_orignal/test_NIR/' # In[5]: import cv2 def get_data(train_data_path): img_size = 128 # train_ids = next(os.walk(train_data_path))[1] train_ids = next(os.walk(train_data_path + "image/1"))[2] x_train = [] # x_train = np.zeros((len(train_ids), img_size, img_size, 3), dtype=np.uint8) y_train = np.zeros((len(train_ids), img_size, img_size, 1), dtype=np.bool) for i, id_ in tqdm_notebook(enumerate(train_ids), total=len(train_ids)): path = train_data_path+"image/1"+"/{}".format(id_) img = cv2.imread(path,1) img = cv2.resize(img, (img_size, img_size)) img = np.asarray(img) / 127.5 img = img - 1 x_train.append(img) height, width, _ = img.shape label = np.zeros((height, width, 1)) path2 = train_data_path+"label/1/" mask_ = cv2.imread(path2+id_, 0) mask_ = cv2.resize(mask_, (img_size, img_size)) mask_ = np.expand_dims(mask_, axis=-1) label = np.maximum(label, mask_) y_train[i]=label x_train =
np.array(x_train)
numpy.array
import numpy as np class IBM: def __init__(self, config): self.D = config["ibm"].get('vertical_mixing', 0) # Vertical mixing [m*2/s] self.dt = config['dt'] self.x = np.array([]) self.y = np.array([]) self.pid = np.array([]) self.land_collision = config["ibm"].get('land_collision', 'reposition') def update_ibm(self, grid, state, forcing): # Vertical advection velocity W = forcing.forcing.wvel(state.X, state.Y, state.Z) # Vertical diffusion velocity rand = np.random.normal(size=len(state.X)) W += rand * (2 * self.D / self.dt) ** 0.5 # Update vertical position, using reflexive boundary condition at top state.Z += W * self.dt state.Z[state.Z < 0] *= -1 # Reflexive boundary condition at bottom H = grid.sample_depth(state.X, state.Y) # Water depth below_seabed = state.Z > H state.Z[below_seabed] = 2*H[below_seabed] - state.Z[below_seabed] if self.land_collision == "reposition": # If particles have not moved: Assume they ended up on land. # If that is the case, reposition them within the cell. pid, pidx_old, pidx_new = np.intersect1d(self.pid, state.pid, return_indices=True) onland = ((self.x[pidx_old] == state.X[pidx_new]) & (self.y[pidx_old] == state.Y[pidx_new])) num_onland =
np.count_nonzero(onland)
numpy.count_nonzero
import numpy import sklearn.metrics import common.utils import math import numpy import common.numpy class AdversarialEvaluation: """ Evaluation on adversarial and clean examples. """ def __init__(self, clean_probabilities, adversarial_probabilities, labels, validation=0.1, errors=None, include_misclassifications=False, detector=common.numpy.max_detector): """ Constructor. TODO: docs :param clean_probabilities: probabilities on clean examles :type clean_probabilities: numpy.ndarray :param adversarial_probabilities: probabilities on adversarial examples :type adversarial_probabilities: numpy.ndarray :param labels: labels :type labels: numpy.ndarray :param validation: fraction of validation examples :type validation: float :param errors: errors to determine worst case :type errors: None or numpy.ndarray :param include_misclassifications: include mis classifications in confidence threshold computation :type include_misclassifications: bool """ assert validation >= 0 labels = numpy.squeeze(labels) assert len(labels.shape) == 1 assert len(clean_probabilities.shape) == 2 assert clean_probabilities.shape[0] == labels.shape[0] # assert clean_probabilities.shape[1] == numpy.max(labels) + 1 assert len(adversarial_probabilities.shape) == len(clean_probabilities.shape) + 1 assert adversarial_probabilities.shape[2] == clean_probabilities.shape[1] assert adversarial_probabilities.shape[1] <= clean_probabilities.shape[0] if validation > 0: assert adversarial_probabilities.shape[1] + int(validation*clean_probabilities.shape[0]) <= clean_probabilities.shape[0] self.reference_A = adversarial_probabilities.shape[0] """ (int) Attempts. """ self.reference_N = adversarial_probabilities.shape[1] """ (int) Samples. """ if errors is not None: assert errors.shape[0] == adversarial_probabilities.shape[0] assert errors.shape[1] == adversarial_probabilities.shape[1] if errors.shape[0] > 1: selected = numpy.argmin(errors, axis=0) assert len(selected.shape) == 1 assert selected.shape[0] == adversarial_probabilities.shape[1] adversarial_probabilities = adversarial_probabilities[ selected,
numpy.arange(adversarial_probabilities.shape[1])
numpy.arange
import numpy as np import random from path import Path import os from joblib import Parallel, delayed path = Path("data/ModelNet40") folders = [dir for dir in sorted(os.listdir(path)) if os.path.isdir(path/dir)] classes = {folder: i for i, folder in enumerate(folders)} def read_off(file): if 'OFF' != file.readline().strip(): raise('Not a valid OFF header') n_verts, n_faces, __ = tuple([int(s) for s in file.readline().strip().split(' ')]) verts = [[float(s) for s in file.readline().strip().split(' ')] for i_vert in range(n_verts)] faces = [[int(s) for s in file.readline().strip().split(' ')][1:] for i_face in range(n_faces)] return verts, faces with open(path/"bed/train/bed_0001.off", 'r') as f: verts, faces = read_off(f) i,j,k = np.array(faces).T x,y,z =
np.array(verts)
numpy.array
# -*- coding: utf-8 -*- """ Created on Wed Jul 25 12:59:03 2018 @author: <NAME> Paper: <NAME>. & <NAME>.: Minmax-concave Total Variation Denoising. Signal, Image and Video Processing (2018). doi: 10.1007/s11760-018-1248-2 Algorithm for arg_min_X 0.5|Y - X|_2^2 + lamda*|X|_MCTV (ADMM) """ import numpy as np import diff def denoising_2D_MCTV(Y, para): M, N = np.shape(Y) X0 = np.zeros((M + 2, N + 2)) X0[1: M + 1, 1: N + 1] = Y Y0 = np.zeros((M + 2, N + 2)) Y0[1: M + 1, 1: N + 1] = Y X = np.zeros((M + 2, N + 2)) Zx = np.zeros((M + 2, N + 2)) Zy = np.zeros((M + 2, N + 2)) Ux = np.zeros((M + 2, N + 2)) Uy = np.zeros((M + 2, N + 2)) K = 0 lamda, rho = para.regularization, para.admmregularization num, err = para.most_iter_num, para.convergence alpha_ratio = para.nonconvexity_ratio while K < num and np.linalg.norm(X - X0, 2) > err: # update X X0 = X RHS = Y0 + lamda * rho*(diff.Dxt(Zx) + diff.Dyt(Zy)) - lamda * (diff.Dxt(Ux) + diff.Dyt(Uy)) X = np.zeros((M + 2, N + 2)) for i in range(1, M + 1): for j in range(1, N + 1): X[i,j] = ((X0[i + 1, j] + X0[i - 1, j] + X0[i, j + 1] + X0[i, j - 1]) * lamda * rho + RHS[i, j]) / (1 + 4 * lamda * rho) # update Z Tx = Ux/rho + diff.Dx(X) Ty = Uy/rho + diff.Dy(X) Zx = shrink_mctv(Tx, 1/rho, alpha_ratio, num, err * 10) Zy = shrink_mctv(Ty, 1/rho, alpha_ratio, num, err * 10) # update U Ux = Ux + (diff.Dx(X) - Zx) Uy = Uy + (diff.Dy(X) - Zy) K += 1 return X[1: M + 1, 1: N + 1] def shrink(Y, lamda): return np.fmax(np.fabs(Y) - lamda, 0) *
np.sign(Y)
numpy.sign
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for `dm_control.mjcf.physics`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import os # Internal dependencies. from absl.testing import absltest from absl.testing import parameterized from dm_control import mjcf from dm_control.mjcf import physics as mjcf_physics from dm_control.mujoco.wrapper import mjbindings import mock import numpy as np import six from six.moves import cPickle from six.moves import range from six.moves import zip mjlib = mjbindings.mjlib ARM_MODEL = os.path.join(os.path.dirname(__file__), 'test_assets/robot_arm.xml') class PhysicsTest(parameterized.TestCase): """Tests for `mjcf.Physics`.""" def setUp(self): super(PhysicsTest, self).setUp() self.model = mjcf.from_path(ARM_MODEL) self.physics = mjcf.Physics.from_xml_string( self.model.to_xml_string(), assets=self.model.get_assets()) self.random = np.random.RandomState(0) def sample_elements(self, namespace, single_element): all_elements = self.model.find_all(namespace) if single_element: # A single randomly chosen element from this namespace. elements = self.random.choice(all_elements) full_identifiers = elements.full_identifier else: # A random permutation of all elements in this namespace. elements = self.random.permutation(all_elements) full_identifiers = [element.full_identifier for element in elements] return elements, full_identifiers def test_construct_and_reload_from_mjcf_model(self): physics = mjcf.Physics.from_mjcf_model(self.model) physics.data.time = 1. physics.reload_from_mjcf_model(self.model) self.assertEqual(physics.data.time, 0.) @parameterized.parameters( # namespace, single_element ('geom', True), ('geom', False), ('joint', True), ('joint', False)) def test_id(self, namespace, single_element): elements, full_identifiers = self.sample_elements(namespace, single_element) actual = self.physics.bind(elements).element_id if single_element: expected = self.physics.model.name2id(full_identifiers, namespace) else: expected = [self.physics.model.name2id(name, namespace) for name in full_identifiers] np.testing.assert_array_equal(expected, actual) def assertCanGetAndSetBindingArray( self, binding, attribute_name, named_indexer, full_identifiers): # Read the values using the binding attribute. actual = getattr(binding, attribute_name) # Read them using the normal named indexing machinery. expected = named_indexer[full_identifiers] np.testing.assert_array_equal(expected, actual) # Assign an array of unique values to the attribute. expected = np.arange(actual.size, dtype=actual.dtype).reshape(actual.shape) setattr(binding, attribute_name, expected) # Read the values back using the normal named indexing machinery. actual = named_indexer[full_identifiers] np.testing.assert_array_equal(expected, actual) @parameterized.parameters( # namespace, attribute_name, model_or_data, field_name, single_element ('geom', 'xpos', 'data', 'geom_xpos', True), ('geom', 'xpos', 'data', 'geom_xpos', False), ('joint', 'qpos', 'data', 'qpos', True), ('joint', 'qpos', 'data', 'qpos', False), ('site', 'rgba', 'model', 'site_rgba', True), ('site', 'rgba', 'model', 'site_rgba', False), ('sensor', 'sensordata', 'data', 'sensordata', True), ('sensor', 'sensordata', 'data', 'sensordata', False)) def test_attribute_access(self, namespace, attribute_name, model_or_data, field_name, single_element): elements, full_identifiers = self.sample_elements(namespace, single_element) named_indexer = getattr(getattr(self.physics.named, model_or_data), field_name) binding = self.physics.bind(elements) self.assertCanGetAndSetBindingArray( binding, attribute_name, named_indexer, full_identifiers) @parameterized.parameters( # namespace, attribute_name, model_or_data, field_name, single_element, # column_index ('geom', 'pos', 'model', 'geom_pos', True, None), ('geom', 'pos', 'model', 'geom_pos', False, None), ('geom', 'pos', 'model', 'geom_pos', True, 1), ('geom', 'pos', 'model', 'geom_pos', False, 1), ('geom', 'pos', 'model', 'geom_pos', True, 'y'), ('geom', 'pos', 'model', 'geom_pos', False, 'y'), ('geom', 'pos', 'model', 'geom_pos', True, slice(0, None, 2)), ('geom', 'pos', 'model', 'geom_pos', False, slice(0, None, 2)), ('geom', 'pos', 'model', 'geom_pos', True, [0, 2]), ('geom', 'pos', 'model', 'geom_pos', False, [0, 2]), ('geom', 'pos', 'model', 'geom_pos', True, ['x', 'z']), ('geom', 'pos', 'model', 'geom_pos', False, ['x', 'z']), ('joint', 'qpos', 'data', 'qpos', True, None), ('joint', 'qpos', 'data', 'qpos', False, None)) def test_indexing(self, namespace, attribute_name, model_or_data, field_name, single_element, column_index): elements, full_identifiers = self.sample_elements(namespace, single_element) named_indexer = getattr(getattr(self.physics.named, model_or_data), field_name) binding = self.physics.bind(elements) if column_index is not None: binding_index = (attribute_name, column_index) try: named_index = np.ix_(full_identifiers, column_index) except ValueError: named_index = (full_identifiers, column_index) else: binding_index = attribute_name named_index = full_identifiers # Read the values by indexing the binding. actual = binding[binding_index] # Read them using the normal named indexing machinery. expected = named_indexer[named_index] np.testing.assert_array_equal(expected, actual) # Write an array of unique values into the binding. expected = np.arange(actual.size, dtype=actual.dtype).reshape(actual.shape) binding[binding_index] = expected # Read the values back using the normal named indexing machinery. actual = named_indexer[named_index] np.testing.assert_array_equal(expected, actual) def test_bind_mocap_body(self): pos = [1, 2, 3] quat = [1, 0, 0, 0] model = mjcf.RootElement() # Bodies are non-mocap by default. normal_body = model.worldbody.add('body', pos=pos, quat=quat) mocap_body = model.worldbody.add('body', pos=pos, quat=quat, mocap='true') physics = mjcf.Physics.from_xml_string(model.to_xml_string()) binding = physics.bind(mocap_body) np.testing.assert_array_equal(pos, binding.mocap_pos) np.testing.assert_array_equal(quat, binding.mocap_quat) new_pos = [4, 5, 6] new_quat = [0, 1, 0, 0] binding.mocap_pos = new_pos binding.mocap_quat = new_quat np.testing.assert_array_equal( new_pos, physics.named.data.mocap_pos[mocap_body.full_identifier]) np.testing.assert_array_equal( new_quat, physics.named.data.mocap_quat[mocap_body.full_identifier]) with self.assertRaises(AttributeError): _ = physics.bind(normal_body).mocap_pos with six.assertRaisesRegex( self, ValueError, 'Cannot bind to a collection containing multiple element types'): physics.bind([mocap_body, normal_body]) def test_bind_worldbody(self): expected_mass = 10 model = mjcf.RootElement() child = model.worldbody.add('body') child.add('geom', type='sphere', size=[0.1], mass=expected_mass) physics = mjcf.Physics.from_mjcf_model(model) mass = physics.bind(model.worldbody).subtreemass self.assertEqual(mass, expected_mass) def test_caching(self): all_joints = self.model.find_all('joint') original = self.physics.bind(all_joints) cached = self.physics.bind(all_joints) self.assertIs(cached, original) different_order = self.physics.bind(all_joints[::-1]) self.assertIsNot(different_order, original) # Reloading the `Physics` instance should clear the cache. self.physics.reload_from_xml_string( self.model.to_xml_string(), assets=self.model.get_assets()) after_reload = self.physics.bind(all_joints) self.assertIsNot(after_reload, original) def test_exceptions(self): joint = self.model.find_all('joint')[0] geom = self.model.find_all('geom')[0] with six.assertRaisesRegex( self, ValueError, 'Cannot bind to a collection containing multiple element types'): self.physics.bind([joint, geom]) with six.assertRaisesRegex(self, ValueError, 'cannot be bound to physics'): mjcf.physics.Binding(self.physics, 'invalid_namespace', 'whatever') binding = self.physics.bind(joint) with six.assertRaisesRegex(self, AttributeError, 'does not have attribute'): getattr(binding, 'invalid_attribute') def test_dirty(self): self.physics.forward() self.assertFalse(self.physics.is_dirty) joints, _ = self.sample_elements('joint', single_element=False) sites, _ = self.sample_elements('site', single_element=False) # Accessing qpos shouldn't trigger a recalculation. _ = self.physics.bind(joints).qpos self.assertFalse(self.physics.is_dirty) # Reassignments to qpos should cause the physics to become dirty. site_xpos_before = copy.deepcopy(self.physics.bind(sites).xpos) self.physics.bind(joints).qpos += 0.5 self.assertTrue(self.physics.is_dirty) # Accessing stuff in mjModel shouldn't trigger a recalculation. _ = self.physics.bind(sites).pos self.assertTrue(self.physics.is_dirty) # Accessing stuff in mjData should trigger a recalculation. actual_sites_xpos_after = copy.deepcopy(self.physics.bind(sites).xpos) self.assertFalse(self.physics.is_dirty) self.assertFalse((actual_sites_xpos_after == site_xpos_before).all()) # Automatic recalculation should render `forward` a no-op here. self.physics.forward() expected_sites_xpos_after = self.physics.bind(sites).xpos np.testing.assert_array_equal(actual_sites_xpos_after, expected_sites_xpos_after) # `forward` should not be called on subsequent queries to xpos. with mock.patch.object( self.physics, 'forward', side_effect=self.physics.forward) as mock_forward: _ = self.physics.bind(sites).xpos mock_forward.assert_not_called() @parameterized.parameters(True, False) def test_assign_while_dirty(self, assign_via_slice): actuators = self.model.find_all('actuator') if assign_via_slice: self.physics.bind(actuators).ctrl[:] = 0.75 else: self.physics.bind(actuators).ctrl = 0.75 self.assertTrue(self.physics.is_dirty) self.physics.step() self.assertTrue(self.physics.is_dirty) sensors = self.model.find_all('sensor') if assign_via_slice: self.physics.bind(sensors).sensordata[:] = 12345 else: self.physics.bind(sensors).sensordata = 12345 self.assertFalse(self.physics.is_dirty) np.testing.assert_array_equal( self.physics.bind(sensors).sensordata, [12345] * len(self.physics.bind(sensors).sensordata)) def test_setitem_on_binding_attr(self): bodies, _ = self.sample_elements('body', single_element=False) xfrc_binding = self.physics.bind(bodies).xfrc_applied xfrc_binding[:, 1] = list(range(len(bodies))) for i, body in enumerate(bodies): self.assertEqual(xfrc_binding[i, 1], i) self.assertEqual( self.physics.named.data.xfrc_applied[body.full_identifier][1], i) xfrc_binding[:, 1] *= 2 for i, body in enumerate(bodies): self.assertEqual(xfrc_binding[i, 1], 2 * i) self.assertEqual( self.physics.named.data.xfrc_applied[body.full_identifier][1], 2 * i) xfrc_binding[[1, 3, 5], 2] = 42 for i, body in enumerate(bodies): actual_value = ( self.physics.named.data.xfrc_applied[body.full_identifier][2]) if i in [1, 3, 5]: self.assertEqual(actual_value, 42) else: self.assertNotEqual(actual_value, 42) # Bind to a single element. single_binding = self.physics.bind(bodies[0]).xfrc_applied single_binding[:2] = 55 np.testing.assert_array_equal(single_binding[:2], [55, 55]) np.testing.assert_array_equal( self.physics.named.data.xfrc_applied[bodies[0].full_identifier][:2], [55, 55]) def test_empty_binding(self): binding = self.physics.bind([]) self.assertEqual(binding.xpos.shape, (0,)) with self.assertRaisesWithLiteralMatch( ValueError, 'Cannot assign a value to an empty binding.'): binding.xpos = 5 @parameterized.parameters([('data', 'act'), ('data', 'act_dot')]) def test_actuator_state_binding(self, model_or_data, attribute_name): def make_model_with_mixed_actuators(): actuators = [] is_stateful = [] root = mjcf.RootElement() body = root.worldbody.add('body') body.add('geom', type='sphere', size=[0.1]) slider = body.add('joint', type='slide', name='slide_joint') # Third-order `general` actuator. actuators.append( root.actuator.add( 'general', dyntype='integrator', biastype='affine', dynprm=[1, 0, 0], joint=slider, name='general_act')) is_stateful.append(True) # Cylinder actuators are also third-order. actuators.append( root.actuator.add('cylinder', joint=slider, name='cylinder_act')) is_stateful.append(True) # A second-order actuator, added after the third-order actuators. The # actuators will be automatically reordered in the generated XML so that # the second-order actuator comes first. actuators.append( root.actuator.add('velocity', joint=slider, name='velocity_act')) is_stateful.append(False) return root, actuators, is_stateful model, actuators, is_stateful = make_model_with_mixed_actuators() physics = mjcf.Physics.from_mjcf_model(model) binding = physics.bind(actuators) named_indexer = getattr( getattr(physics.named, model_or_data), attribute_name) stateful_actuator_names = [ actuator.full_identifier for actuator, stateful in zip(actuators, is_stateful) if stateful] self.assertCanGetAndSetBindingArray( binding, attribute_name, named_indexer, stateful_actuator_names) def test_bind_stateless_actuators_only(self): actuators = [] root = mjcf.RootElement() body = root.worldbody.add('body') body.add('geom', type='sphere', size=[0.1]) slider = body.add('joint', type='slide', name='slide_joint') actuators.append( root.actuator.add('velocity', joint=slider, name='velocity_act')) actuators.append( root.actuator.add('motor', joint=slider, name='motor_act')) # `act` should be an empty array if there are no stateful actuators. physics = mjcf.Physics.from_mjcf_model(root) self.assertEqual(physics.bind(actuators).act.shape, (0,)) def make_simple_model(self): def add_submodel(root): body = root.worldbody.add('body') geom = body.add('geom', type='ellipsoid', size=[0.1, 0.2, 0.3]) site = body.add('site', type='sphere', size=[0.1]) return body, geom, site root = mjcf.RootElement() add_submodel(root) add_submodel(root) return root def quat2mat(self, quat): result = np.empty(9, dtype=np.double) mjlib.mju_quat2Mat(result,
np.asarray(quat)
numpy.asarray
from datetime import datetime from datetime import timedelta import struct import numpy as np from numpy import dtype import netCDF4 from netCDF4 import stringtochar import argparse import warnings warnings.simplefilter('ignore', DeprecationWarning) def main(): parser = argparse.ArgumentParser() parser.add_argument("grib") parser.add_argument("netcdf") args = parser.parse_args() converter = Converter() converter.convert(args) class Converter: _FillValueF32 = np.array(9.999e20, "float32") _FillValueF64 = np.array(9.999e20, "float64") _FillValueI32 = np.array(-9999, "int32") def convert(self, args): self.gribpath = args.grib self.ncpath = args.netcdf self.read_grib() self.write_netcdf() def read_grib(self): with open(self.gribpath, "rb") as f: data = bytearray(f.read()) offset = 0 # Section 0 offset += 16 # Section 1 year = read_int(data, 13, 14, offset) month = read_int(data, 15, 15, offset) day = read_int(data, 16, 16, offset) hour = read_int(data, 17, 17, offset) minute = read_int(data, 18, 18, offset) second = read_int(data, 19, 19, offset) tstr = f"{year:0>4}-{month:0>2}-{day:0>2}T{hour:0>2}:{minute:0>2}:{second:0>2}" self.time_reference = datetime.strptime(tstr, "%Y-%m-%dT%H:%M:%S") offset += read_int(data, 1, 4, offset) # The time(time) coordinate variable stores the time of each ray, in seconds, from a reference time, # which is normally the start of the volume (time_coverage_start) # but may be a specified reference time (time_reference) self.time = [] # The elevation(time) coordinate variable stores the elevation angle for each ray. self.elevation = [] # The azimuth(time) coordinate variable stores the azimuth angle for each ray self.azimuth = [] # The number of the sweep, in the volume scan. 0-based. self.sweep_number = [] # Options are: "sector", "coplane", rhi", "vertical_pointing", "idle", "azimuth_surveillance", "elevation_surveillance", "sunscan", "pointing", "manual_ppi", "manual_rhi" self.sweep_mode = [] # Target angle for the sweep. elevation in most modes. azimuth in RHI mode. self.fixed_angle = [] # Index of first ray in sweep, relative to start of volume. 0-based self.sweep_start_ray_index = [] # Index of last ray in sweep, relative to start of volume. 0-based self.sweep_end_ray_index = [] # Nbの最大値 self.max_Nb = 0 self.Nb_list = [] self.Nr_list = [] sweep_index = 0 self.data = [] while True: # Section 8 終端節 if data[offset:offset + 4] == b"7777": break # Section 3 格子系定義節 if data[offset + 4] == 3: template_number = read_int(data, 13, 14, offset) if template_number != 50121: raise GRIBDecodeError( f"template 3.{template_number}には対応していません") h_sweep_mode = read_int(data, 39, 39, offset) if h_sweep_mode != 0: raise GRIBDecodeError( f":走査モード(水平極座標) {h_sweep_mode}には対応していません") Nb = read_int(data, 15, 18, offset) # 径線に沿った資料ビン(data bins)の数 Nr = read_int(data, 19, 22, offset) # 径線の数 Dx = read_int(data, 31, 34, offset) * 1e-3 # 径線に沿ったビンの間隔 Dstart = read_int(data, 35, 38, offset) fixed_angle = read_int_sgn(data, 43, 44, offset) * 1e-2 Fa = read_int(data, 53, 53, offset) Fe = read_int(data, 54, 54, offset) self.Nb_list.append(Nb) self.Nr_list.append(Nr) self.fixed_angle.append(fixed_angle) if fixed_angle < 90: self.sweep_mode.append("azimuth_surveillance") else: self.sweep_mode.append("vertical_pointing") radar_range = Dstart + np.arange(Nb) * Dx + Dx / 2 if Nb > self.max_Nb: self.max_Nb = Nb self.radar_range = radar_range self.sweep_start_ray_index.append(len(self.azimuth)) for x in range(1, Nr + 1): i0 = (58 + 2 * x - 1) * Fa i1 = (58 + 2 * x) * Fa azimuth = read_int(data, i0, i1, offset) * 1e-2 self.azimuth.append(azimuth) i0 = (58 + 2 * Nr * Fa + 2 * x - 1) * Fe i1 = (58 + 2 * Nr * Fa + 2 * x) * Fe elevation = read_int_sgn(data, i0, i1, offset) * 1e-2 self.elevation.append(elevation) self.sweep_end_ray_index.append(len(self.azimuth) - 1) # Section 4 プロダクト定義節 if data[offset + 4] == 4: template_number = read_int(data, 8, 9, offset) if template_number != 51123: raise GRIBDecodeError( f"template 4.{template_number}には対応していません") self.parameter_number = read_int(data, 11, 11, offset) self.latitude = read_int(data, 14, 17, offset) * 1e-6 self.longitude = read_int(data, 18, 21, offset) * 1e-6 self.altitude = read_int(data, 22, 23, offset) * 1e-1 self.site_id = read_int(data, 28, 29, offset) self.time_start = read_int_sgn(data, 33, 34, offset) self.time_end = read_int_sgn(data, 35, 36, offset) self.frequency = read_int(data, 37, 40, offset) * 1e3 Fp = read_int(data, 56, 56, offset) Ft = read_int(data, 57, 57, offset) time_sum = self.time_start for x in range(1, Nr + 1): i0 = (61 + 2 * Nr * Fp + 2 * x - 1) * Ft i1 = (61 + 2 * Nr * Fp + 2 * x) * Ft time = read_int(data, i0, i1, offset) * 1e-3 time_sum += time self.time.append(time_sum - time / 2) self.sweep_number.append(len(self.sweep_number)) sweep_index += 1 # Section 5 資料表現節 if data[offset + 4] == 5: template_number = read_int(data, 10, 11, offset) if template_number != 0: raise GRIBDecodeError( f"template 5.{template_number}には対応していません") total_points = read_int(data, 6, 9, offset) R = read_float(data, 12, 15, offset) E = read_int(data, 16, 17, offset) D = read_int(data, 18, 19, offset) data_byte = int(read_int(data, 20, 20, offset) / 8) # Section 7 資料節 if data[offset + 4] == 7: if self.parameter_number in [206, 215]: # QCI for i in range(total_points): i0 = 6 + i * data_byte i1 = 6 + (i + 1) * data_byte - 1 Z = read_int(data, i0, i1, offset) Y = int((R + Z * 2 ** E) * 10 ** (-D)) self.data.append(Y) self.data = np.array( self.data, dtype="uint8").reshape((Nr, Nb)) else: for i in range(total_points): i0 = 6 + i * data_byte i1 = 6 + (i + 1) * data_byte - 1 Z = read_int(data, i0, i1, offset) if Z == 2 ** (data_byte * 8) - 1: Y = self._FillValueF32 else: Y = (R + Z * 2 ** E) * 10 ** (-D) self.data.append(Y) self.data = np.array( self.data, dtype="float32").reshape((Nr, Nb)) offset += read_int(data, 1, 4, offset) def write_netcdf(self): self.nc = netCDF4.Dataset(self.ncpath, "w", format="NETCDF4") self.write_global_attributes() # Section 4.1 self.write_dimensions() # Section 4.2 self.write_global_variables() # Section 4.3 self.write_coordinate_variables() # Section 4.4 # Section 4.5 Ray dimension variables: ommited self.write_location_variables() # Section 4.6 self.write_sweep_variables() # Section 4.7 self.write_sensor_pointing_variables() # Section 4.8 # Section 4.9 Moving platform geo-reference variables: omitted self.write_moments_field_data_variables() # Section 4.10 self.write_instrument_parameters() # Section 5.1 self.nc.close() def write_global_attributes(self): nc = self.nc # Conventions string will specify CF/Radial, plus selected sub-conventions as applicable nc.setncattr("Conventions", "CF/Radial instrument_parameters") # [optional] CF/Radial version number nc.setncattr("version", "1.3") # Short description of file contents nc.setncattr("title", "") # Where the original data were produced nc.setncattr("institution", "Japan Meteorological Agency") # Method of production of the original data nc.setncattr("source", "") # List of modifications to the original data nc.setncattr("history", "") # Miscellaneous information nc.setncattr("comment", "") # Name of radar or lidar nc.setncattr("instrument_name", "") # [optional] Name of site where data were gathered nc.setncattr("site_name", str(self.site_id)) # [optional] Name of scan strategy used, if applicable nc.setncattr("scan_name", "") # [optional] Scan strategy id, if applicable. Assumed 0 if missing nc.setncattr("scan_id", "0") # [optional] "true" or "false" Assumed "false" if missing. nc.setncattr("platform_is_mobile", "false") # [optional] "true" or "false" Assumed "false" if missing. nc.setncattr("n_gates_vary", "false") # [optional] "true" or "false" Assumed "true”" if missing. This is set to false if the rays are not stored in time order. nc.setncattr("ray_times_increase", "true") # [optional] Comma-delimited list of field names included in this file. nc.setncattr("field_names", "") def write_dimensions(self): nc = self.nc # The number of rays. This dimension is optionally UNLIMITED nc.createDimension("time", len(self.time)) # The number of range bin nc.createDimension("range", self.max_Nb) # The number of sweeps nc.createDimension("sweep", len(self.sweep_number)) # [optional] Number of frequencies used nc.createDimension("frequency", 1) nc.createDimension("string_length", None) def write_global_variables(self): nc = self.nc # Volume numbers are sequential, relative to some arbitrary start time, and may wrap. volume_number = nc.createVariable("volume_number", dtype("int32").char) volume_number[:] = 0 # 暫定的に0を格納 volume_number.long_name = "data_volume_index_number" volume_number.units = "unitless" # TC time of first ray in file. Resolution is integer seconds. # The time(time) variable is computed relative to this time. # Format is: yyyy-mm-ddThh:mm:ssZ time_coverage_start = nc.createVariable( "time_coverage_start", "S1", ('string_length')) t = self.time_reference + timedelta(seconds=self.time_start) tstr = t.strftime("%Y-%m-%dT%H:%M:%SZ") datain =
np.array(tstr, dtype="S20")
numpy.array
import ctypes import numpy as np import pytest from psyneulink.core import llvm as pnlvm from llvmlite import ir DIM_X = 1000 DIM_Y = 2000 u = np.random.rand(DIM_X, DIM_Y) v = np.random.rand(DIM_X, DIM_Y) vector = np.random.rand(DIM_X) trans_vector = np.random.rand(DIM_Y) scalar = np.random.rand() llvm_mat_res = np.random.rand(DIM_X, DIM_Y) llvm_vec_res = np.random.rand(DIM_Y) llvm_tvec_res =
np.random.rand(DIM_X)
numpy.random.rand
import numpy as np import pandas as pd # <=============================================== del_rows ========================================================> def del_rows(df, features): '''Deleta as linhas onde a variável especificada é zero ARG: df(dataframe): O dataframe que irá ser processado features: As variáveis que podem possuir zeros e devem ser retiradas do data frame RETURNS: df_drop(dataframe): O dataframe com as variáveis especificadas deletadas.''' df_drop = df.copy() for feature in features: #Linhas onde as variáveis são igual a zero, indicando o index zeros_index = df_drop.loc[df_drop[feature] == 0, : ].index #dropando as linhas df_drop = df_drop.drop(zeros_index, axis = 0) df_drop = df_drop.reset_index(drop=True) return df_drop # <=============================================== del_rows ========================================================> def one_hot_encode(df, variable_name, toplabels_x): """ Cria variáveis dummies para as categorias mais frequentes. O restante das categorias serão consideradas ruido. Arg: df(dataframe): dataframe que será modificado variable_name(string): Nomes das variáveis toplabels_x (integer): Número das variáveis mais frequentes Returns: df(dataframe): dataframe com as variáveis mais frequentes recodificadas. """ top_x = [x for x in df[variable_name].value_counts().sort_values(ascending = False).head(toplabels_x).index] for label in top_x: df[variable_name+ '_' + string(label)] =
np.where(df[variable_name] == label,1,0)
numpy.where
import numpy as np import scipy.io as spio # Depth Intrinsic Parameters fx_d = 5.8262448167737955e+02 fy_d = 5.8269103270988637e+02 px_d = 3.1304475870804731e+02 py_d = 2.3844389626620386e+02 # Rotation R = [9.9997798940829263e-01, 5.0518419386157446e-03, 4.3011152014118693e-03, -5.0359919480810989e-03, 9.9998051861143999e-01, -3.6879781309514218e-03, -4.3196624923060242e-03, 3.6662365748484798e-03, 9.9998394948385538e-01] R = - np.asarray(R).reshape(3, 3) R = np.linalg.inv(R.T) # 3D Translation t_x = 2.5031875059141302e-02 t_z = -2.9342312935846411e-04 t_y = 6.6238747008330102e-04 # set up intrinsics matrix K K = np.identity(3) K[0, 0] = fx_d K[1, 1] = fy_d K[0, 2] = px_d K[1, 2] = py_d # set up projection matrix P P_j = np.identity(3) add = np.array([[0, 0, 0]]).T P_j = np.concatenate((P_j, add), axis=1) # set up rotation matrix R temp = np.array(R).reshape(3,3) R = np.zeros((4, 4)) R[0:3, 0:3] = temp R[3,3] = 1 # set up translation matrix T T = np.identity(4) T[0, 3] = t_x T[1, 3] = t_y T[2, 3] = t_z # calculate P P = np.dot(np.dot(np.dot(K, P_j), R), T) # read info rgbd_info = spio.loadmat("../For-Extra-Credit-Part/rgbd.mat") z_matrix = rgbd_info.get("depth") labels = rgbd_info.get("labels") row_num = z_matrix.shape[0] col_num = z_matrix.shape[1] threshold = 0.005 def build_index_list(): index_list = [] for i in range(1, 8): index_list.append(np.argwhere(labels == i)) return index_list def build_three_d_matrix(): three_d_container = np.zeros((row_num, col_num, 3)) x_list = np.arange(0, col_num, 1) x_matrix =
np.tile(x_list, (row_num, 1))
numpy.tile
import numpy as np import unittest from openmdao.api import Group, Problem, MetaModel, IndepVarComp, ResponseSurface, \ FloatKrigingSurrogate, KrigingSurrogate, MultiFiCoKrigingSurrogate from openmdao.devtools.testutil import assert_rel_error from openmdao.devtools.testutil import TestLogger class MetaModelTestCase(unittest.TestCase): def test_sin_metamodel(self): # create a MetaModel for sine and add it to a Problem sin_mm = MetaModel() sin_mm.add_input('x', 0.) sin_mm.add_output('f_x', 0.) prob = Problem() prob.model.add_subsystem('sin_mm', sin_mm) # check that missing surrogate is detected in check_config testlogger = TestLogger() prob.setup(logger=testlogger) # Conclude setup but don't run model. prob.final_setup() msg = ("No default surrogate model is defined and the " "following outputs do not have a surrogate model:\n" "['f_x']\n" "Either specify a default_surrogate, or specify a " "surrogate model for all outputs.") self.assertEqual(len(testlogger.get('error')), 1) self.assertTrue(msg in testlogger.get('error')[0]) # check that output with no specified surrogate gets the default sin_mm.default_surrogate = FloatKrigingSurrogate() prob.setup(check=False) surrogate = sin_mm._metadata('f_x').get('surrogate') self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate), 'sin_mm.f_x should get the default surrogate') # check error message when no training data is provided with self.assertRaises(RuntimeError) as cm: prob.run_model() msg = ("MetaModel: The following training data sets must be " "provided as metadata for sin_mm: ['train:x', 'train:f_x']") self.assertEqual(str(cm.exception), msg) # train the surrogate and check predicted value sin_mm.metadata['train:x'] = np.linspace(0,10,20) sin_mm.metadata['train:f_x'] = .5*np.sin(sin_mm.metadata['train:x']) prob['sin_mm.x'] = 2.1 prob.run_model() assert_rel_error(self, prob['sin_mm.f_x'], .5*np.sin(prob['sin_mm.x']), 1e-4) def test_sin_metamodel_preset_data(self): # preset training data x = np.linspace(0,10,200) f_x = .5*np.sin(x) # create a MetaModel for Sin and add it to a Problem sin_mm = MetaModel() sin_mm.add_input('x', 0., training_data = np.linspace(0,10,200)) sin_mm.add_output('f_x', 0., training_data=f_x) prob = Problem() prob.model.add_subsystem('sin_mm', sin_mm) # check that missing surrogate is detected in check_setup testlogger = TestLogger() prob.setup(logger=testlogger) # Conclude setup but don't run model. prob.final_setup() msg = ("No default surrogate model is defined and the " "following outputs do not have a surrogate model:\n" "['f_x']\n" "Either specify a default_surrogate, or specify a " "surrogate model for all outputs.") self.assertEqual(len(testlogger.get('error')), 1) self.assertTrue(msg in testlogger.get('error')[0]) # check that output with no specified surrogate gets the default sin_mm.default_surrogate = FloatKrigingSurrogate() prob.setup(check=False) surrogate = sin_mm._metadata('f_x').get('surrogate') self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate), 'sin_mm.f_x should get the default surrogate') prob['sin_mm.x'] = 2.22 prob.run_model() assert_rel_error(self, prob['sin_mm.f_x'], .5*np.sin(prob['sin_mm.x']), 1e-4) def test_sin_metamodel_rmse(self): # create MetaModel with Kriging, using the rmse option sin_mm = MetaModel() sin_mm.add_input('x', 0.) sin_mm.add_output('f_x', 0.) sin_mm.default_surrogate = KrigingSurrogate(eval_rmse=True) # add it to a Problem prob = Problem() prob.model.add_subsystem('sin_mm', sin_mm) prob.setup(check=False) # train the surrogate and check predicted value sin_mm.metadata['train:x'] = np.linspace(0,10,20) sin_mm.metadata['train:f_x'] = np.sin(sin_mm.metadata['train:x']) prob['sin_mm.x'] = 2.1 prob.run_model() assert_rel_error(self, prob['sin_mm.f_x'], np.sin(2.1), 1e-4) # mean self.assertTrue(self, sin_mm._metadata('f_x')['rmse'] < 1e-5) # std deviation def test_basics(self): # create a metamodel component mm = MetaModel() mm.add_input('x1', 0.) mm.add_input('x2', 0.) mm.add_output('y1', 0.) mm.add_output('y2', 0., surrogate=FloatKrigingSurrogate()) mm.default_surrogate = ResponseSurface() # add metamodel to a problem prob = Problem(model=Group()) prob.model.add_subsystem('mm', mm) prob.setup(check=False) # check that surrogates were properly assigned surrogate = mm._metadata('y1').get('surrogate') self.assertTrue(isinstance(surrogate, ResponseSurface)) surrogate = mm._metadata('y2').get('surrogate') self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate)) # populate training data mm.metadata['train:x1'] = [1.0, 2.0, 3.0] mm.metadata['train:x2'] = [1.0, 3.0, 4.0] mm.metadata['train:y1'] = [3.0, 2.0, 1.0] mm.metadata['train:y2'] = [1.0, 4.0, 7.0] # run problem for provided data point and check prediction prob['mm.x1'] = 2.0 prob['mm.x2'] = 3.0 self.assertTrue(mm.train) # training will occur before 1st run prob.run_model() assert_rel_error(self, prob['mm.y1'], 2.0, .00001) assert_rel_error(self, prob['mm.y2'], 4.0, .00001) # run problem for interpolated data point and check prediction prob['mm.x1'] = 2.5 prob['mm.x2'] = 3.5 self.assertFalse(mm.train) # training will not occur before 2nd run prob.run_model() assert_rel_error(self, prob['mm.y1'], 1.5934, .001) # change default surrogate, re-setup and check that metamodel re-trains mm.default_surrogate = FloatKrigingSurrogate() prob.setup(check=False) surrogate = mm._metadata('y1').get('surrogate') self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate)) self.assertTrue(mm.train) # training will occur after re-setup mm.warm_restart = True # use existing training data prob['mm.x1'] = 2.5 prob['mm.x2'] = 3.5 prob.run_model() assert_rel_error(self, prob['mm.y1'], 1.5, 1e-2) def test_warm_start(self): # create metamodel with warm_restart = True mm = MetaModel() mm.add_input('x1', 0.) mm.add_input('x2', 0.) mm.add_output('y1', 0.) mm.add_output('y2', 0.) mm.default_surrogate = ResponseSurface() mm.warm_restart = True # add to problem prob = Problem() prob.model.add_subsystem('mm', mm) prob.setup(check=False) # provide initial training data mm.metadata['train:x1'] = [1.0, 3.0] mm.metadata['train:x2'] = [1.0, 4.0] mm.metadata['train:y1'] = [3.0, 1.0] mm.metadata['train:y2'] = [1.0, 7.0] # run against a data point and check result prob['mm.x1'] = 2.0 prob['mm.x2'] = 3.0 prob.run_model() assert_rel_error(self, prob['mm.y1'], 1.9085, .001) assert_rel_error(self, prob['mm.y2'], 3.9203, .001) # Add 3rd training point, moves the estimate for that point # back to where it should be. mm.metadata['train:x1'] = [2.0] mm.metadata['train:x2'] = [3.0] mm.metadata['train:y1'] = [2.0] mm.metadata['train:y2'] = [4.0] mm.train = True # currently need to tell meta to re-train prob.run_model() assert_rel_error(self, prob['mm.y1'], 2.0, .00001) assert_rel_error(self, prob['mm.y2'], 4.0, .00001) def test_vector_inputs(self): mm = MetaModel() mm.add_input('x', np.zeros(4)) mm.add_output('y1', 0.) mm.add_output('y2', 0.) mm.default_surrogate = FloatKrigingSurrogate() prob = Problem() prob.model.add_subsystem('mm', mm) prob.setup(check=False) mm.metadata['train:x'] = [ [1.0, 1.0, 1.0, 1.0], [2.0, 1.0, 1.0, 1.0], [1.0, 2.0, 1.0, 1.0], [1.0, 1.0, 2.0, 1.0], [1.0, 1.0, 1.0, 2.0] ] mm.metadata['train:y1'] = [3.0, 2.0, 1.0, 6.0, -2.0] mm.metadata['train:y2'] = [1.0, 4.0, 7.0, -3.0, 3.0] prob['mm.x'] = [1.0, 2.0, 1.0, 1.0] prob.run_model() assert_rel_error(self, prob['mm.y1'], 1.0, .00001) assert_rel_error(self, prob['mm.y2'], 7.0, .00001) def test_array_inputs(self): mm = MetaModel() mm.add_input('x', np.zeros((2,2))) mm.add_output('y1', 0.) mm.add_output('y2', 0.) mm.default_surrogate = FloatKrigingSurrogate() prob = Problem() prob.model.add_subsystem('mm', mm) prob.setup(check=False) mm.metadata['train:x'] = [ [[1.0, 1.0], [1.0, 1.0]], [[2.0, 1.0], [1.0, 1.0]], [[1.0, 2.0], [1.0, 1.0]], [[1.0, 1.0], [2.0, 1.0]], [[1.0, 1.0], [1.0, 2.0]] ] mm.metadata['train:y1'] = [3.0, 2.0, 1.0, 6.0, -2.0] mm.metadata['train:y2'] = [1.0, 4.0, 7.0, -3.0, 3.0] prob['mm.x'] = [[1.0, 2.0], [1.0, 1.0]] prob.run_model() assert_rel_error(self, prob['mm.y1'], 1.0, .00001) assert_rel_error(self, prob['mm.y2'], 7.0, .00001) def test_array_outputs(self): mm = MetaModel() mm.add_input('x', np.zeros((2, 2))) mm.add_output('y', np.zeros(2,)) mm.default_surrogate = FloatKrigingSurrogate() prob = Problem() prob.model.add_subsystem('mm', mm) prob.setup(check=False) mm.metadata['train:x'] = [ [[1.0, 1.0], [1.0, 1.0]], [[2.0, 1.0], [1.0, 1.0]], [[1.0, 2.0], [1.0, 1.0]], [[1.0, 1.0], [2.0, 1.0]], [[1.0, 1.0], [1.0, 2.0]] ] mm.metadata['train:y'] = [ [3.0, 1.0], [2.0, 4.0], [1.0, 7.0], [6.0, -3.0], [-2.0, 3.0] ] prob['mm.x'] = [[1.0, 2.0], [1.0, 1.0]] prob.run_model() assert_rel_error(self, prob['mm.y'], np.array([1.0, 7.0]), .00001) def test_2darray_outputs(self): mm = MetaModel() mm.add_input('x', np.zeros((2, 2))) mm.add_output('y', np.zeros((2, 2))) mm.default_surrogate = FloatKrigingSurrogate() prob = Problem() prob.model.add_subsystem('mm', mm) prob.setup(check=False) mm.metadata['train:x'] = [ [[1.0, 1.0], [1.0, 1.0]], [[2.0, 1.0], [1.0, 1.0]], [[1.0, 2.0], [1.0, 1.0]], [[1.0, 1.0], [2.0, 1.0]], [[1.0, 1.0], [1.0, 2.0]] ] mm.metadata['train:y'] = [ [[3.0, 1.0],[3.0, 1.0]], [[2.0, 4.0],[2.0, 4.0]], [[1.0, 7.0],[1.0, 7.0]], [[6.0, -3.0],[6.0, -3.0]], [[-2.0, 3.0],[-2.0, 3.0]] ] prob['mm.x'] = [[1.0, 2.0], [1.0, 1.0]] prob.run_model() assert_rel_error(self, prob['mm.y'], np.array([[1.0, 7.0], [1.0, 7.0]]), .00001) def test_unequal_training_inputs(self): mm = MetaModel() mm.add_input('x', 0.) mm.add_input('y', 0.) mm.add_output('f', 0.) mm.default_surrogate = FloatKrigingSurrogate() prob = Problem() prob.model.add_subsystem('mm', mm) prob.setup(check=False) mm.metadata['train:x'] = [1.0, 1.0, 1.0, 1.0] mm.metadata['train:y'] = [1.0, 2.0] mm.metadata['train:f'] = [1.0, 1.0, 1.0, 1.0] prob['mm.x'] = 1.0 prob['mm.y'] = 1.0 with self.assertRaises(RuntimeError) as cm: prob.run_model() expected = ("MetaModel: Each variable must have the same number" " of training points. Expected 4 but found" " 2 points for 'y'.") self.assertEqual(str(cm.exception), expected) def test_unequal_training_outputs(self): mm = MetaModel() mm.add_input('x', 0.) mm.add_input('y', 0.) mm.add_output('f', 0.) mm.default_surrogate = FloatKrigingSurrogate() prob = Problem() prob.model.add_subsystem('mm', mm) prob.setup(check=False) mm.metadata['train:x'] = [1.0, 1.0, 1.0, 1.0] mm.metadata['train:y'] = [1.0, 2.0, 3.0, 4.0] mm.metadata['train:f'] = [1.0, 1.0] prob['mm.x'] = 1.0 prob['mm.y'] = 1.0 with self.assertRaises(RuntimeError) as cm: prob.run_model() expected = ("MetaModel: Each variable must have the same number" " of training points. Expected 4 but found" " 2 points for 'f'.") self.assertEqual(str(cm.exception), expected) def test_derivatives(self): mm = MetaModel() mm.add_input('x', 0.) mm.add_output('f', 0.) mm.default_surrogate = FloatKrigingSurrogate() prob = Problem() prob.model.add_subsystem('p', IndepVarComp('x', 0.), promotes_outputs=['x']) prob.model.add_subsystem('mm', mm, promotes_inputs=['x']) prob.setup() mm.metadata['train:x'] = [0., .25, .5, .75, 1.] mm.metadata['train:f'] = [1., .75, .5, .25, 0.] prob['x'] = 0.125 prob.run_model() data = prob.check_partials() Jf = data['mm'][('f', 'x')]['J_fwd'] Jr = data['mm'][('f', 'x')]['J_rev'] assert_rel_error(self, Jf[0][0], -1., 1.e-3) assert_rel_error(self, Jr[0][0], -1., 1.e-3) # TODO: complex step not currently supported in check_partial_derivs # data = prob.check_partials(global_options={'method': 'cs'}) abs_errors = data['mm'][('f', 'x')]['abs error'] self.assertTrue(len(abs_errors) > 0) for match in abs_errors: abs_error = float(match) self.assertTrue(abs_error < 1.e-6) def test_metamodel_feature(self): # create a MetaModel, specifying surrogates for the outputs trig = MetaModel() trig.add_input('x', 0.) trig.add_output('sin_x', 0., surrogate=FloatKrigingSurrogate()) trig.add_output('cos_x', 0.) trig.default_surrogate = FloatKrigingSurrogate() # provide training data trig.metadata['train:x'] = np.linspace(0,10,20) trig.metadata['train:sin_x'] = .5*np.sin(trig.metadata['train:x']) trig.metadata['train:cos_x'] = .5*np.cos(trig.metadata['train:x']) # add it to a Problem, run and check the predicted values prob = Problem() prob.model.add_subsystem('trig', trig) prob.setup(check=False) prob['trig.x'] = 2.1 prob.run_model() assert_rel_error(self, prob['trig.sin_x'], .5*np.sin(prob['trig.x']), 1e-4) assert_rel_error(self, prob['trig.cos_x'], .5*np.cos(prob['trig.x']), 1e-4) def test_metamodel_feature2d(self): # similar to previous example, but output is 2d # create a MetaModel that predicts sine and cosine as an array trig = MetaModel(default_surrogate=FloatKrigingSurrogate()) trig.add_input('x', 0) trig.add_output('y', np.zeros(2)) # add it to a Problem prob = Problem() prob.model.add_subsystem('trig', trig) prob.setup(check=False) # provide training data trig.metadata['train:x'] = np.linspace(0, 10, 20) trig.metadata['train:y'] = np.column_stack(( .5*np.sin(trig.metadata['train:x']), .5*np.cos(trig.metadata['train:x']) )) # train the surrogate and check predicted value prob['trig.x'] = 2.1 prob.run_model() assert_rel_error(self, prob['trig.y'], np.append( .5*np.sin(prob['trig.x']), .5*np.cos(prob['trig.x']) ), 1e-4) def test_metamodel_feature_vector(self): # Like simple sine example, but with input of length n instead of scalar # The expected behavior is that the output is also of length n, with # each one being an independent prediction. # Its as if you stamped out n copies of metamodel, ran n scalars # through its input, then muxed all those outputs into one contiguous # array but you skip all the n-copies thing and do it all as an array size = 3 # create a vectorized MetaModel for sine trig = MetaModel(vectorize=size, default_surrogate=FloatKrigingSurrogate()) trig.add_input('x', np.zeros(size)) trig.add_output('y', np.zeros(size)) # add it to a Problem prob = Problem() prob.model.add_subsystem('trig', trig) prob.setup(check=False) # provide training data trig.metadata['train:x'] = np.linspace(0, 10, 20) trig.metadata['train:y'] = .5*np.sin(trig.metadata['train:x']) # train the surrogate and check predicted value prob['trig.x'] = np.array([2.1, 3.2, 4.3]) prob.run_model() assert_rel_error(self, prob['trig.y'], np.array(.5*
np.sin(prob['trig.x'])
numpy.sin
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys import cv2 import numpy as np import json from PIL import Image, ImageDraw, ImageFont import math from paddle import inference def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() # params for prediction engine parser.add_argument("--use_gpu", type=str2bool, default=True) parser.add_argument("--ir_optim", type=str2bool, default=True) parser.add_argument("--use_tensorrt", type=str2bool, default=False) parser.add_argument("--use_fp16", type=str2bool, default=False) parser.add_argument("--gpu_mem", type=int, default=500) # params for text detector parser.add_argument("--image_dir", type=str) parser.add_argument("--det_algorithm", type=str, default='DB') parser.add_argument("--det_model_dir", type=str) parser.add_argument("--det_limit_side_len", type=float, default=960) parser.add_argument("--det_limit_type", type=str, default='max') # DB parmas parser.add_argument("--det_db_thresh", type=float, default=0.3) parser.add_argument("--det_db_box_thresh", type=float, default=0.5) parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6) parser.add_argument("--max_batch_size", type=int, default=10) parser.add_argument("--use_dilation", type=bool, default=False) # EAST parmas parser.add_argument("--det_east_score_thresh", type=float, default=0.8) parser.add_argument("--det_east_cover_thresh", type=float, default=0.1) parser.add_argument("--det_east_nms_thresh", type=float, default=0.2) # SAST parmas parser.add_argument("--det_sast_score_thresh", type=float, default=0.5) parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2) parser.add_argument("--det_sast_polygon", type=bool, default=False) # params for text recognizer parser.add_argument("--rec_algorithm", type=str, default='CRNN') parser.add_argument("--rec_model_dir", type=str) parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320") parser.add_argument("--rec_char_type", type=str, default='ch') parser.add_argument("--rec_batch_num", type=int, default=6) parser.add_argument("--max_text_length", type=int, default=25) parser.add_argument( "--rec_char_dict_path", type=str, default="./ppocr/utils/ppocr_keys_v1.txt") parser.add_argument("--use_space_char", type=str2bool, default=True) parser.add_argument( "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf") parser.add_argument("--drop_score", type=float, default=0.5) # params for text classifier parser.add_argument("--use_angle_cls", type=str2bool, default=False) parser.add_argument("--cls_model_dir", type=str) parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192") parser.add_argument("--label_list", type=list, default=['0', '180']) parser.add_argument("--cls_batch_num", type=int, default=6) parser.add_argument("--cls_thresh", type=float, default=0.9) parser.add_argument("--enable_mkldnn", type=str2bool, default=False) parser.add_argument("--use_pdserving", type=str2bool, default=False) return parser.parse_args() def create_predictor(args, mode, logger): if mode == "det": model_dir = args.det_model_dir elif mode == 'cls': model_dir = args.cls_model_dir else: model_dir = args.rec_model_dir if model_dir is None: logger.info("not find {} model file path {}".format(mode, model_dir)) sys.exit(0) model_file_path = model_dir + "/inference.pdmodel" params_file_path = model_dir + "/inference.pdiparams" if not os.path.exists(model_file_path): logger.info("not find model file path {}".format(model_file_path)) sys.exit(0) if not os.path.exists(params_file_path): logger.info("not find params file path {}".format(params_file_path)) sys.exit(0) config = inference.Config(model_file_path, params_file_path) if args.use_gpu: config.enable_use_gpu(args.gpu_mem, 0) if args.use_tensorrt: config.enable_tensorrt_engine( precision_mode=inference.PrecisionType.Half if args.use_fp16 else inference.PrecisionType.Float32, max_batch_size=args.max_batch_size) else: config.disable_gpu() config.set_cpu_math_library_num_threads(6) if args.enable_mkldnn: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() # TODO LDOUBLEV: fix mkldnn bug when bach_size > 1 #config.set_mkldnn_op({'conv2d', 'depthwise_conv2d', 'pool2d', 'batch_norm'}) args.rec_batch_num = 1 # enable memory optim config.enable_memory_optim() config.disable_glog_info() config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") config.switch_use_feed_fetch_ops(False) # create predictor predictor = inference.create_predictor(config) input_names = predictor.get_input_names() for name in input_names: input_tensor = predictor.get_input_handle(name) output_names = predictor.get_output_names() output_tensors = [] for output_name in output_names: output_tensor = predictor.get_output_handle(output_name) output_tensors.append(output_tensor) return predictor, input_tensor, output_tensors def draw_text_det_res(dt_boxes, img_path): src_im = cv2.imread(img_path) for box in dt_boxes: box = np.array(box).astype(np.int32).reshape(-1, 2) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) return src_im def resize_img(img, input_size=600): """ resize img and limit the longest side of the image to input_size """ img = np.array(img) im_shape = img.shape im_size_max = np.max(im_shape[0:2]) im_scale = float(input_size) / float(im_size_max) img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale) return img def draw_ocr(image, boxes, txts=None, scores=None, drop_score=0.5, font_path="./doc/simfang.ttf"): """ Visualize the results of OCR detection and recognition args: image(Image|array): RGB image boxes(list): boxes with shape(N, 4, 2) txts(list): the texts scores(list): txxs corresponding scores drop_score(float): only scores greater than drop_threshold will be visualized font_path: the path of font which is used to draw text return(array): the visualized img """ if scores is None: scores = [1] * len(boxes) box_num = len(boxes) for i in range(box_num): if scores is not None and (scores[i] < drop_score or math.isnan(scores[i])): continue box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) if txts is not None: img = np.array(resize_img(image, input_size=600)) txt_img = text_visual( txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score, font_path=font_path) img = np.concatenate([np.array(img), np.array(txt_img)], axis=1) return img return image def draw_ocr_box_txt(image, boxes, txts, scores=None, drop_score=0.5, font_path="./doc/simfang.ttf"): h, w = image.frame_height, image.frame_width img_left = image.copy() img_right = Image.new('RGB', (w, h), (255, 255, 255)) import random random.seed(0) draw_left = ImageDraw.Draw(img_left) draw_right = ImageDraw.Draw(img_right) for idx, (box, txt) in enumerate(zip(boxes, txts)): if scores is not None and scores[idx] < drop_score: continue color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) draw_left.polygon(box, fill=color) draw_right.polygon( [ box[0][0], box[0][1], box[1][0], box[1][1], box[2][0], box[2][1], box[3][0], box[3][1] ], outline=color) box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][ 1])**2) box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][ 1])**2) if box_height > 2 * box_width: font_size = max(int(box_width * 0.9), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") cur_y = box[0][1] for c in txt: char_size = font.getsize(c) draw_right.text( (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font) cur_y += char_size[1] else: font_size = max(int(box_height * 0.8), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") draw_right.text( [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font) img_left = Image.blend(image, img_left, 0.5) img_show = Image.new('RGB', (w * 2, h), (255, 255, 255)) img_show.paste(img_left, (0, 0, w, h)) img_show.paste(img_right, (w, 0, w * 2, h)) return np.array(img_show) def str_count(s): """ Count the number of Chinese characters, a single English character and a single number equal to half the length of Chinese characters. args: s(string): the input of string return(int): the number of Chinese characters """ import string count_zh = count_pu = 0 s_len = len(s) en_dg_count = 0 for c in s: if c in string.ascii_letters or c.isdigit() or c.isspace(): en_dg_count += 1 elif c.isalpha(): count_zh += 1 else: count_pu += 1 return s_len - math.ceil(en_dg_count / 2) def text_visual(texts, scores, img_h=400, img_w=600, threshold=0., font_path="./doc/simfang.ttf"): """ create new blank img and draw txt on it args: texts(list): the text will be draw scores(list|None): corresponding score of each txt img_h(int): the height of blank img img_w(int): the width of blank img font_path: the path of font which is used to draw text return(array): """ if scores is not None: assert len(texts) == len( scores), "The number of txts and corresponding scores must match" def create_blank_img(): blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255 blank_img[:, img_w - 1:] = 0 blank_img = Image.fromarray(blank_img).convert("RGB") draw_txt = ImageDraw.Draw(blank_img) return blank_img, draw_txt blank_img, draw_txt = create_blank_img() font_size = 20 txt_color = (0, 0, 0) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") gap = font_size + 5 txt_img_list = [] count, index = 1, 0 for idx, txt in enumerate(texts): index += 1 if scores[idx] < threshold or math.isnan(scores[idx]): index -= 1 continue first_line = True while str_count(txt) >= img_w // font_size - 4: tmp = txt txt = tmp[:img_w // font_size - 4] if first_line: new_txt = str(index) + ': ' + txt first_line = False else: new_txt = ' ' + txt draw_txt.text((0, gap * count), new_txt, txt_color, font=font) txt = tmp[img_w // font_size - 4:] if count >= img_h // gap - 1: txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 if first_line: new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx]) else: new_txt = " " + txt + " " + '%.3f' % (scores[idx]) draw_txt.text((0, gap * count), new_txt, txt_color, font=font) # whether add new blank img or not if count >= img_h // gap - 1 and idx + 1 < len(texts): txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 txt_img_list.append(np.array(blank_img)) if len(txt_img_list) == 1: blank_img = np.array(txt_img_list[0]) else: blank_img = np.concatenate(txt_img_list, axis=1) return np.array(blank_img) def base64_to_cv2(b64str): import test data = test.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data def draw_boxes(image, boxes, scores=None, drop_score=0.5): if scores is None: scores = [1] * len(boxes) for (box, score) in zip(boxes, scores): if score < drop_score: continue box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(
np.array(image)
numpy.array
# By: <NAME>, 2018 # Ported to Keras from the official Tensorflow implementation by Magenta # Most utilities in 'utils' remained the same as in the official implementation """ SketchRNN data loading, callbacks and image manipulation utilities. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import numpy as np import requests import six from six.moves import cStringIO as StringIO import copy import os import sys from keras.callbacks import Callback import keras.backend as K from keras.callbacks import LearningRateScheduler, TensorBoard """ My Utilities """ def batch_generator(dataset, train): """ Generator to feed into Keras' fit_generator for loading of data""" count = 0 # batch counter for validation\test data while True: if train: _, batch, s = dataset.random_batch() else: # validation\test data count = 0 if count == dataset.num_batches else count _, batch, s = dataset.get_batch(count) count += 1 encoder_input = batch[:, 1:dataset.max_seq_length + 1, :] # The target/expected vectors of strokes target_output = encoder_input # Vectors of strokes to be fed to decoder (same as above, but lagged behind # one step to include initial dummy value of (0, 0, 1, 0, 0)) decoder_input = batch[:, :dataset.max_seq_length, :] yield ({'encoder_input': encoder_input, 'decoder_input': decoder_input}, {'output': target_output}) # load_dataset is the original implementation function, modified to fit Keras def load_dataset(data_dir, model_params): """Loads the .npz file, and splits the set into train/valid/test.""" # normalizes the x and y columns using the training set. # applies same scaling factor to valid and test set. if isinstance(model_params.data_set, list): datasets = model_params.data_set else: datasets = [model_params.data_set] train_strokes = None valid_strokes = None test_strokes = None for dataset in datasets: data_filepath = os.path.join(data_dir, dataset) if data_dir.startswith('http://') or data_dir.startswith('https://'): print('Downloading %s', data_filepath) response = requests.get(data_filepath) data = np.load(StringIO(response.content)) else: if six.PY3: data = np.load(data_filepath, encoding='latin1') else: data = np.load(data_filepath) print('Loaded {}/{}/{} from {}'.format( len(data['train']), len(data['valid']), len(data['test']), dataset)) if train_strokes is None: train_strokes = data['train'] valid_strokes = data['valid'] test_strokes = data['test'] else: train_strokes = np.concatenate((train_strokes, data['train'])) valid_strokes = np.concatenate((valid_strokes, data['valid'])) test_strokes = np.concatenate((test_strokes, data['test'])) all_strokes = np.concatenate((train_strokes, valid_strokes, test_strokes)) num_points = 0 for stroke in all_strokes: num_points += len(stroke) avg_len = num_points / len(all_strokes) print('Dataset combined: {} ({}/{}/{}), avg len {}'.format( len(all_strokes), len(train_strokes), len(valid_strokes), len(test_strokes), int(avg_len))) # calculate the max strokes we need. max_seq_len = get_max_len(all_strokes) # overwrite the hps with this calculation. model_params.max_seq_len = max_seq_len print('model_params.max_seq_len:', int(model_params.max_seq_len)) train_set = DataLoader( train_strokes, model_params.batch_size, max_seq_length=model_params.max_seq_len, random_scale_factor=model_params.random_scale_factor, augment_stroke_prob=model_params.augment_stroke_prob) normalizing_scale_factor = train_set.calculate_normalizing_scale_factor() train_set.normalize(normalizing_scale_factor) valid_set = DataLoader( valid_strokes, model_params.batch_size, max_seq_length=model_params.max_seq_len, random_scale_factor=0.0, augment_stroke_prob=0.0) valid_set.normalize(normalizing_scale_factor) test_set = DataLoader( test_strokes, model_params.batch_size, max_seq_length=model_params.max_seq_len, random_scale_factor=0.0, augment_stroke_prob=0.0) test_set.normalize(normalizing_scale_factor) print('normalizing_scale_factor ', normalizing_scale_factor) result = [train_set, valid_set, test_set, model_params] return result class Logger(object): """ Logger class to enable logging to file and terminal together """ def __init__(self, logsdir): self.terminal = sys.stdout self.log = open(os.path.join(logsdir, 'log.txt'), "a") def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): pass class DotDict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def __deepcopy__(self, memo): return DotDict([(copy.deepcopy(k, memo), copy.deepcopy(v, memo)) for k, v in self.items()]) class LearningRateSchedulerPerBatch(LearningRateScheduler): """ Callback class to modify the default learning rate scheduler to operate each batch""" def __init__(self, schedule, verbose=0): super(LearningRateSchedulerPerBatch, self).__init__(schedule, verbose) self.count = 0 # Global batch index (the regular batch argument refers to the batch index within the epoch) def on_epoch_begin(self, epoch, logs=None): pass def on_epoch_end(self, epoch, logs=None): pass def on_batch_begin(self, batch, logs=None): super(LearningRateSchedulerPerBatch, self).on_epoch_begin(self.count, logs) def on_batch_end(self, batch, logs=None): super(LearningRateSchedulerPerBatch, self).on_epoch_end(self.count, logs) self.count += 1 class KLWeightScheduler(Callback): """KL weight scheduler. # Arguments kl_weight: The tensor withholding the current KL weight term schedule: a function that takes a batch index as input (integer, indexed from 0) and returns a new learning rate as output (float). verbose: int. 0: quiet, 1: update messages. """ def __init__(self, kl_weight, schedule, verbose=0): super(KLWeightScheduler, self).__init__() self.schedule = schedule self.verbose = verbose self.kl_weight = kl_weight self.count = 0 # Global batch index (the regular batch argument refers to the batch index within the epoch) def on_batch_begin(self, batch, logs=None): new_kl_weight = self.schedule(self.count) if not isinstance(new_kl_weight, (float, np.float32, np.float64)): raise ValueError('The output of the "schedule" function ' 'should be float.') # Set new value K.set_value(self.kl_weight, new_kl_weight) if self.verbose > 0 and self.count % 20 == 0: print('\nBatch %05d: KLWeightScheduler setting KL weight ' ' to %s.' % (self.count + 1, new_kl_weight)) self.count += 1 class TensorBoardLR(TensorBoard): """ A modification to the Tensorboard callback to also include the scalars of learning rate and KL weight""" def __init__(self, *args, **kwargs): self.kl_weight = kwargs.pop('kl_weight') super().__init__(*args, **kwargs) self.count = 0 def on_batch_end(self, batch, logs=None): logs.update({'lr': K.eval(self.model.optimizer.lr), 'kl_weight': K.eval(self.kl_weight)}) super().on_batch_end(batch, logs) # TODO: add automatic startup of TB on train start (and termination on train end?) # def on_train_begin(self, logs=None): # call(["tensorboard", "--logdir="+self.log_dir]) """ Original Implementation (Magenta) Utilities""" def get_bounds(data, factor=10): """Return bounds of data.""" min_x = 0 max_x = 0 min_y = 0 max_y = 0 abs_x = 0 abs_y = 0 for i in range(len(data)): x = float(data[i, 0]) / factor y = float(data[i, 1]) / factor abs_x += x abs_y += y min_x = min(min_x, abs_x) min_y = min(min_y, abs_y) max_x = max(max_x, abs_x) max_y = max(max_y, abs_y) return (min_x, max_x, min_y, max_y) def slerp(p0, p1, t): """Spherical interpolation.""" omega = np.arccos(np.dot(p0 / np.linalg.norm(p0), p1 / np.linalg.norm(p1))) so = np.sin(omega) return np.sin((1.0 - t) * omega) / so * p0 + np.sin(t * omega) / so * p1 def lerp(p0, p1, t): """Linear interpolation.""" return (1.0 - t) * p0 + t * p1 # A note on formats: # Sketches are encoded as a sequence of strokes. stroke-3 and stroke-5 are # different stroke encodings. # stroke-3 uses 3-tuples, consisting of x-offset, y-offset, and a binary # variable which is 1 if the pen is lifted between this position and # the next, and 0 otherwise. # stroke-5 consists of x-offset, y-offset, and p_1, p_2, p_3, a binary # one-hot vector of 3 possible pen states: pen down, pen up, end of sketch. # See section 3.1 of https://arxiv.org/abs/1704.03477 for more detail. # Sketch-RNN takes input in stroke-5 format, with sketches padded to a common # maximum length and prefixed by the special start token [0, 0, 1, 0, 0] # The QuickDraw dataset is stored using stroke-3. def strokes_to_lines(strokes): """Convert stroke-3 format to polyline format.""" x = 0 y = 0 lines = [] line = [] for i in range(len(strokes)): if strokes[i, 2] == 1: x += float(strokes[i, 0]) y += float(strokes[i, 1]) line.append([x, y]) lines.append(line) line = [] else: x += float(strokes[i, 0]) y += float(strokes[i, 1]) line.append([x, y]) return lines def lines_to_strokes(lines): """Convert polyline format to stroke-3 format.""" eos = 0 strokes = [[0, 0, 0]] for line in lines: linelen = len(line) for i in range(linelen): eos = 0 if i < linelen - 1 else 1 strokes.append([line[i][0], line[i][1], eos]) strokes = np.array(strokes) strokes[1:, 0:2] -= strokes[:-1, 0:2] return strokes[1:, :] def augment_strokes(strokes, prob=0.0): """Perform data augmentation by randomly dropping out strokes.""" # drop each point within a line segments with a probability of prob # note that the logic in the loop prevents points at the ends to be dropped. result = [] prev_stroke = [0, 0, 1] count = 0 stroke = [0, 0, 1] # Added to be safe. for i in range(len(strokes)): candidate = [strokes[i][0], strokes[i][1], strokes[i][2]] if candidate[2] == 1 or prev_stroke[2] == 1: count = 0 else: count += 1 urnd = np.random.rand() # uniform random variable if candidate[2] == 0 and prev_stroke[2] == 0 and count > 2 and urnd < prob: stroke[0] += candidate[0] stroke[1] += candidate[1] else: stroke = candidate prev_stroke = stroke result.append(stroke) return
np.array(result)
numpy.array
''' Abbasnejad et al. cars dataset ''' import datetime import os import sys from sklearn.model_selection._split import KFold sys.path.append("./python") sys.path.append("./python/analysis") sys.path.append("./python/models") sys.path.append("./python/test") import matplotlib.pyplot as plt import logging logging.basicConfig(level=logging.DEBUG) # include the paths for the other directories import time from scipy.optimize._minimize import minimize from scipy.stats.stats import kendalltau from collab_pref_learning_fitc import CollabPrefLearningFITC import numpy as np import pandas as pd from sklearn.metrics import accuracy_score, log_loss from collab_pref_learning_svi import CollabPrefLearningSVI # from collab_pref_learning_svi_old import CollabPrefLearningSVI from gp_pref_learning import GPPrefLearning from per_user_pref_learning import GPPrefPerUser verbose = False def convert_discrete_to_continuous(features, cols_to_convert): new_features = None for col in np.arange(features.shape[1]): if col not in cols_to_convert: if new_features is None: new_features = features[:, col:col+1] else: new_features = np.concatenate((new_features, features[:, col:col+1]), axis=1) continue maxval = np.max(features[:, col]) minval = np.min(features[:, col]) nvals = maxval - minval + 1 vals = np.arange(nvals) + minval disc_vecs = None for val in vals: if disc_vecs is None: disc_vecs = (features[:, col] == val)[:, None] else: disc_vecs = np.concatenate((disc_vecs, (features[:, col]==val)[:, None]), axis=1) if new_features is None: new_features = disc_vecs else: new_features = np.concatenate((new_features, disc_vecs), axis=1) return new_features.astype(int) def run_crowd_GPPL(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test=None, i1_test=None, i2_test=None, ninducing=None, use_common_mean=True, no_local_y=False): Nfactors = ufeats.shape[0] if Nfactors > max_facs: Nfactors = max_facs # this is the maximum if ninducing is None: ninducing = np.max([ifeats.shape[0], ufeats.shape[0]]) model = CollabPrefLearningSVI(ifeats.shape[1], ufeats.shape[1], mu0=0, shape_s0=shape_s0, rate_s0=rate_s0, shape_sy0=1e6, rate_sy0=1e6, ls=None, nfactors=Nfactors, ninducing=ninducing, max_update_size=max_update_size, forgetting_rate=forgetting_rate, verbose=verbose, use_lb=True, use_common_mean_t=use_common_mean, delay=delay) model.max_Kw_size = max_Kw_size model.max_iter = 200 model.fit(u_tr, i1_tr, i2_tr, ifeats, prefs_tr, ufeats, use_median_ls=True) if no_local_y: model.use_local_obs_posterior_y = False if u_test is None: return model # fpred = model.predict_f(ifeats[active_items], ufeats) # rho_pred = model.predict(u_test, i1_test, i2_test, ifeats, ufeats) fpred = model.predict_f() rho_pred = model.predict(u_test, i1_test, i2_test) # return predictions of preference scores for training users, new testing users, and pairwise testing labels return fpred, rho_pred def run_GPPL_pooled(_, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, __, i1_test, i2_test): # we can use more inducing points because we don't have to compute GPs for the users and items separately, # so indcrease the number to make comparison fair. pool_ninducing = int(ninducing * 2**(1/3.0)) model = GPPrefLearning(ifeats.shape[1], mu0=0, shape_s0=shape_s0, rate_s0=rate_s0, ls_initial=None, use_svi=True, ninducing=pool_ninducing, max_update_size=max_update_size, forgetting_rate=forgetting_rate, verbose=verbose) model.max_iter_VB = 500 model.fit(i1_tr, i2_tr, ifeats, prefs_tr, use_median_ls=True) fpred, _ = np.tile(model.predict_f(), (1, ufeats.shape[0])) rho_pred, _ = model.predict(None, i1_test, i2_test) # return predictions of preference scores for training users, new testing users, and pairwise testing labels return fpred, rho_pred def run_GPPL_joint(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test): # we can use more inducing points because we don't have to compute GPs for the users and items separately, # so indcrease the number to make comparison fair. joint_ninducing = int(ninducing * 2**(1/3.0)) model = GPPrefLearning(ifeats.shape[1], mu0=0, shape_s0=shape_s0, rate_s0=rate_s0, ls_initial=None, use_svi=True, ninducing=joint_ninducing, max_update_size=max_update_size, forgetting_rate=forgetting_rate, verbose=verbose) model.max_iter_VB = 500 # we need to use only the features for the subset of users in the training set! # if user features are not very informative, then the inducing points may be fairly useless. # this might explain why performance is low for joint model and crowd-GPPL. # However, BMF is and GPPL\u is still too low? joint_ifeats = np.tile(ifeats, (ufeats.shape[0], 1)) joint_ufeats = np.tile(ufeats, (1, ifeats.shape[0])).reshape((ufeats.shape[0]*ifeats.shape[0], ufeats.shape[1])) joint_feats = np.concatenate((joint_ifeats, joint_ufeats), axis=1) i1_tr = i1_tr + (ifeats.shape[0] * u_tr) i2_tr = i2_tr + (ifeats.shape[0] * u_tr) model.fit(i1_tr, i2_tr, joint_feats, prefs_tr, use_median_ls=True) # need to split this up to compute because predict needs pairwise covariance terms and ends up computing full covariance batchsize = 100 nbatches = int(np.ceil(np.unique(u_test).shape[0] / float(batchsize))) rho_pred = [] for batch in range(nbatches): # all of the pairs and features that relate to a batch of users idxs = (u_test >= (batch) * batchsize) & (u_test < (batch+1) * batchsize) u_test_b = u_test[idxs] i1_test_b = i1_test[idxs] i2_test_b = i2_test[idxs] joint_feats_idxs_b, pairs_b = np.unique([i1_test_b + (ifeats.shape[0] * u_test_b), i2_test_b + (ifeats.shape[0] * u_test_b)], return_inverse=True) pairs_b = pairs_b.reshape(2, i1_test_b.shape[0]) rho_pred_b, _ = model.predict(joint_feats[joint_feats_idxs_b], pairs_b[0], pairs_b[1]) rho_pred = np.append(rho_pred, rho_pred_b) joint_ifeats = np.tile(ifeats, (ufeats.shape[0], 1)) joint_ufeats = np.tile(ufeats, (1, ifeats.shape[0])).reshape((ufeats.shape[0]*ifeats.shape[0], ufeats.shape[1])) joint_feats = np.concatenate((joint_ifeats, joint_ufeats), axis=1) fpred, _ = model.predict_f(joint_feats) fpred = fpred.reshape(ufeats.shape[0], ifeats.shape[0]).T # return predictions of preference scores for training users, new testing users, and pairwise testing labels return fpred, rho_pred def run_GPPL_per_user(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test): model = GPPrefPerUser(ufeats.shape[0], max_update_size, shape_s0, rate_s0, ifeats.shape[1], ninducing) model.fit(u_tr, i1_tr, i2_tr, ifeats, prefs_tr, None, False, use_median_ls=True) fpred = model.predict_f(None, personids=None) rho_pred = model.predict(u_test, i1_test, i2_test, None, None) # return predictions of preference scores for training users, new testing users, and pairwise testing labels return fpred, rho_pred def run_crowd_GPPL_without_u(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test): Nfactors = ufeats.shape[0] if Nfactors > max_facs: Nfactors = max_facs # this is the maximum model = CollabPrefLearningSVI(ifeats.shape[1], 0, mu0=0, shape_s0=shape_s0, rate_s0=rate_s0, shape_sy0=1e6, rate_sy0=1e6, ls=None, nfactors=Nfactors, ninducing=ninducing, max_update_size=max_update_size, forgetting_rate=forgetting_rate, verbose=verbose, use_lb=True, use_common_mean_t=True, delay=delay) model.max_Kw_size = max_Kw_size model.max_iter = 500 model.fit(u_tr, i1_tr, i2_tr, ifeats, prefs_tr, None, use_median_ls=True) fpred = model.predict_f(None, None) rho_pred = model.predict(u_test, i1_test, i2_test, None, None) # return predictions of preference scores for training users, new testing users, and pairwise testing labels return fpred, rho_pred def run_crowd_BMF(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test): Nfactors = ufeats.shape[0] if Nfactors > max_facs: Nfactors = max_facs # this is the maximum model = CollabPrefLearningSVI(1, 1, mu0=0, shape_s0=shape_s0, rate_s0=rate_s0, shape_sy0=1e6, rate_sy0=1e6, ls=None, nfactors=Nfactors, ninducing=ninducing, max_update_size=max_update_size, forgetting_rate=forgetting_rate, verbose=verbose, use_lb=True, kernel_func='diagonal', delay=delay) model.max_Kw_size = max_Kw_size model.max_iter = 500 model.fit(u_tr, i1_tr, i2_tr, ifeats, prefs_tr, None, use_median_ls=True) fpred = model.predict_f(None, None) rho_pred = model.predict(u_test, i1_test, i2_test, ifeats, None) # return predictions of preference scores for training users, new testing users, and pairwise testing labels return fpred, rho_pred def train_test(method_name, u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test): if method_name == 'crowd-GPPL': return run_crowd_GPPL(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test, ninducing=ninducing) elif method_name == 'crowd-GPPL-ny': return run_crowd_GPPL(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test, ninducing=ninducing, no_local_y=True) elif method_name == 'crowd-GPPL-noConsensus': return run_crowd_GPPL(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test, ninducing=ninducing, use_common_mean=False) elif method_name == 'crowd-GPPL-noInduc': return run_crowd_GPPL(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test, ninducing=None) elif method_name == 'GPPL-pooled': return run_GPPL_pooled(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test) elif method_name == 'GPPL-joint': return run_GPPL_joint(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test) elif method_name == 'GPPL-per-user': return run_GPPL_per_user(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test) elif method_name == 'crowd-GPPL\\u': return run_crowd_GPPL_without_u(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test) elif method_name == 'crowd-BMF': return run_crowd_BMF(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test) elif method_name == 'crowd-GPPL-FITC\\u-noConsensus': # No common mean, i.e. like Houlsby but SVI return run_collab_FITC_without_u(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test) elif method_name == 'crowd-GPPL-FITC\\u': return run_collab_FITC_without_u(u_tr, i1_tr, i2_tr, ifeats, ufeats, prefs_tr, u_test, i1_test, i2_test, use_common_mean=True) def run_expt(methods, expt_name): # predictions from all reps and methods fpred_all = [] rho_pred_all = [] # metrics from all reps and methods acc_all = [] logloss_all = [] times_all = [] # for repeatability np.random.seed(30) results_path = './results/' + expt_name if not os.path.exists(results_path): os.mkdir(results_path) kfolder = KFold(n_splits=no_folds) # we switch the training and test sets because we actually want to train on a small subset for foldidx, (tr_pair_idxs, test_pair_idxs) in enumerate(kfolder.split(prefs)): if foldidx >= max_no_folds: break # Get training and test data u_tr = userids[tr_pair_idxs] i1_tr = items1[tr_pair_idxs] i2_tr = items2[tr_pair_idxs] prefs_tr = prefs[tr_pair_idxs] u_test = userids[test_pair_idxs] i1_test = items1[test_pair_idxs] i2_test = items2[test_pair_idxs] prefs_test = prefs[test_pair_idxs] print(u_tr) print(i1_tr) print(i2_tr) print(prefs_tr) fpred_r = [] rho_pred_r = [] acc_r = [] logloss_r = [] times_r = [] for m in methods: # Train and Predict logging.info("Starting test with method %s..." % (m)) starttime = time.time() fpred, rho_pred = train_test(m, u_tr, i1_tr, i2_tr, item_features, user_features, prefs_tr, u_test, i1_test, i2_test) endtime = time.time() times_r.append(endtime - starttime) # Save predictions fpred_r.append(fpred.flatten()) rho_pred_r.append(rho_pred.flatten()) # Compute metrics acc_m = accuracy_score(prefs_test, np.round(rho_pred)) logloss_m = log_loss(prefs_test.flatten(), rho_pred.flatten(), labels=[0,1]) # Save metrics acc_r.append(acc_m) logloss_r.append(logloss_m) print('Results for %s at rep %i: acc=%.2f, CEE=%.2f' % (m, foldidx, acc_m, logloss_m)) fpred_all.append(fpred_r) rho_pred_all.append(rho_pred_r) acc_all.append(acc_r) logloss_all.append(logloss_r) times_all.append(times_r) # save predictions to file np.savetxt(results_path + '/fpred_rep%i.csv' % foldidx, fpred_r, delimiter=',', fmt='%f') np.savetxt(results_path + '/rho_pred_rep%i.csv' % foldidx, rho_pred_r, delimiter=',', fmt='%f') # Compute means and stds of metrics (or medians/quartiles for plots?) acc_mean = np.mean(np.array(acc_all), axis=0) logloss_mean = np.mean(np.array(logloss_all), axis=0) times_mean = np.mean(
np.array(times_all)
numpy.array
# author: viaeou #sys.path import sys sys.path.append('../') import numpy as np import matplotlib.pyplot as plt import h5py import scipy from PIL import Image from scipy import ndimage import utils.lr_utils as lr_utils train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes = lr_utils.load_dataset() def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False): """ :param X_train: training set of shape(num_px * num_px * 3, m_train) :param Y_train: training labels of shape(1,m_train) :param X_test: validation set of shape(num_px * num_px * 3, m_test) :param Y_test: validation_set of shape(1, m_test) :param num_iterations: hyperparameter representing the number of iterations to optimize the parameters :param learning_rate: hyperparameter representing learning rate :param print_cost: set true to print cost every 100 iterations :return: d: dictionary contain the information of the model """ """ steps: 1. intialize the parameters 2. optimize the model--it contains the loop of forward propagation to calculate the cost function and back propagation to calculate the gradient to the parameters and upgrade the parametsrs 3. make the prediction """ # 1. initialize the parameters dim = X_train.shape[0] w, b = initialize(dim) # 2. optimize the model parameters, costs = optimize(w, b, X_train, Y_train, num_iterations=num_iterations, learning_rate=learning_rate, print_cost=True) # Retrieve parameters w and b from dictionary "parameters" w = parameters['w'] b = parameters['b'] # 3. Predict test/train set examples (≈ 2 lines of code) Y_prediction_test = predict(w, b, X_test) Y_prediction_train = predict(w, b, X_train) # Print train/test Errors print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100)) print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100)) d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train": Y_prediction_train, "w": w, "b": b, "learning_rate": learning_rate, "num_iterations": num_iterations} return d def initialize(dim): w = np.zeros((dim, 1)) b = 0 assert (w.shape == (dim, 1)) assert (isinstance(b, float) or isinstance(b, int)) return w, b def optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost=False): # the lists contains the values of cost function after every 100 iterations costs = [] for i in range(num_iterations): grads, cost = propagation(w, b, X_train, Y_train) # 1. forward propagation and backforward propagation # retrive the gradients dw = grads['dw'] db = grads['db'] # 2 update the parameters w = w - learning_rate * dw b = b - learning_rate * db # record the costs if i % 100 == 0: costs.append(cost) if print_cost and i % 100 == 0: print("Cost after iteration %i: %f" % (i, cost)) params = { 'w': w, 'b': b } return params, costs def propagation(w, b, X, Y): m = X.shape[1] Z = np.dot(w.T, X) + b A = sigmoid(Z) cost = -1 / m * np.sum(np.dot(
np.log(A)
numpy.log
# File that graph the particles for the 'particle_tracker' tool import copy import matplotlib.pyplot as plt from matplotlib.pyplot import figure, show import matplotlib.ticker as ticker import numpy import os from scipy import spatial import sys import pdb sys.path.insert(0,'..') import constants as c #colors = {'Proton - Solar wind': 'red', 'Electron - Solar wind': 'blue', 'Electron - Photoelectron': 'black'} colors = {'Proton': 'red', 'Electron': 'white'} class Species_Plotter(object): def __init__(self, name, num_tracked, pos_dim, ts): self.name = name self.pos = numpy.zeros((num_tracked, pos_dim, ts)) self.marked = [] self.graph = None def load_files(ind): #Preparing instances of Species_plotter in order to store data cwd_base = os.getcwd().rsplit(sep = os.sep, maxsplit = 1) cwd = os.path.join(cwd_base[0], 'particle_tracker','') filename = cwd+'ts={:05d}.dat'.format(ind[0]) f = open(filename) f.readline() names = f.readline().split(sep = '\t')[:-1] f.close() #Correction due to # at the beginning of the line names[0] = names[0][2:] #Creation of classes and assigning first timestep num_species = len(names) temparray = numpy.loadtxt(filename, delimiter = '\t') pos_dim = int(numpy.shape(temparray)[1]/num_species) species = [] for i in range(num_species): n_species = Species_Plotter(names[i], numpy.shape(temparray)[0], pos_dim, len(ind)) n_species.pos[:,:,0] = temparray[:, pos_dim*i:pos_dim*(i+1)] species.append(n_species) #Rest of timesteps for i in range(1, len(ind)): filename = cwd+'ts={:05d}.dat'.format(ind[i]) temparray = numpy.loadtxt(filename) for j in range(num_species): species[j].pos[:,:,i] = temparray[:,pos_dim*j:pos_dim*(j+1)] return species def create_figure(): augment = 20 inch = 0.0254 DX = (c.XMAX-c.XMIN) DY = (c.YMAX-c.YMIN) dx = c.DX dy = c.DY fig = figure(figsize=(DX/inch*augment,DY/inch*augment)) ax = fig.add_subplot(111) #plt.axvline(x = c.XMINSAT, ymin = (c.YMINSAT-c.YMIN)/DY, ymax = (c.YMAXSAT-c.YMIN)/DY, color = 'black') #plt.axvline(x = c.XMAXSAT, ymin = (c.YMINSAT-c.YMIN)/DY, ymax = (c.YMAXSAT-c.YMIN)/DY, color = 'black') #plt.axhline(y = c.YMINSAT, xmin = c.XMINSAT/DX, xmax = c.XMAXSAT/DY, color = 'black') #plt.axhline(y = c.YMAXSAT, xmin = c.XMINSAT/DX, xmax = c.XMAXSAT/DY, color = 'black') ax.xaxis.set_major_locator(ticker.NullLocator()) gridx = numpy.arange(c.XMIN+dx, c.XMAX, dx) ax.xaxis.set_minor_locator(ticker.FixedLocator(gridx)) ax.set_xlim(c.XMIN, c.XMAX) ax.yaxis.set_major_locator(ticker.NullLocator()) gridy = numpy.arange(c.YMIN+dy, c.YMAX, dy) ax.yaxis.set_minor_locator(ticker.FixedLocator(gridy)) ax.set_ylim(c.YMIN, c.YMAX) ax.grid(True, which = 'minor') return fig, ax def choose_point(x,y, data): tree = spatial.KDTree(data) return tree.query([x,y])[1] class IndexTracker: def __init__(self, ax, species): self.ax = ax ax.set_title('use RIGHT to advance, LEFT to move back') self.slices = numpy.shape(species[0].pos)[2] self.species = species self.num_species = len(species) self.ind = 0 print("Creating plots") for i in range(self.num_species): self.species[i].graph, = ax.plot(self.species[i].pos[:,0,self.ind], self.species[i].pos[:,1,self.ind], color = colors[self.species[i].name], marker = '.', linestyle = '', picker = 3.0) self.update() def keyevent(self, event): if event.key=='right': self.ind =
numpy.clip(self.ind+1, 0, self.slices-1)
numpy.clip
import os import nibabel as nib import SimpleITK as sitk import numpy as np """查看nifti文件内容。""" # nii_path_raw = '/workspace/Datasets/nnUNet/nnUNet_raw_data/Task082_BraTS2020/imagesTr/BraTS20_Training_001_0000.nii.gz' # 原始图像 # nii_path_cropped = '/workspace/Datasets/nnUNet/nnUNet_raw_data/Task082_BraTS2020/imagesTr/BraTS20_Training_001_0000.nii.gz' # 裁剪后图像 # nii_path_preprocessed = '/workspace/Datasets/nnUNet/nnUNet_raw_data/Task082_BraTS2020/imagesTr/BraTS20_Training_001_0000.nii.gz' # 预处理后图像 # nii_raw_image = sitk.ReadImage(nii_path_raw) # nii_raw_array = sitk.GetArrayFromImage(nii_raw_image) # nii_cropped_image = sitk.ReadImage(nii_path_cropped) # nii_cropped_array = sitk.GetArrayFromImage(nii_cropped_image) # nii_preprocessed_image = sitk.ReadImage(nii_path_preprocessed) # nii_preprocessed_array = sitk.GetArrayFromImage(nii_preprocessed_image) # print('nii_raw_array:', nii_raw_array.shape) # print('nii_cropped_array:', nii_cropped_array.shape) # print('nii_preprocessed_array:', nii_preprocessed_array.shape) # nii_file = '../data/BraTS20_Training_001_0000.nii.gz' nii_file = '../data/sitk_save.nii.gz' seg_file = '../data/BraTS20_Training_001.nii.gz' # nibabel读取 nii_image = nib.load(nii_file) nii_image = nii_image.get_fdata() nii_array =
np.array(nii_image)
numpy.array
# -*- coding: utf-8 -*- # Copyright 2019 the HERA Project # Licensed under the MIT License import pytest import numpy as np from copy import deepcopy import warnings import os import sys import shutil from hera_sim.antpos import linear_array, hex_array from hera_sim.vis import sim_red_data from hera_sim.sigchain import gen_gains from .. import redcal as om from .. import io, abscal from ..utils import split_pol, conj_pol, split_bl from ..apply_cal import calibrate_in_place from ..data import DATA_PATH from ..datacontainer import DataContainer np.random.seed(0) class TestMethods(object): def test_check_polLists_minV(self): polLists = [['xy']] assert not om._check_polLists_minV(polLists) polLists = [['xx', 'xy']] assert not om._check_polLists_minV(polLists) polLists = [['xx', 'xy', 'yx']] assert not om._check_polLists_minV(polLists) polLists = [['xy', 'yx'], ['xx'], ['yy'], ['xx'], ['yx', 'xy'], ['yy']] assert om._check_polLists_minV(polLists) def test_parse_pol_mode(self): reds = [[(0, 1, 'xx')]] assert om.parse_pol_mode(reds) == '1pol' reds = [[(0, 1, 'xx')], [(0, 1, 'yy')]] assert om.parse_pol_mode(reds) == '2pol' reds = [[(0, 1, 'xx')], [(0, 1, 'xy')], [(0, 1, 'yx')], [(0, 1, 'yy')]] assert om.parse_pol_mode(reds) == '4pol' reds = [[(0, 1, 'xx')], [(0, 1, 'xy'), (0, 1, 'yx')], [(0, 1, 'yy')]] assert om.parse_pol_mode(reds) == '4pol_minV' reds = [[(0, 1, 'xx')], [(0, 1, 'xy'), (0, 1, 'yx')], [(0, 1, 'LR')]] assert om.parse_pol_mode(reds) == 'unrecognized_pol_mode' reds = [[(0, 1, 'xx')], [(0, 1, 'xy')]] assert om.parse_pol_mode(reds) == 'unrecognized_pol_mode' reds = [[(0, 1, 'xy')]] assert om.parse_pol_mode(reds) == 'unrecognized_pol_mode' reds = [[(0, 1, 'xx')], [(0, 1, 'xy'), (0, 1, 'yy')], [(0, 1, 'yx')]] assert om.parse_pol_mode(reds) == 'unrecognized_pol_mode' def test_get_pos_red(self): pos = hex_array(3, sep=14.6, split_core=False, outriggers=0) assert len(om.get_pos_reds(pos)) == 30 pos = hex_array(7, sep=14.6, split_core=False, outriggers=0) assert len(om.get_pos_reds(pos)) == 234 for ant, r in pos.items(): pos[ant] += [0, 0, 1 * r[0] - .5 * r[1]] assert len(om.get_pos_reds(pos)) == 234 pos = hex_array(7, sep=1, split_core=False, outriggers=0) assert len(om.get_pos_reds(pos)) < 234 assert len(om.get_pos_reds(pos, bl_error_tol=.1)) == 234 pos = hex_array(7, sep=14.6, split_core=False, outriggers=0) blerror = 1.0 - 1e-12 error = blerror / 4 for key, val in pos.items(): th = np.random.choice([0, np.pi / 2, np.pi]) phi = np.random.choice([0, np.pi / 2, np.pi, 3 * np.pi / 2]) pos[key] = val + error * np.array([np.sin(th) * np.cos(phi), np.sin(th) * np.sin(phi), np.cos(th)]) assert len(om.get_pos_reds(pos, bl_error_tol=1.0)) == 234 assert len(om.get_pos_reds(pos, bl_error_tol=.99)) > 234 pos = {0: np.array([0, 0, 0]), 1: np.array([20, 0, 0]), 2: np.array([10, 0, 0])} assert om.get_pos_reds(pos) == [[(0, 2), (2, 1)], [(0, 1)]] # test branch cut pos = {0: np.array([-.03, 1., 0.]), 1: np.array([1., 1., 0.]), 2: np.array([0.03, 0.0, 0.]), 3: np.array([1., 0., 0.])} assert len(om.get_pos_reds(pos, bl_error_tol=.1)) == 4 def test_filter_reds(self): antpos = linear_array(7) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') # exclude ants red = om.filter_reds(reds, ex_ants=[0, 4]) assert red == [[(1, 2, 'xx'), (2, 3, 'xx'), (5, 6, 'xx')], [(1, 3, 'xx'), (3, 5, 'xx')], [(2, 5, 'xx'), (3, 6, 'xx')], [(1, 5, 'xx'), (2, 6, 'xx')], [(1, 6, 'xx')]] # include ants red = om.filter_reds(reds, ants=[0, 1, 4, 5, 6]) assert red == [[(0, 1, 'xx'), (4, 5, 'xx'), (5, 6, 'xx')], [(4, 6, 'xx')], [(1, 4, 'xx')], [(0, 4, 'xx'), (1, 5, 'xx')], [(0, 5, 'xx'), (1, 6, 'xx')], [(0, 6, 'xx')]] # exclued bls red = om.filter_reds(reds, ex_bls=[(0, 2), (1, 2), (0, 6)]) assert red == [[(0, 1, 'xx'), (2, 3, 'xx'), (3, 4, 'xx'), (4, 5, 'xx'), (5, 6, 'xx')], [(1, 3, 'xx'), (2, 4, 'xx'), (3, 5, 'xx'), (4, 6, 'xx')], [(0, 3, 'xx'), (1, 4, 'xx'), (2, 5, 'xx'), (3, 6, 'xx')], [(0, 4, 'xx'), (1, 5, 'xx'), (2, 6, 'xx')], [(0, 5, 'xx'), (1, 6, 'xx')]] # include bls red = om.filter_reds(reds, bls=[(0, 1), (1, 2)]) assert red == [[(0, 1, 'xx'), (1, 2, 'xx')]] # include ubls red = om.filter_reds(reds, ubls=[(0, 2), (1, 4)]) assert red == [[(0, 2, 'xx'), (1, 3, 'xx'), (2, 4, 'xx'), (3, 5, 'xx'), (4, 6, 'xx')], [(0, 3, 'xx'), (1, 4, 'xx'), (2, 5, 'xx'), (3, 6, 'xx')]] # exclude ubls red = om.filter_reds(reds, ex_ubls=[(0, 2), (1, 4), (4, 5), (0, 5), (2, 3), (0, 6)]) assert red == [[(0, 4, 'xx'), (1, 5, 'xx'), (2, 6, 'xx')]] # exclude crosspols # reds = omni.filter_reds(self.info.get_reds(), ex_crosspols=() def test_filter_reds_2pol(self): antpos = linear_array(4) reds = om.get_reds(antpos, pols=['xx', 'yy'], pol_mode='1pol') # include pols red = om.filter_reds(reds, pols=['xx']) assert red == [[(0, 1, 'xx'), (1, 2, 'xx'), (2, 3, 'xx')], [(0, 2, 'xx'), (1, 3, 'xx')], [(0, 3, 'xx')]] # exclude pols red = om.filter_reds(reds, ex_pols=['yy']) assert red == [[(0, 1, 'xx'), (1, 2, 'xx'), (2, 3, 'xx')], [(0, 2, 'xx'), (1, 3, 'xx')], [(0, 3, 'xx')]] # exclude ants red = om.filter_reds(reds, ex_ants=[0]) assert red == [[(1, 2, 'xx'), (2, 3, 'xx')], [(1, 3, 'xx')], [(1, 2, 'yy'), (2, 3, 'yy')], [(1, 3, 'yy')]] # include ants red = om.filter_reds(reds, ants=[1, 2, 3]) red = om.filter_reds(reds, ex_ants=[0]) # exclued bls red = om.filter_reds(reds, ex_bls=[(1, 2), (0, 3)]) assert red == [[(0, 1, 'xx'), (2, 3, 'xx')], [(0, 2, 'xx'), (1, 3, 'xx')], [(0, 1, 'yy'), (2, 3, 'yy')], [(0, 2, 'yy'), (1, 3, 'yy')]] # include bls red = om.filter_reds(reds, bls=[(0, 1), (1, 2)]) assert red == [[(0, 1, 'xx'), (1, 2, 'xx')], [(0, 1, 'yy'), (1, 2, 'yy')]] # include ubls red = om.filter_reds(reds, ubls=[(0, 2)]) assert red == [[(0, 2, 'xx'), (1, 3, 'xx')], [(0, 2, 'yy'), (1, 3, 'yy')]] # exclude ubls red = om.filter_reds(reds, ex_ubls=[(2, 3), (0, 3)]) assert red == [[(0, 2, 'xx'), (1, 3, 'xx')], [(0, 2, 'yy'), (1, 3, 'yy')]] # test baseline length min and max cutoffs antpos = hex_array(4, sep=14.6, split_core=False, outriggers=0) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') assert om.filter_reds(reds, antpos=antpos, min_bl_cut=85) == reds[-3:] assert om.filter_reds(reds, antpos=antpos, max_bl_cut=15) == reds[:3] def test_filter_reds_max_dim(self): # build hex array with 4 on a side and 7 total rows antpos = hex_array(4, split_core=False, outriggers=0) antpos[37] = np.array([np.pi, np.pi, 0]) # add one off-grid antenna reds = om.get_reds(antpos) # remove third, fourth, fifth, and sixth rows reds = om.filter_reds(reds, ex_ants=list(range(9, 33))) # Max 1 dimension means largest 1D array new_reds = om.filter_reds(reds, max_dims=1) ant_inds = set([ant[0] for red in new_reds for bl in red for ant in split_bl(bl)]) assert ant_inds == set(range(4, 9)) # Max 2 dimensions means only rows 1 and 2 new_reds = om.filter_reds(reds, max_dims=2) ant_inds = set([ant[0] for red in new_reds for bl in red for ant in split_bl(bl)]) assert ant_inds == set(range(0, 9)) # Max 3 dimensions means all 3 good rows, but keeps out the off-grid antenna new_reds = om.filter_reds(reds, max_dims=3) ant_inds = set([ant[0] for red in new_reds for bl in red for ant in split_bl(bl)]) assert ant_inds == (set(range(0, 9)) | set(range(33, 37))) def test_add_pol_reds(self): reds = [[(1, 2)]] polReds = om.add_pol_reds(reds, pols=['xx'], pol_mode='1pol') assert polReds == [[(1, 2, 'xx')]] polReds = om.add_pol_reds(reds, pols=['xx', 'yy'], pol_mode='2pol') assert polReds == [[(1, 2, 'xx')], [(1, 2, 'yy')]] polReds = om.add_pol_reds(reds, pols=['xx', 'xy', 'yx', 'yy'], pol_mode='4pol') assert polReds == [[(1, 2, 'xx')], [(1, 2, 'xy')], [(1, 2, 'yx')], [(1, 2, 'yy')]] polReds = om.add_pol_reds(reds, pols=['xx', 'xy', 'yx', 'yy'], pol_mode='4pol_minV') assert polReds == [[(1, 2, 'xx')], [(1, 2, 'xy'), (1, 2, 'yx')], [(1, 2, 'yy')]] def test_reds_to_antpos(self): # Test 1D true_antpos = linear_array(10) reds = om.get_reds(true_antpos, pols=['xx', 'yy'], pol_mode='2pol', bl_error_tol=1e-10) inferred_antpos = om.reds_to_antpos(reds,) for pos in inferred_antpos.values(): assert len(pos) == 1 new_reds = om.get_reds(inferred_antpos, pols=['xx', 'yy'], pol_mode='2pol', bl_error_tol=1e-10) for nred in new_reds: for red in reds: if nred[0] in red: found_match = True assert len(set(nred).difference(set(red))) == 0 assert found_match found_match = False # Test 2D true_antpos = hex_array(5, split_core=False, outriggers=0) reds = om.get_reds(true_antpos, pols=['xx'], pol_mode='1pol', bl_error_tol=1e-10) inferred_antpos = om.reds_to_antpos(reds) for pos in inferred_antpos.values(): assert len(pos) == 2 new_reds = om.get_reds(inferred_antpos, pols=['xx'], pol_mode='1pol', bl_error_tol=1e-10) for nred in new_reds: for red in reds: if nred[0] in red: found_match = True assert len(set(nred).difference(set(red))) == 0 assert found_match found_match = False # Test 2D with split true_antpos = hex_array(5, split_core=True, outriggers=0) reds = om.get_pos_reds(true_antpos, bl_error_tol=1e-10) inferred_antpos = om.reds_to_antpos(reds) for pos in inferred_antpos.values(): assert len(pos) == 2 new_reds = om.get_pos_reds(inferred_antpos, bl_error_tol=1e-10) for nred in new_reds: for red in reds: if nred[0] in red: found_match = True assert len(set(nred).difference(set(red))) == 0 assert found_match found_match = False # Test 2D with additional degeneracy true_antpos = {0: [0, 0], 1: [1, 0], 2: [0, 1], 3: [1, 1], 4: [100, 100], 5: [101, 100], 6: [100, 101], 7: [101, 101]} reds = om.get_pos_reds(true_antpos, bl_error_tol=1e-10) inferred_antpos = om.reds_to_antpos(reds) for pos in inferred_antpos.values(): assert len(pos) == 3 new_reds = om.get_pos_reds(inferred_antpos, bl_error_tol=1e-10) for nred in new_reds: for red in reds: if nred[0] in red: found_match = True assert len(set(nred).difference(set(red))) == 0 assert found_match found_match = False def test_find_polarity_flipped_ants(self): # test normal operation antpos = hex_array(3, split_core=False, outriggers=0) reds = om.get_reds(antpos, pols=['ee'], pol_mode='1pol') rc = om.RedundantCalibrator(reds) freqs = np.linspace(.1, .2, 100) ants = [(ant, 'Jee') for ant in antpos] gains = gen_gains(freqs, ants) for ant in [3, 10, 11]: gains[ant, 'Jee'] *= -1 _, true_vis, data = sim_red_data(reds, gains=gains, shape=(2, len(freqs))) meta, g_fc = rc.firstcal(data, freqs) for ant in antpos: if ant in [3, 10, 11]: assert np.all(meta['polarity_flips'][ant, 'Jee']) else: assert not np.any(meta['polarity_flips'][ant, 'Jee']) # test operation where no good answer is possible, so we expect it to fail data[(0, 1, 'ee')] *= -1 meta, g_fc = rc.firstcal(data, freqs) for ant in meta['polarity_flips']: assert np.all([m is None for m in meta['polarity_flips'][ant]]) # test errors with pytest.raises(ValueError): om._build_polarity_baseline_groups(data, reds, edge_cut=100) with pytest.raises(ValueError): om._build_polarity_baseline_groups(data, reds, max_rel_angle=np.pi) class TestRedundantCalibrator(object): def test_init(self): # test a very small array pos = hex_array(3, split_core=False, outriggers=0) pos = {ant: pos[ant] for ant in range(4)} reds = om.get_reds(pos) rc = om.RedundantCalibrator(reds) with pytest.raises(ValueError): rc = om.RedundantCalibrator(reds, check_redundancy=True) # test disconnected redundant array pos = hex_array(5, split_core=False, outriggers=0) pos = {ant: pos[ant] for ant in pos if ant in [0, 1, 5, 6, 54, 55, 59, 60]} reds = om.get_reds(pos) try: rc = om.RedundantCalibrator(reds, check_redundancy=True) except ValueError: assert False, 'This array is actually redundant, so check_redundancy should not raise a ValueError.' def test_build_eq(self): antpos = linear_array(3) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') gains, true_vis, data = sim_red_data(reds) info = om.RedundantCalibrator(reds) eqs = info.build_eqs(data) assert len(eqs) == 3 assert eqs['g_0_Jxx * g_1_Jxx_ * u_0_xx'] == (0, 1, 'xx') assert eqs['g_1_Jxx * g_2_Jxx_ * u_0_xx'] == (1, 2, 'xx') assert eqs['g_0_Jxx * g_2_Jxx_ * u_1_xx'] == (0, 2, 'xx') reds = om.get_reds(antpos, pols=['xx', 'yy', 'xy', 'yx'], pol_mode='4pol') gains, true_vis, data = sim_red_data(reds) info = om.RedundantCalibrator(reds) eqs = info.build_eqs(data) assert len(eqs) == 3 * 4 assert eqs['g_0_Jxx * g_1_Jyy_ * u_4_xy'] == (0, 1, 'xy') assert eqs['g_1_Jxx * g_2_Jyy_ * u_4_xy'] == (1, 2, 'xy') assert eqs['g_0_Jxx * g_2_Jyy_ * u_5_xy'] == (0, 2, 'xy') assert eqs['g_0_Jyy * g_1_Jxx_ * u_6_yx'] == (0, 1, 'yx') assert eqs['g_1_Jyy * g_2_Jxx_ * u_6_yx'] == (1, 2, 'yx') assert eqs['g_0_Jyy * g_2_Jxx_ * u_7_yx'] == (0, 2, 'yx') reds = om.get_reds(antpos, pols=['xx', 'yy', 'xy', 'yx'], pol_mode='4pol_minV') gains, true_vis, data = sim_red_data(reds) info = om.RedundantCalibrator(reds) eqs = info.build_eqs(data) assert len(eqs) == 3 * 4 assert eqs['g_0_Jxx * g_1_Jyy_ * u_4_xy'] == (0, 1, 'xy') assert eqs['g_1_Jxx * g_2_Jyy_ * u_4_xy'] == (1, 2, 'xy') assert eqs['g_0_Jxx * g_2_Jyy_ * u_5_xy'] == (0, 2, 'xy') assert eqs['g_0_Jyy * g_1_Jxx_ * u_4_xy'] == (0, 1, 'yx') assert eqs['g_1_Jyy * g_2_Jxx_ * u_4_xy'] == (1, 2, 'yx') assert eqs['g_0_Jyy * g_2_Jxx_ * u_5_xy'] == (0, 2, 'yx') with pytest.raises(KeyError): info.build_eqs({}) def test_solver(self): antpos = linear_array(3) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') info = om.RedundantCalibrator(reds) gains, true_vis, d = sim_red_data(reds) w = {} w = dict([(k, 1.) for k in d.keys()]) def solver(data, wgts, **kwargs): np.testing.assert_equal(data['g_0_Jxx * g_1_Jxx_ * u_0_xx'], d[0, 1, 'xx']) np.testing.assert_equal(data['g_1_Jxx * g_2_Jxx_ * u_0_xx'], d[1, 2, 'xx']) np.testing.assert_equal(data['g_0_Jxx * g_2_Jxx_ * u_1_xx'], d[0, 2, 'xx']) if len(wgts) == 0: return np.testing.assert_equal(wgts['g_0_Jxx * g_1_Jxx_ * u_0_xx'], w[0, 1, 'xx']) np.testing.assert_equal(wgts['g_1_Jxx * g_2_Jxx_ * u_0_xx'], w[1, 2, 'xx']) np.testing.assert_equal(wgts['g_0_Jxx * g_2_Jxx_ * u_1_xx'], w[0, 2, 'xx']) return info._solver(solver, d) info._solver(solver, d, w) def test_firstcal_iteration(self): NANTS = 18 NFREQ = 64 antpos = linear_array(NANTS) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') info = om.RedundantCalibrator(reds) fqs = np.linspace(.1, .2, NFREQ) g, true_vis, d = sim_red_data(reds, shape=(1, NFREQ), gain_scatter=0) delays = {k: np.random.randn() * 30 for k in g.keys()} # in ns fc_gains = {k: np.exp(2j * np.pi * v * fqs) for k, v in delays.items()} delays = {k: np.array([[v]]) for k, v in delays.items()} fc_gains = {i: v.reshape(1, NFREQ) for i, v in fc_gains.items()} gains = {k: v * fc_gains[k] for k, v in g.items()} gains = {k: v.astype(np.complex64) for k, v in gains.items()} calibrate_in_place(d, gains, old_gains=g, gain_convention='multiply') d = {k: v.astype(np.complex64) for k, v in d.items()} dly_sol, off_sol = info._firstcal_iteration(d, df=fqs[1] - fqs[0], f0=fqs[0], medfilt=False) sol_degen = info.remove_degen_gains(dly_sol, degen_gains=delays, mode='phase') for i in range(NANTS): assert dly_sol[(i, 'Jxx')].dtype == np.float64 assert dly_sol[(i, 'Jxx')].shape == (1, 1) assert np.allclose(np.round(sol_degen[(i, 'Jxx')] - delays[(i, 'Jxx')], 0), 0) def test_firstcal(self): np.random.seed(21) antpos = hex_array(2, split_core=False, outriggers=0) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') rc = om.RedundantCalibrator(reds) freqs = np.linspace(1e8, 2e8, 1024) # test firstcal where the degeneracies of the phases and delays have already been removed so no abscal is necessary gains, true_vis, d = sim_red_data(reds, gain_scatter=0, shape=(2, len(freqs))) fc_delays = {ant: [[100e-9 * np.random.randn()]] for ant in gains.keys()} # in s fc_delays = rc.remove_degen_gains(fc_delays) fc_offsets = {ant: [[.49 * np.pi * (np.random.rand() > .90)]] for ant in gains.keys()} # the .49 removes the possibly of phase wraps that need abscal fc_offsets = rc.remove_degen_gains(fc_offsets) fc_gains = {ant: np.reshape(np.exp(-2.0j * np.pi * freqs * delay - 1.0j * fc_offsets[ant]), (1, len(freqs))) for ant, delay in fc_delays.items()} for ant1, ant2, pol in d.keys(): d[(ant1, ant2, pol)] *= fc_gains[(ant1, split_pol(pol)[0])] * np.conj(fc_gains[(ant2, split_pol(pol)[1])]) for ant in gains.keys(): gains[ant] *= fc_gains[ant] meta, g_fc = rc.firstcal(d, freqs, conv_crit=0) np.testing.assert_array_almost_equal(np.linalg.norm([g_fc[ant] - gains[ant] for ant in g_fc]), 0, decimal=3) # test firstcal with only phases (no delays) gains, true_vis, d = sim_red_data(reds, gain_scatter=0, shape=(2, len(freqs))) fc_delays = {ant: [[0 * np.random.randn()]] for ant in gains.keys()} # in s fc_offsets = {ant: [[.49 * np.pi * (np.random.rand() > .90)]] for ant in gains.keys()} # the .49 removes the possibly of phase wraps that need abscal fc_offsets = rc.remove_degen_gains(fc_offsets) fc_gains = {ant: np.reshape(np.exp(-2.0j * np.pi * freqs * delay - 1.0j * fc_offsets[ant]), (1, len(freqs))) for ant, delay in fc_delays.items()} for ant1, ant2, pol in d.keys(): d[(ant1, ant2, pol)] *= fc_gains[(ant1, split_pol(pol)[0])] * np.conj(fc_gains[(ant2, split_pol(pol)[1])]) for ant in gains.keys(): gains[ant] *= fc_gains[ant] meta, g_fc = rc.firstcal(d, freqs, conv_crit=0) np.testing.assert_array_almost_equal(np.linalg.norm([g_fc[ant] - gains[ant] for ant in g_fc]), 0, decimal=10) # much higher precision def test_logcal(self): NANTS = 18 antpos = linear_array(NANTS) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') info = om.RedundantCalibrator(reds) gains, true_vis, d = sim_red_data(reds, gain_scatter=.05) w = dict([(k, 1.) for k in d.keys()]) meta, sol = info.logcal(d) for i in range(NANTS): assert sol[(i, 'Jxx')].shape == (10, 10) for bls in reds: ubl = sol[bls[0]] assert ubl.shape == (10, 10) for bl in bls: d_bl = d[bl] mdl = sol[(bl[0], 'Jxx')] * sol[(bl[1], 'Jxx')].conj() * ubl np.testing.assert_almost_equal(np.abs(d_bl), np.abs(mdl), decimal=10) np.testing.assert_almost_equal(np.angle(d_bl * mdl.conj()), 0, decimal=10) for k in d.keys(): d[k] = np.zeros_like(d[k]) with warnings.catch_warnings(): warnings.simplefilter("ignore") meta, sol = info.logcal(d) om.make_sol_finite(sol) for red in reds: np.testing.assert_array_equal(sol[red[0]], 0.0) for ant in gains.keys(): np.testing.assert_array_equal(sol[ant], 1.0) def test_omnical(self): NANTS = 18 antpos = linear_array(NANTS) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') info = om.RedundantCalibrator(reds) gains, true_vis, d = sim_red_data(reds, gain_scatter=.0099999) w = dict([(k, 1.) for k in d.keys()]) sol0 = dict([(k, np.ones_like(v)) for k, v in gains.items()]) sol0.update(info.compute_ubls(d, sol0)) meta, sol = info.omnical(d, sol0, conv_crit=1e-12, gain=.5, maxiter=500, check_after=30, check_every=6) for i in range(NANTS): assert sol[(i, 'Jxx')].shape == (10, 10) for bls in reds: ubl = sol[bls[0]] assert ubl.shape == (10, 10) for bl in bls: d_bl = d[bl] mdl = sol[(bl[0], 'Jxx')] * sol[(bl[1], 'Jxx')].conj() * ubl np.testing.assert_almost_equal(
np.abs(d_bl)
numpy.abs
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils to convert TF Tensors or their values to Arrow arrays.""" import abc from typing import Dict, List, Text, Tuple, Union, FrozenSet from absl import logging import numpy as np import pyarrow as pa import tensorflow as tf from tfx_bsl.arrow import array_util from tfx_bsl.types import common_types # CompositeTensor is not public yet. from tensorflow.python.framework import composite_tensor # pylint: disable=g-direct-tensorflow-import from tensorflow_metadata.proto.v0 import schema_pb2 if tf.__version__ < "2": logging.warning("tfx_bsl.tfxio.tensor_to_arrow can only handle evaluated " "tensors (i.e. ndarays, SparseTensorValues and " "RaggedTensorValues) in TF 1.x.") _TensorType = Union[tf.Tensor, tf.SparseTensor, tf.RaggedTensor, composite_tensor.CompositeTensor] _TensorValueType = Union[np.ndarray, tf.compat.v1.SparseTensorValue, tf.compat.v1.ragged.RaggedTensorValue] TensorAlike = Union[_TensorType, _TensorValueType] class TensorsToRecordBatchConverter(object): """Converts a Dict[Text, TensorAlike] to a RecordBatch.""" __slots__ = ["_handlers", "_arrow_schema"] class Options(object): """Options to TensorsToRecordBatchConverter.""" def __init__( self, sparse_tensor_value_column_name_template: Text = "{tensor_name}$values", sparse_tensor_index_column_name_template: Text = "{tensor_name}$index{index}", generic_sparse_tensor_names: FrozenSet[str] = frozenset()): """Initialzier. Args: sparse_tensor_value_column_name_template: a `str.format()` template for the column name for the values component of a generic SparseTensor. This template should contain a "{tensor_name}" token. sparse_tensor_index_column_name_template: a `str.format()` template for the column name for the sparse index components of a generic SparseTensor. This template should contain a "{tensor_name}" token and an "{index}" token. generic_sparse_tensor_names: a set of SparseTensor names that must be converted as generic SparseTensors. Its purpose is to disambiguate 2-D varlen and 2-D generic SparseTensors. It is not necessary to include names of >2-D SparseTensors since they can only be handled as generic SparseTensors. """ self.sparse_tensor_value_column_name_template = ( sparse_tensor_value_column_name_template) self.sparse_tensor_index_column_name_template = ( sparse_tensor_index_column_name_template) self.generic_sparse_tensor_names = generic_sparse_tensor_names def __init__(self, type_specs: Dict[Text, common_types.TensorTypeSpec], options: Options = Options()): """Initializer. Args: type_specs: a mapping from names of tensors to their TypeSpecs. When calling convert(), the dict of tensors passed in must contain the same names, and each TensorAlike must be compatible to their TypeSpecs. options: options. """ self._handlers = _make_handlers(type_specs, options) all_fields = [] seen_column_names = set() for tensor_name, handler in self._handlers: for f in handler.arrow_fields(): if f.name in seen_column_names: raise ValueError("Handler for tensor {} produces a column of a " "conflicting name: {}".format(tensor_name, f.name)) seen_column_names.add(f.name) all_fields.append(f) self._arrow_schema = pa.schema(all_fields) def arrow_schema(self) -> pa.Schema: """Returns the schema of the RecordBatch output by convert().""" return self._arrow_schema def tensor_representations( self) -> Dict[Text, schema_pb2.TensorRepresentation]: """Returns the TensorRepresentations for each TensorAlike. The TypeSpecs of those TensorAlikes are specified in the initializer. These TensorRepresentations, along with the schema returned by arrow_schema() comprises all the information needed to turn the RecordBatches produced by convert() back to TensorAlikes. Returns: a dict mapping tensor names to their TensorRepresentations. """ return { tensor_name: handler.tensor_representation() for tensor_name, handler in self._handlers } def convert(self, tensors: Dict[Text, TensorAlike]) -> pa.RecordBatch: """Converts a dict of tensors to a RecordBatch. Args: tensors: must contain the same keys as the dict passed to the initialier. and each TensorAlike must be compatible with the corresponding TypeSpec. Returns: a RecordBatch, whose schema equals to self.arrow_schema(). """ assert len(self._handlers) == len(tensors) arrays = [] for tensor_name, handler in self._handlers: arrays.extend(handler.convert(tensors[tensor_name])) return pa.record_batch(arrays, schema=self._arrow_schema) class _TypeHandler(abc.ABC): """Interface of a type handler that converts a tensor to arrow arrays. Note that a handler may convert a Tensor to multiple pa.Arrays. See arrow_fields(). """ __slots__ = ["_tensor_name", "_type_spec"] def __init__(self, tensor_name: Text, type_spec: common_types.TensorTypeSpec): self._tensor_name = tensor_name self._type_spec = type_spec def convert(self, tensor: TensorAlike) -> List[pa.Array]: """Converts the given TensorAlike to pa.Arrays after validating its spec.""" if tf.__version__ < "2": if isinstance(tensor, np.ndarray): actual_spec = tf.TensorSpec(tensor.shape, tf.dtypes.as_dtype(tensor.dtype)) elif isinstance(tensor, tf.compat.v1.SparseTensorValue): actual_spec = tf.SparseTensorSpec(tensor.dense_shape, tensor.values.dtype) elif isinstance(tensor, tf.compat.v1.ragged.RaggedTensorValue): actual_spec = tf.RaggedTensorSpec( tensor.shape, tensor.values.dtype, row_splits_dtype=tensor.row_splits.dtype) else: raise TypeError("Only ndarrays, SparseTensorValues and " "RaggedTensorValues are supported with TF 1.x, " "got {}".format(type(tensor))) else: actual_spec = tf.type_spec_from_value(tensor) if not self._type_spec.is_compatible_with(actual_spec): raise TypeError("Expected {} but got {}".format(self._type_spec, actual_spec)) return self._convert_internal(tensor) @abc.abstractmethod def arrow_fields(self) -> List[pa.Field]: """Returns the name and type (in a pa.Field) of result pa.Arrays. Note that a Handler can convert a Tensor to multiple pa.Arrays. It must make sure _convert_internal() returns those Arrays of the types declared here, in the correct order. """ @abc.abstractmethod def _convert_internal(self, tensor: TensorAlike) -> List[pa.Array]: """Converts the given TensorAlike to a list of pa.Arrays. Each element in the list should correspond to one in `arrow_fields()`. Args: tensor: the TensorAlike to be converted. """ @abc.abstractmethod def tensor_representation(self) -> schema_pb2.TensorRepresentation: """Returns the TensorRepresentation. The TensorRepresentation, along with `arrow_fields()` can be used to convert from pa.Arrays back to Tensors. """ @staticmethod @abc.abstractmethod def can_handle(tensor_name: str, type_spec: common_types.TensorTypeSpec, options: TensorsToRecordBatchConverter.Options) -> bool: """Returns `True` if the handler can handle the given `tf.TypeSpec`.""" class _DenseTensorHandler(_TypeHandler): """Handles Dense Tensors of known shape (except for the batch dim).""" __slots__ = ["_values_arrow_type", "_unbatched_shape"] def __init__(self, tensor_name: Text, type_spec: common_types.TensorTypeSpec, options: TensorsToRecordBatchConverter.Options): del options super().__init__(tensor_name, type_spec) self._values_arrow_type = _tf_dtype_to_arrow_type(type_spec.dtype) self._unbatched_shape = type_spec.shape.as_list()[1:] def arrow_fields(self) -> List[pa.Field]: return [ pa.field(self._tensor_name, pa.large_list(_tf_dtype_to_arrow_type(self._type_spec.dtype))) ] def tensor_representation(self) -> schema_pb2.TensorRepresentation: result = schema_pb2.TensorRepresentation() result.dense_tensor.column_name = self._tensor_name for d in self._unbatched_shape: result.dense_tensor.shape.dim.add().size = d return result def _convert_internal(self, tensor: TensorAlike) -> List[pa.Array]: assert isinstance(tensor, (tf.Tensor, np.ndarray)), type(tensor) values_np = np.asarray(tensor) shape = values_np.shape elements_per_list = np.product(shape[1:], dtype=np.int64) if elements_per_list == 0: offsets = np.zeros(shape[0] + 1, dtype=np.int64) else: offsets = np.arange( 0, elements_per_list * shape[0] + 1, elements_per_list, dtype=np.int64) values_np = np.reshape(values_np, -1) return [pa.LargeListArray.from_arrays(offsets, pa.array( values_np, self._values_arrow_type))] @staticmethod def can_handle(tensor_name: str, type_spec: common_types.TensorTypeSpec, options: TensorsToRecordBatchConverter.Options) -> bool: del tensor_name del options if not isinstance(type_spec, tf.TensorSpec): return False if type_spec.dtype == tf.bool: return False # Can only handle batched tensor (at least 1-D). if type_spec.shape.rank is None or type_spec.shape.rank <= 0: return False shape = type_spec.shape.as_list() # Can only handle batched tensor (the batch size should be flexible). if shape[0] is not None: return False return all(d is not None for d in shape[1:]) class _VarLenSparseTensorHandler(_TypeHandler): """Handles 2-D var-len (ragged) sparse tensor.""" __slots__ = ["_values_arrow_type"] def __init__(self, tensor_name: Text, type_spec: common_types.TensorTypeSpec, options: TensorsToRecordBatchConverter.Options): del options super().__init__(tensor_name, type_spec) self._values_arrow_type = _tf_dtype_to_arrow_type(type_spec.dtype) def _convert_internal(self, tensor: TensorAlike) -> List[pa.Array]: # Algorithm: # Assume: # - the COO indices are sorted (partially checked below) # - the SparseTensor is 2-D (checked in can_handle()) # - the SparseTensor is ragged # Then the first dim of those COO indices contains "parent indices": # parent_index[i] == j means i-th value belong to j-th sub list. # Then we have a C++ util to convert parent indices + values to a ListArray. # # Note that the resulting ListArray doesn't explicitly store the second # dense dimension. When it is converted back to SparseTensor with # tensor_adapter the second dense dimension is recovered as an upper bound # for second indices + 1. Therefore, if SparseTensor's second dense # dimension is not tight, then the composition # TensorAdapter(TensorsToRecordBatchConverter()) is not an identity. dense_shape = np.asarray(tensor.dense_shape) indices = np.asarray(tensor.indices) parent_indices = indices[:, 0] assert np.min(np.diff(parent_indices), initial=0) >= 0, ( "The sparse indices must be sorted") return [ array_util.MakeListArrayFromParentIndicesAndValues( dense_shape[0], pa.array(parent_indices, type=pa.int64()), pa.array(np.asarray(tensor.values), type=self._values_arrow_type), empty_list_as_null=False) ] def arrow_fields(self) -> List[pa.Field]: return [ pa.field(self._tensor_name, pa.large_list(_tf_dtype_to_arrow_type(self._type_spec.dtype))) ] def tensor_representation(self) -> schema_pb2.TensorRepresentation: result = schema_pb2.TensorRepresentation() result.varlen_sparse_tensor.column_name = self._tensor_name return result @staticmethod def can_handle(tensor_name: str, type_spec: common_types.TensorTypeSpec, options: TensorsToRecordBatchConverter.Options) -> bool: if not isinstance(type_spec, tf.SparseTensorSpec): return False return (type_spec.shape.is_compatible_with([None, None]) and type_spec.dtype != tf.bool and tensor_name not in options.generic_sparse_tensor_names) class _RaggedTensorHandler(_TypeHandler): """Handles ragged tensor.""" __slots__ = ["_values_arrow_type", "_row_partition_dtype"] def __init__(self, tensor_name: Text, type_spec: common_types.TensorTypeSpec, options: TensorsToRecordBatchConverter.Options): del options super().__init__(tensor_name, type_spec) # TODO(b/159717195): clean up protected-access # pylint: disable=protected-access self._values_arrow_type = _tf_dtype_to_arrow_type(type_spec._dtype) self._row_partition_dtype = type_spec._row_splits_dtype def _convert_internal(self, tensor: TensorAlike) -> List[pa.Array]: def _create_nested_list(tensor: TensorAlike) -> pa.Array: """Recursively constructs nested arrow arrays from a tensor.""" if isinstance(tensor, (tf.RaggedTensor, tf.compat.v1.ragged.RaggedTensorValue)): values = tensor.values return pa.LargeListArray.from_arrays( offsets=np.asarray(tensor.row_splits), values=_create_nested_list(values)) else: return pa.array(np.asarray(tensor), self._values_arrow_type) return [_create_nested_list(tensor)] def arrow_fields(self) -> List[pa.Field]: # TODO(b/159717195): clean up protected-access # pylint: disable=protected-access arrow_type = _tf_dtype_to_arrow_type(self._type_spec._dtype) for _ in range(self._type_spec._ragged_rank): arrow_type = pa.large_list(arrow_type) return [ pa.field(self._tensor_name, arrow_type) ] def tensor_representation(self) -> schema_pb2.TensorRepresentation: result = schema_pb2.TensorRepresentation() result.ragged_tensor.feature_path.step.append(self._tensor_name) row_partition_dtype = ( schema_pb2.TensorRepresentation.RowPartitionDType.INT32 if self._row_partition_dtype == tf.int32 else schema_pb2.TensorRepresentation.RowPartitionDType.INT64) result.ragged_tensor.row_partition_dtype = row_partition_dtype return result @staticmethod def can_handle(tensor_name: str, type_spec: common_types.TensorTypeSpec, options: TensorsToRecordBatchConverter.Options) -> bool: del tensor_name del options if not isinstance(type_spec, tf.RaggedTensorSpec): return False # TODO(b/159717195): clean up protected-access # pylint:disable=protected-access if type_spec._ragged_rank < 1: # We don't support RaggedTensors that are not ragged. They are # essentially dense tensors and should be converted to them and be # handled by the DenseTensorHandler (if implemented). return False if len(type_spec._shape) - type_spec._ragged_rank > 1: # We currently do not handle leaf value tensors that are not 1-D. return False return type_spec._dtype != tf.bool class _SparseTensorHandler(_TypeHandler): """Handles generic SparseTensor. Note that this handler does not handle any 2-D / 1-D SparseTensor by default (they are handled by _VarLenSparseTensorHandler). However, not all 2-D SparseTensors are VarLenSparseTensors, if you want to handle specific 2-D SparseTensor as a generic SparseTensor, add its name to options.generic_sparse_tensor_names. """ __slots__ = ["_values_arrow_type", "_unbatched_shape", "_value_column_name", "_index_column_names"] def __init__(self, tensor_name: Text, type_spec: common_types.TensorTypeSpec, options: TensorsToRecordBatchConverter.Options): super().__init__(tensor_name, type_spec) self._values_arrow_type = _tf_dtype_to_arrow_type(type_spec.dtype) self._unbatched_shape = type_spec.shape.as_list()[1:] self._value_column_name = ( options.sparse_tensor_value_column_name_template.format( tensor_name=tensor_name)) self._index_column_names = [ options.sparse_tensor_index_column_name_template.format( tensor_name=tensor_name, index=i) for i in range(len(self._unbatched_shape)) ] def _convert_internal(self, tensor: TensorAlike) -> List[pa.Array]: # Transpose the indices array (and materialize the result in C-order) # because later we will use individual columns of the original indices. indices_np = ( np.ascontiguousarray( np.transpose(
np.asarray(tensor.indices)
numpy.asarray
""" This module uses models from the Khalil paper. """ from __future__ import division from scipy.special import cbrt import numpy as np from lmfit import Parameters def qi_error(Q,Q_err,Q_e_real,Q_e_real_err,Q_e_imag,Q_e_imag_err): """ Compute error on Qi Khalil et al defines Qi as 1/Qi = 1/Qr - Real(1/Qe), where Qe is the complex coupling Q. This can be rewritten as: $$ Qi = 1/(1/Q_r - \frac{Q_{e,real}}{Q_{e,real}^2 - Q_{e,imag}^2} $$ Assuming the errors are independent (which they seem to mostly be), the error on Qi will then be: $$ \Delta Q_i = \sqrt( (\Delta Q \diff{Qi}{Q})^2 + (\Delta Q_{e,real} \diff{Qi}{Q_{e,real}})^2 + (\Delta Q_{e,imag} \diff{Qi}{Q_{e,imag}})^2 )$$ The derivatives are: $$ \diff{Qi}{Q} = \frac{(Qer^2-Qei^2)^2}{(Q Qer - Qer^2 + Qei^2)^2} $$ $$ \diff{Qi}{Qer} = -\frac{Qe^2(Qer^2 + Qei^2)}{(Q Qer - Qer^2 + Qei^2)^2} $$ $$ \diff{Qi}{Qei} = \frac{2 Q^2 Qer Qei}{(Q Qer - Qer^2 + Qei^2)^2} $$ """ dQ = Q_err Qer = Q_e_real dQer = Q_e_real_err Qei = Q_e_imag dQei = Q_e_imag_err denom = (Q*Qer - Qer**2 + Qei**2)**2 dQi_dQ = (Qer**2 - Qei**2)**2 / denom dQi_dQer = (Q**2 * (Qer**2 + Qei**2)) / denom dQi_dQei = (2 * Q**2 * Qer * Qei) / denom dQi = np.sqrt((dQ * dQi_dQ)**2 + (dQer * dQi_dQer)**2 + (dQei * dQi_dQei)**2) return dQi def cable_delay(params, f): """ This assumes that signals go as exp(i \omega t) so that a time delay corresponds to negative phase. In our sweeps the phase advances with frequency, so I think that currently either the convention is reversed in the readout or we have a time lead. If *f* is in MHz, *delay* will be in microseconds. If *f* is in Hz, *delay* will be in seconds. Parameter *phi* is the phase at f = f_min. """ delay = params['delay'].value phi = params['phi'].value f_min = params['f_phi'].value return np.exp(1j * (-2 * np.pi * (f - f_min) * delay + phi)) def generic_s21(params, f): """ This is Equation 11, except that the parameter A is a complex prefactor intended to encapsulate the 1 + \hat{\epsilon} as well as any external gains and phase shifts. """ A = (params['A_mag'].value * np.exp(1j * params['A_phase'].value)) f_0 = params['f_0'].value Q = params['Q'].value Q_e = (params['Q_e_real'].value + 1j * params['Q_e_imag'].value) return A * (1 - (Q * Q_e**-1 / (1 + 2j * Q * (f - f_0) / f_0))) def create_model(f_0 = 100e6, Q = 1e4, Q_e = 2e4, A = 1.0, delay = 0.0, a = 0.0): p = Parameters() A_mag = np.abs(A) phi = np.angle(A) Q_e_real = np.real(Q_e) Q_e_imag = np.imag(Q_e) p.add('f_0', value = f_0) p.add('Q', value = Q) p.add('Q_e_real', value = Q_e_real) p.add('Q_e_imag', value = Q_e_imag) p.add('A_mag', value = A_mag) p.add('A_phase',value=0) p.add('phi', value = phi) p.add('delay',value = delay) p.add('f_phi',value = 0) p.add('a',value = a) return p def bifurcation_s21(params,f): """ Swenson paper: Equation: y = yo + A/(1+4*y**2) """ A = (params['A_mag'].value * np.exp(1j * params['A_phase'].value)) f_0 = params['f_0'].value Q = params['Q'].value Q_e = (params['Q_e_real'].value + 1j * params['Q_e_imag'].value) a = params['a'].value if np.isscalar(f): fmodel = np.linspace(f*0.9999,f*1.0001,1000) scalar = True else: fmodel = f scalar = False y_0 = ((fmodel - f_0)/f_0)*Q y = (y_0/3. + (y_0**2/9 - 1/12)/cbrt(a/8 + y_0/12 + np.sqrt((y_0**3/27 + y_0/12 + a/8)**2 - (y_0**2/9 - 1/12)**3) + y_0**3/27) + cbrt(a/8 + y_0/12 + np.sqrt((y_0**3/27 + y_0/12 + a/8)**2 - (y_0**2/9 - 1/12)**3) + y_0**3/27)) x = y/Q s21 = A*(1 - (Q/Q_e)/(1+2j*Q*x)) msk = np.isfinite(s21) if scalar or not np.all(msk): s21_interp_real = np.interp(f,fmodel[msk],s21[msk].real) s21_interp_imag = np.interp(f,fmodel[msk],s21[msk].imag) s21new = s21_interp_real+1j*s21_interp_imag else: s21new = s21 return s21new*cable_delay(params,f) def delayed_generic_s21(params, f): """ This adds a cable delay controlled by two parameters to the generic model above. """ return cable_delay(params, f) * generic_s21(params, f) def bifurcation_guess(f, data): p = delayed_generic_guess(f,data) p.add('a',value=0,min=0,max=0.8) return p def delayed_generic_guess(f, data): """ The phase of A is fixed at 0 and the phase at lowest frequency is incorporated into the cable delay term. """ p = generic_guess(f, data) p['A_phase'].value = 0 p['A_phase'].vary = False slope, offset = np.polyfit(f, np.unwrap(np.angle(data)), 1) p.add('delay', value = -slope / (2 * np.pi)) p.add('phi', value = np.angle(data[0]), min = -np.pi, max = np.pi) p.add('f_phi', value = f[0], vary=False) return p def generic_guess(f, data): """ Right now these Q values are magic numbers. I suppose the design values are a good initial guess, but there might be a good way to approximate them without doing the full fit. """ p = Parameters() bw = f.max() - f.min() # Allow f_0 to vary by +/- the bandwidth over which we have data p.add('f_0', value = f[np.argmin(abs(data))], min = f.min() - bw, max = f.max() + bw) p.add('A_mag', value = np.mean((np.abs(data[0]), np.abs(data[-1]))), min = 0, max = 1e6) p.add('A_phase', value = np.mean(np.angle(data)), min = -np.pi, max = np.pi) p.add('Q', value = 5e4, min = 0, max = 1e7) p.add('Q_e_real', value = 4e4, min = 0, max = 1e6) p.add('Q_e_imag', value = 0, min = -1e6, max = 1e6) return p def auto_guess(f, data): """ Use the linewidth and the transmission ratio on and off resonance to guess the initial Q values. Estimate the linewidth by smoothing then looking for the extrema of the first derivative. This may fail if the resonance is very close to the edge of the data. """ p = Parameters() bw = f.max() - f.min() # Allow f_0 to vary by +/- the bandwidth over which we have data p.add('f_0', value = f[np.argmin(abs(data))], min = f.min() - bw, max = f.max() + bw) off = np.mean((np.abs(data[0]), np.abs(data[-1]))) p.add('A_mag', value = off, min = 0, max = 1e6) p.add('A_phase', value = np.mean(np.angle(data)), min = -np.pi, max = np.pi) width = int(f.size / 10) gaussian = np.exp(-np.linspace(-4, 4, width)**2) gaussian /= np.sum(gaussian) # not necessary smoothed = np.convolve(gaussian, abs(data), mode='same') derivative = np.convolve(np.array([1, -1]), smoothed, mode='same') # Exclude the edges, which are affected by zero padding. linewidth = (f[np.argmax(derivative[width:-width])] - f[
np.argmin(derivative[width:-width])
numpy.argmin
# MIT License # # Copyright (c) 2020 <NAME> and <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import os import numpy as np import copy current_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(current_path, '../../')) class Cfd: def __init__(s, ini): s.ini = ini def_power_coeff = s.ini.power_coeff def run_pnm(s): s.ini.pnm.cfd_procedure(s.ini.throats_denss, s.ini.throats_viscs, s.ini.throats_capillary_pressures, s.ini.newman_pores_flows, s.ini.dirichlet_pores_pressures) s.ini.pnm.calc_throats_vol_flows(s.ini.throats_capillary_pressures) mass_flows = s.ini.pnm.throats_mass_flows cross_secs = s.ini.netgrid.throats_Ss s.ini.throats_velocities = dict((thr, float(mass_flows[thr]) / cross_secs[thr]) for thr in mass_flows) def calc_throat_capillary_pressure_curr(s, sat_change, capillary_pressure_max, power_coeff=0.93): # Threshold # throats_coeffs = sat_change # threshold = 0.0001 # throats_coeffs = np.where(throats_coeffs > threshold, 1., throats_coeffs) # throats_coeffs = np.where(throats_coeffs <= threshold, 0., throats_coeffs) # throats_coeffs = np.where(throats_coeffs < -threshold, -1., throats_coeffs) # return capillary_pressure_max * throats_coeffs # Progressive threshold # throats_coeffs = np.zeros(sat_change.shape) # L = 0.05 # throats_coeffs = np.where(sat_change <= -L, -1., throats_coeffs) # throats_coeffs = np.where((sat_change > -L) & (sat_change < L), # sat_change / L, throats_coeffs) # throats_coeffs = np.where(sat_change >= L, 1., throats_coeffs) # # return capillary_pressure_max * throats_coeffs # Power func # capillary_force = sat_change ** 3 * capillary_pressure_max # linear func # capillary_force = sat_change * capillary_pressure_max # Power func enhanced pc_max = capillary_pressure_max a = power_coeff # capillary_force = np.where(sat_change == 0, # 0, # sat_change / abs(sat_change) * pc_max * abs(sat_change) ** a) capillary_force = np.sign(sat_change) * np.power(np.absolute(sat_change), a) * pc_max return capillary_force def calc_coupling_params(s, power_coeff=0.93): s.ini.equation.calc_throats_av_sats() s.ini.equation.calc_throats_sats_grads() throats_av_sats = s.ini.equation.throats_av_sats visc_0 = s.ini.paramsPnm['visc_0'] visc_1 = s.ini.paramsPnm['visc_1'] s.ini.throats_viscs = throats_av_sats * visc_0 + (1. - throats_av_sats) * visc_1 # coeffs = copy.deepcopy(s.ini.equation.throats_sats_grads ** 3) coeffs = copy.deepcopy(s.ini.equation.throats_sats_grads) pcs_max = s.ini.throats_capillary_pressures_max # print('pcs_max', pcs_max) s.ini.throats_capillary_pressures = s.calc_throat_capillary_pressure_curr(coeffs, pcs_max, power_coeff) # print(pcs_max) # print(s.ini.throats_capillary_pressures) def throats_values_to_cells(s, array): cells_values = np.full(s.ini.netgrid.cells_N, 0, dtype=np.float64) s.ini.netgrid.throats_values_to_cells(array, cells_values) return cells_values def pores_values_to_cells(s, array): cells_values = np.full(s.ini.netgrid.cells_N, 0, dtype=np.float64) s.ini.netgrid.pores_values_to_cells(array, cells_values) return cells_values def process_paraview_data(s): sats_to_cells = s.throats_values_to_cells(s.ini.equation.throats_av_sats) sats_grads_to_cells = s.throats_values_to_cells(s.ini.equation.throats_sats_grads) ca_pressures_to_cells = s.throats_values_to_cells(s.ini.throats_capillary_pressures) throats_idxs = np.arange(s.ini.netgrid.throats_N, dtype=float) idxs_to_cells = s.throats_values_to_cells(throats_idxs) velocities = np.array(list(s.ini.throats_velocities.values())) velocities_to_cells = s.throats_values_to_cells(velocities) conductances = np.array(list(s.ini.pnm.conductances.values())) conductances_to_cells = s.throats_values_to_cells(conductances) delta_pressures = s.calc_delta_pressures() delta_pressures_to_cells = s.throats_values_to_cells(np.array(delta_pressures)) pressures_to_cells = s.pores_values_to_cells(s.ini.pnm.pressures) sats = copy.deepcopy(s.ini.equation.sats[s.ini.equation.i_curr]) output_1 = np.array(s.ini.local.output_1, dtype=float) output_2 = np.array(s.ini.local.output_2, dtype=float) ### govnozaplatka for vof-pnm figure ### # thrs_to_output = np.array([0, 3, 6, 11, 12, 13], dtype=int) # thrs_to_output_errors = np.array( # [0.03102343213692101, None, None, 0.03579796023655951, None, None, # 0.04515048524529482, None, None, None, None, 0.029713493963734, # 0.038404150314642935, 0.037970478081370565], dtype=float) # # # thrs_to_output_errors = np.array( # # [0.11679919664651671, None, None, 1.5274739635244368, None, None, # # 0.3458090603667309, None, None, None, None, 3.2285503090167533, # # 0.8344315311376733, 0.32234159212433006], dtype=float) # # thrs_to_output_errors_to_cell = s.throats_values_to_cells(thrs_to_output_errors) # # print() cells_arrays = { 'sat': sats, 'sat_av': sats_to_cells, 'sat_grad': sats_grads_to_cells, 'output_1': output_1, 'output_2': output_2, 'capillary_Ps': ca_pressures_to_cells, 'pressures': pressures_to_cells, 'velocities': velocities_to_cells, 'conductances': conductances_to_cells, 'delta_P': delta_pressures_to_cells, 'throats_idxs': idxs_to_cells} return cells_arrays def calc_delta_pressures(s): delta_pressures = [] for pores in s.ini.netgrid.throats_pores.values(): delta_pressures.append( s.ini.pnm.pressures[pores[0]] - s.ini.pnm.pressures[pores[1]]) return delta_pressures def calc_flow_rates(s, mass_rates_in, mass_rates_out): mass_rate_in = 0. vol_rate_in = 0. vol_rate_in_0 = 0. for throat in s.ini.inlet_throats: first_cell = s.ini.netgrid.throats_cells[throat][0] velocity = s.ini.throats_velocities[throat] area = s.ini.netgrid.throats_Ss[throat] density = s.ini.paramsPnm['dens_0'] sat = s.ini.equation.sats[s.ini.equation.i_curr][first_cell] mass_rate_in += velocity * area * sat * density vol_rate_in += velocity * area vol_rate_in_0 += velocity * area * sat mass_rates_in.append(mass_rate_in) mass_rate_out = 0. vol_rate_out = 0. vol_rate_out_1 = 0. for throat in s.ini.outlet_throats: last_cell = s.ini.netgrid.throats_cells[throat][-1] velocity = s.ini.throats_velocities[throat] area = s.ini.netgrid.throats_Ss[throat] density = s.ini.paramsPnm['dens_0'] sat = s.ini.equation.sats[s.ini.equation.i_curr][last_cell] mass_rate_out += velocity * area * sat * density vol_rate_out += velocity * area vol_rate_out_1 += velocity * area * (1. - sat) mass_rates_out.append(mass_rate_out) return vol_rate_in, vol_rate_out, vol_rate_in_0, vol_rate_out_1 def calc_rel_flow_rate(s): flow_ref = 0 for throat in s.ini.inlet_throats: velocity = s.ini.throats_velocities[throat] area = s.ini.netgrid.throats_Ss[throat] flow_ref += velocity * area return flow_ref def calc_rel_perms(s, rel_perms_0, rel_perms_1, ca_numbers, ca_pressures, av_sats, flow_0_ref, flow_1_ref, flow_curr): throats_volumes = s.ini.throats_volumes throats_av_sats = s.ini.equation.throats_av_sats throats_vol_fluxes = np.absolute(np.array(list(dict( (throat, float(s.ini.netgrid.throats_Ss[throat] * s.ini.throats_velocities[throat])) for throat in s.ini.netgrid.throats_Ss).values()))) av_sat = np.sum(throats_volumes * throats_av_sats) /
np.sum(throats_volumes)
numpy.sum
''' QZ alias generalized Schur decomposition (complex or real) for Python/Numpy. You need to import the qz() function of this module, check out its docstring, especially what it says about the required lapack shared library. Run this module for some quick tests of the setup. This is free but copyrighted software, distributed under the same license as Python 2.5, copyright <NAME>. If you think a different license would make (more) sense, please say so on the Numpy mailing list (see scipy.org). ''' from ctypes import cdll, c_int, c_char, POINTER import numpy as np from numpy.ctypeslib import ndpointer from numpy import mat, c_, r_, where, sqrt, newaxis from numpy.linalg import solve from numpy.matlib import diag import sys #raise( Warning('Module qz.py will be deprecated as qz decomposition as been included in scipy.') ) def setuplapack(lpname=None,lppath=None): # '''Loads the lapack shared lib and does some input checks. # # The defaults for lapackname and location are platform-specific: # Win32: 'lapack' (due to scilab's lapack.dll) # 'c:\\winnt\\system32\\' # Otherwise: 'liblapack' # '/usr/lib/' # ''' # some input checks try: from ctypes.util import find_library __lapack_path__ = find_library('lapack') lapack = cdll.LoadLibrary( __lapack_path__ ) except Exception as e: print(e) return None return lapack lapack = setuplapack() def dgges4numpy(A,B, jobvsl='V', jobvsr='V' ): '''wraps lapack function dgges, no sorting done''' rows = A.shape[0] # to determine matrix subclass Aintype = type(A) # actual inputs A = np.asfortranarray(A, dtype=np.float64) B = np.asfortranarray(B, dtype=np.float64) # seems ok to pass strings directly, but the function expects only 1 char! jobvsl = jobvsl[0] jobvsr = jobvsr[0] # dummy inputs sort = 'N' # we don't want sorting dummy = 0 # info = c_int(1) lda = c_int(rows) ldb = c_int(rows) ldvsl = c_int(rows) ldvsr = c_int(rows) plwork = 16*rows # needed again later lwork = c_int(lwork) n = c_int(rows) csdim = c_int(rows) # because we don't sort # auxiliary arrays Alphar = np.asfortranarray(np.empty(rows), dtype=np.float64) Alphai = np.asfortranarray(np.empty(rows), dtype=np.float64) Beta = np.asfortranarray(np.empty(rows), dtype=np.float64) Vsl = np.asfortranarray(np.empty([rows,rows]), dtype=np.float64) Vsr = np.asfortranarray(np.empty([rows,rows]), dtype=np.float64) Work = np.asfortranarray(np.empty(plwork), dtype=np.float64) Rwork = np.asfortranarray(np.empty(8*rows), dtype=np.float64) lapack.dgges_.argtypes = [ POINTER(c_char), # JOBVSL POINTER(c_char), # JOBVSR POINTER(c_char), # SORT # for the dummy the POINTER thing didn't work, # but plain c_int apparently does... c_int, # dummy SELCTG POINTER(c_int), # N ndpointer(dtype=np.float64, ndim=2, flags='FORTRAN'), # A POINTER(c_int), # LDA ndpointer(dtype=np.float64, ndim=2, flags='FORTRAN'), # B POINTER(c_int), # LDB POINTER(c_int), # SDIM ndpointer(dtype=np.float64, ndim=1, flags='FORTRAN'), # ALPHAr ndpointer(dtype=np.float64, ndim=1, flags='FORTRAN'), # ALPHAi ndpointer(dtype=np.float64, ndim=1, flags='FORTRAN'), # BETA ndpointer(dtype=np.float64, ndim=2, flags='FORTRAN'), # VSL POINTER(c_int), # LDVSL ndpointer(dtype=np.float64, ndim=2, flags='FORTRAN'), # VSR POINTER(c_int), # LDVSR ndpointer(dtype=np.float64, ndim=1, flags='FORTRAN'), # WORK POINTER(c_int), # LWORK # same as with SELCTG... c_int, # dummy BWORK POINTER(c_int) ] # INFO lapack.dgges_(jobvsl,jobvsr,sort,dummy,n,A,lda,B,ldb,sdim,Alphar,Alphai, Beta,Vsl,ldvsl,Vsr,ldvsr,Work,lwork,dummy,info) # preserve matrix subclass if Aintype == type(np.mat(1)): A=np.mat(A); B=np.mat(B); Vsl=np.mat(Vsl); Vsr=np.mat(Vsr) if info.value == 0: if jobvsl=='V' and jobvsr=='V': return A,B,Alphar,Alphai,Beta,Vsl,Vsr elif jobvsl=='V' and jobvsr=='N': return A,B,Alphar,Alphai,Beta,Vsl elif jobvsl=='N' and jobvsr=='V': return A,B,Alphar,Alphai,Beta,Vsr else: return A,B,Alphar,Alphai,Beta elif info.value < 0: raise ValueError('Illegal argument (' + str(abs(info.value)) + ')' ) elif info.value <= rows: raise RuntimeError('QZ iteration failed') elif info.value <= rows+3: raise RuntimeError('something other than QZ iteration failed') else: raise RuntimeError('INFO not updated by dgges, complete failure!?') def zgges4numpy(A,B, jobvsl='V', jobvsr='V'): '''Wraps lapack function zgges, no sorting done. Returns complex arrays, use real_if_close() if needed/possible. ''' rows = A.shape[0] # determine matrix subclass Aintype = type(A) # actual inputs # The COMPLEX*16 type in Fortran translates to numpy's complex128 A = np.asfortranarray(A, dtype=np.complex128) B = np.asfortranarray(B, dtype=np.complex128) # seems ok to pass strings directly, but the function expects only 1 char! jobvsl = jobvsl[0] jobvsr = jobvsr[0] # dummy inputs sort = 'N' # we don't want sorting dummy = 0 # a placeholder for what would be needed for sorting info = c_int(rows+4) # >n+3 aren't used as error codes of zgges lda = c_int(rows) ldb = c_int(rows) ldvsl = c_int(rows) ldvsr = c_int(rows) plwork = 16*rows # needed again later lwork = c_int(plwork) n = c_int(rows) sdim = c_int(0) # because we don't sort # auxiliary arrays Alpha = np.asfortranarray(np.empty(rows), dtype=np.complex128) Beta = np.asfortranarray(np.empty(rows), dtype=np.complex128) Vsl = np.asfortranarray(np.empty([rows,rows]), dtype=np.complex128) Vsr = np.asfortranarray(np.empty([rows,rows]), dtype=np.complex128) Work = np.asfortranarray(np.empty(plwork), dtype=np.complex128) Rwork = np.asfortranarray(np.empty(8*rows), dtype=np.float64) lapack.zgges_.argtypes = [ POINTER(c_char), # JOBVSL POINTER(c_char), # JOBVSR POINTER(c_char), # SORT c_int, # dummy SELCTG POINTER(c_int), # N ndpointer(dtype=np.complex128, ndim=2, flags='FORTRAN'), # A POINTER(c_int), # LDA ndpointer(dtype=np.complex128, ndim=2, flags='FORTRAN'), # B POINTER(c_int), # LDB POINTER(c_int), # SDIM ndpointer(dtype=np.complex128, ndim=1, flags='FORTRAN'), # ALPHA ndpointer(dtype=np.complex128, ndim=1, flags='FORTRAN'), # BETA ndpointer(dtype=np.complex128, ndim=2, flags='FORTRAN'), # VSL POINTER(c_int), # LDVSL ndpointer(dtype=np.complex128, ndim=2, flags='FORTRAN'), # VSR POINTER(c_int), # LDVSR ndpointer(dtype=np.complex128, ndim=1, flags='FORTRAN'), # WORK POINTER(c_int), # LWORK ndpointer(dtype=np.float64, ndim=1, flags='FORTRAN'), # RWORK c_int, # dummy BWORK POINTER(c_int) ] # INFO lapack.zgges_(jobvsl,jobvsr,sort,dummy,n,A,lda,B,ldb,sdim,Alpha, Beta,Vsl,ldvsl,Vsr,ldvsr,Work,lwork,Rwork,dummy,info) # preserve matrix subclass if Aintype == type(np.mat(1)): A=np.mat(A); B=np.mat(B); Vsl=np.mat(Vsl); Vsr=np.mat(Vsr) # use .value for ctypes safety, although probably redundant if info.value == 0: if jobvsl=='V' and jobvsr=='V': return A,B,Alpha,Beta,Vsl,Vsr elif jobvsl=='V' and jobvsr=='N': return A,B,Alpha,Beta,Vsl elif jobvsl=='N' and jobvsr=='V': return A,B,Alpha,Beta,Vsr else: return A,B,Alpha,Beta elif info.value < 0: raise ValueError('Illegal argument (' + str(abs(info.value)) + ')') elif info.value <= rows: raise RuntimeError('QZ iteration failed') elif info.value <= rows+3: raise RuntimeError('something other than QZ iteration failed') else: raise RuntimeError('INFO not updated by zgges, complete failure!?') def qz(A,B, mode='complex'): '''Equivalent to Matlab's qz function [AA,BB,Q,Z] = qz(A,B). Requires Lapack as a shared compiled library on the system (one that contains the functions dgges for real and zgges for complex use -- on Windows the one shipped with Scilab works). The underlying defaults for lapackname and lapackpath are platform-specific: Win32: 'lapack' (due to scilab's lapack.dll) 'c:\\winnt\\system32\\' Otherwise: 'liblapack' '/usr/lib/' This function should exactly match Matlab's usage, unlike octave's qz function which returns the conjugate-transpose of one of the matrices. Thus it holds that AA = Q*A*Z BB = Q*B*Z, where Q and Z are unitary (orthogonal if real). If mode is 'complex', then: returns complex-type arrays, AA and BB are upper triangular, and diag(AA)/diag(BB) are the generalized eigenvalues of (A,B). If the real qz decomposition is explicitly requested --as in Matlab: qz(A,B,'real')-- then: returns real-type arrays, AA is only block upper triangular, and calculating the eigenvalues is more complicated. Other variants like [AA,BB,Q,Z,V,W] = qz(A,B) are not implemented, i.e. no generalized eigenvectors are calculated. ''' if mode == 'real': AA,BB,dum1,dum2,dum3,VSL,VSR = dgges4numpy(A,B) return AA, BB, VSL.T, VSR elif mode == 'complex': AA,BB,dum1,dum2,VSL,VSR = zgges4numpy(A,B) return AA, BB, VSL.conj().T, VSR else: raise ValueError('bogus choice for mode') def eig2(A,B): '''Calculates generalized eigenvalues of pair (A,B). This should correspond to Matlab's lambda = eig(A,B), and also to some (the same?) scipy function. Eigenvalues will be of complex type, are unsorted, and are returned as 1d. ''' AA,BB,dum1,dum2,VSL,VSR = zgges4numpy(A,B) return np.diag(AA)/np.diag(BB) def eigwithqz(A,B): '''Does complex QZ decomp. and also returns the eigenvalues''' AA, BB, Q, Z = qz(A,B) evals = np.diag(AA)/np.diag(BB) return evals,AA,BB,Q,Z def qzswitch(i, A2, B2, Q, Z): #print i, A2, B2, Q, Z Aout = A2.copy(); Bout = B2.copy(); Qout = Q.copy(); Zout = Z.copy() ix = i-1 # from 1-based to 0-based indexing... # use all 1x1-matrices for convenient conjugate-transpose even if real: a = mat(A2[ix, ix]); d =
mat(B2[ix, ix])
numpy.mat
import os import numpy as np from keras.models import load_model from model import setup_model from utils.preprocessing import encode_with_dict, text_in_vocab from utils.losses import generator_loss, discriminator_loss from utils.sharing import load, save, share_weights from utils.args import get_args prompt = '> ' num_words = 10 num_rand = get_args().nrand vocab_len = 20 itr = 0 def format_input(encoded): ''' Generate input for the model based on a list of numbers and the vocab. ''' # The model input has a shape of (batch_size, num_words, vocab_len) and # an input of shape (batch_size, 10). # Zero pad the input. encoded += [0] * (num_words - len(encoded)) one_hot = np.zeros((num_words, vocab_len)) one_hot[np.arange(num_words), encoded] = 1 return [np.array([one_hot]), np.array([np.random.normal(size=(num_rand,))])] def get_formatted_user_input(vocab): ''' Get user input and format it for input into the model. ''' user_input = input() try: encoded = encode_with_dict(user_input.split(' '), vocab) except ValueError: raise return format_input(encoded) def possibly_train_gen(gen, dis, full, data_x, data_y, args): ''' Train the generator if it is supposed to be trained. ''' if args.train in ['all', 'gen']: print('traing the generator ...') hist = full.fit(data_x, data_y) # Check if the model to train should be toggled. if hist.history['loss'][0] < args.min_gen_loss: args.train = 'dis' elif hist.history['loss'][0] < args.max_gen_loss: args.train = 'all' # Share the new weights with the generator. share_weights(full, gen) # The full model should have the weights of the generator and the # discriminator models. for w1, w2 in zip(dis.get_weights(), full.get_layer('discriminator').get_weights()): assert(not np.any(w1 - w2)) for w1, w2 in zip(gen.get_weights(), full.get_weights()): assert(not np.any(w1 - w2)) return def possibly_train_dis(gen, dis, full, data_x, data_y, args): ''' Train the discriminator if it is supposed to be trained. The discriminator is trained on batches of only real output and only generated output as suggested on https://github.com/soumith/ganhacks. ''' if args.train in ['all', 'dis']: # Get the real batch and the generated batch using the noisy data_y. real_data_x, fake_data_x = [[], []], [[], []] real_data_y, fake_data_y = [], [] for i, item in enumerate(data_y): # Check if the data is real or generated. if item[0] - 0.5 > 0: fake_data_y.append(item) # fake_data_x.append([data_x[0][i], data_x[1][i]]) fake_data_x[0].append(data_x[0][i]) fake_data_x[1].append(data_x[1][i]) else: real_data_y.append(item) real_data_x[0].append(data_x[0][i]) real_data_x[1].append(data_x[1][i]) # real_data_x.append([data_x[0][i], data_x[1][i]]) # Convert to numpy arrays. fake_data_y = np.array(fake_data_y) real_data_y = np.array(real_data_y) fake_data_x[0] = np.array(fake_data_x[0]) fake_data_x[1] = np.array(fake_data_x[1]) real_data_x[0] = np.array(real_data_x[0]) real_data_x[1] = np.array(real_data_x[1]) print('training the discriminator ...') hist_real_data = dis.fit(real_data_x, real_data_y) hist_fake_data = dis.fit(fake_data_x, fake_data_y) # Get the average loss. loss = (hist_real_data.history['loss'][0] + hist_fake_data.history['loss'][0]) / 2 # Check if the model to train should be toggled. if loss < args.min_dis_loss: args.train = 'gen' elif loss < args.max_dis_loss: args.train = 'all' # Share the new weights with the full model. share_weights(dis, full.get_layer('discriminator')) # The full model should have the updated discriminator weights. for w1, w2 in zip(dis.get_weights(), full.get_layer('discriminator').get_weights()): assert(not np.any(w1 - w2)) return def possibly_save(gen, dis, full, args): ''' Save the models if the user wants to. ''' if args.save and itr % args.save_itr == 0: if not args.autosave: print('enter s to save: ', end='') if input() != 's': return print('saving the model ...') save(full, args, prefix='full_') save(dis, args, prefix='dis_') save(gen, args, prefix='gen_') print('model saved') return def talk(args, vocab, rev_vocab): ''' Infinitely run the loop of user and bot talking with user feedback. ''' global itr # Setup the models. gen, dis, full = load(args) if args.load else setup_model(args) # Setup the training data if it is from a file. if args.train_file is not None: # Make sure at least one model is being trained. assert(args.train != 'none') train_x, train_y = [], [] # Read the data from train_file. with open(os.path.join(args.data_folder, args.train_file), 'r') as infile: for line in infile: line = line[:-1] # Remove the newline. pos = line.find(':') train_x.append(line[:pos]) train_y.append(line[pos + 1:]) # Set each item in train_x and train_y to what is used as input. for (i, (x, y)) in enumerate(zip(train_x, train_y)): # Encode the data into word id numbers. x = encode_with_dict(x.split(' '), vocab) y = encode_with_dict(y.split(' '), vocab) # Get the data into the input format for the models. x = format_input(x) y = format_input(y) train_x[i] = x train_y[i] = y # Run the main loop. while itr < args.epochs: itr += 1 if args.train is not 'none': print('iteration:', itr) if args.train_file is not None: # Use new random numbers for the input. train_x = [[x[0], np.random.normal(size=(1, num_rand))] for x in train_x] # Get the generator predictions. pred = [gen.predict(x) for x in train_x] # Create the input for the discriminator. real_dis_input = np.concatenate([y[0] for y in train_y]) prompt_input = np.concatenate([x[0] for x in train_x] * 2) word_input = np.concatenate((
np.concatenate(pred)
numpy.concatenate
import numpy as np import random import math def rotate_scene_smplx_predefine(scene_verts, rot_angle): # rotate around z axis before cropping scene cube scene_verts_aug = np.zeros(scene_verts.shape) scene_verts_aug[:, 0] = scene_verts[:, 0] * math.cos(rot_angle) - scene_verts[:, 1] * math.sin(rot_angle) scene_verts_aug[:, 1] = scene_verts[:, 0] * math.sin(rot_angle) + scene_verts[:, 1] * math.cos(rot_angle) scene_verts_aug[:, 2] = scene_verts[:, 2] return scene_verts_aug def crop_scene_cube_smplx_predifine(scene_verts, r=2.0, with_wall_ceilling=True, random_seed=None, scene_min_x=None, scene_max_x=None, scene_min_y=None, scene_max_y=None, rotate=False): scene_center = np.array([0.0, 0.0, 0.0]) random.seed(random_seed) scene_center[0] = random.uniform(scene_min_x + r/2, scene_max_x - r/2) scene_center[1] = random.uniform(scene_min_y + r/2, scene_max_y - r/2) min_x = scene_center[0] - r/2 max_x = scene_center[0] + r/2 min_y = scene_center[1] - r/2 max_y = scene_center[1] + r/2 # cropped scene verts point cloud if not rotate: scene_verts_crop = scene_verts[np.where((scene_verts[:,0] >= min_x) & (scene_verts[:,0] <= max_x) & (scene_verts[:,1] >= min_y) & (scene_verts[:,1] <= max_y))] else: rot_angle = random.uniform(0, 2*(math.pi)) # P(x1,y1), rotate theta around Q(x0,y0) --> (x,y) # x = (x1 - x0) * cos(theta) - (y1 - y0) * sin(theta) + x0 # y = (x1 - x0) * sin(theta) + (y1 - y0) * cos(theta) + y0 x = (scene_verts[:, 0] - scene_center[0]) * math.cos(-rot_angle) - (scene_verts[:, 1] - scene_center[1]) * math.sin(-rot_angle) + scene_center[0] y = (scene_verts[:, 0] - scene_center[0]) * math.sin(-rot_angle) + (scene_verts[:, 1] - scene_center[1]) * math.cos(-rot_angle) + scene_center[1] scene_verts_crop = scene_verts[np.where((x >= min_x) & (x <= max_x) & (y >= min_y) & (y <= max_y))] scene_center[2] = np.min(scene_verts[:, 2]) + 1.0 # fix dist from origin to floor scene_verts_crop = scene_verts_crop - scene_center scene_verts_crop = scene_verts_crop[np.where(scene_verts_crop[:, 2] <= 1.0)] # remove points higher than virtual veiling scene_verts = scene_verts - scene_center if with_wall_ceilling: # add ceiling/walls to scene_verts_crop n_pts_edge = 70 grid = (max_x - min_x) / n_pts_edge ceiling_points, wall1_points, wall2_points, wall3_points, wall4_points = [], [], [], [], [] for i in range(n_pts_edge): for j in range(n_pts_edge): x = min_x + (i + 1) * grid - scene_center[0] y = min_y + (j + 1) * grid - scene_center[1] ceiling_points.append(np.array([x, y, 1.0])) # ceiling hight: 1m from scene_center(origin) for i in range(n_pts_edge): for j in range(n_pts_edge): x = min_x + (i + 1) * grid - scene_center[0] z = -1.0 + (j + 1) * grid wall1_points.append(np.array([x, min_y - scene_center[1], z])) for i in range(n_pts_edge): for j in range(n_pts_edge): x = min_x + (i + 1) * grid - scene_center[0] z = -1.0 + (j + 1) * grid wall2_points.append(np.array([x, max_y - scene_center[1], z])) for i in range(n_pts_edge): for j in range(n_pts_edge): y = min_y + (i + 1) * grid - scene_center[1] z = -1.0 + (j + 1) * grid wall3_points.append(np.array([min_x - scene_center[0], y, z])) for i in range(n_pts_edge): for j in range(n_pts_edge): y = min_y + (i + 1) * grid - scene_center[1] z = -1.0 + (j + 1) * grid wall4_points.append(np.array([max_x - scene_center[0], y, z])) ceiling_points =
np.asarray(ceiling_points)
numpy.asarray
import logging from numpy import apply_along_axis, argsort, concatenate, append, argmin from NIM.algorithms.algorithm import Algorithm, Ackley logging.basicConfig() logger = logging.getLogger('BWOA') logger.setLevel('INFO') class BlackWidowOptimizationAlgorithm(Algorithm): def __init__(self, **kwargs): super().__init__(**kwargs) self.procreate_rate = 0.6 self.cannibalism_rate = 0.44 self.mutation_rate = 0.4 def get_female_and_children(self, parent): parent = parent.reshape(2, self.dim) parent_fit = apply_along_axis(self.cost_function, 1, parent) sorted_parent_index = argsort(parent_fit)[0] female = parent[sorted_parent_index] alpha = self.Rand.rand(int(self.dim / 2), 1) ch1 = alpha * parent[0] + (1 - alpha) * parent[1] ch2 = alpha * parent[1] + (1 - alpha) * parent[0] all_pop_per_generation = concatenate((ch1, ch2, female.reshape(1, self.dim)), 0) nc = int(self.cannibalism_rate * all_pop_per_generation.shape[0]) all_pop_per_generation_fit = apply_along_axis(self.cost_function, 1, all_pop_per_generation) index_asc = argsort(-all_pop_per_generation_fit)[nc:] return all_pop_per_generation[index_asc] def procreating_and_cannibalism(self, pop1): parent_index = apply_along_axis(self.replace_same_element, 1, self.Rand.randint(0, len(pop1), size=(len(pop1), 2)), len(pop1)) parent = pop1[parent_index] parent = parent.reshape([parent.shape[0], parent.shape[1] * parent.shape[2]]) pop2 = apply_along_axis(self.get_female_and_children, 1, parent) return pop2.reshape(pop2.shape[0] * pop2.shape[1], self.dim) def get_reproduction_pop1(self, black_widow_pos, black_widow_fit): # number of reproduction nr = int(self.procreate_rate * len(black_widow_pos)) index_asc = argsort(black_widow_fit)[:nr] return black_widow_pos[index_asc], black_widow_fit[index_asc] def get_mutation_number(self, black_widow_pos): return int(self.mutation_rate * len(black_widow_pos)) def swap_in_solution(self, mutate_and_index): pop = mutate_and_index[:self.dim] pop[int(mutate_and_index[-2])], pop[int(mutate_and_index[-1])] = pop[int(mutate_and_index[-1])], pop[ int(mutate_and_index[-2])] return pop def replace_same_element(self, mutate_index, len_array): while mutate_index[0] == mutate_index[1]: mutate_index[1] = self.Rand.randint(0, len_array) return mutate_index def mutation(self, nm, pop1): mutation_pop_index = self.Rand.choice(len(pop1), nm, replace=False) mutate = pop1[mutation_pop_index] mutate_index = apply_along_axis(self.replace_same_element, 1, self.Rand.randint(0, self.dim, size=(len(mutate), 2)), self.dim) mutate_and_index =
concatenate((mutate, mutate_index), axis=1)
numpy.concatenate
import numpy as np import sys import tensorflow as tf import cv2 import time import sys from .utils import cv2_letterbox_resize, download_from_url import zipfile import os @tf.function def transform_targets_for_output(y_true, grid_y, grid_x, anchor_idxs, classes): # y_true: (N, boxes, (x1, y1, x2, y2, class, best_anchor)) N = tf.shape(y_true)[0] # y_true_out: (N, grid, grid, anchors, [x, y, w, h, obj, class]) y_true_out = tf.zeros((N, grid_y, grid_x, tf.shape(anchor_idxs)[0], 6)) anchor_idxs = tf.cast(anchor_idxs, tf.int32) indexes = tf.TensorArray(tf.int32, 1, dynamic_size=True) updates = tf.TensorArray(tf.float32, 1, dynamic_size=True) idx = 0 for i in tf.range(N): for j in tf.range(tf.shape(y_true)[1]): if tf.equal(y_true[i][j][2], 0): continue anchor_eq = tf.equal(anchor_idxs, tf.cast(y_true[i][j][5], tf.int32)) if tf.reduce_any(anchor_eq): box = y_true[i][j][0:4] box_xy = (y_true[i][j][0:2] + y_true[i][j][2:4]) / 2. anchor_idx = tf.cast(tf.where(anchor_eq), tf.int32) grid_size = tf.cast(tf.stack([grid_x, grid_y], axis=-1), tf.float32) grid_xy = tf.cast(box_xy * grid_size, tf.int32) # grid[y][x][anchor] = (tx, ty, bw, bh, obj, class) indexes = indexes.write(idx, [i, grid_xy[1], grid_xy[0], anchor_idx[0][0]]) updates = updates.write(idx, [box[0], box[1], box[2], box[3], 1, y_true[i][j][4]]) idx += 1 y_ture_out = tf.tensor_scatter_nd_update(y_true_out, indexes.stack(), updates.stack()) return y_ture_out def transform_targets(y_train, size, anchors, anchor_masks, classes, tiny=True): y_outs = [] if tiny: grid_y, grid_x = size[0] // 16, size[1] // 16 else: grid_y, grid_x = size[0] // 32, size[1] // 32 # calculate anchor index for true boxes anchors = tf.cast(anchors, tf.float32) anchor_area = anchors[..., 0] * anchors[..., 1] box_wh = y_train[..., 2:4] - y_train[..., 0:2] box_wh = tf.tile(tf.expand_dims(box_wh, -2), (1, 1, tf.shape(anchors)[0], 1)) box_area = box_wh[..., 0] * box_wh[..., 1] intersection = tf.minimum(box_wh[..., 0], anchors[..., 0]) * tf.minimum(box_wh[..., 1], anchors[..., 1]) iou = intersection / (box_area + anchor_area - intersection) anchor_idx = tf.cast(tf.argmax(iou, axis=-1), tf.float32) anchor_idx = tf.expand_dims(anchor_idx, axis=-1) y_train = tf.concat([y_train, anchor_idx], axis=-1) for anchor_idxs in anchor_masks: y_out = transform_targets_for_output(y_train, grid_y, grid_x, anchor_idxs, classes) y_outs.append(y_out) grid_x *= 2 grid_y *= 2 return tuple(y_outs) def decode_line(line, size): # Decode the line to tensor line = line.numpy().decode() line_parts = line.strip().split() imgname = line_parts[0] x_train = cv2.imread(imgname) #x_train = transform_images(x_train, size) x_train, amat = cv2_letterbox_resize(x_train, (size, size)) x_train = x_train / 255. xmins, ymins, xmaxs, ymaxs, labels = [], [], [], [], [] bbox_with_labels = line_parts[1:] for bbox_with_label in bbox_with_labels: bbox_with_label_parts = bbox_with_label.split(',') xmin = float(bbox_with_label_parts[0]) ymin = float(bbox_with_label_parts[1]) xmax = float(bbox_with_label_parts[2]) ymax = float(bbox_with_label_parts[3]) tl = np.array([xmin, ymin, 1], np.float32) br = np.array([xmax, ymax, 1], np.float32) tl = np.dot(amat, tl) br = np.dot(amat, br) xmin, ymin = tl[0], tl[1] xmax, ymax = br[0], br[1] xmins.append(xmin / size) ymins.append(ymin / size) xmaxs.append(xmax / size) ymaxs.append(ymax / size) labels.append(float(bbox_with_label_parts[4])) assert np.all(np.array(xmins) <= 1) y_train =
np.stack((xmins, ymins, xmaxs, ymaxs, labels), axis=1)
numpy.stack
""" plotem.py Take a look at the zody spectra produced from the SST bgmodel. """ import numpy as np import matplotlib.pyplot as plt def doit(theprefix, rangemax, color='k'): for i in np.arange(1, rangemax, 1): filein = theprefix + '_' + str(i) + '.txt' wavein, fluxin = np.loadtxt(filein, delimiter=',').T if i == 1 and theprefix=='C32': plt.plot(wavein, fluxin, color=color, label='C32 and C35') elif i == 1 and theprefix=='OGLE': plt.plot(wavein, fluxin, color=color, label=theprefix) else: plt.plot(wavein, fluxin, color=color) return def doit2(theprefix, rangemax): for i in np.arange(1, rangemax, 1): filein = theprefix + '_' + str(i) + '.txt' wavein, fluxin = np.loadtxt(filein, delimiter=',').T if
np.nanmax(fluxin)
numpy.nanmax
#coding:utf-8 # # A class of IIR Band Pass Filter, process twice ! # (Target response is 2nd harmonic level less than -70dB) # import sys import numpy as np from matplotlib import pyplot as plt from scipy import signal from iir1 import * from ema1 import * # Check version # Python 3.6.4 on win32 (Windows 10) # numpy 1.14.0 # matplotlib 2.1.1 # scipy 1.4.1 class Class_BPFtwice(object): def __init__(self, fc=1000, gain=1.0, Q=40.0, sampling_rate=48000, moving_average_factor=None, down_sample_factor=None ): # initalize self.sr= sampling_rate self.fc= fc # center frequency of Band Pass Filter by unit is [Hz] self.gain= gain # magnification self.Q= Q # Q factor # check Q if self.Q <= 0.0: print ('error: Q must be > 0. filter becomes flat. (Class_BPF)') # sys.exit() self.a= np.array( [ 1.0, 0.0, 0.0]) self.b= np.array( [ 1.0, 0.0, 0.0]) else: self.a, self.b = self.bpf1() #------------------------------------- # set for filtering2 # # Exponential Moving Average with Half-wave rectification, and smoothing via lpf if moving_average_factor is not None: self.maf= moving_average_factor self.ema= Class_EMA1(N=self.maf) else: self.ema= None # Down sampling to decrease temporal resolution if down_sample_factor is None: self.down_sample_factor= 1 else: self.down_sample_factor= int(down_sample_factor) # #-------------------------------------- def bpf1(self,): # primary digital filter a= np.zeros(3) b= np.zeros(3) wc= 2.0 * np.pi * self.fc / self.sr g0= 2.0 * np.tan( wc/2.0) a[0]= 4.0 + 2.0 * g0 / self.Q + g0 * g0 a[1]= -8.0 + 2.0 * g0 * g0 a[2]= 4.0 - 2.0 * g0 / self.Q + g0 * g0 b[0]= 2.0 * self.gain * g0 / self.Q b[2]= -2.0 * self.gain * g0 / self.Q b /= a[0] a /= a[0] return a,b def iir2(self,x): # calculate iir filter: x is input, y is output # y[0]= b[0] * x[0] + b[1] * x[-1] + b[2] * x[-1] # y[0]= y[0] - a[1] * y[-1] - a[2] * y[-1] y= np.zeros(len(x)) for n in range(len(x)): for i in range(len(self.b)): if n - i >= 0: y[n] += self.b[i] * x[n - i] for j in range(1, len(self.a)): if n - j >= 0: y[n] -= self.a[j] * y[n - j] return y def fone(self, xw): # calculate one point of frequecny response f= xw / self.sr yi= self.b[0] + self.b[1] * np.exp(-2j * np.pi * f) + self.b[2] * np.exp(-2j * np.pi * 2 * f) yb= self.a[0] + self.a[1] * np.exp(-2j * np.pi * f) + self.a[2] * np.exp(-2j * np.pi * 2 * f) val= yi/yb val= val * val return np.sqrt(val.real ** 2 + val.imag ** 2) def H0(self, freq_low=100, freq_high=7500, Band_num=256): # get Log scale frequecny response, from freq_low to freq_high, Band_num points amp=[] freq=[] bands=
np.zeros(Band_num+1)
numpy.zeros
#!/usr/bin/env python """ @package ion_functions.qc_functions @file ion_functions/qc_functions.py @author <NAME> @brief Module containing QC functions ported from matlab samples in DPS documents """ from ion_functions.qc.qc_extensions import stuckvalues, spikevalues, gradientvalues, ntp_to_month import time import numpy as np import numexpr as ne from scipy.interpolate import LinearNDInterpolator from ion_functions import utils from ion_functions.utils import fill_value # try to load the OOI logging module, using default Python logging module if # unavailable try: from ooi.logging import log except ImportError: import logging log = logging.getLogger('ion-functions') def is_fill(arr): return np.atleast_1d(arr)[-1] == -9999. # Not the normal fill value, it's hardcoded to the QC params def is_none(arr): return arr is None or (np.atleast_1d(arr)[-1] == None) def dataqc_globalrangetest_minmax(dat, dat_min, dat_max, strict_validation=False): ''' Python wrapper for dataqc_globalrangetest Combines the min/max arguments into list for dataqc_globalrangetest ''' if is_none(dat_min) or is_none(dat_max) or is_fill(dat_min) or is_fill(dat_max): out = np.empty(dat.shape, dtype=np.int8) out.fill(-99) return out return dataqc_globalrangetest(dat, [np.atleast_1d(dat_min)[-1], np.atleast_1d(dat_max)[-1]], strict_validation=strict_validation) def dataqc_globalrangetest(dat, datlim, strict_validation=False): """ Description: Data quality control algorithm testing if measurements fall into a user-defined valid range. Returns 1 for presumably good data and 0 for data presumed bad. Implemented by: 2010-07-28: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. 2013-05-30: <NAME>. Performance improvements by adding strict_validation flag. Usage: qcflag = dataqc_globalrangetest(dat, datlim, strict_validation) where qcflag = Boolean, 0 if value is outside range, else = 1. dat = Input dataset, any scalar or vector. Must be numeric and real. datlim = Two-element vector with the minimum and maximum values considered to be valid. strict_validation = Flag (default is False) to assert testing of input types (e.g. isreal, isnumeric) References: OOI (2012). Data Product Specification for Global Range Test. Document Control Number 1341-10004. https://alfresco.oceanobservatories.org (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-10004_Data_Product_SPEC_GLBLRNG_OOI.pdf) """ dat = np.atleast_1d(dat) datlim = np.atleast_1d(datlim) if strict_validation: if not utils.isnumeric(dat).all(): raise ValueError('\'dat\' must be numeric') if not utils.isreal(dat).all(): raise ValueError('\'dat\' must be real') if not utils.isnumeric(datlim).all(): raise ValueError('\'datlim\' must be numeric') if not utils.isreal(datlim).all(): raise ValueError('\'datlim\' must be real') if len(datlim) < 2: # Must have at least 2 elements raise ValueError('\'datlim\' must have at least 2 elements') return (datlim.min() <= dat) & (dat <= datlim.max()).astype('int8') def dataqc_localrangetest_wrapper(dat, datlim, datlimz, dims, pval_callback): if is_none(datlim) or np.all(np.atleast_1d(datlim).flatten() == -9999): out = np.empty(dat.shape, dtype=np.int8) out.fill(-99) return out if is_none(datlimz) or np.all(np.atleast_1d(datlim).flatten() == -9999): out = np.empty(dat.shape, dtype=np.int8) out.fill(-99) return out if is_none(dims): out = np.empty(dat.shape, dtype=np.int8) out.fill(-99) return out if is_none(pval_callback): out = np.empty(dat.shape, dtype=np.int8) out.fill(-99) return out z = [] for dim in dims: if dim == 'month': # Convert time vector to vector of months v = pval_callback('time') v = np.asanyarray(v, dtype=np.float) v = ntp_to_month(v) z.append(v) else: # Fetch the dimension from the callback method v = pval_callback(dim) z.append(v) if len(dims)>1: z = np.column_stack(z) else: z = z[0] datlimz = datlimz[:,0] return dataqc_localrangetest(dat, z, datlim, datlimz) def dataqc_localrangetest(dat, z, datlim, datlimz, strict_validation=False): """ Description: Data quality control algorithm testing if measurements fall into a user-defined valid range. This range is not constant but varies with measurement location. Returns 1 for presumably good data and 0 for data presumed bad. Implemented by: 2012-07-17: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. Usage: qcflag = dataqc_localrangetest(dat, z, datlim, datlimz) where qcflag = Boolean, 0 if value is outside range, else = 1. dat = input data set, a numeric real scalar or column vector. z = location of measurement dat. must have same # of rows as dat and same # of columns as datlimz datlim = two column array with the minimum (column 1) and maximum (column 2) values considered valid. datlimz = array with the locations where datlim is given. must have same # of rows as datlim and same # of columns as z. References: OOI (2012). Data Product Specification for Local Range Test. Document Control Number 1341-10005. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-10005_Data_Product_SPEC_LOCLRNG_OOI.pdf) """ if strict_validation: # check if dat and datlim are matrices if not utils.isvector(dat): raise ValueError('\'dat\' must be a matrix') if not utils.ismatrix(datlim): raise ValueError('\'datlim\' must be a matrix') # check if all inputs are numeric and real for k, arg in {'dat': dat, 'z': z, 'datlim': datlim, 'datlimz': datlimz}.iteritems(): if not utils.isnumeric(arg).all(): raise ValueError('\'{0}\' must be numeric'.format(k)) if not utils.isreal(arg).all(): raise ValueError('\'{0}\' must be real'.format(k)) if len(datlim.shape) == 3 and datlim.shape[0] == 1: datlim = datlim.reshape(datlim.shape[1:]) if len(datlimz.shape) == 3 and datlimz.shape[0] == 1: datlimz = datlimz.reshape(datlimz.shape[1:]) # test size and shape of the input arrays datlimz and datlim, setting test # variables. array_size = datlimz.shape if len(array_size) == 1: numlim = array_size[0] ndim = 1 else: numlim = array_size[0] ndim = array_size[1] array_size = datlim.shape tmp1 = array_size[0] tmp2 = array_size[1] if tmp1 != numlim: raise ValueError('\'datlim\' and \'datlimz\' must ' 'have the same number of rows.') if tmp2 != 2: raise ValueError('\'datlim\' must be structured as 2-D array ' 'with exactly 2 columns and 1 through N rows.') # test the size and shape of the z input array array_size = z.shape if len(array_size) == 1: num = array_size[0] tmp2 = 1 else: num = array_size[0] tmp2 = array_size[1] if tmp2 != ndim: raise ValueError('\'z\' must have the same number of columns ' 'as \'datlimz\'.') if num != dat.size: raise ValueError('Len of \'dat\' must match number of ' 'rows in \'z\'') # test datlim, values in column 2 must be greater than those in column 1 if not all(datlim[:, 1] > datlim[:, 0]): raise ValueError('Second column values of \'datlim\' should be ' 'greater than first column values.') # calculate the upper and lower limits for the data set if ndim == 1: # determine the lower limits using linear interpolation lim1 = np.interp(z, datlimz, datlim[:, 0], left=np.nan, right=np.nan) # determine the upper limits using linear interpolation lim2 = np.interp(z, datlimz, datlim[:, 1], left=np.nan, right=np.nan) else: # Compute Delaunay Triangulation and use linear interpolation to # determine the N-dimensional lower limits F = LinearNDInterpolator(datlimz, datlim[:, 0].reshape(numlim, 1)) lim1 = F(z).reshape(dat.size) # Compute Delaunay Triangulation and use linear interpolation to # determine the N-dimensional upper limits F = LinearNDInterpolator(datlimz, datlim[:, 1].reshape(numlim, 1)) lim2 = F(z).reshape(dat.size) # replace NaNs from above interpolations ff = (np.isnan(lim1)) | (np.isnan(lim2)) lim1[ff] = np.max(datlim[:, 1]) lim2[ff] = np.min(datlim[:, 0]) # compute the qcflags qcflag = (dat >= lim1) & (dat <= lim2) return qcflag.astype('int8') def dataqc_spiketest_wrapper(dat, acc, N, L, strict_validation=False): if is_none(acc) or is_fill(acc) or is_none(N) or is_fill(N) or is_none(L) or is_fill(L): out = np.empty(dat.shape, dtype=np.int8) out.fill(-99) return out return dataqc_spiketest(dat, np.atleast_1d(acc)[-1], np.atleast_1d(N)[-1], np.atleast_1d(L)[-1], strict_validation=strict_validation) def dataqc_spiketest(dat, acc, N=5, L=5, strict_validation=False): """ Description: Data quality control algorithm testing a time series for spikes. Returns 1 for presumably good data and 0 for data presumed bad. The time series is divided into windows of len L (an odd integer number). Then, window by window, each value is compared to its (L-1) neighboring values: a range R of these (L-1) values is computed (max. minus min.), and replaced with the measurement accuracy ACC if ACC>R. A value is presumed to be good, i.e. no spike, if it deviates from the mean of the (L-1) peers by less than a multiple of the range, N*max(R,ACC). Further than (L-1)/2 values from the start or end points, the peer values are symmetrically before and after the test value. Within that range of the start and end, the peers are the first/last L values (without the test value itself). The purpose of ACC is to restrict spike detection to deviations exceeding a minimum threshold value (N*ACC) even if the data have little variability. Use ACC=0 to disable this behavior. Implemented by: 2012-07-28: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. 2013-05-30: <NAME>. Performance optimizations. Usage: qcflag = dataqc_spiketest(dat, acc, N, L) where qcflag = Boolean, 0 if value is outside range, else = 1. dat = input data set, a numeric, real vector. acc = Accuracy of any input measurement. N = (optional, defaults to 5) Range multiplier, cf. above L = (optional, defaults to 5) Window len, cf. above References: OOI (2012). Data Product Specification for Spike Test. Document Control Number 1341-10006. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-10006_Data_Product_SPEC_SPKETST_OOI.pdf) """ dat = np.atleast_1d(dat) if strict_validation: if not utils.isnumeric(dat).all(): raise ValueError('\'dat\' must be numeric') if not utils.isreal(dat).all(): raise ValueError('\'dat\' must be real') if not utils.isvector(dat): raise ValueError('\'dat\' must be a vector') for k, arg in {'acc': acc, 'N': N, 'L': L}.iteritems(): if not utils.isnumeric(arg).all(): raise ValueError('\'{0}\' must be numeric'.format(k)) if not utils.isreal(arg).all(): raise ValueError('\'{0}\' must be real'.format(k)) dat = np.asanyarray(dat, dtype=np.float) out = spikevalues(dat, L, N, acc) return out def dataqc_polytrendtest_wrapper(dat, t, ord_n, nstd, strict_validation=False): if is_none(ord_n) or is_fill(ord_n) or is_none(nstd) or is_fill(ord_n): out = np.empty(dat.shape, dtype=np.int8) out.fill(-99) return out return dataqc_polytrendtest(dat, t, np.atleast_1d(ord_n)[-1], np.atleast_1d(nstd)[-1], strict_validation=strict_validation) def dataqc_polytrendtest(dat, t, ord_n=1, nstd=3, strict_validation=False): """ Description: Data quality control algorithm testing if measurements contain a significant portion of a polynomial. Returns 1 if this is not the case, else 0. The purpose of this test is to check if a significant fraction of the variability in a time series can be explained by a drift, possibly interpreted as a sensor drift. This drift is assumed to be a polynomial of order ORD. Use ORD=1 to consider a linear drift The time series dat is passed to MatLab's POLYFIT routine to obtain a polynomial fit PP to dat, and the difference dat-PP is compared to the original dat. If the standard deviation of (dat-PP) is less than that of dat by a factor of NSTD, the time series is assumed to contain a significant trend (output will be 0), else not (output will be 1). Implemented by: 2012-10-29: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. 2013-05-30: <NAME>. Performance optimizations. Usage: qcflag = dataqc_polytrendtest(dat, t, ord_n, nstd, strict_validation) where qcflag = Boolean, 0 a trend is detected, 1 elsewhere. dat = Input dataset, a numeric real vector. t = time record associated with dat ord_n (optional, defaults to 1) = Polynomial order. nstd (optional, defaults to 3) = Factor by how much the standard deviation must be reduced before qcflag switches from 1 to 0 strict_validation (optional, defaults to False) = Flag asserting testing of inputs. References: OOI (2012). Data Product Specification for Trend Test. Document Control Number 1341-10007. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-10007_Data_Product_SPEC_TRNDTST_OOI.pdf) """ dat = np.atleast_1d(dat) t = np.atleast_1d(t) if strict_validation: for k, arg in {'dat': dat, 't': t, 'ord_n': ord_n, 'nstd': nstd}.iteritems(): if not utils.isnumeric(arg).all(): raise ValueError('\'{0}\' must be numeric'.format(k)) if not utils.isreal(arg).all(): raise ValueError('\'{0}\' must be real'.format(k)) for k, arg in {'dat': dat, 't': t}.iteritems(): if not utils.isvector(arg): raise ValueError('\'{0}\' must be a vector'.format(k)) for k, arg in {'ord_n': ord_n, 'nstd': nstd}.iteritems(): if not utils.isscalar(arg): raise ValueError('\'{0}\' must be a scalar'.format(k)) ord_n = int(round(abs(ord_n))) nstd = int(abs(nstd)) ll = len(dat) # Not needed because time is incorporated as 't' # t = range(ll) pp = np.polyfit(t, dat, ord_n) datpp = np.polyval(pp, t) # test for a trend if np.atleast_1d((np.std(dat - datpp) * nstd) < np.std(dat)).all(): trndtst = 0 else: trndtst = 1 # insure output size equals input, even though test yields a single value. qcflag = np.ones(dat.shape).astype('int8') * trndtst return qcflag def dataqc_stuckvaluetest_wrapper(x, reso, num, strict_validation=False): if is_none(reso) or is_fill(reso) or is_none(num) or is_fill(num): out = np.empty(x.shape, np.int8) out.fill(-99) return out return dataqc_stuckvaluetest(x, np.atleast_1d(reso)[-1], np.atleast_1d(num)[-1], strict_validation=strict_validation) def dataqc_stuckvaluetest(x, reso, num=10, strict_validation=False): """ Description: Data quality control algorithm testing a time series for "stuck values", i.e. repeated occurences of one value. Returns 1 for presumably good data and 0 for data presumed bad. Implemented by: 2012-10-29: DPS authored by <NAME>. Example code provided for Matlab. 2013-04-06: <NAME>. Initial python implementation. Usage: qcflag = =dataqc_stuckvaluetest(x, RESO, NUM); where qcflag = Boolean output: 0 where stuck values are found, 1 elsewhere. x = Input time series (vector, numeric). reso = Resolution; repeat values less than reso apart will be considered "stuck values". num = Minimum number of successive values within reso of each other that will trigger the "stuck value". num is optional and defaults to 10 if omitted or empty. References: OOI (2012). Data Product Specification for Stuck Value Test. Document Control Number 1341-10008. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-10008_Data_Product_SPEC_STUCKVL_OOI.pdf) """ dat = np.atleast_1d(x) if strict_validation: if not utils.isnumeric(dat).all(): raise ValueError('\'x\' must be numeric') if not utils.isvector(dat): raise ValueError('\'x\' must be a vector') if not utils.isreal(dat).all(): raise ValueError('\'x\' must be real') for k, arg in {'reso': reso, 'num': num}.iteritems(): if not utils.isnumeric(arg).all(): raise ValueError('\'{0}\' must be numeric'.format(k)) if not utils.isscalar(arg): raise ValueError('\'{0}\' must be a scalar'.format(k)) if not utils.isreal(arg).all(): raise ValueError('\'{0}\' must be real'.format(k)) num = np.abs(num) dat = np.asanyarray(dat, dtype=np.float) ll = len(x) if ll < num: # Warn - 'num' is greater than len(x), returning zeros out = np.zeros(dat.size, dtype='int8') else: out = stuckvalues(dat, reso, num) return out def dataqc_gradienttest_wrapper(dat, x, ddatdx, mindx, startdat, toldat, strict_validation=False): if is_none(ddatdx) or is_fill(ddatdx) or is_none(mindx) or is_fill(mindx) or is_none(startdat) or is_fill(startdat) or is_none(toldat) or is_fill(toldat): out = np.empty(dat.shape, dtype=np.int8) out.fill(-99) return out outqc = dataqc_gradienttest(dat, x, [-np.atleast_1d(ddatdx)[-1], np.atleast_1d(ddatdx)[-1]], np.atleast_1d(mindx)[-1], np.atleast_1d(startdat)[-1],
np.atleast_1d(toldat)
numpy.atleast_1d
import GroupLasso2 import GroupLasso_ISTA import numpy as np #import numpy import matplotlib.pyplot as plt from numpy import linalg as LA #A = np.array([[-2.4,5.2,-1.0,-4.0,3.1,1.0,6.0],[0.33,-0.78,3.0,0.0,-1.4,6.0,1.0],[4.6,1.08,-11.0,1.0,-5.3,4.0,1.0]]) #rows = 4 #cols = 3 A = 100*np.random.rand(3,7) print(
np.shape(A)
numpy.shape