prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
#!/usr/bin/env python3 -u
# coding: utf-8
# copyright: sktime developers, BSD-3-Clause License (see LICENSE file)
__author__ = "<NAME>"
import numpy as np
import pandas as pd
import pytest
from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.tests import TEST_OOS_FHS
from sktime.forecasting.tests import TEST_SPS
from sktime.forecasting.tests import TEST_WINDOW_LENGTHS
from sktime.utils.validation.forecasting import check_fh
n_timepoints = 30
n_train = 20
s = pd.Series(np.arange(n_timepoints))
y_train = s.iloc[:n_train]
y_test = s.iloc[n_train:]
@pytest.mark.parametrize("fh", TEST_OOS_FHS)
def test_strategy_last(fh):
f = NaiveForecaster(strategy="last")
f.fit(y_train)
y_pred = f.predict(fh)
expected = np.repeat(y_train.iloc[-1], len(f.fh))
np.testing.assert_array_equal(y_pred, expected)
@pytest.mark.parametrize("fh", TEST_OOS_FHS)
@pytest.mark.parametrize("window_length", TEST_WINDOW_LENGTHS)
def test_strategy_mean(fh, window_length):
f = NaiveForecaster(strategy="mean", window_length=window_length)
f.fit(y_train)
y_pred = f.predict(fh)
if window_length is None:
window_length = len(y_train)
expected = np.repeat(y_train.iloc[-window_length:].mean(), len(f.fh))
| np.testing.assert_array_equal(y_pred, expected) | numpy.testing.assert_array_equal |
"""Test triarray.matrix."""
import numpy as np
import pytest
import triarray as tri
def check_getitem_same(mat1, mat2, index):
"""Check indexing returns the same results between two matrix objects."""
assert np.array_equal(mat1[index], mat2[index])
@pytest.fixture()
def trimatrix(indices, upper, diag_val):
"""TriMatrix that should correspond to the index_matrix fixture."""
return tri.TriMatrix(indices, upper=upper, diag_val=diag_val)
def test_attrs(n, indices, trimatrix, upper, diag_val):
"""Test basic attributes."""
assert trimatrix.size == n
assert trimatrix.upper == upper
assert trimatrix.diag_val == diag_val
# Check array uses same memory
# Not sure what trickery might happen with Numba but I think comparing the
# memoryview objects in the data attribute should work fine
assert indices.data == trimatrix.array.data
def test_invalid_array_size():
"""Test constructor with invalid array size."""
with pytest.raises(ValueError):
tri.TriMatrix(np.arange(11))
def test_index_conversion(trimatrix, index_matrix):
for row in range(trimatrix.size):
for col in range(trimatrix.size):
if row == col:
# Can't get index along diagonal
with pytest.raises(ValueError):
trimatrix.flat_index(row, col)
else:
idx = trimatrix.flat_index(row, col)
assert trimatrix.array[idx] == index_matrix[row, col]
assert trimatrix.flat_index(row, col) == idx
def test_to_array(trimatrix, index_matrix):
"""Test conversion to array using method and various indices."""
assert np.array_equal(trimatrix.to_array(), index_matrix)
assert np.array_equal(trimatrix[()], index_matrix)
assert np.array_equal(trimatrix[:], index_matrix)
assert np.array_equal(trimatrix[:, :], index_matrix)
def test_getitem_single(trimatrix, index_matrix, diag_val):
"""Test getting a single element from the matrix."""
for row in range(trimatrix.size):
for col in range(trimatrix.size):
assert trimatrix[row, col] == index_matrix[row, col]
assert trimatrix.get_item(row, col) == index_matrix[row, col]
def test_get_row_single(trimatrix, index_matrix):
"""Test various methods of getting single rows."""
out = np.zeros(trimatrix.size, dtype=index_matrix.dtype)
for row in range(trimatrix.size):
row_vals = index_matrix[row]
assert np.array_equal(trimatrix[row], row_vals)
assert np.array_equal(trimatrix[row, :], row_vals)
assert np.array_equal(trimatrix[:, row], row_vals)
assert np.array_equal(trimatrix.get_row(row), row_vals)
trimatrix.get_row(row, out=out)
assert np.array_equal(out, row_vals)
def test_get_row_array(n, trimatrix, index_matrix):
"""Test getting many rows by indexing with single integer array."""
def check_rows(rows):
check_getitem_same(trimatrix, index_matrix, rows)
check_getitem_same(trimatrix, index_matrix, (rows, slice(None)))
check_getitem_same(trimatrix, index_matrix, (slice(None), rows))
# 1D array - every 10th row
step = int(np.ceil(n / 10))
rows = | np.arange(0, n, step) | numpy.arange |
from ast import cmpop
import os
import numpy as np
import matplotlib.pyplot as plt
import imageio
from matplotlib.colors import Normalize
import ipywidgets as ipw
from mpl_toolkits.axes_grid1 import make_axes_locatable
from scipy.interpolate import splev
from .. import splineutils
out = ipw.Output()
def show_geometry_props(data, res, size=(16, 9), titles=["Length", "Area", "Circularity"]):
"""
Display length, area and circularity information for time-lapse.
Parameters
----------
data: data object
created from dataset.Data
res: res object
created from results.Results
size: tuple
image size
titles: list
titles for each plot
Returns
-------
fig: matplotlib figure
ax: matplotlib axis
"""
length = np.zeros((data.K,))
area = np.zeros((data.K,))
for k in range(data.K):
length[k] = splineutils.spline_contour_length(res.spline[k])
area[k] = splineutils.spline_area(res.spline[k])
fig, ax = plt.subplots(1, 3, figsize=size)
ax[0].plot(length)
ax[0].set_title(titles[0])
ax[1].plot(area)
ax[1].set_title(titles[1])
ax[2].plot(length ** 2 / area / 4 / np.pi)
ax[2].set_title(titles[2])
fig.tight_layout()
return fig, ax
def show_geometry(data, res, size=(16, 9), prop='length', title=None):
"""
Display length, area and circularity information for time-lapse.
Parameters
----------
data: data object
created from dataset.Data
res: res object
created from results.Results
size: tuple
image size
prop: str
property to display
title: str
title for plot
Returns
-------
fig: matplotlib figure
ax: matplotlib axis
"""
length = | np.zeros((data.K,)) | numpy.zeros |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import torch
from torch import nn
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dtype = torch.cuda.FloatTensor
from torch.autograd import Variable
import torch.nn.functional as F
from torch.optim.lr_scheduler import StepLR,ReduceLROnPlateau
import torch.multiprocessing as multiprocessing
from torch.multiprocessing import Pool
# from multiprocessing import Pool
import traceback
import numpy as np
import warnings
with warnings.catch_warnings():
warnings.simplefilter('ignore')
import h5py
import time,sys,os,glob
from datetime import datetime
try:
# Python 2.x
from itertools import imap
except ImportError:
# Python 3.x
imap=map
from scipy import constants
speedoflight = constants.c / 1000.0
import Payne
from ..utils.pullspectra import pullspectra
from ..utils import optim
class Net(object):
def __init__(self, NNpath):
self.readNN(nnpath=NNpath)
def readNN(self,nnpath=''):
th5 = h5py.File(nnpath,'r')
self.w_array_0 = np.array(th5['w_array_0'])
self.w_array_1 = np.array(th5['w_array_1'])
self.w_array_2 = np.array(th5['w_array_2'])
self.b_array_0 = np.array(th5['b_array_0'])
self.b_array_1 = np.array(th5['b_array_1'])
self.b_array_2 = np.array(th5['b_array_2'])
self.xmin = np.array(th5['x_min'])
self.xmax = np.array(th5['x_max'])
self.wavelength = np.array(th5['wavelength'])
th5.close()
self.resolution = 100000
def leaky_relu(self,z):
'''
This is the activation function used by default in all our neural networks.
'''
return z*(z > 0) + 0.01*z*(z < 0)
def encode(self,x):
x_np = np.array(x)
x_scaled = (x_np-self.xmin)/(self.xmax-self.xmin) - 0.5
return x_scaled
def eval(self,x):
x_i = self.encode(x)
inside = | np.einsum('ij,j->i', self.w_array_0, x_i) | numpy.einsum |
'''
------------------------------------------------------------------------
Functions for generating demographic objects necessary for the OG-USA
model
This module defines the following function(s):
get_fert()
get_mort()
pop_rebin()
get_imm_resid()
immsolve()
get_pop_objs()
------------------------------------------------------------------------
'''
import os
import pickle
import numpy as np
import pandas as pd
import scipy.optimize as opt
import scipy.interpolate as si
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import parameter_plots as pp
# create output directory for figures
CUR_PATH = os.path.split(os.path.abspath(__file__))[0]
OUTPUT_DIR = os.path.join(CUR_PATH, 'OUTPUT', 'Demographics')
if os.access(OUTPUT_DIR, os.F_OK) is False:
os.makedirs(OUTPUT_DIR)
'''
------------------------------------------------------------------------
Define functions
------------------------------------------------------------------------
'''
def get_true_demog_data(min_age, max_age):
'''
Return the true demographic data for a country.
Args:
min_age (int): age in years at which agents are born, >= 0
max_age (int): age in years at which agents die with certainty,
>= 4
Returns:
fert_data (Numpy array): fertility rates for each model period of life
mort_data (Numpy array): mortality rates for each model period of life
imm_data (Numpy array): immigration rates for each model period of life
pop_data (Numpy array): population for each model period of life
'''
# Filepaths
fert_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'fert.p')
mort_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'mort.p')
pop_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'pop.p')
imm_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'imm.p')
# Load data
fert_data = pickle.load(open(fert_filepath, 'rb'))
mort_data = pickle.load(open(mort_filepath, 'rb'))
pop_data = pickle.load(open(pop_filepath, 'rb'))
imm_data = pickle.load(open(imm_filepath, 'rb'))
# Take most recent population
pop_2014 = pop_data[2014][max(min_age, 0): min(max_age + 1, len(pop_data[2014]))]
pop_2015 = pop_data[2015][max(min_age, 0): min(max_age + 1, len(pop_data[2015]))]
# Take immigration as average over last 3 years
drop_immyears = sorted(imm_data.columns)[:- 3]
imm_data = imm_data.drop(drop_immyears, axis=1)
imm_data = imm_data.mean(axis=1)
return pop_2014, pop_2015, fert_data[2014], mort_data[2014], imm_data
def select_fert_data(fert, set_zeroes=False):
new_fert = fert[fert['AgeDef'] == 'ARDY']
new_fert = new_fert[new_fert['Collection'] == 'HFD']
new_fert = new_fert[(new_fert['RefCode'] == 'JPN_11')]
new_fert.drop(['AgeDef', 'Collection', 'RefCode'], axis=1, inplace=True)
new_fert.columns = ['Year', 'Age', 'Values']
if set_zeroes:
new_fert['Values'][new_fert['Age'] == 14] = 0
new_fert['Values'][new_fert['Age'] == 15] = 0
new_fert['Values'][new_fert['Age'] == 49] = 0
new_fert['Values'][new_fert['Age'] == 50] = 0
return new_fert.astype(float)
# a = get_fert(100, 0, 99, 'jpn', 'dynamic_partial')
def get_fert(totpers, min_age, max_age, graph=False, demog_files=[False, False, False]):
'''
Generate a vector of fertility rates by model period
age that corresponds to the fertility rate data by age in years.
Args:
totpers (int): total number of agent life periods (E+S), >= 3
min_age (int): age in years at which agents are born, >= 0
max_age (int): age in years at which agents die with certainty,
>= 4
graph (bool): =True if want graphical output
demog_files (Pandas dataframe): alternate demographic forecasts
Returns:
fert_rates (Numpy array): fertility rates for each model period of life
'''
fert_all, mort_all, imm_all = demog_files
# Get data
curr_pop, _, curr_fert, _, _ = get_true_demog_data(min_age, max_age)
# Birth ages
birth_ages = | np.arange(14, 51) | numpy.arange |
from engine.steps.IStep import IStep
from keras.models import load_model
from keras.preprocessing.image import img_to_array
#from sklearn.preprocessing import LabelBinarizer
import numpy as np
import time
import cv2
from imutils.video import VideoStream
import imutils
class step_detect(IStep):
""" detect driving direction """
def __init__(self, output_channel, name=None ):
super().__init__(self, output_channel, name)
def IRun(self):
# load the trained convolutional neural network and the label binarizer
print("[INFO] loading network...")
self.model = self.output_channel['model']
self.labels = self.output_channel['labels']
self.image_size = self.output_channel['image_size']
#self.resolution = self.output_channel['resolution']
camera = self.output_channel['camera']
self.detect( model=self.model, lb=self.labels, resize=self.image_size, camera=camera )
def IParseConfig( self, config_json ):
pass
def IDispose( self ):
pass
@staticmethod
def detect(model, lb, resize, camera ):
print( "[I] start detecting...")
#camera.start()
i=1
while True:
t0 = time.time()
img = camera.read()
#img = imutils.resize(img, width=w, height=h)
t1 = time.time()
print( "[I] capture image " + str(i)+': ' + str(t1-t0) )
image = cv2.resize(img, resize )
image = image.astype("float") / 255.0
image = img_to_array(image)
image = | np.expand_dims(image, axis=0) | numpy.expand_dims |
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import os
import sys
import subprocess
import csv
import scipy
import scipy.stats
import aifc
import read_aif
data_folder = sys.argv[1]
N_subjects = 21
result_folder = sys.argv[2]
if not os.path.exists(result_folder):
os.mkdir(result_folder)
#calculate and read behavioural results into behaviouraldict:
#{'S01': {'snareCue_times': [46.28689342,...], ...}, 'S02': {...} }
behaviouraldict = {}
for i in range(1, N_subjects+1):
# load the results into a dictionary
try:
with np.load(os.path.join(result_folder,'S%02d' % i,
'behavioural_results.npz'), allow_pickle=True) as behave_file:
behaviouraldict['S%02d' % i] = dict(behave_file)
except:
print('Please run read_aif.py for every subjects first.')
###1. plot performance vs musical background:
#read subject background (LQ and music qualification)
#background is a dict {"N_subjects":[LQ, Quali, Level, years]}
background = {}
with open(os.path.join(data_folder,'additionalSubjectInfo.csv'),'r') as infile:
reader = csv.DictReader(infile, fieldnames=None, delimiter=';')
for row in reader:
key = "S%02d" % int(row['Subjectnr']) #same format as behaviouraldict
value = [int(row['LQ']),int(row['MusicQualification']),
int(row['MusicianshipLevel']),int(row['TrainingYears'])]
background[key] = value
raw_musicscores = np.array([v for k,v in sorted(background.items())])
z_musicscores = (raw_musicscores - np.mean(raw_musicscores,0)
)/raw_musicscores.std(0)
musicscore = z_musicscores[:,1:].mean(1) # do not include the LQ
snare_abs_performance = np.zeros(N_subjects)
snare_mean_performance = np.zeros(N_subjects)
snare_se_performance = np.zeros(N_subjects)
wb_abs_performance = np.zeros(N_subjects)
wb_mean_performance = np.zeros(N_subjects)
wb_se_performance = np.zeros(N_subjects)
snare_rel_performance = np.zeros(N_subjects)
wb_rel_performance = np.zeros(N_subjects)
for k,v in sorted(behaviouraldict.items()):
i = int(k[1:])-1 #'S01'=> entry 0
snaredev = v['snare_deviation']
snaredev = snaredev[np.isfinite(snaredev)]
wbdev = v['wdBlk_deviation']
wbdev = wbdev[np.isfinite(wbdev)]
snare_abs_performance[i] = np.abs(snaredev).mean()
snare_mean_performance[i] = snaredev.mean()
snare_se_performance[i] = snaredev.std()/np.sqrt(len(snare_mean_performance))
wb_abs_performance[i] = np.abs(wbdev).mean()
wb_mean_performance[i] = wbdev.mean()
wb_se_performance[i] = wbdev.std()/np.sqrt(len(wb_mean_performance))
snare_rel_performance[i] = np.std(snaredev)
wb_rel_performance[i] = np.std(wbdev)
snare_abs_expregress = scipy.stats.linregress(
musicscore[0:N_subjects],
np.log(snare_abs_performance))
snare_abs_rss = np.sum((np.log(snare_abs_performance) -
(snare_abs_expregress[1] +
musicscore[0:N_subjects]*snare_abs_expregress[0]))**2)
snare_abs_tss = np.sum(( | np.log(snare_abs_performance) | numpy.log |
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 17 13:22:52 2015
@author: mittelberger
"""
import cv2
import numpy as np
import os
import re
import logging
from multiprocessing import Pool
#import matplotlib.pyplot as plt
import time
import warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
from .maptools import tifffile
except:
from maptools import tifffile
import scipy.optimize
try:
from maptools import autotune as at
except:
from .maptools import autotune as at
from ElectronCounting import c_electron_counting
#######################################################################################################################
#######################################################################################################################
#######################################################################################################################
dirpath = '/home/mittelberger2/Documents/reconstructions/low-dose-reconstruction/raw_data/map_2016_09_05_09_44'
imsize = 12
graphene_threshold = 0.028
light_threshold = -1
heavy_threshold = 0.043
dirt_border = 50
minimum_graphene_area = 0.3
minimum_number_peaks = 8
maximum_number_peaks = 12
only_process_this_number_of_images = -1 # -1 all
only_process_images_of_shape = None # None or tuple
remove_left_edge_number_pixels = -1 # -1 nothing to remove
save_fft = True
# Add 4 digit numbers to beginning of filenames
rename_images = False
# Should electron counting be done
calculate_actual_counts = True
# Should we also save electron counted images when there are no peaks found
always_save_images = False
# parameters for electron counting
baseline = 0.0
countlevel = 0.085
peakwidth = 0.212
# only integrate electron signal and do not convert to counts
only_integrate = False
# Pattern that has to match the filename in order for the file
# to be included into the processing
filename_match_pattern = '\d{4}'
#######################################################################################################################
#######################################################################################################################
#######################################################################################################################
def ellipse(polar_angle, a, b, rotation):
"""
Returns the radius of a point lying on an ellipse with the given parameters.
"""
return a*b/np.sqrt((b*np.cos(polar_angle-rotation))**2+(a*np.sin(polar_angle-rotation))**2)
def fit_ellipse(angles, radii):
if len(angles) != len(radii):
raise ValueError('The input sequences have to have the same lenght!.')
if len(angles) < 3:
logging.warn('Can only fit a circle and not an ellipse to a set of less than 3 points.')
return (np.mean(radii), np.mean(radii), 0.)
try:
popt, pcov = scipy.optimize.curve_fit(ellipse, angles, radii, p0=(np.mean(radii), np.mean(radii), 0.0))
except:
logging.warn('Fit of the ellipse faied. Using a circle as best approximation of the data.')
return (np.mean(radii), np.mean(radii), 0.)
else:
popt[2] %= np.pi
return tuple(popt)
def rotation_radius(Peak, find_distortions=True):
"""
Finds the rotation of the graphene lattice in a frame with repect to the x-axis
Parameters
-----------
image : array-like
Image data as array
imsize : float
Size of the input image in nm
Returns
--------
angle : float
Angle (in rad) between x-axis and the first reflection in counter-clockwise direction
"""
try:
peaks_first, peaks_second = Peak.find_peaks(half_line_thickness=2, position_tolerance = 20,
integration_radius = 1, second_order=True)
except:
raise
else:
#Calculate angles to x-axis and radius of reflections
angles = []
radii = []
#center = np.array(np.shape(image))/2
center = np.array(Peak.center)
for peak in peaks_first:
if not (peak == 0).all():
peak = peak[0:2]-center
angles.append(at.positive_angle(np.arctan2(-peak[0], peak[1])))
radii.append(np.sqrt(np.sum(peak**2)))
# sum_rotation = 0
# for angle in angles:
## while angle > np.pi/3.0:
## angle -= np.pi/3.0
# sum_rotation += angle%(np.pi/3)
#angles2 = np.array(angles)%np.pi/3
angles2 = np.array(angles) * 6
cos_angles = np.cos(angles2)
sin_angles = np.sin(angles2)
mean_angle = at.positive_angle(np.arctan2(np.mean(sin_angles), np.mean(cos_angles))) / 6
#mean_angle = angles[0]
if find_distortions:
#sum_rotation/float(len(angles))
return (mean_angle, np.mean(radii), np.count_nonzero(peaks_first[:,-1]) +
np.count_nonzero(peaks_second[:,-1]), np.sum(peaks_first[:,-1]) +
np.sum(peaks_second[:,-1])) + fit_ellipse(angles, radii)
else:
return (mean_angle, np.mean(radii), np.count_nonzero(peaks_first[:,-1]) +
np.count_nonzero(peaks_second[:,-1]), np.sum(peaks_first[:,-1])+np.sum(peaks_second[:,-1]))
def calculate_counts(image, threshold=1e-9):
"""
Returns the divisor to translate float values in "image" to actual counts.
"""
#set all values <0 to 0
image[image<0] = 0.0
#flatten and sort image by pixel values
sort_im = np.sort(np.ravel(image))
#find "steps" in intensity
differences = sort_im[1:] - sort_im[0:-1]
steps = differences[differences>threshold]
#int_steps = []
min_step = np.amin(steps)
int_steps = steps[steps<1.5*min_step]
# for i in range(len(steps)):
# if len(int_steps) > 2:
# mean_step = np.mean(int_steps)
# else:
# mean_step = 0.0
# if mean_step == 0.0 or (steps[i] < mean_step*1.5 and steps[i] > 0.5*mean_step):
# int_steps.append(steps[i])
# int_steps = []
# for i in range(1, len(sort_im)):
# difference = sort_im[i] - sort_im[i-1]
# #only append values if they are "one step" (i.e. one count more)
# if difference > 1e-9:
# if len(int_steps) > 2:
# mean_step = np.mean(int_steps)
# else:
# mean_step = 0.0
# if mean_step == 0.0 or (difference < mean_step*1.5 and difference > 0.5*mean_step):
# int_steps.append(difference)
return (np.mean(int_steps), np.std(int_steps))
def counts(path):
im = cv2.imread(path, -1)
return calculate_counts(im)
def create_mask(Peak, graphene_threshold, light_threshold, heavy_threshold, dirt_border=0):
pixelsize = imsize/Peak.shape[0]
if graphene_threshold > 0:
mask = Peak.dirt_detector(dirt_threshold=graphene_threshold, median_blur_diam=0.6/pixelsize, gaussian_blur_radius=0.03/pixelsize)
if dirt_border > 0:
mask = cv2.erode(mask, | np.ones((dirt_border, dirt_border)) | numpy.ones |
"""Test the refinement routines in RBFOpt.
This module contains unit tests for the module rbfopt_refinement.
Licensed under Revised BSD license, see LICENSE.
(C) Copyright International Business Machines Corporation 2017.
"""
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import unittest
import rbfopt
import rbfopt.rbfopt_utils as ru
import rbfopt.rbfopt_refinement as ref
from rbfopt.rbfopt_settings import RbfoptSettings
import numpy as np
def dist(a, b):
"""Distance function, for convenience reimplemented here.
"""
return np.sqrt(np.dot(a-b, a-b))
class TestRefinement(unittest.TestCase):
"""Test the rbfopt_refinement module."""
def setUp(self):
"""Create data for subsequent tests."""
np.random.seed(71294123)
self.n = 3
self.k = 10
self.var_lower = np.array([i for i in range(self.n)])
self.var_upper = np.array([i + 10 for i in range(self.n)])
self.node_pos = np.array([self.var_lower, self.var_upper,
[1, 2, 3], [9, 5, 8.8], [5.5, 7, 12],
[3.2, 10.2, 4], [2.1, 1.1, 7.4],
[6.6, 9.1, 2.0], [10, 8.8, 11.1],
[7, 7, 7]])
self.node_val = np.array([2*i for i in range(self.k)])
self.integer_vars = np.array([0, 2])
# Compute maximum distance between nodes
max_dist = 0
for node1 in self.node_pos:
for node2 in self.node_pos:
max_dist = max(max_dist, dist(node1, node2))
self.max_dist = max_dist
# -- end function
def test_init_refinement(self):
"""Test the init_refinement function.
"""
settings = RbfoptSettings()
# Compute maximum distance between nodes
for k in range(2, self.k):
model_set, radius = ref.init_refinement(settings, self.n, k,
self.node_pos[:k],
self.node_pos[k-1])
self.assertEqual(len(model_set), min(k, self.n + 1),
msg='Wrong size of model set')
self.assertLessEqual(radius, self.max_dist)
# -- end function
def test_get_linear_model(self):
"""Test the get_linear_model function.
"""
settings = RbfoptSettings()
model_set = np.arange(self.k)
for i in range(5):
h = np.random.rand(self.n)
b = np.random.rand()
node_val = (np.dot(h, self.node_pos.T)).T + b
hm, bm, rank_def = ref.get_linear_model(
settings, self.n, self.k, self.node_pos, node_val, model_set)
self.assertAlmostEqual(dist(h, hm), 0,
msg='Wrong linear part of linear model')
self.assertAlmostEqual(b - bm, 0,
msg='Wrong constant part of linear model')
# -- end function
def test_get_candidate_point(self):
"""Test the get_candidate_point function.
"""
settings = RbfoptSettings()
for i in range(self.k):
h = np.random.rand(self.n)
b = np.random.rand()
ref_radius = np.random.uniform(self.max_dist/2)
point, diff, grad_norm = ref.get_candidate_point(
settings, self.n, self.k, self.var_lower, self.var_upper,
h, self.node_pos[i], ref_radius)
self.assertGreaterEqual(np.dot(h, self.node_pos[i]),
np.dot(h, point),
msg='Function value did not decrease')
self.assertLessEqual(dist(self.node_pos[i], point),
ref_radius + 1.0e-6,
msg='Point moved too far')
self.assertAlmostEqual(diff, np.dot(h, self.node_pos[i] - point),
msg='Wrong model difference estimate')
self.assertAlmostEqual(grad_norm, dist(h, np.zeros(self.n)),
msg='Wrong gradient norm')
for j in range(self.n):
self.assertLessEqual(self.var_lower[j], point[j],
msg='Point outside bounds')
self.assertGreaterEqual(self.var_upper[j], point[j],
msg='Point outside bounds')
# -- end function
def test_get_integer_candidate(self):
"""Test the get_integer_candidate function.
"""
settings = RbfoptSettings()
model_set = np.arange(self.k)
for i in range(self.k):
h = np.random.rand(self.n)
b = np.random.rand()
ref_radius = | np.random.uniform(self.max_dist/2) | numpy.random.uniform |
import sys
import copy
from pathlib import Path
import fnmatch
import numpy as np
from scipy.interpolate import interp1d, interp2d
import matplotlib.dates as mdates
from matplotlib.offsetbox import AnchoredText
import gsw
from netCDF4 import Dataset
from .. import io
from .. import interp
from .. import unit
from .. import util
from .. import configure
# ----------------------------------------------------------------------------
# LOCAL MACHINE SETUP
# ----------------------------------------------------------------------------
global REF_PATH
REF_PATH = Path(__file__).parent.absolute() / 'ref'
def get_config_dirs():
'''
Get previously set local directories to look for Argo, WOA, and NCEP data.
'''
config = configure.read_config()
if 'argo_path' in config.keys():
global ARGO_PATH
ARGO_PATH = config['argo_path']
if 'ncep_path' in config.keys():
global NCEP_PATH
NCEP_PATH = config['ncep_path']
if 'woa_path' in config.keys():
global WOA_PATH
WOA_PATH = config['woa_path']
def set_dirs(argo_path='./', woa_path=None, ncep_path=None):
'''
Set local directories to look for Argo, WOA, and NCEP data.
Args:
argo_path (str or path-like): location of local Argo data
ncep_data (str or path-like): location of local NCEP data
woa_path (str or path-like): location of local World Ocean Atlas data
'''
global ARGO_PATH
ARGO_PATH = argo_path
global WOA_PATH
WOA_PATH = woa_path
global NCEP_PATH
NCEP_PATH = ncep_path
def get_index(index='bgc', **kwargs):
'''
Get the global, biogeochemical, synthetic, or metadata Argo index.
Args:
index (str): *bgc* for the biogeochemical Argo index, *global* for the core index, *synthetic* for the synthetic index, or *meta* for the metadata index
'''
if index == 'bgc':
if '__bgcindex__' not in globals():
global __bgcindex__
__bgcindex__ = io.read_index()
return_index = __bgcindex__
elif index == 'global':
if '__globalindex__' not in globals():
global __globalindex__
__globalindex__ = io.read_index(mission='C')
return_index = __globalindex__
elif index == 'synthetic':
if '__synthindex__' not in globals():
global __synthindex__
__synthindex__ = io.read_index(mission='S')
return_index = __synthindex__
elif index == 'meta':
if '__metaindex__' not in globals():
global __metaindex__
__metaindex__ = io.read_index(mission='M')
return_index = __metaindex__
elif index == 'traj':
if '__trajindex__' not in globals():
global __trajindex__
__trajindex__ = io.read_index(mission='T')
return_index = __trajindex__
else:
raise ValueError('Input "{}" is unrecognized'.format(index))
for arg, val in kwargs.items():
return_index = return_index[return_index[arg] == val]
return return_index.reset_index()
# ----------------------------------------------------------------------------
# FLOAT CLASS
# ----------------------------------------------------------------------------
# class traj:
# '''
# Class that loads Argo trajectory file data for a given float ID number
# (wmo).
# '''
# def __init__(self, wmo, keep_fillvalue=False, verbose=False):
# self.__trajdict__, self.__trajfile__ = load_traj(ARGO_PATH, wmo, verbose=verbose)
# # local path info
# self.argo_path = ARGO_PATH
# self.woa_path = WOA_PATH
# self.ncep_path = NCEP_PATH
# if not keep_fillvalue:
# self.rm_fillvalue()
class profiles:
set_dirs = set_dirs
def __init__(self, floats, cycles=None, mission='B', mode='RD', keep_fillvalue=False, rcheck=True, verbose=False):
if type(floats) is int:
floats = [floats]
self.__argofiles__ = organize_files(get_files(ARGO_PATH, floats, cycles=cycles, mission=mission, mode=mode))
self.__floatdict__ = load_profiles(self.__argofiles__, verbose=verbose)
self.__rawfloatdict__ = self.__floatdict__
# local path info
self.argo_path = ARGO_PATH
self.woa_path = WOA_PATH
self.ncep_path = NCEP_PATH
self.assign(self.__floatdict__)
if not keep_fillvalue:
self.rm_fillvalue()
if rcheck:
self.check_range('all', verbose=verbose)
def assign(self, floatdict):
# metadata and dimension variables
self.floatType = floatdict['floatType']
self.N_LEVELS = floatdict['N_LEVELS']
self.CYCLE = floatdict['CYCLES']
self.CYCLE_GRID = floatdict['CYCLE_GRID']
# time and location data
self.SDN = floatdict['SDN']
self.SDN_GRID = floatdict['SDN_GRID']
self.LATITUDE = floatdict['LATITUDE']
self.LATITUDE_GRID = floatdict['LATITUDE_GRID']
self.LONGITUDE = floatdict['LONGITUDE']
self.LONGITUDE_GRID = floatdict['LONGITUDE_GRID']
self.WMO = floatdict['WMO']
# core variables
self.PRES = floatdict['PRES']
# self.PRES_QC = floatdict['PRES_QC']
if 'TEMP' in floatdict.keys():
self.TEMP = floatdict['TEMP']
self.TEMP_QC = floatdict['TEMP_QC']
self.PSAL = floatdict['PSAL']
self.PSAL_QC = floatdict['PSAL_QC']
# potential density
self.PDEN = gsw.pot_rho_t_exact(gsw.SA_from_SP(self.PSAL, self.PRES, self.LONGITUDE_GRID, self.LATITUDE_GRID), self.TEMP, self.LONGITUDE_GRID, self.LATITUDE_GRID) - 1000
# bgc variables - not necessarily all there so check if the fields exist
if 'DOXY' in floatdict.keys():
self.DOXY = floatdict['DOXY']
self.DOXY_QC = floatdict['DOXY_QC']
if 'CHLA' in floatdict.keys():
self.CHLA = floatdict['CHLA']
self.CHLA_QC = floatdict['CHLA_QC']
if 'BBP700' in floatdict.keys():
self.BBP700 = floatdict['BBP700']
self.BBP700_QC = floatdict['BBP700_QC']
if 'CDOM' in floatdict.keys():
self.CDOM = floatdict['CDOM']
self.CDOM_QC = floatdict['CDOM_QC']
# adjusted variables
if 'DOXY_ADJUSTED' in floatdict.keys():
self.DOXY_ADJUSTED = floatdict['DOXY_ADJUSTED']
self.DOXY_ADJUSTED_QC = floatdict['DOXY_ADJUSTED_QC']
if 'CHLA_ADJUSTED' in floatdict.keys():
self.CHLA_ADJUSTED = floatdict['CHLA_ADJUSTED']
self.CHLA_ADJUSTED_QC = floatdict['CHLA_ADJUSTED_QC']
if 'BBP700_ADJUSTED' in floatdict.keys():
self.BBP700_ADJUSTED = floatdict['BBP700_ADJUSTED']
self.BBP700_ADJUSTED_QC = floatdict['BBP700_ADJUSTED_QC']
if 'CDOM_ADJUSTED' in floatdict.keys():
self.CDOM_ADJUSTED = floatdict['CDOM_ADJUSTED']
self.CDOM_ADJUSTED_QC = floatdict['CDOM_ADJUSTED_QC']
if 'O2Sat' in floatdict.keys():
self.O2Sat = floatdict['O2Sat']
self.O2Sat_QC = floatdict['O2Sat_QC']
def rm_fillvalue(self):
self.__nofillvaluefloatdict__ = dict_fillvalue_clean(self.__rawfloatdict__)
self.__floatdict__ = self.__nofillvaluefloatdict__
self.assign(self.__nofillvaluefloatdict__)
self.to_dataframe()
def clean(self, bad_flags=None):
self.__cleanfloatdict__ = dict_clean(self.__floatdict__, bad_flags=bad_flags)
self.__floatdict__ = self.__cleanfloatdict__
self.assign(self.__cleanfloatdict__)
self.to_dataframe()
def reset(self):
self.__floatdict__ = self.__rawfloatdict__
self.assign(self.__rawfloatdict__)
self.to_dataframe()
def check_range(self, key, verbose=False):
'''
Performs a range check for variables that have a RTQC range available.
Replaces values outside the range with NaN values. Takes string input
to do the range check on that variable. Available variables are
PRES, TEMP, PSAL, and DOXY. Can also take input 'all' to do the range
check on all four variables, or a list of strings to do each of those
variables.
'''
if key == 'all':
key = ['PRES', 'TEMP', 'PSAL', 'DOXY']
elif type(key) is not list:
key = [key]
for k in key:
if k in self.__floatdict__.keys():
self.__rangecheckdict__ = range_check(k, self.__floatdict__, verbose=verbose)
self.__floatdict__ = self.__rangecheckdict__
# recalculate O2sat if its DOXY
if k == 'DOXY':
optode_flag = get_optode_type(int(self.__rangecheckdict__['WMO'])) == 'AANDERAA_OPTODE_4330'
self.__rangecheckdict__['O2Sat'] = 100*self.__rangecheckdict__['DOXY']/unit.oxy_sol(self.__rangecheckdict__['PSAL'], self.__rangecheckdict__['TEMP'], a4330=optode_flag)
self.assign(self.__rangecheckdict__)
def to_dict(self):
return copy.deepcopy(self.__floatdict__)
def to_dataframe(self):
import pandas as pd
df = pd.DataFrame()
df['CYCLE'] = self.CYCLE_GRID
df['SDN'] = self.SDN_GRID
df['WMO'] = self.WMO
df['LATITUDE'] = self.LATITUDE_GRID
df['LONGITUDE'] = self.LONGITUDE_GRID
df['PRES'] = self.PRES
df['TEMP'] = self.TEMP
df['TEMP_QC'] = self.TEMP_QC
df['PSAL'] = self.PSAL
df['PSAL_QC'] = self.PSAL_QC
df['PDEN'] = self.PDEN
if 'DOXY' in self.__floatdict__.keys():
df['DOXY'] = self.DOXY
df['DOXY_QC'] = self.DOXY_QC
if 'CHLA' in self.__floatdict__.keys():
df['CHLA'] = self.CHLA
df['CHLA_QC'] = self.CHLA_QC
if 'BBP700' in self.__floatdict__.keys():
df['BBP700'] = self.BBP700
df['BBP700_QC'] = self.BBP700_QC
if 'CDOM' in self.__floatdict__.keys():
df['CDOM'] = self.CDOM
df['CDOM_QC'] = self.CDOM_QC
if 'DOXY_ADJUSTED' in self.__floatdict__.keys():
df['DOXY_ADJUSTED'] = self.DOXY_ADJUSTED
df['DOXY_ADJUSTED_QC'] = self.DOXY_ADJUSTED_QC
if 'CHLA_ADJUSTED' in self.__floatdict__.keys():
df['CHLA_ADJUSTED'] = self.CHLA_ADJUSTED
df['CHLA_ADJUSTED_QC'] = self.CHLA_ADJUSTED_QC
if 'BBP700_ADJUSTED' in self.__floatdict__.keys():
df['BBP700_ADJUSTED'] = self.BBP700_ADJUSTED
df['BBP700_ADJUSTED_QC'] = self.BBP700_ADJUSTED_QC
if 'CDOM_ADJUSTED' in self.__floatdict__.keys():
df['CDOM_ADJUSTED'] = self.CDOM_ADJUSTED
df['CDOM_ADJUSTED_QC'] = self.CDOM_ADJUSTED_QC
if 'O2Sat' in self.__floatdict__.keys():
df['O2Sat'] = self.O2Sat
df['O2Sat_QC'] = self.O2Sat_QC
self.df = df
return copy.deepcopy(self.df)
def get_track(self):
self.track = track(self.__floatdict__)
return self.track
def get_ncep(self):
if not hasattr(self, 'track'):
self.get_track()
self.NCEP = ncep_to_float_track('pres', self.track, local_path=self.ncep_path)
return self.NCEP
def get_woa(self):
if not hasattr(self, 'track'):
self.get_track()
self.z_WOA, self.WOA, self.__WOAweights__ = woa_to_float_track(self.track, 'O2sat', local_path=self.woa_path)
return self.WOA
def calc_gains(self, ref='WOA'):
if not hasattr(self, 'track'):
self.get_track()
if ref == 'NCEP':
sys.stdout.write('In-air data contained in BRtraj file, NCEP not a valid reference for individual profile files, returning None\n')
self.gains = None
if ref == 'WOA':
# check if reference data is already calculated
if not hasattr(self, 'WOA'):
self.get_woa()
self.__WOAgains__, self.__WOAfloatref__, self.__WOAref__ = calc_gain(self.__floatdict__, dict(z=self.z_WOA, WOA=self.WOA), inair=False)
self.gains = self.__WOAgains__
return self.gains
def calc_fixed_error(self, fix_err=10):
self.DOXY_ADJUSTED_ERROR = calc_fixed_doxy_adjusted_error(self.__floatdict__, fix_err=fix_err)
self.__floatdict__['DOXY_ADJUSTED_ERROR'] = self.DOXY_ADJUSTED_ERROR
return copy.deepcopy(self.DOXY_ADJUSTED_ERROR)
def reassign_flags(self):
return
def assess_profile_flags(self):
return
def describe(self):
if not hasattr(self, 'df'):
self.to_dataframe()
sys.stdout.write('Data for profile files for floats ')
for i,w in enumerate(self.df.WMO.unique()):
if i > 0:
sys.stdout.write(', ')
sys.stdout.write('{}'.format(int(w)))
sys.stdout.write('\n')
sys.stdout.write('Variables:\n')
for k in self.__floatdict__.keys():
sys.stdout.write('{}\n'.format(k))
sys.stdout.write('\n')
# ----------------------------------------------------------------------------
# FUNCTIONS
# ----------------------------------------------------------------------------
def apply_gain(DOXY, G):
DOXY_ADJUSTED = G*DOXY
return DOXY_ADJUSTED
def calc_doxy_error(DOXY, G, eG):
return None
def get_files(local_path, wmo_numbers, cycles=None, mission='B', mode='RD', verbose=True):
local_path = Path(local_path)
if mission == 'B':
if '__bgcindex__' not in globals():
global __bgcindex__
__bgcindex__ = get_index()
subset_index = __bgcindex__[__bgcindex__.wmo.isin(wmo_numbers)]
elif mission == 'C':
if '__globalindex__' not in globals():
global __globalindex__
__globalindex__ = get_index(index='global')
subset_index = __globalindex__[__globalindex__.wmo.isin(wmo_numbers)]
else:
raise ValueError('Invalid input for parameter "mission"')
if cycles is not None:
subset_index = subset_index[subset_index.cycle.isin(cycles)]
wcs = ['*' + a + b + '*.nc' for a in mission for b in mode]
wcs = [w.replace('C','') for w in wcs]
matches = [fn for sub in [fnmatch.filter(subset_index.file, w) for w in wcs] for fn in sub]
subset_index = subset_index[subset_index.file.isin(matches)]
local_files = [(local_path / dac / str(wmo) / 'profiles' / fn.split('/')[-1]) for dac, wmo, fn in zip(subset_index.dac, subset_index.wmo, subset_index.file)]
remove_ix = []
for i,fn in enumerate(local_files):
if not Path(fn).exists():
if verbose:
sys.stdout.write('File {} does not exists locally - removing from returned list, suggest the user downloads using bgcArgo.io.get_argo(...)\n'.format(fn))
remove_ix.append(i)
if len(remove_ix) > 0:
for ix in remove_ix[::-1]:
local_files.pop(ix)
return local_files
def organize_files(files):
'''
Sort files according to time they were recorded.
'''
lead_letter = files[0].name[0]
if lead_letter == 'R' or lead_letter == 'D':
index = get_index('global')
else:
if '__bgcindex__' not in globals():
global __bgcindex__
__bgcindex__ = get_index()
index = __bgcindex__
dates = np.array([index[index.file.str.find(fn.name) != -1].date.iloc[0] for fn in files])
sorted_files = list(np.array(files)[np.argsort(dates)])
return sorted_files
# def load_traj(local_path, wmo):
# return trajData, trajFile
def load_argo(local_path, wmo, grid=False, verbose=True):
'''
Function to load in all data from a single float, using BRtraj, meta,
and Sprof files.
Args:
local_path: local path of float data
wmo: float ID number
Returns:
floatData: python dict() object with the following fields
- floatName: WMO number, from input
- floatType: Kind of float (APEX, ARVOR, etc.)
- N_LEVELS: Number of depth levels, Argo dimension N_LEVELS
- N_PROF: Number of profiles, Argo dimension N_PROF
- LATITUDE: Latitude (-90, 90) for each profile
- LONGITUDE: Longitude (-180, 180) for each profile
- SDN: Serial Date Number for each profile
- PRES: Pressure (dbar), compressed to vector (1D array)
- TEMP: Temperature (deg C)
- PSAL: Salinity (psu)
if the variables are available, it will also contain:
- DOXY: Dissolved Oxygen (micromole/kg)
- O2sat: Oxygen percent saturation (%)
- PPOX_DOXY: Oxygen partial pressure (mbar) [if avail.]
- TRAJ_CYCLE: Cycle number for PPOX_DOXY [if avail.]
- inair: Boolean to indicate if in-air data exists
for all the variables listen above, there will also exist
<PARAM>_QC fields for quality flags, and <PARAM>_ADJUSTED
fields if they exist.
CYCLES, LATITUDE, LONGITUDE, and SDN all also have
analogous <VAR>_GRID fields that match the
dimension of PRES, TEMP, PSAL, DOXY, and O2SAT
Author:
<NAME>
Fisheries and Oceans Canada
<EMAIL>
Acknowledgement: this code is adapted from the SOCCOM SAGE_O2Argo matlab
code, available via https://github.com/SOCCOM-BGCArgo/ARGO_PROCESSING,
written by <NAME> & <NAME>
Change log:
- 2020-04-22: updated so that pressure mask determines all variables - need to add all quality flags to output
- 2020-04-29: switched file/path handling from os module to pathlib
- 2020-10-28: read variable DOXY from BRtraj file and convert to PPOX_DOXY if PPOX_DOXY not in file
'''
# make local_path a Path() object from a string, account for windows path
local_path = Path(local_path)
dac = io.get_dac(wmo)
if type(wmo) is not str:
wmo = str(wmo)
# check that necessary files exist - can continue without BRtraj file but
# need Sprof and meta files
BRtraj = local_path / dac / wmo / '{}_BRtraj.nc'.format(wmo)
Sprof = local_path / dac / wmo / '{}_Sprof.nc'.format(wmo)
meta = local_path / dac /wmo / '{}_meta.nc'.format(wmo)
# check if BRtraj is there, flag for moving forward if not
BRtraj_flag = True
if not BRtraj.exists():
BRtraj_nc = None
BRtraj_flag = False
if verbose:
sys.stdout.write('Continuing without BRtraj file\n')
elif BRtraj.exists():
BRtraj_nc = Dataset(BRtraj, 'r')
if 'PPOX_DOXY' not in BRtraj_nc.variables.keys() and 'DOXY' not in BRtraj_nc.variables.keys():
BRtraj_flag = False
if verbose:
sys.stdout.write('BRtraj file exists, but no in-air data exists, continuing without using BRtraj file\n')
else:
BRtraj_nc = None
# Sprof and meta are required, so raise error if they are not there
if not Sprof.exists():
raise FileNotFoundError('No such Sprof file: {}'.format(Sprof))
if not meta.exists():
raise FileNotFoundError('No such meta file: {}'.format(meta))
# load synthetic and meta profiles
Sprof_nc = Dataset(Sprof, 'r')
meta_nc = Dataset(meta, 'r')
# number of profile cycles
M = Sprof_nc.dimensions['N_LEVELS'].size
N = Sprof_nc.dimensions['N_PROF'].size
floatData = read_all_variables(Sprof_nc)
floatData['SDN'] = floatData['JULD'] + mdates.datestr2num('1950-01-01')
floatData['CYCLES'] = floatData['CYCLE_NUMBER']
floatData['WMO'] = wmo
qc_keys = [s for s in floatData.keys() if '_QC' in s and 'PROFILE' not in s]
for qc in qc_keys:
floatData[qc] = io.read_qc(floatData[qc])
if grid:
ftype = ''
if 'PLATFORM_TYPE' in meta_nc.variables.keys():
for let in meta_nc.variables['PLATFORM_TYPE'][:].compressed():
ftype = ftype + let.decode('UTF-8')
floatData['floatType'] = ftype
floatData['SDN_GRID'] = np.tile(floatData['SDN'],(M,1)).T.flatten()
floatData['CYCLE_GRID'] = np.tile(floatData['CYCLES'],(M,1)).T.flatten()
floatData['LATITUDE_GRID'] = np.tile(floatData['LATITUDE'],(M,1)).T.flatten()
floatData['LONGITUDE_GRID'] = np.tile(floatData['LONGITUDE'],(M,1)).T.flatten()
floatData['PDEN'] = gsw.pot_rho_t_exact(gsw.SA_from_SP(floatData['PSAL'], floatData['PRES'], floatData['LONGITUDE_GRID'], floatData['LATITUDE_GRID']), floatData['TEMP'], floatData['PRES'], 0)
if 'DOXY' in floatData.keys():
optode_flag = get_optode_type(int(wmo)) == 'AANDERAA_OPTODE_4330'
floatData['O2Sat'] = 100*floatData['DOXY']/unit.oxy_sol(floatData['PSAL'], floatData['TEMP'], floatData['PDEN'], a4330=optode_flag)
# match the fill values
ix = np.logical_or(np.logical_or(floatData['PSAL'] >= 99999., floatData['TEMP'] >= 99999.), floatData['DOXY'] >= 99999.)
floatData['O2Sat'][ix] = 99999.
# get the worst QC flag from each quantity that goes into the calculation
floatData['O2Sat_QC'] = util.get_worst_flag(floatData['TEMP_QC'], floatData['PSAL_QC'], floatData['DOXY_QC'])
if BRtraj_flag:
if 'PPOX_DOXY' in BRtraj_nc.variables.keys() and 'TEMP_DOXY' in BRtraj_nc.variables.keys():
floatData['PPOX_DOXY'] = BRtraj_nc.variables['PPOX_DOXY'][:].data.flatten()
floatData['TEMP_DOXY'] = BRtraj_nc.variables['TEMP_DOXY'][:].data.flatten()
floatData['TRAJ_CYCLE'] = BRtraj_nc.variables['CYCLE_NUMBER'][:].data.flatten()
floatData['inair'] = True
elif 'DOXY' in BRtraj_nc.variables.keys() and 'TEMP_DOXY' in BRtraj_nc.variables.keys():
# unit conversion from umol kg-1 to pO2, some shaky S and P assumptions?
floatData['PPOX_DOXY'] = unit.doxy_to_pO2(unit.umol_per_sw_to_mmol_per_L(
BRtraj_nc.variables['DOXY'][:].data.flatten(),
0, # salinity is 0 in air???
BRtraj_nc.variables['TEMP_DOXY'][:].data.flatten(),
0 # pressure is 0 in air???
), 0, BRtraj_nc.variables['TEMP_DOXY'][:].data.flatten())
floatData['TEMP_DOXY'] = BRtraj_nc.variables['TEMP_DOXY'][:].data.flatten()
floatData['TRAJ_CYCLE'] = BRtraj_nc.variables['CYCLE_NUMBER'][:].data.flatten()
floatData['inair'] = True
else:
floatData['inair'] = False
else:
floatData['inair'] = False
return floatData, Sprof, BRtraj, meta
def load_profiles(files, verbose=False):
common_variables = util.get_vars(files)
core_files = len(files)*[' ']
for i,f in enumerate(files):
data_mode = f.name[1]
if data_mode == 'D':
core_files[i] = f.parent / f.name.replace('B','')
else:
test_file = f.parent / f.name.replace('B','')
if not test_file.exists():
test_file = f.parent / f.name.replace('BR', 'D')
if not test_file.exists():
raise FileNotFoundError('Corresponding core file not found')
core_files[i] = test_file
floatData = dict(
floatName=[], N_LEVELS=[], N_PROF=[], CYCLES=np.array([], dtype=int), floatType=[]
)
for v in ['PRES', 'TEMP', 'PSAL', 'SDN']:
floatData[v] = np.array([])
floatData[v + '_QC'] = np.array([])
for v in ['WMO', 'LATITUDE', 'LONGITUDE', 'POSITION_QC', 'SDN_GRID', 'LATITUDE_GRID', 'LONGITUDE_GRID', 'CYCLE_GRID']:
floatData[v] = np.array([])
for v in common_variables:
floatData[v] = np.array([])
floatData[v + '_QC'] = np.array([])
if v + '_ADJUSTED' in common_variables:
floatData[v + '_ADJUSTED'] = np.array([])
floatData[v + '_ADJUSTED' + '_QC'] = np.array([])
for fn, cn in zip(files, core_files):
if verbose:
print(fn, cn)
# try to load the profile as absolute path or relative path
try:
nc = Dataset(fn, 'r')
except:
try:
nc = Dataset(Path(ARGO_PATH) / fn, 'r')
except:
raise FileNotFoundError('No such file {} or {}'.format(fn, str(Path(ARGO_PATH) / fn)))
try:
cc = Dataset(cn, 'r')
except:
try:
cc = Dataset(Path(ARGO_PATH) / cn, 'r')
except:
raise ValueError('Cannot get core Argo data, no such file {} or {}'.format(fn, str(Path(ARGO_PATH) / fn)))
# number of profile cycles
M = cc.dimensions['N_LEVELS'].size
N = cc.dimensions['N_PROF'].size
wmo = ''
if N > 1:
for let in nc.variables['PLATFORM_NUMBER'][:][0,:].compressed():
wmo = wmo + let.decode('UTF-8')
else:
for let in nc.variables['PLATFORM_NUMBER'][:].compressed():
wmo = wmo + let.decode('UTF-8')
cycle = nc.variables['CYCLE_NUMBER'][:].data.flatten()
ftype = ''
if 'PLATFORM_TYPE' in nc.variables.keys():
for let in nc.variables['PLATFORM_TYPE'][:].compressed():
ftype = ftype + let.decode('UTF-8')
floatData['floatName'] = floatData['floatName'] + [int(wmo)]
floatData['N_LEVELS'] = floatData['N_LEVELS'] + [M]
floatData['N_PROF'] = floatData['N_PROF'] + [N]
floatData['CYCLES'] = np.append(floatData['CYCLES'], cycle)
floatData['CYCLE_GRID'] = np.append(floatData['CYCLE_GRID'], np.array(N*M*[cycle[0]]))
floatData['floatType'] = floatData['floatType'] + [ftype]
floatData['WMO'] = np.append(floatData['WMO'], np.array(M*N*[wmo]))
# load in variables that will be in every file
floatData['PRES'] = np.append(floatData['PRES'], cc.variables['PRES'][:].data.flatten())
floatData['PRES_QC'] = np.append(floatData['PRES_QC'], io.read_qc(cc.variables['PRES_QC'][:].data.flatten()))
floatData['TEMP'] = np.append(floatData['TEMP'], cc.variables['TEMP'][:].data.flatten())
floatData['TEMP_QC'] = np.append(floatData['TEMP_QC'], io.read_qc(cc.variables['TEMP_QC'][:].data.flatten()))
floatData['PSAL'] = np.append(floatData['PSAL'], cc.variables['PSAL'][:].data.flatten())
floatData['PSAL_QC'] = np.append(floatData['PSAL_QC'], io.read_qc(cc.variables['PSAL_QC'][:].data.flatten()))
floatData['SDN'] = np.append(floatData['SDN'], cc.variables['JULD'][:].data.flatten() + mdates.datestr2num('1950-01-01'))
floatData['SDN_QC'] = np.append(floatData['SDN_QC'], io.read_qc(cc.variables['JULD_QC'][:].data.flatten()))
floatData['SDN_GRID'] = np.append(floatData['SDN_GRID'], np.array(N*M*[np.nanmean(cc.variables['JULD'][:].data.flatten() + mdates.datestr2num('1950-01-01'))]))
floatData['LATITUDE'] = np.append(floatData['LATITUDE'], cc.variables['LATITUDE'][:].data.flatten())
floatData['LATITUDE_GRID'] = np.append(floatData['LATITUDE_GRID'], np.array(N*M*[np.nanmean(cc.variables['LATITUDE'][:].data.flatten())]))
floatData['LONGITUDE'] = np.append(floatData['LONGITUDE'], cc.variables['LONGITUDE'][:].data.flatten())
floatData['LONGITUDE_GRID'] = np.append(floatData['LONGITUDE_GRID'], np.array(N*M*[np.nanmean(cc.variables['LONGITUDE'][:].data.flatten())]))
floatData['POSITION_QC'] = np.append(floatData['POSITION_QC'], io.read_qc(cc.variables['POSITION_QC'][:].data.flatten()))
print(common_variables)
# loop through other possible BGC variables
for v in common_variables:
var_check = v in nc.variables.keys() and 'N_LEVELS' in nc.variables[v].dimensions
dtype_check = nc.variables[v].dtype == 'float32' or nc.variables[v].dtype == 'float64'
check = var_check and dtype_check
if check:
floatData[v] = np.append(floatData[v], vertically_align(cc.variables['PRES'][:].data.flatten(), nc.variables['PRES'][:].data.flatten(), nc.variables[v][:].data.flatten()))
floatData['dPRES'] = delta_pres(cc.variables['PRES'][:].data.flatten(), nc.variables['PRES'][:].data.flatten())
for v in floatData.keys():
v_qc = v + '_QC'
if v_qc in common_variables:
floatData[v_qc] = np.append(floatData[v_qc], io.read_qc(nc.variables[v_qc][:].data.flatten()))
if 'DOXY' in floatData.keys():
floatData['O2Sat'] = 100*floatData['DOXY']/unit.oxy_sol(floatData['PSAL'], floatData['TEMP'])
floatData['O2Sat_QC'] = util.get_worst_flag(floatData['TEMP_QC'], floatData['PSAL_QC'], floatData['DOXY_QC'])
return floatData
def read_all_variables(nc):
'''
Read all variables and dimensions from an Argo netCDF file.
Args:
nc: a netCDF file object
Returns:
floatData: python dict with all variable and dimension names
'''
floatData = dict()
for name, dim in nc.dimensions.items():
floatData[name] = dim.size
for name, var in nc.variables.items():
floatData[name] = var[:].data.flatten()
return floatData
def read_sprof_gridded_variables(nc):
'''
Read all variables and dimensions from an Argo Sprof file, do not flatten
arrays, keep as 2D arrays.
Args:
nc: a netCDF file object
Returns:
floatData: python dict with all variable and dimension names
'''
floatData = dict()
for name, dim in nc.dimensions.items():
floatData[name] = dim.size
for name, var in nc.variables.items():
floatData[name] = var[:].data
return floatData
def read_history_qctest(nc):
QC_ACTION = np.squeeze(nc.variables['HISTORY_ACTION'][:].data)
actions = []
for row in QC_ACTION:
rval = ''
for let in row:
rval = rval + let.decode('UTF-8')
actions.append(rval.strip())
actions = np.array(actions)
QC_TESTS = | np.squeeze(nc.variables['HISTORY_QCTEST'][:].data) | numpy.squeeze |
#!/usr/bin/env python
from __future__ import division, print_function, absolute_import
import numpy as np
from itertools import combinations
from numpy.testing import assert_allclose, assert_, assert_raises, assert_equal
import pywt
# Check that float32, float64, complex64, complex128 are preserved.
# Other real types get converted to float64.
# complex256 gets converted to complex128
dtypes_in = [np.int8, np.float16, np.float32, np.float64, np.complex64,
np.complex128]
dtypes_out = [np.float64, np.float32, np.float32, np.float64, np.complex64,
np.complex128]
# test complex256 as well if it is available
try:
dtypes_in += [np.complex256, ]
dtypes_out += [np.complex128, ]
except AttributeError:
pass
def test_dwtn_input():
# Array-like must be accepted
pywt.dwtn([1, 2, 3, 4], 'haar')
# Others must not
data = dict()
assert_raises(TypeError, pywt.dwtn, data, 'haar')
# Must be at least 1D
assert_raises(ValueError, pywt.dwtn, 2, 'haar')
def test_3D_reconstruct():
data = np.array([
[[0, 4, 1, 5, 1, 4],
[0, 5, 26, 3, 2, 1],
[5, 8, 2, 33, 4, 9],
[2, 5, 19, 4, 19, 1]],
[[1, 5, 1, 2, 3, 4],
[7, 12, 6, 52, 7, 8],
[2, 12, 3, 52, 6, 8],
[5, 2, 6, 78, 12, 2]]])
wavelet = pywt.Wavelet('haar')
for mode in pywt.Modes.modes:
d = pywt.dwtn(data, wavelet, mode=mode)
assert_allclose(data, pywt.idwtn(d, wavelet, mode=mode),
rtol=1e-13, atol=1e-13)
def test_dwdtn_idwtn_allwavelets():
rstate = | np.random.RandomState(1234) | numpy.random.RandomState |
from hazma.rambo import generate_phase_space
from hazma.rh_neutrino import RHNeutrino
from hazma.parameters import (
Vud,
GF,
fpi,
qe,
charged_pion_mass as mpi,
)
from hazma.field_theory_helper_functions.common_functions import (
minkowski_dot as LDot,
)
from hazma.gamma_ray import gamma_ray_fsr
import numpy as np
import matplotlib.pyplot as plt
sw = np.sqrt(0.222)
def msqrd_n_to_pi_l_g(momenta, model):
smix = model.stheta
mx = model.mx
ml = model.ml
p1 = momenta[0] # lepton
p2 = momenta[1] # pion
p3 = momenta[2] # photon
P = p1 + p2 + p3
s = LDot(P - p1, P - p1)
t = LDot(P - p2, P - p2)
return (
(
8
* fpi ** 2
* GF ** 2
* qe ** 2
* smix ** 2
* (
-2 * ml ** 8 * mpi ** 2
+ ml ** 6
* (
mpi ** 4
+ mx ** 2 * (6 * mpi ** 2 - 2 * s)
+ 2 * mpi ** 2 * t
+ s * (s + 2 * t)
)
+ mx ** 2
* t
* (
-2 * mx ** 4 * (mpi ** 2 - s)
- (mpi ** 4 + s ** 2) * (mpi ** 2 - s - t)
+ 2 * mx ** 2 * (mpi ** 4 - s * (s + t))
)
- ml ** 4
* (
-3 * mpi ** 6
+ mx ** 4 * (6 * mpi ** 2 - 4 * s)
- mpi ** 2 * s * (3 * s + 4 * t)
+ mpi ** 4 * (5 * s + 4 * t)
+ s * (s ** 2 + 4 * s * t + 2 * t ** 2)
+ mx ** 2
* (
-5 * mpi ** 4
- s * (s - 2 * t)
+ mpi ** 2 * (4 * s + 6 * t)
)
)
+ ml ** 2
* (
2 * mx ** 6 * (mpi ** 2 - s)
- (mpi ** 4 + s ** 2) * (mpi ** 2 - s - t) * t
+ mx ** 4
* (-4 * mpi ** 4 - 2 * s * t + mpi ** 2 * (4 * s + 6 * t))
+ mx ** 2
* (
3 * mpi ** 6
+ mpi ** 2 * s * (3 * s - 4 * t)
- mpi ** 4 * (5 * s + 2 * t)
+ s * (-(s ** 2) + 2 * s * t + 4 * t ** 2)
)
)
)
* Vud ** 2
)
/ ((mpi ** 2 - s) ** 2 * (ml ** 2 - t) ** 2)
/ 2.0
)
def width_nu_l_l(model):
"""
Compute the width for right-handed neutrino to an active neutrino and
two charged leptons.
Returns
-------
width: float
Partial width for N -> nu + l + l.
"""
mx = model.mx
ml = model.ml
if mx < 2.0 * ml:
return 0.0
smix = model.stheta
return (
-(GF ** 2)
* smix ** 2
* (
mx
* np.sqrt(-4 * ml ** 2 + mx ** 2)
* (
-(mx ** 6 * (1 + 4 * sw ** 2 + 8 * sw ** 4))
+ 12 * ml ** 6 * (1 + 12 * sw ** 2 + 24 * sw ** 4)
+ 2 * ml ** 2 * mx ** 4 * (7 + 20 * sw ** 2 + 40 * sw ** 4)
- 2 * ml ** 4 * mx ** 2 * (-1 + 36 * sw ** 2 + 72 * sw ** 4)
)
- 48
* (
-(ml ** 4 * mx ** 4)
- 8 * ml ** 6 * mx ** 2 * sw ** 2 * (1 + 2 * sw ** 2)
+ ml ** 8 * (1 + 12 * sw ** 2 + 24 * sw ** 4)
)
* np.log((2 * ml) / (mx + np.sqrt(-4 * ml ** 2 + mx ** 2)))
)
) / (192.0 * mx ** 3 * np.pi ** 3)
def msqrd_n_to_nu_l_l(momenta, model):
"""
Compute the squared matrix-element for a RH neutrino decaying into a
neutrino and two charged leptons at leading order in the Fermi constant.
Momenta are ordered as follows: {nu,l+,l-}.
Parameters
----------
momenta: List
List of NumPy arrays storing the four-momenta of the final state
particles.
Returns
-------
msqrd: float
The matrix element for N -> nu + l + l for the given model and
four-momenta.
"""
pnu = momenta[0]
plp = momenta[1]
plm = momenta[2]
P = pnu + plp + plm
s = LDot(P - pnu, P - pnu)
t = LDot(P - plp, P - plp)
smix = model.stheta
ml = model.ml
mx = model.mx
return (
8
* GF ** 2
* smix ** 2
* (-1 + smix ** 2)
* (
2 * ml ** 4 * (1 + 4 * sw ** 2 + 8 * sw ** 4)
+ 2
* ml ** 2
* (mx ** 2 - s - 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * t)
+ (1 + 4 * sw ** 2 + 8 * sw ** 4)
* (s ** 2 + 2 * s * t + 2 * t ** 2 - mx ** 2 * (s + 2 * t))
)
)
def msqrd_n_to_nu_l_l_g(momenta, model):
k1 = momenta[0]
k2 = momenta[1]
k3 = momenta[2]
k4 = momenta[3]
smix = model.stheta
ml = model.ml
return (
16
* GF ** 2
* qe ** 2
* smix ** 2
* (-1 + smix ** 2)
* (
2
* (1 + 4 * sw ** 2 + 8 * sw ** 4)
* LDot(k1, k3) ** 2
* LDot(k2, k4) ** 2
* LDot(k3, k4)
+ 2
* (1 + 4 * sw ** 2 + 8 * sw ** 4)
* LDot(k1, k2) ** 2
* LDot(k2, k4)
* LDot(k3, k4) ** 2
+ LDot(k1, k4)
* (
(1 + 4 * sw ** 2 + 8 * sw ** 4)
* LDot(k2, k4) ** 3
* (ml ** 2 - LDot(k3, k4))
+ ml ** 2
* LDot(k3, k4) ** 2
* (
(ml + 4 * ml * sw ** 2) ** 2
+ (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k2, k3)
+ (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4)
)
+ LDot(k2, k4) ** 2
* (
(1 + 4 * sw ** 2 + 8 * sw ** 4)
* LDot(k2, k3)
* (ml ** 2 - 2 * LDot(k3, k4))
+ ml ** 2
* (
(ml + 4 * ml * sw ** 2) ** 2
+ (-1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4)
)
)
- LDot(k2, k4)
* LDot(k3, k4)
* (
-8 * ml ** 2 * sw ** 2 * (1 + 2 * sw ** 2) * LDot(k1, k4)
+ 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k2, k3) ** 2
+ 2
* LDot(k2, k3)
* (
(ml + 4 * ml * sw ** 2) ** 2
+ (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4)
)
+ LDot(k3, k4)
* (
ml ** 2 * (1 - 4 * sw ** 2 - 8 * sw ** 4)
+ (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4)
)
)
)
+ LDot(k1, k3)
* (
(1 + 4 * sw ** 2 + 8 * sw ** 4)
* LDot(k2, k4) ** 3
* (ml ** 2 - LDot(k3, k4))
+ ml ** 2
* LDot(k3, k4) ** 2
* (
(ml + 4 * ml * sw ** 2) ** 2
+ 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k1, k4)
+ LDot(k2, k3)
+ LDot(k3, k4)
+ 4
* sw ** 2
* (1 + 2 * sw ** 2)
* (LDot(k2, k3) + LDot(k3, k4))
)
+ LDot(k2, k4) ** 2
* (
ml ** 4 * (1 + 4 * sw ** 2) ** 2
+ (1 + 4 * sw ** 2 + 8 * sw ** 4)
* (
LDot(k2, k3) * (ml ** 2 - 2 * LDot(k3, k4))
+ ml ** 2 * LDot(k3, k4)
)
)
- LDot(k2, k4)
* LDot(k3, k4)
* (
2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k2, k3) ** 2
+ (1 + 4 * sw ** 2 + 8 * sw ** 4)
* LDot(k3, k4)
* (-(ml ** 2) + 2 * LDot(k1, k4) + LDot(k3, k4))
+ 2
* LDot(k2, k3)
* (
(ml + 4 * ml * sw ** 2) ** 2
+ (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k1, k4)
+ (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4)
)
)
)
+ LDot(k1, k2)
* (
(1 + 4 * sw ** 2 + 8 * sw ** 4)
* LDot(k2, k4) ** 3
* (ml ** 2 - LDot(k3, k4))
+ LDot(k2, k4)
* LDot(k3, k4)
* (
-2
* LDot(k2, k3)
* (
(ml + 4 * ml * sw ** 2) ** 2
+ 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k1, k3)
+ LDot(k1, k4)
+ LDot(k2, k3)
+ 4
* sw ** 2
* (1 + 2 * sw ** 2)
* (LDot(k1, k4) + LDot(k2, k3))
)
+ (1 + 4 * sw ** 2 + 8 * sw ** 4)
* (ml ** 2 - 2 * LDot(k1, k3) - 2 * LDot(k2, k3))
* LDot(k3, k4)
- (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4) ** 2
)
+ ml ** 2
* LDot(k3, k4) ** 2
* (
(ml + 4 * ml * sw ** 2) ** 2
+ 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k1, k3)
+ LDot(k2, k3)
+ LDot(k3, k4)
+ 4
* sw ** 2
* (1 + 2 * sw ** 2)
* (LDot(k2, k3) + LDot(k3, k4))
)
+ LDot(k2, k4) ** 2
* (
ml ** 4 * (1 + 4 * sw ** 2) ** 2
+ (1 + 4 * sw ** 2 + 8 * sw ** 4)
* (
ml ** 2
* (2 * (LDot(k1, k3) + LDot(k1, k4)) + LDot(k2, k3))
+ (
ml ** 2
- 2 * LDot(k1, k3)
- 2 * LDot(k1, k4)
- 2 * LDot(k2, k3)
)
* LDot(k3, k4)
)
)
)
)
) / (LDot(k2, k4) ** 2 * LDot(k3, k4) ** 2)
def __dnde_rambo(photon_energy, mx, masses, msqrd, width, nevents=1000):
if mx * (mx - 2 * photon_energy) < np.sum(masses) ** 2:
return (0.0, 0.0)
# Energy of the photon in the rest frame where final state particles
# (excluding the photon)
e_gamma = (photon_energy * mx) / np.sqrt(mx * (-2 * photon_energy + mx))
# Total energy of the final state particles (excluding the photon) in their
# rest frame
cme = np.sqrt(mx * (-2 * photon_energy + mx))
# Number of final state particles
nfsp = len(masses)
# Generate events for the final state particles in their rest frame
events = generate_phase_space(masses, cme, nevents)
# Photon momenta in N + photon rest frame
phis = np.random.rand(nevents) * 2.0 * np.pi
cts = 2.0 * np.random.rand(nevents) - 1.0
g_momenta = [
np.array(
[
e_gamma,
e_gamma * np.cos(phi) * np.sqrt(1 - ct ** 2),
e_gamma * np.sin(phi) * np.sqrt(1 - ct ** 2),
e_gamma * ct,
]
)
for phi, ct in zip(phis, cts)
]
# momenta in the rest frame of N + photon
fsp_momenta = [
np.append(event[:-1], pg) for event, pg in zip(events, g_momenta)
]
weights = [event[-1] for event in events]
terms = [
weight * msqrd(ps_fps.reshape((nfsp + 1, 4)))
for ps_fps, weight in zip(fsp_momenta, weights)
]
res = np.average(terms)
std = np.std(terms) / np.sqrt(nevents)
pre = (
1.0
/ (2.0 * mx)
/ width
* photon_energy
/ (16 * np.pi ** 3)
* (4.0 * np.pi)
)
return pre * res, pre * std
def dnde_rambo(photon_energies, mx, masses, msqrd, width, nevents=1000):
if hasattr(photon_energies, "__len__"):
return np.array(
[
__dnde_rambo(e, mx, masses, msqrd, width, nevents=nevents)
for e in photon_energies
]
)
return __dnde_rambo(
photon_energies, mx, masses, msqrd, width, nevents=nevents
)
def test_n_to_pi_e_g():
model = RHNeutrino(500.0, 1e-3, "e")
es = np.logspace(-2, np.log10(model.mx), 200)
dndes = model.dnde_pi_l_fsr(es)
msqrd = lambda moms: msqrd_n_to_pi_l_g(moms, model)
dndesr = dnde_rambo(
es, model.mx, [model.ml, mpi], msqrd, model.width_pi_l()
)
plt.plot(es, [dnde[0] for dnde in dndesr])
plt.fill_between(
es,
[dnde[0] + dnde[1] for dnde in dndesr],
[dnde[0] - dnde[1] for dnde in dndesr],
alpha=0.7,
color="mediumorchid",
)
plt.plot(es, dndes, ls="--", c="k")
plt.yscale("log")
plt.xscale("log")
plt.xlim([np.min(es), np.max(es)])
plt.show()
def test_n_to_pi_mu_g():
model = RHNeutrino(500.0, 1e-3, "mu")
es = np.logspace(-2, np.log10(model.mx), 200)
dndes = model.dnde_pi_l_fsr(es)
msqrd = lambda moms: msqrd_n_to_pi_l_g(moms, model)
dndesr = dnde_rambo(
es, model.mx, [model.ml, mpi], msqrd, model.width_pi_l()
)
plt.plot(es, [dnde[0] for dnde in dndesr])
plt.fill_between(
es,
[dnde[0] + dnde[1] for dnde in dndesr],
[dnde[0] - dnde[1] for dnde in dndesr],
alpha=0.7,
color="mediumorchid",
)
plt.plot(es, dndes, ls="--", c="k")
plt.yscale("log")
plt.xscale("log")
plt.xlim([np.min(es), np.max(es)])
plt.show()
def test_n_to_nu_e_e_g():
model = RHNeutrino(500.0, 1e-3, "e")
es = np.logspace(-2, np.log10(model.mx), 100)
msqrd = lambda moms: msqrd_n_to_nu_l_l_g(moms, model)
msqrd_tree = lambda moms: msqrd_n_to_nu_l_l(moms, model)
dndes = gamma_ray_fsr(
[model.mx],
[0.0, model.ml, model.ml, 0.0],
model.mx,
mat_elem_sqrd_tree=msqrd_tree,
mat_elem_sqrd_rad=msqrd,
num_ps_pts=500000,
num_bins=50,
)
dndesr = dnde_rambo(
es, model.mx, [0.0, model.ml, model.ml], msqrd, width_nu_l_l(model)
)
print([dnde[0] for dnde in dndesr])
plt.plot(es, [dnde[0] for dnde in dndesr])
plt.fill_between(
es,
[dnde[0] + dnde[1] for dnde in dndesr],
[dnde[0] - dnde[1] for dnde in dndesr],
alpha=0.7,
color="mediumorchid",
)
plt.plot(dndes[0], dndes[1])
plt.yscale("log")
plt.xscale("log")
plt.xlim([ | np.min(es) | numpy.min |
#! /usr/bin/env python
"""
Module with detection algorithms.
"""
from __future__ import division, print_function
__author__ = '<NAME>'
__all__ = ['detection',
'mask_source_centers',
'peak_coordinates']
import numpy as np
from scipy.ndimage.filters import correlate
from skimage import feature
from astropy.stats import sigma_clipped_stats
from astropy.stats import gaussian_fwhm_to_sigma, gaussian_sigma_to_fwhm
from astropy.table import Table
from astropy.modeling import models, fitting
from skimage.feature import peak_local_max
from ..var import (mask_circle, pp_subplots, get_square, frame_center,
fit_2dgaussian, frame_filter_lowpass)
from ..conf.utils_conf import sep
from .snr import snr_ss
from .frame_analysis import frame_quick_report
# TODO: Add the option of computing and thresholding an S/N map
def detection(array, psf, bkg_sigma=1, mode='lpeaks', matched_filter=False,
mask=True, snr_thresh=5, plot=True, debug=False,
full_output=False, verbose=True, save_plot=None, plot_title=None,
angscale=False, pxscale=0.01):
""" Finds blobs in a 2d array. The algorithm is designed for automatically
finding planets in post-processed high contrast final frames. Blob can be
defined as a region of an image in which some properties are constant or
vary within a prescribed range of values. See <Notes> below to read about
the algorithm details.
Parameters
----------
array : array_like, 2d
Input frame.
psf : array_like
Input psf, normalized with ``vip_hci.phot.normalize_psf``.
bkg_sigma : float, optional
The number standard deviations above the clipped median for setting the
background level.
mode : {'lpeaks','log','dog'}, optional
Sets with algorithm to use. Each algorithm yields different results.
matched_filter : bool, optional
Whether to correlate with the psf of not.
mask : bool, optional
Whether to mask the central region (circular aperture of 2*fwhm radius).
snr_thresh : float, optional
SNR threshold for deciding whether the blob is a detection or not.
plot : bool, optional
If True plots the frame showing the detected blobs on top.
debug : bool, optional
Whether to print and plot additional/intermediate results.
full_output : bool, optional
Whether to output just the coordinates of blobs that fulfill the SNR
constraint or a table with all the blobs and the peak pixels and SNR.
verbose : bool, optional
Whether to print to stdout information about found blobs.
save_plot: string
If provided, the plot is saved to the path.
plot_title : str, optional
Title of the plot.
angscale: bool, optional
If True the plot axes are converted to angular scale.
pxscale : float, optional
Pixel scale in arcseconds/px. Default 0.01 for Keck/NIRC2.
Returns
-------
yy, xx : array_like
Two vectors with the y and x coordinates of the centers of the sources
(potential planets).
If full_output is True then a table with all the candidates that passed the
2d Gaussian fit constrains and their S/N is returned.
Notes
-----
The FWHM of the PSF is measured directly on the provided array. If the
parameter matched_filter is True then the PSF is used to run a matched
filter (correlation) which is equivalent to a convolution filter. Filtering
the image will smooth the noise and maximize detectability of objects with a
shape similar to the kernel.
The background level or threshold is found with sigma clipped statistics
(5 sigma over the median) on the image/correlated image. Then 5 different
strategies can be used to detect the blobs (potential planets):
Local maxima + 2d Gaussian fit. The local peaks above the background on the
(correlated) frame are detected. A maximum filter is used for finding local
maxima. This operation dilates the original image and merges neighboring
local maxima closer than the size of the dilation. Locations where the
original image is equal to the dilated image are returned as local maxima.
The minimum separation between the peaks is 1*FWHM. A 2d Gaussian fit is
done on each of the maxima constraining the position on the subimage and the
sigma of the fit. Finally the blobs are filtered based on its SNR.
Laplacian of Gaussian + 2d Gaussian fit. It computes the Laplacian of
Gaussian images with successively increasing standard deviation and stacks
them up in a cube. Blobs are local maximas in this cube. LOG assumes that
the blobs are again assumed to be bright on dark. A 2d Gaussian fit is done
on each of the candidates constraining the position on the subimage and the
sigma of the fit. Finally the blobs are filtered based on its SNR.
Difference of Gaussians. This is a faster approximation of LoG approach. In
this case the image is blurred with increasing standard deviations and the
difference between two successively blurred images are stacked up in a cube.
DOG assumes that the blobs are again assumed to be bright on dark. A 2d
Gaussian fit is done on each of the candidates constraining the position on
the subimage and the sigma of the fit. Finally the blobs are filtered based
on its SNR.
"""
def check_blobs(array_padded, coords_temp, fwhm, debug):
y_temp = coords_temp[:,0]
x_temp = coords_temp[:,1]
coords = []
# Fitting a 2d gaussian to each local maxima position
for y, x in zip(y_temp, x_temp):
subsi = 2 * int(np.ceil(fwhm))
if subsi %2 == 0:
subsi += 1
subim, suby, subx = get_square(array_padded, subsi, y+pad, x+pad,
position=True, force=True)
cy, cx = frame_center(subim)
gauss = models.Gaussian2D(amplitude=subim.max(), x_mean=cx,
y_mean=cy, theta=0,
x_stddev=fwhm*gaussian_fwhm_to_sigma,
y_stddev=fwhm*gaussian_fwhm_to_sigma)
sy, sx = np.indices(subim.shape)
fitter = fitting.LevMarLSQFitter()
fit = fitter(gauss, sx, sy, subim)
# checking that the amplitude is positive > 0
# checking whether the x and y centroids of the 2d gaussian fit
# coincide with the center of the subimage (within 2px error)
# checking whether the mean of the fwhm in y and x of the fit
# are close to the FWHM_PSF with a margin of 3px
fwhm_y = fit.y_stddev.value*gaussian_sigma_to_fwhm
fwhm_x = fit.x_stddev.value*gaussian_sigma_to_fwhm
mean_fwhm_fit = np.mean([np.abs(fwhm_x), np.abs(fwhm_y)])
if fit.amplitude.value > 0 \
and np.allclose(fit.y_mean.value, cy, atol=2) \
and np.allclose(fit.x_mean.value, cx, atol=2) \
and np.allclose(mean_fwhm_fit, fwhm, atol=3):
coords.append((suby + fit.y_mean.value,
subx + fit.x_mean.value))
if debug:
print('Coordinates (Y,X): {:.3f},{:.3f}'.format(y, x))
print('fit peak = {:.3f}'.format(fit.amplitude.value))
msg = 'fwhm_y in px = {:.3f}, fwhm_x in px = {:.3f}'
print(msg.format(fwhm_y, fwhm_x))
print('mean fit fwhm = {:.3f}'.format(mean_fwhm_fit))
pp_subplots(subim, colorb=True, axis=False, dpi=60)
return coords
def print_coords(coords):
print('Blobs found:', len(coords))
print(' ycen xcen')
print('------ ------')
for i in range(len(coords[:, 0])):
print('{:.3f} \t {:.3f}'.format(coords[i,0], coords[i,1]))
def print_abort():
if verbose:
print(sep)
print('No potential sources found')
print(sep)
# --------------------------------------------------------------------------
if array.ndim != 2:
raise TypeError('Input array is not a frame or 2d array')
if psf.ndim != 2 and psf.shape[0] < array.shape[0]:
raise TypeError('Input psf is not a 2d array or has wrong size')
# Getting the FWHM from the PSF array
cenpsf = frame_center(psf)
outdf = fit_2dgaussian(psf, cent=(cenpsf), debug=debug, full_output=True)
fwhm_x, fwhm_y = outdf['fwhm_x'], outdf['fwhm_y']
fwhm = np.mean([fwhm_x, fwhm_y])
if verbose:
print('FWHM = {:.2f} pxs\n'.format(fwhm))
if debug:
print('FWHM_y', fwhm_y)
print('FWHM_x', fwhm_x)
# Masking the center, 2*lambda/D is the expected IWA
if mask:
array = mask_circle(array, radius=fwhm)
# Matched filter
if matched_filter:
frame_det = correlate(array, psf)
else:
frame_det = array
# Estimation of background level
_, median, stddev = sigma_clipped_stats(frame_det, sigma=5, iters=None)
bkg_level = median + (stddev * bkg_sigma)
if debug:
print('Sigma clipped median = {:.3f}'.format(median))
print('Sigma clipped stddev = {:.3f}'.format(stddev))
print('Background threshold = {:.3f}'.format(bkg_level))
print()
if mode == 'lpeaks' or mode == 'log' or mode == 'dog':
# Padding the image with zeros to avoid errors at the edges
pad = 10
array_padded = np.lib.pad(array, pad, 'constant', constant_values=0)
if debug and plot and matched_filter:
print('Input frame after matched filtering:')
pp_subplots(frame_det, rows=2, colorb=True)
if mode == 'lpeaks':
# Finding local peaks (can be done in the correlated frame)
coords_temp = peak_local_max(frame_det, threshold_abs=bkg_level,
min_distance=int(np.ceil(fwhm)),
num_peaks=20)
coords = check_blobs(array_padded, coords_temp, fwhm, debug)
coords = np.array(coords)
if verbose and coords.shape[0] > 0:
print_coords(coords)
elif mode == 'log':
sigma = fwhm*gaussian_fwhm_to_sigma
coords = feature.blob_log(frame_det.astype('float'),
threshold=bkg_level,
min_sigma=sigma-.5, max_sigma=sigma+.5)
if len(coords) == 0:
print_abort()
return 0, 0
coords = coords[:,:2]
coords = check_blobs(array_padded, coords, fwhm, debug)
coords = np.array(coords)
if coords.shape[0] > 0 and verbose:
print_coords(coords)
elif mode == 'dog':
sigma = fwhm*gaussian_fwhm_to_sigma
coords = feature.blob_dog(frame_det.astype('float'),
threshold=bkg_level, min_sigma=sigma-.5,
max_sigma=sigma+.5)
if len(coords) == 0:
print_abort()
return 0, 0
coords = coords[:, :2]
coords = check_blobs(array_padded, coords, fwhm, debug)
coords = np.array(coords)
if coords.shape[0] > 0 and verbose:
print_coords(coords)
else:
msg = 'Wrong mode. Available modes: lpeaks, log, dog.'
raise TypeError(msg)
if coords.shape[0] == 0:
print_abort()
return 0, 0
yy = coords[:, 0]
xx = coords[:, 1]
yy_final = []
xx_final = []
yy_out = []
xx_out = []
snr_list = []
xx -= pad
yy -= pad
# Checking S/N for potential sources
for i in range(yy.shape[0]):
y = yy[i]
x = xx[i]
if verbose:
print(sep)
print('X,Y = ({:.1f},{:.1f})'.format(x,y))
snr = snr_ss(array, (x,y), fwhm, False, verbose=False)
snr_list.append(snr)
if snr >= snr_thresh:
if verbose:
_ = frame_quick_report(array, fwhm, (x,y), verbose=verbose)
yy_final.append(y)
xx_final.append(x)
else:
yy_out.append(y)
xx_out.append(x)
if verbose:
print('S/N constraint NOT fulfilled (S/N = {:.3f})'.format(snr))
if debug:
_ = frame_quick_report(array, fwhm, (x,y), verbose=verbose)
if debug or full_output:
table = Table([yy.tolist(), xx.tolist(), snr_list],
names=('y', 'x', 'px_snr'))
table.sort('px_snr')
yy_final = | np.array(yy_final) | numpy.array |
# General Library
import pandas as pd
import numpy as np
# Clustering Implementation
from KMeans import KMeans
from dbscan import DBSCAN
from Agglomerative import Agglomerative
from Metric import clustering_accuracy_score
# Sklearn Library
from sklearn import datasets
from sklearn.cluster import KMeans as sklearn_KMeans
from sklearn.cluster import AgglomerativeClustering as sklearn_AgglomerativeClustering
from sklearn.cluster import DBSCAN as sklearn_DBSCAN
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import train_test_split
# Uncomment below code to load iris
# iris = datasets.load_iris()
# X = iris.data
# y = iris.target
# read data
file_path = "iris.data"
df = pd.read_csv(file_path, header=None)
X = df.iloc[:,:-1]
y_temp = df.iloc[:,-1:]
y = y_temp.replace({'Iris-setosa' : 0, 'Iris-versicolor' : 1, 'Iris-virginica' : 2})
number_of_cluster = 3
kf = StratifiedKFold(n_splits=2)
# KMeans model
kmeans = KMeans(number_of_cluster)
sk_kmeans = sklearn_KMeans(n_clusters=number_of_cluster)
# Agglomerative parameter for linkage
linkage_list = ['single', 'complete', 'average', 'average-group']
# DBSCAN model
epss = [0.5, 1]
min_ptss = [4, 5]
# Accuracy Mean Count Initialization
# Accuracy Mean Count Initialization
kmeans_accuracy = 0
sk_kmeans_accuracy = 0
agglo_accuracy_single = 0
agglo_accuracy_complete = 0
agglo_accuracy_average = 0
agglo_accuracy_average_group = 0
sk_agglo_accuracy_single = 0
sk_agglo_accuracy_complete = 0
sk_agglo_accuracy_average = 0
dbscan_accuracy = 0
sk_dbscan_accuracy = 0
print ('=== ACCURACY FROM PREDICT ===')
print ()
k = 0
for train_index, test_index in kf.split(X, y):
print (str(k) + '-fold')
X_train, y_train = X.iloc[train_index], y.iloc[train_index]
X_test, y_test = X.iloc[test_index], y.iloc[test_index]
# KMeans
kmeans.fit(np.asarray(X_train))
result = kmeans.predict(np.asarray(X_test))
accuracy, dict = clustering_accuracy_score(np.asarray(y_test), np.asarray(result))
kmeans_accuracy += accuracy
print ('KMeans')
print ('Accuracy\t', accuracy)
print ('Format {Real class : cluster}')
print ('Dict\t\t', str(dict))
print ()
sk_kmeans.fit(X_train)
sk_result = sk_kmeans.predict(X_test)
accuracy, dict = clustering_accuracy_score(np.asarray(y_test), np.asarray(sk_result))
sk_kmeans_accuracy += accuracy
print ('Sklearn KMeans')
print ('Accuracy\t', accuracy)
print ('Format {Real class : cluster}')
print ('Dict\t\t', str(dict))
print ()
# Agglomerative
for linkage_type in linkage_list :
agglo = Agglomerative(number_of_cluster, linkage_type)
agglo.fit(X_train)
result = agglo.predict(X_test)
accuracy, dict = clustering_accuracy_score(np.asarray(y_test), np.asarray(result))
if linkage_type == 'single' :
agglo_accuracy_single += accuracy
elif linkage_type == 'complete' :
agglo_accuracy_complete += accuracy
elif linkage_type == 'average' :
agglo_accuracy_average += accuracy
elif linkage_type == 'average-group' :
agglo_accuracy_average_group += accuracy
print ('Agglomerative - ' + str(linkage_type))
print ('Accuracy\t', accuracy)
print ('Format {Real class : cluster}')
print ('Dict\t\t', str(dict))
print ()
# DBSCAN
for i in range (0, len(epss)) :
eps = epss[i]
min_pts = min_ptss[i]
dbscan = DBSCAN(eps, min_pts)
sk_dbscan = sklearn_DBSCAN(eps=eps, min_samples=min_pts)
dbscan.fit(X_train)
result = dbscan.predict(X_test)
accuracy, dict = clustering_accuracy_score( | np.asarray(y_test) | numpy.asarray |
import numpy as np
import pandas as pd
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
master_url_root = "https://raw.githubusercontent.com/numenta/NAB/master/data/"
df_small_noise_url_suffix = "artificialNoAnomaly/art_daily_small_noise.csv"
df_small_noise_url = master_url_root + df_small_noise_url_suffix
df_small_noise = pd.read_csv(
df_small_noise_url, parse_dates=True, index_col="timestamp"
)
df_daily_jumpsup_url_suffix = "artificialWithAnomaly/art_daily_jumpsup.csv"
df_daily_jumpsup_url = master_url_root + df_daily_jumpsup_url_suffix
df_daily_jumpsup = pd.read_csv(
df_daily_jumpsup_url, parse_dates=True, index_col="timestamp"
)
print(df_small_noise.head())
print(df_daily_jumpsup.head())
fig, ax = plt.subplots()
df_small_noise.plot(legend=False, ax=ax)
plt.show(block=True)
fig, ax = plt.subplots()
df_daily_jumpsup.plot(legend=False, ax=ax)
plt.show(block=True)
# Normalize and save the mean and std we get,
# for normalizing test data.
training_mean = df_small_noise.mean()
training_std = df_small_noise.std()
df_training_value = (df_small_noise - training_mean) / training_std
print("Number of training samples:", len(df_training_value))
# CREATE SEQUENCE
TIME_STEPS = 288
# Generated training sequences for use in the model.
def create_sequences(values, time_steps=TIME_STEPS):
output = []
for i in range(len(values) - time_steps):
output.append(values[i : (i + time_steps)])
return | np.stack(output) | numpy.stack |
import pydicom
import numpy as np
import colorsys
import random
import cv2
from skimage.measure import find_contours
import matplotlib.pyplot as plt
from matplotlib import patches
def random_colors(N, bright=True):
""" Generate random colors.
To get visually distinct colors, generate them in HSV space then convert to RGB.
Args:
N (int):
Number of colors.
"""
brightness = 1.0 if bright else 0.7
hsv = [(i / N, 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.shuffle(colors)
return colors
# based on functions in: https://github.com/matterport/Mask_RCNN/blob/master/mrcnn/visualize.py
def display_images(image_ids, titles=None, cols=3, cmap="gray", norm=None, interpolation=None):
"""Display images given image ids.
Args:
image_ids (list):
List of image ids.
TODO: figsize should not be hardcoded
"""
titles = titles if titles is not None else [""] * len(image_ids)
rows = len(image_ids) // cols + 1
plt.figure(figsize=(14, 14 * rows // cols))
i = 1
for image_id, title in zip(image_ids, titles):
plt.subplot(rows, cols, i)
plt.title(title, fontsize=9)
plt.axis("off")
image = load_dicom_image(image_id, rescale=True)
plt.imshow(image, cmap=cmap, norm=norm, interpolation=interpolation)
i += 1
plt.show()
def load_dicom_image(image_id, to_RGB=False, rescale=False):
""" Load a DICOM image.
Args:
image_id (str):
image id (filepath).
to_RGB (bool, optional):
Convert grayscale image to RGB.
Returns:
image array.
"""
ds = pydicom.dcmread(image_id)
try:
image = ds.pixel_array
except Exception:
msg = (
"Could not read pixel array from DICOM with TransferSyntaxUID "
+ ds.file_meta.TransferSyntaxUID
+ ". Likely unsupported compression format."
)
print(msg)
if rescale:
max_pixel_value = np.amax(image)
min_pixel_value = np.amin(image)
if max_pixel_value >= 255:
# print("Input image pixel range exceeds 255, rescaling for visualization.")
pixel_range = np.abs(max_pixel_value - min_pixel_value)
pixel_range = pixel_range if pixel_range != 0 else 1
image = image.astype(np.float32) / pixel_range * 255
image = image.astype(np.uint8)
if to_RGB:
# If grayscale. Convert to RGB for consistency.
if len(image.shape) != 3 or image.shape[2] != 3:
image = np.stack((image,) * 3, -1)
return image
def load_mask(image_id, dataset):
"""Load instance masks for the given image. Masks can be different types,
mask is a binary true/false map of the same size as the image.
"""
# annotations = imgs_anns[image_id]
annotations = dataset.get_annotations_by_image_id(image_id)
count = len(annotations)
print("Number of annotations: %d" % count)
image = load_dicom_image(image_id)
width = image.shape[1]
height = image.shape[0]
if count == 0:
print("No annotations")
mask = np.zeros((height, width, 1), dtype=np.uint8)
class_ids = np.zeros((1,), dtype=np.int32)
else:
mask = np.zeros((height, width, count), dtype=np.uint8)
class_ids = np.zeros((count,), dtype=np.int32)
for i, a in enumerate(annotations):
label_id = a["labelId"]
annotation_mode = dataset.label_id_to_class_annotation_mode(label_id)
# print(annotation_mode)
if annotation_mode == "bbox":
# Bounding Box
x = int(a["data"]["x"])
y = int(a["data"]["y"])
w = int(a["data"]["width"])
h = int(a["data"]["height"])
mask_instance = mask[:, :, i].copy()
cv2.rectangle(mask_instance, (x, y), (x + w, y + h), 255, -1)
mask[:, :, i] = mask_instance
# FreeForm or Polygon
elif annotation_mode == "freeform" or annotation_mode == "polygon":
vertices = np.array(a["data"]["vertices"])
vertices = vertices.reshape((-1, 2))
mask_instance = mask[:, :, i].copy()
cv2.fillPoly(mask_instance, np.int32([vertices]), (255, 255, 255))
mask[:, :, i] = mask_instance
# Line
elif annotation_mode == "line":
vertices = np.array(a["data"]["vertices"])
vertices = vertices.reshape((-1, 2))
mask_instance = mask[:, :, i].copy()
cv2.polylines(mask_instance, np.int32([vertices]), False, (255, 255, 255), 12)
mask[:, :, i] = mask_instance
elif annotation_mode == "location":
# Bounding Box
x = int(a["data"]["x"])
y = int(a["data"]["y"])
mask_instance = mask[:, :, i].copy()
cv2.circle(mask_instance, (x, y), 7, (255, 255, 255), -1)
mask[:, :, i] = mask_instance
elif annotation_mode == "mask":
mask_instance = mask[:, :, i].copy()
if a.data["foreground"]:
for i in a.data["foreground"]:
mask_instance = cv2.fillPoly(mask_instance, [np.array(i, dtype=np.int32)], (255, 255, 255))
if a.data["background"]:
for i in a.data["background"]:
mask_instance = cv2.fillPoly(mask_instance, [np.array(i, dtype=np.int32)], (0,0,0))
mask[:, :, i] = mask_instance
elif annotation_mode is None:
print("Not a local instance")
# load class id
class_ids[i] = dataset.label_id_to_class_id(label_id)
return mask.astype(np.bool), class_ids.astype(np.int32)
def apply_mask(image, mask, color, alpha=0.3):
"""Apply the given mask to the image.
Args:
image: height, widht, channel.
Returns:
image with applied color mask.
"""
for c in range(3):
image[:, :, c] = np.where(
mask == 1, image[:, :, c] * (1 - alpha) + alpha * color[c] * 255, image[:, :, c]
)
return image
def extract_bboxes(mask):
"""Compute bounding boxes from masks.
Args:
mask [height, width, num_instances]:
Mask pixels are either 1 or 0.
Returns:
bounding box array [num_instances, (y1, x1, y2, x2)].
"""
boxes = np.zeros([mask.shape[-1], 4], dtype=np.int32)
for i in range(mask.shape[-1]):
m = mask[:, :, i]
# Bounding box.
horizontal_indicies = np.where(np.any(m, axis=0))[0]
vertical_indicies = np.where(np.any(m, axis=1))[0]
if horizontal_indicies.shape[0]:
x1, x2 = horizontal_indicies[[0, -1]]
y1, y2 = vertical_indicies[[0, -1]]
# x2 and y2 should not be part of the box. Increment by 1.
x2 += 1
y2 += 1
else:
# No mask for this instance. Might happen due to
# resizing or cropping. Set bbox to zeros
x1, x2, y1, y2 = 0, 0, 0, 0
boxes[i] = np.array([y1, x1, y2, x2])
return boxes.astype(np.int32)
def get_image_ground_truth(image_id, dataset):
"""Load and return ground truth data for an image (image, mask, bounding boxes).
Args:
image_id:
Image id.
Returns:
image:
[height, width, 3]
class_ids:
[instance_count] Integer class IDs
bbox:
[instance_count, (y1, x1, y2, x2)]
mask:
[height, width, instance_count]. The height and width are those of the image unless
use_mini_mask is True, in which case they are defined in MINI_MASK_SHAPE.
"""
# image = load_dicom_image(image_id, to_RGB=True)
image = load_dicom_image(image_id, to_RGB=True, rescale=True)
mask, class_ids = load_mask(image_id, dataset)
_idx = | np.sum(mask, axis=(0, 1)) | numpy.sum |
import numpy as np
from sklearn.decomposition import PCA
import pandas as pd
import matplotlib.pyplot as plt
import random
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.metrics import confusion_matrix
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
import pandas.util.testing as tm
from keras.datasets import mnist
import tensorflow_datasets as tfds
import tensorflow as tf
from google.colab import files
import sys
import itertools as it
#@title ElasticNetSubspaceClustering
import warnings
import progressbar
import spams
import time
from scipy import sparse
from sklearn import cluster
from sklearn.base import BaseEstimator, ClusterMixin
from sklearn.decomposition import sparse_encode
from sklearn.linear_model import orthogonal_mp
from sklearn.neighbors import kneighbors_graph
from sklearn.preprocessing import normalize
from sklearn.utils import check_random_state, check_array, check_symmetric
class SelfRepresentation(BaseEstimator, ClusterMixin):
def __init__(self, n_clusters=8, affinity='symmetrize', random_state=None, n_init=20, n_jobs=1):
self.n_clusters = n_clusters
self.affinity = affinity
self.random_state = random_state
self.n_init = n_init
self.n_jobs = n_jobs
def fit(self, X, y=None):
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64)
time_base = time.time()
self._self_representation(X)
self.timer_self_representation_ = time.time() - time_base
self._representation_to_affinity()
self._spectral_clustering()
self.timer_time_ = time.time() - time_base
return self
def fit_self_representation(self, X, y=None):
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64)
time_base = time.time()
self._self_representation(X)
self.timer_self_representation_ = time.time() - time_base
return self
def _representation_to_affinity(self):
normalized_representation_matrix_ = normalize(self.representation_matrix_, 'l2')
if self.affinity == 'symmetrize':
self.affinity_matrix_ = 0.5 * (np.absolute(normalized_representation_matrix_) + np.absolute(normalized_representation_matrix_.T))
elif self.affinity == 'nearest_neighbors':
neighbors_graph = kneighbors_graph(normalized_representation_matrix_, 3,
mode='connectivity', include_self=False)
self.affinity_matrix_ = 0.5 * (neighbors_graph + neighbors_graph.T)
def _spectral_clustering(self):
affinity_matrix_ = check_symmetric(self.affinity_matrix_)
random_state = check_random_state(self.random_state)
laplacian = sparse.csgraph.laplacian(affinity_matrix_, normed=True)
_, vec = sparse.linalg.eigsh(sparse.identity(laplacian.shape[0]) - laplacian,
k=self.n_clusters, sigma=None, which='LA')
embedding = normalize(vec)
_, self.labels_, _ = cluster.k_means(embedding, self.n_clusters,
random_state=random_state, n_init=self.n_init)
def active_support_elastic_net(X, y, alpha, tau=1.0, algorithm='spams', support_init='knn',
support_size=100, maxiter=40):
n_samples = X.shape[0]
if n_samples <= support_size: # skip active support search for small scale data
supp = | np.arange(n_samples, dtype=int) | numpy.arange |
import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt
# In[Functions]:
# Knowledge Gradient with Correlated Beliefs (KGCB)
# notation for the following:
# K is the number of alternatives.
# M is the number of time-steps
# K x M stands for a matrix with K rows and M columns
# This function takes in
# mu: true values for the mean (K x 1)
# mu_0: prior for the mean (K x 1)
# beta_w: measurement precision (1/lambda(x)) (K x 1)
# cov_m: initial covariance matrix (K,K)
# m: how many measurements will be made (scalar)
# And returns
# mu_est: Final estimates for the means (K x 1)
# oc: Opportunity cost at each iteration (1 x M)
# choices: Alternatives picked at each iteration (1 x M)
# mu_est_all: Estimates at each iteration (K x M)
def kgcb(mu_0, beta_w, cov_m, iteration):
kk = len(mu_0) # number of available choices
mu_est = mu_0.copy()
##THIS IS THE CODE TO COPY FOR THE POLICY##
py = []
# loop over all choices
for iter1 in range(kk):
a = mu_est.copy()
b = np.divide(cov_m[iter1], np.sqrt(1/beta_w[iter1]+cov_m[iter1][iter1]))
kg = EmaxAffine(a,b)
py.append(kg)
x = np.argmax([(82-iteration)*py[i]+mu_est[i] for i in range(kk)])
return x
# Get Knowledge Gradient Prior
def Get_kg(mu_0, beta_w, cov_m):
kk = len(mu_0) # number of available choices
# py is the KG for alternatives
py = []
for iter1 in range(kk):
a = mu_0
b = np.divide(cov_m[iter1], np.sqrt(1/beta_w[iter1]+cov_m[iter1][iter1]))
kg = EmaxAffine(a,b)
py.append(kg)
return(py)
# Calculate the KG value defined by
# E[max_x a_x + b_x Z]-max_x a_x, where Z is a standard
# normal random variable and a,b are 1xM input vectors.
def EmaxAffine(a, b):
a, b = AffineBreakpointsPrep(a, b)
c, keep = AffineBreakpoints(a, b)
keep = [int(keep[i]) for i in range(len(keep))]
a = a[keep]
b = b[keep]
c = np.insert(c[np.add(keep, 1)], 0, 0)
M = len(keep)
logbdiff = np.log(np.diff(b))
if M == 1:
logy = np.log(a)
elif M >= 2:
logy = LogSumExp(np.add(logbdiff, LogEI(-np.absolute(c[1:M]))))
y = np.exp(logy)
return y
# Prepares vectors for passing to AffineEmaxBreakpoints, changing their
# order and removing elements with duplicate slope.
def AffineBreakpointsPrep(a, b):
a = np.array(a)
b = np.array(b)
# Sort the pairs (a_i,b_i) in ascending order of slope (b_i),
# breaking ties in slope with the y-intercept (a_i).
order = | np.lexsort((a, b)) | numpy.lexsort |
import itertools
import math
import numpy as np
import scipy.fftpack
from mmfutils.containers import ObjectBase
from . import interfaces
from .interfaces import (
implementer,
IBasis,
IBasisKx,
IBasisLz,
IBasisWithConvolution,
BasisMixin,
)
from mmfutils.performance.fft import fft, ifft, fftn, ifftn, resample
from .utils import prod, dst, idst, get_xyz, get_kxyz
from mmfutils.math import bessel
sp = scipy
_TINY = np.finfo(float).tiny
__all__ = ["SphericalBasis", "PeriodicBasis", "CartesianBasis", "interfaces"]
@implementer(IBasisWithConvolution)
class SphericalBasis(ObjectBase, BasisMixin):
"""1-dimensional basis for radial problems.
We represent exactly `N` positive abscissa, excluding the origin and use
the discrete sine transform. We represent the square-root of the
wavefunctions here so that a factor of `r` is required to convert these
into the radial functions. Unlike the DVR techniques, this approach allows
us to compute the Coulomb interaction for example.
"""
def __init__(self, N, R):
self.N = N
self.R = R
super().__init__()
def init(self):
dx = self.R / self.N
r = np.arange(1, self.N + 1) * dx
k = np.pi * (0.5 + | np.arange(self.N) | numpy.arange |
from argparse import ArgumentParser
import numpy as np
import numpy, json
import torch
from tqdm.auto import tqdm
import cv2 as cv
import cv2
import os
import random as rng
from os.path import join
from scipy.ndimage import label
from data.scannet_single_scene_dataset import ScanNet_Single_House_Dataset
from model.texture.utils import get_rgb_transform, get_uv_transform, get_label_transform
from data.utils import unproject
from torchvision.transforms import Resize, ToTensor, Compose
from model.gatys_style.rgb_transform import pre, post
from scipy.spatial import distance as dist
def filter_hsv(src):
# It converts the BGR color space of image to HSV color space
hsv = cv2.cvtColor(src, cv2.COLOR_BGR2HSV)
# Threshold of red in HSV space (beginning of H)
lower_red = np.array([0, int(0.6 * 255), int(0.6 * 255)])
upper_red = np.array([15, int(1.0 * 255), int(1.0 * 255)])
mask = cv2.inRange(hsv, lower_red, upper_red)
# Threshold of red in HSV space (end of H)
lower_red = np.array([160, int(0.4 * 255), int(0.4 * 255)])
upper_red = np.array([179, int(1.0 * 255), int(1.0 * 255)])
mask += cv2.inRange(hsv, lower_red, upper_red)
# The black region in the mask has the value of 0,
# so when multiplied with original image removes all non-blue regions
hsv_filtered = cv2.bitwise_and(src, src, mask=mask)
return hsv_filtered
def cov_from_lookup(center, ys, lut, filter_zero=True):
assert len(center) == len(ys)
xs = []
for c in center:
pos_w, pos_h = c
x = lut[pos_h, pos_w, 0]
xs.append(x)
xy = sorted(zip(xs, ys), key=lambda pair: pair[0])
if filter_zero:
xy = [i for i in xy if i[0] != 0]
xs = [i[0] for i in xy]
ys = [i[1] for i in xy]
A = np.array([xs, ys])
corr = np.corrcoef(A)[0, 1]
return corr, A, xs, ys
def order_points(pts):
# sort the points based on their x-coordinates
xSorted = pts[np.argsort(pts[:, 0]), :]
# grab the left-most and right-most points from the sorted
# x-roodinate points
leftMost = xSorted[:2, :]
rightMost = xSorted[2:, :]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
(tl, bl) = leftMost
# now that we have the top-left coordinate, use it as an
# anchor to calculate the Euclidean distance between the
# top-left and right-most points; by the Pythagorean
# theorem, the point with the largest distance will be
# our bottom-right point
D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0]
(br, tr) = rightMost[np.argsort(D)[::-1], :]
# return the coordinates in top-left, top-right,
# bottom-right, and bottom-left order
return tl, tr, br, bl
def mid_point(a, b):
return a + (b - a) / 2.0
def is_in_range(p, w, h):
x, y = p
x = round(x)
y = round(y)
return 0 <= x < w and 0 <= y < h
def clamp_to_range(p, w, h):
x, y = p
x = round(x)
y = round(y)
x = max(0, min(x, w - 1))
y = max(0, min(y, h - 1))
return x, y
def ellipse_stats(a, b):
radius = (a / 2.0 + b / 2.0) / 2.0 # average of both diameters
stretch = abs(1.0 * a / b) if a > b else abs(1.0 * b / a)
size = a * b
if a == 0 or b == 0:
raise ValueError('foo')
return radius, stretch, size
def is_valid_point(p, depth):
w, h = p
return depth.squeeze()[h, w] > 0
def median_radius_level(radii, opt, suffix=''):
statistics = {
f"smallest{suffix}": 0,
f"small{suffix}": 0,
f"large{suffix}": 0,
f"largest{suffix}": 0
}
colors = []
median_radius = np.median(np.array(radii))
t = opt.t
n = len(radii)
for radius in radii:
if radius < median_radius / t:
colors.append((255, 0, 0)) # blue
k = 'smallest'
elif radius < median_radius:
colors.append((0, 255, 0)) # green
k = 'small'
elif median_radius < radius < median_radius * t:
colors.append((0, 255, 255)) # yellow
k = 'large'
else:
colors.append((255, 0, 255)) # purple
k = 'largest'
k = f"{k}{suffix}"
statistics[k] = statistics[k] + 1
statistics = {k: v * 1.0 / n for k, v in statistics.items()}
return statistics, n, colors
def unit_vector(vector):
""" Returns the unit vector of the vector. """
return vector / | np.linalg.norm(vector) | numpy.linalg.norm |
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import cm as cm
import click
import re
re_time = re.compile(r'^\d+.?\d*e?-?\d*')
re_point = re.compile(
r'([A-Z])\((-?\d+.?\d*e?-?\d*), (-?\d+.?\d*e?-?\d*)\)'
)
H_RANGE = tuple( np.array([-0.5, 0.5]) * 32 )
V_RANGE = tuple( np.array([-0.5, 0.5]) * 18 )
SPACE_FACTOR = 20
SPACE_BIAS = np.array([0.25, 0.25])
@click.group()
def main():
pass
def render_frame(filename, width, height, cells, mutants):
x = np.linspace(*H_RANGE, width)
y = | np.linspace(*V_RANGE, height) | numpy.linspace |
import numpy as np
import pytest
def test_vector_vector_cross(backend):
from csdl.examples.valid.ex_cross_vector_vector import example
exec('from {} import Simulator'.format(backend))
sim = example(eval('Simulator'))
vec1 = np.arange(3)
vec2 = np.arange(3) + 1
desired_output = np.cross(vec1, vec2)
np.testing.assert_almost_equal(sim['VecVecCross'], desired_output)
partials_error = sim.check_partials(includes=['comp_VecVecCross'],
out_stream=None,
compact_print=True,
method='cs')
sim.assert_check_partials(partials_error, atol=1.e-6, rtol=1.e-6)
def test_cross(backend):
from csdl.examples.valid.ex_cross_tensor_tensor import example
exec('from {} import Simulator'.format(backend))
sim = example(eval('Simulator'))
shape = (2, 5, 4, 3)
num_elements = np.prod(shape)
ten1 = | np.arange(num_elements) | numpy.arange |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from collections import OrderedDict
import pickle
import sys
from distutils.version import LooseVersion
import pytest
import numpy as np
import pyarrow as pa
import pyarrow.tests.util as test_util
def test_schema_constructor_errors():
msg = ("Do not call Schema's constructor directly, use `pyarrow.schema` "
"instead")
with pytest.raises(TypeError, match=msg):
pa.Schema()
def test_type_integers():
dtypes = ['int8', 'int16', 'int32', 'int64',
'uint8', 'uint16', 'uint32', 'uint64']
for name in dtypes:
factory = getattr(pa, name)
t = factory()
assert str(t) == name
def test_type_to_pandas_dtype():
M8_ns = np.dtype('datetime64[ns]')
cases = [
(pa.null(), np.float64),
(pa.bool_(), np.bool_),
(pa.int8(), np.int8),
(pa.int16(), np.int16),
(pa.int32(), np.int32),
(pa.int64(), np.int64),
(pa.uint8(), np.uint8),
(pa.uint16(), np.uint16),
(pa.uint32(), np.uint32),
(pa.uint64(), np.uint64),
(pa.float16(), np.float16),
(pa.float32(), np.float32),
(pa.float64(), np.float64),
(pa.date32(), M8_ns),
(pa.date64(), M8_ns),
(pa.timestamp('ms'), M8_ns),
(pa.binary(), np.object_),
(pa.binary(12), np.object_),
(pa.string(), np.object_),
(pa.list_(pa.int8()), np.object_),
# (pa.list_(pa.int8(), 2), np.object_), # TODO needs pandas conversion
]
for arrow_type, numpy_type in cases:
assert arrow_type.to_pandas_dtype() == numpy_type
@pytest.mark.pandas
def test_type_to_pandas_dtype_check_import():
# ARROW-7980
test_util.invoke_script('arrow_7980.py')
def test_type_list():
value_type = pa.int32()
list_type = pa.list_(value_type)
assert str(list_type) == 'list<item: int32>'
field = pa.field('my_item', pa.string())
l2 = pa.list_(field)
assert str(l2) == 'list<my_item: string>'
def test_type_comparisons():
val = pa.int32()
assert val == pa.int32()
assert val == 'int32'
assert val != 5
def test_type_for_alias():
cases = [
('i1', pa.int8()),
('int8', pa.int8()),
('i2', pa.int16()),
('int16', pa.int16()),
('i4', pa.int32()),
('int32', pa.int32()),
('i8', pa.int64()),
('int64', pa.int64()),
('u1', pa.uint8()),
('uint8', pa.uint8()),
('u2', pa.uint16()),
('uint16', pa.uint16()),
('u4', pa.uint32()),
('uint32', pa.uint32()),
('u8', pa.uint64()),
('uint64', pa.uint64()),
('f4', pa.float32()),
('float32', pa.float32()),
('f8', pa.float64()),
('float64', pa.float64()),
('date32', pa.date32()),
('date64', pa.date64()),
('string', pa.string()),
('str', pa.string()),
('binary', pa.binary()),
('time32[s]', pa.time32('s')),
('time32[ms]', pa.time32('ms')),
('time64[us]', pa.time64('us')),
('time64[ns]', pa.time64('ns')),
('timestamp[s]', pa.timestamp('s')),
('timestamp[ms]', pa.timestamp('ms')),
('timestamp[us]', pa.timestamp('us')),
('timestamp[ns]', pa.timestamp('ns')),
('duration[s]', pa.duration('s')),
('duration[ms]', pa.duration('ms')),
('duration[us]', pa.duration('us')),
('duration[ns]', pa.duration('ns')),
]
for val, expected in cases:
assert pa.type_for_alias(val) == expected
def test_type_string():
t = pa.string()
assert str(t) == 'string'
def test_type_timestamp_with_tz():
tz = 'America/Los_Angeles'
t = pa.timestamp('ns', tz=tz)
assert t.unit == 'ns'
assert t.tz == tz
def test_time_types():
t1 = pa.time32('s')
t2 = pa.time32('ms')
t3 = pa.time64('us')
t4 = pa.time64('ns')
assert t1.unit == 's'
assert t2.unit == 'ms'
assert t3.unit == 'us'
assert t4.unit == 'ns'
assert str(t1) == 'time32[s]'
assert str(t4) == 'time64[ns]'
with pytest.raises(ValueError):
pa.time32('us')
with pytest.raises(ValueError):
pa.time64('s')
def test_from_numpy_dtype():
cases = [
(np.dtype('bool'), pa.bool_()),
( | np.dtype('int8') | numpy.dtype |
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from pathlib import Path
from tqdm import tqdm
import shutil
import tensorflow as tf
import tensorflow_datasets as tfds
import uuid
from pdf2image import convert_from_path
import argparse
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import RandomOverSampler
import streamlit as st
DEFAULT_TRAIN_PATH = Path(__file__).resolve().parent.parent / 'data' / 'train'
DEFAULT_VALID_PATH = Path(__file__).resolve().parent.parent / 'data' / 'valid'
DEFAULT_TEST_PATH = Path(__file__).resolve().parent.parent / 'data' / 'test'
def create_aux_dataframe(dataset_path):
"""
Generates an auxiliary pandas.DataFrame that maps each image file inside the dataset directories to its class.
This makes it easy to split the data into train, test and validation splits.
:param dataset_path: str or pathlib.Path
Path to the dataset directory
:return: pandas.DataFrame
Index as the file_path (pathlib.Path object) and columns as class (one hot encoded matrix and label vector)
"""
directory_list = [directory for directory in Path(dataset_path).iterdir() if os.path.isdir(directory)]
df = pd.DataFrame(columns=[directory.name for directory in directory_list])
for directory in directory_list:
files_path_list = [file.resolve() for file in directory.iterdir() if file.suffix != '.pdf']
df_ = pd.DataFrame(index=files_path_list, columns=df.columns)
for col in df_.columns:
if col == directory.name:
one_hot_vector = np.ones(shape=(df_.shape[0],))
df_[col] = one_hot_vector
else:
one_hot_vector = | np.zeros(shape=(df_.shape[0],)) | numpy.zeros |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 14 11:32:08 2020
@author: jialiu
"""
import numpy as np
from scipy.stats import multivariate_normal
import math
from scipy.stats import invgamma
from scipy.stats import gamma
from scipy.stats import truncnorm
from scipy.stats import norm as normal
from scipy.optimize import minimize as minimize
from numpy.random import dirichlet as dirichlet
from collections import Counter
from numpy.linalg import norm as norm
from scipy.optimize import lsq_linear
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.ticker as tck
import matplotlib.legend as legend
import pmagpy.ipmag as ipmag
import pmagpy.pmag as pmag
import numpy as np
from random import randint
from scipy.stats import multinomial
import pdb
import sys
sys.path.insert(1, '/user_path/PSV/BCE19-dirPSV')
"""
we call some functions in pmagpy (Tauxe, L. et al., 2016) and PSV_dir_predictions (Brandt et al. 2020) software packages, there are two ways do so
either install the software package or save it in some where--- /user_path/PSV/BCE19-dirPSV ---and call it from its path.
We chose the 2nd way to call the functions in PSV_dir_predictions, since we made some modifications of one function s_lm2, see below:
--------------------------------------------------------------
def s_lm2(l,m,alpha,beta,sig10_2,sig11_2,sig20_2,sig21_2,sig22_2):
c_a = 0.547
if ((l-m)/2. - int((l-m)/2)) == 0:
s_lm2 = ((c_a**(2*l))*(alpha**2))/((l+1)*(2*l+1))
else:
s_lm2 = (c_a**(2*l))*((alpha*beta)**2)/((l+1)*(2*l+1))
if (l==1 and m==0):
if (sig10_2>=0): #----------allowed it to be zero in order to calculate those K_l^m terms by cof_K1, cof_K2 and cof_Sigma
#print('sig10=%.2f' % np.sqrt(sig10_2))
s_lm2 = sig10_2
if (l==1 and m==1):
if (sig11_2>=0): #----------allowed it to be zero in order to calculate those K_l^m terms by cof_K1, cof_K2 and cof_Sigma
#print('sig11=%.2f' % np.sqrt(sig11_2))
s_lm2 = sig11_2
if (l==2 and m==0):
if (sig20_2>=0): #----------allowed it to be zero in order to calculate those K_l^m terms by cof_K1, cof_K2 and cof_Sigma
#print('sig20=%.2f' % np.sqrt(sig20_2))
s_lm2 = sig20_2
if (l==2 and m==1):
if (sig21_2>=0): #----------allowed it to be zero in order to calculate those K_l^m terms by cof_K1, cof_K2 and cof_Sigma
#print('sig21=%.2f' % np.sqrt(sig21_2))
s_lm2 = sig21_2
if (l==2 and m==2):
if (sig22_2>=0): #----------allowed it to be zero in order to calculate those K_l^m terms by cof_K1, cof_K2 and cof_Sigma
#print('sig22=%.2f' % np.sqrt(sig22_2))
s_lm2 = sig22_2
return s_lm2
"""
import PSV_dir_predictions as psv
import Synthetic_directions_GGP as simGGP
def slice_samp_r_weight(r0, u,mu,K,p):
a = np.linalg.solve(K,u)
b = np.linalg.solve(K,mu)
a = np.dot(u.T, a)
b = np.dot(u.T, b)
def f(r):
return np.exp(-0.5*a*(r-b/a)**2)
nv = np.random.uniform(0, f(r0))
nv1 = -2*np.log(nv)/a
u1 = np.random.uniform(0, 1)
if nv1 < 0.0 or np.isinf(nv1):
nv1 = 0.0
tem1 = b/a
tem2 = np.sqrt(nv1)
g_lo = tem1 + np.max([-tem1, -tem2])
g_hi = tem1 + tem2
r = np.power( (g_hi**p -g_lo**p)*u1 + g_lo**p, 1/p)
if np.isnan(r):
r=1.0
return r
def KLdist(A,B):
KLdist = np.trace(np.linalg.solve(A,B)) - np.log(np.linalg.det(B)/np.linalg.det(A))
return KLdist
"""
Construct design matrix X from the zonal field for a given latitude and returns the horizontal and vertical components Btetha, Br
where a is the Earth radius and r is the distance you want to calculate from the center of earth
a_r = a/r
for example: a_r = 1.0 for the surface of Earth
"""
def deg_mat_zonal(lat,G4,a_r=1.0): #correct 07.1.2021
Theta = 90-lat
costheta = np.cos(np.deg2rad(Theta))
sintheta = np.sin(np.deg2rad(Theta))
Br1 = -2*(a_r**3)*costheta
Br2 = -(3/2)*(a_r**4)*(3*(costheta**2) - 1)
Br3 = -(a_r**5)*2*(5*(costheta**3) - 3*costheta)
Br4 = -(a_r**6)*(5/8)*(35*(costheta**4) - 30*(costheta**2)+3)
Bt1 = -(a_r**3)*sintheta
Bt2 = -(a_r**4)*3*sintheta*costheta
Bt3 = -(a_r**5)/2*(15*sintheta*(costheta**2) - 3*sintheta)
Bt4 = -(a_r**6)/2*(35*sintheta*(costheta**3) - 15*sintheta*costheta)
if G4==0.0:
X= np.array([[Bt1,Bt2,Bt3],[Br1,Br2,Br3]])
else:
X= np.array([[Bt1,Bt2,Bt3,Bt4], [Br1,Br2,Br3,Br4]])
return X
def sim_GGP_data(GGPmodel,lat,degree,k):
if k!=0:
lat_n = np.repeat(lat,k)
else:
lat_n = lat
inten = []
for i in range(len(lat_n)):
one_pt = simGGP.dii_fromGGPmodels(1,lat_n[i],GGPmodel, degree=degree)
dir_onept = pmag.dir2cart([ one_pt[0][0],one_pt[0][1]])
if i == 0:
GGPdata = dir_onept
else:
GGPdata = np.vstack((GGPdata, dir_onept))
inten.append(one_pt[0][2])
return GGPdata, inten, lat_n
def simuPN_GGP(GGPmodel,lat, degree, k):
# g10 = GGPmodel['g10']
# g20 = GGPmodel['g20']
# g30 = GGPmodel['g30']
sig10 = GGPmodel['sig10']
sig11 = GGPmodel['sig11']
sig20 = GGPmodel['sig20']
sig21 = GGPmodel['sig21']
sig22 = GGPmodel['sig22']
alpha = GGPmodel['alpha']
beta = GGPmodel['beta']
if k!=0:
lat_n = np.repeat(lat,3)
else:
lat_n = lat
n = len(lat_n)
u = np.zeros((n,3), dtype=float)
r = np.zeros((n,1), dtype=float)
for i in range(n):
Sigma_i = psv.Cov(alpha,beta,lat_n[i], degree,sig10**2,sig11**2,sig20**2,sig21**2,sig22**2)
mu_i = psv.m_TAF(GGPmodel, lat_n[i])
x = multivariate_normal.rvs(mu_i.tolist(), Sigma_i.tolist())
x_len = np.linalg.norm(x)
u[i] = x/x_len
r[i] = x_len
return u,r
#simulate xi
def simuXI(x0,var,n):
q = len(x0)
XI= np.zeros((q,n+1))
XIh= np.zeros((q,n+1))
for j in range(q):
low_x0 = x0[j] - var*x0[j]
hi_x0 = x0[j] + var*x0[j]
xi_j1 = np.random.uniform(low_x0,x0[j],size = n+1)
xi_j2 = np.random.uniform(x0[j],hi_x0,size = n+1)
XI[j] = xi_j1
XIh[j] = xi_j2
XIh2 = XIh + var*XIh
XI2 = XI - var*XI
return XI,XIh, XIh2,XI2
def log_mnorm(m,Sig,xi):
cov_len = len(xi)
u = xi - m
try:
a = np.linalg.solve(Sig,u)
except:
Sig = Sig + np.diag(np.ones(cov_len))*1e-5
a = np.linalg.solve(Sig,u)
return -0.5*(np.log(np.linalg.det(Sig)) + np.dot(u.T,a))
def nSigma(Y,lat,sig_paras,degree=8):
n=len(Y)
sig10_2, sig11_2,sig20_2,sig21_2, alpha, beta = sig_paras
Sigma = np.zeros((n,3,3))
detSig = np.zeros((n,1))
lat0 =0
for i in range(n):
if lat[i] != lat0:
Sigma_i = psv.Cov(alpha,beta,lat[i], degree,sig10_2,sig11_2,sig20_2,sig21_2,sig20_2)
lat0 =lat[i]
Sigma[i] = Sigma_i
detSig[i] = np.linalg.det(Sigma_i)
else:
Sigma[i] = Sigma[i-1]
detSig[i] = detSig[i-1]
return Sigma, detSig
def log_post_fun(u, cof_K, sig_paras):
n = len(u)
cov_len = cof_K.shape[0]
sumlik = 0
for i in range(n): #This step can be done in parallel! line 503--513
K = 0
for j in range(cov_len): #covariates j
K = K + sig_paras[j]* cof_K[j][i]
Kpre = Omega_mat(K)
A = u[i].reshape(3,1)*u[i].reshape(1,3)
unew = A
V = np.dot(unew, Kpre)
sumlik = sumlik + np.matrix.trace(V) + np.log(np.linalg.det(K) )
lik = -0.5*sumlik
return lik
def log_post_funIG(u, cof_K, sig_paras, a1, b1):
#place an exponential prior
n = len(u)
cov_len = cof_K.shape[0]
sumlik = 0
for i in range(n): #This step can be done in parallel! l
K = 0
for j in range(cov_len): #covariates j
K = K + sig_paras[j]* cof_K[j][i]
Kpre = Omega_mat(K)
A = u[i].reshape(3,1)*u[i].reshape(1,3)
unew = A #+ n* K inverse exponential prior
V = np.dot(unew, Kpre)
sumlik = sumlik + np.matrix.trace(V) + np.log(np.linalg.det(K) )
lik = -0.5*sumlik
def log_inverse_gamma(x, a,b):
log_ig = 0
for j in range(len(x)):
log_ig = log_ig - ((a[j] + 1)*np.log(x[j]) + b[j]/x[j])
return log_ig
a1= 0.01
b1 =0.01
if cov_len == 5:
lik = lik + log_inverse_gamma(sig_paras, | np.ones(5) | numpy.ones |
#!/bin/env python
# -*- coding: utf-8 -*-
"""
Python matplotlib
Make whisker plots of ToE hist+RCP85 vs. histNat (or Picontrol) in all 5 domains, with x axis being the GSAT anomaly
"""
import sys
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
from netCDF4 import Dataset as open_ncfile
from maps_matplot_lib import defVarmme
from modelsDef import defModels, defModelsCO2piC
from matplotlib.ticker import AutoMinorLocator, MultipleLocator
import glob
import os
import datetime
from functions_ToE import read_toe_rcp85, read_gsat_rcp85, read_toe_1pctCO2, read_gsat_1pctCO2
# ----- Work -----
# Directory
indir_rcphn = '/home/ysilvy/Density_bining/Yona_analysis/data/toe_rcp85_histNat_average_signal/'
indir_rcppiC = '/home/ysilvy/Density_bining/Yona_analysis/data/toe_rcp85_PiControl_average_signal/'
indir_CO2piC = '/home/ysilvy/Density_bining/Yona_analysis/data/toe_1pctCO2vsPiC_average_signal/'
indir_gsat = '/home/ysilvy/Density_bining/Yona_analysis/data/gsat/'
models = defModels()
modelsCO2 = defModelsCO2piC()
domains = ['Southern ST', 'SO', 'Northern ST', 'North Atlantic', 'North Pacific']
varname = defVarmme('salinity'); v = 'S'
method = 'average_signal' # Average signal and noise in the box, then compute ToE
method_noise_histNat = 'average_histNat' # Average histNat (or PiControl) in the specified domains then determine the std of this averaged value
method_noise_piC = 'average_piC'
# output format
# outfmt = 'view'
outfmt = 'save'
# ===========
# ----- Variables ------
var = varname['var_zonal_w/bowl']
legVar = varname['legVar']
unit = varname['unit']
timN = 240
degree_sign= u'\N{DEGREE SIGN}'
# ------ Define directories, etc.. -----
indir1 = indir_rcphn
varread1 = var+'ToE2'
ignore1 = []
color = '#004f82'
# ----- Read ToE and tas for each model ------
listfiles1 = sorted(glob.glob(indir1 + method_noise_histNat + '/*'+legVar+'_toe_rcp_histNat*.nc'))
nmodels1 = len(listfiles1)-len(ignore1)
# Read ToE
varToEA_1, varToEP_1, varToEI_1, nMembers1 = read_toe_rcp85(varread1,listfiles1,ignore1,len(domains))
# Read GSAT
gsat_anom1 = read_gsat_rcp85(indir_gsat+'hist-rcp85/',listfiles1,ignore1)
nruns1 = np.sum(nMembers1)
nruns1 = int(nruns1)
# Smooth gsat anomaly time series
da_gsat_anom1 = xr.DataArray(gsat_anom1, dims=('time','members'))
gsat_anom1_smooth = da_gsat_anom1.rolling(time=10,center=True,min_periods=1).mean()
# ---- Associate ToE to GSAT anomaly ----
maskdata = np.nan
time1 = np.arange(1861,2101)
# Make new data associating each ToE to its corresponding temperature anomaly
def associate_gsat_ToE(varToE,time,gsat_anom):
""" Make new data array associating each ToE to its corresponding temperature anomaly """
ndomains = varToE.shape[1]
nruns = varToE.shape[0]
varToE_gsat = np.ma.empty((nruns,ndomains))
for idomain in range(ndomains): # Loop on regions
for irun in range(nruns): # Loop on all realizations
toe = varToE[irun,idomain] # Read ToE
if not np.ma.is_masked(toe):
iyear = np.argwhere(time==toe)[0][0] # Read index of said ToE in time vector
varToE_gsat[irun,idomain] = gsat_anom[iyear,irun] # Fill new data array with gsat anomaly
else:
varToE_gsat[irun,idomain] = np.ma.masked
return varToE_gsat
varToEA_1_gsat = associate_gsat_ToE(varToEA_1,time1,gsat_anom1_smooth)
varToEP_1_gsat = associate_gsat_ToE(varToEP_1,time1,gsat_anom1_smooth)
varToEI_1_gsat = associate_gsat_ToE(varToEI_1,time1,gsat_anom1_smooth)
# -- Median of members
nruns=0
medvarToEA_1_gsat = np.ma.masked_all((nmodels1,len(domains)))
medvarToEP_1_gsat = np.ma.masked_all((nmodels1,len(domains)))
medvarToEI_1_gsat = np.ma.masked_all((nmodels1,len(domains)))
for i in range(nmodels1):
medvarToEA_1_gsat[i,:] = np.ma.median(varToEA_1_gsat[nruns:nruns+int(nMembers1[i]),:],axis=0)
medvarToEP_1_gsat[i,:] = np.ma.median(varToEP_1_gsat[nruns:nruns+int(nMembers1[i]),:],axis=0)
medvarToEI_1_gsat[i,:] = np.ma.median(varToEI_1_gsat[nruns:nruns+int(nMembers1[i]),:],axis=0)
nruns = nruns + int(nMembers1[i])
# -- Organize data
# New domain labels
new_domains = ['SO subpolar', 'SH subtropics', 'NH subtropics', 'subpolar North Pacific']
# regroup previous "North Atlantic" with NH subtropics
data1 = [medvarToEA_1_gsat[:,1], medvarToEP_1_gsat[:,1], medvarToEI_1_gsat[:,1], maskdata, medvarToEA_1_gsat[:,0], medvarToEP_1_gsat[:,0], medvarToEI_1_gsat[:,0], maskdata, medvarToEA_1_gsat[:,3], medvarToEP_1_gsat[:,2], maskdata, medvarToEP_1_gsat[:,4]]
# ----- Make pseudo-time axis -----
# Choose which years to show and find corresponding gsat anomaly
xgsat = | np.arange(-1,6.01,0.02) | numpy.arange |
import numpy as np
import tensorflow as tf
from tensorflow.contrib.rnn import LSTMCell, GRUCell
import sys
import time
from sklearn.metrics import f1_score
import random
class han(object):
'''
hierarchical attention network by yang et. al.
parameters:
- embedding_matrix: numpy array
numpy array of word embeddings
each row should represent a word embedding
NOTE: the word index 0 is dropped, so the first row is ignored
- num_classes: int
number of output classes
- max_sents: int
maximum number of sentences/lines per document
- max_words: int
maximum number of words per sentence/line
- rnn_type: string (default: "gru")
rnn cells to use, can be "gru" or "lstm"
- rnn_units: int (default: 50)
number of rnn units to use for embedding layers
- attention_size: int (default: 200)
number of dimensions to use for attention hidden layer
- lr: float (default: 0.0001)
learning rate for adam optimizer
methods:
- train(data,labels,batch_size=64,epochs=30,patience=5,
validation_data,savebest=False,filepath=None)
train network on given data
- predict(data)
return the predicted labels for given data
- score(data,labels)
return the micro and macro f-scores of predicted labels on given data
- save(filepath)
save the model weights to a file
- load(filepath)
load model weights from a file
'''
def __init__(self,embedding_matrix,num_classes,max_sents,max_words,rnn_type="gru",
rnn_units=200,attention_size=300,lr=0.0001):
self.rnn_units = rnn_units
if rnn_type == "gru":
self.rnn_cell = GRUCell
elif rnn_type == "lstm":
self.rnn_cell = LSTMCell
else:
raise Exception("rnn_type parameter must be set to gru or lstm")
self.embedding_matrix = embedding_matrix.astype(np.float32)
self.ms = max_sents
self.mw = max_words
self.attention_size = attention_size
#doc input
self.doc_input = tf.placeholder(tf.int32, shape=[None,max_sents,max_words])
doc_embed = tf.map_fn(self._han_step,self.doc_input,dtype=tf.float32)
#classification functions
output = tf.layers.dense(doc_embed,num_classes,
kernel_initializer=tf.contrib.layers.xavier_initializer())
self.prediction = tf.nn.softmax(output)
#loss, accuracy, and training functions
self.labels = tf.placeholder(tf.int32,shape=[None])
self.loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=output,labels=self.labels))
self.optimizer = tf.train.AdamOptimizer(lr,0.9,0.99).minimize(self.loss)
#init op
self.saver = tf.train.Saver()
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
def _han_step(self,doc):
words_per_line = tf.math.count_nonzero(doc,1)
num_lines = tf.math.count_nonzero(words_per_line)
max_words_ = tf.reduce_max(words_per_line)
doc_input_reduced = doc[:num_lines,:max_words_]
num_words = words_per_line[:num_lines]
#word embeddings
word_embeds = tf.gather(tf.get_variable('embeddings',
initializer=self.embedding_matrix,dtype=tf.float32),
doc_input_reduced)
#word rnn layer
with tf.variable_scope('word',initializer=tf.contrib.layers.xavier_initializer()):
[word_outputs_fw,word_outputs_bw],_ = \
tf.nn.bidirectional_dynamic_rnn(
self.rnn_cell(self.rnn_units),self.rnn_cell(self.rnn_units),
word_embeds,sequence_length=num_words,dtype=tf.float32)
word_outputs = tf.concat((word_outputs_fw,word_outputs_bw),2)
#word attention
seq_mask = tf.reshape(tf.sequence_mask(num_words,max_words_),[-1])
word_u = tf.layers.dense(tf.reshape(word_outputs,[-1,self.rnn_units*2]),
self.attention_size,tf.nn.tanh,
kernel_initializer=tf.contrib.layers.xavier_initializer())
word_exps = tf.layers.dense(word_u,1,tf.exp,False,
kernel_initializer=tf.contrib.layers.xavier_initializer())
word_exps = tf.where(seq_mask,word_exps,tf.ones_like(word_exps)*0.000000001)
word_alpha = tf.reshape(word_exps,[-1,max_words_,1])
word_alpha /= tf.reshape(tf.reduce_sum(word_alpha,1),[-1,1,1])
sent_embeds = tf.reduce_sum(word_outputs*word_alpha,1)
sent_embeds = tf.expand_dims(sent_embeds,0)
#sentence rnn layer
with tf.variable_scope('sentence',initializer=tf.contrib.layers.xavier_initializer()):
[sent_outputs_fw,sent_outputs_bw],_ = \
tf.nn.bidirectional_dynamic_rnn(
self.rnn_cell(self.rnn_units),self.rnn_cell(self.rnn_units),
sent_embeds,sequence_length=tf.expand_dims(num_lines,0),dtype=tf.float32)
sent_outputs = tf.concat((sent_outputs_fw,sent_outputs_bw),2)
sent_outputs = tf.squeeze(sent_outputs,[0])
#sentence attention
u = tf.layers.dense(sent_outputs,self.attention_size,tf.nn.tanh,
kernel_initializer=tf.contrib.layers.xavier_initializer())
exps = tf.layers.dense(u,1,tf.exp,False,
kernel_initializer=tf.contrib.layers.xavier_initializer())
atten = exps/tf.reduce_sum(exps)
doc_embed = tf.transpose(tf.matmul(tf.transpose(sent_outputs),atten))
return tf.squeeze(doc_embed,[0])
def train(self,data,labels,batch_size=64,epochs=30,patience=5,
validation_data=None,savebest=False,filepath=None):
'''
train network on given data
parameters:
- data: numpy array
3d numpy array (doc x sentence x word ids) of input data
- labels: numpy array
1d numpy array of labels for given data
- batch size: int (default: 64)
batch size to use for training
- epochs: int (default: 30)
number of epochs to train for
- patience: int (default: 5)
training stops after no improvement in validation score
for this number of epochs
- validation_data: tuple (optional)
tuple of numpy arrays (X,y) representing validation data
- savebest: boolean (default: False)
set to True to save the best model based on validation score per epoch
- filepath: string (optional)
path to save model if savebest is set to True
outputs:
None
'''
if savebest==True and filepath==None:
raise Exception("Please enter a path to save the network")
if validation_data:
validation_size = len(validation_data[0])
else:
validation_size = len(data)
print('training network on %i documents, validation on %i documents' \
% (len(data), validation_size))
#track best model for saving
prevbest = 0
pat_count = 0
for ep in range(epochs):
#shuffle data
xy = list(zip(data,labels))
random.shuffle(xy)
data,labels = zip(*xy)
data = list(data)
labels = np.array(labels)
y_pred = []
start_time = time.time()
#train
for start in range(0,len(data),batch_size):
#get batch index
if start+batch_size < len(data):
stop = start+batch_size
else:
stop = len(data)
feed_dict = {self.doc_input:data[start:stop],
self.labels:labels[start:stop]}
pred,cost,_ = self.sess.run([self.prediction,self.loss,self.optimizer],
feed_dict=feed_dict)
#track correct predictions
y_pred.append(np.argmax(pred,1))
sys.stdout.write("epoch %i, sample %i of %i, loss: %f \r"\
% (ep+1,stop,len(data),cost))
sys.stdout.flush()
#checkpoint after every epoch
print("\ntraining time: %.2f" % (time.time()-start_time))
y_pred = np.concatenate(y_pred,0)
micro = f1_score(labels,y_pred,average='micro')
macro = f1_score(labels,y_pred,average='macro')
print("epoch %i training micro/macro: %.4f, %.4f" % (ep+1,micro,macro))
micro,macro = self.score(validation_data[0],validation_data[1],
batch_size=batch_size)
print("epoch %i validation micro/macro: %.4f, %.4f" % (ep+1,micro,macro))
#save if performance better than previous best
if micro >= prevbest:
prevbest = micro
pat_count = 0
if savebest:
self.save(filepath)
else:
pat_count += 1
if pat_count >= patience:
break
#reset timer
start_time = time.time()
def predict(self,data,batch_size=64):
'''
return the predicted labels for given data
parameters:
- data: numpy array
3d numpy array (doc x sentence x word ids) of input data
- batch size: int (default: 64)
batch size to use during inference
outputs:
1d numpy array of predicted labels for input data
'''
y_pred = []
for start in range(0,len(data),batch_size):
#get batch index
if start+batch_size < len(data):
stop = start+batch_size
else:
stop = len(data)
feed_dict = {self.doc_input:data[start:stop]}
prob = self.sess.run(self.prediction,feed_dict=feed_dict)
y_pred.append(np.argmax(prob,1))
sys.stdout.write("processed %i of %i records \r" \
% (stop,len(data)))
sys.stdout.flush()
print()
y_pred = np.concatenate(y_pred,0)
return y_pred
def score(self,data,labels,batch_size=64):
'''
return the micro and macro f-score of predicted labels on given data
parameters:
- data: numpy array
3d numpy array (doc x sentence x word ids) of input data
- labels: numpy array
1d numpy array of labels for given data
- batch size: int (default: 64)
batch size to use during inference
outputs:
tuple of floats (micro,macro) representing micro and macro f-score
of predicted labels on given data
'''
y_pred = self.predict(data,batch_size)
micro = f1_score(labels,y_pred,average='micro')
macro = f1_score(labels,y_pred,average='macro')
return micro,macro
def save(self,filename):
'''
save the model weights to a file
parameters:
- filepath: string
path to save model weights
outputs:
None
'''
self.saver.save(self.sess,filename)
def load(self,filename):
'''
load model weights from a file
parameters:
- filepath: string
path from which to load model weights
outputs:
None
'''
self.saver.restore(self.sess,filename)
if __name__ == "__main__":
'''
dummy test data
'''
#params
batch_size = 64
lr = 0.0001
epochs = 5
train_samples = 10000
test_samples = 10000
vocab_size = 750
max_lines = 50
max_words = 10
num_classes = 10
embedding_size = 100
rnn_units = 50
attention_size = 100
#create data
vocab = | np.random.rand(vocab_size,embedding_size) | numpy.random.rand |
import unittest
import numpy as np
from nptest import nptest
from scipy.interpolate import interp1d
class Test_NumericOperationsTests(unittest.TestCase):
def test_add_operations(self):
a = np.arange(0, 20, 1, dtype = np.int16)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a + 8
print(b)
print(b.shape)
print(b.strides)
a = np.arange(0, 20, 1, dtype = np.int64)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a + 2400
print(b)
print(b.shape)
print(b.strides)
def test_add_operations_2(self):
a = np.arange(0, 20, 1, dtype = np.int16)
a = a.reshape(5,-1)
print(a)
b = np.array([2], dtype = np.int16);
c = a + b;
print(c)
b = np.array([10,20,30,40], dtype = np.int16);
d = a + b;
print(d)
def test_subtract_operations(self):
a = np.arange(0, 20, 1, dtype = np.int16)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a - 8
print(b)
print(b.shape)
print(b.strides)
a = np.arange(0, 20, 1, dtype = np.int64)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a - 2400
print(b)
print(b.shape)
print(b.strides)
def test_subtract_operations_2(self):
a = np.arange(100, 102, 1, dtype = np.int16)
b = np.array([1,63], dtype = np.int16)
c = a-b
print(a)
print("****")
print(b)
print("****")
print(c)
print("****")
a = np.arange(0, 4, 1, dtype = np.int16).reshape((2,2))
b = np.array([65,78], dtype = np.int16).reshape(1,2)
c = a-b
print(a)
print("****")
print(b)
print("****")
print(c)
def test_multiply_operations(self):
a = np.arange(0, 20, 1, dtype = np.int16)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a * 8
print(b)
print(b.shape)
print(b.strides)
a = np.arange(0, 20, 1, dtype = np.int64)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a * 2400
print(b)
print(b.shape)
print(b.strides)
def test_division_operations(self):
a = np.arange(20000, 20020, 1, dtype = np.int16)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a / 8
print(b)
print(b.shape)
print(b.strides)
a = np.arange(2000000, 2000020, 1, dtype = np.int64)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a / 2400
print(b)
print(b.shape)
print(b.strides)
def test_leftshift_operations(self):
a = np.arange(0, 20, 1, dtype = np.int16)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a << 8
print(b)
print(b.shape)
print(b.strides)
a = np.arange(0, 20, 1, dtype = np.int64)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a << 24
print(b)
print(b.shape)
print(b.strides)
def test_leftshift_operations2(self):
a = np.arange(0, 20, 1, dtype = np.int8)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a << 16
print(b)
print(b.shape)
print(b.strides)
a = np.arange(0, 20, 1, dtype = np.int64)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a << 48
print(b)
print(b.shape)
print(b.strides)
def test_rightshift_operations(self):
a = np.arange(20000, 20020, 1, dtype = np.int16)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a >> 8
print(b)
print(b.shape)
print(b.strides)
a = np.arange(2123450, 2123470, 1, dtype = np.int64)
a = a.reshape(5,-1)
print(a)
print(a.shape)
print(a.strides)
b = a >> 8
print(b)
print(b.shape)
print(b.strides)
def test_bitwiseand_operations(self):
a = np.arange(0, 32, 1, dtype = np.int16)
print(a)
b = a & 0x0f
print(b)
a = np.arange(2048, 2048+32, 1, dtype = np.int64)
print(a)
b = a & 0xFF
print(b)
def test_bitwiseor_operations(self):
a = np.arange(0, 32, 1, dtype = np.int16)
print(a)
b = a | 0x100
print(b)
a = np.arange(2048, 2048+32, 1, dtype = np.int64)
print(a)
b = a | 0x1000
print(b)
def test_bitwisexor_operations(self):
a = np.arange(0, 32, 1, dtype = np.int16)
print(a)
b = a ^ 0xAAA
print(b)
a = np.arange(2048, 2048+32, 1, dtype = np.int64)
print(a)
b = a ^ 0xAAAA
print(b)
def test_remainder_operations(self):
a = np.arange(0, 32, 1, dtype = np.int16)
print(a)
b = a % 6
print(b)
a = np.arange(2048, 2048+32, 1, dtype = np.int64)
print(a)
b = a % 6
print(b)
def test_negative_operations(self):
a = np.arange(0, 32, 1, dtype = np.int16)
print(a)
b = -a
print(b)
def test_invert_operations(self):
a = np.arange(-32, 32, 1, dtype = np.int16)
print(a)
b = ~a
print(b)
def test_LESS_operations(self):
a = np.arange(-5, 5, 1, dtype = np.int16)
print(a)
b = a < -2
print(b)
def test_LESSEQUAL_operations(self):
a = np.arange(-5, 5, 1, dtype = np.int16)
print(a)
b = a <= -2
print(b)
def test_EQUAL_operations(self):
a = np.arange(-5, 5, 1, dtype = np.int16)
print(a)
b = a == -2
print(b)
def test_NOTEQUAL_operations(self):
a = np.arange(-5, 5, 1, dtype = np.int16)
print(a)
b = a != -2
print(b)
def test_GREATER_operations(self):
a = np.arange(-5, 5, 1, dtype = np.int16)
print(a)
b = a > -2
print(b)
def test_GREATEREQUAL_operations(self):
a = np.arange(-5, 5, 1, dtype = np.int16)
print(a)
b = a >= -2
print(b)
def test_LOGICALOR_operations(self):
a = np.arange(-5, 5, 1, dtype = np.int16)
print(a)
b = np.logical_or(a == 0, False)
print(b)
def test_arrayarray_or(self):
a = np.arange(0, 32, 1, dtype = np.int16)
b = np.arange(33, 33+32, 1, dtype = np.int16)
c = a | b
print("A")
print(a)
print("B")
print(b)
print("C")
print(c)
def test_bitwise_and(self):
x = np.arange(1023, 1039, dtype= np.uint32).reshape(2, -1)
y = np.bitwise_and(x, 0x3FF);
z = x & 0x3FF;
print(x)
print(y)
print(z)
return
def test_bitwise_or(self):
x = np.arange(1023, 1039, dtype= np.uint32).reshape(2, -1)
y = np.bitwise_or(x, 0x10);
z = x | 0x10;
print(x)
print(y)
print(z)
return
def test_bitwise_xor(self):
a = np.bitwise_xor(13, 17)
print(a)
b = np.bitwise_xor(31, 5)
print(b)
c = np.bitwise_xor([31,3], 5)
print(c)
d = np.bitwise_xor([31,3], [5,6])
print(d)
e = np.bitwise_xor([True, True], [False, True])
print(e)
return
def test_bitwise_not(self):
a = np.bitwise_not(13)
print(a)
b = | np.bitwise_not(31) | numpy.bitwise_not |
"""Utilities for plotting."""
import numpy as np
import warnings
try:
import matplotlib.pyplot as plt
from matplotlib import artist
from matplotlib.patches import FancyArrowPatch
from mpl_toolkits.mplot3d import proj3d
from mpl_toolkits.mplot3d.art3d import Line3D, Text3D, Poly3DCollection, Line3DCollection
from .transformations import transform
from .rotations import unitx, unitz, perpendicular_to_vectors, norm_vector
class Frame(artist.Artist):
"""A Matplotlib artist that displays a frame represented by its basis.
Parameters
----------
A2B : array-like, shape (4, 4)
Transform from frame A to frame B
label : str, optional (default: None)
Name of the frame
s : float, optional (default: 1)
Length of basis vectors
Other arguments except 'c' and 'color' are passed on to Line3D.
"""
def __init__(self, A2B, label=None, s=1.0, **kwargs):
super(Frame, self).__init__()
if "c" in kwargs:
kwargs.pop("c")
if "color" in kwargs:
kwargs.pop("color")
self.s = s
self.x_axis = Line3D([], [], [], color="r", **kwargs)
self.y_axis = Line3D([], [], [], color="g", **kwargs)
self.z_axis = Line3D([], [], [], color="b", **kwargs)
self.draw_label = label is not None
self.label = label
if self.draw_label:
self.label_indicator = Line3D([], [], [], color="k", **kwargs)
self.label_text = Text3D(0, 0, 0, text="", zdir="x")
self.set_data(A2B, label)
def set_data(self, A2B, label=None):
"""Set the transformation data.
Parameters
----------
A2B : array-like, shape (4, 4)
Transform from frame A to frame B
label : str, optional (default: None)
Name of the frame
"""
R = A2B[:3, :3]
p = A2B[:3, 3]
for d, b in enumerate([self.x_axis, self.y_axis, self.z_axis]):
b.set_data(np.array([p[0], p[0] + self.s * R[0, d]]),
np.array([p[1], p[1] + self.s * R[1, d]]))
b.set_3d_properties(np.array([p[2], p[2] + self.s * R[2, d]]))
if self.draw_label:
if label is None:
label = self.label
label_pos = p + 0.5 * self.s * (R[:, 0] + R[:, 1] + R[:, 2])
self.label_indicator.set_data(
np.array([p[0], label_pos[0]]),
np.array([p[1], label_pos[1]]))
self.label_indicator.set_3d_properties(
np.array([p[2], label_pos[2]]))
self.label_text.set_text(label)
self.label_text.set_position([label_pos[0], label_pos[1]])
self.label_text.set_3d_properties(label_pos[2], zdir="x")
@artist.allow_rasterization
def draw(self, renderer, *args, **kwargs):
"""Draw the artist."""
for b in [self.x_axis, self.y_axis, self.z_axis]:
b.draw(renderer, *args, **kwargs)
if self.draw_label:
self.label_indicator.draw(renderer, *args, **kwargs)
self.label_text.draw(renderer, *args, **kwargs)
super(Frame, self).draw(renderer, *args, **kwargs)
def add_frame(self, axis):
"""Add the frame to a 3D axis."""
for b in [self.x_axis, self.y_axis, self.z_axis]:
axis.add_line(b)
if self.draw_label:
axis.add_line(self.label_indicator)
axis._add_text(self.label_text)
class LabeledFrame(Frame):
"""Displays a frame represented by its basis with axis labels.
Parameters
----------
A2B : array-like, shape (4, 4)
Transform from frame A to frame B
label : str, optional (default: None)
Name of the frame
s : float, optional (default: 1)
Length of basis vectors
Other arguments except 'c' and 'color' are passed on to Line3D.
"""
def __init__(self, A2B, label=None, s=1.0, **kwargs):
self.x_label = Text3D(0, 0, 0, text="", zdir="x")
self.y_label = Text3D(0, 0, 0, text="", zdir="x")
self.z_label = Text3D(0, 0, 0, text="", zdir="x")
super(LabeledFrame, self).__init__(A2B, label=None, s=1.0, **kwargs)
def set_data(self, A2B, label=None):
"""Set the transformation data.
Parameters
----------
A2B : array-like, shape (4, 4)
Transform from frame A to frame B
label : str, optional (default: None)
Name of the frame
"""
super(LabeledFrame, self).set_data(A2B, label)
R = A2B[:3, :3]
p = A2B[:3, 3]
x_label_location = p + 1.1 * self.s * R[:, 0]
y_label_location = p + 1.1 * self.s * R[:, 1]
z_label_location = p + 1.1 * self.s * R[:, 2]
self.x_label.set_text("x")
self.x_label.set_position(x_label_location[:2])
self.x_label.set_3d_properties(x_label_location[2], zdir="x")
self.y_label.set_text("y")
self.y_label.set_position(y_label_location[:2])
self.y_label.set_3d_properties(y_label_location[2], zdir="x")
self.z_label.set_text("z")
self.z_label.set_position(z_label_location[:2])
self.z_label.set_3d_properties(z_label_location[2], zdir="x")
@artist.allow_rasterization
def draw(self, renderer, *args, **kwargs):
"""Draw the artist."""
self.x_label.draw(renderer, *args, **kwargs)
self.y_label.draw(renderer, *args, **kwargs)
self.z_label.draw(renderer, *args, **kwargs)
super(LabeledFrame, self).draw(renderer, *args, **kwargs)
def add_frame(self, axis):
"""Add the frame to a 3D axis."""
super(LabeledFrame, self).add_frame(axis)
axis._add_text(self.x_label)
axis._add_text(self.y_label)
axis._add_text(self.z_label)
class Trajectory(artist.Artist):
"""A Matplotlib artist that displays a trajectory.
Parameters
----------
H : array-like, shape (n_steps, 4, 4)
Sequence of poses represented by homogeneous matrices
show_direction : bool, optional (default: True)
Plot an arrow to indicate the direction of the trajectory
n_frames : int, optional (default: 10)
Number of frames that should be plotted to indicate the rotation
s : float, optional (default: 1)
Scaling of the frames that will be drawn
Other arguments are passed onto Line3D.
"""
def __init__(self, H, show_direction=True, n_frames=10, s=1.0, **kwargs):
super(Trajectory, self).__init__()
self.show_direction = show_direction
self.trajectory = Line3D([], [], [], **kwargs)
self.key_frames = [Frame(np.eye(4), s=s, **kwargs)
for _ in range(n_frames)]
if self.show_direction:
self.direction_arrow = Arrow3D(
[0, 0], [0, 0], [0, 0],
mutation_scale=20, lw=1, arrowstyle="-|>", color="k")
self.set_data(H)
def set_data(self, H):
"""Set the trajectory data.
Parameters
----------
H : array-like, shape (n_steps, 4, 4)
Sequence of poses represented by homogeneous matrices
"""
positions = H[:, :3, 3]
self.trajectory.set_data(positions[:, 0], positions[:, 1])
self.trajectory.set_3d_properties(positions[:, 2])
key_frames_indices = np.linspace(
0, len(H) - 1, len(self.key_frames), dtype=np.int)
for i, key_frame_idx in enumerate(key_frames_indices):
self.key_frames[i].set_data(H[key_frame_idx])
if self.show_direction:
start = 0.8 * positions[0] + 0.2 * positions[-1]
end = 0.2 * positions[0] + 0.8 * positions[-1]
self.direction_arrow.set_data(
[start[0], end[0]], [start[1], end[1]], [start[2], end[2]])
@artist.allow_rasterization
def draw(self, renderer, *args, **kwargs):
"""Draw the artist."""
self.trajectory.draw(renderer, *args, **kwargs)
for key_frame in self.key_frames:
key_frame.draw(renderer, *args, **kwargs)
if self.show_direction:
self.direction_arrow.draw(renderer)
super(Trajectory, self).draw(renderer, *args, **kwargs)
def add_trajectory(self, axis):
"""Add the trajectory to a 3D axis."""
axis.add_line(self.trajectory)
for key_frame in self.key_frames:
key_frame.add_frame(axis)
if self.show_direction:
axis.add_artist(self.direction_arrow)
class Arrow3D(FancyArrowPatch): # http://stackoverflow.com/a/11156353/915743
"""A Matplotlib patch that represents an arrow in 3D."""
def __init__(self, xs, ys, zs, *args, **kwargs):
super(Arrow3D, self).__init__((0, 0), (0, 0), *args, **kwargs)
self._verts3d = xs, ys, zs
def set_data(self, xs, ys, zs):
"""Set the arrow data.
Parameters
----------
xs : iterable
List of x positions
ys : iterable
List of y positions
zs : iterable
List of z positions
"""
self._verts3d = xs, ys, zs
def draw(self, renderer):
"""Draw the patch."""
xs3d, ys3d, zs3d = self._verts3d
xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M)
self.set_positions((xs[0], ys[0]), (xs[1], ys[1]))
super(Arrow3D, self).draw(renderer)
def make_3d_axis(ax_s, pos=111):
"""Generate new 3D axis.
Parameters
----------
ax_s : float, optional (default: 1)
Scaling of the new matplotlib 3d axis
pos : int, optional (default: 111)
Position indicator (nrows, ncols, plot_number)
Returns
-------
ax : Matplotlib 3d axis
New axis
"""
try:
ax = plt.subplot(pos, projection="3d", aspect="equal")
except NotImplementedError:
# HACK: workaround for bug in new matplotlib versions (ca. 3.02):
# "It is not currently possible to manually set the aspect"
ax = plt.subplot(pos, projection="3d")
plt.setp(ax, xlim=(-ax_s, ax_s), ylim=(-ax_s, ax_s), zlim=(-ax_s, ax_s),
xlabel="X", ylabel="Y", zlabel="Z")
return ax
def plot_vector(ax=None, start=np.zeros(3), direction= | np.array([1, 0, 0]) | numpy.array |
"""
Time-domain CSEM for a resistive cube in a deep marine setting
==============================================================
"""
import empymod
import discretize
try:
from pymatsolver import Pardiso as Solver
except ImportError:
from SimPEG import SolverLU as Solver
import numpy as np
import SimPEG
from SimPEG import maps
from SimPEG.electromagnetics import time_domain as TDEM
import matplotlib.pyplot as plt
###############################################################################
# (A) Model
# ---------
fig = plt.figure(figsize=(5.5, 3))
ax = plt.gca()
# Seafloor and background
plt.plot([-200, 2200], [-2000, -2000], "-", c=".4")
bg = plt.Rectangle((-500, -3000), 3000, 1000, facecolor="black", alpha=0.1)
ax.add_patch(bg)
# Plot survey
plt.plot([-50, 50], [-1950, -1950], "*-", ms=8, c="k")
plt.plot(2000, -2000, "v", ms=8, c="k")
plt.text(0, -1900, r"Tx", horizontalalignment="center")
plt.text(2000, -1900, r"Rx", horizontalalignment="center")
# Plot cube
plt.plot([450, 1550, 1550, 450, 450], [-2300, -2300, -2700, -2700, -2300], "k-")
plt.plot([300, 1400, 1400, 300, 300], [-2350, -2350, -2750, -2750, -2350], "k:")
plt.plot([600, 600, 1700, 1700, 1550], [-2300, -2250, -2250, -2650, -2650], "k:")
plt.plot([300, 600], [-2350, -2250], "k:")
plt.plot([1400, 1700], [-2350, -2250], "k:")
plt.plot([300, 450], [-2750, -2700], "k:")
plt.plot([1400, 1700], [-2750, -2650], "k:")
tg = plt.Rectangle((450, -2700), 1100, 400, facecolor="black", alpha=0.2)
ax.add_patch(tg)
# Annotate resistivities
plt.text(
1000, -1925, r"$\rho_\mathrm{sea}=0.3\,\Omega\,$m", horizontalalignment="center"
)
plt.text(
1000, -2150, r"$\rho_\mathrm{bg}=1.0\,\Omega\,$m", horizontalalignment="center"
)
plt.text(
1000, -2550, r"$\rho_\mathrm{tg}=100.0\,\Omega\,$m", horizontalalignment="center"
)
plt.text(1500, -2800, r"$y=-500\,$m", horizontalalignment="left")
plt.text(1750, -2650, r"$y=500\,$m", horizontalalignment="left")
# Ticks and labels
plt.xticks(
[-50, 50, 450, 1550, 2000],
["$-50~$ $~$ $~$", " $~50$", "$450$", "$1550$", "$2000$"],
)
plt.yticks(
[-1950, -2000, -2300, -2700], ["$-1950$\n", "\n$-2000$", "$-2300$", "$-2700$"]
)
plt.xlim([-200, 2200])
plt.ylim([-3000, -1800])
plt.xlabel("$x$ (m)")
plt.ylabel("$z$ (m)")
plt.tight_layout()
plt.show()
###############################################################################
# Resistivities
res_sea = 0.3
res_bg = 1.0
res_tg = 100.0
# Seafloor
seafloor = -2000
# Target dimension
tg_x = [450, 1550]
tg_y = [-500, 500]
tg_z = [-2700, -2300]
###############################################################################
# (B) Survey
# ----------
# Source: 100 m x-directed diplole at the origin,
# 50 m above seafloor, src [x1, x2, y1, y2, z1, z2]
src = [-50, 50, 0, 0, -1950, -1950]
# Receiver: x-directed dipole at 2 km on the
# seafloor, rec = [x, y, z, azimuth, dip]
rec = [2000, 0, -2000, 0, 0]
# Times to compute, 0.1 - 10 s, 301 steps
times = np.logspace(-1, 1, 301)
###############################################################################
# (C) Modelling parameters
# ------------------------
#
# Check diffusion distances
# """""""""""""""""""""""""
# Get min/max diffusion distances for the two halfspaces.
diff_dist0 = 1261 * np.sqrt(np.r_[times * res_sea, times * res_sea])
diff_dist1 = 1261 * np.sqrt(np.r_[times * res_bg, times * res_bg])
diff_dist2 = 1261 * np.sqrt(np.r_[times * res_tg, times * res_tg])
print("Min/max diffusion distance:")
print(f"- Water :: {diff_dist0.min():8.0f} / {diff_dist0.max():8.0f} m.")
print(f"- Background :: {diff_dist1.min():8.0f} / {diff_dist1.max():8.0f} m.")
print(f"- Target :: {diff_dist2.min():8.0f} / {diff_dist2.max():8.0f} m.")
###############################################################################
# Time-steps
# """"""""""
# Time steps
time_steps = [1e-1, (1e-2, 21), (3e-2, 23), (1e-1, 21), (3e-1, 23)]
# Create mesh with time steps
ts = discretize.TensorMesh([time_steps]).vectorNx
# Plot them
plt.figure(figsize=(9, 1.5))
# Logarithmic scale
plt.subplot(121)
plt.title("Check time-steps on logarithmic-scale")
plt.plot([times.min(), times.min()], [-1, 1])
plt.plot([times.max(), times.max()], [-1, 1])
plt.plot(ts, ts * 0, ".", ms=2)
plt.yticks([])
plt.xscale("log")
plt.xlabel("Time (s)")
# Linear scale
plt.subplot(122)
plt.title("Check time-steps on linear-scale")
plt.plot([times.min(), times.min()], [-1, 1])
plt.plot([times.max(), times.max()], [-1, 1])
plt.plot(ts, ts * 0, ".", ms=2)
plt.yticks([])
plt.xlabel("Time (s)")
plt.tight_layout()
plt.show()
# Check times with time-steps
print(f"Min/max times : {times.min():.1e} / {times.max():.1e}")
print(f"Min/max timeSteps: {ts[1]:.1e} / {ts[-1]:.1e}")
###############################################################################
# Create mesh (`discretize`)
# """"""""""""""""""""""""""
# Cell width, number of cells
width = 100
nx = rec[0] // width + 4
ny = 10
nz = 9
# Padding
npadx = 14
npadyz = 12
# Stretching
alpha = 1.3
# Initiate TensorMesh
mesh = discretize.TensorMesh(
[
[(width, npadx, -alpha), (width, nx), (width, npadx, alpha)],
[(width, npadyz, -alpha), (width, ny), (width, npadyz, alpha)],
[(width, npadyz, -alpha), (width, nz), (width, npadyz, alpha)],
],
x0="CCC",
)
# Shift mesh so that
# x=0 is at midpoint of source;
# z=-2000 is at receiver level
mesh.x0[0] += rec[0] // 2 - width / 2
mesh.x0[2] -= nz / 2 * width - seafloor
mesh
###############################################################################
# Check if source and receiver are exactly at x-edges.
# """"""""""""""""""""""""""""""""""""""""""""""""""""
#
# No requirement; if receiver are exactly on x-edges then no interpolation is
# required to get the responses (cell centers in x, cell edges in y, z).
print(
f"Rec-{{x;y;z}} :: {rec[0] in | np.round(mesh.vectorCCx) | numpy.round |
#!/usr/bin/env python3
import os
import pickle
from torch.utils.data import Dataset
from torchvision import transforms
import numpy as np
import torch
from learn2learn.data.utils import download_file_from_google_drive, download_file
def download_pkl(google_drive_id, data_root, mode):
filename = 'mini-imagenet-cache-' + mode
file_path = os.path.join(data_root, filename)
if not os.path.exists(file_path + '.pkl'):
print('Downloading:', file_path + '.pkl')
download_file_from_google_drive(google_drive_id, file_path + '.pkl')
else:
print("Data was already downloaded")
def index_classes(items):
idx = {}
for i in items:
if (i not in idx):
idx[i] = len(idx)
return idx
class TripletMiniImageNet(Dataset):
"""
[[Source]](https://github.com/learnables/learn2learn/blob/master/learn2learn/vision/datasets/mini_imagenet.py)
**Description**
The *mini*-ImageNet dataset was originally introduced by Vinyals et al., 2016.
It consists of 60'000 colour images of sizes 84x84 pixels.
The dataset is divided in 3 splits of 64 training, 16 validation, and 20 testing classes each containing 600 examples.
The classes are sampled from the ImageNet dataset, and we use the splits from Ravi & Larochelle, 2017.
**References**
1. Vinyals et al. 2016. “Matching Networks for One Shot Learning.” NeurIPS.
2. Ravi and Larochelle. 2017. “Optimization as a Model for Few-Shot Learning.” ICLR.
**Arguments**
* **root** (str) - Path to download the data.
* **mode** (str, *optional*, default='train') - Which split to use.
Must be 'train', 'validation', or 'test'.
* **transform** (Transform, *optional*, default=None) - Input pre-processing.
* **target_transform** (Transform, *optional*, default=None) - Target pre-processing.
* **download** (bool, *optional*, default=False) - Download the dataset if it's not available.
**Example**
~~~python
train_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='train')
train_dataset = l2l.data.MetaDataset(train_dataset)
train_generator = l2l.data.TaskGenerator(dataset=train_dataset, ways=ways)
~~~
"""
def __init__(self, root, transform=None, target_transform=None, download=False):
self.root = os.path.expanduser(root)
if not os.path.exists(self.root):
os.mkdir(self.root)
self.mode = None
self.transform = transform
self.target_transform = target_transform
self.download_links = {"test": '1wpmY-hmiJUUlRBkO9ZDCXAcIpHEFdOhD',
"train": '1I3itTXpXxGV68olxM5roceUMG8itH9Xj',
"validation": '1KY5e491bkLFqJDp0-UWou3463Mo8AOco'}
self.data = dict()
self.indexes = {"train": 0, "validation": 0, "test": 0}
for mode in ['train', 'test', 'validation']:
pickle_file = os.path.join(self.root, 'mini-imagenet-cache-' + mode + '.pkl')
if not self._check_exists(mode) and download:
print('Downloading mini-ImageNet --', mode)
download_pkl(self.download_links[mode], self.root, mode)
with open(pickle_file, 'rb') as f:
self.data[mode] = pickle.load(f)
self.data[mode]["image_data"] = torch.from_numpy(self.data[mode]["image_data"]).permute(0, 1, 2, 3).float()
def sample(self, type,k_shots = 1):
if k_shots == 1 :
# Mode change
if type != self.mode:
self.mode = type
self.labels = list(self.data[type]['class_dict'].keys())
self.label_to_indices = self.data[type]['class_dict']
self.sample_data = self.data[type]["image_data"]
nbr_positive_sample = 4
nbr_negative_sample = 8
index = self.indexes[type] % len(self.labels)
#1. select a anchor label
anchor_label = self.labels[index]
#2. we know that positive files should have same label as anchor
positive_label = anchor_label # Not even needed to decleare
#3. we need to select 1 anchor 1 positive for support - 2 positives for query and all of these should be different
used_positive_indexes = set(np.random.choice(self.label_to_indices[anchor_label], nbr_positive_sample, replace=False))
#4. Now that we have selected 4 positive examples we are gonna place them to the according elements
used_positive_indexes = list(used_positive_indexes)
# [x1a, x1p_1, x1p_2, x1p_3 ... x1p_n] - image tensors
positive_x = [np.array(self.sample_data[used_positive_indexes[idx]]) for idx in range(nbr_positive_sample)]
# [y1a, y1p_1, y1p_2, y1p_3 ... y1p_n] - image labels
# positive_y = [self.all_labels[used_positive_indexes[idx]] for idx in range(nbr_positive_sample)]
#5. Now we have all the positive examples ready , we can do same operation to get negative indexes.
# To Pick Negative Examples we have different rules . we can pick all random classes , but if there happend to be same class we need to be sure we use differend indexs.
remainingLabels = list(set(self.labels) - set([anchor_label]))
negative_labels = list(np.random.choice(remainingLabels, nbr_negative_sample // 2, replace=False))
used_negative_indexes = [idx for label in negative_labels for idx in np.random.choice(self.label_to_indices[label], 2, replace=False)]
# [x1n_1, x1n_2, x1n_3, ... x1n_n] - image tensors
negative_x = [np.array(self.sample_data[used_negative_indexes[idx]]) for idx in range(nbr_negative_sample)]
# [y1n_1, y1n_2, y1n_3, ... y1n_n] - image labels
# negative_y = [self.all_labels[used_negative_indexes[idx]] for idx in range(nbr_negative_sample)]
X_support = []
y_support = []
# Transform
if self.transform is not None:
for idx, x in enumerate(positive_x):
positive_x[idx] = self.transform(positive_x[idx])
for idx, x in enumerate(negative_x):
negative_x[idx] = self.transform(negative_x[idx])
X_support.append(torch.stack([positive_x[0], positive_x[0], positive_x[0], positive_x[0]]).float())
X_support.append(torch.stack([positive_x[1], positive_x[1], positive_x[1], positive_x[1]]).float())
X_support.append(torch.stack([negative_x[0], negative_x[2], negative_x[4], negative_x[6]]).float())
y_support.append([0,0,0,0])
y_support.append([0,0,0,0])
y_support.append([1,2,3,4])
X_query = []
y_query = []
X_query.append(torch.stack([positive_x[2], positive_x[2], positive_x[2], positive_x[2]]).float())
X_query.append(torch.stack([positive_x[3], positive_x[3], positive_x[3], positive_x[3]]).float())
X_query.append(torch.stack([negative_x[1], negative_x[3], negative_x[5], negative_x[7]]).float())
y_query.append([0,0,0,0])
y_query.append([0,0,0,0])
y_query.append([1,2,3,4])
y_support = (torch.Tensor(y_support)).long()
y_query = (torch.Tensor(y_query)).long()
# Update index value
self.indexes[type] += 1
return X_support ,y_support, X_query, y_query
elif k_shots == 5:
# Mode change
if type != self.mode:
self.mode = type
self.labels = list(self.data[type]['class_dict'].keys())
self.label_to_indices = self.data[type]['class_dict']
self.sample_data = self.data[type]["image_data"]
nbr_positive_sample = 10
nbr_negative_labels = 4
nbr_negative_sample = 40
index = self.indexes[type] % len(self.labels)
#1. select a anchor label
anchor_label = self.labels[index]
#2. we know that positive files should have same label as anchor
positive_label = anchor_label # Not even needed to decleare
#3. we need to select 1 anchor 4 positive for support - 5 positives for query and all of these should be different => 10 positive samples
used_positive_indexes = set(np.random.choice(self.label_to_indices[anchor_label], nbr_positive_sample, replace=False))
#4. Now that we have selected 10 positive examples we are gonna place them to the according elements
used_positive_indexes = list(used_positive_indexes)
# [x1a, x1p_1, x1p_2, x1p_3 ... x1p_n] - image tensors
positive_x = [ | np.array(self.sample_data[used_positive_indexes[idx]]) | numpy.array |
# MIT License
#
# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2020
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
This module implements the imperceptible, robust, and targeted attack to generate adversarial examples for automatic
speech recognition models. This attack will be implemented specifically for DeepSpeech model and is framework dependent,
specifically for PyTorch.
| Paper link: https://arxiv.org/abs/1903.10346
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
from typing import TYPE_CHECKING, Optional, Tuple
import numpy as np
import scipy
from art.attacks.attack import EvasionAttack
from art.estimators.estimator import BaseEstimator, LossGradientsMixin, NeuralNetworkMixin
from art.estimators.pytorch import PyTorchEstimator
from art.estimators.speech_recognition.pytorch_deep_speech import PyTorchDeepSpeech
from art.estimators.speech_recognition.speech_recognizer import SpeechRecognizerMixin
if TYPE_CHECKING:
import torch
logger = logging.getLogger(__name__)
class ImperceptibleASRPyTorch(EvasionAttack):
"""
This class implements the imperceptible, robust, and targeted attack to generate adversarial examples for automatic
speech recognition models. This attack will be implemented specifically for DeepSpeech model and is framework
dependent, specifically for PyTorch.
| Paper link: https://arxiv.org/abs/1903.10346
"""
attack_params = EvasionAttack.attack_params + [
"eps",
"max_iter_1",
"max_iter_2",
"learning_rate_1",
"learning_rate_2",
"optimizer_1",
"optimizer_2",
"global_max_length",
"initial_rescale",
"decrease_factor_eps",
"num_iter_decrease_eps",
"alpha",
"increase_factor_alpha",
"num_iter_increase_alpha",
"decrease_factor_alpha",
"num_iter_decrease_alpha",
"batch_size",
"use_amp",
"opt_level",
]
_estimator_requirements = (
BaseEstimator,
LossGradientsMixin,
NeuralNetworkMixin,
SpeechRecognizerMixin,
PyTorchEstimator,
PyTorchDeepSpeech,
)
def __init__(
self,
estimator: PyTorchDeepSpeech,
eps: float = 0.05,
max_iter_1: int = 10,
max_iter_2: int = 4000,
learning_rate_1: float = 0.001,
learning_rate_2: float = 5e-4,
optimizer_1: Optional["torch.optim.Optimizer"] = None,
optimizer_2: Optional["torch.optim.Optimizer"] = None,
global_max_length: int = 200000,
initial_rescale: float = 1.0,
decrease_factor_eps: float = 0.8,
num_iter_decrease_eps: int = 1,
alpha: float = 1.2,
increase_factor_alpha: float = 1.2,
num_iter_increase_alpha: int = 20,
decrease_factor_alpha: float = 0.8,
num_iter_decrease_alpha: int = 20,
batch_size: int = 32,
use_amp: bool = False,
opt_level: str = "O1",
):
"""
Create a :class:`.ImperceptibleASRPyTorch` instance.
:param estimator: A trained estimator.
:param eps: Maximum perturbation that the attacker can introduce.
:param max_iter_1: The maximum number of iterations applied for the first stage of the optimization of the
attack.
:param max_iter_2: The maximum number of iterations applied for the second stage of the optimization of the
attack.
:param learning_rate_1: The learning rate applied for the first stage of the optimization of the attack.
:param learning_rate_2: The learning rate applied for the second stage of the optimization of the attack.
:param optimizer_1: The optimizer applied for the first stage of the optimization of the attack. If `None`
attack will use `torch.optim.Adam`.
:param optimizer_2: The optimizer applied for the second stage of the optimization of the attack. If `None`
attack will use `torch.optim.Adam`.
:param global_max_length: The length of the longest audio signal allowed by this attack.
:param initial_rescale: Initial rescale coefficient to speedup the decrease of the perturbation size during
the first stage of the optimization of the attack.
:param decrease_factor_eps: The factor to adjust the rescale coefficient during the first stage of the
optimization of the attack.
:param num_iter_decrease_eps: Number of iterations to adjust the rescale coefficient, and therefore adjust the
perturbation size.
:param alpha: Value of the alpha coefficient used in the second stage of the optimization of the attack.
:param increase_factor_alpha: The factor to increase the alpha coefficient used in the second stage of the
optimization of the attack.
:param num_iter_increase_alpha: Number of iterations to increase alpha.
:param decrease_factor_alpha: The factor to decrease the alpha coefficient used in the second stage of the
optimization of the attack.
:param num_iter_decrease_alpha: Number of iterations to decrease alpha.
:param batch_size: Size of the batch on which adversarial samples are generated.
:param use_amp: Whether to use the automatic mixed precision tool to enable mixed precision training or
gradient computation, e.g. with loss gradient computation. When set to True, this option is
only triggered if there are GPUs available.
:param opt_level: Specify a pure or mixed precision optimization level. Used when use_amp is True. Accepted
values are `O0`, `O1`, `O2`, and `O3`.
"""
import torch # lgtm [py/repeated-import]
from torch.autograd import Variable
super().__init__(estimator=estimator)
# Set attack attributes
self._targeted = True
self.eps = eps
self.max_iter_1 = max_iter_1
self.max_iter_2 = max_iter_2
self.learning_rate_1 = learning_rate_1
self.learning_rate_2 = learning_rate_2
self.global_max_length = global_max_length
self.initial_rescale = initial_rescale
self.decrease_factor_eps = decrease_factor_eps
self.num_iter_decrease_eps = num_iter_decrease_eps
self.alpha = alpha
self.increase_factor_alpha = increase_factor_alpha
self.num_iter_increase_alpha = num_iter_increase_alpha
self.decrease_factor_alpha = decrease_factor_alpha
self.num_iter_decrease_alpha = num_iter_decrease_alpha
self.batch_size = batch_size
self._use_amp = use_amp
# Create the main variable to optimize
if self.estimator.device.type == "cpu":
self.global_optimal_delta = Variable(
torch.zeros(self.batch_size, self.global_max_length).type(torch.FloatTensor), requires_grad=True
)
else:
self.global_optimal_delta = Variable(
torch.zeros(self.batch_size, self.global_max_length).type(torch.cuda.FloatTensor), requires_grad=True
)
self.global_optimal_delta.to(self.estimator.device)
# Create the optimizers
self._optimizer_arg_1 = optimizer_1
if self._optimizer_arg_1 is None:
self.optimizer_1 = torch.optim.Adam(params=[self.global_optimal_delta], lr=self.learning_rate_1)
else:
self.optimizer_1 = self._optimizer_arg_1(params=[self.global_optimal_delta], lr=self.learning_rate_1)
self._optimizer_arg_2 = optimizer_2
if self._optimizer_arg_2 is None:
self.optimizer_2 = torch.optim.Adam(params=[self.global_optimal_delta], lr=self.learning_rate_2)
else:
self.optimizer_2 = self._optimizer_arg_2(params=[self.global_optimal_delta], lr=self.learning_rate_2)
# Setup for AMP use
if self._use_amp:
from apex import amp
if self.estimator.device.type == "cpu":
enabled = False
else:
enabled = True
self.estimator._model, [self.optimizer_1, self.optimizer_2] = amp.initialize(
models=self.estimator._model,
optimizers=[self.optimizer_1, self.optimizer_2],
enabled=enabled,
opt_level=opt_level,
loss_scale=1.0,
)
# Check validity of attack attributes
self._check_params()
def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> np.ndarray:
"""
Generate adversarial samples and return them in an array.
:param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch
could have different lengths. A possible example of `x` could be:
`x = np.array([np.array([0.1, 0.2, 0.1, 0.4]), np.array([0.3, 0.1])])`.
:param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different
lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`. Note that, this
class only supports targeted attack.
:return: An array holding the adversarial examples.
"""
import torch # lgtm [py/repeated-import]
if y is None:
raise ValueError(
"`ImperceptibleASRPyTorch` is a targeted attack and requires the definition of target"
"labels `y`. Currently `y` is set to `None`."
)
# Start to compute adversarial examples
dtype = x.dtype
# Cast to type float64 to avoid overflow
if dtype.type == np.float64:
adv_x = x.copy()
else:
adv_x = x.copy().astype(np.float64)
# Put the estimator in the training mode, otherwise CUDA can't backpropagate through the model.
# However, estimator uses batch norm layers which need to be frozen
self.estimator.model.train()
self.estimator.set_batchnorm(train=False)
# Compute perturbation with batching
num_batch = int(np.ceil(len(x) / float(self.batch_size)))
for m in range(num_batch):
# Batch indexes
batch_index_1, batch_index_2 = (m * self.batch_size, min((m + 1) * self.batch_size, len(x)))
# First reset delta
self.global_optimal_delta.data = torch.zeros(self.batch_size, self.global_max_length).type(torch.float64)
# Next, reset optimizers
if self._optimizer_arg_1 is None:
self.optimizer_1 = torch.optim.Adam(params=[self.global_optimal_delta], lr=self.learning_rate_1)
else:
self.optimizer_1 = self._optimizer_arg_1(params=[self.global_optimal_delta], lr=self.learning_rate_1)
if self._optimizer_arg_2 is None:
self.optimizer_2 = torch.optim.Adam(params=[self.global_optimal_delta], lr=self.learning_rate_2)
else:
self.optimizer_2 = self._optimizer_arg_2(params=[self.global_optimal_delta], lr=self.learning_rate_2)
# Then compute the batch
adv_x_batch = self._generate_batch(adv_x[batch_index_1:batch_index_2], y[batch_index_1:batch_index_2])
for i in range(len(adv_x_batch)):
adv_x[batch_index_1 + i] = adv_x_batch[i, : len(adv_x[batch_index_1 + i])]
# Unfreeze batch norm layers again
self.estimator.set_batchnorm(train=True)
# Recast to the original type if needed
if dtype.type == np.float32:
adv_x = adv_x.astype(dtype)
return adv_x
def _generate_batch(self, x: np.ndarray, y: np.ndarray) -> np.ndarray:
"""
Generate a batch of adversarial samples and return them in an array.
:param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch
could have different lengths. A possible example of `x` could be:
`x = np.array([np.array([0.1, 0.2, 0.1, 0.4]), np.array([0.3, 0.1])])`.
:param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different
lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`. Note that, this
class only supports targeted attack.
:return: A batch of adversarial examples.
"""
import torch # lgtm [py/repeated-import]
# First stage of attack
successful_adv_input_1st_stage, original_input = self._attack_1st_stage(x=x, y=y)
successful_perturbation_1st_stage = successful_adv_input_1st_stage - torch.tensor(original_input).to(
self.estimator.device
)
# Compute original masking threshold and maximum psd
theta_batch = []
original_max_psd_batch = []
for i in range(len(x)):
theta, original_max_psd = self._compute_masking_threshold(original_input[i])
theta = theta.transpose(1, 0)
theta_batch.append(theta)
original_max_psd_batch.append(original_max_psd)
theta_batch = np.array(theta_batch)
original_max_psd_batch = np.array(original_max_psd_batch)
# Reset delta with new result
local_batch_shape = successful_adv_input_1st_stage.shape
self.global_optimal_delta.data = torch.zeros(self.batch_size, self.global_max_length).type(torch.float64)
self.global_optimal_delta.data[
: local_batch_shape[0], : local_batch_shape[1]
] = successful_perturbation_1st_stage
# Second stage of attack
successful_adv_input_2nd_stage = self._attack_2nd_stage(
x=x, y=y, theta_batch=theta_batch, original_max_psd_batch=original_max_psd_batch
)
results = successful_adv_input_2nd_stage.detach().cpu().numpy()
return results
def _attack_1st_stage(self, x: np.ndarray, y: np.ndarray) -> Tuple["torch.Tensor", np.ndarray]:
"""
The first stage of the attack.
:param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch
could have different lengths. A possible example of `x` could be:
`x = np.array([np.array([0.1, 0.2, 0.1, 0.4]), np.array([0.3, 0.1])])`.
:param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different
lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`. Note that, this
class only supports targeted attack.
:return: A tuple of two tensors:
- A tensor holding the candidate adversarial examples.
- An array holding the original inputs.
"""
import torch # lgtm [py/repeated-import]
# Compute local shape
local_batch_size = len(x)
real_lengths = np.array([x_.shape[0] for x_ in x])
local_max_length = np.max(real_lengths)
# Initialize rescale
rescale = np.ones([local_batch_size, local_max_length], dtype=np.float64) * self.initial_rescale
# Reformat input
input_mask = np.zeros([local_batch_size, local_max_length], dtype=np.float64)
original_input = np.zeros([local_batch_size, local_max_length], dtype=np.float64)
for local_batch_size_idx in range(local_batch_size):
input_mask[local_batch_size_idx, : len(x[local_batch_size_idx])] = 1
original_input[local_batch_size_idx, : len(x[local_batch_size_idx])] = x[local_batch_size_idx]
# Optimization loop
successful_adv_input = [None] * local_batch_size
trans = [None] * local_batch_size
for iter_1st_stage_idx in range(self.max_iter_1):
# Zero the parameter gradients
self.optimizer_1.zero_grad()
# Call to forward pass
loss, local_delta, decoded_output, masked_adv_input, _ = self._forward_1st_stage(
original_input=original_input,
original_output=y,
local_batch_size=local_batch_size,
local_max_length=local_max_length,
rescale=rescale,
input_mask=input_mask,
real_lengths=real_lengths,
)
# Actual training
if self._use_amp:
from apex import amp
with amp.scale_loss(loss, self.optimizer_1) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
# Get sign of the gradients
self.global_optimal_delta.grad = torch.sign(self.global_optimal_delta.grad)
# Do optimization
self.optimizer_1.step()
# Save the best adversarial example and adjust the rescale coefficient if successful
if iter_1st_stage_idx % self.num_iter_decrease_eps == 0:
for local_batch_size_idx in range(local_batch_size):
if decoded_output[local_batch_size_idx] == y[local_batch_size_idx]:
# Adjust the rescale coefficient
max_local_delta = np.max(np.abs(local_delta[local_batch_size_idx].detach().numpy()))
if rescale[local_batch_size_idx][0] * self.eps > max_local_delta:
rescale[local_batch_size_idx] = max_local_delta / self.eps
rescale[local_batch_size_idx] *= self.decrease_factor_eps
# Save the best adversarial example
successful_adv_input[local_batch_size_idx] = masked_adv_input[local_batch_size_idx]
trans[local_batch_size_idx] = decoded_output[local_batch_size_idx]
# If attack is unsuccessful
if iter_1st_stage_idx == self.max_iter_1 - 1:
for local_batch_size_idx in range(local_batch_size):
if successful_adv_input[local_batch_size_idx] is None:
successful_adv_input[local_batch_size_idx] = masked_adv_input[local_batch_size_idx]
trans[local_batch_size_idx] = decoded_output[local_batch_size_idx]
result = torch.stack(successful_adv_input)
return result, original_input
def _forward_1st_stage(
self,
original_input: np.ndarray,
original_output: np.ndarray,
local_batch_size: int,
local_max_length: int,
rescale: np.ndarray,
input_mask: np.ndarray,
real_lengths: np.ndarray,
) -> Tuple["torch.Tensor", "torch.Tensor", np.ndarray, "torch.Tensor", "torch.Tensor"]:
"""
The forward pass of the first stage of the attack.
:param original_input: Samples of shape (nb_samples, seq_length). Note that, sequences in the batch must have
equal lengths. A possible example of `original_input` could be:
`original_input = np.array([np.array([0.1, 0.2, 0.1]), np.array([0.3, 0.1, 0.0])])`.
:param original_output: Target values of shape (nb_samples). Each sample in `original_output` is a string and
it may possess different lengths. A possible example of `original_output` could be:
`original_output = np.array(['SIXTY ONE', 'HELLO'])`.
:param local_batch_size: Current batch size.
:param local_max_length: Max length of the current batch.
:param rescale: Current rescale coefficients.
:param input_mask: Masks of true inputs.
:param real_lengths: Real lengths of original sequences.
:return: A tuple of (loss, local_delta, decoded_output, masked_adv_input)
- loss: The loss tensor of the first stage of the attack.
- local_delta: The delta of the current batch.
- decoded_output: Transcription output.
- masked_adv_input: Perturbed inputs.
"""
import torch # lgtm [py/repeated-import]
from warpctc_pytorch import CTCLoss
# Compute perturbed inputs
local_delta = self.global_optimal_delta[:local_batch_size, :local_max_length]
local_delta_rescale = torch.clamp(local_delta, -self.eps, self.eps).to(self.estimator.device)
local_delta_rescale *= torch.tensor(rescale).to(self.estimator.device)
adv_input = local_delta_rescale + torch.tensor(original_input).to(self.estimator.device)
masked_adv_input = adv_input * torch.tensor(input_mask).to(self.estimator.device)
# Transform data into the model input space
inputs, targets, input_rates, target_sizes, batch_idx = self.estimator.preprocess_transform_model_input(
x=masked_adv_input.to(self.estimator.device), y=original_output, real_lengths=real_lengths,
)
# Compute real input sizes
input_sizes = input_rates.mul_(inputs.size()[-1]).int()
# Call to DeepSpeech model for prediction
outputs, output_sizes = self.estimator.model(
inputs.to(self.estimator.device), input_sizes.to(self.estimator.device)
)
outputs_ = outputs.transpose(0, 1)
float_outputs = outputs_.float()
# Loss function
criterion = CTCLoss()
loss = criterion(float_outputs, targets, output_sizes, target_sizes).to(self.estimator.device)
loss = loss / inputs.size(0)
# Compute transcription
decoded_output, _ = self.estimator.decoder.decode(outputs, output_sizes)
decoded_output = [do[0] for do in decoded_output]
decoded_output = np.array(decoded_output)
# Rearrange to the original order
decoded_output_ = decoded_output.copy()
decoded_output[batch_idx] = decoded_output_
return loss, local_delta, decoded_output, masked_adv_input, local_delta_rescale
def _attack_2nd_stage(
self, x: np.ndarray, y: np.ndarray, theta_batch: np.ndarray, original_max_psd_batch: np.ndarray
) -> "torch.Tensor":
"""
The second stage of the attack.
:param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch
could have different lengths. A possible example of `x` could be:
`x = np.array([np.array([0.1, 0.2, 0.1, 0.4]), np.array([0.3, 0.1])])`.
:param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different
lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`. Note that, this
class only supports targeted attack.
:param theta_batch: Original thresholds.
:param original_max_psd_batch: Original maximum psd.
:return: An array holding the candidate adversarial examples.
"""
import torch # lgtm [py/repeated-import]
# Compute local shape
local_batch_size = len(x)
real_lengths = np.array([x_.shape[0] for x_ in x])
local_max_length = np.max(real_lengths)
# Initialize alpha and rescale
alpha = np.array([self.alpha] * local_batch_size, dtype=np.float64)
rescale = np.ones([local_batch_size, local_max_length], dtype=np.float64) * self.initial_rescale
# Reformat input
input_mask = np.zeros([local_batch_size, local_max_length], dtype=np.float64)
original_input = np.zeros([local_batch_size, local_max_length], dtype=np.float64)
for local_batch_size_idx in range(local_batch_size):
input_mask[local_batch_size_idx, : len(x[local_batch_size_idx])] = 1
original_input[local_batch_size_idx, : len(x[local_batch_size_idx])] = x[local_batch_size_idx]
# Optimization loop
successful_adv_input = [None] * local_batch_size
best_loss_2nd_stage = [np.inf] * local_batch_size
trans = [None] * local_batch_size
for iter_2nd_stage_idx in range(self.max_iter_2):
# Zero the parameter gradients
self.optimizer_2.zero_grad()
# Call to forward pass of the first stage
loss_1st_stage, _, decoded_output, masked_adv_input, local_delta_rescale = self._forward_1st_stage(
original_input=original_input,
original_output=y,
local_batch_size=local_batch_size,
local_max_length=local_max_length,
rescale=rescale,
input_mask=input_mask,
real_lengths=real_lengths,
)
# Call to forward pass of the first stage
loss_2nd_stage = self._forward_2nd_stage(
local_delta_rescale=local_delta_rescale,
theta_batch=theta_batch,
original_max_psd_batch=original_max_psd_batch,
)
# Total loss
loss = loss_1st_stage + torch.tensor(alpha).to(self.estimator.device) * loss_2nd_stage
loss = torch.mean(loss)
# Actual training
if self._use_amp:
from apex import amp
with amp.scale_loss(loss, self.optimizer_2) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
# Do optimization
self.optimizer_2.step()
# Save the best adversarial example and adjust the alpha coefficient
for local_batch_size_idx in range(local_batch_size):
if decoded_output[local_batch_size_idx] == y[local_batch_size_idx]:
if loss_2nd_stage[local_batch_size_idx] < best_loss_2nd_stage[local_batch_size_idx]:
# Update best loss at 2nd stage
best_loss_2nd_stage[local_batch_size_idx] = loss_2nd_stage[local_batch_size_idx]
# Save the best adversarial example
successful_adv_input[local_batch_size_idx] = masked_adv_input[local_batch_size_idx]
trans[local_batch_size_idx] = decoded_output[local_batch_size_idx]
# Adjust to increase the alpha coefficient
if iter_2nd_stage_idx % self.num_iter_increase_alpha == 0:
alpha[local_batch_size_idx] *= self.increase_factor_alpha
# Adjust to decrease the alpha coefficient
elif iter_2nd_stage_idx % self.num_iter_decrease_alpha == 0:
alpha[local_batch_size_idx] *= self.decrease_factor_alpha
alpha[local_batch_size_idx] = max(alpha[local_batch_size_idx], 0.0005)
# If attack is unsuccessful
if iter_2nd_stage_idx == self.max_iter_2 - 1:
for local_batch_size_idx in range(local_batch_size):
if successful_adv_input[local_batch_size_idx] is None:
successful_adv_input[local_batch_size_idx] = masked_adv_input[local_batch_size_idx]
trans[local_batch_size_idx] = decoded_output[local_batch_size_idx]
result = torch.stack(successful_adv_input)
return result
def _forward_2nd_stage(
self, local_delta_rescale: "torch.Tensor", theta_batch: np.ndarray, original_max_psd_batch: np.ndarray,
) -> "torch.Tensor":
"""
The forward pass of the second stage of the attack.
:param local_delta_rescale: Local delta after rescaled.
:param theta_batch: Original thresholds.
:param original_max_psd_batch: Original maximum psd.
:return: The loss tensor of the second stage of the attack.
"""
import torch # lgtm [py/repeated-import]
# Compute loss for masking threshold
losses = []
relu = torch.nn.ReLU()
for i, _ in enumerate(theta_batch):
psd_transform_delta = self._psd_transform(
delta=local_delta_rescale[i, :], original_max_psd=original_max_psd_batch[i]
)
loss = torch.mean(relu(psd_transform_delta - torch.tensor(theta_batch[i]).to(self.estimator.device)))
losses.append(loss)
losses = torch.stack(losses)
return losses
def _compute_masking_threshold(self, x: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Compute the masking threshold and the maximum psd of the original audio.
:param x: Samples of shape (seq_length,).
:return: A tuple of the masking threshold and the maximum psd.
"""
import librosa
# First compute the psd matrix
# These parameters are needed for the transformation
sample_rate = self.estimator.model.audio_conf.sample_rate
window_size = self.estimator.model.audio_conf.window_size
window_stride = self.estimator.model.audio_conf.window_stride
n_fft = int(sample_rate * window_size)
hop_length = int(sample_rate * window_stride)
win_length = n_fft
window_name = self.estimator.model.audio_conf.window.value
window = scipy.signal.get_window(window_name, win_length, fftbins=True)
transformed_x = librosa.core.stft(
y=x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=False
)
transformed_x *= np.sqrt(8.0 / 3.0)
psd = abs(transformed_x / win_length)
original_max_psd = np.max(psd * psd)
with np.errstate(divide="ignore"):
psd = (20 * np.log10(psd)).clip(min=-200)
psd = 96 - np.max(psd) + psd
# Compute freqs and barks
freqs = librosa.core.fft_frequencies(sample_rate, win_length)
barks = 13 * np.arctan(0.00076 * freqs) + 3.5 * np.arctan(pow(freqs / 7500.0, 2))
# Compute quiet threshold
ath = np.zeros(len(barks), dtype=np.float64) - np.inf
bark_idx = np.argmax(barks > 1)
ath[bark_idx:] = (
3.64 * pow(freqs[bark_idx:] * 0.001, -0.8)
- 6.5 * np.exp(-0.6 * pow(0.001 * freqs[bark_idx:] - 3.3, 2))
+ 0.001 * pow(0.001 * freqs[bark_idx:], 4)
- 12
)
# Compute the global masking threshold theta
theta = []
for i in range(psd.shape[1]):
# Compute masker index
masker_idx = scipy.signal.argrelextrema(psd[:, i], np.greater)[0]
if 0 in masker_idx:
masker_idx = | np.delete(masker_idx, 0) | numpy.delete |
# coding: utf-8
# In[3]:
import numpy as np
import matplotlib.pyplot as plt
get_ipython().magic('matplotlib inline')
# In[112]:
# Number of cities
N = 10
# City distances
cityx = [0.4000, 0.2439, 0.1707, 0.2293, 0.5171, 0.8732, 0.6878, 0.8488, 0.6683, 0.6195]
cityy = [0.4439, 0.1463, 0.2293, 0.7610, 0.9414, 0.6536, 0.5219, 0.3609, 0.2536, 0.2634]
# In[117]:
d = np.zeros([N,N])
# Calculate distance matrix
for i in range(N):
for j in range(N):
d[i, j]=np.sqrt((cityx[i]-cityx[j])**2+(cityy[i]-cityy[j])**2)
plt.plot(cityx, cityy, '-o')
# 
# 
# Update rule for the energy function:
# 
# Where
# 
# In[235]:
# Set parameters for network energy function
A=500; B=500; C=1000; D=500; alpha=0.0001
# In[245]:
# x-v-value of each node, y-u-input potential, u0-gamma
def hopfield():
u0=0.02
toend=0
udao=np.zeros([N, N])
ctr=0
while toend==0:
#print("Step # ", ctr)
ctr+=1
# U initialization
v = | np.random.rand(N,N) | numpy.random.rand |
import numpy as np
import logging
from plunc.common import round_to_digits
from plunc.exceptions import SearchFailedException, InsufficientPrecisionError, OutsideDomainError
from plunc.WaryInterpolator import WaryInterpolator
class IntervalChoice(object):
"""Base interval choice method class
"""
method = 'rank' # 'rank' or 'threshold'
threshold = float('inf')
precision_digits = 2
use_interval_cache = True
wrap_interpolator = True
background = 0
confidence_level = 0.9
max_hypothesis = 1e6
interpolator_log_domain = (-1, 3)
fixed_upper_limit = None
fixed_lower_limit = None
# Use only for testing:
forbid_exact_computation = False
def __init__(self, statistic, **kwargs):
self.statistic = statistic
for k, v in kwargs.items():
setattr(self, k, v)
self.cl = self.confidence_level
self.log = logging.getLogger(self.__class__.__name__)
if self.wrap_interpolator:
self.log.debug("Initializing interpolators")
if self.fixed_lower_limit is None:
self.low_limit_interpolator = WaryInterpolator(precision=10**(-self.precision_digits),
domain=self.interpolator_log_domain)
if self.fixed_upper_limit is None:
self.high_limit_interpolator = WaryInterpolator(precision=10**(-self.precision_digits),
domain=self.interpolator_log_domain)
# "Joints" of the interpolator must have better precision than required of the interpolator results
self.precision_digits += 1
# Dictionary holding "horizontal" intervals: interval on statistic for each precision and hypothesis.
self.cached_intervals = {}
def get_interval_on_statistic(self, hypothesis, precision_digits):
"""Returns the self.cl confidence level interval on self.statistic for the event rate hypothesis
The event rate here includes signal as well as identically distributed background.
Intervals are inclusive = closed.
"""
if self.use_interval_cache and (hypothesis, precision_digits) in self.cached_intervals:
return self.cached_intervals[(hypothesis, precision_digits)]
stat_values, likelihoods = self.statistic.get_values_and_likelihoods(hypothesis,
precision_digits=precision_digits)
likelihoods = likelihoods / np.sum(likelihoods)
# Score each statistic value (method-dependent)
stat_value_scores = self.score_stat_values(statistic_values=stat_values,
likelihoods=likelihoods,
hypothesis=hypothesis)
if self.method == 'threshold':
# Include all statistic values that score higher than some threshold
values_in_interval = stat_values[stat_value_scores > self.get_threshold()]
else:
# Include the values with highest score first, until we reach the desired confidence level
# TODO: wouldn't HIGHEST score first be more user-friendly?
ranks = np.argsort(stat_value_scores)
train_values_sorted = stat_values[ranks]
likelihoods_sorted = likelihoods[ranks]
# Find the last value to include
# (= first value that takes the included probability over the required confidence level)
sum_lhoods = np.cumsum(likelihoods_sorted)
last_index = np.where(sum_lhoods > self.cl)[0][0] # TODO: can fail?
values_in_interval = train_values_sorted[:last_index + 1]
# Limits = extreme values in the interval.
# This means we will be conservative if values_in_interval is not continuous.
low_lim, high_lim = values_in_interval.min(), values_in_interval.max()
# If we included all values given up until a boundary, don't set that boundary as a limit
if low_lim == np.min(stat_values):
low_lim = 0
if high_lim == np.max(stat_values):
high_lim = float('inf')
# Cache and return upper and lower limit on the statistic
if self.use_interval_cache:
self.cached_intervals[(hypothesis, precision_digits)] = low_lim, high_lim
return low_lim, high_lim
def get_confidence_interval(self, value, precision_digits, search_region, debug=False):
"""Performs the Neynman construction to get confidence interval on event rate (mu),
if the statistic is observed to have value
"""
log_value = np.log10(value)
if self.wrap_interpolator:
# Try to interpolate the limit from limits computed earlier
self.log.debug("Trying to get values from interpolators")
try:
if self.fixed_lower_limit is None:
low_limit = 10**(self.low_limit_interpolator(log_value))
else:
low_limit = self.fixed_lower_limit
if self.fixed_upper_limit is None:
high_limit = 10**(self.high_limit_interpolator(log_value))
else:
high_limit = self.fixed_upper_limit
return low_limit, high_limit
except InsufficientPrecisionError:
self.log.debug("Insuffienct precision achieved by interpolators")
if log_value > self.interpolator_log_domain[1]:
self.log.debug("Too high value to dare to start Neyman construction... raising exception")
# It is not safe to do the Neyman construction: too high statistics
raise
self.log.debug("Log value %s is below interpolator log domain max %s "
"=> starting Neyman construction" % (log_value, self.interpolator_log_domain[1]))
except OutsideDomainError:
# The value is below the interpolator domain (e.g. 0 while the domain ends at 10**0 = 1)
pass
if self.forbid_exact_computation:
raise RuntimeError("Exact computation triggered")
def is_value_in(mu):
low_lim, high_lim = self.get_interval_on_statistic(mu + self.background,
precision_digits=precision_digits)
return low_lim <= value <= high_lim
# We first need one value in the interval to bound the limit searches
try:
true_point, low_search_bound, high_search_bound = search_true_instance(is_value_in,
*search_region,
precision_digits=precision_digits)
except SearchFailedException as e:
self.log.debug("Exploratory search could not find a single value in the interval! "
"This is probably a problem with search region, or simply a very extreme case."
"Original exception: %s" % str(e))
if is_value_in(0):
self.log.debug("Oh, ok, only zero is in the interval... Returning (0, 0)")
return 0, 0
return 0, float('inf')
self.log.debug(">>> Exploratory search completed: %s is in interval, "
"search for boundaries in [%s, %s]" % (true_point, low_search_bound, high_search_bound))
if self.fixed_lower_limit is not None:
low_limit = self.fixed_lower_limit
elif is_value_in(low_search_bound):
# If mu=0 can't be excluded, we're apparently only setting an upper limit (mu <= ..)
low_limit = 0
else:
low_limit = bisect_search(is_value_in, low_search_bound, true_point, precision_digits=precision_digits)
self.log.debug(">>> Low limit found at %s" % low_limit)
if self.fixed_upper_limit is not None:
low_limit = self.fixed_upper_limit
elif is_value_in(high_search_bound):
# If max_mu can't be excluded, we're apparently only setting a lower limit (mu >= ..)
high_limit = float('inf')
else:
high_limit = bisect_search(is_value_in, true_point, high_search_bound, precision_digits=precision_digits)
self.log.debug(">>> High limit found at %s" % high_limit)
if self.wrap_interpolator:
# Add the values to the interpolator, if they are within the domain
# TODO: Think about dealing with inf
if self.interpolator_log_domain[0] <= log_value <= self.interpolator_log_domain[1]:
if self.fixed_lower_limit is None:
self.low_limit_interpolator.add_point(log_value, np.log10(low_limit))
if self.fixed_upper_limit is None:
self.high_limit_interpolator.add_point(log_value, np.log10(high_limit))
return low_limit, high_limit
def score_stat_values(self, **kwargs):
# Return "rank" of each hypothesis. Hypotheses with highest ranks will be included first.
raise NotImplementedError()
def __call__(self, observation, precision_digits=None, search_region=None):
"""Perform Neynman construction to get confidence interval on event rate for observation.
"""
if precision_digits is None:
precision_digits = self.precision_digits
if search_region is None:
search_region = [0, round_to_digits(10 + 3 * len(observation), precision_digits)]
if self.statistic.mu_dependent:
value = self.statistic(observation, self.statistic.mus)
else:
value = self.statistic(observation, None)
self.log.debug("Statistic evaluates to %s" % value)
return self.get_confidence_interval(value, precision_digits=precision_digits, search_region=search_region)
def search_true_instance(f, a, b, precision_digits=3, maxiter=10, log=None):
"""Find x in [a, b] where f is True, limiting search to values with precision_digits significant figures.
Returns x, low_bound, high_bound where low_bound and high_bound are either the search bounds a or b, or closer
values to x where f was still found to be False.
# TODO: If asked for precision_digits=5, first search with precision_digits=1, then 2, etc.
print(search_true_instance(lambda x: 11 < x < 13, 0, 40))
print(search_true_instance(lambda x: x < 13, 0, 1000))
"""
log = logging.getLogger('search_true_instance')
values_searched = [a, b]
log.debug("Starting exploratory search in [%s, %s]" % (a, b))
for iter_i in range(maxiter):
# First test halfway, point then 1/4 and 3/4, then 1/8, 3/8, 5/8, 7/8, etc.
fractions = 2**(iter_i + 1)
search_points = [round_to_digits(a + (b - a)*fr, precision_digits)
for fr in np.arange(1, fractions, 2)/fractions]
log.debug("Searching %s - %s (%d points)" % (search_points[0], search_points[-1], len(search_points)))
for x_i, x in enumerate(search_points):
if f(x):
values_searched = np.array(values_searched)
return x, np.max(values_searched[values_searched < x]), | np.min(values_searched[values_searched > x]) | numpy.min |
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
import scipy.signal
def generate_rnn(rng, N, g, tau, dt, max_firing_rate):
"""Create a (vanilla) RNN with a bunch of hyper parameters for generating
chaotic data.
Args:
rng: numpy random number generator
N: number of hidden units
g: scaling of recurrent weight matrix in g W, with W ~ N(0,1/N)
tau: time scale of individual unit dynamics
dt: time step for equation updates
max_firing_rate: how to resecale the -1,1 firing rates
Returns:
the dictionary of these parameters, plus some others.
"""
rnn = {}
rnn['N'] = N
rnn['W'] = rng.randn(N,N)/ | np.sqrt(N) | numpy.sqrt |
#!/usr/bin/env python
#
# Authors: <NAME> <<EMAIL>>
#
"""Module for running restricted closed-shell k-point ccsd(t)"""
import ctypes
import h5py
import itertools
import numpy as np
import pyscf.pbc.cc.kccsd_rhf
import time
from itertools import product
from pyscf import lib
from pyscf.cc import _ccsd
from pyscf.lib import logger
from pyscf.lib.misc import tril_product
from pyscf.lib.misc import flatten
from pyscf.lib.numpy_helper import cartesian_prod
from pyscf.lib.numpy_helper import pack_tril
from pyscf.lib.parameters import LARGE_DENOM
from pyscf.pbc import scf
from pyscf.pbc.lib import kpts_helper
from pyscf.pbc.mp.kmp2 import (get_frozen_mask, get_nocc, get_nmo,
padded_mo_coeff, padding_k_idx)
from pyscf import __config__
#einsum = np.einsum
einsum = lib.einsum
# CCSD(T) equations taken from Scuseria, JCP (94), 1991
#
# NOTE: As pointed out in cc/ccsd_t_slow.py, there is an error in this paper
# and the equation should read [ia] >= [jb] >= [kc] (since the only
# symmetry in spin-less operators is the exchange of a column of excitation
# ooperators).
def kernel(mycc, eris, t1=None, t2=None, max_memory=2000, verbose=logger.INFO):
'''Returns the CCSD(T) for restricted closed-shell systems with k-points.
Note:
Returns real part of the CCSD(T) energy, raises warning if there is
a complex part.
Args:
mycc (:class:`RCCSD`): Coupled-cluster object storing results of
a coupled-cluster calculation.
eris (:class:`_ERIS`): Integral object holding the relevant electron-
repulsion integrals and Fock matrix elements
t1 (:obj:`ndarray`): t1 coupled-cluster amplitudes
t2 (:obj:`ndarray`): t2 coupled-cluster amplitudes
max_memory (float): Maximum memory used in calculation (NOT USED)
verbose (int, :class:`Logger`): verbosity of calculation
Returns:
energy_t (float): The real-part of the k-point CCSD(T) energy.
'''
assert isinstance(mycc, pyscf.pbc.cc.kccsd_rhf.RCCSD)
cpu1 = cpu0 = (time.clock(), time.time())
if isinstance(verbose, logger.Logger):
log = verbose
else:
log = logger.Logger(mycc.stdout, verbose)
if t1 is None: t1 = mycc.t1
if t2 is None: t2 = mycc.t2
if eris is None:
raise TypeError('Electron repulsion integrals, `eris`, must be passed in '
'to the CCSD(T) kernel or created in the cc object for '
'the k-point CCSD(T) to run!')
if t1 is None or t2 is None:
raise TypeError('Must pass in t1/t2 amplitudes to k-point CCSD(T)! (Maybe '
'need to run `.ccsd()` on the ccsd object?)')
cell = mycc._scf.cell
kpts = mycc.kpts
# The dtype of any local arrays that will be created
dtype = t1.dtype
nkpts, nocc, nvir = t1.shape
mo_energy_occ = [eris.mo_energy[ki][:nocc] for ki in range(nkpts)]
mo_energy_vir = [eris.mo_energy[ki][nocc:] for ki in range(nkpts)]
mo_energy = np.asarray([eris.mo_energy[ki] for ki in range(nkpts)], dtype=np.float, order='C')
fov = eris.fock[:, :nocc, nocc:]
mo_e = mo_energy
mo_e_o = mo_energy_occ
mo_e_v = mo_energy_vir
# Set up class for k-point conservation
kconserv = kpts_helper.get_kconserv(cell, kpts)
# Create necessary temporary eris for fast read
feri_tmp, t2T, eris_vvop, eris_vooo_C = create_t3_eris(mycc, kconserv, [eris.vovv, eris.oovv, eris.ooov, t2])
t1T = np.array([x.T for x in t1], dtype=np.complex, order='C')
fvo = np.array([x.T for x in fov], dtype=np.complex, order='C')
cpu1 = log.timer_debug1('CCSD(T) tmp eri creation', *cpu1)
#def get_w_old(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1, out=None):
# '''Wijkabc intermediate as described in Scuseria paper before Pijkabc acts'''
# km = kconserv[kc, kk, kb]
# kf = kconserv[kk, kc, kj]
# ret = einsum('kjcf,fiba->abcijk', t2[kk,kj,kc,:,:,c0:c1,:], eris.vovv[kf,ki,kb,:,:,b0:b1,a0:a1].conj())
# ret = ret - einsum('mkbc,jima->abcijk', t2[km,kk,kb,:,:,b0:b1,c0:c1], eris.ooov[kj,ki,km,:,:,:,a0:a1].conj())
# return ret
def get_w(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1):
'''Wijkabc intermediate as described in Scuseria paper before Pijkabc acts
Uses tranposed eris for fast data access.'''
km = kconserv[kc, kk, kb]
kf = kconserv[kk, kc, kj]
out = einsum('cfjk,abif->abcijk', t2T[kc,kf,kj,c0:c1,:,:,:], eris_vvop[ka,kb,ki,a0:a1,b0:b1,:,nocc:])
out = out - einsum('cbmk,aijm->abcijk', t2T[kc,kb,km,c0:c1,b0:b1,:,:], eris_vooo_C[ka,ki,kj,a0:a1,:,:,:])
return out
def get_permuted_w(ki, kj, kk, ka, kb, kc, orb_indices):
'''Pijkabc operating on Wijkabc intermediate as described in Scuseria paper'''
a0, a1, b0, b1, c0, c1 = orb_indices
out = get_w(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1)
out = out + get_w(kj, kk, ki, kb, kc, ka, b0, b1, c0, c1, a0, a1).transpose(2,0,1,5,3,4)
out = out + get_w(kk, ki, kj, kc, ka, kb, c0, c1, a0, a1, b0, b1).transpose(1,2,0,4,5,3)
out = out + get_w(ki, kk, kj, ka, kc, kb, a0, a1, c0, c1, b0, b1).transpose(0,2,1,3,5,4)
out = out + get_w(kk, kj, ki, kc, kb, ka, c0, c1, b0, b1, a0, a1).transpose(2,1,0,5,4,3)
out = out + get_w(kj, ki, kk, kb, ka, kc, b0, b1, a0, a1, c0, c1).transpose(1,0,2,4,3,5)
return out
def get_rw(ki, kj, kk, ka, kb, kc, orb_indices):
'''R operating on Wijkabc intermediate as described in Scuseria paper'''
a0, a1, b0, b1, c0, c1 = orb_indices
ret = (4. * get_permuted_w(ki,kj,kk,ka,kb,kc,orb_indices) +
1. * get_permuted_w(kj,kk,ki,ka,kb,kc,orb_indices).transpose(0,1,2,5,3,4) +
1. * get_permuted_w(kk,ki,kj,ka,kb,kc,orb_indices).transpose(0,1,2,4,5,3) -
2. * get_permuted_w(ki,kk,kj,ka,kb,kc,orb_indices).transpose(0,1,2,3,5,4) -
2. * get_permuted_w(kk,kj,ki,ka,kb,kc,orb_indices).transpose(0,1,2,5,4,3) -
2. * get_permuted_w(kj,ki,kk,ka,kb,kc,orb_indices).transpose(0,1,2,4,3,5))
return ret
#def get_v_old(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1):
# '''Vijkabc intermediate as described in Scuseria paper'''
# km = kconserv[ki,ka,kj]
# kf = kconserv[ki,ka,kj]
# out = np.zeros((a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=dtype)
# if kk == kc:
# out = out + einsum('kc,ijab->abcijk', 0.5*t1[kk,:,c0:c1], eris.oovv[ki,kj,ka,:,:,a0:a1,b0:b1].conj())
# out = out + einsum('kc,ijab->abcijk', 0.5*fov[kk,:,c0:c1], t2[ki,kj,ka,:,:,a0:a1,b0:b1])
# return out
def get_v(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1):
'''Vijkabc intermediate as described in Scuseria paper'''
km = kconserv[ki,ka,kj]
kf = kconserv[ki,ka,kj]
out = np.zeros((a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=dtype)
if kk == kc:
out = out + einsum('ck,baji->abcijk', 0.5*t1T[kk,c0:c1,:], eris_vvop[kb,ka,kj,b0:b1,a0:a1,:,:nocc])
# We see this is the same t2T term needed for the `w` contraction:
# einsum('cbmk,aijm->abcijk', t2T[kc,kb,km,c0:c1,b0:b1], eris_vooo_C[ka,ki,kj,a0:a1])
#
# For the kpoint indices [kk,ki,kj,kc,ka,kb] we have that we need
# t2T[kb,ka,km], where km = kconserv[kb,kj,ka]
# The remaining k-point not used in t2T, i.e. kc, has the condition kc == kk in the case of
# get_v. So, we have from 3-particle conservation
# (kk-kc) + ki + kj - ka - kb = 0,
# i.e. ki = km.
out = out + einsum('ck,baij->abcijk', 0.5*fvo[kk,c0:c1,:], t2T[kb,ka,ki,b0:b1,a0:a1,:,:])
return out
def get_permuted_v(ki, kj, kk, ka, kb, kc, orb_indices):
'''Pijkabc operating on Vijkabc intermediate as described in Scuseria paper'''
a0, a1, b0, b1, c0, c1 = orb_indices
tmp = np.zeros((a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=dtype)
ret = get_v(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1)
ret = ret + get_v(kj, kk, ki, kb, kc, ka, b0, b1, c0, c1, a0, a1).transpose(2,0,1,5,3,4)
ret = ret + get_v(kk, ki, kj, kc, ka, kb, c0, c1, a0, a1, b0, b1).transpose(1,2,0,4,5,3)
ret = ret + get_v(ki, kk, kj, ka, kc, kb, a0, a1, c0, c1, b0, b1).transpose(0,2,1,3,5,4)
ret = ret + get_v(kk, kj, ki, kc, kb, ka, c0, c1, b0, b1, a0, a1).transpose(2,1,0,5,4,3)
ret = ret + get_v(kj, ki, kk, kb, ka, kc, b0, b1, a0, a1, c0, c1).transpose(1,0,2,4,3,5)
return ret
def contract_t3Tv(kpt_indices, orb_indices, data):
'''Calculate t3T(ransposed) array using C driver.'''
ki, kj, kk, ka, kb, kc = kpt_indices
a0, a1, b0, b1, c0, c1 = orb_indices
slices = np.array([a0, a1, b0, b1, c0, c1], dtype=np.int32)
mo_offset = np.array([ki,kj,kk,ka,kb,kc], dtype=np.int32)
vvop_ab = np.asarray(data[0][0], dtype=np.complex, order='C')
vvop_ac = np.asarray(data[0][1], dtype=np.complex, order='C')
vvop_ba = np.asarray(data[0][2], dtype=np.complex, order='C')
vvop_bc = np.asarray(data[0][3], dtype=np.complex, order='C')
vvop_ca = np.asarray(data[0][4], dtype=np.complex, order='C')
vvop_cb = np.asarray(data[0][5], dtype=np.complex, order='C')
vooo_aj = np.asarray(data[1][0], dtype=np.complex, order='C')
vooo_ak = np.asarray(data[1][1], dtype=np.complex, order='C')
vooo_bi = np.asarray(data[1][2], dtype=np.complex, order='C')
vooo_bk = np.asarray(data[1][3], dtype=np.complex, order='C')
vooo_ci = np.asarray(data[1][4], dtype=np.complex, order='C')
vooo_cj = np.asarray(data[1][5], dtype=np.complex, order='C')
t2T_cj = np.asarray(data[2][0], dtype=np.complex, order='C')
t2T_bk = np.asarray(data[2][1], dtype=np.complex, order='C')
t2T_ci = np.asarray(data[2][2], dtype=np.complex, order='C')
t2T_ak = np.asarray(data[2][3], dtype=np.complex, order='C')
t2T_bi = np.asarray(data[2][4], dtype=np.complex, order='C')
t2T_aj = np.asarray(data[2][5], dtype=np.complex, order='C')
t2T_cb = np.asarray(data[3][0], dtype=np.complex, order='C')
t2T_bc = np.asarray(data[3][1], dtype=np.complex, order='C')
t2T_ca = np.asarray(data[3][2], dtype=np.complex, order='C')
t2T_ac = np.asarray(data[3][3], dtype=np.complex, order='C')
t2T_ba = np.asarray(data[3][4], dtype=np.complex, order='C')
t2T_ab = np.asarray(data[3][5], dtype=np.complex, order='C')
data = [vvop_ab, vvop_ac, vvop_ba, vvop_bc, vvop_ca, vvop_cb,
vooo_aj, vooo_ak, vooo_bi, vooo_bk, vooo_ci, vooo_cj,
t2T_cj, t2T_cb, t2T_bk, t2T_bc, t2T_ci, t2T_ca, t2T_ak,
t2T_ac, t2T_bi, t2T_ba, t2T_aj, t2T_ab]
data_ptrs = [x.ctypes.data_as(ctypes.c_void_p) for x in data]
data_ptrs = (ctypes.c_void_p*24)(*data_ptrs)
a0, a1, b0, b1, c0, c1 = task
t3Tw = np.empty((a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=np.complex, order='C')
t3Tv = np.empty((a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=np.complex, order='C')
drv = _ccsd.libcc.CCsd_zcontract_t3T
drv(t3Tw.ctypes.data_as(ctypes.c_void_p),
t3Tv.ctypes.data_as(ctypes.c_void_p),
mo_e.ctypes.data_as(ctypes.c_void_p),
t1T.ctypes.data_as(ctypes.c_void_p),
fvo.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(nocc), ctypes.c_int(nvir),
ctypes.c_int(nkpts),
mo_offset.ctypes.data_as(ctypes.c_void_p),
slices.ctypes.data_as(ctypes.c_void_p),
data_ptrs)
return t3Tw, t3Tv
def get_data(kpt_indices):
idx_args = get_data_slices(kpt_indices, task, kconserv)
vvop_indices, vooo_indices, t2T_vvop_indices, t2T_vooo_indices = idx_args
vvop_data = [eris_vvop[tuple(x)] for x in vvop_indices]
vooo_data = [eris_vooo_C[tuple(x)] for x in vooo_indices]
t2T_vvop_data = [t2T[tuple(x)] for x in t2T_vvop_indices]
t2T_vooo_data = [t2T[tuple(x)] for x in t2T_vooo_indices]
data = [vvop_data, vooo_data, t2T_vvop_data, t2T_vooo_data]
return data
energy_t = 0.0
# Get location of padded elements in occupied and virtual space
nonzero_opadding, nonzero_vpadding = padding_k_idx(mycc, kind="split")
mem_now = lib.current_memory()[0]
max_memory = max(0, mycc.max_memory - mem_now)
blkmin = 4
# temporary t3 array is size: 2 * nkpts**3 * blksize**3 * nocc**3 * 16
vir_blksize = min(nvir, max(blkmin, int((max_memory*.9e6/16/nocc**3/nkpts**3/2)**(1./3))))
tasks = []
log.debug('max_memory %d MB (%d MB in use)', max_memory, mem_now)
log.debug('virtual blksize = %d (nvir = %d)', nvir, vir_blksize)
for a0, a1 in lib.prange(0, nvir, vir_blksize):
for b0, b1 in lib.prange(0, nvir, vir_blksize):
for c0, c1 in lib.prange(0, nvir, vir_blksize):
tasks.append((a0,a1,b0,b1,c0,c1))
for ka in range(nkpts):
for kb in range(ka+1):
for task_id, task in enumerate(tasks):
a0,a1,b0,b1,c0,c1 = task
my_permuted_w = np.zeros((nkpts,)*3 + (a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=dtype)
my_permuted_v = np.zeros((nkpts,)*3 + (a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=dtype)
for ki, kj, kk in product(range(nkpts), repeat=3):
# Find momentum conservation condition for triples
# amplitude t3ijkabc
kc = kpts_helper.get_kconserv3(cell, kpts, [ki, kj, kk, ka, kb])
if not (ka >= kb and kb >= kc):
continue
kpt_indices = [ki,kj,kk,ka,kb,kc]
data = get_data(kpt_indices)
t3Tw, t3Tv = contract_t3Tv(kpt_indices, task, data)
my_permuted_w[ki,kj,kk] = t3Tw
my_permuted_v[ki,kj,kk] = t3Tv
#my_permuted_w[ki,kj,kk] = get_permuted_w(ki,kj,kk,ka,kb,kc,task)
#my_permuted_v[ki,kj,kk] = get_permuted_v(ki,kj,kk,ka,kb,kc,task)
for ki, kj, kk in product(range(nkpts), repeat=3):
# eigenvalue denominator: e(i) + e(j) + e(k)
eijk = _get_epqr([0,nocc,ki,mo_e_o,nonzero_opadding],
[0,nocc,kj,mo_e_o,nonzero_opadding],
[0,nocc,kk,mo_e_o,nonzero_opadding])
# Find momentum conservation condition for triples
# amplitude t3ijkabc
kc = kpts_helper.get_kconserv3(cell, kpts, [ki, kj, kk, ka, kb])
if not (ka >= kb and kb >= kc):
continue
if ka == kb and kb == kc:
symm_kpt = 1.
elif ka == kb or kb == kc:
symm_kpt = 3.
else:
symm_kpt = 6.
eabc = _get_epqr([a0,a1,ka,mo_e_v,nonzero_vpadding],
[b0,b1,kb,mo_e_v,nonzero_vpadding],
[c0,c1,kc,mo_e_v,nonzero_vpadding],
fac=[-1.,-1.,-1.])
eijkabc = (eijk[None,None,None,:,:,:] + eabc[:,:,:,None,None,None])
pwijk = my_permuted_w[ki,kj,kk] + my_permuted_v[ki,kj,kk]
rwijk = (4. * my_permuted_w[ki,kj,kk] +
1. * my_permuted_w[kj,kk,ki].transpose(0,1,2,5,3,4) +
1. * my_permuted_w[kk,ki,kj].transpose(0,1,2,4,5,3) -
2. * my_permuted_w[ki,kk,kj].transpose(0,1,2,3,5,4) -
2. * my_permuted_w[kk,kj,ki].transpose(0,1,2,5,4,3) -
2. * my_permuted_w[kj,ki,kk].transpose(0,1,2,4,3,5))
rwijk = rwijk / eijkabc
energy_t += symm_kpt * einsum('abcijk,abcijk', rwijk, pwijk.conj())
energy_t *= (1. / 3)
energy_t /= nkpts
if abs(energy_t.imag) > 1e-4:
log.warn('Non-zero imaginary part of CCSD(T) energy was found %s', energy_t.imag)
log.timer('CCSD(T)', *cpu0)
log.note('CCSD(T) correction per cell = %.15g', energy_t.real)
log.note('CCSD(T) correction per cell (imag) = %.15g', energy_t.imag)
return energy_t.real
###################################
# Helper function for t3 creation
###################################
def check_read_success(filename, **kwargs):
'''Determine criterion for successfully reading a dataset based on its
meta values.
For now, returns False.'''
def check_write_complete(filename, **kwargs):
'''Check for `completed` attr in file.'''
import os
mode = kwargs.get('mode', 'r')
if not os.path.isfile(filename):
return False
f = h5py.File(filename, mode=mode, **kwargs)
return f.attrs.get('completed', False)
write_complete = check_write_complete(filename, **kwargs)
return False and write_complete
def transpose_t2(t2, nkpts, nocc, nvir, kconserv, out=None):
'''Creates t2.transpose(2,3,1,0).'''
if out is None:
out = np.empty((nkpts,nkpts,nkpts,nvir,nvir,nocc,nocc), dtype=t2.dtype)
# Check if it's stored in lower triangular form
if len(t2.shape) == 7 and t2.shape[:2] == (nkpts, nkpts):
for ki, kj, ka in product(range(nkpts), repeat=3):
kb = kconserv[ki,ka,kj]
out[ka,kb,kj] = t2[ki,kj,ka].transpose(2,3,1,0)
elif len(t2.shape) == 6 and t2.shape[:2] == (nkpts*(nkpts+1)//2, nkpts):
for ki, kj, ka in product(range(nkpts), repeat=3):
kb = kconserv[ki,ka,kj]
# t2[ki,kj,ka] = t2[tril_index(ki,kj),ka] ki<kj
# t2[kj,ki,kb] = t2[ki,kj,ka].transpose(1,0,3,2) ki<kj
# = t2[tril_index(ki,kj),ka].transpose(1,0,3,2)
if ki <= kj:
tril_idx = (kj*(kj+1))//2 + ki
out[ka,kb,kj] = t2[tril_idx,ka].transpose(2,3,1,0).copy()
out[kb,ka,ki] = out[ka,kb,kj].transpose(1,0,3,2)
else:
raise ValueError('No known conversion for t2 shape %s' % t2.shape)
return out
def create_eris_vvop(vovv, oovv, nkpts, nocc, nvir, kconserv, out=None):
'''Creates vvop from vovv and oovv array (physicist notation).'''
nmo = nocc + nvir
assert(vovv.shape == (nkpts,nkpts,nkpts,nvir,nocc,nvir,nvir))
if out is None:
out = np.empty((nkpts,nkpts,nkpts,nvir,nvir,nocc,nmo), dtype=vovv.dtype)
else:
assert(out.shape == (nkpts,nkpts,nkpts,nvir,nvir,nocc,nmo))
for ki, kj, ka in product(range(nkpts), repeat=3):
kb = kconserv[ki,ka,kj]
out[ki,kj,ka,:,:,:,nocc:] = vovv[kb,ka,kj].conj().transpose(3,2,1,0)
if oovv is not None:
out[ki,kj,ka,:,:,:,:nocc] = oovv[kb,ka,kj].conj().transpose(3,2,1,0)
return out
def create_eris_vooo(ooov, nkpts, nocc, nvir, kconserv, out=None):
'''Creates vooo from ooov array.
This is not exactly chemist's notation, but close. Here a chemist notation vooo
is created from physicist ooov, and then the last two indices of vooo are swapped.
'''
assert(ooov.shape == (nkpts,nkpts,nkpts,nocc,nocc,nocc,nvir))
if out is None:
out = np.empty((nkpts,nkpts,nkpts,nvir,nocc,nocc,nocc), dtype=ooov.dtype)
for ki, kj, ka in product(range(nkpts), repeat=3):
kb = kconserv[ki,kj,ka]
# <bj|ai> -> (ba|ji) (Physicist->Chemist)
# (ij|ab) = (ba|ij)* (Permutational symmetry)
# out = (ij|ab).transpose(0,1,3,2)
out[ki,kj,kb] = ooov[kb,kj,ka].conj().transpose(3,1,0,2)
return out
def create_t3_eris(mycc, kconserv, eris, tmpfile='tmp_t3_eris.h5'):
'''Create/transpose necessary eri integrals needed for fast read-in by CCSD(T).'''
eris_vovv, eris_oovv, eris_ooov, t2 = eris
nkpts = mycc.nkpts
nocc = mycc.nocc
nmo = mycc.nmo
nvir = nmo - nocc
nmo = nocc + nvir
feri_tmp = None
h5py_kwargs = {}
feri_tmp_filename = tmpfile
dtype = np.result_type(eris_vovv, eris_oovv, eris_ooov, t2)
if not check_read_success(feri_tmp_filename):
feri_tmp = lib.H5TmpFile(feri_tmp_filename, 'w', **h5py_kwargs)
t2T_out = feri_tmp.create_dataset('t2T',
(nkpts,nkpts,nkpts,nvir,nvir,nocc,nocc), dtype=dtype)
eris_vvop_out = feri_tmp.create_dataset('vvop',
(nkpts,nkpts,nkpts,nvir,nvir,nocc,nmo), dtype=dtype)
eris_vooo_C_out = feri_tmp.create_dataset('vooo_C',
(nkpts,nkpts,nkpts,nvir,nocc,nocc,nocc), dtype=dtype)
transpose_t2(t2, nkpts, nocc, nvir, kconserv, out=t2T_out)
create_eris_vvop(eris_vovv, eris_oovv, nkpts, nocc, nvir, kconserv, out=eris_vvop_out)
create_eris_vooo(eris_ooov, nkpts, nocc, nvir, kconserv, out=eris_vooo_C_out)
feri_tmp.attrs['completed'] = True
feri_tmp.close()
feri_tmp = lib.H5TmpFile(feri_tmp_filename, 'r', **h5py_kwargs)
t2T = feri_tmp['t2T']
eris_vvop = feri_tmp['vvop']
eris_vooo_C = feri_tmp['vooo_C']
mem_now = lib.current_memory()[0]
max_memory = max(0, mycc.max_memory - mem_now)
unit = nkpts**3 * (nvir**2 * nocc**2 + nvir**2 * nmo * nocc + nvir * nocc**3)
if (unit*16 < max_memory): # Store all in memory
t2T = t2T[:]
eris_vvop = eris_vvop[:]
eris_vooo_C = eris_vooo_C[:]
return feri_tmp, t2T, eris_vvop, eris_vooo_C
def _convert_to_int(kpt_indices):
'''Convert all kpoint indices for 3-particle operator to integers.'''
out_indices = [0]*6
for ix, x in enumerate(kpt_indices):
assert isinstance(x, (int, np.int, np.ndarray, list))
if isinstance(x, (np.ndarray)) and (x.ndim == 0):
out_indices[ix] = int(x)
else:
out_indices[ix] = x
return out_indices
def _tile_list(kpt_indices):
'''Similar to a cartesian product but for a list of kpoint indices for
a 3-particle operator.'''
max_length = 0
out_indices = [0]*6
for ix, x in enumerate(kpt_indices):
if hasattr(x, '__len__'):
max_length = max(max_length, len(x))
if max_length == 0:
return kpt_indices
else:
for ix, x in enumerate(kpt_indices):
if isinstance(x, (int, np.int)):
out_indices[ix] = [x] * max_length
else:
out_indices[ix] = x
return map(list, zip(*out_indices))
def zip_kpoints(kpt_indices):
'''Similar to a cartesian product but for a list of kpoint indices for
a 3-particle operator. Ensures all indices are integers.'''
out_indices = _convert_to_int(kpt_indices)
out_indices = _tile_list(out_indices)
return out_indices
def get_data_slices(kpt_indices, orb_indices, kconserv):
kpt_indices = zip_kpoints(kpt_indices)
if isinstance(kpt_indices[0], (int, np.int)): # Ensure we are working
kpt_indices = [kpt_indices] # with a list of lists
a0,a1,b0,b1,c0,c1 = orb_indices
length = len(kpt_indices)*6
def _vijk_indices(kpt_indices, orb_indices, transpose=(0, 1, 2)):
'''Get indices needed for t3 construction and a given transpose of (a,b,c).'''
kpt_indices = ([kpt_indices[x] for x in transpose] +
[kpt_indices[x+3] for x in transpose])
orb_indices = lib.flatten([[orb_indices[2*x], orb_indices[2*x+1]]
for x in transpose])
ki, kj, kk, ka, kb, kc = kpt_indices
a0, a1, b0, b1, c0, c1 = orb_indices
kf = kconserv[ka,ki,kb]
km = kconserv[kc,kk,kb]
sl00 = slice(None, None)
vvop_idx = [ka, kb, ki, slice(a0,a1), slice(b0,b1), sl00, sl00]
vooo_idx = [ka, ki, kj, slice(a0,a1), sl00, sl00, sl00]
t2T_vvop_idx = [kc, kf, kj, slice(c0,c1), sl00, sl00, sl00]
t2T_vooo_idx = [kc, kb, km, slice(c0,c1), sl00, sl00, sl00]
return vvop_idx, vooo_idx, t2T_vvop_idx, t2T_vooo_idx
vvop_indices = [0] * length
vooo_indices = [0] * length
t2T_vvop_indices = [0] * length
t2T_vooo_indices = [0] * length
transpose = [(0, 1, 2), (0, 2, 1), (1, 0, 2),
(1, 2, 0), (2, 0, 1), (2, 1, 0)]
count = 0
for kpt in kpt_indices:
for t in transpose:
vvop_idx, vooo_idx, t2T_vvop_idx, t2T_vooo_idx = _vijk_indices(kpt, orb_indices, t)
vvop_indices[count] = vvop_idx
vooo_indices[count] = vooo_idx
t2T_vvop_indices[count] = t2T_vvop_idx
t2T_vooo_indices[count] = t2T_vooo_idx
count += 1
return vvop_indices, vooo_indices, t2T_vvop_indices, t2T_vooo_indices
def _get_epqr(pindices,qindices,rindices,fac=[1.0,1.0,1.0],large_num=LARGE_DENOM):
'''Create a denominator
fac[0]*e[kp,p0:p1] + fac[1]*e[kq,q0:q1] + fac[2]*e[kr,r0:r1]
where padded elements have been replaced by a large number.
Args:
pindices (5-list of object):
A list of p0, p1, kp, orbital values, and non-zero indices for the first
denominator element.
qindices (5-list of object):
A list of q0, q1, kq, orbital values, and non-zero indices for the second
denominator element.
rindices (5-list of object):
A list of r0, r1, kr, orbital values, and non-zero indices for the third
denominator element.
fac (3-list of float):
Factors to multiply the first and second denominator elements.
large_num (float):
Number to replace the padded elements.
'''
def get_idx(x0,x1,kx,n0_p):
return | np.logical_and(n0_p[kx] >= x0, n0_p[kx] < x1) | numpy.logical_and |
# python align.py --camera=nikon --focal_length=21
import argparse
import glob
import tqdm
import os
import os.path as op
import json
import rawpy
import numpy as np
import cv2
from skimage.exposure import match_histograms, equalize_hist
import skimage.filters
import datetime
import time
import copy
import pickle
import utils
from utils import log_msg
from dataset import Dataset, SUPPORTED_ANNO_EXT
import draw_anno
from aligner import Aligner, Transforms
LOG = True
MAP_DIR = "transforms"
VIS_DIR = "visualized"
STEPS_DIR = "steps"
MIN_MATCH_COUNT = 10
SUPPORTED_RAW_PATTERNS = [b'RGBG']
def image_diff(img1, img2, postprocessing_fncs=None, postprocessing_args=None):
diff = img1 - img2
if not postprocessing_fncs:
return diff
for fnc, args in zip(postprocessing_fncs, postprocessing_args):
diff = fnc(diff, **args)
return diff
def read_avg_green_raw(filepath):
_img = rawpy.imread(filepath)
assert _img.color_desc in SUPPORTED_RAW_PATTERNS
img = _img.raw_image.copy()
img = np.expand_dims(img,axis=2)
black_level = _img.black_level_per_channel[0] # assume all black level is the same
img = (img - black_level)/2**16
H = img.shape[0]
W = img.shape[1]
packed_img = np.concatenate((img[0:H:2, 0:W:2, :], # R
img[0:H:2, 1:W:2, :], # GR
img[1:H:2, 0:W:2, :], # GB
img[1:H:2, 1:W:2, :]), axis=2) # B
greens = (packed_img[:, :, 1]+packed_img[:, :, 2])/2 # RGGB
return greens
def read_rawpy_rgb(filepath):
_img = rawpy.imread(filepath)
bgr = _img.postprocess()
return bgr[:, :, ::-1]
def read_rawpy_grayscale(filepath):
_img = rawpy.imread(filepath)
rgb = _img.postprocess()
return cv2.cvtColor(rgb[:, :, ::-1], cv2.COLOR_BGR2GRAY)
def read_avg_colors_raw(filepath, gamma=True, rgb_weights=[.2126, .7152, .0722]):
# https://stackoverflow.com/questions/687261/converting-rgb-to-grayscale-intensity
_img = rawpy.imread(filepath)
assert _img.color_desc in SUPPORTED_RAW_PATTERNS
img = _img.raw_image.copy()
img = np.expand_dims(img,axis=2)
black_level = _img.black_level_per_channel[0] # assume all black level is the same
img = (img - black_level)/2**16
H = img.shape[0]
W = img.shape[1]
Rw, Gw, Bw = rgb_weights
Gw/=2
packed_img = np.concatenate((img[0:H:2, 0:W:2, :], # R
img[0:H:2, 1:W:2, :], # GR
img[1:H:2, 0:W:2, :], # GB
img[1:H:2, 1:W:2, :]), axis=2) # B
r, gr, gb, b = packed_img[:, :, 0], packed_img[:, :, 1], packed_img[:, :, 2], packed_img[:, :, 3]
gamma = 1/2.2
grayscale = Rw * r**gamma + Gw * gr**gamma + Gw * gb**gamma + Bw * b**gamma
return grayscale
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='')
parser.add_argument('--camera', type=str, required=True)
parser.add_argument('--focal_length', type=int, required=True)
parser.add_argument('--visualize', action="store_true")
parser.add_argument('--document', action="store_true")
parser.add_argument('--not_log', action="store_true")
args = parser.parse_args()
if args.not_log:
LOG = False
flags = [args.visualize, args.document, True]
dirs = [VIS_DIR, STEPS_DIR, MAP_DIR]
for flag, dir in zip(flags, dirs):
if flag and not op.exists(dir):
os.mkdir(dir)
if args.visualize:
fl_dir_name = str(args.focal_length).replace(".","_")
subdirs = [args.camera, fl_dir_name]
visualize_dir = op.join(VIS_DIR)
for sub in subdirs:
visualize_dir = op.join(visualize_dir, sub)
if not op.exists(visualize_dir):
os.mkdir(visualize_dir)
log_msg(datetime.datetime.now().strftime("%m/%d/%Y, %H:%M:%S"), log=LOG)
print(f"{args.camera}")
camera_config = utils.read_json(op.join(utils.CONFIGS_DIR, args.camera+".json"))
dataset = Dataset(camera_config)
print("Original stats:")
dataset.show_stats()
dataset.filter_by_focal_length(args.focal_length)
result_filepath = op.join(MAP_DIR, dataset.generate_transform_file_name())
print(f"Stats for focal length {args.focal_length}:")
dataset.show_stats()
transforms = Transforms()
detector = cv2.SIFT_create()
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
cached_aligner = Aligner(H=dataset.jpeg_h, W=dataset.jpeg_w, window_size=dataset.window_size, stride=dataset.stride)
cached_addresses_LUT = cached_aligner.addresses_LUT.copy()
aligners = []
for idx, sample in tqdm.tqdm(enumerate(dataset.samples)): #XXX
log_msg(f"Sample {idx}", log=LOG)
''' 4. Prepare images. '''
''' 4.1. Rawpy+grayscale. '''
raw_img = read_rawpy_grayscale(sample.raw_filepath)
jpeg_img = cv2.imread(sample.jpeg_filepath, 0)
if args.document:
cv2.imwrite("steps/1_1_jpeg.jpg", jpeg_img)
cv2.imwrite("steps/1_1_raw.jpg", raw_img)
''' 4.2.&3. Equalize and match histograms. '''
jpeg_img = equalize_hist(jpeg_img)
raw_img = match_histograms(raw_img, jpeg_img)
if args.document:
cv2.imwrite("steps/1_2_jpeg.jpg", jpeg_img*255)
cv2.imwrite("steps/1_2_raw.jpg", raw_img*255)
''' 4.3A. Resize RAW'''
Hj, Wj = jpeg_img.shape
Hr, Wr = raw_img.shape
raw_sx = Wj/Wr
raw_sy = Hj/Hr
raw_img = cv2.resize(raw_img, None, fx=raw_sx, fy=raw_sy)
assert raw_img.shape == jpeg_img.shape
''' 1.-1. np.UINT8'''
jpeg_img *= 255
raw_img *= 255
assert jpeg_img.max() <= 255
assert raw_img.max() <= 255
jpeg_img = jpeg_img.astype(np.uint8)
raw_img = raw_img.astype(np.uint8)
''' 2. Estimate homography'''
aligner = Aligner(H=dataset.jpeg_h, W=dataset.jpeg_w, window_size=dataset.window_size, stride=dataset.stride, addresses_LUT=cached_addresses_LUT)
mapping_idx = 0
for y in range(0, dataset.jpeg_h - dataset.window_size + dataset.window_size, dataset.stride):
for x in range(0, dataset.jpeg_w - dataset.window_size + dataset.window_size, dataset.stride):
jpeg_patch = jpeg_img[y:y + dataset.window_size, x:x + dataset.window_size]
raw_patch = raw_img[y:y + dataset.window_size, x:x + dataset.window_size]
img1 = jpeg_patch
img2 = raw_patch
kp1, des1 = detector.detectAndCompute(img1,None)
kp2, des2 = detector.detectAndCompute(img2,None)
if isinstance(des1, type(None)) or isinstance(des2, type(None)) or len(kp1) < 2 or len(kp2) <2:
log_msg(f"[WARNING] {sample.file_name} patch {mapping_idx} ignored, (no descriptors)", log=LOG)
else:
matches = flann.knnMatch(des1,des2,k=2)
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ (kp1[m.queryIdx].pt[0] + x, kp1[m.queryIdx].pt[1] + y) for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ (kp2[m.trainIdx].pt[0] + x, kp2[m.trainIdx].pt[1] + y) for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
aligner.mappings[mapping_idx] = M
else:
log_msg(f"[WARNING] {sample.file_name} patch {mapping_idx} ignored, (not enough good matches)", log=LOG)
M, mask = None, None
mapping_idx +=1
aligners.append(aligner)
if args.document:
cv2.imwrite("steps/0_patch_jpeg.png",jpeg_patch)
cv2.imwrite("steps/1_patch_raw.png",raw_patch)
raw_preprocessing_transforms = Transforms()
raw_preprocessing_transforms.log(np.diag([raw_sx, raw_sy]), "raw", desc=None)
aggregated_aligner = Aligner(H=dataset.jpeg_h, W=dataset.jpeg_w, window_size=dataset.window_size, stride=dataset.stride, \
addresses_LUT=cached_addresses_LUT, raw_preprocessing_transforms=raw_preprocessing_transforms, log=LOG)
for mapping_idx in aggregated_aligner.mappings.keys():
mappings = []
for aligner in aligners:
M = aligner.mappings[mapping_idx]
if not isinstance(M,type(None)):
mappings.append(M)
avg_mapping = np.mean(mappings, axis=0)
aggregated_aligner.mappings[mapping_idx] = avg_mapping
aggregated_aligner.save(result_filepath)
test_aligner = Aligner(H=dataset.jpeg_h, W=dataset.jpeg_w, \
window_size=dataset.window_size, stride=dataset.stride, load_from=result_filepath)
# sanity check
for idx in aggregated_aligner.mappings.keys():
a1 = aggregated_aligner.mappings[idx]
a2 = test_aligner.mappings[idx]
if isinstance(a1, type(None)):
a1 = np.array([0])
if isinstance(a2, type(None)):
a2 = np.array([0])
if not np.allclose(a1, a2, equal_nan=True): raise Exception(f"{idx}: {a1}, {a2}.")
assert | np.array_equal(aggregated_aligner.addresses_LUT, test_aligner.addresses_LUT) | numpy.array_equal |
#!/usr/bin/env python
"""
Curves, tracks, skeletons connecting surface mesh vertices.
Authors:
- <NAME>, 2012-2016 (<EMAIL>) http://binarybottle.com
- <NAME>, 2012 (<EMAIL>)
Copyright 2016, Mindboggle team (http://mindboggle.info), Apache v2.0 License
"""
def connect_points_erosion(S, neighbor_lists, outer_anchors, inner_anchors=[],
values=[], erode_ratio=0.1, erode_min_size=10,
save_steps=[], save_vtk='', background_value=-1,
verbose=False):
"""
Connect mesh vertices with a skeleton of 1-vertex-thick curves by erosion.
This algorithm iteratively removes simple topological points and endpoints,
optionally in order of lowest to highest values.
Parameters
----------
S : numpy array of integers
values for all vertices (disregard background values)
outer_anchors : list of integers
indices of vertices to connect
inner_anchors : list of integers
more vertices to connect; they are removed if they result in endpoints
neighbor_lists : list of lists of integers
each list contains indices to neighboring vertices for each vertex
values : numpy array of floats
values for S elements, to optionally remove points
in order of lowest to highest values
erode_ratio : float
fraction of indices to test for removal at each iteration (if values)
erode_min_size : integer
minimum number of vertices when considering erode_ratio
save_steps : list of integers (optional)
iterations at which to save incremental VTK file
save_vtk : string
name of VTK file to transfer incremental values (if save_steps)
background_value : integer or float
background value
verbose : bool
print statements?
Returns
-------
skeleton : list of integers
indices to vertices of skeleton
Examples
--------
>>> # Extract a skeleton to connect endpoints in a fold:
>>> import numpy as np
>>> from mindboggle.guts.paths import connect_points_erosion
>>> from mindboggle.guts.paths import find_outer_endpoints
>>> from mindboggle.mio.vtks import read_scalars, read_vtk
>>> from mindboggle.guts.compute import median_abs_dev
>>> from mindboggle.guts.paths import find_max_values
>>> from mindboggle.guts.mesh import find_neighbors_from_file
>>> from mindboggle.mio.fetch_data import prep_tests
>>> urls, fetch_data = prep_tests()
>>> curv_file = fetch_data(urls['left_mean_curvature'], '', '.vtk')
>>> depth_file = fetch_data(urls['left_travel_depth'], '', '.vtk')
>>> folds_file = fetch_data(urls['left_folds'], '', '.vtk')
>>> points, f1,f2,f3, curvs, f4,f5,f6 = read_vtk(curv_file, True,True)
>>> depths, name = read_scalars(depth_file, True, True)
>>> folds, name = read_scalars(folds_file, True, True)
>>> values = depths * curvs
>>> [np.float("{0:.{1}f}".format(x, 5)) for x in values[0:5]]
[-0.11778, -0.35642, -0.80759, -0.25654, -0.04411]
>>> neighbor_lists = find_neighbors_from_file(curv_file)
>>> background_value = -1
>>> # Limit number of folds to speed up the test:
>>> limit_folds = True
>>> if limit_folds:
... fold_numbers = [4] #[4, 6]
... indices = [i for i,x in enumerate(folds) if x in fold_numbers]
... i0 = [i for i,x in enumerate(folds) if x not in fold_numbers]
... folds[i0] = background_value
... else:
... indices = range(len(values))
>>> # Outer anchors:
>>> min_separation = 10
>>> verbose = False
>>> outer_anchors, tracks = find_outer_endpoints(indices, neighbor_lists,
... values, depths, min_separation,
... background_value, verbose)
>>> outer_anchors[0:10]
[50324, 66986, 75661]
>>> # Inner anchors:
>>> values0 = [x for x in values if x > 0]
>>> thr = np.median(values0) + 2 * median_abs_dev(values0)
>>> inner_anchors = find_max_values(points, values, min_separation, thr)
>>> inner_anchors[0:10]
[61455, 41761, 67978, 72621, 78546, 40675, 73745, 98736, 125536, 119813]
>>> erode_ratio = 0.10
>>> erode_min_size = 10
>>> save_steps = [] #list(range(0,500,50))
>>> save_vtk = depth_file
>>> S = np.copy(folds)
>>> skeleton = connect_points_erosion(S, neighbor_lists,
... outer_anchors, inner_anchors, values, erode_ratio, erode_min_size,
... save_steps, save_vtk, background_value, verbose)
>>> skeleton[0:10]
[50324, 50333, 50339, 51552, 51560, 52707, 52716, 52724, 52725, 53893]
Write out vtk file and view (skip test):
>>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP
>>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP
>>> folds[skeleton] = 10 # doctest: +SKIP
>>> folds[outer_anchors] = 15 # doctest: +SKIP
>>> rewrite_scalars(depth_file, 'connect_points_erosion.vtk',
... folds, 'skeleton', folds, background_value) # doctest: +SKIP
>>> plot_surfaces('connect_points_erosion.vtk') # doctest: +SKIP
"""
import numpy as np
from mindboggle.guts.mesh import topo_test, extract_edge, find_endpoints
from mindboggle.guts.segment import segment_regions
# Make sure arguments are numpy arrays:
if not isinstance(S, np.ndarray):
S = np.array(S)
erode_by_value = False
if len(values) and 0 <= erode_ratio < 1:
erode_by_value = True
if not isinstance(values, np.ndarray):
values = np.array(values)
keep = outer_anchors[:]
keep.extend(inner_anchors)
remove_endpoints = True
if save_steps:
from mindboggle.mio.vtks import rewrite_scalars
S0 = S.copy()
# ------------------------------------------------------------------------
# Iteratively remove simple points:
# ------------------------------------------------------------------------
if verbose:
print(' Remove up to {0} of edge vertices per iteration'.
format(erode_ratio))
complex = []
count = -1
exist_simple = True
while exist_simple:
exist_simple = False
if verbose or save_steps:
count += 1
# --------------------------------------------------------------------
# Only consider updating vertices that are on the edge of the
# region and are not among the indices to keep or known simple points:
# --------------------------------------------------------------------
indices = np.where(S != background_value)[0].tolist()
edge = extract_edge(indices, neighbor_lists)
if edge:
edge = np.array(list(set(edge).difference(complex)))
len_edge = np.shape(edge)[0]
if len_edge:
# ------------------------------------------------------------
# Segment edge vertices into separate connected groups:
# ------------------------------------------------------------
edge_segs = segment_regions(edge, neighbor_lists, 1, [],
False, False, [], [], [], '',
background_value, verbose)
edge_seg_numbers = [x for x in np.unique(edge_segs)
if x != background_value]
if verbose:
len_numbers = len(edge_seg_numbers)
if len_numbers > 1:
print(' {0}: {1} edge points in {2} segments'.
format(count, len_edge, len_numbers))
else:
print(' {0}: {1} edge points'.format(count, len_edge))
first_seg = True
for edge_seg_number in edge_seg_numbers:
edge_seg = np.where(edge_segs == edge_seg_number)[0]
edge_seg = np.array(list(set(edge_seg).difference(keep)))
len_edge_seg = np.shape(edge_seg)[0]
if len_edge_seg:
# ----------------------------------------------------
# Remove topologically simple points
# in order of lowest to highest values:
# ----------------------------------------------------
ntests = len_edge_seg
if erode_by_value and ntests > erode_min_size:
Isort = np.argsort(values[edge_seg])
edge_seg = edge_seg[Isort]
if erode_ratio > 0:
ntests = int(len_edge_seg * erode_ratio) + 1
for index in edge_seg[0:ntests]:
# Test to see if each index is a simple point:
simple, d = topo_test(index, S, neighbor_lists)
# If a simple point, remove and run again:
# (Note: Must remove at each iteration)
if simple:
S[index] = background_value
exist_simple = True
# Else store to exclude in future:
else:
complex.append(index)
# If no simple points, test all of the indices:
if not exist_simple and erode_by_value:
if verbose:
print(' No simple points')
for index in edge_seg[ntests::]:
simple, d = topo_test(index, S, neighbor_lists)
# If a simple point, remove and run again:
if simple:
S[index] = background_value
exist_simple = True
# Else store to exclude in future:
else:
complex.append(index)
# Save incremental VTK files for debugging:
if count in save_steps and first_seg:
IDs = background_value * np.ones(len(values))
IDs[indices] = values[indices]
rewrite_scalars(save_vtk,
'edge'+str(count)+'.vtk',
IDs, 'edges', S0,
background_value)
first_seg = False
# ------------------------------------------------------------
# Remove branches by iteratively removing endpoints:
# ------------------------------------------------------------
if remove_endpoints:
indices = np.where(S != background_value)[0].tolist()
endpts = True
while endpts:
endpts = find_endpoints(indices, neighbor_lists)
if endpts:
endpts = [x for x in endpts if x not in outer_anchors]
if endpts:
S[endpts] = background_value
indices = list(set(indices).difference(endpts))
skeleton = indices
return skeleton
def connect_points_hmmf(indices_points, indices, L, neighbor_lists,
wN_max=1.0, do_erode=True, background_value=-1,
verbose=False):
"""
Connect mesh vertices with a skeleton of 1-vertex-thick curves using HMMF.
The goal of this algorithm is to assign each vertex a locally optimal
Hidden Markov Measure Field (HMMF) value and to connect vertices according
to a cost function that penalizes vertices that do not have high likelihood
values and have HMMF values different than their neighbors.
We initialize the HMMF values with likelihood values normalized to the
interval (0.5, 1.0] (to guarantee correct topology) and take those values
that are greater than the likelihood threshold (1 for each anchor point).
We iteratively update each HMMF value if it is near the likelihood
threshold such that a H_step makes it cross the threshold,
and the vertex is a "simple point" (its addition/removal alters topology).
Parameters for computing the cost and cost gradients:
``wL``: weight influence of likelihood on the cost function
``wN``: weight influence of neighbors on the cost function
``H_step``: the amount that the HMMF values are incremented
Parameters
----------
indices_points : list of integers
indices of vertices to connect (should contain > 1)
indices : list of integers
indices of vertices through which to connect points
L : numpy array of floats
likelihood values for all vertices in mesh
neighbor_lists : list of lists of integers
indices to neighboring vertices for each vertex in mesh
wN_max : float
maximum neighborhood weight (trust prior more for smoother fundi)
do_erode : bool
erode to create skeleton?
background_value : integer
background value
verbose : bool
print statements?
Returns
-------
skeleton : list of integers
indices to vertices connecting the points
Examples
--------
>>> # Connect vertices according to (usually likelihood) values in a fold:
>>> import numpy as np
>>> from mindboggle.guts.paths import connect_points_hmmf
>>> from mindboggle.guts.paths import find_outer_endpoints
>>> from mindboggle.mio.vtks import read_scalars
>>> from mindboggle.guts.compute import median_abs_dev
>>> from mindboggle.guts.mesh import find_neighbors_from_file
>>> from mindboggle.mio.fetch_data import prep_tests
>>> urls, fetch_data = prep_tests()
>>> url1 = urls['left_mean_curvature']
>>> url2 = urls['left_travel_depth']
>>> url3 = urls['left_folds']
>>> curv_file = fetch_data(url1, '', '.vtk')
>>> depth_file = fetch_data(url2, '', '.vtk')
>>> folds_file = fetch_data(url3, '', '.vtk')
>>> curvs, name = read_scalars(curv_file, True, True)
>>> depths, name = read_scalars(depth_file, True, True)
>>> folds, name = read_scalars(folds_file, True, True)
>>> L = curvs * depths
>>> print(np.array_str(L[0:5], precision=5, suppress_small=True))
[-0.11778 -0.35642 -0.80759 -0.25654 -0.04411]
>>> neighbor_lists = find_neighbors_from_file(curv_file)
>>> background_value = -1
>>> # Limit number of folds to speed up the test:
>>> limit_folds = True
>>> if limit_folds:
... fold_numbers = [4] #[4, 6]
... indices = [i for i,x in enumerate(folds) if x in fold_numbers]
... i0 = [i for i,x in enumerate(folds) if x not in fold_numbers]
... folds[i0] = background_value
... else:
... indices = range(len(L))
>>> # Outer anchors:
>>> min_separation = 10
>>> verbose = False
>>> indices_points, tracks = find_outer_endpoints(indices, neighbor_lists,
... L, depths, min_separation,
... background_value, verbose)
>>> wN_max = 2.0
>>> do_erode = True
>>> skeleton = connect_points_hmmf(indices_points, indices, L,
... neighbor_lists, wN_max, do_erode, background_value, verbose)
>>> skeleton[0:10]
[50324, 50333, 50339, 51552, 51560, 51561, 52708, 52716, 53891, 53892]
Write out vtk file and view (skip test):
>>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP
>>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP
>>> folds_copy = np.copy(folds) # doctest: +SKIP
>>> folds[skeleton] = 100 # doctest: +SKIP
>>> folds[indices_points] = 120 # doctest: +SKIP
>>> rewrite_scalars(depth_file, 'connect_points_hmmf.vtk',
... folds, 'skeleton', folds, -1) # doctest: +SKIP
>>> plot_surfaces('connect_points_hmmf.vtk') # doctest: +SKIP
"""
import numpy as np
from mindboggle.guts.mesh import topo_test
from mindboggle.guts.paths import connect_points_erosion
# Make sure argument is a numpy array
if not isinstance(L, np.ndarray):
L = np.array(L)
# ------------------------------------------------------------------------
# Parameters:
# ------------------------------------------------------------------------
# Cost and cost gradient parameters:
wN_min = 0.0 # minimum neighborhood weight
#wN_max = 2.0 # maximum neighborhood weight (trust prior more for smoother fundi)
H_step = 0.1 # step down HMMF value
# Parameters to speed up optimization and for termination of the algorithm:
grad_min = 0.1 # minimum gradient factor
grad_max = 1.0 # maximum gradient factor
slope_exp = 2
rate_factor = 0.9
min_cost_change = 0.0001 # minimum change in the sum of costs
n_tries_no_change = 3 # number of loops without sufficient change
min_count = 50 # min. iterations (to overcome initial increasing costs)
max_count = 300 # maximum number of iterations (in case no convergence)
# Miscellaneous parameters:
print_interval = 10
def compute_costs(likelihoods, hmmfs, hmmfs_neighbors, numbers_of_neighbors,
wN, Z=[]):
"""
Cost function for penalizing unlikely fundus curve vertices.
This cost function penalizes vertices with low fundus likelihood values,
and whose Hidden Markov Measure Field (HMMF) values differ from
their neighbors:
cost = hmmf * (1.1 - likelihood) +
wN * sum(abs(hmmf - hmmf_neighbors)) / size_neighbors
term 1 promotes high likelihood values
term 2 promotes smoothness of the HMMF values
Note: 1.1 is used instead of 1 to ensure that there is a cost
for all points, even for those with likelihoods close to 1.
Parameters
----------
likelihoods : numpy array of floats
likelihood values in interval [0,1]
hmmf : numpy array of floats
HMMF values
hmmf_neighbors : numpy array of floats
HMMF values of neighboring vertices for each vertex
numbers_of_neighbors : numpy array of integers
number of neighbors for each vertex
wN : float
weight influence of neighbors on cost (term 2)
Z : numpy array of integers in {0,1} (same shape as hmmf_neighbors)
to remove zero-padded neighborhood elements after hmmf subtraction
Returns
-------
costs : numpy array of floats
cost values
"""
import numpy as np
if all(numbers_of_neighbors):
# Subtract each HMMF value from its neighbors:
diff = abs(hmmfs - hmmfs_neighbors)
# Since the above neighbors may have been padded,
# remove the extra differences by multiplying them times zero:
diff = diff * Z
# Compute the cost for each vertex:
costs = hmmfs * (1.1 - likelihoods) + \
wN * np.sum(diff, axis=0) / numbers_of_neighbors
else:
raise IOError('No HMMF neighbors to compute cost.')
return costs
# ------------------------------------------------------------------------
# Initialize all Hidden Markov Measure Field (HMMF) values with
# likelihood values (except 0) normalized to the interval (0.5, 1.0]
# (to guarantee correct topology). Assign a 1 for each anchor point.
# This influences surrounding vertex neighborhoods.
# Note: 0.5 is the class boundary threshold for the HMMF values.
H = np.zeros(len(L))
H_new = (L + 1.000001) / 2
H_new[L == 0.0] = 0
H_new[H_new > 1.0] = 1
H[H_new > 0.5] = H_new[H_new > 0.5]
H[indices_points] = 1
H_new = H.copy()
H_tests = H.copy()
# Find the HMMF values for the neighbors of each vertex:
N = neighbor_lists
N_sizes = np.array([len(x) for x in N])
max_num_neighbors = max(N_sizes[indices])
N_array = np.zeros((max_num_neighbors, len(L)))
for index in indices:
N_array[0:N_sizes[index], index] = N[index]
N_array_shape = np.shape(N_array)
N_flat = np.ravel(N_array)
N_flat_list = N_flat.tolist()
H_N = np.reshape(H[[np.int(x) for x in N_flat_list]], N_array_shape)
ind_flat = [i for i,x in enumerate(N_flat_list) if x > 0]
len_flat = len(N_flat_list)
# A zero in N calls H[0], so remove zero-padded neighborhood elements:
Z = np.zeros((max_num_neighbors, len(L)))
for index in indices:
Z[0:N_sizes[index], index] = 1
# Assign cost values to each vertex (for indices):
C = np.zeros(len(L))
C[indices] = compute_costs(L[indices], H[indices], H_N[:,indices],
N_sizes[indices], wN_max, Z[:,indices])
npoints = len(indices)
# Loop until count reaches max_count or until end_flag equals zero
# (end_flag allows the loop to continue a few times even if no change):
count = 0
end_flag = 0
wN = wN_max
gradient_factor = grad_min
while end_flag < n_tries_no_change and count < max_count:
# Select indices with a positive HMMF value:
V = [indices[i] for i,x in enumerate(H[indices]) if x > 0.0]
# Update neighborhood H values:
#H_N = np.reshape(H[N_flat_list], N_array_shape)
H_N = np.zeros(len_flat)
H_N[ind_flat] = H[[np.int(x) for x in N_flat[ind_flat]]]
H_N = np.reshape(H_N, N_array_shape)
# Compute the cost gradient for the HMMF values:
H_decr = H - H_step
H_decr[H_decr < 0] = 0.0
C_decr = compute_costs(L[V], H_decr[V], H_N[:,V], N_sizes[V], wN, Z[:,V])
H_tests[V] = H[V] - gradient_factor * (C[V] - C_decr)
H_tests[H_tests < 0] = 0.0
H_tests[H_tests > 1] = 1.0
# For each index:
for index in V:
# Do not update anchor point costs:
if index not in indices_points:
# Update a vertex HMMF value if it is away from the threshold:
update = True
# Or if it crosses the threshold and is a topologically
# "simple point" (0.5 not considered part of the fundus):
if H[index] > 0.5 >= H_tests[index]:
update, n_in = topo_test(index, H_new, N)
elif H[index] <= 0.5 < H_tests[index]:
update, n_in = topo_test(index, 1 - H_new, N)
if update:
H_new[index] = H_tests[index]
# Update the cost values:
C[V] = compute_costs(L[V], H_new[V], H_N[:,V], N_sizes[V], wN, Z[:,V])
# Sum the cost values across all vertices and tally the number
# of HMMF values greater than the threshold.
# After iteration 1, compare current and previous values.
# If the values are similar, increment end_flag:
costs = sum(C[V].tolist())
npoints_thr = len([x for x in H[V].tolist() if x > 0.5])
# Terminate the loop if there are insufficient changes:
if count > 0:
delta_cost = (costs_previous - costs) / npoints
delta_points = npoints_thr_previous - npoints_thr
if delta_points == 0:
if delta_cost < min_cost_change and count > min_count:
end_flag += 1
else:
end_flag = 0
# Display information every n_mod iterations:
if verbose and not np.mod(count, print_interval):
print(' Iteration {0}: {1} crossing threshold '
'(wN={2:0.3f}, grad={3:0.3f}, cost={4:0.3f})'.
format(count, delta_points, wN, gradient_factor,
delta_cost))
# Increment the gradient factor and decrement the neighborhood factor
# so that spacing is close in early iterations and far apart later:
factor = (count / np.round(rate_factor*max_count))**slope_exp
if gradient_factor < grad_max:
gradient_factor = factor * (grad_max - grad_min) + grad_min
if wN > wN_min:
wN = wN_max - factor * (wN_max - wN_min)
# Reset for next iteration:
costs_previous = costs
npoints_thr_previous = npoints_thr
H = H_new
count += 1
if verbose:
print(' Updated hidden Markov measure field (HMMF) values')
# Skeletonize:
if do_erode:
# Threshold the resulting array:
S = background_value * np.ones(len(L))
S[indices] = H[indices]
S[S > 0.5] = 1.0
S[S <= 0.5] = background_value
skeleton = connect_points_erosion(S, neighbor_lists=N,
outer_anchors=indices_points,
inner_anchors=[],
values=H, erode_ratio=0.5,
erode_min_size=10, save_steps=[],
save_vtk='',
background_value=background_value,
verbose=verbose)
if verbose:
npoints_thr = len([x for x in S if x != background_value])
print(' Removed {0} points to create one-vertex-thin '
'skeletons'.format(int(npoints_thr - len(skeleton))))
else:
# Threshold the resulting array:
S = np.zeros(len(L))
S[indices] = H[indices]
S[S > 0.5] = 1.0
S[S <= 0.5] = 0.0
skeleton = [i for i,x in enumerate(S.tolist()) if x == 1]
if verbose:
print(' Removed {0} points to create one-vertex-thin '
'skeletons'.format(int(sum(S.tolist()) - len(skeleton))))
return skeleton
def smooth_skeletons(skeletons, bounds, vtk_file, likelihoods, wN_max=1.0,
do_erode=True, save_file=False, output_file='',
background_value=-1, verbose=False):
"""
Smooth skeleton by dilation followed by connect_points_hmmf().
Steps ::
1. Segment skeleton into separate sets of connected vertices.
2. For each skeleton segment, extract endpoints.
3. Dilate skeleton segment.
4. Connect endpoints through dilated segment by connect_points_hmmf().
5. Store smoothed output from #4.
Parameters
----------
skeletons : list of integers
skeleton number for each vertex
bounds : list of integers
region number for each vertex; constrains smoothed skeletons
vtk_file : string
file from which to extract neighboring vertices for each vertex
likelihoods : list of integers
fundus likelihood value for each vertex
wN_max : float
maximum neighborhood weight (trust prior more for smoother skeletons)
do_erode : bool
erode skeleton?
save_file : bool
save output VTK file?
output_file : string
output VTK file
background_value : integer or float
background value
verbose : bool
print statements?
Returns
-------
skeletons : list of integers
skeleton numbers for all vertices
n_skeletons : integer
number of skeletons
skeletons_file : string (if save_file)
name of output VTK file with skeleton numbers
Examples
--------
>>> # Smooth skeleton to extract fundus from one or more folds:
>>> import numpy as np
>>> from mindboggle.mio.plots import plot_surfaces
>>> from mindboggle.guts.paths import smooth_skeletons
>>> from mindboggle.mio.vtks import read_scalars
>>> from mindboggle.guts.compute import median_abs_dev
>>> from mindboggle.guts.mesh import find_neighbors_from_file
>>> from mindboggle.mio.fetch_data import prep_tests
>>> urls, fetch_data = prep_tests()
>>> curv_file = fetch_data(urls['left_mean_curvature'], '', '.vtk')
>>> depth_file = fetch_data(urls['left_travel_depth'], '', '.vtk')
>>> folds_file = fetch_data(urls['left_folds'], '', '.vtk')
>>> fundus_file = fetch_data(urls['left_fundus_per_fold'], '', '.vtk')
>>> curvs, name = read_scalars(curv_file, True, True)
>>> depths, name = read_scalars(depth_file, True, True)
>>> vtk_file = curv_file
>>> likelihoods = depths * curvs
>>> [np.float("{0:.{1}f}".format(x, 5)) for x in likelihoods[0:5]]
[-0.11778, -0.35642, -0.80759, -0.25654, -0.04411]
>>> bounds, name = read_scalars(folds_file, True, True)
>>> skeletons, name = read_scalars(fundus_file, True, True)
>>> background_value = -1
>>> # Limit number of folds to speed up the test:
>>> limit_folds = True
>>> if limit_folds:
... fold_numbers = [7] #[4, 6]
... i0 = [i for i,x in enumerate(bounds) if x not in fold_numbers]
... bounds[i0] = background_value
... skeletons[i0] = background_value
>>> wN_max = 1.0
>>> do_erode = True
>>> save_file = True
>>> output_file = 'smooth_skeletons.vtk'
>>> verbose = False
>>> smoothed_skeletons, n_skeletons, skel_file = smooth_skeletons(skeletons,
... bounds, vtk_file, likelihoods, wN_max, do_erode, save_file,
... output_file, background_value, verbose)
>>> np.where(np.array(smoothed_skeletons)!=-1)[0][0:8]
array([112572, 113435, 113454, 113469, 114294, 114295, 114296, 114312])
Write out vtk file and view (skip test):
>>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP
>>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP
>>> iskels = [i for i,x in enumerate(smoothed_skeletons)
... if x != background_value] # doctest: +SKIP
>>> bounds[iskels] = 100 # doctest: +SKIP
>>> rewrite_scalars(depth_file, 'smooth_skeletons_no_background.vtk',
... bounds, 'skeleton', bounds, -1) # doctest: +SKIP
>>> plot_surfaces('smooth_skeletons.vtk') # doctest: +SKIP
"""
import os
import numpy as np
from time import time
from mindboggle.mio.vtks import rewrite_scalars
from mindboggle.guts.mesh import find_neighbors_from_file, find_endpoints
from mindboggle.guts.segment import segment_regions
from mindboggle.guts.mesh import dilate
from mindboggle.guts.paths import connect_points_hmmf
t0 = time()
neighbor_lists = find_neighbors_from_file(vtk_file)
indices = np.where(bounds != background_value)[0]
npoints = len(bounds)
# ------------------------------------------------------------------------
# Loop through skeletons:
# ------------------------------------------------------------------------
unique_IDs = [x for x in | np.unique(skeletons) | numpy.unique |
"""
"""
import numpy as np
from .pure_python_mean_radial_velocity_vs_r import pure_python_mean_radial_velocity_vs_r
from ...tests.cf_helpers import generate_locus_of_3d_points
__all__ = ('test_pure_python1', )
fixed_seed = 43
def test_pure_python1():
""" Verify that the brute-force pairwise velocity function returns the
correct result for an analytically calculable case.
"""
correct_relative_velocity = -25
npts = 100
xc1, yc1, zc1 = 0.95, 0.5, 0.5
xc2, yc2, zc2 = 0.05, 0.5, 0.5
sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed)
sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed)
velocities1 = np.zeros(npts*3).reshape(npts, 3)
velocities2 = np.zeros(npts*3).reshape(npts, 3)
velocities1[:, 0] = 50.
velocities2[:, 0] = 25.
rbins = np.array([0, 0.05, 0.3])
msg = "pure python result is incorrect"
rmin, rmax = rbins[0], rbins[1]
pure_python_s1s2 = pure_python_mean_radial_velocity_vs_r(
sample1, velocities1, sample2, velocities2, rmin, rmax, Lbox=1)
assert pure_python_s1s2 == 0, msg
rmin, rmax = rbins[1], rbins[2]
pure_python_s1s2 = pure_python_mean_radial_velocity_vs_r(
sample1, velocities1, sample2, velocities2, rmin, rmax, Lbox=1)
assert np.allclose(pure_python_s1s2, correct_relative_velocity, rtol=0.01), msg
def test_pure_python2():
"""
"""
npts = 10
rmin, rmax = 0., 0.2
xc1, yc1, zc1 = 0.1, 0.5, 0.5
xc2, yc2, zc2 = 0.05, 0.5, 0.5
sample1 = np.zeros((npts, 3)) + (xc1, yc1, zc1)
sample2 = np.zeros((npts, 3)) + (xc2, yc2, zc2)
vx1, vy1, vz1 = 0., 0., 0.
vx2, vy2, vz2 = 20., 0., 0.
velocities1 = np.zeros((npts, 3)) + (vx1, vy1, vz1)
velocities2 = np.zeros((npts, 3)) + (vx2, vy2, vz2)
result = pure_python_mean_radial_velocity_vs_r(
sample1, velocities1, sample2, velocities2, rmin, rmax, Lbox=float('inf'))
assert np.all(result == -20)
def test_pure_python3():
"""
"""
npts = 10
rmin, rmax = 0., 0.2
xc1, yc1, zc1 = 0.05, 0.5, 0.5
xc2, yc2, zc2 = 0.1, 0.5, 0.5
sample1 = np.zeros((npts, 3)) + (xc1, yc1, zc1)
sample2 = | np.zeros((npts, 3)) | numpy.zeros |
import torch
import numpy as np
import lightconvpoint.nn
import os
import random
from torchvision import transforms
from PIL import Image
import time
from tqdm import *
from plyfile import PlyData, PlyElement
from lightconvpoint.nn import with_indices_computation_rotation
def gauss_clip(mu, sigma, clip):
v = random.gauss(mu, sigma)
v = max(min(v, mu + clip * sigma), mu - clip * sigma)
return v
def uniform(bound):
return bound * (2 * random.random() - 1)
def scaling_factor(scaling_param, method):
try:
scaling_list = list(scaling_param)
return random.choice(scaling_list)
except:
if method == 'g':
return gauss_clip(1.0, scaling_param, 3)
elif method == 'u':
return 1.0 + uniform(scaling_param)
class DatasetTrainVal():
def __init__ (self, filelist, folder,
training=False,
block_size=2,
npoints = 4096,
iteration_number = None,
jitter=0, rgb=True, scaling_param=0,
rgb_dropout=False,
network_function=None, network_fusion_function=None):
self.training = training
self.filelist = filelist
self.folder = folder
self.bs = block_size
self.rgb = rgb
self.npoints = npoints
self.iterations = iteration_number
self.verbose = False
self.number_of_run = 10
self.rgb_dropout = rgb_dropout
# data augmentation at training
self.jitter = jitter # 0.8 for more
self.scaling_param = scaling_param
self.transform = transforms.ColorJitter(
brightness=jitter,
contrast=jitter,
saturation=jitter)
if network_function is not None:
self.net = network_function()
else:
self.net = None
if network_fusion_function is not None:
self.net_fusion = network_fusion_function()
else:
self.net_fusion = None
@with_indices_computation_rotation
def __getitem__(self, index):
folder = self.folder
if self.training or self.iterations is not None:
index = random.randint(0, len(self.filelist)-1)
dataset = self.filelist[index]
else:
dataset = self.filelist[index//self.number_of_run]
filename_data = os.path.join(folder, dataset, 'xyzrgb.npy')
xyzrgb = np.load(filename_data).astype(np.float32)
# load labels
filename_labels = os.path.join(folder, dataset, 'label.npy')
if self.verbose:
print('{}-Loading {}...'.format(datetime.now(), filename_labels))
labels = np.load(filename_labels).astype(int).flatten()
# pick a random point
pt_id = random.randint(0, xyzrgb.shape[0]-1)
pt = xyzrgb[pt_id, :3]
mask_x = np.logical_and(xyzrgb[:,0]<pt[0]+self.bs/2, xyzrgb[:,0]>pt[0]-self.bs/2)
mask_y = np.logical_and(xyzrgb[:,1]<pt[1]+self.bs/2, xyzrgb[:,1]>pt[1]-self.bs/2)
mask = np.logical_and(mask_x, mask_y)
pts = xyzrgb[mask]
lbs = labels[mask]
choice = np.random.choice(pts.shape[0], self.npoints, replace=True)
pts = pts[choice]
lbs = lbs[choice]
# get the colors
features = pts[:,3:]
# apply jitter if trainng
if self.training and self.jitter > 0:
features = features.astype(np.uint8)
features = np.array(self.transform( Image.fromarray(np.expand_dims(features, 0)) ))
features = | np.squeeze(features, 0) | numpy.squeeze |
from metrics import metric_base
import numpy as np
import tensorflow as tf
from tqdm import tqdm
class IL(metric_base.MetricBase):
def __init__(self, num_images, interpolation_steps, step_size, **kwargs):
super().__init__(**kwargs)
self.num_images = num_images
self.interpolation_steps = interpolation_steps
self.step_size = step_size
def _evaluate(self, Gs, Gs_kwargs, num_gpus):
result = 0
with tf.device('/gpu:%d' % 0):
for _ in tqdm(range(self.num_images)):
latent = np.random.normal(0, 1, [1, Gs.input_shape[1]]).astype(np.float32)
label_left = self._get_random_labels_np(1)
rotation_offset = 108
rotations = label_left[:, rotation_offset:rotation_offset + 8]
rotation_index = np.argmax(rotations, axis=1)
new_rotation_index = ((rotation_index + np.random.choice([-1, 1])) % 8)
new_rotation = | np.zeros([8], dtype=np.uint32) | numpy.zeros |
"""
Space Robotics Challenge 2
"""
import numpy as np
import math
from datetime import timedelta
import traceback
import sys
from functools import cmp_to_key
import cv2
from shapely.geometry import Point, LineString, MultiPolygon, Polygon
from statistics import median
from osgar.bus import BusShutdownException
from moon.controller import eulerAnglesToRotationMatrix, translationToMatrix, GO_STRAIGHT, TURN_RADIUS, calc_tangents, pol2cart, ps, distance, SpaceRoboticsChallenge, MoonException, VirtualBumperException, LidarCollisionException, LidarCollisionMonitor, VSLAMEnabledException, VSLAMDisabledException, VSLAMLostException, VSLAMFoundException
from osgar.lib.virtual_bumper import VirtualBumper
from osgar.lib.quaternion import euler_zyx
from osgar.lib.mathex import normalizeAnglePIPI
DIG_GOOD_LOCATION_MASS = 10
GROUP_ANGLES_MAX_DIFF = 0.3
ARRIVAL_OFFSET = -1.5
TYPICAL_VOLATILE_DISTANCE = 2
DISTAL_THRESHOLD = 0.145 # TODO: movement may be too fast to detect when the scooping first happened
PREFERRED_POLYGON = Polygon([(-32,9),(-25,20),(-16,26),(-6,26),(3.5,22),(14.5,25.5),(23.5,20),(30,9),(35,1),(30,-13.5),(21,-24),(11,-30),(5,-36),(-18,-32),(-19,-17),(-26,-4)])
SAFE_POLYGON = PREFERRED_POLYGON.union(MultiPolygon([
Polygon([(-30,9),(-43,15),(-41,25),(-28,38),(-15,44.5),(-13,50.5),(-33,51),(-38,36),(-53,26),(-61,3),(-26,-1)]),
Polygon([(-45,-39),(-58,-40),(-59,-50),(43,-50),(43,-31),(60,-27),(65,30),(51,15),(46,-18), (29,-12.5), (27, -15), (43,-22), (27,-37),(4,-31),(-15,-30)])
]))
APPROACH_DISTANCE = 2.5
class WaitRequestedException(MoonException):
pass
class ResumeRequestedException(MoonException):
pass
class NewVolatileTargetException(MoonException):
pass
class SpaceRoboticsChallengeExcavatorRound2(SpaceRoboticsChallenge):
def __init__(self, config, bus):
super().__init__(config, bus)
bus.register("bucket_dig", "bucket_drop")
self.volatile_dug_up = None
self.mount_angle = None
self.distal_angle = None
self.vol_list = None
self.vslam_reset_at = None
self.use_gimbal = False
self.robot_name = "excavator_1"
self.hauler_ready = False
self.vslam_is_enabled = False
self.hauler_orig_pose = None
self.full_360_objects = {}
self.full_360_distances = []
self.first_distal_angle = None
self.hauler_pose_requested = False
self.auto_light_adjustment = False
self.light_intensity = 0.0
self.vslam_fail_start = None
self.vslam_valid = False
self.visual_navigation_enabled = False
self.lidar_distance_enabled = False
self.current_volatile = None
self.going_to_volatile = False
self.unsafe_location = Polygon([(-100, -100), (-100, 100), (100, 100), (100, -100)]).difference(SAFE_POLYGON)
def on_osgar_broadcast(self, data):
message_target = data.split(" ")[0]
if message_target == self.robot_name:
print(self.sim_time, self.robot_name, "Received external_command: %s" % str(data))
command = data.split(" ")[1]
if command == "arrived":
self.hauler_yaw = float(data.split(" ")[2])
self.hauler_ready = True
if command == "wait":
raise WaitRequestedException()
if command == "resume":
raise ResumeRequestedException()
if command == "hauler_true_pose":
# assumes hauler finished approach as is behind excavator in self.yaw direction
self.hauler_pose_requested = True
print(self.sim_time, self.robot_name, "Origin of hauler received: ", str(data.split(" ")[2:]))
if data.split()[2] == 'origin':
origin = [float(x) for x in data.split()[3:]]
initial_xyz = origin[:3]
initial_quat = origin[3:]
initial_rpy = euler_zyx(initial_quat) # note: this is not in roll, pitch, yaw order
v = np.asmatrix(np.asarray([initial_xyz[0], initial_xyz[1], 1]))
c, s = np.cos(initial_rpy[0]), np.sin(initial_rpy[0])
Rr = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1))))
T = np.asmatrix(np.array(((1, 0, APPROACH_DISTANCE),(0, 1, 0),(0, 0, 1)))) # looking for location in front of origin
ex_pos = np.dot(Rr, np.dot(T, np.dot(Rr.I, v.T)))
print(self.sim_time, self.robot_name, "Adjusting XY based on hauler origin: from [%.1f,%.1f] to [%.1f,%.1f]" % (self.xyz[0], self.xyz[1], float(ex_pos[0]), float(ex_pos[1])))
if self.tf['vslam']['trans_matrix'] is not None:
m = translationToMatrix([float(ex_pos[0])-self.xyz[0], float(ex_pos[1])-self.xyz[1], 0.0])
self.tf['vslam']['trans_matrix'] = np.dot(m, self.tf['vslam']['trans_matrix'])
else:
ex_initial_xyz = [float(ex_pos[0]), float(ex_pos[1]), origin[2]]
initial_rpy[0] = self.yaw # keep existing yaw
self.xyz = ex_initial_xyz
self.xyz_quat = initial_quat
for k, obj in self.tf.items():
# note: if VSLAM is not tracking at time of register_origin call, the latest reported position will be inaccurate and VSLAM won't work
if obj['latest_quat'] is not None:
latest_rpy = euler_zyx(obj['latest_quat']) # will be rearranged after offset calculation
rpy_offset = [a-b for a,b in zip(initial_rpy, latest_rpy)]
rpy_offset.reverse()
print(self.sim_time, self.robot_name, "%s RPY offset: %s" % (k, str(rpy_offset)))
rot_matrix = np.asmatrix(eulerAnglesToRotationMatrix(rpy_offset)) # TODO: save the original rot matrix
xyz_offset = translationToMatrix(obj['latest_xyz'])
orig_xyz_offset = translationToMatrix(ex_initial_xyz)
obj['trans_matrix'] = np.dot(orig_xyz_offset, np.dot(rot_matrix, xyz_offset.I))
else:
print(self.sim_time, self.robot_name, "Invalid origin format")
if command == "pose":
self.hauler_orig_pose = [float(data.split(" ")[2]),float(data.split(" ")[3])]
def on_left_image(self, data):
if not self.auto_light_adjustment:
return
limg = cv2.imdecode(np.frombuffer(data, dtype=np.uint8), cv2.IMREAD_COLOR)
CAMERA_HEIGHT,CAMERA_WIDTH, _ = limg.shape
hsv = cv2.cvtColor(limg, cv2.COLOR_BGR2HSV)
mask = np.zeros((CAMERA_HEIGHT,CAMERA_WIDTH), np.uint8)
circle_mask = cv2.circle(mask,(CAMERA_HEIGHT//2,CAMERA_WIDTH//2),200,(255,255,255),thickness=-1)
hist = cv2.calcHist([limg],[2],circle_mask,[256],[0,256])
topthird = hist[170:]
brightness = int(sum(topthird) / len(topthird))
if brightness < 300:
self.light_intensity = min(1.0, self.light_intensity + 0.1)
self.send_request('set_light_intensity %s' % str(self.light_intensity))
elif brightness > 500:
self.light_intensity = max(0.0, self.light_intensity - 0.1)
self.send_request('set_light_intensity %s' % str(self.light_intensity))
def on_vslam_enabled(self, data):
super().on_vslam_enabled(data)
if self.vslam_is_enabled != data:
self.vslam_is_enabled = data
if not self.true_pose or self.sim_time is None or self.last_position is None or self.yaw is None:
return
if self.vslam_is_enabled:
raise VSLAMEnabledException()
else:
raise VSLAMDisabledException()
def get_extra_status(self):
if self.volatile_dug_up[1] == 100:
return "Bucket empty"
else:
return ps("Bucket content: Type: %s idx: %d mass: %f" % (self.volatile_dug_up[0], self.volatile_dug_up[1], self.volatile_dug_up[2]))
def on_bucket_info(self, bucket_status):
#[0] .. type ('ice'); [1] .. index (100=nothing); [2] .. mass
self.volatile_dug_up = bucket_status
if self.first_distal_angle is None and bucket_status[1] != 100:
print (self.sim_time, self.robot_name, "Volatile in bucket at distal: %.2f" % self.distal_angle)
self.first_distal_angle = self.distal_angle
def on_joint_position(self, data):
super().on_joint_position(data)
self.mount_angle = data[self.joint_name.index(b'mount_joint')]
self.distal_angle = data[self.joint_name.index(b'distalarm_joint')]
def on_sim_clock(self, data):
super().on_sim_clock(data)
if self.going_to_volatile and data[0] % 5 == 0 and data[1] == 0:
# if pursuing volatile then every two seconds rerun trajectory optimization and if better volatile than planned ahead, re-plan route
v = self.get_next_volatile()
if v != self.current_volatile and distance(self.xyz, self.current_volatile) > 6: # do not change volatile if almost arrived to the current one
print (self.sim_time, self.robot_name, "New volatile target: [%.1f,%.1f]" % (v[0], v[1]))
self.current_volatile = v
raise NewVolatileTargetException()
def on_vslam_pose(self, data):
super().on_vslam_pose(data)
if self.sim_time is None or self.last_position is None or self.yaw is None:
return
if math.isnan(data[0][0]) and self.tf['vslam']['trans_matrix'] is not None and not self.hauler_pose_requested: # VSLAM not tracking and potential for re-tracking via hauler
self.vslam_valid = False
if self.vslam_fail_start is None:
self.vslam_fail_start = self.sim_time
elif self.sim_time - self.vslam_fail_start > timedelta(milliseconds=300):
self.vslam_fail_start = None
raise VSLAMLostException()
return
self.vslam_fail_start = None
if not math.isnan(data[0][0]):
self.vslam_valid = True
if not self.true_pose and self.vslam_reset_at is not None and self.sim_time - self.vslam_reset_at > timedelta(seconds=3) and not math.isnan(data[0][0]) and self.tf['vslam']['trans_matrix'] is None:
# request origin and start tracking in correct coordinates as soon as first mapping lock occurs
# TODO: another pose may arrive while this request is still being processed (not a big deal, just a ROS error message)
self.send_request('request_origin', self.register_origin)
def get_next_volatile(self):
# first, remove volatiles that we won't attempt - in unsafe areas, too close or in the direction of sun
accessible_volatiles = []
rover = np.asmatrix(np.asarray([self.xyz[0], self.xyz[1], 1]))
c, s = np.cos(self.yaw), np.sin(self.yaw)
R = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1))))
TL = np.asmatrix(np.array(((1, 0, 0),(0, 1, -8),(0, 0, 1))))
TR = np.asmatrix(np.array(((1, 0, 0),(0, 1, 8),(0, 0, 1))))
pL = np.dot(R, np.dot(TL, np.dot(R.I, rover.T)))
pR = np.dot(R, np.dot(TR, np.dot(R.I, rover.T)))
turn_center_L = (float(pL[0]), float(pL[1]))
turn_center_R = (float(pR[0]), float(pR[1]))
for v in self.vol_list:
d = distance(self.xyz, v)
if not SAFE_POLYGON.contains(Point(v[0],v[1])):
print (self.sim_time, self.robot_name, "[%.1f,%.1f] not in safe area" % (v[0], v[1]))
continue
accessible_volatiles.append(v)
# balance distance, angle and length of traversing non-preferred areas
# want to avoid non-preferred areas the most but if expose similar, choose volatile with shorter travel distance
# we are modelling an initial turn along a circle followed by straight drive to the destination
ranked_list = []
approx = 16
arc_len = math.pi/approx
arc_dist = 2 * math.pi * TURN_RADIUS / approx
# destination point outside turn circle per above test
for v in accessible_volatiles:
path_to_vol = []
c_angular_difference = self.get_angle_diff(v)
turn_center = turn_center_L if c_angular_difference < 0 else turn_center_R
tangs = calc_tangents(turn_center, TURN_RADIUS, v)
if tangs is not None:
tang1_v = np.asmatrix(np.asarray([tangs[0][0], tangs[0][1], 1]))
tang2_v = np.asmatrix(np.asarray([tangs[1][0], tangs[1][1], 1]))
i = 1;
while True:
phi = -math.copysign(math.pi/2, c_angular_difference) + self.yaw + math.copysign(i*arc_len, c_angular_difference)
i += 1
x,y = pol2cart(TURN_RADIUS, phi)
px = turn_center[0] + x
py = turn_center[1] + y
yw = phi - math.pi/2
path_to_vol.append((px, py))
rover_t = np.asmatrix(np.array(((1, 0, px),(0, 1, py),(0, 0, 1))))
c, s = np.cos(yw), np.sin(yw)
rover_r = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1))))
mat = np.dot(rover_r, rover_t.I)
m1 = np.dot(mat, tang1_v.T)
m2 = np.dot(mat, tang2_v.T)
if (
(distance([m1[0,0], m1[1,0]], [0,0]) < arc_dist+0.1 and m1[0,0]>=-0.1) or
(distance([m2[0,0], m2[1,0]], [0,0]) < arc_dist+0.1 and m2[0,0]>=-0.10)
):
break
else:
# if we had to go with a volatile within the turning radius, do not build a driving arc, just use straight line
path_to_vol.append((self.xyz[0],self.xyz[1]))
path_to_vol.append((v[0],v[1]))
ls = LineString(path_to_vol).buffer(1)
c_nonpreferred_overlap = ls.difference(PREFERRED_POLYGON).area
ranked_list.append([v, c_angular_difference, c_nonpreferred_overlap, ls.area])
# ranked_list: [volatile, angle, area, distance]
def cmp(a,b):
nonlocal turn_center_L, turn_center_R
#a: [[x,y], angular_diff, non_preferred_overlap, distance_along_driving_path]
a_v, _, a_overlap, a_distance = a
b_v, _, b_overlap, b_distance = b
a_cost = 100 if (
Point(turn_center_L[0],turn_center_L[1]).buffer(TURN_RADIUS+0.1).contains(Point(a_v[0],a_v[1])) or
Point(turn_center_R[0],turn_center_R[1]).buffer(TURN_RADIUS+0.1).contains(Point(a_v[0],a_v[1]))
) else 0
b_cost = 100 if (
Point(turn_center_L[0],turn_center_L[1]).buffer(TURN_RADIUS+0.1).contains(Point(b_v[0],b_v[1])) or
Point(turn_center_R[0],turn_center_R[1]).buffer(TURN_RADIUS+0.1).contains(Point(b_v[0],b_v[1]))
) else 0
a_cost += 200 if -3*math.pi/4 < math.atan2(a_v[1] - self.xyz[1], a_v[0] - self.xyz[0]) < -math.pi/4 and a_distance > 15 else 0
a_cost += 200 if -3*math.pi/4 < math.atan2(a_v[1] - self.xyz[1], a_v[0] - self.xyz[0]) < -math.pi/4 and a_distance > 15 else 0
a_cost += a_distance
b_cost += b_distance
return a_cost - b_cost if abs(a_overlap - b_overlap) < 10 else a_overlap - b_overlap
ranked_list = sorted(ranked_list, key=cmp_to_key(cmp)) # if non safe overlap similar, focus on distance
print (self.sim_time, self.robot_name, "List of volatiles in the order of suitability for traveling to: ", ranked_list)
return ranked_list[0][0]
def on_scan(self, data):
super().on_scan(data)
if self.sim_time is None or self.true_pose:
return
if self.lidar_distance_enabled:
self.full_360_distances.append({'yaw': self.yaw, 'distance': self.scan_distance_to_obstacle})
def on_artf(self, data):
artifact_type = data[0]
# can't use this before init and don't need once true pose has been set up
if self.sim_time is None or self.true_pose:
return
# NOTE: counting starts before turning, ie if hauler is visible in the beginning, it keeps getting hits
if self.visual_navigation_enabled:
if artifact_type not in self.full_360_objects.keys():
self.full_360_objects[artifact_type] = []
self.full_360_objects[artifact_type].append({'yaw': self.yaw, 'distance': self.scan_distance_to_obstacle})
def wait_for_hauler(self):
while not self.hauler_ready:
try:
self.wait(timedelta(seconds=1))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for hauler to arrive: ", str(e))
self.hauler_ready = False
def wait_for_arm(self, angle):
wait_start = self.sim_time
while self.sim_time - wait_start < timedelta(seconds=20) and (self.mount_angle is None or abs(normalizeAnglePIPI(angle - self.mount_angle)) > 0.2):
try:
self.wait(timedelta(seconds=1))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for arm to align: ", str(e))
def run(self):
def process_volatiles(vol_string):
vol_list_one = vol_string.split(',')
self.vol_list = [list(map(float, s.split())) for s in vol_list_one]
print (self.sim_time, self.robot_name, "Volatiles (%d): " % len(self.vol_list), self.vol_list)
def vslam_reset_time(response):
self.vslam_reset_at = self.sim_time
try:
self.wait_for_init()
self.set_cam_angle(-0.05)
self.set_light_intensity("0.2")
self.send_request('get_volatile_locations', process_volatiles)
# move bucket to the back so that it does not interfere with lidar
# TODO: is there a better position to stash the bucket for driving?
# move arm to the back, let robot slide off of a hill if that's where it starts
self.publish("bucket_drop", [math.pi, 'reset'])
# point wheels downwards and wait until on flat terrain or timeout
print(self.sim_time, self.robot_name, "Letting excavator slide down the hill")
start_drifting = self.sim_time
while self.sim_time - start_drifting < timedelta(seconds=20) and (abs(self.pitch) > 0.05 or abs(self.roll) > 0.05):
try:
attitude = math.asin(math.sin(self.roll) / math.sqrt(math.sin(self.pitch)**2+math.sin(self.roll)**2))
if self.debug:
print(self.sim_time, self.robot_name, "Vehicle attitude: %.2f" % attitude)
self.publish("desired_movement", [GO_STRAIGHT, math.degrees(attitude * 100), 0.1])
self.wait(timedelta(milliseconds=100))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for excavator to settle: ", str(e))
self.publish("desired_movement", [0, 0, 0])
self.wait_for_arm(math.pi)
self.set_brakes(False) # start applying mild braking
# initial 360 turn to find emptiest area
print(self.sim_time, self.robot_name, "Scanning 360 degrees of horizon to find widest segment with far enough free space")
self.lidar_distance_enabled = True
while True:
try:
self.turn(math.radians(30), ang_speed=0.8*self.max_angular_speed, with_stop=False, timeout=timedelta(seconds=40)) # get the turning stared
self.full_360_distances = []
self.turn(math.radians(360), ang_speed=0.8*self.max_angular_speed, timeout=timedelta(seconds=40))
break
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while performing initial turn: ", str(e))
self.lidar_distance_enabled = False
self.set_cam_angle(-0.05)
min_distance_obj = min(self.full_360_distances, key=lambda x: x['distance'])
# if min distance in all directions is more than 5m, no need to drive anywhere
if min_distance_obj['distance'] < 5000:
def distance_grouper(iterable):
prev = None
group = []
for item in iterable:
if not prev or abs(item['distance'] - prev['distance']) <= 300:
group.append(item)
else:
yield group
group = [item]
prev = item
if group:
yield group
clusters = list(enumerate(distance_grouper(self.full_360_distances)))
m = []
for c in clusters:
sum_sin = sum([math.sin(a['yaw']) for a in c[1]])
sum_cos = sum([math.cos(a['yaw']) for a in c[1]])
mid_angle = math.atan2(sum_sin, sum_cos)
if median([o['distance'] for o in c[1]]) > 6000:
m.append({'yaw': mid_angle, 'wedge_width': len(c[1])})
if len(m) > 0:
bestyawobj = max(m, key=lambda x: x['wedge_width'])
try:
print(self.sim_time, self.robot_name, "excavator: Driving into-clear-space, yaw (internal coordinates) [%.2f]" % (normalizeAnglePIPI(bestyawobj['yaw'])))
self.turn(bestyawobj['yaw'] - self.yaw, timeout=timedelta(seconds=40))
self.go_straight(4)
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while performing initial going away from obstacles: ", str(e))
else:
print(self.sim_time, self.robot_name, "No direction with 6+m unobstructed area found")
else:
print(self.sim_time, self.robot_name, "More than 5m of space in all directions, no need to move")
print(self.sim_time, self.robot_name, "Asking hauler to arrive to <follow> distance")
self.send_request('external_command hauler_1 follow') # force hauler to come real close, this will make it lose visual match with processing plant
self.wait_for_hauler()
# first, turn away from hauler
# turn 360deg until seen, mark angle where the bbox was the biggest, then turn 180deg from there (want to face away as much as possible)
# then, when hauler turns towards us (and follows?), it should have the same yaw which we can then share with it
def angle_grouper(iterable):
prev = None
group = []
for item in iterable:
if not prev or abs(normalizeAnglePIPI(item['yaw'] - prev['yaw'])) <= GROUP_ANGLES_MAX_DIFF:
group.append(item)
else:
yield group
group = [item]
prev = item
if group:
yield group
print(self.sim_time, self.robot_name, "Scanning 360 degrees of horizon to find hauler (widest wedge with continuous hauler detection)")
self.visual_navigation_enabled = True
while True:
while True:
try:
self.turn(math.radians(30), ang_speed=0.8*self.max_angular_speed, with_stop=False, timeout=timedelta(seconds=40)) # get the turning stared
self.full_360_objects = {}
self.turn(math.radians(360), ang_speed=0.8*self.max_angular_speed, with_stop=False, timeout=timedelta(seconds=40))
if "rover" not in self.full_360_objects.keys() or len(self.full_360_objects["rover"]) == 0:
print(self.sim_time, self.robot_name, "Hauler not found during 360 turn")
else:
clusters = list(enumerate(angle_grouper(self.full_360_objects["rover"])))
if self.debug:
print(self.sim_time, self.robot_name, "Cluster list: ", str(clusters))
biggest_wedge_obj = max(clusters, key=lambda x: len(x[1]))
sum_sin = sum([math.sin(a['yaw']) for a in biggest_wedge_obj[1]])
sum_cos = sum([math.cos(a['yaw']) for a in biggest_wedge_obj[1]])
mid_angle = math.atan2(sum_sin, sum_cos)
print(self.sim_time, self.robot_name, "excavator: away-from-hauler angle (internal coordinates) [%.2f]" % (normalizeAnglePIPI(math.pi + mid_angle)))
turn_needed = normalizeAnglePIPI(math.pi + mid_angle - self.yaw)
# turn a little less to allow for extra turn after the effort was stopped
self.turn(turn_needed if turn_needed >= 0 else (turn_needed + 2*math.pi), ang_speed=0.8*self.max_angular_speed, timeout=timedelta(seconds=40))
break
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while performing initial turn: ", str(e))
# TODO: this will be removed, shouldn't be needed
if "rover" not in self.full_360_objects.keys() or len(self.full_360_objects["rover"]) == 0:
# hauler was not found visually but must be close, perform random walk
min_dist_obj = min(self.full_360_distances, key=lambda x: x['distance'])
self.turn(min_dist_obj['yaw'] - self.yaw, timeout=timedelta(seconds=40))
self.go_straight(3)
while abs(self.pitch) > 0.2:
self.publish("desired_movement", [GO_STRAIGHT, 0, self.default_effort_level])
self.wait(timedelta(milliseconds=100))
self.publish("desired_movement", [0, 0, 0])
else:
break
self.visual_navigation_enabled = False
self.auto_light_adjustment = True
# self.set_light_intensity("0.4")
print(self.sim_time, self.robot_name, "Resetting VSLAM, requesting true_pose")
# this will also trigger true pose once slam starts sending data
self.send_request('vslam_reset', vslam_reset_time)
while self.vol_list is None or not self.true_pose:
try:
self.wait(timedelta(seconds=1))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for true pose: ", str(e))
# calculate position behind the excavator to send hauler to, hauler will continue visually from there
v = np.asmatrix(np.asarray([self.xyz[0], self.xyz[1], 1]))
c, s = np.cos(self.yaw), np.sin(self.yaw)
R = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1))))
T = np.asmatrix(np.array(((1, 0, -8),(0, 1, 0),(0, 0, 1))))
pos = np.dot(R, np.dot(T, np.dot(R.I, v.T)))
#self.send_request('external_command hauler_1 goto %.1f %.1f %.2f' % (pos[0], pos[1], self.yaw))
#self.send_request('external_command hauler_1 align %f' % self.yaw) # TODO: due to skidding, this yaw may still change
self.hauler_ready = False
self.send_request('external_command hauler_1 set_yaw %f' % self.yaw) # tell hauler looking at rover
# wait for hauler to start following, will receive osgar broadcast when done
while not self.hauler_ready:
try:
self.wait(timedelta(seconds=1))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for hauler to arrive: ", str(e))
self.hauler_ready = False
self.send_request('external_command hauler_1 approach %f' % self.yaw)
# do not brake here, it will allow robots to align better
while not self.hauler_ready:
try:
self.wait(timedelta(seconds=3))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for hauler to arrive: ", str(e))
self.hauler_ready = False
self.send_request('external_command hauler_1 follow')
#self.send_request('external_command hauler_1 set_yaw %f' % self.yaw) # tell hauler looking at rover is in 'yaw' direction
# reset again in case hauler was driving in front of excavator CANT RESET IF WE MOVED (TURNED)
#self.vslam_reset_at = None
#self.send_request('vslam_reset', vslam_reset_time)
#while self.vslam_reset_at is None or self.sim_time - self.vslam_reset_at < timedelta(seconds=3):
# try:
# self.wait(timedelta(seconds=1))
# except BusShutdownException:
# raise
# except:
# pass
self.virtual_bumper = VirtualBumper(timedelta(seconds=3), 0.2) # radius of "stuck" area; a little more as the robot flexes
def pursue_volatile():
v = self.current_volatile
wait_for_mapping = False
wait_for_hauler_requested = None
ARRIVAL_TOLERANCE = 1 # if we are within 1m of target, stop
while True:
try:
if not self.vslam_valid: # vslam_valid will only be turned to False if hauler origin hasn't been requested yet
self.publish("desired_movement", [0,0,0])
# hauler approach, VSLAM should be running
self.send_request('external_command hauler_1 approach %f' % self.yaw)
self.set_brakes(True)
# reset VSLAM (this should reset self.vslam_valid)
self.tf['vslam']['trans_matrix'] = None
self.vslam_reset_at = None
self.send_request('vslam_reset', vslam_reset_time)
while self.vslam_reset_at is None or self.sim_time - self.vslam_reset_at < timedelta(seconds=3):
try:
self.wait(timedelta(seconds=1))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for VSLAM reset: ", str(e))
while not self.hauler_ready:
try:
self.wait(timedelta(seconds=3))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for hauler to be ready: ", str(e))
self.hauler_ready = False
self.send_request('external_command hauler_1 request_true_pose')
try:
self.wait(timedelta(seconds=5)) # wait for pose to update (TODO: wait for a flag instead)
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for true pose: ", str(e))
self.set_brakes(False)
self.send_request('external_command hauler_1 follow')
print(self.sim_time, self.robot_name, "excavator: Pursuing volatile [%.1f,%.1f]" % (v[0],v[1]))
while wait_for_mapping or (wait_for_hauler_requested is not None and self.sim_time < wait_for_hauler_requested):
self.wait(timedelta(seconds=1))
with LidarCollisionMonitor(self, 1500): # some distance needed not to lose tracking when seeing only obstacle up front
# turning in place probably not desirable because hauler behind may be in the way, may need to send it away first
if distance(self.xyz, v) > ARRIVAL_TOLERANCE: # only turn if we are further than 2m, if closer, it probably means there was an exception while we were already on location
angle_diff = self.get_angle_diff(v)
#self.turn(math.copysign(min(abs(angle_diff),math.pi/4),angle_diff), timeout=timedelta(seconds=15))
# ideal position is 0.5m in front of the excavator
# TODO: fine-tune offset and tolerance given slipping
self.going_to_volatile = True
try:
self.go_to_location(v, self.default_effort_level, offset=ARRIVAL_OFFSET, full_turn=True, timeout=timedelta(minutes=5), tolerance=ARRIVAL_TOLERANCE)
except NewVolatileTargetException:
raise
finally:
self.going_to_volatile = False
return v #arrived
except LidarCollisionException as e: #TODO: long follow of obstacle causes loss, go along under steeper angle
print(self.sim_time, self.robot_name, "Lidar")
if distance(self.xyz, v) < 1:
return v #arrived
self.inException = True
try:
self.lidar_drive_around()
except ResumeRequestedException as e:
wait_for_hauler_requested = self.sim_time + timedelta(seconds=5) # resume only after 5 seconds to give hauler chance to get closer
print(self.sim_time, self.robot_name, "Hauler wants to resume")
except WaitRequestedException as e:
self.send_speed_cmd(0.0, 0.0)
wait_for_hauler_requested = self.sim_time + timedelta(minutes=2) # will wait at most 2 minutes
print(self.sim_time, self.robot_name, "Hauler requested to wait")
except VSLAMDisabledException as e:
print(self.sim_time, self.robot_name, "VSLAM: mapping disabled, waiting")
self.send_speed_cmd(0.0, 0.0)
wait_for_mapping = True
except VSLAMEnabledException as e:
print(self.sim_time, self.robot_name, "VSLAM: mapping re-enabled")
wait_for_mapping = False
except VSLAMLostException as e:
print(self.sim_time, self.robot_name, "VSLAM lost, re-localize via hauler")
self.inException = False
except VirtualBumperException as e:
self.send_speed_cmd(0.0, 0.0)
print(self.sim_time, self.robot_name, "Bumper")
if distance(self.xyz, v) < 1:
return v # arrived
self.inException = True
try:
self.go_straight(-1) # go 1m in opposite direction
angle_diff = self.get_angle_diff(v)
self.drive_around_rock(-math.copysign(5, angle_diff)) # assume 6m the most needed
except ResumeRequestedException as e:
wait_for_hauler_requested = self.sim_time + timedelta(seconds=5)
print(self.sim_time, self.robot_name, "Hauler wants to resume")
except WaitRequestedException as e:
self.send_speed_cmd(0.0, 0.0)
wait_for_hauler_requested = self.sim_time + timedelta(minutes=2)
print(self.sim_time, self.robot_name, "Hauler requested to wait")
except VSLAMDisabledException as e:
print(self.sim_time, self.robot_name, "VSLAM: mapping disabled, waiting")
self.send_speed_cmd(0.0, 0.0)
wait_for_mapping = True
except VSLAMEnabledException as e:
print(self.sim_time, self.robot_name, "VSLAM: mapping re-enabled")
wait_for_mapping = False
except VSLAMLostException as e:
print(self.sim_time, self.robot_name, "VSLAM lost, re-localize via hauler")
self.inException = False
except VSLAMDisabledException as e:
print(self.sim_time, self.robot_name, "VSLAM: mapping disabled, waiting")
self.send_speed_cmd(0.0, 0.0)
wait_for_mapping = True
except VSLAMEnabledException as e:
print(self.sim_time, self.robot_name, "VSLAM: mapping re-enabled")
wait_for_mapping = False
except WaitRequestedException as e:
self.send_speed_cmd(0.0, 0.0)
wait_for_hauler_requested = self.sim_time + timedelta(minutes=2)
print(self.sim_time, self.robot_name, "Hauler requested to wait")
except ResumeRequestedException as e:
wait_for_hauler_requested = self.sim_time + timedelta(seconds=5)
print(self.sim_time, self.robot_name, "Hauler wants to resume")
except VSLAMLostException as e:
print(self.sim_time, self.robot_name, "VSLAM lost, re-localize via hauler")
def reposition(mount_angle, distal_angle):
print(self.sim_time, self.robot_name, "Adjusting digging position: mount angle: %.2f, distal angle: %.2f" % (normalizeAnglePIPI(mount_angle), distal_angle))
# if found an angle of a volatile but it's too far, come closer before digging
# if distal arm was negative during volatile detection, volatile is away from rover; otherwise it is under the rover
self.publish("bucket_drop", [math.pi, 'reset']) # first, stash arm and wait for it so that visual navigation doesn't confuse hauler
start_alignment = self.sim_time
while self.sim_time - start_alignment < timedelta(seconds=20) and self.mount_angle is None or abs(normalizeAnglePIPI(math.pi - self.mount_angle)) > 0.2:
try:
self.wait(timedelta(seconds=1))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for arm to align: ", str(e))
self.send_request('external_command hauler_1 onhold')
try:
self.wait(timedelta(seconds=8))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for hauler to assume position: ", str(e))
start_pose = self.xyz
start_time = self.sim_time
effort = self.default_effort_level/2 if distal_angle < DISTAL_THRESHOLD else -self.default_effort_level/2
if abs(normalizeAnglePIPI(mount_angle)) < math.pi/2:
self.publish("desired_movement", [GO_STRAIGHT, int(100*math.degrees(normalizeAnglePIPI(mount_angle))), effort])
else:
self.publish("desired_movement", [
GO_STRAIGHT,
int(100*math.degrees(normalizeAnglePIPI(math.copysign(math.pi - abs(normalizeAnglePIPI(mount_angle)), -normalizeAnglePIPI(mount_angle))))),
-effort])
while distance(start_pose, self.xyz) < 0.7: # go 0.7m closer to volatile
try:
self.wait(timedelta(milliseconds=100))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while adjusting position: ", str(e))
traceback.print_exc(file=sys.stdout)
self.publish("desired_movement", [0,0,0])
try:
self.wait(timedelta(seconds=3))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting to come to stop: ", str(e))
#self.send_request('external_command hauler_1 approach %f' % normalizeAnglePIPI(self.yaw + mount_angle))
#self.hauler_ready = False
#while not self.hauler_ready:
# try:
# self.wait(timedelta(seconds=1))
# except BusShutdownException:
# raise
# except:
# pass
# end of reposition function
while len(self.vol_list) > 0:
self.current_volatile = self.get_next_volatile()
if self.current_volatile is None:
break
while True:
try:
pursue_volatile()
except NewVolatileTargetException:
continue
break
v = self.current_volatile
self.current_volatile = None
accum = 0 # to check if we picked up 100.0 total and can finish
for attempt_offset in [{'dist': 0.0, 'start_dig_angle': 0.0}, {'dist': 4, 'start_dig_angle': math.pi}, {'dist': -8, 'start_dig_angle': 0.0}]:
starting_point = self.xyz
starting_time = self.sim_time
while abs(abs(attempt_offset['dist']) - distance(self.xyz, starting_point)) > 1 and self.sim_time - starting_time < timedelta(seconds=15):
try:
self.go_straight(attempt_offset['dist'] - math.copysign(distance(self.xyz, starting_point), attempt_offset['dist']))
except MoonException as e:
# excess pitch or other exception could happen but we are stopped so should stabilize
print(self.sim_time, self.robot_name, "Exception when adjusting linearly", str(e))
self.send_speed_cmd(0.0, 0.0)
print ("---- VOLATILE REACHED ----")
try:
self.wait(timedelta(seconds=2))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting to come to stop: ", str(e))
# TODO: could look for volatile while waiting
# wait for hauler to start following, will receive osgar broadcast when done
#while not self.hauler_ready:
# try:
# self.wait(timedelta(seconds=1))
# except BusShutdownException:
# raise
# except:
# # excess pitch or other exception could happen but we are stopped so should stabilize
# pass
#self.volatile_reached = False # TEST
#self.send_request('external_command hauler_1 backout') # Testing
#continue # testing
self.send_request('external_command hauler_1 onhold') # re-follow after each 0,+2,-2 attempt
found_angle = None
# mount 0.4-1.25 or 1.85-2.75 means we can't reach under the vehicle because of the wheels
mount_angle_sequence = [0.0, 0.39, -0.39, -0.83, 0.83, 1.26, -1.26, -1.55, 1.55, 1.84, -1.84, 2.31, -2.31, -2.76, 2.76, 3.14]
for a in mount_angle_sequence:
self.publish("bucket_dig", [a + attempt_offset['start_dig_angle'], 'append'])
while found_angle is None:
best_mount_angle = None
best_angle_volume = 0
best_distal_angle = None
self.set_brakes(True)
exit_time = self.sim_time + timedelta(seconds=250)
while found_angle is None and self.sim_time < exit_time:
# TODO instead of/in addition to timeout, trigger exit by bucket reaching reset position
try:
self.wait(timedelta(milliseconds=100))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting in loop: ", str(e))
if self.volatile_dug_up[1] != 100:
# we found volatile
if best_mount_angle is None:
nma = normalizeAnglePIPI(self.mount_angle)
if -math.pi/2 <= nma <= math.pi/2:
# if mount angle is in the front half of the vehicle, approach directly from the back
approach_angle = 0.0
elif nma < -math.pi/2:
approach_angle = normalizeAnglePIPI(nma + math.pi/2) # rover clockwise 90 degrees
elif nma > math.pi/2:
approach_angle = normalizeAnglePIPI(nma - math.pi/2) # rover counterclockwise 90 degrees
# point arm in the hauler approach direction so that hauler aligns with the center of the excavator
self.publish("bucket_dig", [normalizeAnglePIPI(approach_angle + math.pi), 'standby']) # lift arm and clear rest of queue
self.wait_for_arm(normalizeAnglePIPI(approach_angle + math.pi))
self.hauler_ready = False
self.send_request('external_command hauler_1 approach %f' % normalizeAnglePIPI(self.yaw + approach_angle))
# NOTE: this approach may bump excavator, scoop volume may worsen
while not self.hauler_ready:
try:
self.wait(timedelta(seconds=1))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting for hauler to arrive: ", str(e))
self.hauler_ready = False
# wait for hauler to arrive, get its yaw, then we know which direction to drop
drop_angle = normalizeAnglePIPI((self.hauler_yaw - self.yaw) - math.pi)
print(self.sim_time, self.robot_name, "Drop angle set to: %.2f" % drop_angle)
exit_time = self.sim_time + timedelta(seconds=80)
self.publish("bucket_drop", [drop_angle, 'append']) # this will be duplicated below but need to queue now or load would be lost by another dig happening first
self.publish("bucket_dig", [nma - 0.3, 'append'])
self.publish("bucket_dig", [nma + 0.3, 'append'])
# TODO: this plan doesn't end once these moves are executed, only with timeout
best_distal_angle = self.first_distal_angle
best_angle_volume = self.volatile_dug_up[2]
best_mount_angle = nma
elif self.volatile_dug_up[2] > best_angle_volume:
best_distal_angle = self.first_distal_angle
best_angle_volume = self.volatile_dug_up[2]
best_mount_angle = self.mount_angle
accum += self.volatile_dug_up[2]
if self.volatile_dug_up[2] > DIG_GOOD_LOCATION_MASS:
found_angle = best_mount_angle
# go for volatile drop (to hauler), wait until finished
self.publish("bucket_drop", [drop_angle, 'prepend'])
while self.volatile_dug_up[1] != 100:
try:
self.wait(timedelta(milliseconds=300))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting to empty bin: ", str(e))
self.first_distal_angle = None
self.set_brakes(False)
if found_angle is None and best_mount_angle is not None:
# didn't find good position (timeout) but found something - reposition and try again
reposition(best_mount_angle, best_distal_angle)
# after repositioning, try again the whole circle starting with best angle first
for a in mount_angle_sequence:
self.publish("bucket_dig", [normalizeAnglePIPI(best_mount_angle + a), 'append'])
else: # found good position or found nothing at all
break
def scoop_all(angle):
nonlocal accum
while True:
dig_start = self.sim_time
self.publish("bucket_dig", [angle, 'reset'])
while self.volatile_dug_up[1] == 100:
try:
self.wait(timedelta(milliseconds=300))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting to detect volatile: ", str(e))
if self.sim_time - dig_start > timedelta(seconds=120): # TODO: timeout needs to be adjusted to the ultimate digging plan
# move bucket out of the way and continue to next volatile
if self.debug:
print(self.sim_time, self.robot_name, "Arm movement timed out or nothing to dig, terminating scooping")
self.publish("bucket_drop", [drop_angle, 'append'])
return False
accum += self.volatile_dug_up[2]
self.publish("bucket_drop", [drop_angle, 'append'])
while self.volatile_dug_up[1] != 100:
try:
self.wait(timedelta(milliseconds=300))
except MoonException as e:
print(self.sim_time, self.robot_name, "Exception while waiting to empty bin: ", str(e))
if abs(accum - 100.0) < 0.0001:
print(self.sim_time, self.robot_name, "Volatile amount %.2f transfered, terminating" % accum)
# TODO: adjust transformation matrix using real location of the volatile
# TODO: assumes 100 to be total volatile at location, actual total reported initially, parse and match instead
return True
full_success = False
if found_angle is not None:
# have best position, dig everything up, adjust position, move to next volatile
self.set_brakes(True)
if scoop_all(found_angle):
self.vol_list.remove(v)# once scooping finished or given up on, remove volatile from list
v = np.asmatrix(np.asarray([v[0], v[1], 1]))
c, s = np.cos(self.yaw), np.sin(self.yaw)
Rr = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1))))
# now in coord system WRT robot
T = np.asmatrix(np.array(((1, 0, -TYPICAL_VOLATILE_DISTANCE),(0, 1, 0),(0, 0, 1))))
c, s = np.cos(best_mount_angle), np.sin(best_mount_angle)
Rv = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1))))
true_pos = np.dot(Rr, np.dot(Rv, np.dot(T, np.dot(Rv.I, | np.dot(Rr.I, v.T) | numpy.dot |
# BSD 3-Clause License
# =======
# Copyright (c) 2020, Xilinx
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
__authors__ = "<NAME>, <NAME>, <NAME>, <NAME>, <NAME>"
__copyright__ = "Copyright 2020, Xilinx"
import os
import numpy as np
from functools import reduce
# convenience function to prepare a fully-connected BNN for FINN
# with given number of (SIMD, PE) per layer
# and arbitrary precisions for both weights and activations
def convertFCNetwork(npzFile, targetDirBin, targetDirHLS, simdCounts, peCounts, \
WeightsPrecisions_fractional, ActivationPrecisions_fractional, InputPrecisions_fractional, \
WeightsPrecisions_integer, ActivationPrecisions_integer, InputPrecisions_integer):
numLayers = len(simdCounts)
if not os.path.exists(targetDirBin):
os.mkdir(targetDirBin)
if not os.path.exists(targetDirHLS):
os.mkdir(targetDirHLS)
# instantiate the weight reader, note how interleaveChannels=False for a
# fully connected network
r = BNNWeightReader(npzFile, False)
config = "/**\n"
config+= " * Finnthesizer Config-File Generation\n";
config+= " *\n **/\n\n"
config+= "#ifndef __LAYER_CONFIG_H_\n#define __LAYER_CONFIG_H_\n\n"
for l in range(numLayers):
print("process layer" + str(l))
simdCount = simdCounts[l]
peCount = peCounts[l]
WPrecision_fractional = WeightsPrecisions_fractional[l]
APrecision_fractional = ActivationPrecisions_fractional[l]
IPrecision_fractional = InputPrecisions_fractional[l]
WPrecision_integer = WeightsPrecisions_integer[l]
APrecision_integer = ActivationPrecisions_integer[l]
IPrecision_integer = InputPrecisions_integer[l]
# read out weights and thresholds
(w,t) = r.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \
WPrecision_integer, APrecision_integer, IPrecision_integer)
# compute the padded width and height
paddedH = padTo(w.shape[0], peCount)
paddedW = padTo(w.shape[1], simdCount)
if (l==0): # for the first layer, we pad to multiple of 64 due to the AXI interface
paddedW = padTo(w.shape[1], max(simdCount,64))
if (l==numLayers-1): # for the last layer, we pad to multiple of 64 due to the AXI interface
paddedH = padTo(w.shape[0], max(peCount,64))
# compute memory needed for weights and thresholds
neededWMem = (paddedW * paddedH) // (simdCount * peCount)
neededTMem = paddedH // peCount
print("Layer %d: %d x %d, SIMD = %d, PE = %d" % (l, paddedH, paddedW, simdCount, peCount))
print("WMem = %d TMem = %d" % (neededWMem, neededTMem))
print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, \
WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional))
# instantiate PE memory generator
m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \
WPrecision_fractional, APrecision_fractional, IPrecision_fractional)
#add layer to config
config += (printFCDefines("L%d" % l, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, \
WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n"
# pack parameters into PE memory
m.addMatrix(w,t,paddedW,paddedH)
# create HLS weight init files for initializing memory contents directly
# while generating the bitstream
# m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(l) + ".h", str(l))
# create binary weight files -- useful for runtime initialization since
# HLS might freeze / not work for very large header files
# note that it will still be necessary to declare the PE memories in
m.createBinFiles(targetDirBin, str(l))
# create parameter files for tiny-cnn
config+="#endif //__LAYER_CONFIG_H_\n"
configFile = open(targetDirHLS+"/config.h", "w")
configFile.write(config)
configFile.close()
# return HW config string as C #define's for a Conv layer
def printConvDefines(prefix, kernelDim, ifm_ch, ifm_dim, ofm_ch, ofm_dim, simd, pe, wmem, tmem, wpi, api, wpf, apf):
#network topology
config = ""
numb_ops = 2*ifm_ch*ofm_ch*kernelDim*kernelDim*ofm_dim*ofm_dim # 2* because of MAC
est_latency = numb_ops/(2*simd*pe)
config += "/**\n * Convolutional Layer %s:\n * IFM = %5d IFM_CH = %5d\n * OFM = %5d OFM_CH = %5d\n * SIMD = %5d PE = %5d\n * WMEM = %5d TMEM = %5d\n * #Ops = %5d Ext Latency = %5d\n**/\n" % (prefix, ifm_dim, ifm_ch, ofm_dim, ofm_ch, simd, pe, wmem, tmem, numb_ops, est_latency)
config += "\n" + "#define %s_K %d" % (prefix, kernelDim)
config += "\n" + "#define %s_IFM_CH %d" % (prefix, ifm_ch)
config += "\n" + "#define %s_IFM_DIM %d" % (prefix, ifm_dim)
config += "\n" + "#define %s_OFM_CH %d" % (prefix, ofm_ch)
config += "\n" + "#define %s_OFM_DIM %d" % (prefix, ofm_dim)
#network configuration
config += "\n" + "#define %s_SIMD %d" % (prefix, simd)
config += "\n" + "#define %s_PE %d" % (prefix, pe)
config += "\n" + "#define %s_WMEM %d" % (prefix, wmem)
config += "\n" + "#define %s_TMEM %d" % (prefix, tmem)
#precision used
config += "\n" + "#define %s_WPI %d" % (prefix, wpi)
config += "\n" + "#define %s_API %d" % (prefix, api)
config += "\n" + "#define %s_WPF %d" % (prefix, wpf)
config += "\n" + "#define %s_APF %d\n" % (prefix, apf)
return config
# return HW config string as C #define's for a FC layer
def printFCDefines(prefix, simd, pe, wmem, tmem, mw, mh, wpi, api, wpf, apf):
config = ""
numb_ops = 2*mw*mh # 2* because of MAC
est_latency = numb_ops/(2*simd*pe)
config += "/**\n * Fully-Connected Layer %s:\n * MatW = %5d MatH = %5d\n * SIMD = %5d PE = %5d\n * WMEM = %5d TMEM = %5d\n * #Ops = %5d Ext Latency = %5d\n**/\n" % (prefix, mw, mh, simd, pe, wmem, tmem, numb_ops, est_latency)
config += "\n" + "#define %s_SIMD %d" % (prefix, simd)
config += "\n" + "#define %s_PE %d" % (prefix, pe)
config += "\n" + "#define %s_WMEM %d" % (prefix, wmem)
config += "\n" + "#define %s_TMEM %d" % (prefix, tmem)
config += "\n" + "#define %s_MW %d" % (prefix, mw)
config += "\n" + "#define %s_MH %d" % (prefix, mh)
config += "\n" + "#define %s_WPI %d" % (prefix, wpi)
config += "\n" + "#define %s_API %d" % (prefix, api)
config += "\n" + "#define %s_WPF %d" % (prefix, wpf)
config += "\n" + "#define %s_APF %d\n" % (prefix, apf)
return config
# return val to nearest multiple of pad
def padTo(val, pad):
rem = val % pad
return val if rem == 0 else (val + pad - rem)
# the quantization function
def quantize(x, integer, fract):
bits=integer+fract
if (bits==1):
return(binarize(x))
n = float(2**fract) # GIULIO ADD CLIP
return np.floor(x * n + 0.5) / n
# the binarization function, basically the sign encoded as 1 for positive and
# 0 for negative
def binarize(w):
return np.where(w < 0, 0, 1)
# convert a fully connected layer plus batch normalization into
# the simplified form (quantized weight and multiple thresholds)
# note that the neurons are assumed to be in the columns of the weight matrix
def makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_fract, APrecisions_fract, \
WPrecisions_int, APrecisions_int, usePopCount=False, use_rowmajor=True, numThresBits=16, numThresIntBits=None):
ins = weights.shape[0]
outs = weights.shape[1]
APrecision = APrecisions_fract + APrecisions_int
print("Extracting FCBN complex, ins = %d outs = %d" % (ins, outs))
# compute a preliminary thresholds from the batchnorm parameters
if (APrecision == 1):
step = np.zeros(1, dtype=np.float64)
else:
# This one make -0.5 and +0.5 with 2 bits
step = | np.linspace(-1,1,num=2**(APrecision-1), endpoint=False, dtype=np.float64) | numpy.linspace |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from __future__ import absolute_import, division, print_function
import torch
import numpy as np
import torch.nn as nn
def accuracy(preds, target):
"""
Calculate the NME (Normalized Mean Error).
Parameters
----------
preds : numpy array
the predicted landmarks
target : numpy array
the ground truth of landmarks
Returns
-------
output: float32
the nme value
output: list
the list of l2 distances
"""
N = preds.shape[0]
L = preds.shape[1]
rmse = | np.zeros(N) | numpy.zeros |
"""
Mask-RCNN detection script for cell
Input format
> data_dir: Directory with structure as follows:
- <data_dir>
- <image_id_1.tif> (file name is it's id)
- <image_id_2.tif>
- <image_id_3.tif>
> output_dir: Directory to save the predictions, format after prediction:
- <output_dir>
- <image_id_1_mask.png>
- <image_id_2_mask.png>
> model_path: Path to hdf5 file with saved model.
added with postprocessing on sequential predictions from multiple models
supported cases:
- cell notdetected by one of the models
- cell not deted in one of few in the sequence
- single cell detected as two cells
"""
import sys
import datetime
import os
import numpy as np
import cv2
from tqdm import tqdm
from train import cellConfig
from mrcnn import utils
from mrcnn import model as modellib
import time
from itertools import groupby
from operator import itemgetter
import operator
IOU_THRESHOLD = 0.6
OVERLAP_THRESHOLD = 0.8
MIN_DETECTIONS = 1
"""
logging class
"""
class Logger(object):
def __init__(self):
self.terminal = sys.stdout
self.log = open(data_dir+"log.log", "a")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
class ImageDataset(utils.Dataset):
def load_images(self, dataset_dir):
"""
Loads dataset images.
:param dataset_dir: string, path to dataset directory.
:return: None
"""
self.add_class("cell", 1, "cell")
image_ids = [file for file in os.listdir(dataset_dir) if '.tif' in file]
for image_id in image_ids:
self.add_image(
'cell',
image_id=os.path.splitext(image_id)[0],
path=os.path.join(dataset_dir, image_id)
)
class CellInferenceConfig(cellConfig):
# Set batch size to 1 to run one image at a time
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# Don't resize imager for inferencing
IMAGE_RESIZE_MODE = "pad64"
# Non-max suppression threshold to filter RPN proposals.
# You can increase this during training to generate more propsals.
RPN_NMS_THRESHOLD = 0.7
def detect(model, data_dir, out_dir):
'''
if not os.path.exists(out_dir):
os.makedirs(out_dir)
detection_dir = "detections_{:%Y%m%dT%H%M%S}".format(datetime.datetime.now())
detection_dir = os.path.join(out_dir, detection_dir)
os.makedirs(detection_dir)
'''
# Read dataset
dataset = ImageDataset()
dataset.load_images(data_dir)
dataset.prepare()
# Load over images
print(dataset.image_ids)
for image_id in tqdm(dataset.image_ids):
print(image_id)
# Load image and run detection
#If error in inferring the image, check the encoding and make sure it is 16 bits
image = dataset.load_image(image_id) *8
# Detect objects
r = model.detect([image], verbose=0)[0]
# Encode image to RLE. Returns a string of multiple lines
source_id = dataset.image_info[image_id]["id"]
#out_path = os.path.join(detection_dir, '%s.png' % str(source_id))
out_path = os.path.join(out_dir, '%s.png' % str(source_id))
mask = np.argmax(r['masks'], 2)
cv2.imwrite(out_path, mask)
def compute_iou(mask1, mask2):
"""
Computes Intersection over Union score for two binary masks.
:param mask1: numpy array
:param mask2: numpy array
:return:
"""
intersection = np.sum((mask1 + mask2) > 1)
union = np.sum((mask1 + mask2) > 0)
return intersection / float(union)
def compute_overlap(mask1, mask2):
intersection = np.sum((mask1 + mask2) > 1)
overlap1 = intersection / float(np.sum(mask1))
overlap2 = intersection / float(np.sum(mask2))
return overlap1, overlap2
def sort_mask_by_cells(mask, min_size=50):
"""
Returns size of each cell.
:param mask:
:return:
"""
cell_num = np.unique(mask)
cell_sizes = [(cell_id, len(np.where(mask == cell_id)[0])) for cell_id in cell_num if cell_id != 0]
cell_sizes = [x for x in sorted(cell_sizes, key=lambda x: x[1], reverse=True) if x[1 > min_size]]
return cell_sizes
def merge_multiple_detections(masks):
"""
:param masks:
:return:
"""
cell_counter = 0
final_mask = np.zeros(masks[0].shape)
masks_stats = [sort_mask_by_cells(mask) for mask in masks]
cells_left = sum([len(stats) for stats in masks_stats])
while cells_left > 0:
# Choose the biggest cell from available
cells = [stats[0][1] if len(stats) > 0 else 0 for stats in masks_stats]
reference_mask = cells.index(max(cells))
reference_cell = masks_stats[reference_mask].pop(0)[0]
# Prepare binary mask for cell chosen for comparison
cell_location = np.where(masks[reference_mask] == reference_cell)
cell_mask = np.zeros(final_mask.shape)
cell_mask[cell_location] = 1
masks[reference_mask][cell_location] = 0
# Mask for storing temporary results
tmp_mask = np.zeros(final_mask.shape)
tmp_mask += cell_mask
for mask_id, mask in enumerate(masks):
# For each mask left
if mask_id != reference_mask:
# # Find overlapping cells on other masks
overlapping_cells = list(np.unique(mask[cell_location]))
try:
overlapping_cells.remove(0)
except ValueError:
pass
# # If only one overlapping, check IoU and update tmp mask if high
if len(overlapping_cells) == 1:
overlapping_cell_mask = np.zeros(final_mask.shape)
overlapping_cell_mask[np.where(mask == overlapping_cells[0])] = 1
iou = compute_iou(cell_mask, overlapping_cell_mask)
if iou >= IOU_THRESHOLD:
# Add cell to temporary results and remove from stats and mask
tmp_mask += overlapping_cell_mask
idx = [i for i, cell in enumerate(masks_stats[mask_id]) if cell[0] == overlapping_cells[0]][0]
masks_stats[mask_id].pop(idx)
mask[np.where(mask == overlapping_cells[0])] = 0
# # If more than one overlapping check area overlapping
elif len(overlapping_cells) > 1:
overlapping_cell_masks = [np.zeros(final_mask.shape) for _ in overlapping_cells]
for i, cell_id in enumerate(overlapping_cells):
overlapping_cell_masks[i][np.where(mask == cell_id)] = 1
for cell_id, overlap_mask in zip(overlapping_cells, overlapping_cell_masks):
overlap_score, _ = compute_overlap(overlap_mask, cell_mask)
if overlap_score >= OVERLAP_THRESHOLD:
tmp_mask += overlap_mask
mask[np.where(mask == cell_id)] = 0
idx = [i for i, cell in enumerate(masks_stats[mask_id])
if cell[0] == cell_id][0]
masks_stats[mask_id].pop(idx)
# # If none overlapping do nothing
if len(np.unique(tmp_mask)) > 1:
cell_counter += 1
final_mask[np.where(tmp_mask >= MIN_DETECTIONS)] = cell_counter
cells_left = sum([len(stats) for stats in masks_stats])
bin_mask = | np.zeros(final_mask.shape) | numpy.zeros |
"""
Test script.
"""
import pytest
import os
from psrqpy import QueryATNF
import numpy as np
from pandas import Series
import pytest_socket
from six import string_types
from astropy.table.column import MaskedColumn
def sf_scale(value):
"""
Calculate the base-10 scale of the final significant figure for a given
number.
E.g. for a value of 12000.0 you would get 1000.0 as the scale of the final
significant figure. Or, for 1.2345e-8 you would get 0.0001.
"""
# base-10 exponent to which the value is raise
valexp = np.floor(np.log10(np.abs(value)))
# value that is raise to 10**valexp
val = (value/10**valexp).astype('float32') # type as float32 to avoid numerical noise
valstr = str(val)
# get the number of decimal places
numdp = len(valstr) - valstr.find('.') - 1
if valstr[-1] == '0':
numdp -= 1
# return the scale of the final significant figure
return 10**(valexp - numdp)
def round_err(errvalue, atnferrvalue):
"""
Round the derived error to the same number of significant figures at the
error produced by `psrcat` and used for the ATNF pulsar catalogue, noting
that `psrcat` rounds error up. Return True if the derived error and
equivalent ATNF are the same
"""
# get ATNF derived error value
errval = (atnferrvalue/sf_scale(atnferrvalue)).astype('float32')
# ATNF derived errors are always rounded up
derval = np.ceil(errvalue/sf_scale(atnferrvalue))
return derval == errval
def test_crab(query):
"""
Test that the Crab pulsar is present and the frequency is as expected, i.e.
the frequency rounds down to 29 Hz (should be OK for another ~80 years!)
"""
f0 = query.get_pulsar('J0534+2200')['F0'][0]
assert np.floor(f0) == 29.0
# try Crab's B-name
f0B = query.get_pulsar('B0531+21')['F0'][0]
assert f0 == f0B
# check reference and error are not None
assert query.get_pulsar('B0531+21')['F0_ERR'][0] is not None
assert query.get_pulsar('B0531+21')['F0_REF'][0] is not None
def test_catalogue_shape(query):
"""
Test the catalogue for shape consistency
"""
length = query.catalogue_len
shape = query.catalogue_shape
rows = query.catalogue_nrows
cols = query.catalogue_ncols
colnames = query.columns
assert length == rows and length == shape[0]
assert cols == len(colnames) and cols == shape[1]
def test_get_pulsars(query):
"""
Test the 'Pulsars' class.
"""
psrs = query.get_pulsars()
assert len(psrs) == query.num_pulsars
# check Crab frequency
f01 = query.get_pulsar('J0534+2200')['F0'][0]
f02 = psrs['J0534+2200'].F0 # frequency attribute
assert f01 == f02
# test removing a pulsar
crab = psrs.pop('J0534+2200')
f03 = crab.F0
assert f03 == f01
assert len(psrs) == (query.num_pulsars - 1)
# get the ephemeris string for the Crab pulsar
crabeph = query.get_ephemeris('J0534+2200AB') # wrong name
assert crabeph is None
crabeph = query.get_ephemeris('J0534+2200')
assert isinstance(crabeph, string_types)
for line in crabeph.split('\n'):
if line.split()[0].strip() == 'F0':
f0str = line.split()[1].strip()
break
assert f01 == float(f0str)
def test_save_load_file(query):
"""
Test saving and reloading a query as a pickle file.
"""
# test exception handling
testfilebad = '/jkshfdjfd/jkgsdfjkj/kgskfd.jhfd'
with pytest.raises(IOError):
query.save(testfilebad)
# test exception handling
with pytest.raises(IOError):
querynew = QueryATNF(loadquery=testfilebad)
testfile = os.path.join(os.getcwd(), 'query.pkl')
query.save(testfile)
# re-load in as a new query
querynew = QueryATNF(loadquery=testfile)
assert query.num_pulsars == querynew.num_pulsars
def test_condition(query):
"""
Test the parsing of logical conditions.
"""
with pytest.raises(TypeError):
# test for error if condition is not a string
query.condition = 2.3
# test that we only return pulsars with F0 > 100 Hz
query.condition = 'F0 > 100'
psrs = query.table
f0s = psrs['F0']
assert not np.any(f0s < 100.)
# test that we only return pulsars with F0 > 100 Hz in binary systems
query.condition = 'F0 > 100 && type(binary)'
psrs = query.table
f0s = psrs['F0']
binary = psrs['BINARY']
if type(binary) == MaskedColumn:
assert not np.any(f0s < 100.) and not | np.any(binary.mask) | numpy.any |
from .utils import dijkstra
import numpy as np
from anndata import AnnData
from typing import Iterable, Union, Tuple
def node_metrics(
adata: AnnData,
bc_list1: Iterable[str],
bc_list2: Iterable[str],
cell_type: str,
n_jobs: Union[int, None] = None
) -> Tuple[float, float, float]:
"""
Calculates node metrics using shortest paths between matching barcodes.
Parameters
----------
adata
AnnData object.
bc_list1
RNA matching barcodes.
bc_list2
ATAC matching barcodes.
cell_type
obs variable containing the ground truth cell type.
n_jobs
The number of jobs to use for the computation. None means 1.
Returns
-------
num_inf: int
Number of disconnected barcodes.
mean_nodes
Mean node distance between barcodes.
disc_ratio
The fraction of disconnected barcodes from the total.
"""
results = dijkstra.run_dijkstra(adata, bc_list1, bc_list2, n_jobs=n_jobs)
tmp_res = list(zip(*results))
dists = np.array(tmp_res[0])
num_inf = 2 * np.where(dists == float('inf'))[0].shape[0]
conn_ratio = 1 - num_inf / len(adata.obs.index)
paths = list( | np.array(tmp_res[1], dtype=object) | numpy.array |
import math
from random import gauss
import numpy as np
from numpy.linalg import norm
from orbit import Orbit
from body import Body
from copy import copy
class Transfer:
"""Orbital transfer from a starting orbit to an ending orbit.
Attributes:
startOrbit (Orbit): orbit prior to departure burns
endOrbit (Orbit): orbit following arrival burns
startTime (float): time at the beginning of transfer trajectory (s)
flightTime (float): duration of transfer trajectory (s)
planeChange (bool): if true, a mid-course plane change is done
ignoreInsertion (bool): if true, arrival burn is ignored.
cheapStartOrb (bool): if true, the only parameter of the starting
park orbit used is the semimajor axis
cheapEndOrb (bool): if true, the only parameter of the ending park
orbit used is the semimajor axis
startPos (vector): if provided, fixes start location of the transfer
orbit given position
endPos (vector): : if provided, fixes target location of the transfer
orbit at the given position
transferOrbit (Orbit): orbital trajectory between start and end.
If there is a plane change maneuver, this is the portion of the
trajectory prior to the maneuver.
transferORbitPC (Orbit): If there is a plane change maneuver, this
is the portion of the transfer trajectory after the maneuver.
ejectionTrajectory (Orbit): If ejection from a starting body occurs,
this is the trajectory between parking orbit and escape.
insertionTrajectory (Orbit): If capture at a target body occurs,
this is the trajectory between encounter and parking.
ejectionDV (array): 3D departure burn vector (m/s)
insertionDV (float): magnitude of arrival burn (m/s)
planeChangeDV (array): 3D plane change burn vector (m/s)
ejectionDT (float): If ejection from a starting body occurs, this is
the time interval between ejection burn and escape.
insertionDT (float): If insertion at an ending body occurs, this is
the time interval between encounter and insertion burn.
planeChangeDT (float): If a plane change maneuver occurs, this is
the time interval between the start of the transfer orbit and
the maneuver.
convergenceFail (bool): If true, start and end positions for the
Lambert problem did not converge via the genetic algorithm
"""
def __init__(self, startOrbit, endOrbit, startTime, flightTime,
planeChange = False, ignoreInsertion = False,
cheapStartOrb = False, cheapEndOrb = True,
startPos = None, endPos = None):
# Assign input attributes
self.startOrbit = startOrbit
self.endOrbit = endOrbit
self.startTime = startTime
self.flightTime = flightTime
self.planeChange = planeChange
self.ignoreInsertion = ignoreInsertion
self.cheapStartOrb = cheapStartOrb
self.cheapEndOrb = cheapEndOrb
self.startPos = startPos
self.endPos = endPos
self.originalStartOrbit = copy(self.startOrbit)
self.originalEndOrbit = copy(self.endOrbit)
# These attributes get defined here but are filled in with methods
self.transferOrbit = None
self.transferOrbitPC = None
self.ejectionTrajectory = None
self.insertionTrajectory = None
self.ejectionDV = 0
self.insertionDV = 0
self.planeChangeDV = 0
self.ejectionDT = 0
self.insertionDT = 0
self.planeChangeDT = 0
self.phaseAngle = 0
self.ejectionBurnAngle = None
self.convergenceFail = True
# Calculate transfer, ejection, and insertion parameters
self.get_transfer_details()
# self.genetic_refine()
@staticmethod
def solve_lambert(startOrbit, endOrbit, startTime, flightTime,
planeChange = False, startPos = None, endPos = None,
tol = 1E-6, maxIt = 200):
"""Solves the Lambert problem to obtain a trajectory to the target.
Args:
startOrbit (Orbit): orbit prior to departure
endOrbit (Orbit): orbit following arrival
startTime (float): time at the beginning of transfer (s)
flightTime (float): duration of transfer trajectory (s)
planeChange (bool): if true, a mid-course plane change occurs
startPos (vector): if provided, fixes start location at the
given position
endPos (vector): : if provided, fixes target location at the
given position
tol (float): the maximum tolerance for iteration termination
maxIt (int): the maximum number of iterations before breaking
Returns:
transferOrbit (Orbit): trajectory before plane change
transferOrbitPC (Orbit): trajectory after plane change
planeChangeDV (array): plane change burn vector (m/s)
planeChangeDT (float): time between start and plane change (s)
"""
# Set gravitational parameter for transfer orbit
mu = startOrbit.prim.mu
# Get start position
if startPos is None:
rStart = startOrbit.get_state_vector(startTime)[0]
else:
rStart = startPos
# Adjust end position based on inputs
if endPos is None:
rEnd = endOrbit.get_state_vector(startTime + flightTime)[0]
else:
rEnd = endPos
if planeChange:
# Rotate the target orbit to be coplanar with the starting one
rEnd = startOrbit.from_primary_to_orbit_bases(rEnd)
rEnd = np.array([rEnd[0],rEnd[1],0]) / \
norm(np.array([rEnd[0],rEnd[1]])) * norm(rEnd);
rEnd = startOrbit.from_orbit_to_primary_bases(rEnd)
# Store magnitudes of position vectors for later use
rStartMag = norm(rStart)
rEndMag = norm(rEnd)
# Get true anomaly change and angles in the ecliptic (x-y plane)
dNu = math.atan2(norm(np.cross(rStart,rEnd)),np.dot(rStart,rEnd))
thetaStart = math.atan2(rStart[1], rStart[0])
thetaEnd = math.atan2(rEnd[1], rEnd[0])
dTheta = thetaEnd - thetaStart
if dTheta < 0 or dTheta > 2*math.pi:
dTheta = dTheta - math.floor(dTheta/(2*math.pi))*2*math.pi
if dTheta > math.pi:
dNu = 2*math.pi - dNu
# Set constants for p iteration
k = rStartMag * rEndMag * (1-math.cos(dNu))
L = rStartMag + rEndMag
m = rStartMag * rEndMag * (1+math.cos(dNu))
# Set bounds for p values
pj = k / (L+math.sqrt(2*m))
pjj = k / (L-math.sqrt(2*m))
if dNu > math.pi:
pMin = 0
pMax = pjj
else:
pMin = pj
pMax = math.inf
# Initialize values prior to iteration
it = 0
err = tol+1
p = (pj+pjj)/2
pNext = p
# Use Newton-p-iteration to minimize error for time of flight
while err > tol:
it = it+1
if it > maxIt:
print('Lambert solver failed to converge')
break
p = pNext
a = m*k*p / ((2*m-L**2)*(p**2) + 2*k*L*p - k**2)
f = 1 - rEndMag/p * (1 - math.cos(dNu))
g = rStartMag * rEndMag * math.sin(dNu) / math.sqrt(mu*p)
df = math.sqrt(mu/p)*math.tan(dNu/2)*((1-math.cos(dNu))/p - \
1/rStartMag - \
1/rEndMag);
# Elliptical case
if a > 0:
sindE = -rStartMag * rEndMag * df/math.sqrt(mu*a)
cosdE = 1 - rStartMag/a * (1-f)
# Change in elliptical anomaly
dE = math.atan2(sindE,cosdE)
while dE < 0:
dE = dE + 2*math.pi
# Time of flight and slope with respect to p
t = g + math.sqrt((a**3)/mu) * (dE - sindE)
dtdp = -g/(2*p) - \
1.5*a*(t-g)*(k**2 + (2*m-L**2)*p**2) / (m*k*p**2) + \
math.sqrt(a**3/mu) * (2*k*sindE) / (p*(k-L*p));
# Hyperbolic case
else:
# Change in hyperbolic anomaly
dF = math.acosh(1 - rStartMag/a * (1-f))
# Time of flight and slope with respect to p
t = g + math.sqrt((-a)**3/mu) * (math.sinh(dF) - dF)
dtdp = -g/(2*p) - \
1.5*a*(t-g)*(k**2 + (2*m-L**2)*p**2) / (m*k*p**2) - \
math.sqrt((-a)**3/mu) * (2*k*math.sinh(dF)) / \
(p*(k-L*p));
# Compute error and next guess for p
err = abs(flightTime-t)/flightTime
pNext = p + (flightTime - t) / dtdp
# If the next guess is outside of allowed bounds, use bisection
if pNext < pMin:
pNext = (p + pMin)/2
elif pNext > pMax:
pNext = (p + pMax)/2
# From final p-iteration parameters, calculate velocity at the start
# of the transfer orbit, and then define the transfer orbit
vStart = (rEnd - f * rStart)/g
transferOrbit = Orbit.from_state_vector(rStart,vStart, startTime,
startOrbit.prim)
# If a mid-course plane change maneuver will be used, a second
# transfer orbit must be determined
if planeChange:
# Obtain the end position in its original plane
if endPos is None:
rEnd = endOrbit.get_state_vector(startTime + flightTime)[0]
else:
rEnd = endPos
# Get angle in the orbital plane between start and end
transferAngle = \
transferOrbit.get_angle_in_orbital_plane(startTime,rEnd)
# The optimal angle for the plane change position is 90 degrees
# before the end position. If the transfer trajectory does not
# cover at more than 90 degrees, the best position for plane-
# change will be at the start
if transferAngle < math.pi/2:
thetaPC = 0
else:
thetaPC = transferAngle - math.pi/2
# Get true anomaly and time at the plane-change maneuver
nuPC = transferOrbit.get_true_anomaly(startTime) + thetaPC
tPC = transferOrbit.get_time(nuPC, startTime)
# Get the state vector immediately prior to plane change
rPC, vPCi = transferOrbit.get_state_vector(tPC)
vPCiPlane = transferOrbit.from_primary_to_orbit_bases(vPCi)
## Calculate the inclination change needed for the maneuver
# nTr = np.cross(rPC, vPCi)
# nTr = nTr/norm(nTr) # normal vector to pre-burn orbit
# Get basis vectors for orbit after plane change
zPC = np.cross(rPC, rEnd)
zPC = zPC/norm(zPC) # normal vector to post-burn orbit
xPC= np.array([1, 0, 0]) # assumed celestial longitude
xPC = xPC - np.dot(xPC,zPC) * zPC/norm(zPC)**2
if norm(xPC) < 1E-15:
xPC = np.array([0, math.copysign(1,zPC[0]), 0])
zPC = np.array([math.copysign(1,zPC[0]), 0, 0])
else:
xPC = xPC / norm(xPC)
yPC = np.cross(zPC,xPC)
yPC = yPC/norm(yPC)
# rotate velocity vector to new plane
vPCf = transferOrbit.rotate_to_bases(vPCiPlane, xPC, yPC, True)
# # normal vector to plane after burn
# incPC = math.acos(np.dot(nTr,nTrPC))
# if np.dot(nTrPC, vPCi) > 0:
# incPC = -incPC
# # Rotate velocity vector prior to burn to get vector after burn
# vPCfPlane = np.array([math.cos(incPC) * vPCiPlane[0], \
# math.cos(incPC) * vPCiPlane[1], \
# math.sin(incPC) * norm(vPCiPlane)]);
# # Get the velocity after plane change in the primary bases
# vPCf = transferOrbit.from_orbit_to_primary_bases(vPCfPlane)
# Define second part of transfer with position and velocity
# vectors after the plane change maneuver
transferOrbitPC = Orbit.from_state_vector(rPC,vPCf,tPC,
transferOrbit.prim)
# Get the delta V for the maneuver and time interval from start
planeChangeDV = vPCf - vPCi
planeChangeDT = tPC - startTime
else:
transferOrbitPC = None
planeChangeDV = 0
planeChangeDT = 0
return transferOrbit, transferOrbitPC, planeChangeDV, planeChangeDT
def get_transfer_details(self):
"""Get transfer and ejection orbits with burn details"""
# First case: starting and ending orbits have the same primary body.
# No change of sphere of influence takes place.
if self.startOrbit.prim == self.endOrbit.prim:
self.transferOrbit, self.transferOrbitPC, \
self.planeChangeDV, self.planeChangeDT = \
self.solve_lambert(self.startOrbit, \
self.endOrbit, \
self.startTime, self.flightTime, \
self.planeChange, \
self.startPos, self.endPos);
# Get departure burn delta v
vStart = self.startOrbit.get_state_vector(self.startTime)[1]
vTrStart = self.transferOrbit.get_state_vector(self.startTime)[1]
self.ejectionDV = vTrStart - vStart
# Get arrival burn delta v
if not self.ignoreInsertion:
if self.planeChange:
vTrEnd = self.transferOrbitPC.get_state_vector( \
self.startTime + self.flightTime)[1];
else:
vTrEnd = self.transferOrbit.get_state_vector( \
self.startTime + self.flightTime)[1]
vEnd = self.endOrbit.get_state_vector(self.startTime + \
self.flightTime)[1];
self.insertionDV = vEnd - vTrEnd
# Get phase angle
self.phaseAngle = self.startOrbit.get_angle_in_orbital_plane( \
self.get_departure_burn_time(), \
self.endOrbit.get_state_vector( \
self.get_departure_burn_time())[0]);
# Set start and end position for refinining
self.startPos = \
self.startOrbit.get_state_vector(self.startTime)[0];
self.endPos = \
self.endOrbit.get_state_vector(self.startTime + \
self.flightTime)[0];
# Second case: starting in orbit around a body and transferring to a
# parking orbit around its primary body
elif self.startOrbit.prim in self.endOrbit.prim.satellites:
self.transferOrbit, self.transferOrbitPC, \
self.planeChangeDV, self.planeChangeDT = \
self.solve_lambert(self.startOrbit.prim.orb, \
self.endOrbit, \
self.startTime, self.flightTime, \
self.planeChange, \
self.startPos, self.endPos);
self.get_ejection_details()
# Get arrival burn delta v
if not self.ignoreInsertion:
if self.planeChange:
vTrEnd = self.transferOrbitPC.get_state_vector( \
self.startTime + self.flightTime)[1];
else:
vTrEnd = self.transferOrbit.get_state_vector( \
self.startTime + self.flightTime)[1]
vEnd = self.endOrbit.get_state_vector(self.startTime + \
self.flightTime)[1];
self.insertionDV = vEnd - vTrEnd
# Get phase angle
self.phaseAngle = self.startOrbit.prim.orb \
.get_angle_in_orbital_plane( \
self.get_departure_burn_time(), \
self.endOrbit.get_state_vector( \
self.get_departure_burn_time())[0]);
# Set start and end position for refinining
self.startPos = \
self.startOrbit.prim.orb.get_state_vector(self.startTime)[0] +\
self.ejectionTrajectory.get_state_vector(self.startTime)[0];
if self.endPos is None:
self.endPos = \
self.endOrbit.get_state_vector(self.startTime + \
self.flightTime)[0];
# Third case: starting in orbit around a body and transferring to a
# parking orbit around one of its satellites
elif self.endOrbit.prim in self.startOrbit.prim.satellites:
self.transferOrbit, self.transferOrbitPC, \
self.planeChangeDV, self.planeChangeDT = \
self.solve_lambert(self.startOrbit, \
self.endOrbit.prim.orb, \
self.startTime, self.flightTime, \
self.planeChange, \
self.startPos, self.endPos);
self.get_insertion_details()
# Get departure burn delta v
vStart = self.startOrbit.get_state_vector(self.startTime)[1]
vTrStart = self.transferOrbit.get_state_vector(self.startTime)[1]
self.ejectionDV = vTrStart - vStart
# Get phase angle
self.phaseAngle = self.startOrbit.get_angle_in_orbital_plane( \
self.get_departure_burn_time(), \
self.endOrbit.prim.orb.get_state_vector( \
self.get_departure_burn_time())[0]);
# Set start and end position for refinining
if self.startPos is None:
self.startPos = \
self.startOrbit.get_state_vector(self.startTime)[0];
self.endPos = \
self.endOrbit.prim.orb.get_state_vector( \
self.startTime + self.flightTime)[0] + \
self.insertionTrajectory.get_state_vector( \
self.startTime + self.flightTime)[0];
# Fourth case: starting in a parking orbit around a body, and then
# transfering to another body and parking there. Both bodies orbit
# the same primary.
elif self.startOrbit.prim.orb.prim == self.endOrbit.prim.orb.prim:
self.transferOrbit, self.transferOrbitPC, \
self.planeChangeDV, self.planeChangeDT = \
self.solve_lambert(self.startOrbit.prim.orb, \
self.endOrbit.prim.orb, \
self.startTime, self.flightTime, \
self.planeChange, \
self.startPos, self.endPos);
self.get_ejection_details()
self.get_insertion_details()
# Get phase angle
self.phaseAngle = self.startOrbit.prim.orb \
.get_angle_in_orbital_plane( \
self.get_departure_burn_time(), \
self.endOrbit.prim.orb.get_state_vector( \
self.get_departure_burn_time())[0]);
# Set start and end position for refinining
self.startPos = \
self.startOrbit.prim.orb.get_state_vector(self.startTime)[0] +\
self.ejectionTrajectory.get_state_vector(self.startTime)[0];
self.endPos = \
self.endOrbit.prim.orb.get_state_vector( \
self.startTime + self.flightTime)[0] + \
self.insertionTrajectory.get_state_vector( \
self.startTime + self.flightTime)[0];
# Fifth case: starting orbit is around a moon, and ending orbit is
# around a planet that is not the primary of the first moon
# Sixth case: starting orbit is around a planet, and ending orbit is
# around a moon of a different planet
# Seventh case: starting and ending orbits are around moons of two
# different planets.
# Adjust phase angle to be within the range [-pi, pi]
if self.phaseAngle < -math.pi:
self.phaseAngle = self.phaseAngle + 2*math.pi
elif self.phaseAngle > math.pi:
self.phaseAngle = self.phaseAngle - 2*math.pi
def get_ejection_details(self, tol = 0.1, maxIt = 50):
"""Get ejection trajectory with burn details."""
# Assume that parking orbit is circular
mu = self.startOrbit.prim.mu
rEscape = self.startOrbit.prim.soi # distance from body at escape
# Get velocity of primary body and velocity needed after escape
vPrim = self.startOrbit.prim.orb.get_state_vector(self.startTime)[1]
vTrans = self.transferOrbit.get_state_vector(self.startTime)[1]
err = tol + 1
it = 0
roNext = self.startOrbit.a
while abs(err) > tol:
it = it + 1
if it > maxIt:
# print('Ejection burn position failed to converge')
# print(err)
break
# Periapsis radius of ejection trajectory (also burn position)
ro = roNext
# Excess velocity needed at escape from primary's sphere of influence
vRel = vTrans - vPrim
# speed after ejection burn
vo = math.sqrt(norm(vRel)**2 + 2*(mu/ro - mu/rEscape))
# escape trajectory elements
e = math.sqrt(1+2*(vo**2/2 - mu/ro) * ro**2 * vo**2 / mu**2)
a = 1 / (2/ro - vo**2/mu)
# Describe positions at the SOI escape in the hyperbolic
# escape trajectory's orbital plane
# true anomaly at escape
try:
thetaEscape = math.acos(1/e * (a*(1-e**2)/rEscape - 1))
except ValueError:
thetaEscape = math.acos(
math.copysign(1, 1/e * (a*(1-e**2)/rEscape - 1)))
# flight path angle at escape
phiEscape = math.atan(e*math.sin(thetaEscape) / \
(1+e*math.cos(thetaEscape)));
# velocity vector at escape in orbital reference bases
vEscape = math.sqrt(mu * (2/rEscape - 1/a)) * \
np.array([math.cos(thetaEscape + math.pi/2 - phiEscape), \
math.sin(thetaEscape + math.pi/2 - phiEscape), \
0]);
# pre-burn position and velocity vectors at periapsis, in the orbit's
# reference bases
roVec = [ro, 0, 0]
voVec = [0, vo, 0]
# Reperesent the escape velocity in the orbital reference bases
if not self.cheapStartOrb:
vRel = self.startOrbit.from_primary_to_orbit_bases(vRel)
else:
vRel = self.startOrbit.prim.orb.from_primary_to_orbit_bases(vRel)
# Rotate the ejection trajectory to match the desired escape velocity
# An assumption is made that the periapsis lies in the starting
# orbit's x-y plane.
# First rotate around x-axis to match z-component
phi = math.atan2(vRel[2], math.sqrt(abs(norm(vEscape)**2 - \
vEscape[0]**2 - vRel[2]**2)));
R1 = np.array([[1, 0, 0], \
[0, math.cos(phi), -math.sin(phi)], \
[0, math.sin(phi), math.cos(phi)]]);
R1vEscape = np.matmul(R1, vEscape)
# Then rotate around z-axis to match ejection direction
theta = math.atan2(vRel[1], vRel[0]) - math.atan2(R1vEscape[1], \
R1vEscape[0]);
R2 = np.array([[math.cos(theta), -math.sin(theta), 0], \
[math.sin(theta), math.cos(theta), 0], \
[0, 0, 1]]);
# Apply rotations
roVec = np.matmul(R2, np.matmul(R1, roVec))
voVec = np.matmul(R2, np.matmul(R1, voVec))
# Represent periapsis state vector in primary bases
if not self.cheapStartOrb:
roVec = self.startOrbit.from_orbit_to_primary_bases(roVec)
voVec =self.startOrbit.from_orbit_to_primary_bases(voVec)
else:
roVec = self.startOrbit.prim.orb.from_orbit_to_primary_bases(roVec)
voVec =self.startOrbit.prim.orb.from_orbit_to_primary_bases(voVec)
if self.cheapStartOrb:
err = 0
else:
angleDiff = self.startOrbit.get_angle_in_orbital_plane( \
self.startOrbit.get_time(0),roVec);
roVecActual, vParkActual = \
self.startOrbit.get_state_vector( \
self.startOrbit.get_time(angleDiff));
prevErr = err
err = norm(roVec) - norm(roVecActual)
if abs(err)/abs(prevErr) > 0.9:
roNext = (norm(roVecActual) + ro)/2
else:
roNext = norm(roVecActual)
# Get burn vector
if self.cheapStartOrb:
vPark = math.sqrt(mu/ro) * voVec/norm(voVec)
else:
vPark = vParkActual
self.ejectionDV = voVec - vPark;
# adjust so that the mean anomaly at epoch is compatible with the
# transfer start time
if e < 1:
# elliptical case
eccAnomEscape = 2*math.atan(math.tan(thetaEscape/2) / \
math.sqrt((1+e) / (1-e)))
dMeanAnom = eccAnomEscape - e*math.sin(eccAnomEscape)
else:
# hyperbolic case
hypAnomEscape = math.copysign( \
math.acosh((math.cos(thetaEscape)+e) / \
(1 + e*math.cos(thetaEscape))), \
thetaEscape);
dMeanAnom = e*math.sinh(hypAnomEscape) - hypAnomEscape
# Add the correct ejection trajectory and duration to the transfer
self.ejectionDT = abs(dMeanAnom * math.sqrt((abs(a))**3/mu))
self.ejectionTrajectory = \
Orbit.from_state_vector(roVec, voVec, \
self.get_departure_burn_time(), \
self.startOrbit.prim);
# Reset start parking orbit to match departure burn timing
if self.cheapStartOrb:
self.startOrbit = \
Orbit.from_state_vector(roVec,vPark, \
self.get_departure_burn_time(), \
self.startOrbit.prim);
# Get angle from prograde of ejection burn
progradeAngle = \
self.startOrbit.get_angle_in_orbital_plane( \
0, \
self.startOrbit.prim.orb.from_primary_to_orbit_bases( \
self.startOrbit.prim.orb.get_state_vector( \
self.get_departure_burn_time())[1]));
burnAngle = \
self.startOrbit.get_angle_in_orbital_plane( \
0, \
self.ejectionTrajectory.get_state_vector( \
self.get_departure_burn_time())[0]);
self.ejectionBurnAngle = Orbit.map_angle(burnAngle-progradeAngle)
if self.ejectionBurnAngle > math.pi:
self.ejectionBurnAngle = self.ejectionBurnAngle - 2*math.pi
def get_insertion_details(self, tol = 0.1, maxIt = 50):
"""Get insertion trajectory with burn details."""
# Assume that parking orbit is circular
mu = self.endOrbit.prim.mu
rEnc = self.endOrbit.prim.soi # distance from body at encounter
# Get velocity of primary body and velocity needed at encounter
vPrim = self.endOrbit.prim.orb.get_state_vector(self.startTime + \
self.flightTime)[1];
vTrans = self.transferOrbit.get_state_vector(self.startTime + \
self.flightTime)[1];
err = tol + 1
it = 0
roNext = self.endOrbit.a
while abs(err) > tol:
it = it + 1
if it > maxIt:
# print('Insertion burn position failed to converge')
# print(err)
break
# Periapsis radius of insertion trajectory (also burn position)
ro = roNext
# Excess velocity at encounter at primary's sphere of influence
vRel = vTrans - vPrim
# speed before insertion burn
vo = math.sqrt(norm(vRel)**2 + 2*(mu/ro - mu/rEnc))
# insertion trajectory elements
e = math.sqrt(1+2*(vo**2/2 - mu/ro) * ro**2 * vo**2 / mu**2)
a = 1 / (2/ro - vo**2/mu)
# Describe positions at the SOI encounter in the hyperbolic
# insertion trajectory's orbital plane
# true anomaly at escape
try:
thetaEncounter = -math.acos(1/e * (a*(1-e**2)/rEnc - 1))
except ValueError:
thetaEncounter = -math.acos(
math.copysign(1, 1/e * (a*(1-e**2)/rEnc - 1)))
# flight path angle at encounter
phiEncounter = math.atan(e*math.sin(thetaEncounter) / \
(1+e*math.cos(thetaEncounter)));
# velocity vector at encounter in orbital reference bases
vEncounter = math.sqrt(mu * (2/rEnc - 1/a)) * \
np.array([math.cos(thetaEncounter + math.pi/2 - phiEncounter), \
math.sin(thetaEncounter + math.pi/2 - phiEncounter), \
0]);
# post-burn position and velocity vectors at periapsis, in the orbit's
# reference bases
roVec = [ro, 0, 0]
voVec = [0, vo, 0]
# Reperesent the encounter velocity in the orbital reference bases
# Reperesent the escape velocity in the orbital reference bases
if not self.cheapEndOrb:
vRel = self.endOrbit.from_primary_to_orbit_bases(vRel)
else:
vRel = self.endOrbit.prim.orb.from_primary_to_orbit_bases(vRel)
# Rotate the insertion trajectory to match the desired escape velocity
# An assumption is made that the periapsis lies in the primary body's
# x-y plane.
# First rotate around x-axis to match z-component
phi = math.atan2(vRel[2], math.sqrt(abs(norm(vEncounter)**2 - \
vEncounter[0]**2 - vRel[2]**2)));
R1 = np.array([[1, 0, 0], \
[0, math.cos(phi), -math.sin(phi)], \
[0, math.sin(phi), math.cos(phi)]]);
R1vEncounter = np.matmul(R1, vEncounter)
# Then rotate around z-axis to match insertion direction
theta = math.atan2(vRel[1], vRel[0]) - math.atan2(R1vEncounter[1], \
R1vEncounter[0]);
R2 = np.array([[math.cos(theta), -math.sin(theta), 0], \
[math.sin(theta), math.cos(theta), 0], \
[0, 0, 1]]);
# Apply rotations
roVec = np.matmul(R2, np.matmul(R1, roVec))
voVec = np.matmul(R2, np.matmul(R1, voVec))
# Represent periapsis state vector in primary bases
if not self.cheapEndOrb:
roVec = self.endOrbit.from_orbit_to_primary_bases(roVec)
voVec = self.endOrbit.from_orbit_to_primary_bases(voVec)
else:
roVec = self.endOrbit.prim.orb.from_orbit_to_primary_bases(roVec)
voVec = self.endOrbit.prim.orb.from_orbit_to_primary_bases(voVec)
if self.cheapEndOrb:
err = 0
else:
angleDiff = self.endOrbit.get_angle_in_orbital_plane( \
self.endOrbit.get_time(0),roVec);
roVecActual, vParkActual = \
self.endOrbit.get_state_vector( \
self.endOrbit.get_time(angleDiff));
prevErr = err
err = norm(roVec) - norm(roVecActual)
if abs(err)/abs(prevErr) > 0.9:
roNext = (norm(roVecActual) + ro)/2
else:
roNext = norm(roVecActual)
# Get burn vector
if self.cheapEndOrb:
vPark = math.sqrt(mu/ro) * voVec/norm(voVec)
else:
Zo = self.endOrbit.prim.orb.get_basis_vectors()[2]
vPark = np.cross(Zo,roVec)
vPark = math.sqrt(mu/ro) * vPark/norm(vPark)
if not self.ignoreInsertion:
self.insertionDV = vPark - voVec;
# adjust so that the mean anomaly at epoch is compatible with the
# transfer encounter time
if e < 1:
# elliptical case
eccAnomEncounter = 2*math.atan(math.tan(thetaEncounter/2) / \
math.sqrt((1+e) / (1-e)))
dMeanAnom = eccAnomEncounter - e*math.sin(eccAnomEncounter)
else:
# hyperbolic case
hypAnomEncounter = math.copysign( \
math.acosh((math.cos(thetaEncounter)+e) / \
(1 + e*math.cos(thetaEncounter))), \
thetaEncounter);
dMeanAnom = e*math.sinh(hypAnomEncounter) - hypAnomEncounter
# Add the correct insertion trajectory and duration to the transfer
self.insertionDT = abs(dMeanAnom * math.sqrt((abs(a))**3/mu))
self.insertionTrajectory = \
Orbit.from_state_vector(roVec, voVec, \
self.get_arrival_burn_time(), \
self.endOrbit.prim);
# Reset end parking orbit to match departure burn timing
if self.cheapEndOrb:
self.endOrbit = \
Orbit.from_state_vector(roVec,vPark, \
self.get_arrival_burn_time(), \
self.endOrbit.prim);
def adjust_start_orbit_mo(self):
"""Modify starting orbit to have mean anomaly at epoch matching burn.
"""
burnTime = self.get_departure_burn_time()
trueAnom = self.startOrbit.get_angle_in_orbital_plane( \
self.startOrbit.get_time(0), \
self.ejectionTrajectory.get_state_vector(burnTime)[0]);
dMeanAnom = self.startOrbit.get_mean_anomaly( \
self.startOrbit.get_time(trueAnom)) - \
self.startOrbit.get_mean_anomaly(burnTime);
self.startOrbit.mo = \
self.startOrbit.map_angle(self.startOrbit.mo + dMeanAnom);
def adjust_end_orbit_mo(self):
"""Modify ending orbit to have mean anomaly at epoch matching burn.
"""
burnTime = self.get_arrival_burn_time()
trueAnom = self.endOrbit.get_angle_in_orbital_plane( \
self.endOrbit.get_time(0), \
self.insertionTrajectory.get_state_vector(burnTime)[0]);
dMeanAnom = self.endOrbit.get_mean_anomaly( \
self.endOrbit.get_time(trueAnom)) - \
self.endOrbit.get_mean_anomaly(burnTime);
self.endOrbit.mo = \
self.endOrbit.map_angle(self.endOrbit.mo + dMeanAnom);
def match_start_mean_anomaly(self, tol = 0.1, maxIt = 20):
if self.ejectionTrajectory is None or self.cheapStartOrb:
self.genetic_refine()
return
self.startOrbit = copy(self.originalStartOrbit)
originalStartTime = self.startTime
it = 0
err = tol+1
while abs(err) > tol:
it = it+1
if it>maxIt:
print('start match fail')
self.startTime = originalStartTime
self.genetic_refine()
return
if it > 1:
# self.startPos = None
# self.endPos = None
self.startTime = self.startTime + dT
gen = self.genetic_refine()
if gen is None:
break
burnTime = self.get_departure_burn_time()
orbPos = self.startOrbit.get_state_vector(burnTime)[0]
burnPos = self.ejectionTrajectory.get_state_vector(burnTime)[0];
burnTrueAnom = self.startOrbit.get_angle_in_orbital_plane( \
self.startOrbit.get_time(0), burnPos);
burnMeanAnom = self.startOrbit.get_mean_anomaly( \
self.startOrbit.get_time(burnTrueAnom))
orbMeanAnom = self.startOrbit.get_mean_anomaly(burnTime)
dMeanAnom = burnMeanAnom - orbMeanAnom
while abs(dMeanAnom) > math.pi:
dMeanAnom = dMeanAnom + math.copysign(2*math.pi, -dMeanAnom)
dT = self.startOrbit.get_period() * dMeanAnom / (2*math.pi)
err = norm(burnPos-orbPos)
return
def match_end_mean_anomaly(self, tol = 0.1, maxIt = 20):
if self.insertionTrajectory is None or self.cheapEndOrb:
self.genetic_refine()
return
self.endOrbit = copy(self.originalEndOrbit)
originalFlightTime = self.flightTime
it = 0
err = tol+1
while abs(err) > tol:
it = it+1
if it>maxIt:
print('end match fail')
self.flightTime = originalFlightTime
self.genetic_refine()
return
if it > 1:
self.flightTime = self.flightTime + dT
gen = self.genetic_refine()
if gen is None:
break
burnTime = self.get_arrival_burn_time()
orbPos = self.endOrbit.get_state_vector(burnTime)[0]
burnPos = self.insertionTrajectory.get_state_vector(burnTime)[0]
burnTrueAnom = self.endOrbit.get_angle_in_orbital_plane( \
self.endOrbit.get_time(0), burnPos);
burnMeanAnom = self.endOrbit.get_mean_anomaly( \
self.endOrbit.get_time(burnTrueAnom))
orbMeanAnom = self.endOrbit.get_mean_anomaly(burnTime)
dMeanAnom = burnMeanAnom - orbMeanAnom
while abs(dMeanAnom) > math.pi:
dMeanAnom = dMeanAnom + math.copysign(2*math.pi, -dMeanAnom)
dT = self.endOrbit.get_period() * dMeanAnom / (2*math.pi)
err = norm(burnPos-orbPos)
return
def get_departure_burn_time(self):
"""Get the time since epoch of departure burn.
Returns:
the time in seconds at departure burn
"""
return self.startTime - self.ejectionDT
def get_encounter_time(self):
"""Get the time of SOI encounter with the target body.
Returns:
the time in seconds at target SOI encounter
"""
return self.startTime + self.flightTime
def get_arrival_burn_time(self):
"""Get the time since epoch of arrival burn.
Returns:
the time in seconds at arrival burn
"""
return self.startTime + self.flightTime + self.insertionDT
def get_plane_change_time(self):
"""Get the time since epoch at the plane change maneuver.
Returns:
the time in seconds at plane change maneuver
"""
return self.startTime + self.planeChangeDT
def get_total_delta_v(self):
"""Get total delta V required for all parts of transfer.
Returns:
total delta v across all maneuvers (m/s)
"""
return norm(self.ejectionDV) + norm(self.planeChangeDV) + \
norm(self.insertionDV)
def genetic_refine(self, num = 10, tol = 1, maxGen = 40):
"""Genetic algorithm to find start and end positions for Transfer"""
# TO DO: figure out better crossover/mutation methods,
# convergence for high-inclination transfers
if (self.ejectionTrajectory is None) or \
(self.insertionTrajectory is None):
gen = 0
maxGen = maxGen * 10
err = self.get_error()
while abs(err) > tol:
gen = gen+1
if gen > maxGen:
# self.startPos = None
# self.endPos = None
self.get_transfer_details()
self.convergenceFail = True
if not self.ejectionTrajectory is None:
self.adjust_start_orbit_mo()
if not self.insertionTrajectory is None:
self.adjust_end_orbit_mo()
return
err = self.get_error()
self.convergenceFail = False
return gen
startPositions, endPositions = self.get_first_generation(num)
startPositions, endPositions, err = \
self.get_fitness(startPositions, endPositions);
gen = 0
while np.amin(err) > tol:
gen = gen+1
# if gen%100 == 0:
# print('.')
if gen > maxGen:
self.startPos = None
self.endPos = None
self.get_transfer_details()
self.convergenceFail = True
if not self.ejectionTrajectory is None:
self.adjust_start_orbit_mo()
if not self.insertionTrajectory is None:
self.adjust_end_orbit_mo()
return
startPositions, endPositions = self.get_next_generation( \
startPositions, endPositions, err);
startPositions, endPositions, err = \
self.get_fitness(startPositions, endPositions);
self.startPos = startPositions[0]
self.endPos = endPositions[0]
self.convergenceFail = False
# if not self.ejectionTrajectory is None:
# self.adjust_start_orbit_mo()
# if not self.insertionTrajectory is None:
# self.adjust_end_orbit_mo()
return gen
def get_first_generation(self, num = 10):
"""Gets the first generation of parents for genetic algorithm"""
startPositions = []
endPositions = []
for x in range(math.ceil(num/2)):
self.get_transfer_details()
startPositions.append(self.startPos)
endPositions.append(self.endPos)
startMut, endMut = self.mutate(startPositions[-1],endPositions[-1])
startPositions.append(startMut)
endPositions.append(endMut)
return startPositions, endPositions
def get_error(self, startPos = None, endPos = None):
"""Gets error to serve as fitness for genetic algorithm."""
if startPos is None:
if self.startPos is None:
self.startPos = self.startOrbit.get_state_vector( \
self.startTime)[0]
startPos = self.startPos
if endPos is None:
if self.endPos is None:
self.endPos = self.endOrbit.get_state_vector( \
self.startTime + self.flightTime)[0];
endPos = self.endPos
self.startPos = startPos
self.endPos = endPos
self.get_transfer_details()
err = norm(self.startPos - startPos) + norm(self.endPos - endPos)
return err
def get_fitness(self, startPositions, endPositions):
"""Sorts population by fitness and returns array of errors"""
err = []
for x in range(len(startPositions)):
err.append(self.get_error(startPositions[x], endPositions[x]))
order = [i[0] for i in sorted(enumerate(err), key=lambda x:x[1])]
startPositions = [startPositions[i] for i in order]
endPositions = [endPositions[i] for i in order]
err = [err[i] for i in order]
return startPositions, endPositions, err
def get_next_generation(self, startPositions, endPositions, err):
""" Gets the next generation for the genetic algorithm"""
err = np.array(err)
fitness = 1/err;
probs = []
for fit in fitness:
probs.append((fit)/sum(fitness))
# probs = 1 - probs;
probs = np.cumsum(probs)
nextStartPositions = [startPositions[0], startPositions[1]]
nextEndPositions = [endPositions[0], endPositions[1]]
for x in range(len(startPositions)-2):
val1 = np.random.rand()
for y, prob in enumerate(probs):
if val1 < prob:
p1 = y
break
p1 = len(probs)-1
val2 = np.random.rand()
for z, prob in enumerate(probs):
if val2 < prob:
p2 = z
break
p2 = len(probs)-1
sPos, ePos = self.crossover(
[startPositions[p1], startPositions[p2]],
[endPositions[p1], endPositions[p2]],
[err[p1], err[p2]]);
val3 = np.random.rand()
if val3 < 0.25:
sPos, ePos = self.mutate(sPos, ePos)
nextStartPositions.append(sPos)
nextEndPositions.append(ePos)
return nextStartPositions, nextEndPositions
def crossover(self, starts, ends, errs):
"""Combines positions with random weighted average."""
startBodyPos = self.startOrbit.prim.orb.get_state_vector( \
self.startTime)[0];
endBodyPos = self.endOrbit.prim.orb.get_state_vector( \
self.startTime + self.flightTime)[0];
startSOI = self.startOrbit.prim.soi
endSOI = self.endOrbit.prim.soi
minErrIndex = | np.argmin(errs) | numpy.argmin |
"""
Set of programs to read and interact with output from Bifrost
"""
# import builtin modules
import os
import functools
import weakref
from glob import glob
import warnings
import time
import ast
# import external public modules
import numpy as np
from scipy import interpolate
from scipy.ndimage import map_coordinates
# import internal modules
from .load_quantities import *
from .load_arithmetic_quantities import *
from . import load_fromfile_quantities
from .tools import *
from . import document_vars
from . import file_memory
whsp = ' '
class BifrostData(object):
"""
Reads data from Bifrost simulations in native format.
Parameters
----------
file_root - string
Basename for all file names (without underscore!). Snapshot number
will be added afterwards, and directory will be added before.
snap - integer, optional
Snapshot number. If None, will read first snapshot in sequence.
meshfile - string, optional
File name (including full path) for file with mesh. If set
to None (default), a uniform mesh will be created.
fdir - string, optional
Directory where simulation files are. Must be a real path.
verbose - bool, optional
If True, will print out more diagnostic messages
dtype - string, optional
Data type for reading variables. Default is 32 bit float.
big_endian - string, optional
If True, will read variables in big endian. Default is False
(reading in little endian).
ghost_analyse - bool, optional
If True, will read data from ghost zones when this is saved
to files. Default is never to read ghost zones.
cstagop - bool, optional
Use true only if data is too big to load. Danger:
it will do quantity operations without correcting the stagger mesh.
lowbus - bool, optional
Use True only if data is too big to load. It will do cstagger
operations layer by layer using threads (slower).
numThreads - integer, optional
number of threads for certain operations that use parallelism.
fast - whether to read data "fast", by only reading the requested data.
implemented as a flag, with False as default, for backwards
compatibility; some previous codes may have assumed non-requested
data was read. To avoid issues, just ensure you use get_var()
every time you want to have data, and don't assume things exist
(e.g. self.bx) unless you do get_var for that thing
(e.g. get_var('bx')).
Examples
--------
This reads snapshot 383 from simulation "cb24bih", whose file
root is "cb24bih", and is found at directory /data/cb24bih:
>>> a = BifrostData("cb24bih", snap=383, fdir="/data/cb24bih")
Scalar variables do not need de-staggering and are available as
memory map (only loaded to memory when needed), e.g.:
>>> a.r.shape
(504, 504, 496)
Composite variables need to be obtained by get_var():
>>> vx = a.get_var("ux")
"""
snap = None
def __init__(self, file_root, snap=None, meshfile=None, fdir='.',
fast=False, verbose=True, dtype='f4', big_endian=False,
cstagop=True, ghost_analyse=False, lowbus=False,
numThreads=1, params_only=False, sel_units=None,
use_relpath=False, stagger_kind = 'stagger',
iix=None, iiy=None, iiz=None):
"""
Loads metadata and initialises variables.
"""
self.fdir = fdir if use_relpath else os.path.abspath(fdir)
self.verbose = verbose
self.cstagop = cstagop
self.lowbus = lowbus
self.numThreads = numThreads
self.file_root = os.path.join(self.fdir, file_root)
self.root_name = file_root
self.meshfile = meshfile
self.ghost_analyse = ghost_analyse
self.stagger_kind = stagger_kind
self.sel_units = sel_units
self.numThreads = numThreads
self.fast = fast
self._fast_skip_flag = False if fast else None # None-> never skip
setattr(self, document_vars.LOADING_LEVEL, -1) # tells how deep we are into loading a quantity now.
# endianness and data type
if big_endian:
self.dtype = '>' + dtype
else:
self.dtype = '<' + dtype
self.hion = False
self.heion = False
try:
tmp = find_first_match("%s*idl" % file_root, fdir)
except IndexError:
try:
tmp = find_first_match("%s*idl.scr" % file_root, fdir)
except IndexError:
try:
tmp = find_first_match("mhd.in", fdir)
except IndexError:
raise ValueError(("(EEE) init: no .idl or mhd.in files "
"found"))
self.uni = Bifrost_units(filename=tmp, fdir=fdir)
self.set_snap(snap, True, params_only=params_only)
self.set_domain_iiaxes(iix=iix, iiy=iiy, iiz=iiz, internal=False)
self.genvar()
self.transunits = False
self.cross_sect = cross_sect_for_obj(self)
if 'tabinputfile' in self.params.keys():
tabfile = os.path.join(self.fdir, self.get_param('tabinputfile').strip())
if os.access(tabfile, os.R_OK):
self.rhoee = Rhoeetab(tabfile=tabfile, fdir=fdir, radtab=True)
document_vars.create_vardict(self)
document_vars.set_vardocs(self)
def _set_snapvars(self, firstime=False):
"""
Sets list of avaible variables
"""
self.snapvars = ['r', 'px', 'py', 'pz', 'e']
self.auxvars = self.get_param('aux', error_prop=True).split()
if self.do_mhd:
self.snapvars += ['bx', 'by', 'bz']
self.hionvars = []
self.heliumvars = []
if self.get_param('do_hion', default=0) > 0:
self.hionvars = ['hionne', 'hiontg', 'n1',
'n2', 'n3', 'n4', 'n5', 'n6', 'nh2']
self.hion = True
if self.get_param('do_helium', default=0) > 0:
self.heliumvars = ['nhe1', 'nhe2', 'nhe3']
self.heion = True
self.compvars = ['ux', 'uy', 'uz', 's', 'ee']
self.simple_vars = self.snapvars + self.auxvars + self.hionvars + \
self.heliumvars
self.auxxyvars = []
# special case for the ixy1 variable, lives in a separate file
if 'ixy1' in self.auxvars:
self.auxvars.remove('ixy1')
self.auxxyvars.append('ixy1')
self.vars2d = []
# special case for 2D variables, stored in a separate file
for var in self.auxvars:
if any(i in var for i in ('xy', 'yz', 'xz')):
self.auxvars.remove(var)
self.vars2d.append(var)
def set_snap(self, snap, firstime=False, params_only=False):
"""
Reads metadata and sets variable memmap links for a given snapshot
number.
Parameters
----------
snap - integer or array
Number of simulation snapshot to load.
"""
if snap is None:
try:
tmp = sorted(glob("%s*idl" % self.file_root))[0]
snap_string = tmp.split(
self.file_root + '_')[-1].split(".idl")[0]
if snap_string.isdigit():
snap = int(snap_string)
else:
tmp = glob("%s.idl" % self.file_root)
snap = 0
except Exception:
try:
tmp = sorted(glob("%s*idl.scr" % self.file_root))[0]
snap = -1
except IndexError:
try:
tmp = glob("%s.idl" % self.file_root)
snap = 0
except IndexError:
raise ValueError(("(EEE) set_snap: snapshot not defined "
"and no .idl files found"))
def snap_str_from_snap(snap):
if snap == 0:
return ''
else:
return '_%03i' % snap
self.snap = snap
if np.shape(self.snap) != ():
self.snap_str = []
for num in snap:
self.snap_str.append(snap_str_from_snap(num))
else:
self.snap_str = snap_str_from_snap(snap)
self.snapInd = 0
self._read_params(firstime=firstime)
# Read mesh for all snaps because meshfiles could differ
self.__read_mesh(self.meshfile, firstime=firstime)
# variables: lists and initialisation
self._set_snapvars(firstime=firstime)
# Do not call if params_only requested
if(not params_only):
self._init_vars(firstime=firstime)
def _read_params(self, firstime=False):
"""
Reads parameter file (.idl)
"""
if np.shape(self.snap) == ():
snap = [self.snap]
snap_str = [self.snap_str]
else:
snap = self.snap
snap_str = self.snap_str
filename = []
self.paramList = []
for i, num in enumerate(snap):
if num < 0:
filename.append(self.file_root + '.idl.scr')
elif num == 0:
filename.append(self.file_root + '.idl')
else:
filename.append(self.file_root + snap_str[i] + '.idl')
for file in filename:
self.paramList.append(read_idl_ascii(file,firstime=firstime, obj=self))
# assign some parameters as attributes
for params in self.paramList:
for p in ['x', 'y', 'z', 'b']:
try:
setattr(self, 'n' + p, params['m' + p])
except KeyError:
raise KeyError(('read_params: could not find '
'm%s in idl file!' % p))
for p in ['dx', 'dy', 'dz', 'do_mhd']:
try:
setattr(self, p, params[p])
except KeyError:
raise KeyError(('read_params: could not find '
'%s in idl file!' % p))
try:
if params['boundarychk'] == 1:
self.nzb = self.nz + 2 * self.nb
else:
self.nzb = self.nz
except KeyError:
self.nzb = self.nz
# check if units are there, if not use defaults and print warning
unit_def = {'u_l': 1.e8, 'u_t': 1.e2, 'u_r': 1.e-7,
'u_b': 1.121e3, 'u_ee': 1.e12}
for unit in unit_def:
if unit not in params:
default = unit_def[unit]
if hasattr(self, 'uni'):
default = getattr(self.uni, unit, default)
if getattr(self, 'verbose', True):
print("(WWW) read_params:"" %s not found, using "
"default of %.3e" % (unit, default), 2*whsp,
end="\r", flush=True)
params[unit] = default
self.params = {}
for key in self.paramList[0]:
self.params[key] = np.array(
[self.paramList[i][key] for i in range(0, len(self.paramList)) \
if key in self.paramList[i].keys()])
# the if statement is required in case extra params in
# self.ParmList[0]
self.time = self.params['t']
if self.sel_units=='cgs':
self.time *= self.uni.uni['t']
def get_param(self, param, default=None, warning=None, error_prop=None):
''' get param via self.params[param][self.snapInd].
if param not in self.params.keys(), then the following kwargs may play a role:
default: None (default) or any value.
return this value (eventually) instead. (check warning and error_prop first.)
warning: None (default) or any Warning or string.
if not None, do warnings.warn(warning).
error_prop: None (default), True, or any Exception object.
None --> ignore this kwarg.
True --> raise the original KeyError caused by trying to get self.params[param].
else --> raise error_prop from None.
'''
try:
p = self.params[param]
except KeyError as err_triggered:
if (warning is not None) and (self.verbose):
warnings.warn(warning)
if error_prop is not None:
if isinstance(error_prop, BaseException):
raise error_prop from None # "from None" --> show just this error, not also err_triggered
elif error_prop:
raise err_triggered
return default
else:
p = p[self.snapInd]
return p
def __read_mesh(self, meshfile, firstime=False):
"""
Reads mesh file
"""
if meshfile is None:
meshfile = os.path.join(
self.fdir, self.get_param('meshfile', error_prop=True).strip())
if os.path.isfile(meshfile):
f = open(meshfile, 'r')
for p in ['x', 'y', 'z']:
dim = int(f.readline().strip('\n').strip())
assert dim == getattr(self, 'n' + p)
# quantity
setattr(self, p, np.array(
[float(v) for v in f.readline().strip('\n').split()]))
# quantity "down"
setattr(self, p + 'dn', np.array(
[float(v) for v in f.readline().strip('\n').split()]))
# up derivative of quantity
setattr(self, 'd%sid%sup' % (p, p), np.array(
[float(v) for v in f.readline().strip('\n').split()]))
# down derivative of quantity
setattr(self, 'd%sid%sdn' % (p, p), np.array(
[float(v) for v in f.readline().strip('\n').split()]))
f.close()
if self.ghost_analyse:
# extend mesh to cover ghost zones
self.z = np.concatenate((self.z[0] - np.linspace(
self.dz * self.nb, self.dz, self.nb),
self.z, self.z[-1] + np.linspace(
self.dz, self.dz * self.nb, self.nb)))
self.zdn = np.concatenate((self.zdn[0] - np.linspace(
self.dz * self.nb, self.dz, self.nb),
self.zdn, (self.zdn[-1] + np.linspace(
self.dz, self.dz * self.nb, self.nb))))
self.dzidzup = np.concatenate((
np.repeat(self.dzidzup[0], self.nb),
self.dzidzup,
np.repeat(self.dzidzup[-1], self.nb)))
self.dzidzdn = np.concatenate((
np.repeat(self.dzidzdn[0], self.nb),
self.dzidzdn,
np.repeat(self.dzidzdn[-1], self.nb)))
self.nz = self.nzb
else: # no mesh file
if self.dx == 0.0:
self.dx = 1.0
if self.dy == 0.0:
self.dy = 1.0
if self.dz == 0.0:
self.dz = 1.0
if self.verbose and firstime:
warnings.warn(('Mesh file {mf} does not exist. Creating uniform grid '
'with (dx,dy,dz)=({dx:.2e},{dy:.2e},{dz:.2e})').format(
mf=repr(meshfile), dx=self.dx, dy=self.dy, dz=self.dz))
# x
self.x = np.arange(self.nx) * self.dx
self.xdn = self.x - 0.5 * self.dx
self.dxidxup = np.zeros(self.nx) + 1. / self.dx
self.dxidxdn = np.zeros(self.nx) + 1. / self.dx
# y
self.y = np.arange(self.ny) * self.dy
self.ydn = self.y - 0.5 * self.dy
self.dyidyup = np.zeros(self.ny) + 1. / self.dy
self.dyidydn = np.zeros(self.ny) + 1. / self.dy
# z
if self.ghost_analyse:
self.nz = self.nzb
self.z = np.arange(self.nz) * self.dz
self.zdn = self.z - 0.5 * self.dz
self.dzidzup = np.zeros(self.nz) + 1. / self.dz
self.dzidzdn = np.zeros(self.nz) + 1. / self.dz
for x in ('x', 'y', 'z'):
setattr(self, x, getattr(self, x)[getattr(self, 'ii'+x, slice(None))])
for x in ('x', 'y', 'z'):
xcoords = getattr(self, x)
if len(xcoords) > 1:
dx1d = np.gradient(xcoords)
else:
dx1d = np.zeros(len(xcoords))
setattr(self, 'd'+x+'1d', dx1d)
if self.sel_units=='cgs':
self.x *= self.uni.uni['l']
self.y *= self.uni.uni['l']
self.z *= self.uni.uni['l']
self.zdn *= self.uni.uni['l']
self.dx *= self.uni.uni['l']
self.dy *= self.uni.uni['l']
self.dz *= self.uni.uni['l']
self.dx1d *= self.uni.uni['l']
self.dy1d *= self.uni.uni['l']
self.dz1d *= self.uni.uni['l']
self.dxidxup /= self.uni.uni['l']
self.dxidxdn /= self.uni.uni['l']
self.dyidyup /= self.uni.uni['l']
self.dyidydn /= self.uni.uni['l']
self.dzidzup /= self.uni.uni['l']
self.dzidzdn /= self.uni.uni['l']
self.transunits = False
def _init_vars(self, firstime=False, fast=None, *args, **kwargs):
"""
Memmaps "simple" variables, and maps them to methods.
Also, sets file name[s] from which to read a data
fast: None, True, or False.
whether to only read density (and not all the other variables).
if None, use self.fast instead.
"""
fast = fast if fast is not None else self.fast
if self._fast_skip_flag is True:
return
elif self._fast_skip_flag is False:
self._fast_skip_flag = True # swaps flag to True, then runs the rest of the code (this time around).
# else, fast_skip_flag is None, so the code should never be skipped.
# as long as fast is False, fast_skip_flag should be None.
self.variables = {}
for var in self.simple_vars:
try:
self.variables[var] = self._get_simple_var(
var, *args, **kwargs)
setattr(self, var, self.variables[var])
except Exception as err:
if self.verbose:
if firstime:
print('(WWW) init_vars: could not read '
'variable {} due to {}'.format(var, err))
for var in self.auxxyvars:
try:
self.variables[var] = self._get_simple_var_xy(var, *args,
**kwargs)
setattr(self, var, self.variables[var])
except Exception as err:
if self.verbose:
if firstime:
print('(WWW) init_vars: could not read '
'variable {} due to {}'.format(var, err))
rdt = self.r.dtype
if self.stagger_kind == 'cstagger':
if (self.nz > 1):
cstagger.init_stagger(self.nz, self.dx, self.dy, self.z.astype(rdt),
self.zdn.astype(rdt), self.dzidzup.astype(rdt),
self.dzidzdn.astype(rdt))
self.cstagger_exists = True # we can use cstagger methods!
else:
cstagger.init_stagger_mz1d(self.nz, self.dx, self.dy, self.z.astype(rdt))
self.cstagger_exists = True # we must avoid using cstagger methods.
else:
self.cstagger_exists = True
def get_varTime(self, var, snap=None, iix=None, iiy=None, iiz=None,
print_freq=None,
*args__get_var, **kw__get_var):
"""
Reads a given variable as a function of time.
Parameters
----------
var - string
Name of the variable to read. Must be a valid Bifrost variable name,
see Bifrost.get_var().
snap - array of integers
Snapshot numbers to read.
iix -- integer or array of integers, optional
reads yz slices.
iiy -- integer or array of integers, optional
reads xz slices.
iiz -- integer or array of integers, optional
reads xy slices.
print_freq - number, default 2
print progress update every print_freq seconds.
Use print_freq < 0 to never print update.
Use print_freq ==0 to print all updates.
additional *args and **kwargs are passed to get_var.
"""
# set print_freq
if print_freq is None:
if not self.verbose:
print_freq = -1 # never print.
print_freq = getattr(self, 'print_freq', 2) # default 2
else:
setattr(self, 'print_freq', print_freq)
# set snap
if snap is None:
snap = kw__get_var.pop('snaps', None) # look for 'snaps' kwarg
if snap is None:
snap = self.snap
snap = np.array(snap, copy=False)
if len(snap.shape)==0:
raise ValueError('Expected snap to be list (in get_varTime) but got snap={}'.format(snap))
if not np.array_equal(snap, self.snap):
self.set_snap(snap)
self.variables={}
# set iix,iiy,iiz; figure out dimensions of return array
self.set_domain_iiaxes(iix=iix, iiy=iiy, iiz=iiz, internal=False)
snapLen = np.size(self.snap)
value = | np.empty([self.xLength, self.yLength, self.zLength, snapLen]) | numpy.empty |
#@title Optim_viz Library
############
### Adaptado de wassname/viz_torch_optim para compatibilidad con Pytorch 1.1 y modularización.
############
import torch
import numpy as np
from torch import optim
from torch.optim import Optimizer
from torch.optim import lr_scheduler
import numpy
import matplotlib.pyplot as plt
from tqdm import tqdm_notebook as tqdm
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.colors import LogNorm
from matplotlib import animation
from IPython.display import HTML
from collections import defaultdict
from itertools import zip_longest
from functools import partial
from matplotlib import rcParams
import datetime
torch.set_default_tensor_type('torch.DoubleTensor')
dtype=np.float64
rcParams['figure.figsize']=(10,10)
class Problem(object):
def __init__(self, f, df, minima, x0, bounds=[[-5,5],[-5,5]], lr=1e-3, steps=3000, noise=dict(m=0,c=0)):
"""
Problem setup
Params:
- f: function [x1,x2] => z
- df: derivative function ([x1,x2]=>[dx1,dx2])
- minima: where the function has a minima
- self: bounds
- x0: suggested start
- lr: suggested learning rate
- steps: suggested steps
"""
def f_noise(t):
"""Add some noise"""
t = to_tensor(t)
c = torch.rand(t[0].size()) * noise['c']
m = 1 + torch.rand(t[0].size()) * noise['m']
z = f(t)
return m * z + c
self.f = f_noise
self._f = f
self.df = df
self.x0 = x0
self.bounds = bounds
self.minima = minima
self.lr = lr
self.steps = steps
self.xmin = bounds[0][0]
self.xmax = bounds[0][1]
self.ymin = bounds[1][0]
self.ymax = bounds[1][1]
"""Valley"""
def beales(tensor):
"""Beales function, like a valley"""
x, y = tensor
x = to_tensor(x)
y = to_tensor(y)
# + noise(x,y)
return (1.5 - x + x * y)**2 + (2.25 - x + x * y**2)**2 + (2.625 - x + x * y**3)**2
def dbeales(tensor):
x, y = tensor
x = to_tensor(x)
y = to_tensor(y)
dx = 2 * (x * y**3 - x + 2.625) * (y**3 - 1) + 2 * (x * y**2 -
x + 2.25) * (y**2 - 1) + 2 * (x * y - x + 1.5) * (y - 1)
dy = 6 * (x * y**3 - x + 2.625) * x * y**2 + 4 * \
(x * y**2 - x + 2.25) * x * y + 2 * (x * y - x + 1.5) * x
return torch.stack([dx, dy], 1)[0]
def to_tensor(x):
# TODO: I'm sure there's a proper way to do this
if isinstance(x, np.ndarray):
return torch.Tensor(x.astype(dtype))
if isinstance(x, list):
return torch.Tensor(x)
elif isinstance(x, (float, int, numpy.generic)):
return torch.Tensor([float(x)])
else:
return x
def test_f(f, df, constructor, steps=150, x0=[-4,-1], solution=[-2,0], scheduler=None, exact=False):
"""
modified from https://github.com/pytorch/pytorch/blob/master/test/test_optim.py
params:
scheduler: e.g. scheduler = torch.optim.CyclicLR(optimizer)
"""
state = {}
# start
params = torch.tensor(x0, requires_grad=True)
optimizer = constructor([params])
initial_lr = optimizer.param_groups[0]['lr']
if scheduler:
_scheduler = scheduler(optimizer, initial_lr)
solution = torch.Tensor(solution)
initial_dist = params.data.dist(solution)
def eval():
optimizer.zero_grad()
loss = f(params)
loss.backward()
return loss
data=[]
dist=[]
lrs=[]
for i in range(steps):
loss = optimizer.step(eval)
if scheduler:
_scheduler.batch_step()
# record
dist.append(loss.squeeze().data.numpy()) # loss
data.append(params.data.numpy().copy())
lrs.append(optimizer.param_groups[0]['lr'])
return np.array(data), np.array(dist), lrs
class CyclicLR(object):
"""
from https://github.com/thomasjpfan/pytorch/blob/401ec389db2c9d2978917a6e4d1101b20340d7e7/torch/optim/lr_scheduler.py
not merged into pytorch yet https://github.com/pytorch/pytorch/pull/2016
Sets the learning rate of each parameter group according to
cyclical learning rate policy (CLR). The policy cycles the learning
rate between two boundaries with a constant frequency, as detailed in
the paper `Cyclical Learning Rates for Training Neural Networks`_.
The distance between the two boundaries can be scaled on a per-iteration
or per-cycle basis.
Cyclical learning rate policy changes the learning rate after every batch.
`batch_step` should be called after a batch has been used for training.
To resume training, save `last_batch_iteration` and use it to instantiate `CycleLR`.
This class has three built-in policies, as put forth in the paper:
"triangular":
A basic triangular cycle w/ no amplitude scaling.
"triangular2":
A basic triangular cycle that scales initial amplitude by half each cycle.
"exp_range":
A cycle that scales initial amplitude by gamma**(cycle iterations) at each
cycle iteration.
This implementation was adapted from the github repo: `bckenstler/CLR`_
Args:
optimizer (Optimizer): Wrapped optimizer.
base_lr (float or list): Initial learning rate which is the
lower boundary in the cycle for eachparam groups.
Default: 0.001
max_lr (float or list): Upper boundaries in the cycle for
each parameter group. Functionally,
it defines the cycle amplitude (max_lr - base_lr).
The lr at any cycle is the sum of base_lr
and some scaling of the amplitude; therefore
max_lr may not actually be reached depending on
scaling function. Default: 0.006
step_size (int): Number of training iterations per
half cycle. Authors suggest setting step_size
2-8 x training iterations in epoch. Default: 2000
mode (str): One of {triangular, triangular2, exp_range}.
Values correspond to policies detailed above.
If scale_fn is not None, this argument is ignored.
Default: 'triangular'
gamma (float): Constant in 'exp_range' scaling function:
gamma**(cycle iterations)
Default: 1.0
scale_fn (function): Custom scaling policy defined by a single
argument lambda function, where
0 <= scale_fn(x) <= 1 for all x >= 0.
mode paramater is ignored
Default: None
scale_mode (str): {'cycle', 'iterations'}.
Defines whether scale_fn is evaluated on
cycle number or cycle iterations (training
iterations since start of cycle).
Default: 'cycle'
last_batch_iteration (int): The index of the last batch. Default: -1
Example:
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> scheduler = torch.optim.CyclicLR(optimizer)
>>> data_loader = torch.utils.data.DataLoader(...)
>>> for epoch in range(10):
>>> for batch in data_loader:
>>> scheduler.batch_step()
>>> train_batch(...)
.. _Cyclical Learning Rates for Training Neural Networks: https://arxiv.org/abs/1506.01186
.. _bckenstler/CLR: https://github.com/bckenstler/CLR
"""
def __init__(self, optimizer, base_lr=1e-3, max_lr=6e-3,
step_size=2000, mode='triangular', gamma=1.,
scale_fn=None, scale_mode='cycle', last_batch_iteration=-1):
if not isinstance(optimizer, Optimizer):
raise TypeError('{} is not an Optimizer'.format(
type(optimizer).__name__))
self.optimizer = optimizer
if isinstance(base_lr, list) or isinstance(base_lr, tuple):
if len(base_lr) != len(optimizer.param_groups):
raise ValueError("expected {} base_lr, got {}".format(
len(optimizer.param_groups), len(base_lr)))
self.base_lrs = list(base_lr)
else:
self.base_lrs = [base_lr] * len(optimizer.param_groups)
if isinstance(max_lr, list) or isinstance(max_lr, tuple):
if len(max_lr) != len(optimizer.param_groups):
raise ValueError("expected {} max_lr, got {}".format(
len(optimizer.param_groups), len(max_lr)))
self.max_lrs = list(max_lr)
else:
self.max_lrs = [max_lr] * len(optimizer.param_groups)
self.step_size = step_size
if mode not in ['triangular', 'triangular2', 'exp_range'] \
and scale_fn is None:
raise ValueError('mode is invalid and scale_fn is None')
self.mode = mode
self.gamma = gamma
if scale_fn is None:
if self.mode == 'triangular':
self.scale_fn = self._triangular_scale_fn
self.scale_mode = 'cycle'
elif self.mode == 'triangular2':
self.scale_fn = self._triangular2_scale_fn
self.scale_mode = 'cycle'
elif self.mode == 'exp_range':
self.scale_fn = self._exp_range_scale_fn
self.scale_mode = 'iterations'
else:
self.scale_fn = scale_fn
self.scale_mode = scale_mode
self.batch_step(last_batch_iteration + 1)
self.last_batch_iteration = last_batch_iteration
def batch_step(self, batch_iteration=None):
if batch_iteration is None:
batch_iteration = self.last_batch_iteration + 1
self.last_batch_iteration = batch_iteration
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
def _triangular_scale_fn(self, x):
return 1.
def _triangular2_scale_fn(self, x):
return 1 / (2. ** (x - 1))
def _exp_range_scale_fn(self, x):
return self.gamma**(x)
def get_lr(self):
step_size = float(self.step_size)
cycle = np.floor(1 + self.last_batch_iteration / (2 * step_size))
x = np.abs(self.last_batch_iteration / step_size - 2 * cycle + 1)
lrs = []
param_lrs = zip(self.optimizer.param_groups, self.base_lrs, self.max_lrs)
for param_group, base_lr, max_lr in param_lrs:
base_height = (max_lr - base_lr) * np.maximum(0, (1 - x))
if self.scale_mode == 'cycle':
lr = base_lr + base_height * self.scale_fn(cycle)
else:
lr = base_lr + base_height * self.scale_fn(self.last_batch_iteration)
lrs.append(lr)
return lrs
def build_beales_problem():
return Problem(
f=beales,
df=dbeales,
minima=np.array([3., 0.5]),
bounds=[[-4.5,4.5],[-4.5,4.5]],
x0=[2,1.7],
steps=3400,
lr=3e-3,
noise=dict(m=0.13, c=7),
)
def build_optimizers(lr):
return dict(
# Good high dimensional optimizers sometimes do poorly in low D spaces, so we will lower the LR on simple optimisers
# need smaller lr's sometimes
SGD= lambda params: optim.SGD(params, lr=lr/80),
momentum = lambda params: optim.SGD(params, lr=lr/80, momentum=0.9, nesterov=False, dampening=0),
momentum_dampen = lambda params: optim.SGD(params, lr=lr/80, momentum=0.9, nesterov=False, dampening=0.3),
nesterov = lambda params: optim.SGD(params, lr=lr/80, momentum=0.9, nesterov=True, dampening=0),
nesterov_decay = lambda params: optim.SGD(params, lr=lr/80, momentum=0.9, nesterov=True, weight_decay=1e-4, dampening=0),
# need larger lr's sometimes
Adadelta = lambda params: optim.Adadelta(params),
Adagrad = lambda params: optim.Adagrad(params, lr=lr*20),
#
Adamax = lambda params: optim.Adamax(params, lr=lr*20),
RMSprop = lambda params: optim.RMSprop(params, lr=lr*10),
Adam = lambda params: optim.Adam(params, lr=lr*10),
# Adam_decay = lambda params: optim.Adam(params, lr=lr*10, weight_decay=1e-9),
# need to read about these, might not be comparable
# ASGD = lambda params: optim.ASGD(params, lr=lr),
# Rprop = lambda params: optim.Rprop(params, lr=lr),
# LBFGS = lambda params: optim.LBFGS(params),
)
def build_params(problem):
xmin = problem.xmin
xmax = problem.xmax
ymin = problem.ymin
ymax = problem.ymax
ystep = xstep= (xmax-xmin)/200.0
zeps = 1.1e-0 # we don't want the minima to be actual zero or we wont get any lines shown on a log scale
z_min = problem.f(problem.minima).data.numpy().reshape(1)
minima_ = problem.minima.reshape(-1, 1)
_x0 = | np.array([problem.x0]) | numpy.array |
#!/usr/bin/env python3
''' Script to precompute image features using a Pytorch ResNet CNN, using 36 discretized views
at each viewpoint in 30 degree increments, and the provided camera WIDTH, HEIGHT
and VFOV parameters. '''
import os
import sys
import MatterSim
import argparse
import numpy as np
import json
import math
import h5py
import copy
from PIL import Image
import time
from progressbar import ProgressBar
import torch
import torch.nn.functional as F
import torch.multiprocessing as mp
from utils import load_viewpoint_ids
import timm
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
TSV_FIELDNAMES = ['scanId', 'viewpointId', 'image_w', 'image_h', 'vfov', 'features', 'logits']
VIEWPOINT_SIZE = 36 # Number of discretized views from one viewpoint
FEATURE_SIZE = 768
LOGIT_SIZE = 1000
WIDTH = 640
HEIGHT = 480
VFOV = 60
def build_feature_extractor(model_name, checkpoint_file=None):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = timm.create_model(model_name, pretrained=(checkpoint_file is None)).to(device)
if checkpoint_file is not None:
state_dict = torch.load(checkpoint_file, map_location=lambda storage, loc: storage)['state_dict']
model.load_state_dict(state_dict)
model.eval()
config = resolve_data_config({}, model=model)
img_transforms = create_transform(**config)
return model, img_transforms, device
def build_simulator(connectivity_dir, scan_dir):
sim = MatterSim.Simulator()
sim.setNavGraphPath(connectivity_dir)
sim.setDatasetPath(scan_dir)
sim.setCameraResolution(WIDTH, HEIGHT)
sim.setCameraVFOV(math.radians(VFOV))
sim.setDiscretizedViewingAngles(True)
sim.setDepthEnabled(False)
sim.setPreloadingEnabled(False)
sim.setBatchSize(1)
sim.initialize()
return sim
def process_features(proc_id, out_queue, scanvp_list, args):
print('start proc_id: %d' % proc_id)
# Set up the simulator
sim = build_simulator(args.connectivity_dir, args.scan_dir)
# Set up PyTorch CNN model
torch.set_grad_enabled(False)
model, img_transforms, device = build_feature_extractor(args.model_name, args.checkpoint_file)
for scan_id, viewpoint_id in scanvp_list:
# Loop all discretized views from this location
images = []
for ix in range(VIEWPOINT_SIZE):
if ix == 0:
sim.newEpisode([scan_id], [viewpoint_id], [0], [math.radians(-30)])
elif ix % 12 == 0:
sim.makeAction([0], [1.0], [1.0])
else:
sim.makeAction([0], [1.0], [0])
state = sim.getState()[0]
assert state.viewIndex == ix
image = np.array(state.rgb, copy=True) # in BGR channel
image = Image.fromarray(image[:, :, ::-1]) #cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
images.append(image)
images = torch.stack([img_transforms(image).to(device) for image in images], 0)
fts, logits = [], []
for k in range(0, len(images), args.batch_size):
b_fts = model.forward_features(images[k: k+args.batch_size])
b_logits = model.head(b_fts)
b_fts = b_fts.data.cpu().numpy()
b_logits = b_logits.data.cpu().numpy()
fts.append(b_fts)
logits.append(b_logits)
fts = np.concatenate(fts, 0)
logits = np.concatenate(logits, 0)
out_queue.put((scan_id, viewpoint_id, fts, logits))
out_queue.put(None)
def build_feature_file(args):
os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
scanvp_list = load_viewpoint_ids(args.connectivity_dir)
num_workers = min(args.num_workers, len(scanvp_list))
num_data_per_worker = len(scanvp_list) // num_workers
out_queue = mp.Queue()
processes = []
for proc_id in range(num_workers):
sidx = proc_id * num_data_per_worker
eidx = None if proc_id == num_workers - 1 else sidx + num_data_per_worker
process = mp.Process(
target=process_features,
args=(proc_id, out_queue, scanvp_list[sidx: eidx], args)
)
process.start()
processes.append(process)
num_finished_workers = 0
num_finished_vps = 0
progress_bar = ProgressBar(max_value=len(scanvp_list))
progress_bar.start()
with h5py.File(args.output_file, 'w') as outf:
while num_finished_workers < num_workers:
res = out_queue.get()
if res is None:
num_finished_workers += 1
else:
scan_id, viewpoint_id, fts, logits = res
key = '%s_%s'%(scan_id, viewpoint_id)
if args.out_image_logits:
data = | np.hstack([fts, logits]) | numpy.hstack |
from problems.problem import Problem
import numpy as np
from scipy.spatial.distance import pdist, squareform
import torch
from scipy.stats import iqr
#np.random.seed(0)
class FlockingProblem(Problem):
def __init__(self, config):
"""
Initialize the flocking problem
Args:
config (): dict containing experiment parameters
"""
super(FlockingProblem, self).__init__(config)
self.nx_system = 4
self.n_nodes = int(config['network_size'])
self.comm_radius = float(config['comm_radius'])
self.dt = float(config['system_dt'])
self.v_max = float(config['max_vel_init'])
self.v_bias = self.v_max # 0.5 * self.v_max
self.r_max = float(config['max_rad_init'])
self.std_dev = float(config['std_dev']) * self.dt
self.controller_gain = 1.0
self.pooling = []
if config.getboolean('sum_pooling'):
self.pooling.append(np.nansum)
if config.getboolean('min_pooling'):
self.pooling.append(np.nanmin)
if config.getboolean('max_pooling'):
self.pooling.append(np.nanmax)
self.n_pools = len(self.pooling)
self.centralized_controller = config.getboolean('centralized_controller')
# number of features and outputs
self.n_features = int(config['N_features'])
self.nx = int(self.n_features / self.n_pools / self.filter_len)
self.nu = int(config['N_outputs']) # outputs
self.n_data_points = self.episode_len * self.n_nodes * self.n_episodes
def potential_grad(self, pos_diff, r2):
"""
Computes the gradient of the potential function for flocking proposed in Turner 2003.
Args:
pos_diff (): difference in a component of position among all agents
r2 (): distance squared between agents
Returns: corresponding component of the gradient of the potential
"""
# r2 = r2 + 1e-4 * np.ones((self.n_agents, self.n_agents)) # TODO - is this necessary?
grad = -2.0 * np.divide(pos_diff, np.multiply(r2, r2)) + 2 * np.divide(pos_diff, r2)
grad = grad * 0.1
grad[r2 > self.comm_radius] = 0
return grad
def initialize(self, seed=0):
"""
Initialize the state of the flock. Agents positions are initialized according to a uniform distirbution
on a disk around (0,0). Velocities are chosen according to a uniform distribution in a range.
Also enforces constraints on the initial degree of the network and that agents are not initially too close.
Returns: Initial state of the flock
"""
np.random.seed(seed)
x = np.zeros((self.n_nodes, self.nx_system))
degree = 0
min_dist = 0
while degree < 2 or min_dist < 0.1: #< 0.25: # 0.25: #0.5: #min_dist < 0.25:
# randomly initialize the state of all agents
length = np.sqrt(np.random.uniform(0, self.r_max, size=(self.n_nodes,)))
angle = np.pi * np.random.uniform(0, 2, size=(self.n_nodes,))
x[:, 0] = length * np.cos(angle)
x[:, 1] = length * np.sin(angle)
bias = np.random.uniform(low=-self.v_bias, high=self.v_bias, size=(2,))
x[:, 2] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_nodes,)) + bias[0]
x[:, 3] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_nodes,)) + bias[1]
# compute distances between agents
x_t_loc = x[:, 0:2] # x,y location determines connectivity
a_net = squareform(pdist(x_t_loc.reshape((self.n_nodes, 2)), 'euclidean'))
# no self loops
a_net = a_net + 2 * self.comm_radius * np.eye(self.n_nodes)
# compute minimum distance between agents and degree of network
min_dist = np.min(np.min(a_net))
a_net = a_net < self.comm_radius
degree = np.min(np.sum(a_net.astype(int), axis=1))
return x
def controller(self, x):
"""
The controller for flocking from Turner 2003.
Args:
x (): the current state
centralized (): a boolean flag indicating if each agent should have access to all others' state info
(a centralized controller)
Returns: the optimal action
"""
centralized = self.centralized_controller
s_diff = x.reshape((self.n_nodes, 1, self.nx_system)) - x.reshape((1, self.n_nodes, self.nx_system))
r2 = np.multiply(s_diff[:, :, 0], s_diff[:, :, 0]) + np.multiply(s_diff[:, :, 1], s_diff[:, :, 1]) + np.eye(
self.n_nodes)
p = np.dstack((s_diff, self.potential_grad(s_diff[:, :, 0], r2), self.potential_grad(s_diff[:, :, 1], r2)))
if not centralized:
p = self.get_comms(p, self.get_connectivity(x))
p_sum = np.nansum(p, axis=1).reshape((self.n_nodes, self.nx_system + 2))
return np.hstack(((- p_sum[:, 4] - p_sum[:, 2]).reshape((-1, 1)), (- p_sum[:, 3] - p_sum[:, 5]).reshape(-1, 1)))
def forward(self, x, u):
"""
The forward model for the system. Given:
Args:
x (): current state
u (): control action
Returns the next state for the flock
"""
x_ = np.zeros((self.n_nodes, self.nx_system))
# x position
x_[:, 0] = x[:, 0] + x[:, 2] * self.dt
# y position
x_[:, 1] = x[:, 1] + x[:, 3] * self.dt
# x velocity
x_[:, 2] = x[:, 2] + 0.1 * self.controller_gain * u[:, 0] * self.dt + np.random.normal(0, self.std_dev,
(self.n_nodes,))
# + self.dt * np.random.normal(0, self.std_dev, (self.n_agents,))
# y velocity
x_[:, 3] = x[:, 3] + 0.1 * self.controller_gain * u[:, 1] * self.dt + np.random.normal(0, self.std_dev,
(self.n_nodes,))
# + self.dt * np.random.normal(0, self.std_dev,(self.n_agents,))
return x_
def get_connectivity(self, x):
"""
Get the adjacency matrix of the network based on agent locations by computing pairwise distances using pdist
Args:
x (): current states of all agents
Returns: adjacency matrix of network
"""
x_t_loc = x[:, 0:2] # x,y location determines connectivity
a_net = squareform(pdist(x_t_loc.reshape((self.n_nodes, 2)), 'euclidean'))
a_net = (a_net < self.comm_radius).astype(float)
np.fill_diagonal(a_net, 0)
return a_net
def get_knn_connectivity(self, x, K=10):
"""
Get the adjacency matrix of the network based on agent locations by computing pairwise distances using pdist
Args:
x (): current states of all agents
K (): number of neighbors
Returns: adjacency matrix of network
"""
x_t_loc = x[:, 0:2] # x,y location determines connectivity
a_net = squareform(pdist(x_t_loc.reshape((self.n_nodes, 2)), 'euclidean'))
for r_idx in range(self.n_nodes):
thredshold = sorted(a_net[r_idx, :])[K]
for c_idx in range(self.n_nodes):
if a_net[r_idx, c_idx] < thredshold:
a_net[r_idx, c_idx] = 1
else:
a_net[r_idx, c_idx] = 0
a_net = np.transpose(a_net) + a_net
a_net = np.sign(a_net).astype(float)
np.fill_diagonal(a_net, 0)
return a_net
def get_x_features(self, xt):
"""
Compute the non-linear features necessary for implementing Turner 2003
Args:
xt (): current state of all agents
Returns: matrix of features for each agent
"""
diff = xt.reshape((self.n_nodes, 1, self.nx_system)) - xt.reshape((1, self.n_nodes, self.nx_system))
r2 = np.multiply(diff[:, :, 0], diff[:, :, 0]) + np.multiply(diff[:, :, 1], diff[:, :, 1]) + np.eye(
self.n_nodes)
return np.dstack((diff[:, :, 2], np.divide(diff[:, :, 0], np.multiply(r2, r2)), np.divide(diff[:, :, 0], r2),
diff[:, :, 3], np.divide(diff[:, :, 1], np.multiply(r2, r2)), np.divide(diff[:, :, 1], r2)))
def get_features(self, agg):
"""
Matrix of
Args:
agg (): the aggregated matrix from the last time step
Returns: matrix of aggregated features from all nodes at current time
"""
return np.tile(agg[:, :-self.nx].reshape((self.n_nodes, 1, -1)), (1, self.n_nodes, 1)) # TODO check indexing
def get_comms(self, mat, a_net):
"""
Enforces that agents who are not connected in the network cannot observe each others' states
Args:
mat (): matrix of state information for the whole graph
a_net (): adjacency matrix for flock network (weighted networks unsupported for now)
Returns:
mat (): sparse matrix with NaN values where agents can't communicate
"""
a_net[a_net == 0] = np.nan
return mat * a_net.reshape(self.n_nodes, self.n_nodes, 1)
def get_pool(self, mat, func):
"""
Perform pooling operations on the matrix of state information. The replacement of values with NaNs for agents who
can't communicate must already be enforced.
Args:
mat (): matrix of state information
func (): pooling function (np.nansum(), np.nanmin() or np.nanmax()). Must ignore NaNs.
Returns:
information pooled from neighbors for each agent
"""
return func(mat, axis=1).reshape((self.n_nodes, self.n_features)) # TODO check this axis = 1
def aggregate(self, x_agg, xt):
"""
Perform aggegration operation for all possible pooling operations using helper functions get_pool and get_comms
Args:
x_agg (): Last time step's aggregated info
xt (): Current state of all agents
Returns:
Aggregated state values
"""
x_features = self.get_x_features(xt)
a_net = self.get_connectivity(xt)
for k in range(0, self.n_pools):
comm_data = self.get_comms(np.dstack((x_features, self.get_features(x_agg[:, :, k]))), a_net)
x_agg[:, :, k] = self.get_pool(comm_data, self.pooling[k])
return x_agg
def get_aggregated_trajectory(self):
"""
Returns: a data set containing the aggregated state vectors and optimal output actions
"""
# TODO cannot have a separate NN for each node
z = np.zeros((self.episode_len * self.n_nodes * self.n_episodes, self.n_features))
u = np.zeros((self.episode_len * self.n_nodes * self.n_episodes, self.nu))
x_agg = np.zeros((self.n_nodes, self.nx * self.filter_len, self.n_pools))
ind = 0
for i in range(0, self.n_episodes):
x_agg.fill(0)
xt = self.initialize()
for t in range(0, self.episode_len):
x_agg = self.aggregate(x_agg, xt)
ut = self.controller(xt)
xt = self.forward(xt, ut)
# train for all nodes' data
z[ind:(ind + self.n_nodes), :] = x_agg.reshape((self.n_nodes, self.n_features))
u[ind:(ind + self.n_nodes), :] = ut
ind = ind + self.n_nodes
# shuffle data across trajectories, time instances, and node locations
s = np.arange(z.shape[0])
np.random.shuffle(s)
z = z[s, :]
u = u[s]
return z, u
def instant_cost(self, x, u): # sum of differences in angles
"""
Compute the instantantaneous cost of the state of the flock
Args:
x (): current state of the flock
u (): current action
Returns: a float value for the instantaneous cost
"""
cost_x = np.sum(np.var(x[:, 2:4], axis=0))
# cost_u = 0.001 * np.sum(np.sum(np.multiply(u, u)))
# print(str(cost_x) + " " + str(cost_u))
return cost_x # + cost_u # variance of the velocities
# return np.sum(np.sum(np.abs(self.controller(x, centralized=True)))) # sum of optimal actions among all agents
# + np.sum(pdist((x[:, 0:2]).reshape(-1, 1))) # distance among all agents
# def test_model(self, model, device):
# """
# Test the trained model on one system trajectory
# Args:
# model (): PyTorch model trained to mimic the optimal action
# device (): PyTorch device (GPU or CPU) on which the model runs
#
# Returns trajectories and costs
# """
# # initialize trajectory
# xt1 = xt2 = self.initialize()
# x1 = np.zeros((self.n_nodes * self.nx_system, self.episode_len))
# x2 = np.zeros((self.n_nodes * self.nx_system, self.episode_len))
# x_agg1 = np.zeros((self.n_nodes, self.nx * self.filter_len, self.n_pools))
# cost_nn = cost_u = 0.0
#
# # step through the trajectory
# for t in range(0, self.episode_len - 1):
# x1[:, t] = xt1.flatten()
# x2[:, t] = xt2.flatten()
#
# # aggregate and compute learned control action
# x_agg1 = self.aggregate(x_agg1, xt1)
# x_agg1_t = x_agg1.reshape((self.n_nodes, self.n_features))
# x_agg1_t = torch.from_numpy(x_agg1_t).to(device=device)
# ut1 = model(x_agg1_t).data.cpu().numpy().reshape(self.n_nodes, self.nu)
#
# # optimal controller
# # ut2 = self.controller(xt2, self.centralized_controller)
# ut2 = self.controller(xt2) # TODO
#
# # sum costs
# cost_nn = cost_nn + self.instant_cost(xt1, ut1) * self.dt
# cost_u = cost_u + self.instant_cost(xt2, ut2) * self.dt
#
# xt1 = self.forward(xt1, ut1)
# xt2 = self.forward(xt2, ut2)
#
# return x1, x2, cost_nn, cost_u
def get_cost_expert(self, seed_state=None):
"""
Compute the median cost over num_test_traj trajectories of the expert controller
Args:
seed (): seed_state for random number generator for reproducibility of results
centralized_controller (): boolean indicating whether each agent has access to all others' data
Returns: median cost of a trajectory
"""
if seed_state is not None:
np.random.set_state(seed_state)
costs = np.zeros((self.num_test_traj,))
for n in range(0, self.num_test_traj):
xt = self.initialize()
for t in range(0, self.episode_len - 1):
ut = self.controller(xt)
costs[n] = costs[n] + self.instant_cost(xt, ut) * self.dt
xt = self.forward(xt, ut)
return costs # np.median(costs), iqr(costs)/2.0
def get_cost_model(self, model, device, seed_state=None):
"""
Compute the median cost over num_test_traj trajectories of the trained model controller
Args:
model (): PyTorch model trained to mimic the optimal action
device (): PyTorch device (GPU or CPU) on which the model runs
seed_state (): seed_state for random number generator for reproducibility of results
Returns: median cost of a trajectory
"""
if seed_state is not None:
np.random.set_state(seed_state)
costs = np.zeros((self.num_test_traj,))
x_agg_t = | np.zeros((self.n_nodes, self.nx * self.filter_len, self.n_pools)) | numpy.zeros |
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
R = 0
G = 1
B = 2
def load_image(img_path, color_options=0):
im = Image.open(img_path)
if color_options == 0:
im = im.convert("L")
im = np.asarray(im)
return im
def load_img(img_path):
return load_image(img_path, 0)
def load_color_img(img_path):
return load_image(img_path, 1)
def show_image(title, im, color_options):
plt.figure()
plt.title(title)
plt.tick_params("x", labeltop=True, labelbottom=False)
if color_options == 0:
plt.imshow(im, cmap="gray")
else:
plt.imshow(im.astype(np.uint8))
def show_img(title, im):
show_image(title, im, 0)
def show_color_img(title, im):
show_image(title, im, 1)
def save_img(filename, im):
Image.fromarray( | np.uint8(im) | numpy.uint8 |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(202, 'F m -3', transformations)
space_groups[202] = sg
space_groups['F m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(203, 'F d -3 :2', transformations)
space_groups[203] = sg
space_groups['F d -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(204, 'I m -3', transformations)
space_groups[204] = sg
space_groups['I m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(205, 'P a -3', transformations)
space_groups[205] = sg
space_groups['P a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(206, 'I a -3', transformations)
space_groups[206] = sg
space_groups['I a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(207, 'P 4 3 2', transformations)
space_groups[207] = sg
space_groups['P 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(208, 'P 42 3 2', transformations)
space_groups[208] = sg
space_groups['P 42 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(209, 'F 4 3 2', transformations)
space_groups[209] = sg
space_groups['F 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(210, 'F 41 3 2', transformations)
space_groups[210] = sg
space_groups['F 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(211, 'I 4 3 2', transformations)
space_groups[211] = sg
space_groups['I 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(212, 'P 43 3 2', transformations)
space_groups[212] = sg
space_groups['P 43 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(213, 'P 41 3 2', transformations)
space_groups[213] = sg
space_groups['P 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(214, 'I 41 3 2', transformations)
space_groups[214] = sg
space_groups['I 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(215, 'P -4 3 m', transformations)
space_groups[215] = sg
space_groups['P -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(216, 'F -4 3 m', transformations)
space_groups[216] = sg
space_groups['F -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(217, 'I -4 3 m', transformations)
space_groups[217] = sg
space_groups['I -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(218, 'P -4 3 n', transformations)
space_groups[218] = sg
space_groups['P -4 3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(219, 'F -4 3 c', transformations)
space_groups[219] = sg
space_groups['F -4 3 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(220, 'I -4 3 d', transformations)
space_groups[220] = sg
space_groups['I -4 3 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = | N.array([0,0,0]) | numpy.array |
#!/usr/bin/env python
#
# Copyright 2016 <NAME>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# $Author: frederic $
# $Date: 2016/07/12 13:50:29 $
# $Id: tide_funcs.py,v 1.4 2016/07/12 13:50:29 frederic Exp $
#
import time
import numpy as np
import scipy as sp
from scipy import fftpack, signal
import pylab as pl
import sys
import bisect
import rapidtide.util as tide_util
import rapidtide.filter as tide_filt
import rapidtide.fit as tide_fit
# ---------------------------------------- Global constants -------------------------------------------
donotbeaggressive = True
# ----------------------------------------- Conditional imports ---------------------------------------
try:
from numba import jit
numbaexists = True
except ImportError:
numbaexists = False
donotusenumba = False
try:
import pyfftw
pyfftwexists = True
fftpack = pyfftw.interfaces.scipy_fftpack
pyfftw.interfaces.cache.enable()
except ImportError:
pyfftwexists = False
def conditionaljit():
def resdec(f):
if (not numbaexists) or donotusenumba:
return f
return jit(f)
return resdec
def conditionaljit2():
def resdec(f):
if (not numbaexists) or donotusenumba or donotbeaggressive:
return f
return jit(f)
return resdec
def disablenumba():
global donotusenumba
donotusenumba = True
# --------------------------- Resampling and time shifting functions -------------------------------------------
"""
class congrid:
def __init__(self, timeaxis, width, method='gauss', circular=True, upsampleratio=100, doplot=False, debug=False):
self.upsampleratio = upsampleratio
self.initstep = timeaxis[1] - timeaxis[0]
self.initstart = timeaxis[0]
self.initend = timeaxis[-1]
self.hiresstep = self.initstep / np.float64(self.upsampleratio)
if method == 'gauss':
fullwidth = 2.355 * width
fullwidthpts = int(np.round(fullwidth / self.hiresstep, 0))
fullwidthpts += ((fullwidthpts % 2) - 1)
self.hires_x = np.linspace(-fullwidth / 2.0, fullwidth / 2.0, numpts = fullwidthpts, endpoint=True)
if method == 'gauss':
self.hires_y = tide_fit.gauss_eval(self.hires_x, np.array([1.0, 0.0, width])
if debug:
print(self.hires_x)
if doplot:
fig = pl.figure()
ax = fig.add_subplot(111)
ax.set_title('congrid convolution function')
pl.plot(self.hires_x, self.hires_y)
pl.legend(('input', 'hires'))
pl.show()
def gridded(xvals, yvals):
if len(xvals) != len(yvals):
print('x and y vectors do not match - aborting')
return None
for i in range(len(xvals)):
outindices = ((newtimeaxis - self.hiresstart) // self.hiresstep).astype(int)
"""
congridyvals = {}
congridyvals["kernel"] = "kaiser"
congridyvals["width"] = 3.0
def congrid(xaxis, loc, val, width, kernel="kaiser", cyclic=True, debug=False):
"""
Perform a convolution gridding operation with a Kaiser-Bessel or Gaussian kernel of width 'width'
Parameters
----------
xaxis: array-like
The target axis for resampling
loc: float
The location, in x-axis units, of the sample to be gridded
val: float
The value to be gridded
width: float
The width of the gridding kernel in target bins
kernel: {'old', 'gauss', 'kaiser'}, optional
The type of convolution gridding kernel. Default is 'kaiser'.
debug: bool, optional
When True, output additional information about the gridding process
Returns
-------
vals: array-like
The input value, convolved with the gridding kernel, projected on to x axis points
weights: array-like
The values of convolution kernel, projected on to x axis points (used for normalization)
indices: array-like
The indices along the x axis where the vals and weights fall.
Notes
-----
See IEEE TRANSACTIONS ON MEDICAL IMAGING. VOL. IO.NO. 3, SEPTEMBER 1991
"""
global congridyvals
if (congridyvals["kernel"] != kernel) or (congridyvals["width"] != width):
if congridyvals["kernel"] != kernel:
print(congridyvals["kernel"], "!=", kernel)
if congridyvals["width"] != width:
print(congridyvals["width"], "!=", width)
print("(re)initializing congridyvals")
congridyvals = {}
congridyvals["kernel"] = kernel
congridyvals["width"] = width * 1.0
optsigma = np.array(
[0.4241, 0.4927, 0.4839, 0.5063, 0.5516, 0.5695, 0.5682, 0.5974]
)
optbeta = np.array([1.9980, 2.3934, 3.3800, 4.2054, 4.9107, 5.7567, 6.6291, 7.4302])
xstep = xaxis[1] - xaxis[0]
if (loc < xaxis[0] - xstep / 2.0 or loc > xaxis[-1] + xstep / 2.0) and not cyclic:
print("loc", loc, "not in range", xaxis[0], xaxis[-1])
# choose the smoothing kernel based on the width
if kernel != "old":
if not (1.5 <= width <= 5.0) or (np.fmod(width, 0.5) > 0.0):
print("congrid: width is", width)
print(
"congrid: width must be a half-integral value between 1.5 and 5.0 inclusive"
)
sys.exit()
else:
kernelindex = int((width - 1.5) // 0.5)
# find the closest grid point to the target location, calculate relative offsets from this point
center = tide_util.valtoindex(xaxis, loc)
offset = np.fmod(
np.round((loc - xaxis[center]) / xstep, 3), 1.0
) # will vary from -0.5 to 0.5
if cyclic:
if center == len(xaxis) - 1 and offset > 0.5:
center = 0
offset -= 1.0
if center == 0 and offset < -0.5:
center = len(xaxis) - 1
offset += 1.0
if not (-0.5 <= offset <= 0.5):
print("(loc, xstep, center, offset):", loc, xstep, center, offset)
print("xaxis:", xaxis)
sys.exit()
offsetkey = str(offset)
if kernel == "old":
if debug:
print("gridding with old kernel")
widthinpts = int(np.round(width * 4.6 / xstep))
widthinpts -= widthinpts % 2 - 1
try:
yvals = congridyvals[offsetkey]
except KeyError:
if debug:
print("new key:", offsetkey)
xvals = (
np.linspace(
-xstep * (widthinpts // 2),
xstep * (widthinpts // 2),
num=widthinpts,
endpoint=True,
)
+ offset
)
congridyvals[offsetkey] = tide_fit.gauss_eval(
xvals, np.array([1.0, 0.0, width])
)
yvals = congridyvals[offsetkey]
startpt = int(center - widthinpts // 2)
indices = list(range(startpt, startpt + widthinpts))
indices = np.remainder(indices, len(xaxis))
if debug:
print("center, offset, indices, yvals", center, offset, indices, yvals)
return val * yvals, yvals, indices
else:
offsetinpts = center + offset
startpt = int(np.ceil(offsetinpts - width / 2.0))
endpt = int(np.floor(offsetinpts + width / 2.0))
indices = np.remainder(list(range(startpt, endpt + 1)), len(xaxis))
try:
yvals = congridyvals[offsetkey]
except KeyError:
if debug:
print("new key:", offsetkey)
xvals = indices - center + offset
if kernel == "gauss":
sigma = optsigma[kernelindex]
congridyvals[offsetkey] = tide_fit.gauss_eval(
xvals, np.array([1.0, 0.0, sigma])
)
elif kernel == "kaiser":
beta = optbeta[kernelindex]
congridyvals[offsetkey] = tide_fit.kaiserbessel_eval(
xvals, np.array([beta, width / 2.0])
)
else:
print("illegal kernel value in congrid - exiting")
sys.exit()
yvals = congridyvals[offsetkey]
if debug:
print("xvals, yvals", xvals, yvals)
if debug:
print("center, offset, indices, yvals", center, offset, indices, yvals)
return val * yvals, yvals, indices
class fastresampler:
def __init__(
self,
timeaxis,
timecourse,
padvalue=30.0,
upsampleratio=100,
doplot=False,
debug=False,
method="univariate",
):
self.upsampleratio = upsampleratio
self.padvalue = padvalue
self.initstep = timeaxis[1] - timeaxis[0]
self.initstart = timeaxis[0]
self.initend = timeaxis[-1]
self.hiresstep = self.initstep / np.float64(self.upsampleratio)
self.hires_x = np.arange(
timeaxis[0] - self.padvalue,
self.initstep * len(timeaxis) + self.padvalue,
self.hiresstep,
)
self.hiresstart = self.hires_x[0]
self.hiresend = self.hires_x[-1]
if method == "poly":
self.hires_y = 0.0 * self.hires_x
self.hires_y[
int(self.padvalue // self.hiresstep)
+ 1 : -(int(self.padvalue // self.hiresstep) + 1)
] = signal.resample_poly(timecourse, np.int(self.upsampleratio * 10), 10)
elif method == "fourier":
self.hires_y = 0.0 * self.hires_x
self.hires_y[
int(self.padvalue // self.hiresstep)
+ 1 : -(int(self.padvalue // self.hiresstep) + 1)
] = signal.resample(timecourse, self.upsampleratio * len(timeaxis))
else:
self.hires_y = doresample(timeaxis, timecourse, self.hires_x, method=method)
self.hires_y[: int(self.padvalue // self.hiresstep)] = self.hires_y[
int(self.padvalue // self.hiresstep)
]
self.hires_y[-int(self.padvalue // self.hiresstep) :] = self.hires_y[
-int(self.padvalue // self.hiresstep)
]
if debug:
print("fastresampler __init__:")
print(" padvalue:, ", self.padvalue)
print(" initstep, hiresstep:", self.initstep, self.hiresstep)
print(" initial axis limits:", self.initstart, self.initend)
print(" hires axis limits:", self.hiresstart, self.hiresend)
# self.hires_y[:int(self.padvalue // self.hiresstep)] = 0.0
# self.hires_y[-int(self.padvalue // self.hiresstep):] = 0.0
if doplot:
fig = pl.figure()
ax = fig.add_subplot(111)
ax.set_title("fastresampler initial timecourses")
pl.plot(timeaxis, timecourse, self.hires_x, self.hires_y)
pl.legend(("input", "hires"))
pl.show()
def yfromx(self, newtimeaxis, doplot=False, debug=False):
if debug:
print("fastresampler: yfromx called with following parameters")
print(" padvalue:, ", self.padvalue)
print(" initstep, hiresstep:", self.initstep, self.hiresstep)
print(" initial axis limits:", self.initstart, self.initend)
print(" hires axis limits:", self.hiresstart, self.hiresend)
print(" requested axis limits:", newtimeaxis[0], newtimeaxis[-1])
outindices = ((newtimeaxis - self.hiresstart) // self.hiresstep).astype(int)
if debug:
print("len(self.hires_y):", len(self.hires_y))
try:
out_y = self.hires_y[outindices]
except IndexError:
print("")
print("indexing out of bounds in fastresampler")
print(" padvalue:, ", self.padvalue)
print(" initstep, hiresstep:", self.initstep, self.hiresstep)
print(" initial axis limits:", self.initstart, self.initend)
print(" hires axis limits:", self.hiresstart, self.hiresend)
print(" requested axis limits:", newtimeaxis[0], newtimeaxis[-1])
sys.exit()
if doplot:
fig = pl.figure()
ax = fig.add_subplot(111)
ax.set_title("fastresampler timecourses")
pl.plot(self.hires_x, self.hires_y, newtimeaxis, out_y)
pl.legend(("hires", "output"))
pl.show()
return out_y
def doresample(orig_x, orig_y, new_x, method="cubic", padlen=0):
"""
Parameters
----------
orig_x
orig_y
new_x
method
padlen
Returns
-------
"""
pad_y = tide_filt.padvec(orig_y, padlen=padlen)
tstep = orig_x[1] - orig_x[0]
if padlen > 0:
pad_x = np.concatenate(
(
np.arange(orig_x[0] - padlen * tstep, orig_x[0], tstep),
orig_x,
np.arange(orig_x[-1] + tstep, orig_x[-1] + tstep * (padlen + 1), tstep),
)
)
else:
pad_x = orig_x
if padlen > 0:
print("padlen=", padlen)
print("tstep=", tstep)
print(pad_x)
if method == "cubic":
cj = signal.cspline1d(pad_y)
return tide_filt.unpadvec(
np.float64(
signal.cspline1d_eval(
cj, new_x, dx=(orig_x[1] - orig_x[0]), x0=orig_x[0]
)
),
padlen=padlen,
)
elif method == "quadratic":
qj = signal.qspline1d(pad_y)
return tide_filt.unpadvec(
np.float64(
signal.qspline1d_eval(
qj, new_x, dx=(orig_x[1] - orig_x[0]), x0=orig_x[0]
)
),
padlen=padlen,
)
elif method == "univariate":
interpolator = sp.interpolate.UnivariateSpline(
pad_x, pad_y, k=3, s=0
) # s=0 interpolates
return tide_filt.unpadvec(np.float64(interpolator(new_x)), padlen=padlen)
else:
print("invalid interpolation method")
return None
def arbresample(
inputdata,
init_freq,
final_freq,
intermed_freq=0.0,
method="univariate",
debug=False,
decimate=False,
):
"""
Parameters
----------
inputdata
init_freq
final_freq
intermed_freq
method
debug
Returns
-------
"""
if decimate:
if final_freq > init_freq:
# upsample only
return upsample(
inputdata, init_freq, final_freq, method=method, debug=debug
)
elif final_freq < init_freq:
# downsampling, so upsample by an amount that allows integer decimation
intermed_freq = final_freq * np.ceil(init_freq / final_freq)
q = int(intermed_freq // final_freq)
if debug:
print(
"going from",
init_freq,
"to",
final_freq,
": upsampling to",
intermed_freq,
"Hz, then decimating by,",
q,
)
if intermed_freq == init_freq:
upsampled = inputdata
else:
upsampled = upsample(
inputdata, init_freq, intermed_freq, method=method, debug=debug
)
return signal.decimate(upsampled, q)
else:
return inputdata
else:
if intermed_freq <= 0.0:
intermed_freq = | np.max([2.0 * init_freq, 2.0 * final_freq]) | numpy.max |
## @ingroup Plots
# Mission_Plots.py
#
# Created: Mar 2020, <NAME>
# Apr 2020, <NAME>
# Sep 2020, <NAME>
# Apr 2021, <NAME>
# ----------------------------------------------------------------------
# Imports
# ----------------------------------------------------------------------
from SUAVE.Core import Units
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import plotly.graph_objects as go
import matplotlib.ticker as ticker
# ------------------------------------------------------------------
# Altitude, SFC & Weight
# ------------------------------------------------------------------
## @ingroup Plots
def plot_altitude_sfc_weight(results, line_color = 'bo-', save_figure = False, save_filename = "Altitude_SFC_Weight" , file_type = ".png"):
"""This plots the altitude, speficic fuel comsumption and vehicle weight
Assumptions:
None
Source:
None
Inputs:
results.segments.condtions.
freestream.altitude
weights.total_mass
weights.vehicle_mass_rate
frames.body.thrust_force_vector
Outputs:
Plots
Properties Used:
N/A
"""
axis_font = {'size':'14'}
fig = plt.figure(save_filename)
fig.set_size_inches(10, 8)
for segment in results.segments.values():
time = segment.conditions.frames.inertial.time[:,0] / Units.min
mass = segment.conditions.weights.total_mass[:,0] / Units.lb
altitude = segment.conditions.freestream.altitude[:,0] / Units.ft
mdot = segment.conditions.weights.vehicle_mass_rate[:,0]
thrust = segment.conditions.frames.body.thrust_force_vector[:,0]
sfc = (mdot / Units.lb) / (thrust /Units.lbf) * Units.hr
axes = plt.subplot(3,1,1)
axes.plot( time , altitude , line_color)
axes.set_ylabel('Altitude (ft)',axis_font)
set_axes(axes)
axes = plt.subplot(3,1,3)
axes.plot( time , sfc , line_color )
axes.set_xlabel('Time (min)',axis_font)
axes.set_ylabel('sfc (lb/lbf-hr)',axis_font)
set_axes(axes)
axes = plt.subplot(3,1,2)
axes.plot( time , mass , 'ro-' )
axes.set_ylabel('Weight (lb)',axis_font)
set_axes(axes)
plt.tight_layout()
if save_figure:
plt.savefig(save_filename + file_type)
return
# ------------------------------------------------------------------
# Aircraft Velocities
# ------------------------------------------------------------------
## @ingroup Plots
def plot_aircraft_velocities(results, line_color = 'bo-', save_figure = False, save_filename = "Aircraft_Velocities", file_type = ".png"):
"""This plots aircraft velocity, mach , true air speed
Assumptions:
None
Source:
None
Inputs:
results.segments.condtions.freestream.
velocity
density
mach_number
Outputs:
Plots
Properties Used:
N/A
"""
axis_font = {'size':'14'}
fig = plt.figure(save_filename)
fig.set_size_inches(10, 8)
for segment in results.segments.values():
time = segment.conditions.frames.inertial.time[:,0] / Units.min
velocity = segment.conditions.freestream.velocity[:,0]
density = segment.conditions.freestream.density[:,0]
EAS = velocity * np.sqrt(density/1.225)
mach = segment.conditions.freestream.mach_number[:,0]
axes = plt.subplot(3,1,1)
axes.plot( time , velocity / Units.kts, line_color)
axes.set_ylabel('velocity (kts)',axis_font)
set_axes(axes)
axes = plt.subplot(3,1,2)
axes.plot( time , EAS / Units.kts, line_color)
axes.set_ylabel('Equivalent Airspeed',axis_font)
set_axes(axes)
axes = plt.subplot(3,1,3)
axes.plot( time , mach , line_color)
axes.set_xlabel('Time (min)',axis_font)
axes.set_ylabel('Mach',axis_font)
set_axes(axes)
plt.tight_layout()
if save_figure:
plt.savefig(save_filename + file_type)
return
# ------------------------------------------------------------------
# Disc and Power Loadings
# ------------------------------------------------------------------
## @ingroup Plots
def plot_disc_power_loading(results, line_color = 'bo-', save_figure = False, save_filename = "Disc_Power_Loading", file_type = ".png"):
"""This plots the propeller disc and power loadings
Assumptions:
None
Source:
None
Inputs:
results.segments.condtions.propulsion.
disc_loadings
power_loading
Outputs:
Plots
Properties Used:
N/A
"""
axis_font = {'size':'14'}
fig = plt.figure(save_filename)
fig.set_size_inches(12, 10)
for i in range(len(results.segments)):
time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min
DL = results.segments[i].conditions.propulsion.disc_loading
PL = results.segments[i].conditions.propulsion.power_loading
axes = plt.subplot(2,1,1)
axes.plot(time, DL, line_color)
axes.set_ylabel('lift disc power N/m^2',axis_font)
set_axes(axes)
axes = plt.subplot(2,1,2)
axes.plot(time, PL, line_color )
axes.set_xlabel('Time (mins)',axis_font)
axes.set_ylabel('lift power loading (N/W)',axis_font)
set_axes(axes)
plt.tight_layout()
if save_figure:
plt.savefig(save_filename + file_type)
return
# ------------------------------------------------------------------
# Aerodynamic Coefficients
# ------------------------------------------------------------------
## @ingroup Plots
def plot_aerodynamic_coefficients(results, line_color = 'bo-', save_figure = False, save_filename = "Aerodynamic_Coefficients", file_type = ".png"):
"""This plots the aerodynamic coefficients
Assumptions:
None
Source:
None
Inputs:
results.segments.condtions.aerodynamics.
lift_coefficient
drag_coefficient
angle_of_attack
Outputs:
Plots
Properties Used:
N/A
"""
axis_font = {'size':'14'}
fig = plt.figure(save_filename)
fig.set_size_inches(12, 10)
for segment in results.segments.values():
time = segment.conditions.frames.inertial.time[:,0] / Units.min
cl = segment.conditions.aerodynamics.lift_coefficient[:,0,None]
cd = segment.conditions.aerodynamics.drag_coefficient[:,0,None]
aoa = segment.conditions.aerodynamics.angle_of_attack[:,0] / Units.deg
l_d = cl/cd
axes = plt.subplot(2,2,1)
axes.plot( time , aoa , line_color )
axes.set_ylabel('Angle of Attack (deg)',axis_font)
set_axes(axes)
axes = plt.subplot(2,2,2)
axes.plot( time , cl, line_color )
axes.set_ylabel('CL',axis_font)
set_axes(axes)
axes = plt.subplot(2,2,3)
axes.plot( time , cd, line_color )
axes.set_xlabel('Time (min)',axis_font)
axes.set_ylabel('CD',axis_font)
set_axes(axes)
axes = plt.subplot(2,2,4)
axes.plot( time , l_d, line_color )
axes.set_xlabel('Time (min)',axis_font)
axes.set_ylabel('L/D',axis_font)
set_axes(axes)
plt.tight_layout()
if save_figure:
plt.savefig(save_filename + file_type)
return
# ------------------------------------------------------------------
# Aerodynamic Forces
# ------------------------------------------------------------------
## @ingroup Plots
def plot_aerodynamic_forces(results, line_color = 'bo-', save_figure = False, save_filename = "Aerodynamic_Forces", file_type = ".png"):
"""This plots the aerodynamic forces
Assumptions:
None
Source:
None
Inputs:
results.segments.condtions.frames
body.thrust_force_vector
wind.lift_force_vector
wind.drag_force_vector
Outputs:
Plots
Properties Used:
N/A
"""
axis_font = {'size':'14'}
fig = plt.figure(save_filename)
fig.set_size_inches(12, 10)
for segment in results.segments.values():
time = segment.conditions.frames.inertial.time[:,0] / Units.min
Thrust = segment.conditions.frames.body.thrust_force_vector[:,0]
Lift = -segment.conditions.frames.wind.lift_force_vector[:,2]
Drag = -segment.conditions.frames.wind.drag_force_vector[:,0]
eta = segment.conditions.propulsion.throttle[:,0]
axes = plt.subplot(2,2,1)
axes.plot( time , eta , line_color )
axes.set_ylabel('Throttle',axis_font)
set_axes(axes)
axes = plt.subplot(2,2,2)
axes.plot( time , Lift , line_color)
axes.set_ylabel('Lift (N)',axis_font)
set_axes(axes)
axes = plt.subplot(2,2,3)
axes.plot( time , Thrust , line_color)
axes.set_ylabel('Thrust (N)',axis_font)
axes.set_xlabel('Time (min)',axis_font)
set_axes(axes)
axes = plt.subplot(2,2,4)
axes.plot( time , Drag , line_color)
axes.set_ylabel('Drag (N)',axis_font)
axes.set_xlabel('Time (min)',axis_font)
set_axes(axes)
plt.tight_layout()
if save_figure:
plt.savefig(save_filename + file_type)
return
# ------------------------------------------------------------------
# Drag Components
# ------------------------------------------------------------------
## @ingroup Plots
def plot_drag_components(results, line_color = 'bo-', save_figure = False, save_filename = "Drag_Components", file_type = ".png"):
"""This plots the drag components of the aircraft
Assumptions:
None
Source:
None
Inputs:
results.segments.condtions.aerodynamics.drag_breakdown
parasite.total
induced.total
compressible.total
miscellaneous.total
Outputs:
Plots
Properties Used:
N/A
"""
axis_font = {'size':'14'}
fig = plt.figure(save_filename)
fig.set_size_inches(12, 10)
axes = plt.subplot(1,1,1)
for i, segment in enumerate(results.segments.values()):
time = segment.conditions.frames.inertial.time[:,0] / Units.min
drag_breakdown = segment.conditions.aerodynamics.drag_breakdown
cdp = drag_breakdown.parasite.total[:,0]
cdi = drag_breakdown.induced.total[:,0]
cdc = drag_breakdown.compressible.total[:,0]
cdm = drag_breakdown.miscellaneous.total[:,0]
cd = drag_breakdown.total[:,0]
if i == 0:
axes.plot( time , cdp , 'ko-', label='CD parasite' )
axes.plot( time , cdi , 'bo-', label='CD induced' )
axes.plot( time , cdc , 'go-', label='CD compressibility' )
axes.plot( time , cdm , 'yo-', label='CD miscellaneous' )
axes.plot( time , cd , 'ro-', label='CD total' )
axes.legend(loc='upper center')
else:
axes.plot( time , cdp , 'ko-' )
axes.plot( time , cdi , 'bo-')
axes.plot( time , cdc , 'go-')
axes.plot( time , cdm , 'yo-')
axes.plot( time , cd , 'ro-')
axes.set_xlabel('Time (min)',axis_font)
axes.set_ylabel('CD',axis_font)
axes.grid(True)
plt.tight_layout()
if save_figure:
plt.savefig(save_filename + file_type)
return
# ------------------------------------------------------------------
# Electronic Conditions
# ------------------------------------------------------------------
## @ingroup Plots
def plot_battery_pack_conditions(results, line_color = 'bo-', line_color2 = 'rs--', save_figure = False, save_filename = "Battery_Pack_Conditions", file_type = ".png"):
"""This plots the battery pack conditions of the network
Assumptions:
None
Source:
None
Inputs:
results.segments.conditions.propulsion
battery_power_draw
battery_energy
battery_voltage_under_load
battery_voltage_open_circuit
current
Outputs:
Plots
Properties Used:
N/A
"""
axis_font = {'size':'14'}
fig = plt.figure(save_filename)
fig.set_size_inches(12, 10)
fig.suptitle('Battery Pack Conditions')
for i in range(len(results.segments)):
time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min
pack_power = results.segments[i].conditions.propulsion.battery_power_draw[:,0]
pack_energy = results.segments[i].conditions.propulsion.battery_energy[:,0]
pack_volts = results.segments[i].conditions.propulsion.battery_voltage_under_load[:,0]
pack_volts_oc = results.segments[i].conditions.propulsion.battery_voltage_open_circuit[:,0]
pack_current = results.segments[i].conditions.propulsion.battery_current[:,0]
pack_SOC = results.segments[i].conditions.propulsion.battery_state_of_charge[:,0]
pack_current = results.segments[i].conditions.propulsion.battery_current[:,0]
pack_battery_amp_hr = (pack_energy/ Units.Wh )/pack_volts
pack_C_instant = pack_current/pack_battery_amp_hr
pack_C_nominal = pack_current/np.max(pack_battery_amp_hr)
axes = plt.subplot(3,3,1)
axes.plot(time, pack_SOC , line_color)
axes.set_ylabel('SOC',axis_font)
set_axes(axes)
axes = plt.subplot(3,3,2)
axes.plot(time, (pack_energy/Units.Wh)/1000, line_color)
axes.set_ylabel('Energy (kW-hr)',axis_font)
set_axes(axes)
axes = plt.subplot(3,3,3)
axes.plot(time, -pack_power/1000, line_color)
axes.set_ylabel('Power (kW)',axis_font)
set_axes(axes)
axes = plt.subplot(3,3,4)
axes.set_ylabel('Voltage (V)',axis_font)
set_axes(axes)
if i == 0:
axes.plot(time, pack_volts, line_color,label='Under Load')
axes.plot(time,pack_volts_oc, line_color2,label='Open Circuit')
else:
axes.plot(time, pack_volts, line_color)
axes.plot(time,pack_volts_oc,line_color2)
axes.legend(loc='upper right')
axes = plt.subplot(3,3,5)
axes.set_xlabel('Time (mins)',axis_font)
axes.set_ylabel('C-Rate (C)',axis_font)
set_axes(axes)
if i == 0:
axes.plot(time, pack_C_instant, line_color,label='Instantaneous')
axes.plot(time, pack_C_nominal, line_color2,label='Nominal')
else:
axes.plot(time, pack_C_instant, line_color)
axes.plot(time, pack_C_nominal, line_color2)
axes.legend(loc='upper right')
axes = plt.subplot(3,3,6)
axes.plot(time, pack_current, line_color)
axes.set_xlabel('Time (mins)',axis_font)
axes.set_ylabel('Current (A)',axis_font)
set_axes(axes)
# Set limits
for i in range(1,7):
ax = plt.subplot(3,3,i)
y_lo, y_hi = ax.get_ylim()
if y_lo>0: y_lo = 0
y_hi = y_hi*1.1
ax.set_ylim(y_lo,y_hi)
plt.tight_layout()
if save_figure:
fig.savefig(save_filename + file_type)
return
# ------------------------------------------------------------------
# Electronic Conditions
# ------------------------------------------------------------------
## @ingroup Plots
def plot_battery_cell_conditions(results, line_color = 'bo-',line_color2 = 'rs--', save_figure = False, save_filename = "Battery_Cell_Conditions", file_type = ".png"):
"""This plots the battery pack conditions of the network
Assumptions:
None
Source:
None
Inputs:
results.segments.conditions.propulsion
battery_power_draw
battery_energy
voltage_under_load
voltage_open_circuit
current
Outputs:
Plots
Properties Used:
N/A
"""
axis_font = {'size':'14'}
fig = plt.figure(save_filename)
fig.set_size_inches(12, 10)
fig.suptitle('Battery Cell Conditions')
for i in range(len(results.segments)):
time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min
cell_power = results.segments[i].conditions.propulsion.battery_cell_power_draw[:,0]
cell_energy = results.segments[i].conditions.propulsion.battery_cell_energy[:,0]
cell_volts = results.segments[i].conditions.propulsion.battery_cell_voltage_under_load[:,0]
cell_volts_oc = results.segments[i].conditions.propulsion.battery_cell_voltage_open_circuit[:,0]
cell_current = results.segments[i].conditions.propulsion.battery_cell_current[:,0]
cell_SOC = results.segments[i].conditions.propulsion.battery_state_of_charge[:,0]
cell_temp = results.segments[i].conditions.propulsion.battery_cell_temperature[:,0]
cell_charge = results.segments[i].conditions.propulsion.battery_cell_charge_throughput[:,0]
cell_current = results.segments[i].conditions.propulsion.battery_cell_current[:,0]
cell_battery_amp_hr = (cell_energy/ Units.Wh )/cell_volts
cell_battery_amp_hr = (cell_energy/ Units.Wh )/cell_volts
cell_C_instant = cell_current/cell_battery_amp_hr
cell_C_nominal = cell_current/np.max(cell_battery_amp_hr)
axes = plt.subplot(3,3,1)
axes.plot(time, cell_SOC, line_color)
axes.set_ylabel('SOC',axis_font)
set_axes(axes)
axes = plt.subplot(3,3,2)
axes.plot(time, (cell_energy/Units.Wh), line_color)
axes.set_ylabel('Energy (W-hr)',axis_font)
set_axes(axes)
axes = plt.subplot(3,3,3)
axes.plot(time, -cell_power, line_color)
axes.set_ylabel('Power (W)',axis_font)
set_axes(axes)
axes = plt.subplot(3,3,4)
axes.set_ylabel('Voltage (V)',axis_font)
set_axes(axes)
if i == 0:
axes.plot(time, cell_volts, line_color,label='Under Load')
axes.plot(time,cell_volts_oc, line_color2,label='Open Circuit')
axes.legend(loc='upper right')
else:
axes.plot(time, cell_volts, line_color)
axes.plot(time,cell_volts_oc, line_color2)
axes = plt.subplot(3,3,5)
axes.set_xlabel('Time (mins)',axis_font)
axes.set_ylabel('C-Rate (C)',axis_font)
set_axes(axes)
if i == 0:
axes.plot(time, cell_C_instant, line_color,label='Instantaneous')
axes.plot(time, cell_C_nominal, line_color2,label='Nominal')
axes.legend(loc='upper right')
else:
axes.plot(time, cell_C_instant, line_color)
axes.plot(time, cell_C_nominal, line_color2)
axes = plt.subplot(3,3,6)
axes.plot(time, cell_charge, line_color)
axes.set_xlabel('Time (mins)',axis_font)
axes.set_ylabel('Current (A)',axis_font)
set_axes(axes)
axes = plt.subplot(3,3,7)
axes.plot(time, cell_charge, line_color)
axes.set_xlabel('Time (mins)',axis_font)
axes.set_ylabel('Charge Throughput (Ah)',axis_font)
set_axes(axes)
axes = plt.subplot(3,3,8)
axes.plot(time, cell_temp, line_color)
axes.set_xlabel('Time (mins)',axis_font)
axes.set_ylabel('Temperature (K)',axis_font)
set_axes(axes)
# Set limits
for i in range(1,9):
ax = plt.subplot(3,3,i)
y_lo, y_hi = ax.get_ylim()
if y_lo>0: y_lo = 0
y_hi = y_hi*1.1
ax.set_ylim(y_lo,y_hi)
plt.tight_layout()
if save_figure:
fig.savefig(save_filename + file_type)
return
# ------------------------------------------------------------------
# Battery Degradation
# ------------------------------------------------------------------
## @ingroup Plots
def plot_battery_degradation(results, line_color = 'bo-',line_color2 = 'rs--', save_figure = False, save_filename = "Battery_Cell_Conditions", file_type = ".png"):
"""This plots the battery cell degradation
Assumptions:
None
Source:
None
Inputs:
results.segments.conditions.propulsion
battery_cycle_day [unitless]
battery_capacity_fade_factor [-]
battery_resistance_growth_factor [-]
battery_cell_charge_throughput [Ah]
Outputs:
Plots
Properties Used:
N/A
"""
axis_font = {'size':'14'}
fig = plt.figure(save_filename)
fig.set_size_inches(12, 10)
fig.suptitle('Battery Cell Degradation')
num_segs = len(results.segments)
time_hrs = np.zeros(num_segs)
capacity_fade = np.zeros_like(time_hrs)
resistance_growth = np.zeros_like(time_hrs)
cycle_day = np.zeros_like(time_hrs)
charge_throughput = | np.zeros_like(time_hrs) | numpy.zeros_like |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision.datasets.folder
from PIL import Image, ImageFile
from torch.utils.data import TensorDataset
from torchvision import transforms
from torchvision.datasets import MNIST, ImageFolder, CIFAR10
from torchvision.transforms.functional import rotate
from wilds.datasets.camelyon17_dataset import Camelyon17Dataset
from wilds.datasets.fmow_dataset import FMoWDataset
ImageFile.LOAD_TRUNCATED_IMAGES = True
DATASETS = [
# Debug
"Debug28",
"Debug224",
# Small images
"VerticalLine",
"VHLine",
"FullColoredMNIST",
"ColoredMNIST",
"RotatedMNIST",
# Big images
"VLCS",
"PACS",
"OfficeHome",
"TerraIncognita",
"DomainNet",
"SVIRO",
# WILDS datasets
"WILDSCamelyon",
"WILDSFMoW",
]
def get_dataset_class(dataset_name):
"""Return the dataset class with the given name."""
if dataset_name not in globals():
raise NotImplementedError("Dataset not found: {}".format(dataset_name))
return globals()[dataset_name]
def num_environments(dataset_name):
return len(get_dataset_class(dataset_name).ENVIRONMENTS)
class MultipleDomainDataset:
N_STEPS = 5001 # Default, subclasses may override
CHECKPOINT_FREQ = 100 # Default, subclasses may override
N_WORKERS = 4 # Default, subclasses may override
ENVIRONMENTS = None # Subclasses should override
INPUT_SHAPE = None # Subclasses should override
def __getitem__(self, index):
return self.datasets[index]
def __len__(self):
return len(self.datasets)
class Debug(MultipleDomainDataset):
def __init__(self, root, test_envs, hparams):
super().__init__()
self.input_shape = self.INPUT_SHAPE
self.num_classes = 2
self.datasets = []
for _ in [0, 1, 2]:
self.datasets.append(
TensorDataset(
torch.randn(16, *self.INPUT_SHAPE),
torch.randint(0, self.num_classes, (16,))
)
)
class Debug28(Debug):
INPUT_SHAPE = (3, 28, 28)
ENVIRONMENTS = ['0', '1', '2']
class Debug224(Debug):
INPUT_SHAPE = (3, 224, 224)
ENVIRONMENTS = ['0', '1', '2']
class MultipleEnvironmentCIFAR10(MultipleDomainDataset):
def __init__(self, root, environments, dataset_transform, input_shape,
num_classes):
super().__init__()
if root is None:
raise ValueError('Data directory not specified!')
original_dataset_tr = CIFAR10(root, train=True, download=True)
original_dataset_te = CIFAR10(root, train=False, download=True)
original_images = np.concatenate((original_dataset_tr.data, original_dataset_te.data))
original_labels = np.concatenate((original_dataset_tr.targets, original_dataset_te.targets))
shuffle = torch.randperm(len(original_images))
original_images = original_images[shuffle]
original_labels = original_labels[shuffle]
self.datasets = []
for i in range(len(environments)):
self.datasets.append(dataset_transform(original_images, original_labels, environments[i]))
self.input_shape = input_shape
self.num_classes = num_classes
class MultipleEnvironmentMNIST(MultipleDomainDataset):
def __init__(self, root, environments, dataset_transform, input_shape,
num_classes):
super().__init__()
if root is None:
raise ValueError('Data directory not specified!')
self.colors = torch.FloatTensor(
[[0, 100, 0], [188, 143, 143], [255, 0, 0], [255, 215, 0], [0, 255, 0], [65, 105, 225], [0, 225, 225],
[0, 0, 255], [255, 20, 147], [160, 160, 160]])
self.random_colors = torch.randint(255, (10, 3)).float()
original_dataset_tr = MNIST(root, train=True, download=True)
original_dataset_te = MNIST(root, train=False, download=True)
original_images = torch.cat((original_dataset_tr.data,
original_dataset_te.data))
original_labels = torch.cat((original_dataset_tr.targets,
original_dataset_te.targets))
shuffle = torch.randperm(len(original_images))
original_images = original_images[shuffle]
original_labels = original_labels[shuffle]
self.datasets = []
self.environments = environments
for i in range(len(environments)):
images = original_images[i::len(environments)]
labels = original_labels[i::len(environments)]
self.datasets.append(dataset_transform(images, labels, environments[i]))
self.input_shape = input_shape
self.num_classes = num_classes
def __getitem__(self, index):
return self.datasets[index]
def __len__(self):
return len(self.datasets)
class VHLine(MultipleEnvironmentCIFAR10):
ENVIRONMENT_NAMES = [0, 1]
N_WORKERS = 0
N_STEPS = 10001
def __init__(self, root, test_envs, hparams):
self.domain_label = [0, 1]
# print("MY COMBINE:", MY_COMBINE)
self.input_shape = (3, 32, 32)
self.num_classes = 10
super(VHLine, self).__init__(root, self.domain_label, self.color_dataset, (3, 32, 32,), 10)
def color_dataset(self, images, labels, environment):
# Add a line to the last channel and vary its brightness during testing.
images = self.add_vhline(images, labels, b_scale=1, env=environment)
for i in range(5):
rand_indx = np.random.randint(0, images.shape[0])
self._plot(images[rand_indx])
x = torch.Tensor(images).permute(0, 3, 1, 2)
y = torch.Tensor(labels).view(-1).long()
return TensorDataset(x, y)
def add_vhline(self, images, labels, b_scale, env):
images = np.divide(images, 255.0)
if env == 1:
return images
def configurations(images, cond_indx, cls):
# To create the ten-valued spurious feature, we consider a vertical line passing through the middle of each channel,
# and also additionally the horizontal line through the first channel.
if cls == 0:
images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, 16:17, :, 0] = np.add(images[cond_indx, 16:17, :, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
elif cls == 1:
images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 - 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, 16:17, :, 0] = np.add(images[cond_indx, 16:17, :, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
elif cls == 2:
images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 - 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, 16:17, :, 0] = np.add(images[cond_indx, 16:17, :, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
elif cls == 3:
images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, 16:17, :, 0] = np.add(images[cond_indx, 16:17, :, 2], 0.5 - 0.5 * np.random.uniform(-b_scale, b_scale))
elif cls == 4:
images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 - 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, 16:17, :, 0] = np.add(images[cond_indx, 16:17, :, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale))
elif cls == 5:
images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 - 0.5 * np.random.uniform(-b_scale, b_scale))
images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 - 0.5 * | np.random.uniform(-b_scale, b_scale) | numpy.random.uniform |
'''
Created on 26 Feb 2017
@author: jkiesele
'''
from __future__ import print_function
import matplotlib
#if no X11 use below
matplotlib.use('Agg')
class Weighter(object):
'''
contains the histograms/input to calculate jet-wise weights
'''
def __init__(self):
self.Axixandlabel=[]
self.axisX=[]
self.axisY=[]
self.hists =[]
self.removeProbabilties=[]
self.binweights=[]
self.distributions=[]
self.xedges=[]
self.yedges=[]
self.classes=[]
self.refclassidx=0
self.undefTruth=[]
def __eq__(self, other):
'A == B'
def comparator(this, that):
'compares lists of np arrays'
return all((i == j).all() for i,j in zip(this, that))
return self.Axixandlabel == other.Axixandlabel and \
all(self.axisX == other.axisX) and \
all(self.axisY == other.axisY) and \
comparator(self.hists, other.hists) and \
comparator(self.removeProbabilties, other.removeProbabilties) and \
self.classes == other.classes and \
self.refclassidx == other.refclassidx and \
self.undefTruth == other.undefTruth and \
comparator(self.binweights, other.binweights) and \
comparator(self.distributions, other.distributions) and \
(self.xedges == other.xedges).all() and \
(self.yedges == other.yedges).all()
def __ne__(self, other):
'A != B'
return not (self == other)
def setBinningAndClasses(self,bins,nameX,nameY,classes):
self.axisX= bins[0]
self.axisY= bins[1]
self.nameX=nameX
self.nameY=nameY
self.classes=classes
if len(self.classes)<1:
self.classes=['']
def addDistributions(self,Tuple):
import numpy
selidxs=[]
ytuple=Tuple[self.nameY]
xtuple=Tuple[self.nameX]
useonlyoneclass=len(self.classes)==1 and len(self.classes[0])==0
if not useonlyoneclass:
labeltuple=Tuple[self.classes]
for c in self.classes:
selidxs.append(labeltuple[c]>0)
else:
selidxs=[numpy.zeros(len(xtuple),dtype='int')<1]
for i in range(len(self.classes)):
tmphist,xe,ye=numpy.histogram2d(xtuple[selidxs[i]],ytuple[selidxs[i]],[self.axisX,self.axisY],normed=True)
self.xedges=xe
self.yedges=ye
if len(self.distributions)==len(self.classes):
self.distributions[i]=self.distributions[i]+tmphist
else:
self.distributions.append(tmphist)
def printHistos(self,outdir):
import numpy
def plotHist(hist,outname):
import matplotlib.pyplot as plt
H=hist.T
fig = plt.figure()
ax = fig.add_subplot(111)
X, Y = numpy.meshgrid(self.xedges, self.yedges)
ax.pcolormesh(X, Y, H)
if self.axisX[0]>0:
ax.set_xscale("log", nonposx='clip')
else:
ax.set_xlim([self.axisX[1],self.axisX[-1]])
ax.set_xscale("log", nonposx='mask')
#plt.colorbar()
fig.savefig(outname)
plt.close()
for i in range(len(self.classes)):
if len(self.distributions):
plotHist(self.distributions[i],outdir+"/dist_"+self.classes[i]+".pdf")
plotHist(self.removeProbabilties[i] ,outdir+"/remprob_"+self.classes[i]+".pdf")
plotHist(self.binweights[i],outdir+"/weights_"+self.classes[i]+".pdf")
reshaped=self.distributions[i]*self.binweights[i]
plotHist(reshaped,outdir+"/reshaped_"+self.classes[i]+".pdf")
def createRemoveProbabilitiesAndWeights(self,referenceclass='isB'):
import numpy
referenceidx=-1
if not referenceclass=='flatten':
try:
referenceidx=self.classes.index(referenceclass)
except:
print('createRemoveProbabilities: reference index not found in class list')
raise Exception('createRemoveProbabilities: reference index not found in class list')
if len(self.classes) > 0 and len(self.classes[0]):
self.Axixandlabel = [self.nameX, self.nameY]+ self.classes
else:
self.Axixandlabel = [self.nameX, self.nameY]
self.refclassidx=referenceidx
refhist=numpy.zeros((len(self.axisX)-1,len(self.axisY)-1), dtype='float32')
refhist += 1
if referenceidx >= 0:
refhist=self.distributions[referenceidx]
refhist=refhist/numpy.amax(refhist)
def divideHistos(a,b):
out=numpy.array(a)
for i in range(a.shape[0]):
for j in range(a.shape[1]):
if b[i][j]:
out[i][j]=a[i][j]/b[i][j]
else:
out[i][j]=-10
return out
probhists=[]
weighthists=[]
for i in range(len(self.classes)):
#print(self.classes[i])
tmphist=self.distributions[i]
#print(tmphist)
#print(refhist)
if numpy.amax(tmphist):
tmphist=tmphist/numpy.amax(tmphist)
else:
print('Warning: class '+self.classes[i]+' empty.')
ratio=divideHistos(refhist,tmphist)
ratio=ratio/numpy.amax(ratio)#norm to 1
#print(ratio)
ratio[ratio<0]=1
ratio[ratio==numpy.nan]=1
weighthists.append(ratio)
ratio=1-ratio#make it a remove probability
probhists.append(ratio)
self.removeProbabilties=probhists
self.binweights=weighthists
#make it an average 1
for i in range(len(self.binweights)):
self.binweights[i]=self.binweights[i]/ | numpy.average(self.binweights[i]) | numpy.average |
#===============================================================================
# This file is part of TEMPy.
#
# TEMPy is a software designed to help the user in the manipulation
# and analyses of macromolecular assemblies using 3D electron microscopy maps.
#
# Copyright 2015 Birkbeck College University of London.
#
# Authors: <NAME>, <NAME>, <NAME>,
# <NAME>, <NAME>, <NAME>
#
# This software is made available under GPL V3 license
# http://www.gnu.org/licenses/gpl-3.0.html
#
#
# Please cite your use of TEMPy in published work:
#
# <NAME>., <NAME>., <NAME>., <NAME>., <NAME>. & <NAME>. (2015). J. Appl. Cryst. 48.
#
#===============================================================================
from TEMPy.StructureBlurrer import StructureBlurrer
import math
from numpy import sum as numsum, copy as npcopy,mean as npmean, log10 as np_log10
from numpy import square,sqrt,absolute,histogram,argwhere,amin,count_nonzero,shape,size, array as nparray,\
transpose, mgrid,indices,meshgrid,nonzero,real,searchsorted,newaxis,where,matrix,ravel,ma,\
amax,ones,arange,floor,ceil,zeros, conjugate
from scipy.ndimage.interpolation import map_coordinates,spline_filter
from scipy.fftpack import fftn, ifftn, fftshift, fftfreq, ifftshift
#from scipy import weave
#from scipy.weave import converters
from scipy.spatial import KDTree
import sys
import itertools
class ScoringFunctions:
"""
A class implementing various scoring functions used in density fitting.
Reference:
Vasishtan and Topf (2011) Scoring functions for cryoEM density fitting.
J Struct Biol 174:333-343.
"""
def __init__(self):
pass
def _overlap_map_samebox(self,map1,map2):
"""
volume overlap within 2 maps with same box size
Return:
% of overlap
"""
b=map1.fullMap
binmap1=map1.fullMap>0.0
binmap2=map2.fullMap>0.0
mask_array=(binmap1*binmap2)>0.0
return[count_nonzero(binmap1),count_nonzero(binmap2),count_nonzero(mask_array),mask_array.size]
def _overlap_map_array(self,map_target,map_target_threshold,map_probe,map_probe_threshold):
"""
mask maps with 2 cut-off map_target_threshold and map_probe_threshold (vol thr.)
return:
mask array where both are true.
"""
binmap1=map_target.fullMap>float(map_target_threshold)
binmap2=map_probe.fullMap>float(map_probe_threshold)
mask_array=(binmap1*binmap2)>0
return mask_array
#add by AJP
def calculate_map_threshold(self,map_target):
try:
peak,ave,sigma = map_target._peak_density()
vol_threshold = float(ave)+(2.0*float(sigma))
except:
if len(map_target.header)==0:
#amin = map_target.min()
#amax = map_target.max()
amean = map_target.mean()
rms = map_target.std()
vol_threshold = float(amean)+(1.5*float(rms))
else:
#amin = map.header[19]
#amax = map.header[20]
amean = map_target.mean()
rms = map_target.std()
vol_threshold = float(amean)+(1.5*float(rms))
return vol_threshold
def mapComparison(self, map_target, map_probe):
"""
Compare the properties (sampling rate, box size and origin) of two maps
Arguments:
*map_target, map_probe*
Map instances to compare.
Return:
True if the map properties are the same between two maps, False otherwise.
"""
if (map_target.apix - map_probe.apix < 1E-6) and map_target.box_size() == map_probe.box_size():
if round(map_target.origin[0],2) == round(map_probe.origin[0],2) and round(map_target.origin[1],2) == round(map_probe.origin[1],2) and round(map_target.origin[2],2) == round(map_probe.origin[2],2):
return True
else:
return False
else: return False
def _failed_match(self):
print("Warning: can't match the map at the moment, use map with same box size.") #comment all out!
sys.exit()
def _CCC_calc(self,m1,m2):
arr1 = m1.view(float)
arr2 = m2.view(float)
nd = len(arr1.shape)
if nd == 2 and len(arr1.shape)[1] == 0:
nd = 1
l = 1
dim = zeros(3,dtype=int)
for i in range(nd):
l *= arr1.shape[i]
dim[i] = arr1.shape[i]
#l = len(arr1)
corr = 0.0
#dims = nparray(ltmp,dtype=int)
code = """
int k,j,i;
float numer=0.0, var1=0.0, var2 = 0.0;
if (nd == 1){
for (int z=0; z<dim[0]; z++) {
numer += arr1[z]*arr2[z];
var1 += pow(arr1[z],2);
var2 += pow(arr2[z],2); }
}
else if (nd == 3){
for (int z=0; z<dim[0]; z++) {
for (int y=0; y<dim[1]; y++) {
for (int x=0; x<dim[2]; x++) {
numer += ARR13(z,y,x)*ARR23(z,y,x);
var1 += pow(ARR13(z,y,x),2);
var2 += pow(ARR23(z,y,x),2);
}
}
}
}
corr = (float) numer/sqrt(var1*var2);
return_val = corr;
"""
# check
# BEN - commented out
#try:
# #print datetime.now().time()
# corr = weave.inline(code,['arr1','arr2','corr','nd','dim'],headers=["<math.h>"],verbose=0)
# #print datetime.now().time()
# corr = min(1.0,corr)
# corr = max(-1.0,corr)
# return corr
#except:
# #print 'C++ scoring run failed!'
# return None
return None
# Cross correlation coefficient for the overlap (3), contoured (2) or complete map (1), added by APJ
def CCC_map(self, map_target,map_probe,map_target_threshold=0.0,map_probe_threshold=0.0,mode=1,meanDist=False,cmode=True):
"""
Calculate cross-correlation between two Map instances, for the overlap (3), contoured (2) or complete map (1).
Arguments:
*map_target, map_probe*
EMMap instances to compare.
*map_target_threshold,map_probe_threshold*
EMMap threshold
if not given, use calcualte_map_threshold to calculate map_target_threshold and map_probe_threshold
*mode*
3. calculation on the mask
2. calculation on contoured maps
1. calculation on complete map
*meanDist*
True if the deviation from mean needs to be calculated
"""
if self.mapComparison(map_target, map_probe):
if not mode == 1:
# calculate threshold if not given : 2* sigma can be used for experimental maps and 1*sigma for simulated?
if map_target_threshold==0 and map_probe_threshold==0:
map_target_threshold=self.calculate_map_threshold(map_target)
map_probe_threshold=self.calculate_map_threshold(map_probe)
# calculate contour overlap
# contour the first map
bin_map1 = map_target.fullMap > float(map_target_threshold)
bin_map2 = map_probe.fullMap > float(map_probe_threshold)
# percent calculated on the smaller contoured volume (can be changed)
minim = numsum(bin_map1)
minim2 = numsum(bin_map2)
if minim2 < minim: minim = minim2
mask_array = (bin_map1*bin_map2) > 0
#print '>>', numsum(bin_map1),numsum(bin_map2),numsum(mask_array),minim
if not minim == 0.0:perc_ovr = float(numsum(mask_array))/minim
else:
perc_ovr = 0.0
print('No map overlap (Cross correlation score), exiting score calculation..')
return -1.0, 0.0
if perc_ovr < 0.02: return -1.0, 0.0
else: perc_ovr = 1.0
# calculate CCC within volume of overlap
if mode == 3:
#mask_array = self._overlap_map_array(map_target,map_target_threshold,map_probe,map_probe_threshold)
if numsum(mask_array) == 0:
print ('No map overlap (Cross correlation score), exiting score calculation..')
return -1.0, 0.0
map1_mask = map_target.fullMap[mask_array]
map2_mask = map_probe.fullMap[mask_array]
if meanDist:
map1_mask = map1_mask - npmean(map1_mask)
map2_mask = map2_mask - npmean(map2_mask)
if cmode:
corr = self._CCC_calc(map1_mask.flatten(),map2_mask.flatten())
#print corr, numsum(map1_mask * map2_mask)/sqrt(numsum(square(map1_mask))*numsum(square(map2_mask))), numsum(map1_mask * map2_mask)
else: corr = None
if corr is None:
return numsum(map1_mask * map2_mask)/sqrt(numsum(square(map1_mask))*numsum(square(map2_mask))), perc_ovr
else: return corr, perc_ovr
# calculate CCC for contoured maps based on threshold
elif mode == 2:
#bin_map1 = map_target.fullMap > float(map_target_threshold)
#bin_map2 = map_probe.fullMap > float(map_probe_threshold)
map1_mask = map_target.fullMap*bin_map1
map2_mask = map_probe.fullMap*bin_map2
if meanDist:
map1_mask = map1_mask - npmean(map_target.fullMap[bin_map1])
map2_mask = map2_mask - npmean(map_probe.fullMap[bin_map2])
map1_mask = map1_mask*bin_map1
map2_mask = map2_mask*bin_map2
else:
map1_mask = map_target.fullMap*bin_map1
map2_mask = map_probe.fullMap*bin_map2
if cmode: corr = self._CCC_calc(map1_mask,map2_mask)
else: corr = None
#print corr, numsum(map1_mask * map2_mask)/sqrt(numsum(square(map1_mask))*numsum(square(map2_mask)))
if corr is None:
return numsum(map1_mask * map2_mask)/sqrt(numsum(square(map1_mask))*numsum(square(map2_mask))), perc_ovr
else:
return corr, perc_ovr
# calculate on the complete map
if meanDist:
if cmode: corr = self._CCC_calc(map_target.fullMap-npmean(map_target.fullMap),map_probe.fullMap-npmean(map_probe.fullMap))
else: corr = None
#print corr,numsum((map_target.fullMap-npmean(map_target.fullMap)) * (map_probe.fullMap-npmean(map_probe.fullMap)))/(sqrt(numsum(square(map_target.fullMap-npmean(map_target.fullMap)))*numsum(square(map_probe.fullMap-npmean(map_probe.fullMap)))))
if corr is None:
return numsum((map_target.fullMap-npmean(map_target.fullMap)) * (map_probe.fullMap-npmean(map_probe.fullMap)))/(sqrt(numsum(square(map_target.fullMap-npmean(map_target.fullMap)))*numsum(square(map_probe.fullMap-npmean(map_probe.fullMap))))), perc_ovr
else: return corr, perc_ovr
if cmode: corr = self._CCC_calc(map_target.fullMap,map_probe.fullMap)
else: corr = None
#print corr, numsum(map_target.fullMap * map_probe.fullMap)/sqrt(numsum(square(map_target.fullMap))*numsum(square(map_probe.fullMap))), numsum(map_target.fullMap * map_probe.fullMap)
if corr is None:
return numsum(map_target.fullMap * map_probe.fullMap)/sqrt(numsum(square(map_target.fullMap))*numsum(square(map_probe.fullMap))), perc_ovr
else: return corr, perc_ovr
else:
print("@@@ Maps could not be matched")
return -1., 0.
def CCC(self, map_target, map_probe):
"""
Calculate cross-correlation between two Map instances.
Arguments:
*map_target, map_probe*
EMMap instances to compare.
Return:
CCC score
"""
if self.mapComparison(map_target, map_probe):
return (map_target.normalise().getMap()*map_probe.normalise().getMap()).mean()
else:
self._failed_match()
#m1,m2 = self.matchMaps(map_target, map_probe)
#return (m1.normalise().getMap()*m2.normalise().getMap()).mean()
#TODO: check and delete the following
'''
### Correlation coefficient about mean for the overlap mask
def CCC_local(self, map_target,map_probe,map_target_threshold=0,map_probe_threshold=0):
"""
Calculate cross-correlation about mean between two Map instances, for the overlap region.
Arguments:
*map_target, map_probe*
EMMap instances to compare.
*map_target_threshold,map_probe_threshold*
EMMap threshold
use calcualte_map_threshold to calculate map_target_threshold and map_probe_threshold.
Return:
mean CCC score
"""
if self.mapComparison(map_target, map_probe):
if map_target_threshold==0:
map_target_threshold=self.calculate_map_threshold(map_target)
if map_probe_threshold==0:
map_probe_threshold=self.calculate_map_threshold(map_probe)
mask_array = self._overlap_map_array(map_target,map_target_threshold,map_probe,map_probe_threshold)
map_target_mask = map_target.fullMap[mask_array]
map_target_mask = map_target_mask - float(map_target_mask.sum()/len(map_target_mask))
map_probe_mask = map_probe.fullMap[mask_array]
map_probe_mask = map_probe_mask - float(map_probe_mask.sum()/len(map_probe_mask))
return absolute((map_target_mask * map_probe_mask)).sum()/sqrt(square(map_target_mask).sum()*square(map_probe_mask).sum())
#return (map_target_mask * map_probe_mask).sum()/sqrt(square(map_target_mask).sum()*square(map_probe_mask).sum())
else:
self._failed_match()
#m1,m2 = self.matchMaps(map_target, map_probe)
#return (m1.normalise().getMap()*m2.normalise().getMap()).mean()
# MAIN: Cross correlation coefficient for the overlap (3), contoured (2) or complete map (1)
def CCC_mask_zero(self, map_target,map_probe,map_target_threshold=0,map_probe_threshold=0):
"""
Calculate cross-correlation about zero for the overlap region between two Map instances.
Arguments:
*map_target, map_probe*
EMMap instances to compare.
*map_target_threshold,map_probe_threshold*
EMMap threshold
use calcualte_map_threshold to calculate map_target_threshold and map_probe_threshold.
Return:
mean CCC score
"""
if self.mapComparison(map_target, map_probe):
if map_target_threshold==0:
map_target_threshold=self.calculate_map_threshold(map_target)
if map_probe_threshold==0:
map_probe_threshold=self.calculate_map_threshold(map_probe)
mask_array = self._overlap_map_array(map_target,map_target_threshold,map_probe,map_probe_threshold)
map_target_mask = map_target.fullMap[mask_array]
map_probe_mask = map_probe.fullMap[mask_array]
return (map_target_mask * map_probe_mask).sum()/sqrt(square(map_target_mask).sum()*square(map_probe_mask).sum())
else:
self._failed_match()
#m1,m2 = self.matchMaps(map_target, map_probe)
#return (m1.normalise().getMap()*m2.normalise().getMap()).mean()
'''
def LSF(self, map_target, map_probe):
"""
Calculate least-squares between two Map instances.
Arguments:
*map_target, map_probe*
EMMap instances to compare.
Return:
least-squares value
"""
if self.mapComparison(map_target, map_probe):
map_target, map_probe = map_target, map_probe
else:
self._failed_match()
return ((map_target.getMap()-map_probe.getMap())**2).mean()
def laplace_CCC(self, map_target, map_probe, prefil=(False, False)):
"""
Calculate Laplacian cross-correlation between two Map instances.
Based on (Chacon and Wriggers, 2002).
Arguments:
*map_target, map_probe*
Map instances to compare.
*prefil*
2-tuple of boolean values, one for each map respectively.
True if Map instance is already Laplacian-filtered. False otherwise.
Return:
Laplacian cross-correlation score
"""
if self.mapComparison(map_target, map_probe):
m1, m2 = map_target, map_probe
else:
self._failed_match()
#m1,m2 = self.matchMaps(map_target, map_probe)
if not prefil[0]:
map_target = map_target.laplace_filtered()
if not prefil[1]:
map_probe = map_probe.laplace_filtered()
map_target = map_target.normalise()
map_probe = map_probe.normalise()
return self.CCC(map_target, map_probe)
# MAIN: normal vector score calculated on surface voxels derived by different methods
def normal_vector_score(self, map_target, map_probe, primary_boundary, secondary_boundary=0.0,Filter=None):
"""
Calculate the Normal Vector Score between two Map surfaces.
Based on 3SOM algorithm (Ceulemans and Russell, 2004).
Arguments:
*map_target, map_probe*
EMMap instances to compare. map_target is the target map.
*primary_boundary, secondary_boundary*
If a filter is selected, just input a contour level as primary threshold.
Otherwise, need to run get_primary_boundary and get_second_boundary based on map target.
*Filter*
Filter to use:
i Sobel Filter (Filter=='Sobel')
ii Laplace Filter (Filter=='Laplace')
iii Minimum Filter (Filter=='Minimum')
iv Mean Filter (Filter=='Mean')
Return:
Normal vector score.
"""
if Filter not in ['Sobel','Laplace','Mean','Minimum',None]:
print("Incorrect name of filter: " + Filter)
print("Select one of the following Filters if applicable: " + ''.join(['Sobel','Laplace']))
sys.exit()
scores = []
if not self.mapComparison(map_target, map_probe):
#map_target, map_probe = self.matchMaps(map_target, map_probe)
self._failed_match()
assert isinstance(primary_boundary,float)
assert isinstance(secondary_boundary,float)
#print "fff", primary_boundary, secondary_boundary
if primary_boundary > secondary_boundary:
temp_thr = secondary_boundary
secondary_boundary = primary_boundary
primary_boundary = temp_thr
points = argwhere((map_target.fullMap > primary_boundary) & (map_target.fullMap < secondary_boundary))
if Filter=='Sobel':
# sobel filter surface
map1_surface = map_target._sobel_filter_contour(primary_boundary)
points = argwhere(map1_surface.fullMap > (map1_surface.max()/2.0))
elif Filter=='Laplace':
# sobel filter surface
map1_surface = map_target._laplace_filtered_contour(primary_boundary)
points = argwhere(map1_surface.fullMap > (map1_surface.max()/2.0))
elif Filter=='Minimum':
# the filter returns points touching surface (zeros)
#map1_surface = map_target._surface_minimum_filter(float(primary_boundary))
map1_surface = map_target._surface_minimum_filter(float(primary_boundary))
points = argwhere(map1_surface == 1)
elif Filter=='Mean':
# the filter returns points from protrusions/curved surfaces
map1_filter = map_target._surface_features(float(primary_boundary))
# to extract points with filtered values less than a cut-off
# more finer the bins are, more precise will be number of points chosen; not very crucial
bin_test = [0.0001]
for ii in range(1,41): bin_test.append(0.025*ii)
freq_test = histogram(map1_filter.fullMap,bin_test)[0]
sum_freq = 0.0
for fr in range(len(freq_test)):
sum_freq += float(freq_test[fr])
if sum_freq/numsum(freq_test) > 0.05 and bin_test[fr+1] >= 0.3:
t1 = bin_test[fr+1]
break
if sum_freq/numsum(freq_test) > 0.10 or sum_freq > 100000:
t1 = bin_test[fr+1]
break
points = argwhere((map1_filter.fullMap > 0.0) & (map1_filter.fullMap < t1))
#C++ calculation
flagc = 1
try:
vecnorm_target = map_target._get_normal_vector(points)
vecnorm_probe = map_probe._get_normal_vector(points)
except:
flagc = 0
if vecnorm_target is None or vecnorm_probe is None: flagc = 0
ct = 0
if flagc == 1:
for l in range(len(vecnorm_target)):
ct += 1
nvec = vecnorm_target[l]
ovec = vecnorm_probe[l]
### add max value for regions of null variation
if (nvec[0] == 0. and nvec[1] == 0. and nvec[2] == 0.):
if (ovec[0] == 0. and ovec[1] == 0. and ovec[2] == 0.0):
continue
else:
scores.append(3.14)
continue
else:
if (ovec[0] == 0. and ovec[1] == 0. and ovec[2] == 0.):
scores.append(3.14)
continue
try:
dotprod = ovec[0] * nvec[0] + ovec[1] * nvec[1] + ovec[2] * nvec[2]
den = sqrt(nvec[0]**2 + nvec[1]**2 + nvec[2]**2) * sqrt(ovec[0]**2 + ovec[1]**2 + ovec[2]**2)
if abs(dotprod-den) < 0.00001:
ang = 0.0
else:
ang = math.acos(min(max(dotprod/den,-1.0),1.0))
if den == 0.0: print(dotprod, den, nvec, ovec)
scores.append(abs(ang))
except ValueError:
print('Error: Angle could not be calculated: ', nvec,' ', ovec)
#print scores[-10:]
if len(scores) == 0:
print("There are no points to be scored! The threshold values or the number of points to be considered needs to be changed.")
return None
else:
if sum(scores) == 0:
return 0.0
else:
#return 1-(sum(scores)/(len(points)*3.14)) #in this way go from 1 to 0
return 1-(sum(scores)/(len(points)*3.14))
scores = []
ct1 = 0
if flagc == 0:
for v in points:
n_vec = map_target.get_normal_vector(v[2],v[1],v[0])
o_vec = map_probe.get_normal_vector(v[2],v[1],v[0])
ct1 += 1
### add max value for regions of null variation
if (n_vec.x == -9 and n_vec.y == -9 and n_vec.z == -9):
if (o_vec.x == -9 and o_vec.y == -9 and o_vec.z == -9):
continue
else:
scores.append(3.14)
continue
else:
if (o_vec.x == -9 and o_vec.y == -9 and o_vec.z == -9):
scores.append(3.14)
continue
try:
scores.append(abs(n_vec.arg(o_vec)))
except ValueError:
print('Error: Angle between '+ str(n_vec) +', '+ str(o_vec) +' for point %d, %d, %d cannot be calculated.',v.x,v.y,v.z)
if len(scores) == 0:
print ("There are no points to be scored! The threshold values or the number of points to be considered needs to be changed.")
else:
if sum(scores) == 0:
return 0
else:
#return 1-(sum(scores)/(len(points)*3.14)) #in this way go from 1 to 0
return 1-(sum(scores)/(len(points)*3.14))
def get_partial_DLSF(self, num_of_points, map_target, map_probe):
"""
Calculate the DLSF score between two Map instances.
The DLSF is similar to the LSF;
whereas the LSF compares absolute density values,
the DLSF compares the difference between pairs of values.
Arguments:
*map_target, map_probe*
the two Map instances to compare.
*num_of_points*
number of significant points.
Return:
DLSF score
"""
if not self.mapComparison(map_target, map_probe):
#map_target, map_probe = self.matchMaps(map_target, map_probe)
return "can't Match the map"
#print "fff", primary_boundary, secondary_boundary
map_target_sig_pairs=map_target._get_random_significant_pairs(int(num_of_points))
otherMap=map_probe
score = 0.0
for p in map_target_sig_pairs:
z1 = p[0]
y1 = p[1]
x1 = p[2]
z2 = p[3]
y2 = p[4]
x2 = p[5]
dens = p[6]
prot_dens = otherMap.fullMap[z1][y1][x1] - otherMap.fullMap[z2][y2][x2]
score += (dens-prot_dens)**2
return score/map_target.fullMap.size
def _MI(self, map_target, map_probe, layers=20):
"""
Calculate the mutual information score between two Map instances.
Arguments:
*map_target, map_probe*
EMMap instances to compare.
*layers*
Number of layers used to bin the map. Default is 20 as in Shatsky et al., 2008.
Return:
MI score
"""
if self.mapComparison(map_target, map_probe):
m1, m2 = map_target, map_probe
else:
self._failed_match()
#m1,m2 = self.matchMaps(map_target, map_probe)
score = 0
m1_levels = (m1.max()-m1.min())/layers
m2_levels = (m2.max()-m2.min())/layers
for x in range(layers):
for y in range(layers):
m1_level_map = (m1.getMap() >= m1.min()+(x*m1_levels))*(m1.getMap() <= m1.min()+((x+1)*m1_levels))
m2_level_map = (m2.getMap() >= m2.min()+(y*m2_levels))*(m2.getMap() <= m2.min()+((y+1)*m2_levels))
comb_level_map = m1_level_map*m2_level_map
p_m1 = float(m1_level_map.sum())/m1_level_map.size
p_m2 = float(m2_level_map.sum())/m2_level_map.size
p_comb = float(comb_level_map.sum())/comb_level_map.size
if p_comb == 0:
mi_score = 0.0
else:
#print p_comb, p_m1, p_m2, p_comb/(p_m1*p_m2), math.log(p_comb/(p_m1*p_m2),2)
mi_score = p_comb*math.log(p_comb/(p_m1*p_m2), 2)
score += mi_score
return score
def _MI_C(self,m1,m2,layers1=20,layers2=20,N=0,lc1=0.0,lc2=0.0):
#from datetime import datetime
#print datetime.now().time()
ly1 = int (layers1)
ly2 = int (layers2)
# input 3D arrays
arr1 = (m1).view(float)
arr2 = (m2).view(float)
nz = int(arr1.shape[0])
ny = int(arr1.shape[1])
nx = int(arr1.shape[2])
# min and max to set left and right bound
ma1 = ma.masked_less_equal(arr1,lc1,copy=False)
min1 = float(ma1.min())
max1 = float(ma1.max())
#print min1,max1,amin(m1[msk]),amax(m1[msk])
#min1 = float(amin(m1[msk]))
#max1 = amax(m1[msk])
ma2 = ma.masked_less_equal(arr2,lc2,copy=False)
min2 = float(ma2.min())
max2 = float(ma2.max())
#print min2,max2
#min2 = float(amin(m2[msk]))
#max2 = amax(m2[msk])
min1 = float(min1-((max1-min1)/layers1)*0.0001)
min2 = float(min2-((max2-min2)/layers2)*0.0001)
# bin width
step1 = (max1-min1)/float(layers1)
step2 = (max2-min2)/float(layers2)
# histogram freq in bins
freq1 = zeros(layers1,dtype=float)
freq2 = zeros(layers2,dtype=float)
comb_freq = zeros((layers1,layers2),dtype=float)
code = """
int i,j,k,s1=0,s2=0;
float p1=0.0, p2=0.0, pcomb = 0.0,Hxy=0.0,Hy=0.0,Hx=0.0;
float va1,va2;
/*long index = 0;
long indexend = nz * ny * nx;
while (index < indexend){
va1 = arr1[index];
va2 = arr2[index];*/
/* use 3d array loop */
for (int z=0; z<nz; z++) {
for (int y=0; y<ny; y++) {
for (int x=0; x<nx; x++) {
va1 = ARR13(z,y,x);
va2 = ARR23(z,y,x);
for (i=0; i<ly1; i++)
{
if ((va1 > (min1+ i*step1)) && (va1 <= (min1+(i+1)*step1)))
{
FREQ11(i) += 1.0;
s1 += 1;
break;
}
}
if (i == ly1) i = i-1;
for (j=0; j<ly2; j++)
{
if ((va2 > (min2+j*step2)) && (va2 <= (min2+(j+1)*step2)))
{
FREQ21(j) += 1.0;
s2 += 1;
COMB_FREQ2(i,j) += 1.0;
break;
}
}
/*index ++;*/
}
}
}
for (i=0; i<ly1; i++){
p1 = FREQ11(i)/(float) s1;
/*std::cout << s1 << ' ' << s2 << std::endl;*/
for (j=0; j<ly2; j++){
p2 = FREQ21(j)/(float) s2;
pcomb = COMB_FREQ2(i,j)/(float) s1;
if (pcomb != 0.0) Hxy += (-pcomb*log2(pcomb));
if ((i == 0) && (p2 != 0.0)) Hy += (-p2*log2(p2));
}
if (p1 != 0.0) Hx += (-p1*log2(p1));
}
/*std::cout << Hxy << ' ' << Hx << ' ' << Hy << ' ' << std::endl;*/
if (N == 1) {
if (Hxy != 0.0) return_val = (Hx+Hy)/Hxy;
else return_val = 0.0;
}
else return_val = Hx+Hy-Hxy;
"""
# check
# BEN Commented out due to weave
#try:
#print datetime.now().time()
# mi = weave.inline(code,['arr1','arr2','ly1','ly2','N','freq1','freq2','comb_freq','nz','ny','nx','step1','step2','min1','min2'],headers=["<math.h>"],verbose=0)
# #print datetime.now().time()
# mi = max(0.0,mi)
# return mi
#except:
# #print 'C++ MI scoring run failed!'
# return None
return None
#Faster version of MI, in the overlap region (3) or complete density (1), added by APJ
def MI(self, map_target, map_probe, map_target_threshold=0.0, map_probe_threshold=0.0, mode=1, layers1=None,layers2=None, weight=False,cmode=True):
"""
Calculate the mutual information score between two Map instances.
Arguments:
*map_target, map_probe*
EMMap instances to compare.
*map_target_threshold, map_probe_threshold*
Thresholds used for contouring
*mode*
1. use complete map for calculation
3. use overlap region for calculation
*layers1, layers2*
Number of layers used to bin the maps. Default is 20 as in Shatsky et al., 2008.
Return:
MI score
"""
if not self.mapComparison(map_target, map_probe):
#m1, m2 = map_target, map_probe
#else:
self._failed_match()
# calculate threshold if not given : 2* sigma can be used for experimental maps and 1*sigma for simulated?
if map_target_threshold==0.0:
map_target_threshold=self.calculate_map_threshold(map_target)
if map_probe_threshold==0.0:
map_probe_threshold=self.calculate_map_threshold(map_probe)
# calculation on the complete map
if mode == 1:
if weight: wt = 1
else: wt = 0
if layers1 is None:
layers1 = 20
if layers2 is None:
layers2 = 20
min1 = amin(map_target.fullMap) - 0.00001*(amax(map_target.fullMap)-amin(map_target.fullMap))
min2 = amin(map_probe.fullMap) - 0.00001*(amax(map_probe.fullMap)-amin(map_probe.fullMap))
if cmode: mic = self._MI_C(map_target.fullMap,map_probe.fullMap,layers1,layers2,wt,min1,min2)
else: mic = None
if not mic == None: return mic
# digitize whole map based on layers
map1_bin = map_target._map_digitize(map_target.min(),layers1,True)
map2_bin = map_probe._map_digitize(map_probe.min(),layers2,True)
bins1 = []
for i in range(layers1+2): bins1.append(i)
bins2 = []
for i in range(layers2+2): bins2.append(i)
# calculate frequency of bins
map1_freq = histogram(map1_bin.fullMap,bins1)[0][1:]
map2_freq = histogram(map2_bin.fullMap,bins2)[0][1:]
elif mode == 3:
# For score within masked region, the background is a bit ambiguous because low densities are overrepresented
mask_array = self._overlap_map_array(map_target,map_target_threshold,map_probe,map_probe_threshold)
if numsum(mask_array) == 0:
print('No map overlap (Mutual information score), exiting score calculation..')
return 0.0
# sturges rule provides a way of calculating number of bins : 1+math.log(number of points)
if layers1 is None:
try: layers1=int(1+math.log(numsum(mask_array),2))
except ValueError:
print('No map overlap (Mutual information score), exiting score calculation..')
return 0.0
if layers2 is None:
try: layers2=int(1+math.log(numsum(mask_array),2))
except ValueError:
print('No map overlap (Mutual information score), exiting score calculation..')
return 0.0
layers1 = max(layers1,15)
layers2 = max(layers2,15)
if weight: wt = 1
else: wt = 0
if cmode: mic = self._MI_C(nparray(map_target.fullMap*mask_array),nparray(map_probe.fullMap*mask_array),layers1,layers2,wt)
else: mic = None
if not mic == None: return mic
# digitize masked map based on layers
map1_bin = map_target.copy()
map2_bin = map_probe.copy()
map1_bin.fullMap = map1_bin.fullMap*mask_array
map2_bin.fullMap = map2_bin.fullMap*mask_array
map1_bin = map1_bin._map_digitize(map_target.fullMap[mask_array].min(),layers1,True)
map2_bin = map2_bin._map_digitize(map_probe.fullMap[mask_array].min(),layers2,True)
# make sure the outside region is filled with zeros
map1_bin.fullMap = map1_bin.fullMap*mask_array
map2_bin.fullMap = map2_bin.fullMap*mask_array
#background frequencies from the whole map
bins1 = []
for i in range(layers1+2): bins1.append(i)
bins2 = []
for i in range(layers2+2): bins2.append(i)
# calculate frequency of bins
map1_freq = histogram(map1_bin.fullMap,bins1)[0][1:]
map2_freq = histogram(map2_bin.fullMap,bins2)[0][1:]
score = 0.0
total = 0
if numsum(map1_freq) == 0:
print('No map overlap (Mutual information score), exiting score calculation..')
return 0.0
if numsum(map2_freq) == 0:
print('No map overlap (Mutual information score), exiting score calculation..')
return 0.0
list_overlaps = []
for x in range(layers1):
mask_array = map1_bin.fullMap == float(x+1)
overlap_freq = histogram(map2_bin.fullMap[mask_array],bins2)[0][1:]
total += float(numsum(overlap_freq))
list_overlaps.append(overlap_freq)
if total == 0:
print('No map overlap (Mutual information score), exiting score calculation..')
return 0.0
enter = 0
Hxy = 0.0
Hx = 0.0
Hy = 0.0
mi_score = 0.0
p_comb = 0.0
#print numsum(map1_freq), numsum(map2_freq), total
for x in range(layers1):
# probability of occurrence of x
p_m1 = map1_freq[x]/float(numsum(map1_freq))
for y in range(layers2):
enter = 1
# probability for overlap of bins x and y
p_comb = list_overlaps[x][y]/total
# probability of occurrence of y
p_m2 = map2_freq[y]/float(numsum(map2_freq))
#if p_m1 == 0.0 or p_m2 == 0.0:
# mi_score = 0.0
# continue
if p_comb == 0:
mi_score = 0.0
else:
# p_m1 and p_m2 (background probabilties can be non-zero when p_comb=0), so the entropy based definition may be used
## mi_score = p_comb*math.log(p_comb/(p_m1*p_m2), 2)
Hxy += -p_comb*math.log(p_comb, 2) # joined entropy
score += mi_score
if x == 0 and not p_m2 == 0.0: Hy += (-p_m2*math.log(p_m2, 2))
if not p_m1 == 0.0: Hx += (-p_m1*math.log(p_m1, 2))
if enter == 1:
# normalised MI (Studholme et al.) is used to account for overlap of 'contours'
# MI = Hx+Hy-Hxy & NMI = Hx+Hy/Hxy
if weight:
if Hxy == 0.0: return 0.0
return (Hx+Hy)/Hxy
return Hx+Hy-Hxy#score
else: return None
# MAIN: Faster version of MI, in the overlap region (3) or map contour (2) or complete density (1)
def _hausdorff_list(self, primary_boundary, secondary_boundary, kdtree, map_probe):
"""
This is for the chamdef distance def chamfer_distance, min max density value that define the surface of the protein
Arguments:
*kdtree* (there are 2 of them in numpy one Cbased on py-based, the latter is better, ctrl) this have to be one of the input.
kdtree from map_target
*primary_boundary, secondary_boundary* need to run get_primary_boundary and get_second_boundary for map_probe
NOTE: if you keep the kdtree as parametre out os less time consuming as building it takes time.
"""
points = map_probe.get_pos(primary_boundary, secondary_boundary)
#print "HERE POINTS",points
return kdtree.query(points)[0] #kdtree give 2 list 0=distance 1=actual points
def chamfer_distance(self, map_target, map_probe, primary_boundary, secondary_boundary, kdtree=None):
"""
Calculate the chamfer distance Score between two Map instances.
NOT RACCOMANDED.
Arguments:
*map_target, map_probe*
EMMap instances to compare.
*primary_boundary*
is the value returned by get_primary_boundary for map_probe
*secondary_boundary*
is the value returned by get_second_boundary for map_probe
*kdtree*
If set True it is possible to choose between the option of kdtree in numpy
The one that is py-based is a better choice.
"""
if self.mapComparison(map_target, map_probe):
m1, m2 = map_target, map_probe
else:
self._failed_match()
#m1,m2 = matchMaps(map_target, map_probe)
print("here")
if kdtree:
return self._hausdorff_list(primary_boundary, secondary_boundary, kdtree, m2).mean()
else:
print(m1,primary_boundary, secondary_boundary)
kdtree = m1.makeKDTree(primary_boundary, secondary_boundary) #if you don't assine it wil be build one kdtree
if kdtree==None:
print("Error. No points selected, change boundary parameters.")
sys.exit()
return self._hausdorff_list(primary_boundary, secondary_boundary, kdtree, m2).mean()#mean distance to the nearest neighbour
# CHAMFER DISTANCE SCORE based on a defined surface based on modes
def _surface_distance_score(self,map_target,map_probe,map_target_threshold1=0.0,map_probe_threshold=0.0,Filter=None,map_target_threshold2=0.0,weight=False):
"""
Calculate the chamfer distance Score between two Map instances.
Arguments:
*map_target, map_probe*
EMMap instances to compare.
*map_target_threshold1*
contour threshold of the target map.
This value is used the primary boundary if map_target_threshold2 is given.
*map_probe_threshold*
contour threshold for the probe map.
*Filter*
definition of the surface:
1) None : surface defined by known boundaries - map_target_threshold1 & map_target_threshold2
If the boundaries are not known and target&probe map contour levels are known:
2) Std : to define the boundaries, contour level +- 5%sigma is calculated.
5%sigma is used to limit the number of points picked as surface.
For small maps, higher values (eg: 10%sigma) can be used.
3) Mean: a mean filter is applied on the binary contour mask over a long window.
The resulting mask has values between 0 and 1.
Points with values less than 0.3 is used to represent surface.
As the average is calculated on a long window, highly exposed surface points \
have very low values and partially exposed surfaces/grooves have relatively higher values.
This definition is useful especially when the map surface has many features/projections.
4) Minimum: a minimum filter is applied on a binary contour mask to locate surface points.
Voxels surrounded by points outside the contour (zeroes) are detected as surface.
Voxels surrounded by points outside the contour (zeroes) are detected as surface.
5) Sobel: sobel filter is applied on the map to detect high density gradients.
Before applying the sobel filter, it is important to reduce the noise density \
and large variations (gradients) in the noise region.
*weight*
If set true, the distances between the surface points is normalized in a way similar to GDT (Zemla 2007)\
calculation for atomic co-ordinate alignments.
"""
# check if both maps are on the same grid
if not self.mapComparison(map_target, map_probe):
print("@@@ Maps could not be matched")
return -999.
# if the boundaries are known, calculate the kdtree
if Filter == None:
kdtree = map_target.makeKDTree(map_target_threshold1,map_target_threshold2)
probe_points = map_probe.get_pos(map_target_threshold1, map_target_threshold2)
# surface based on contour density thresholds for target and probe. 5% sigma is used to define boundaries.
elif Filter == 'Std':
# argwhere returns points as z,y,x, in the same way the map array dimensions are defined.
target_points = argwhere((map_target.fullMap > (float(map_target_threshold1)-(map_target.std()*0.10))) & (map_target.fullMap < (float(map_target_threshold1)+(map_target.std()*0.10))))
probe_points = argwhere((map_probe.fullMap > (float(map_probe_threshold)-(map_probe.std()*0.10))) & (map_probe.fullMap < (float(map_probe_threshold)+(map_probe.std()*0.10))))
# check whether the probe points is larger than the probe surface points. if not use the smaller one as probe point
if len(target_points) < len(probe_points):
probe_points1 = npcopy(target_points)
target_points = npcopy(probe_points)
probe_points = npcopy(probe_points1)
if len(target_points) == 0 or len(probe_points) == 0:
print ('Surface detection failed (Std filter), exiting..')
return None
try:
from scipy.spatial import cKDTree
try: kdtree = cKDTree(target_points)
except RuntimeError: return None
except ImportError:
try: kdtree = KDTree(target_points)
except RuntimeError: return None
elif Filter == 'Mean':
map1_filter = map_target._surface_features(float(map_target_threshold1))
map2_filter = map_probe._surface_features(float(map_probe_threshold))
# define surface based on the filtered mask values.
# points with values less than 0.3 are usually preferred. But in some cases like viruses, most surface points are highly exposed and \
# a large number of points are returned and the calculation becomes slow.
# Hence an additional filter is added: the maximum allowed points is 10% of box size.
# The minimum number of points is kept as 7%. This mode is less sensitive to the number of surface points chosen \
# as the extent of exposure is used for defining surface. Hence thick surface is not usually required.
# calculate frequencies in bins for filtered mask.
# The smaller the bins, more precise will be the calculation of points allowed based on percent of points chosen.
# As this is just an additional filter and doesn't affect the calculations drastically, 40 bins are used to calculate frequencies.
bin_test = [0.0001]
for ii in range(1,41): bin_test.append(0.025*ii)
freq_test = histogram(map1_filter.fullMap,bin_test)[0]
map1_filled = numsum(map1_filter.fullMap>0)
# select points with values less than 0.3
sum_freq = 0.0
for fr in range(len(freq_test)):
sum_freq += float(freq_test[fr])
# a minimum of 5% (of box size) points are chosen
if sum_freq/map1_filled > 0.05 and bin_test[fr+1] >= 0.3:
t1 = bin_test[fr+1]
break
# if number of points are more than 5% and still have values less than 0.3, a maximum limit of 10% is applied
if sum_freq/map1_filled > 0.10 or sum_freq > 200000:
t1 = bin_test[fr+1]
break
# for the second map
sum_freq = 0.0
freq_test = histogram(map2_filter.fullMap,bin_test)[0]
map2_filled = numsum(map2_filter.fullMap>0)
for fr in range(len(freq_test)):
sum_freq += float(freq_test[fr])
if sum_freq/map2_filled > 0.05 and bin_test[fr+1] >= 0.3:
t2 = bin_test[fr+1]
break
if sum_freq/map2_filled > 0.10 or sum_freq > 200000:
t2 = bin_test[fr+1]
break
# t1 and t2 are the selected levels based on filtered values and percent of points
target_points = argwhere((map1_filter.fullMap > 0.0) & (map1_filter.fullMap <= t1))
probe_points = argwhere((map2_filter.fullMap > 0.0) & (map2_filter.fullMap <= t2))
if len(target_points) == 0 or len(probe_points) == 0:
print('Surface detection failed (Mean filter), exiting..')
return None
#print len(target_points), len(probe_points), t1, t2
# check whether the probe points is larger than the probe surface points. if not use the smaller one as probe point
if len(target_points) < len(probe_points):
probe_points1 = npcopy(target_points)
target_points = npcopy(probe_points)
probe_points = npcopy(probe_points1)
try:
from scipy.spatial import cKDTree
try: kdtree = cKDTree(target_points)
except RuntimeError: return None
except ImportError:
try: kdtree = KDTree(target_points)
except RuntimeError: return None
elif Filter == 'Minimum':
map1_surface = map_target._surface_minimum_filter(float(map_target_threshold1))
map2_surface = map_probe._surface_minimum_filter(float(map_probe_threshold))
# select the surface points represented by the mask
target_points = argwhere(map1_surface == 1)
probe_points = argwhere(map2_surface == 1)
if len(target_points) == 0 or len(probe_points) == 0:
print('Surface detection failed (Minimum filter), exiting..')
return None
#print len(target_points), len(probe_points)
# stop if the number of points are large
if len(target_points) + len(probe_points) > 250000: return None
# check whether the probe points is larger than the probe surface points. if not use the smaller one as probe point
if len(target_points) < len(probe_points):
probe_points1 = npcopy(target_points)
target_points = npcopy(probe_points)
probe_points = npcopy(probe_points1)
try:
from scipy.spatial import cKDTree
try: kdtree = cKDTree(target_points)
except RuntimeError: return None
except ImportError:
try: kdtree = KDTree(target_points)
except RuntimeError: return None
# surface based on sobel filter on contoured map, high gradient points chosen
elif Filter == 'Sobel':
map1_surface = map_target._sobel_filter_contour(float(map_target_threshold1))
map2_surface = map_probe._sobel_filter_contour(float(map_probe_threshold))
target_points = argwhere(map1_surface.fullMap > map1_surface.max()/float(2))
probe_points = argwhere(map2_surface.fullMap > map2_surface.max()/float(2))
if len(target_points) == 0 or len(probe_points) == 0:
print('Surface detection failed (Sobel filter), exiting..')
return None
#print len(target_points), len(probe_points)
# check whether the probe points is larger than the probe surface points. if not use the smaller one as probe point
if len(target_points) < len(probe_points):
probe_points1 = npcopy(target_points)
target_points = npcopy(probe_points)
probe_points = npcopy(probe_points1)
try:
from scipy.spatial import cKDTree
try: kdtree = cKDTree(target_points)
except RuntimeError: return None
except ImportError:
try: kdtree = KDTree(target_points)
except RuntimeError: return None
distances = kdtree.query(probe_points)[0]
#print distances
#print npmean(distances)
# by default return mean distance, 1/npmean(distances) gives a similarity score
if len(distances) == 0: return None
if not weight:
if not npmean(distances) <= 0.05: return 1/npmean(distances)
# becomes inf if mean(dist) is 0. Max score of 20 (will be changed later)
else: return 1/0.05
x = int(30.0/map_target.apix) # 40A selected as potential distance threshold to calculate weighted score
if amin(distances) < x/2: distances = distances - | amin(distances) | numpy.amin |
import random
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
import time
import datetime
class Engine:
def __init__(self):
pass
def loss_fn(self, outputs, targets):
return nn.BCEWithLogitsLoss()(outputs, targets.view(-1, 6))
def accuracy_threshold(self, y_pred, y_true, thresh: float = 0.5, sigmoid: bool = True):
if sigmoid:
y_pred = y_pred.sigmoid()
return ((y_pred > thresh) == y_true.byte()).float().mean().item()
def set_seed(self, seed_value=42):
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
def train_fn(self, data_loader, model, optimizer, device, schedular):
print("Starting training...\n")
# Reset the total loss for this epoch.
total_loss, batch_loss, batch_counts = 0, 0, 0
t0_epoch, t0_batch = time.time(), time.time()
model.train()
for step, data in tqdm(enumerate(data_loader), total=len(data_loader)):
batch_counts += 1
b_input_ids = data['input_ids']
b_attn_mask = data['attention_mask']
b_labels = data['targets']
# moving tensors to device
b_input_ids = b_input_ids.to(device)
b_attn_mask = b_attn_mask.to(device)
b_labels = b_labels.to(device)
# optimizer.zero_grad()
# Always clear any previously calculated gradients before performing a
# backward pass. PyTorch doesn't do this automatically because
# accumulating the gradients is "convenient while training RNNs".
# (source: https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch)
model.zero_grad()
logits = model(b_input_ids, b_attn_mask)
loss = self.loss_fn(logits, b_labels.float())
batch_loss += loss.item()
# Accumulate the training loss over all of the batches so that we can
# calculate the average loss at the end. `loss` is a Tensor containing a
# single value; the `.item()` function just returns the Python value
# from the tensor.
total_loss += loss.item()
# Perform a backward pass to calculate the gradients.
loss.backward()
# Clip the norm of the gradients to 1.0.
# This is to help prevent the "exploding gradients" problem.
nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# Update parameters and take a step using the computed gradient.
# The optimizer dictates the "update rule"--how the parameters are
# modified based on their gradients, the learning rate, etc
optimizer.step()
# Update the learning rate
schedular.step()
if step % 200 == 0 and not step == 0:
# Calculate elapsed time in minutes.
elapsed = self.format_time(time.time() - t0_epoch)
# Report progress.
print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(data_loader), elapsed))
# Calculate the average loss over all of the batches.
avg_train_loss = total_loss / len(data_loader)
# Measure how long this epoch took.
training_time = self.format_time(time.time() - t0_epoch)
print("")
print(" Average training loss: {0:.2f}".format(avg_train_loss))
print(" Training epoch took: {:}".format(training_time))
def eval_fn(self, data_loader, model, device):
print("Starting evaluation...\n")
t0 = time.time()
model.eval()
val_accuracy = []
val_loss = []
with torch.no_grad():
for step, data in tqdm(enumerate(data_loader), total=len(data_loader)):
b_input_ids = data['input_ids']
b_attn_mask = data['attention_mask']
b_labels = data['targets']
# moving tensors to device
b_input_ids = b_input_ids.to(device)
b_attn_mask = b_attn_mask.to(device)
b_labels = b_labels.to(device)
logits = model(b_input_ids, b_attn_mask)
loss = self.loss_fn(logits, b_labels.float())
val_loss.append(loss.item())
accuracy = self.accuracy_threshold(logits.view(-1, 6), b_labels.view(-1, 6))
val_accuracy.append(accuracy)
val_loss = | np.mean(val_loss) | numpy.mean |
# coding: utf-8
# # testAPI_propane
#
# Created by <NAME> 2017-06-22
#
#
# ### Imports
# In[ ]:
import itertools
import string
import os
import numpy as np
import matplotlib.pyplot as plt
get_ipython().magic('matplotlib inline')
from msibi import MSIBI, State, Pair, mie
import mdtraj as md
# ## PROPANE - edition (code to be expanded) ==============================
#
# Where the real magic happens
# In[ ]:
t = md.load('traj_unwrapped.dcd', top='start_aa.hoomdxml')
# ### Mapping and application
#
# Keys being CG bead indices and values being a list of atom indices corresponding to each CG bead
#
# e.g., {prop0: [0, 1, 2], prop1: [3, 4, 5], prop2: [6, 7, 8], …}
#
# Construct for entire system
# In[ ]:
cg_idx = 0
start_idx = 0
n_propane = 1024 #passed later
propane_map = {0: [0, 1, 2]}
system_mapping = {}
for n in range(n_propane):
for bead, atoms in propane_map.items():
system_mapping[cg_idx] = [x + start_idx for x in atoms]
start_idx += len(atoms)
cg_idx += 1
# print(system_mapping)
# With mapping for whole system, apply to all atom trajectory
# In[ ]:
from mdtraj.core import element
list(t.top.atoms)[0].element = element.carbon
list(t.top.atoms)[0].element.mass
for atom in t.top.atoms:
atom.element = element.carbon
# In[ ]:
cg_xyz = np.empty((t.n_frames, len(system_mapping), 3))
for cg_bead, aa_indices in system_mapping.items():
cg_xyz[:, cg_bead, :] = md.compute_center_of_mass(t.atom_slice(aa_indices))
# print(cg_xyz)
# ### Traj & Obj
#
# * Create new Trajectory object & CG Topology object
#
# * Save resultant trajectory file
# In[ ]:
cg_top = md.Topology()
for cg_bead in system_mapping.keys():
cg_top.add_atom('carbon', element.virtual_site, cg_top.add_residue('A', cg_top.add_chain()))
cg_traj = md.Trajectory(cg_xyz, cg_top, time=None, unitcell_lengths=t.unitcell_lengths, unitcell_angles=t.unitcell_angles)
cg_traj.save_dcd('cg_traj.dcd')
# print(cg_traj)
# print(cg_top)
# print(cg_xyz)
# ### Calculate RDF and save
# In[ ]:
pairs = cg_traj.top.select_pairs(selection1='name "carbon"', selection2='name "carbon"')
# mdtraj.compute_rdf(traj, pairs=None, r_range=None, bin_width=0.005, n_bins=None, periodic=True, opt=True)
r, g_r = md.compute_rdf(cg_traj, pairs=pairs, r_range=(0, 1.2), bin_width=0.005)
np.savetxt('rdfs_aa.txt', | np.transpose([r, g_r]) | numpy.transpose |
from causal_discovery_utils import constraint_based
from .basic_equivalance_class_graph import MixedGraph
from .partially_dag import PDAG
from . import arrow_head_types as Mark
from itertools import combinations
import numpy as np
class PAG(MixedGraph):
"""
Partial Ancestral Graph. It has three arrow-head/edge-mark types: 'circle', 'undirected', and 'directed',
and six edge types: o--o, o---, o-->, --->, <-->, and ----
"""
def __init__(self, nodes_set):
super().__init__(nodes_set, [Mark.Circle, Mark.Directed, Mark.Tail])
self.sepset = constraint_based.SeparationSet(nodes_set)
self.visible_edges = None # a set of visible edges, where each element is a tuple: (parent, child)
self.orientation_rules = {
1: self.orient_by_rule_1,
2: self.orient_by_rule_2,
3: self.orient_by_rule_3,
4: self.orient_by_rule_4,
5: self.orient_by_rule_5, # when selection bias may be present
6: self.orient_by_rule_6, # when selection bias may be present
7: self.orient_by_rule_7, # when selection bias may be present
8: self.orient_by_rule_8, # required for tail-completeness
9: self.orient_by_rule_9, # required for tail-completeness
10: self.orient_by_rule_10, # required for tail-completeness
}
def init_from_adj_mat(self, adj_mat: np.ndarray, nodes_order: list = None):
"""
creates a PAG from a given adjacency matrix.
:param adj_mat: a square numpy matrix.
an edge a --* b has the following coding:
adj_mat[a,b] = 0 implies a b (no edge)
adj_mat[a,b] = 1 implies a --o b (Circle marker on node b)
adj_mat[a,b] = 2 implies a --> b (Arrowhead marker on node b)
adj_mat[a,b] = 3 implies a --- b (Tail marker on node b)
:param nodes_order: nodes ids. if set to None (default) then using sorted(nodes_set) as nodes ids.
:return:
"""
assert adj_mat.ndim == 2
assert adj_mat.shape[0] == adj_mat.shape[1]
assert np.sum(adj_mat < 0) == 0 and np.sum(adj_mat > 3) == 0
num_vars = adj_mat.shape[0]
if nodes_order is not None:
assert isinstance(nodes_order, list)
assert num_vars == len(nodes_order)
else:
nodes_order = sorted(self.nodes_set)
self.create_empty_graph() # delete all pre-existing edges
# conversion mapping
arrow_type_map = dict()
arrow_type_map[0] = 0
arrow_type_map[1] = Mark.Circle
arrow_type_map[2] = Mark.Directed
arrow_type_map[3] = Mark.Tail
for node_i in range(num_vars):
for node_j in range(num_vars):
if adj_mat[node_i, node_j] > 0:
arrow_type = arrow_type_map[adj_mat[node_i, node_j]] # edge mark node_i ---[*] node_j
self._graph[nodes_order[node_j]][arrow_type].add(nodes_order[node_i]) # add to node_j edge mark [*]
def get_adj_mat(self):
"""
converts a PAG to an adjacency matrix with the following coding:
0: No edge
1: Circle
2: Arrowhead
3: Tail
:return: a square numpy matrix format.
"""
num_vars = len(self.nodes_set)
adj_mat = | np.zeros((num_vars, num_vars), dtype=int) | numpy.zeros |
# -*- coding: utf-8 -*-
"""
pysteps.postprocessing.ensemblestats
====================================
Methods for the computation of ensemble statistics.
.. autosummary::
:toctree: ../generated/
mean
excprob
banddepth
"""
import numpy as np
from scipy.special import comb
def mean(X, ignore_nan=False, X_thr=None):
"""
Compute the mean value from a forecast ensemble field.
Parameters
----------
X: array_like
Array of shape (k, m, n) containing a k-member ensemble of forecast
fields of shape (m, n).
ignore_nan: bool
If True, ignore nan values.
X_thr: float
Optional threshold for computing the ensemble mean.
Values below **X_thr** are ignored.
Returns
-------
out: ndarray
Array of shape (m, n) containing the ensemble mean.
"""
X = np.asanyarray(X)
X_ndim = X.ndim
if X_ndim > 3 or X_ndim <= 1:
raise Exception(
"Number of dimensions of X should be 2 or 3." + "It was: {}".format(X_ndim)
)
elif X.ndim == 2:
X = X[None, ...]
if ignore_nan or X_thr is not None:
if X_thr is not None:
X = X.copy()
X[X < X_thr] = np.nan
return np.nanmean(X, axis=0)
else:
return np.mean(X, axis=0)
def excprob(X, X_thr, ignore_nan=False):
"""
For a given forecast ensemble field, compute exceedance probabilities
for the given intensity thresholds.
Parameters
----------
X: array_like
Array of shape (k, m, n, ...) containing an k-member ensemble of
forecasts with shape (m, n, ...).
X_thr: float or a sequence of floats
Intensity threshold(s) for which the exceedance probabilities are
computed.
ignore_nan: bool
If True, ignore nan values.
Returns
-------
out: ndarray
Array of shape (len(X_thr), m, n) containing the exceedance
probabilities for the given intensity thresholds.
If len(X_thr)=1, the first dimension is dropped.
"""
# Checks
X = np.asanyarray(X)
X_ndim = X.ndim
if X_ndim < 3:
raise Exception(
f"Number of dimensions of X should be 3 or more. It was: {X_ndim}"
)
P = []
if np.isscalar(X_thr):
X_thr = [X_thr]
scalar_thr = True
else:
scalar_thr = False
for x in X_thr:
X_ = X.copy()
X_[X >= x] = 1.0
X_[X < x] = 0.0
X_[~np.isfinite(X)] = np.nan
if ignore_nan:
P.append(np.nanmean(X_, axis=0))
else:
P.append(np.mean(X_, axis=0))
if not scalar_thr:
return np.stack(P)
else:
return P[0]
def banddepth(X, thr=None, norm=False):
"""
Compute the modified band depth (Lopez-Pintado and Romo, 2009) for a
k-member ensemble data set.
Implementation of the exact fast algorithm for computing the modified band
depth as described in Sun et al (2012).
Parameters
----------
X: array_like
Array of shape (k, m, ...) representing an ensemble of *k* members
(i.e., samples) with shape (m, ...).
thr: float
Optional threshold for excluding pixels that have no samples equal or
above the **thr** value.
Returns
-------
out: array_like
Array of shape *k* containing the (normalized) band depth values for
each ensemble member.
References
----------
Lopez-Pintado, Sara, and <NAME>. 2009. "On the Concept of Depth for
Functional Data." Journal of the American Statistical Association
104 (486): 718–34. https://doi.org/10.1198/jasa.2009.0108.
Sun, Ying, <NAME>, and <NAME>. 2012. "Exact Fast
Computation of Band Depth for Large Functional Datasets: How Quickly Can
One Million Curves Be Ranked?" Stat 1 (1): 68–74.
https://doi.org/10.1002/sta4.8.
"""
# mask invalid pixels
if thr is None:
thr = np.nanmin(X)
mask = np.logical_and(np.all(np.isfinite(X), axis=0), np.any(X >= thr, axis=0))
n = X.shape[0]
p = | np.sum(mask) | numpy.sum |
from .. import LinearExplainer
from .. import KernelExplainer
from .. import SamplingExplainer
from ..explainers import other
from .. import __version__
from . import measures
from . import methods
import sklearn
import numpy as np
import copy
import functools
import time
import hashlib
import os
try:
import dill as pickle
except Exception:
pass
try:
from sklearn.model_selection import train_test_split
except Exception:
from sklearn.cross_validation import train_test_split
def runtime(X, y, model_generator, method_name):
""" Runtime (sec / 1k samples)
transform = "negate_log"
sort_order = 2
"""
old_seed = np.random.seed()
np.random.seed(3293)
# average the method scores over several train/test splits
method_reps = []
for i in range(3):
X_train, X_test, y_train, _ = train_test_split(__toarray(X), y, test_size=100, random_state=i)
# define the model we are going to explain
model = model_generator()
model.fit(X_train, y_train)
# evaluate each method
start = time.time()
explainer = getattr(methods, method_name)(model, X_train)
build_time = time.time() - start
start = time.time()
explainer(X_test)
explain_time = time.time() - start
# we always normalize the explain time as though we were explaining 1000 samples
# even if to reduce the runtime of the benchmark we do less (like just 100)
method_reps.append(build_time + explain_time * 1000.0 / X_test.shape[0])
np.random.seed(old_seed)
return None, np.mean(method_reps)
def local_accuracy(X, y, model_generator, method_name):
""" Local Accuracy
transform = "identity"
sort_order = 0
"""
def score_map(true, pred):
""" Computes local accuracy as the normalized standard deviation of numerical scores.
"""
return np.std(pred - true) / (np.std(true) + 1e-6)
def score_function(X_train, X_test, y_train, y_test, attr_function, trained_model, random_state):
return measures.local_accuracy(
X_train, y_train, X_test, y_test, attr_function(X_test),
model_generator, score_map, trained_model
)
return None, __score_method(X, y, None, model_generator, score_function, method_name)
def consistency_guarantees(X, y, model_generator, method_name):
""" Consistency Guarantees
transform = "identity"
sort_order = 1
"""
# 1.0 - perfect consistency
# 0.8 - guarantees depend on sampling
# 0.6 - guarantees depend on approximation
# 0.0 - no garuntees
guarantees = {
"linear_shap_corr": 1.0,
"linear_shap_ind": 1.0,
"coef": 0.0,
"kernel_shap_1000_meanref": 0.8,
"sampling_shap_1000": 0.8,
"random": 0.0,
"saabas": 0.0,
"tree_gain": 0.0,
"tree_shap_tree_path_dependent": 1.0,
"tree_shap_independent_200": 1.0,
"mean_abs_tree_shap": 1.0,
"lime_tabular_regression_1000": 0.8,
"lime_tabular_classification_1000": 0.8,
"maple": 0.8,
"tree_maple": 0.8,
"deep_shap": 0.6,
"expected_gradients": 0.6
}
return None, guarantees[method_name]
def __mean_pred(true, pred):
""" A trivial metric that is just is the output of the model.
"""
return np.mean(pred)
def keep_positive_mask(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Positive (mask)
xlabel = "Max fraction of features kept"
ylabel = "Mean model output"
transform = "identity"
sort_order = 4
"""
return __run_measure(measures.keep_mask, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred)
def keep_negative_mask(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Negative (mask)
xlabel = "Max fraction of features kept"
ylabel = "Negative mean model output"
transform = "negate"
sort_order = 5
"""
return __run_measure(measures.keep_mask, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred)
def keep_absolute_mask__r2(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Absolute (mask)
xlabel = "Max fraction of features kept"
ylabel = "R^2"
transform = "identity"
sort_order = 6
"""
return __run_measure(measures.keep_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score)
def keep_absolute_mask__roc_auc(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Absolute (mask)
xlabel = "Max fraction of features kept"
ylabel = "ROC AUC"
transform = "identity"
sort_order = 6
"""
return __run_measure(measures.keep_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score)
def remove_positive_mask(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Positive (mask)
xlabel = "Max fraction of features removed"
ylabel = "Negative mean model output"
transform = "negate"
sort_order = 7
"""
return __run_measure(measures.remove_mask, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred)
def remove_negative_mask(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Negative (mask)
xlabel = "Max fraction of features removed"
ylabel = "Mean model output"
transform = "identity"
sort_order = 8
"""
return __run_measure(measures.remove_mask, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred)
def remove_absolute_mask__r2(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Absolute (mask)
xlabel = "Max fraction of features removed"
ylabel = "1 - R^2"
transform = "one_minus"
sort_order = 9
"""
return __run_measure(measures.remove_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score)
def remove_absolute_mask__roc_auc(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Absolute (mask)
xlabel = "Max fraction of features removed"
ylabel = "1 - ROC AUC"
transform = "one_minus"
sort_order = 9
"""
return __run_measure(measures.remove_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score)
def keep_positive_resample(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Positive (resample)
xlabel = "Max fraction of features kept"
ylabel = "Mean model output"
transform = "identity"
sort_order = 10
"""
return __run_measure(measures.keep_resample, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred)
def keep_negative_resample(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Negative (resample)
xlabel = "Max fraction of features kept"
ylabel = "Negative mean model output"
transform = "negate"
sort_order = 11
"""
return __run_measure(measures.keep_resample, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred)
def keep_absolute_resample__r2(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Absolute (resample)
xlabel = "Max fraction of features kept"
ylabel = "R^2"
transform = "identity"
sort_order = 12
"""
return __run_measure(measures.keep_resample, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score)
def keep_absolute_resample__roc_auc(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Absolute (resample)
xlabel = "Max fraction of features kept"
ylabel = "ROC AUC"
transform = "identity"
sort_order = 12
"""
return __run_measure(measures.keep_resample, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score)
def remove_positive_resample(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Positive (resample)
xlabel = "Max fraction of features removed"
ylabel = "Negative mean model output"
transform = "negate"
sort_order = 13
"""
return __run_measure(measures.remove_resample, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred)
def remove_negative_resample(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Negative (resample)
xlabel = "Max fraction of features removed"
ylabel = "Mean model output"
transform = "identity"
sort_order = 14
"""
return __run_measure(measures.remove_resample, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred)
def remove_absolute_resample__r2(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Absolute (resample)
xlabel = "Max fraction of features removed"
ylabel = "1 - R^2"
transform = "one_minus"
sort_order = 15
"""
return __run_measure(measures.remove_resample, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score)
def remove_absolute_resample__roc_auc(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Absolute (resample)
xlabel = "Max fraction of features removed"
ylabel = "1 - ROC AUC"
transform = "one_minus"
sort_order = 15
"""
return __run_measure(measures.remove_resample, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score)
def keep_positive_impute(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Positive (impute)
xlabel = "Max fraction of features kept"
ylabel = "Mean model output"
transform = "identity"
sort_order = 16
"""
return __run_measure(measures.keep_impute, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred)
def keep_negative_impute(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Negative (impute)
xlabel = "Max fraction of features kept"
ylabel = "Negative mean model output"
transform = "negate"
sort_order = 17
"""
return __run_measure(measures.keep_impute, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred)
def keep_absolute_impute__r2(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Absolute (impute)
xlabel = "Max fraction of features kept"
ylabel = "R^2"
transform = "identity"
sort_order = 18
"""
return __run_measure(measures.keep_impute, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score)
def keep_absolute_impute__roc_auc(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Absolute (impute)
xlabel = "Max fraction of features kept"
ylabel = "ROC AUC"
transform = "identity"
sort_order = 19
"""
return __run_measure(measures.keep_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score)
def remove_positive_impute(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Positive (impute)
xlabel = "Max fraction of features removed"
ylabel = "Negative mean model output"
transform = "negate"
sort_order = 7
"""
return __run_measure(measures.remove_impute, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred)
def remove_negative_impute(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Negative (impute)
xlabel = "Max fraction of features removed"
ylabel = "Mean model output"
transform = "identity"
sort_order = 8
"""
return __run_measure(measures.remove_impute, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred)
def remove_absolute_impute__r2(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Absolute (impute)
xlabel = "Max fraction of features removed"
ylabel = "1 - R^2"
transform = "one_minus"
sort_order = 9
"""
return __run_measure(measures.remove_impute, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score)
def remove_absolute_impute__roc_auc(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Absolute (impute)
xlabel = "Max fraction of features removed"
ylabel = "1 - ROC AUC"
transform = "one_minus"
sort_order = 9
"""
return __run_measure(measures.remove_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score)
def keep_positive_retrain(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Positive (retrain)
xlabel = "Max fraction of features kept"
ylabel = "Mean model output"
transform = "identity"
sort_order = 6
"""
return __run_measure(measures.keep_retrain, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred)
def keep_negative_retrain(X, y, model_generator, method_name, num_fcounts=11):
""" Keep Negative (retrain)
xlabel = "Max fraction of features kept"
ylabel = "Negative mean model output"
transform = "negate"
sort_order = 7
"""
return __run_measure(measures.keep_retrain, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred)
def remove_positive_retrain(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Positive (retrain)
xlabel = "Max fraction of features removed"
ylabel = "Negative mean model output"
transform = "negate"
sort_order = 11
"""
return __run_measure(measures.remove_retrain, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred)
def remove_negative_retrain(X, y, model_generator, method_name, num_fcounts=11):
""" Remove Negative (retrain)
xlabel = "Max fraction of features removed"
ylabel = "Mean model output"
transform = "identity"
sort_order = 12
"""
return __run_measure(measures.remove_retrain, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred)
def __run_measure(measure, X, y, model_generator, method_name, attribution_sign, num_fcounts, summary_function):
def score_function(fcount, X_train, X_test, y_train, y_test, attr_function, trained_model, random_state):
if attribution_sign == 0:
A = np.abs(__strip_list(attr_function(X_test)))
else:
A = attribution_sign * __strip_list(attr_function(X_test))
nmask = np.ones(len(y_test)) * fcount
nmask = np.minimum(nmask, np.array(A >= 0).sum(1)).astype(np.int)
return measure(
nmask, X_train, y_train, X_test, y_test, A,
model_generator, summary_function, trained_model, random_state
)
fcounts = __intlogspace(0, X.shape[1], num_fcounts)
return fcounts, __score_method(X, y, fcounts, model_generator, score_function, method_name)
def batch_remove_absolute_retrain__r2(X, y, model_generator, method_name, num_fcounts=11):
""" Batch Remove Absolute (retrain)
xlabel = "Fraction of features removed"
ylabel = "1 - R^2"
transform = "one_minus"
sort_order = 13
"""
return __run_batch_abs_metric(measures.batch_remove_retrain, X, y, model_generator, method_name, sklearn.metrics.r2_score, num_fcounts)
def batch_keep_absolute_retrain__r2(X, y, model_generator, method_name, num_fcounts=11):
""" Batch Keep Absolute (retrain)
xlabel = "Fraction of features kept"
ylabel = "R^2"
transform = "identity"
sort_order = 13
"""
return __run_batch_abs_metric(measures.batch_keep_retrain, X, y, model_generator, method_name, sklearn.metrics.r2_score, num_fcounts)
def batch_remove_absolute_retrain__roc_auc(X, y, model_generator, method_name, num_fcounts=11):
""" Batch Remove Absolute (retrain)
xlabel = "Fraction of features removed"
ylabel = "1 - ROC AUC"
transform = "one_minus"
sort_order = 13
"""
return __run_batch_abs_metric(measures.batch_remove_retrain, X, y, model_generator, method_name, sklearn.metrics.roc_auc_score, num_fcounts)
def batch_keep_absolute_retrain__roc_auc(X, y, model_generator, method_name, num_fcounts=11):
""" Batch Keep Absolute (retrain)
xlabel = "Fraction of features kept"
ylabel = "ROC AUC"
transform = "identity"
sort_order = 13
"""
return __run_batch_abs_metric(measures.batch_keep_retrain, X, y, model_generator, method_name, sklearn.metrics.roc_auc_score, num_fcounts)
def __run_batch_abs_metric(metric, X, y, model_generator, method_name, loss, num_fcounts):
def score_function(fcount, X_train, X_test, y_train, y_test, attr_function, trained_model):
A_train = np.abs(__strip_list(attr_function(X_train)))
nkeep_train = (np.ones(len(y_train)) * fcount).astype(np.int)
#nkeep_train = np.minimum(nkeep_train, np.array(A_train > 0).sum(1)).astype(np.int)
A_test = np.abs(__strip_list(attr_function(X_test)))
nkeep_test = (np.ones(len(y_test)) * fcount).astype(np.int)
#nkeep_test = np.minimum(nkeep_test, np.array(A_test >= 0).sum(1)).astype(np.int)
return metric(
nkeep_train, nkeep_test, X_train, y_train, X_test, y_test, A_train, A_test,
model_generator, loss
)
fcounts = __intlogspace(0, X.shape[1], num_fcounts)
return fcounts, __score_method(X, y, fcounts, model_generator, score_function, method_name)
_attribution_cache = {}
def __score_method(X, y, fcounts, model_generator, score_function, method_name, nreps=10, test_size=100, cache_dir="/tmp"):
""" Test an explanation method.
"""
try: pickle
except NameError: assert False, "The 'dill' package could not be loaded and is needed for the benchmark!"
old_seed = np.random.seed()
np.random.seed(3293)
# average the method scores over several train/test splits
method_reps = []
data_hash = hashlib.sha256(__toarray(X).flatten()).hexdigest() + hashlib.sha256(__toarray(y)).hexdigest()
for i in range(nreps):
X_train, X_test, y_train, y_test = train_test_split(__toarray(X), y, test_size=test_size, random_state=i)
# define the model we are going to explain, caching so we onlu build it once
model_id = "model_cache__v" + "__".join([__version__, data_hash, model_generator.__name__])+".pickle"
cache_file = os.path.join(cache_dir, model_id + ".pickle")
if os.path.isfile(cache_file):
with open(cache_file, "rb") as f:
model = pickle.load(f)
else:
model = model_generator()
model.fit(X_train, y_train)
with open(cache_file, "wb") as f:
pickle.dump(model, f)
attr_key = "_".join([model_generator.__name__, method_name, str(test_size), str(nreps), str(i), data_hash])
def score(attr_function):
def cached_attr_function(X_inner):
if attr_key not in _attribution_cache:
_attribution_cache[attr_key] = attr_function(X_inner)
return _attribution_cache[attr_key]
#cached_attr_function = lambda X: __check_cache(attr_function, X)
if fcounts is None:
return score_function(X_train, X_test, y_train, y_test, cached_attr_function, model, i)
else:
scores = []
for f in fcounts:
scores.append(score_function(f, X_train, X_test, y_train, y_test, cached_attr_function, model, i))
return np.array(scores)
# evaluate the method (only building the attribution function if we need to)
if attr_key not in _attribution_cache:
method_reps.append(score(getattr(methods, method_name)(model, X_train)))
else:
method_reps.append(score(None))
np.random.seed(old_seed)
return np.array(method_reps).mean(0)
# used to memoize explainer functions so we don't waste time re-explaining the same object
__cache0 = None
__cache_X0 = None
__cache_f0 = None
__cache1 = None
__cache_X1 = None
__cache_f1 = None
def __check_cache(f, X):
global __cache0, __cache_X0, __cache_f0
global __cache1, __cache_X1, __cache_f1
if X is __cache_X0 and f is __cache_f0:
return __cache0
elif X is __cache_X1 and f is __cache_f1:
return __cache1
else:
__cache_f1 = __cache_f0
__cache_X1 = __cache_X0
__cache1 = __cache0
__cache_f0 = f
__cache_X0 = X
__cache0 = f(X)
return __cache0
def __intlogspace(start, end, count):
return np.unique(np.round(start + (end-start) * (np.logspace(0, 1, count, endpoint=True) - 1) / 9).astype(np.int))
def __toarray(X):
""" Converts DataFrames to numpy arrays.
"""
if hasattr(X, "values"):
X = X.values
return X
def __strip_list(attrs):
""" This assumes that if you have a list of outputs you just want the second one (the second class).
"""
if isinstance(attrs, list):
return attrs[1]
else:
return attrs
def _fit_human(model_generator, val00, val01, val11):
# force the model to fit a function with almost entirely zero background
N = 1000000
M = 3
X = np.zeros((N,M))
X.shape
y = np.ones(N) * val00
X[0:1000, 0] = 1
y[0:1000] = val01
for i in range(0,1000000,1000):
X[i, 1] = 1
y[i] = val01
y[0] = val11
model = model_generator()
model.fit(X, y)
return model
def _human_and(X, model_generator, method_name, fever, cough):
assert np.abs(X).max() == 0, "Human agreement metrics are only for use with the human_agreement dataset!"
# these are from the sickness_score mturk user study experiement
X_test = np.zeros((100,3))
if not fever and not cough:
human_consensus = np.array([0., 0., 0.])
X_test[0,:] = np.array([[0., 0., 1.]])
elif not fever and cough:
human_consensus = np.array([0., 2., 0.])
X_test[0,:] = np.array([[0., 1., 1.]])
elif fever and cough:
human_consensus = np.array([5., 5., 0.])
X_test[0,:] = np.array([[1., 1., 1.]])
# force the model to fit an XOR function with almost entirely zero background
model = _fit_human(model_generator, 0, 2, 10)
attr_function = getattr(methods, method_name)(model, X)
methods_attrs = attr_function(X_test)
return "human", (human_consensus, methods_attrs[0,:])
def human_and_00(X, y, model_generator, method_name):
""" AND (false/false)
This tests how well a feature attribution method agrees with human intuition
for an AND operation combined with linear effects. This metric deals
specifically with the question of credit allocation for the following function
when all three inputs are true:
if fever: +2 points
if cough: +2 points
if fever and cough: +6 points
transform = "identity"
sort_order = 0
"""
return _human_and(X, model_generator, method_name, False, False)
def human_and_01(X, y, model_generator, method_name):
""" AND (false/true)
This tests how well a feature attribution method agrees with human intuition
for an AND operation combined with linear effects. This metric deals
specifically with the question of credit allocation for the following function
when all three inputs are true:
if fever: +2 points
if cough: +2 points
if fever and cough: +6 points
transform = "identity"
sort_order = 1
"""
return _human_and(X, model_generator, method_name, False, True)
def human_and_11(X, y, model_generator, method_name):
""" AND (true/true)
This tests how well a feature attribution method agrees with human intuition
for an AND operation combined with linear effects. This metric deals
specifically with the question of credit allocation for the following function
when all three inputs are true:
if fever: +2 points
if cough: +2 points
if fever and cough: +6 points
transform = "identity"
sort_order = 2
"""
return _human_and(X, model_generator, method_name, True, True)
def _human_or(X, model_generator, method_name, fever, cough):
assert np.abs(X).max() == 0, "Human agreement metrics are only for use with the human_agreement dataset!"
# these are from the sickness_score mturk user study experiement
X_test = np.zeros((100,3))
if not fever and not cough:
human_consensus = np.array([0., 0., 0.])
X_test[0,:] = np.array([[0., 0., 1.]])
elif not fever and cough:
human_consensus = np.array([0., 8., 0.])
X_test[0,:] = np.array([[0., 1., 1.]])
elif fever and cough:
human_consensus = np.array([5., 5., 0.])
X_test[0,:] = np.array([[1., 1., 1.]])
# force the model to fit an XOR function with almost entirely zero background
model = _fit_human(model_generator, 0, 8, 10)
attr_function = getattr(methods, method_name)(model, X)
methods_attrs = attr_function(X_test)
return "human", (human_consensus, methods_attrs[0,:])
def human_or_00(X, y, model_generator, method_name):
""" OR (false/false)
This tests how well a feature attribution method agrees with human intuition
for an OR operation combined with linear effects. This metric deals
specifically with the question of credit allocation for the following function
when all three inputs are true:
if fever: +2 points
if cough: +2 points
if fever or cough: +6 points
transform = "identity"
sort_order = 0
"""
return _human_or(X, model_generator, method_name, False, False)
def human_or_01(X, y, model_generator, method_name):
""" OR (false/true)
This tests how well a feature attribution method agrees with human intuition
for an OR operation combined with linear effects. This metric deals
specifically with the question of credit allocation for the following function
when all three inputs are true:
if fever: +2 points
if cough: +2 points
if fever or cough: +6 points
transform = "identity"
sort_order = 1
"""
return _human_or(X, model_generator, method_name, False, True)
def human_or_11(X, y, model_generator, method_name):
""" OR (true/true)
This tests how well a feature attribution method agrees with human intuition
for an OR operation combined with linear effects. This metric deals
specifically with the question of credit allocation for the following function
when all three inputs are true:
if fever: +2 points
if cough: +2 points
if fever or cough: +6 points
transform = "identity"
sort_order = 2
"""
return _human_or(X, model_generator, method_name, True, True)
def _human_xor(X, model_generator, method_name, fever, cough):
assert np.abs(X).max() == 0, "Human agreement metrics are only for use with the human_agreement dataset!"
# these are from the sickness_score mturk user study experiement
X_test = np.zeros((100,3))
if not fever and not cough:
human_consensus = np.array([0., 0., 0.])
X_test[0,:] = np.array([[0., 0., 1.]])
elif not fever and cough:
human_consensus = | np.array([0., 8., 0.]) | numpy.array |
# Resizing the testing images
import os
import warnings
from multiprocessing import Pool
import cv2
import numpy as np
from PIL import Image
from tqdm import tqdm
def trim(im):
"""
Converts image to grayscale using cv2, then computes binary matrix
of the pixels that are above a certain threshold, then takes out
the first row where a certain percetage of the pixels are above the
threshold will be the first clip point. Same idea for col, max row, max col.
"""
percentage = 0.02
img = np.array(im)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
im = img_gray > 0.1 * | np.mean(img_gray[img_gray != 0]) | numpy.mean |
"""Implementation of Metropolis-Hasting algorithm."""
import typing as t
import numpy as np
def symm_parallel_metropolis_hasting(
initial_theta: t.Union[float, np.ndarray],
num_samples: int,
log_target: t.Callable[
[t.Union[float, np.ndarray], t.Union[float, np.ndarray]], float],
proposal_sampler: t.
Callable[[t.Union[float, np.ndarray], t.Union[float, np.ndarray]], t.
Union[float, np.ndarray]],
betas: np.ndarray,
discard_warm_up: bool = True,
warm_up_frac: float = 0.5,
verbose: bool = False,
return_acceptance_rate: bool = False,
random_state: t.Optional[int] = None) -> np.ndarray:
"""Symmetric case of Metropolis-Hasting algorithm."""
if num_samples <= 0:
raise ValueError("'num_samples' must be a positive value.")
if discard_warm_up and not 0 <= warm_up_frac < 1:
raise ValueError("'warm_up_frac' must be in [0.0, 1.0) range.")
if random_state is not None:
np.random.seed(random_state)
theta = np.array([np.copy(initial_theta) for _ in np.arange(betas.size)],
dtype=np.float)
theta_log_targ = np.array([
log_target(cur_theta, cur_beta)
for cur_theta, cur_beta in zip(theta, betas)
],
dtype=np.float)
if isinstance(initial_theta, (int, float, np.number)):
thetas = np.zeros((num_samples, betas.size), dtype=np.float)
else:
thetas = np.zeros((num_samples, betas.size, initial_theta.size),
dtype=np.float)
hits = np.zeros(betas.size)
swaps = np.zeros(betas.size - 1)
swaps_hits = np.zeros(betas.size - 1)
for ind_inst in np.arange(num_samples):
for ind_beta, cur_beta in enumerate(betas):
theta_proposed = proposal_sampler(theta[ind_beta], cur_beta)
log_theta_prop = log_target(theta_proposed, cur_beta)
if np.log(np.random.uniform(
0, 1)) < log_theta_prop - theta_log_targ[ind_beta]:
theta[ind_beta] = theta_proposed
theta_log_targ[ind_beta] = log_theta_prop
hits[ind_beta] += 1
swap_ind = np.random.randint(betas.size - 1)
swaps[swap_ind] += 1
aux = log_target(theta[swap_ind], betas[swap_ind + 1]) + log_target(
theta[swap_ind + 1], betas[swap_ind])
aux -= theta_log_targ[swap_ind] + theta_log_targ[swap_ind + 1]
if np.log(np.random.uniform(0, 1)) < aux:
theta[swap_ind], theta[swap_ind + 1] = theta[swap_ind +
1], theta[swap_ind]
theta_log_targ[swap_ind] = log_target(theta[swap_ind],
betas[swap_ind])
theta_log_targ[swap_ind + 1] = log_target(theta[swap_ind + 1],
betas[swap_ind + 1])
swaps_hits[swap_ind] += 1
thetas[ind_inst] = theta
acceptance_rate = hits / num_samples
swap_acceptance_rate = np.zeros(swaps_hits.size)
swap_acceptance_rate[swaps > 0] = swaps_hits / swaps
if verbose:
print("Acceptance rate: {}".format(acceptance_rate))
print("Theoretically expected: [0.23, 0.50] - ",
np.logical_and(acceptance_rate >= 0.23, acceptance_rate <= 0.50))
print("Swap (chains j and j+1) acceptance rate: {}".format(
swap_acceptance_rate))
if discard_warm_up:
ret_thetas = thetas[int(warm_up_frac * num_samples):]
else:
ret_thetas = thetas
if return_acceptance_rate:
return ret_thetas, acceptance_rate
return ret_thetas
def metropolis_hasting(
initial_theta: t.Union[float, np.ndarray],
num_samples: int,
log_target: t.Callable[[t.Union[float, np.ndarray]], float],
proposal_sampler: t.Callable[[t.Union[float, np.ndarray]], t.
Union[float, np.ndarray]],
proposal_log_density: t.Optional[t.Callable[
[t.Union[float, np.ndarray], t.Union[float, np.
ndarray]], float]] = None,
discard_warm_up: bool = True,
warm_up_frac: float = 0.5,
verbose: bool = False,
return_acceptance_rate: bool = False,
random_state: t.Optional[int] = None) -> np.ndarray:
"""Symmetric case of Metropolis-Hasting algorithm."""
if num_samples <= 0:
raise ValueError("'num_samples' must be a positive value.")
if discard_warm_up and not 0 <= warm_up_frac < 1:
raise ValueError("'warm_up_frac' must be in [0.0, 1.0) range.")
if random_state is not None:
np.random.seed(random_state)
theta = initial_theta
theta_log_targ = log_target(theta)
if isinstance(initial_theta, (int, float, np.number)):
thetas = np.zeros(num_samples)
else:
thetas = np.zeros((num_samples, initial_theta.size))
hits = 0
for ind in np.arange(num_samples):
theta_proposed = proposal_sampler(theta)
log_theta_prop = log_target(theta_proposed)
q_term = 0.0
if proposal_log_density is not None:
q_term = (proposal_log_density(theta, theta_proposed) -
proposal_log_density(theta_proposed, theta))
if np.log(np.random.uniform(
0, 1)) < log_theta_prop - theta_log_targ + q_term:
theta = theta_proposed
theta_log_targ = log_theta_prop
hits += 1
thetas[ind] = theta
acceptance_rate = hits / num_samples
if verbose:
print("Acceptance rate: {}".format(acceptance_rate))
print("Theoretically expected: [0.23, 0.50] (results is {}.)".format(
"optimal" if 0.23 <= acceptance_rate <= 0.50 else "not optimal"))
if discard_warm_up:
ret_thetas = thetas[int(warm_up_frac * num_samples):]
else:
ret_thetas = thetas
if return_acceptance_rate:
return ret_thetas, acceptance_rate
return ret_thetas
def symm_metropolis_hasting(
initial_theta: float,
num_samples: int,
log_target: t.Callable[[float], float],
proposal_sampler: t.Callable[[float], float],
discard_warm_up: bool = True,
warm_up_frac: float = 0.5,
verbose: bool = False,
return_acceptance_rate: bool = False,
random_state: t.Optional[int] = None) -> np.ndarray:
"""Symmetric case of Metropolis-Hasting algorithm."""
ret = metropolis_hasting(
initial_theta=initial_theta,
num_samples=num_samples,
log_target=log_target,
proposal_sampler=proposal_sampler,
proposal_log_density=None,
discard_warm_up=discard_warm_up,
warm_up_frac=warm_up_frac,
verbose=verbose,
return_acceptance_rate=return_acceptance_rate,
random_state=random_state)
return ret
def _experiment_01() -> None:
"""Experiment 01."""
import matplotlib.pyplot as plt
import scipy.stats
random_seed = 16
np.random.seed(random_seed)
laplace_dist = scipy.stats.laplace(loc=0.0, scale=1.0 / (2**0.5))
test_vals = np.linspace(-5, 5, 500)
for plot_id, scale in enumerate([0.1, 2.5, 10, 50]):
thetas = symm_metropolis_hasting(
initial_theta=0.0,
num_samples=10000,
log_target=lambda x: -np.abs(x),
proposal_sampler=
lambda theta: theta + np.random.normal(loc=0.0, scale=scale),
discard_warm_up=True,
warm_up_frac=0.5,
verbose=True,
random_state=random_seed)
plt.subplot(4, 2, plot_id * 2 + 1)
plt.plot(thetas[::10], label=str(scale))
plt.legend()
plt.subplot(4, 2, plot_id * 2 + 2)
plt.plot(test_vals, laplace_dist.pdf(test_vals))
plt.hist(thetas[::10], bins=128, density=True, label=str(scale))
plt.legend()
plt.show()
def _experiment_02() -> None:
"""Experiment 02."""
import matplotlib.pyplot as plt
def bimodal_dist(theta, gamma):
return np.exp(-gamma * np.square(np.square(theta) - 1))
def log_bimodal_dist(theta, gamma):
return -gamma * np.square(np.square(theta) - 1)
random_seed = 16
np.random.seed(random_seed)
betas = np.logspace(-3, 0, 5)
print("Betas:", betas)
gamma = 64
samples = symm_parallel_metropolis_hasting(
initial_theta=1,
num_samples=10000,
log_target=lambda x, beta: beta * log_bimodal_dist(x, gamma),
proposal_sampler=
lambda x, beta: x + 0.1 / np.sqrt(beta) * np.random.randn(),
betas=betas,
verbose=True,
random_state=16)
test_vals = np.linspace(-3, 3, 100)
plt.hist(samples[:, -1], bins=64, density=True, label='MCMC MH samples')
plt.plot(
test_vals,
bimodal_dist(test_vals, gamma),
label='(Unnormalized) target')
plt.legend()
plt.show()
def _experiment_03():
"""3rd experiment."""
import matplotlib.pyplot as plt
def generic_target(x, mu_vec):
aux_1 = x - mu_vec
aux_2 = np.arange(1, 1 + mu_vec.shape[0])
return np.sum(np.exp(-aux_2 / 3 * | np.sum(aux_1 * aux_1, axis=1) | numpy.sum |
#!/usr/bin/python3
from sys import argv
from os.path import isdir, exists
from os import listdir, makedirs, system
from pipes import quote
import numpy as np
import scipy.io.wavfile as wav
import tensorflow as tf
class Configuration(object):
dataset_directory = None
model_iterations = None
sampling_frequency = None
clip_length = None
hidden_dimensions = None
epochs = None
def __init__(self):
self.dataset_directory = "./dataset/test/"
self.model_iterations = 50
self.sampling_frequency = 44100
self.clip_length = 10
self.hidden_dimensions = 1024
self.batch_size = 5
self.epochs = 25
@staticmethod
def help():
print("usage: gruvii.py {arguments}")
print("{arguments}\t\t\t\t{default value}")
print("\t--help")
print("\t-d\t--dataset-directory\t./dataset/test/")
print("\t-i\t--iterations\t\t50")
print("\t-s\t--sampling-frequency\t44100")
print("\t-c\t--clip-length\t\t10")
print("\t-h\t--hidden-dimensions\t1024")
print("\t-b\t--batch-size\t\t5")
print("\t-e\t--epochs\t\t25")
exit()
@staticmethod
def parse():
c = Configuration()
i = 0
while i < len(argv):
a = argv[i]
if a in ["--help"]:
Configuration.help()
elif a in ["-d", "--dataset-directory"]:
c.dataset_directory = argv[i + 1]
elif a in ["-i", "--iterations"]:
c.model_iterations = int(argv[i + 1])
elif a in ["-s", "--sampling-frequency"]:
c.sampling_frequency = int(argv[i + 1])
elif a in ["-c", "--clip-length"]:
c.clip_length = int(argv[i + 1])
elif a in ["-h", "--hidden-dimensions"]:
c.hidden_dimensions = int(argv[i + 1])
elif a in ["-b", "--batch-size"]:
c.batch_size = int(argv[i + 1])
elif a in ["-e", "--epochs"]:
c.epochs = int(argv[i + 1])
i += 1
return c
class Trainer(object):
config = None
block_size = None
max_seq_length = None
def __init__(self, config):
self.config = config
self._calc()
def _calc(self):
self.block_size = self.config.sampling_frequency / 4
self.max_seq_length = int(round((self.config.sampling_frequency * self.config.clip_length) / self.block_size))
def prepare_data(self):
print("preparing data")
nd = self.convert_folder_to_wav(self.config.dataset_directory, self.config.sampling_frequency)
print("wrote waves to", nd)
if self.config.dataset_directory.endswith("/"):
of = self.config.dataset_directory.split("/")[-2]
else:
of = self.config.dataset_directory.split("/")[-1]
print("output file prefix:", of)
self.convert_wav_files_to_nptensor(nd, self.block_size, self.max_seq_length, of)
return of
@staticmethod
def convert_folder_to_wav(directory, sample_rate=44100):
od = directory + "wave/"
if isdir(od):
return od
for file in listdir(directory):
full_filename = directory + file
if file.endswith('.mp3'):
Trainer.convert_mp3_to_wav(filename=full_filename, sample_frequency=sample_rate)
if file.endswith('.flac'):
Trainer.convert_flac_to_wav(filename=full_filename, sample_frequency=sample_rate)
return od
@staticmethod
def convert_flac_to_wav(filename, sample_frequency):
new_path, tmp_path, orig_filename = Trainer.filter_ext(".flac", filename)
new_path += 'wave'
if not exists(new_path):
makedirs(new_path)
new_name = new_path + '/' + orig_filename + '.wav'
cmd = 'sox {0} {1} channels 1 rate {2}'.format(quote(filename), quote(new_name), sample_frequency)
system(cmd)
return new_name
@staticmethod
def filter_ext(ext, filename):
ext = filename[-len(ext):]
if ext != ext:
return
files = filename.split('/')
orig_filename = files[-1][0:-len(ext)]
new_path = ''
if filename[0] == '/':
new_path = '/'
for i in range(len(files) - 1):
new_path += files[i] + '/'
tmp_path = new_path + 'tmp'
new_path += 'wave'
return new_path, tmp_path, orig_filename
@staticmethod
def convert_mp3_to_wav(filename, sample_frequency):
new_path, tmp_path, orig_filename = Trainer.filter_ext(".mp3", filename)
if not exists(new_path):
makedirs(new_path)
if not exists(tmp_path):
makedirs(tmp_path)
filename_tmp = tmp_path + '/' + orig_filename + '.mp3'
new_name = new_path + '/' + orig_filename + '.wav'
sample_freq_str = "{0:.1f}".format(float(sample_frequency) / 1000.0)
cmd = 'lame -a -m m {0} {1}'.format(quote(filename), quote(filename_tmp))
system(cmd)
cmd = 'lame --decode {0} {1} --resample {2}'.format(quote(filename_tmp), quote(new_name), sample_freq_str)
system(cmd)
return new_name
@staticmethod
def read_wav_as_np(filename):
data = wav.read(filename)
np_arr = data[1].astype('float32') / 32767.0 # Normalize 16-bit input to [-1, 1] range
np_arr = np.array(np_arr)
return np_arr, data[0]
@staticmethod
def convert_np_audio_to_sample_blocks(song_np, block_size):
song_np = song_np.astype('int')
block_lists = []
total_samples = song_np.shape[0]
num_samples_so_far = 0
while num_samples_so_far < total_samples:
block = song_np[num_samples_so_far:num_samples_so_far + int(block_size)]
if block.shape[0] < block_size:
padding = np.zeros((int(block_size) - block.shape[0]))
block = np.concatenate((block, padding))
block_lists.append(block)
num_samples_so_far += block_size
num_samples_so_far = int(num_samples_so_far)
return block_lists
@staticmethod
def time_blocks_to_fft_blocks(blocks_time_domain):
fft_blocks = []
for block in blocks_time_domain:
fft_block = np.fft.fft(block)
new_block = np.concatenate((np.real(fft_block), np.imag(fft_block)))
fft_blocks.append(new_block)
return fft_blocks
@staticmethod
def load_training_example(filename, block_size=2048, use_time_domain=False):
data, bitrate = Trainer.read_wav_as_np(filename)
x_t = Trainer.convert_np_audio_to_sample_blocks(data, block_size)
y_t = x_t[1:]
y_t.append(np.zeros(int(block_size))) # Add special end block composed of all zeros
if use_time_domain:
return x_t, y_t
x = Trainer.time_blocks_to_fft_blocks(x_t)
y = Trainer.time_blocks_to_fft_blocks(y_t)
return x, y
@staticmethod
def convert_wav_files_to_nptensor(directory, block_size, max_seq_len, out_file, max_files=20,
use_time_domain=False):
files = []
for file in listdir(directory):
if file.endswith('.wav'):
files.append(directory + file)
print("converting", files, "to nptensors")
chunks_x = []
chunks_y = []
num_files = len(files)
if num_files > max_files:
num_files = max_files
for file_idx in range(num_files):
file = files[file_idx]
print('Processing: ', (file_idx + 1), '/', num_files)
print('Filename: ', file)
x, y = Trainer.load_training_example(file, block_size, use_time_domain=use_time_domain)
cur_seq = 0
total_seq = len(x)
print("total_seq:", total_seq, "max_seq_len:", max_seq_len)
while cur_seq + max_seq_len < total_seq:
chunks_x.append(x[cur_seq:cur_seq + max_seq_len])
chunks_y.append(y[cur_seq:cur_seq + max_seq_len])
cur_seq += max_seq_len
num_examples = len(chunks_x)
num_dims_out = block_size * 2
if use_time_domain:
num_dims_out = block_size
out_shape = (num_examples, max_seq_len, int(num_dims_out))
x_data = | np.zeros(out_shape, "i") | numpy.zeros |
import copy
import os.path
import shutil
from typing import Tuple
import mdtraj
import numpy
import openmm
import pytest
from openff.toolkit.topology import Molecule, Topology
from openff.utilities import temporary_cd
from openmm import unit
from openmmtools import cache, mcmc, multistate
from absolv.factories.alchemical import OpenMMAlchemicalFactory
from absolv.factories.coordinate import PACKMOLCoordinateFactory
from absolv.models import (
EquilibriumProtocol,
MinimizationProtocol,
SimulationProtocol,
State,
SwitchingProtocol,
)
from absolv.simulations import (
AlchemicalOpenMMSimulation,
EquilibriumOpenMMSimulation,
NonEquilibriumOpenMMSimulation,
RepexAlchemicalOpenMMSimulation,
_BaseOpenMMSimulation,
_OpenMMTopology,
)
from absolv.tests import BaseTemporaryDirTest, all_close, is_close
from absolv.utilities.openmm import (
array_to_vectors,
extract_coordinates,
set_coordinates,
)
def _build_alchemical_lj_system(
n_alchemical: int,
n_persistent: int,
epsilon: unit.Quantity = 125.7 * unit.kelvin * unit.MOLAR_GAS_CONSTANT_R,
sigma: unit.Quantity = 3.345 * unit.angstrom,
) -> openmm.System:
system = openmm.System()
force = openmm.NonbondedForce()
force.setNonbondedMethod(openmm.NonbondedForce.CutoffPeriodic)
force.setCutoffDistance(6.0 * unit.angstrom)
force.setUseDispersionCorrection(False)
system.addForce(force)
for i in range(n_alchemical + n_persistent):
system.addParticle(39.948)
force.addParticle(0.0, sigma, epsilon)
return OpenMMAlchemicalFactory.generate(
system,
[{i} for i in range(n_alchemical)],
[{i} for i in range(n_alchemical, n_alchemical + n_persistent)],
)
@pytest.fixture(scope="module")
def _alchemical_argon_system() -> Tuple[Topology, unit.Quantity, openmm.System]:
topology, coordinates = PACKMOLCoordinateFactory.generate(
[("[Ar]", 100)], target_density=1.0 * unit.grams / unit.milliliters
)
system = _build_alchemical_lj_system(1, 99)
system.setDefaultPeriodicBoxVectors(*array_to_vectors(topology.box_vectors))
return topology, coordinates, system
@pytest.fixture()
def alchemical_argon_system(
_alchemical_argon_system,
) -> Tuple[Topology, unit.Quantity, openmm.System]:
return copy.deepcopy(_alchemical_argon_system)
@pytest.fixture()
def alchemical_argon_eq_simulation(alchemical_argon_system):
topology, coordinates, system = alchemical_argon_system
protocol = EquilibriumProtocol(
lambda_sterics=[1.0, 0.0],
lambda_electrostatics=[1.0, 1.0],
minimization_protocol=MinimizationProtocol(max_iterations=1),
equilibration_protocol=SimulationProtocol(
n_iterations=1, n_steps_per_iteration=1
),
production_protocol=SimulationProtocol(n_iterations=1, n_steps_per_iteration=1),
sampler="independent",
)
simulation = EquilibriumOpenMMSimulation(
system,
coordinates,
topology.box_vectors,
State(temperature=85.5, pressure=1.0),
protocol,
1,
"CPU",
)
yield simulation
del simulation._context
@pytest.fixture()
def repex_argon_eq_simulation(alchemical_argon_system):
topology, coordinates, system = alchemical_argon_system
protocol = EquilibriumProtocol(
lambda_sterics=[1.0, 1.0, 0.0],
lambda_electrostatics=[1.0, 0.0, 0.0],
minimization_protocol=MinimizationProtocol(max_iterations=1),
equilibration_protocol=SimulationProtocol(
n_iterations=1, n_steps_per_iteration=1
),
production_protocol=SimulationProtocol(n_iterations=2, n_steps_per_iteration=3),
sampler="repex",
)
simulation = RepexAlchemicalOpenMMSimulation(
system,
coordinates,
topology.box_vectors,
State(temperature=85.5, pressure=1.0),
protocol,
"Reference",
)
yield simulation
@pytest.fixture()
def alchemical_argon_neq_simulation(alchemical_argon_system):
topology, coordinates, system = alchemical_argon_system
protocol = SwitchingProtocol(
n_electrostatic_steps=1,
n_steps_per_electrostatic_step=1,
n_steric_steps=2,
n_steps_per_steric_step=2,
timestep=2.0 * unit.femtosecond,
thermostat_friction=1.0 / unit.picosecond,
)
simulation = NonEquilibriumOpenMMSimulation(
system,
State(temperature=85.5, pressure=1.0),
coordinates,
topology.box_vectors,
coordinates,
topology.box_vectors,
protocol,
"Reference",
)
yield simulation
del simulation._context
class TestBaseOpenMMSimulation(BaseTemporaryDirTest):
def test_init(self, alchemical_argon_system):
topology, coordinates, system = alchemical_argon_system
simulation = _BaseOpenMMSimulation(
system,
coordinates,
topology.box_vectors,
State(temperature=85.5, pressure=0.5),
"CPU",
)
assert isinstance(simulation._context, openmm.Context)
context_coordinates, context_box_vectors = extract_coordinates(
simulation._context
)
assert all_close(context_coordinates, coordinates)
assert all_close(context_box_vectors, topology.box_vectors)
assert isinstance(simulation._mock_topology, _OpenMMTopology)
assert simulation._mock_topology.atoms() == list(range(100))
expected_beta = 1.0 / (85.5 * unit.kelvin * unit.BOLTZMANN_CONSTANT_kB)
assert is_close(expected_beta, simulation._beta)
expected_pressure = 0.5 * unit.atmosphere
assert is_close(expected_pressure, simulation._pressure)
def test_current_state(self, alchemical_argon_eq_simulation):
current_state = alchemical_argon_eq_simulation.current_state
assert isinstance(current_state, openmm.State)
def test_save_restore_state(self, alchemical_argon_eq_simulation):
initial_coordinates, initial_box_vectors = extract_coordinates(
alchemical_argon_eq_simulation._context
)
assert alchemical_argon_eq_simulation._restore_state("test") is False
alchemical_argon_eq_simulation._save_state("test")
assert os.path.isfile("test-state.xml")
set_coordinates(
alchemical_argon_eq_simulation._context,
initial_coordinates + 1.0 * unit.angstrom,
initial_box_vectors,
)
assert alchemical_argon_eq_simulation._restore_state("test") is True
coordinates, box_vectors = extract_coordinates(
alchemical_argon_eq_simulation._context
)
assert all_close(initial_coordinates, coordinates)
assert all_close(initial_box_vectors, box_vectors)
def test_compute_reduced_potential(self):
topology = Topology.from_molecules([Molecule.from_smiles("[Ar]")] * 2)
topology.box_vectors = (numpy.eye(3) * 12.0) * unit.angstrom
system = _build_alchemical_lj_system(
2, 0, 1.0 * unit.kilojoules_per_mole, 1.0 * unit.angstrom
)
coordinates = numpy.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]]) * unit.angstrom
simulation = _BaseOpenMMSimulation(
system,
coordinates,
topology.box_vectors,
State(temperature=3.0 * unit.kelvin, pressure=4.0 * unit.atmosphere),
"CPU",
)
reduced_potential = simulation._compute_reduced_potential()
expected_energy = 4.0 * (2.0 ** -12 - 2.0 ** -6) * unit.kilojoules_per_mole
expected_volume = (12.0 * unit.angstrom) ** 3
expected_reduced = expected_energy / (
3.0 * unit.kelvin * unit.MOLAR_GAS_CONSTANT_R
)
expected_reduced += (
(4.0 * unit.atmosphere)
* expected_volume
/ (3.0 * unit.kelvin * unit.BOLTZMANN_CONSTANT_kB)
)
assert is_close(reduced_potential, expected_reduced)
class TestEquilibriumOpenMMSimulation(BaseTemporaryDirTest):
def test_init(self, alchemical_argon_system):
topology, coordinates, system = alchemical_argon_system
protocol = EquilibriumProtocol(
lambda_sterics=[1.0, 0.0],
lambda_electrostatics=[1.0, 1.0],
sampler="independent",
)
simulation = EquilibriumOpenMMSimulation(
system,
coordinates,
topology.box_vectors,
State(temperature=85.5, pressure=1.0),
protocol,
1,
"CPU",
)
# Sanity check super was called
assert isinstance(simulation._context, openmm.Context)
assert simulation._protocol == protocol
assert numpy.isclose(simulation._lambda_sterics, 0.0)
assert numpy.isclose(simulation._lambda_electrostatics, 1.0)
assert numpy.isclose(simulation._context.getParameter("lambda_sterics"), 0.0)
assert numpy.isclose(
simulation._context.getParameter("lambda_electrostatics"), 1.0
)
def test_minimize(self, alchemical_argon_eq_simulation):
initial_coordinates, initial_box_vectors = extract_coordinates(
alchemical_argon_eq_simulation._context
)
initial_energy = alchemical_argon_eq_simulation._context.getState(
getEnergy=True
).getPotentialEnergy()
assert not os.path.isfile("minimized-state.xml")
alchemical_argon_eq_simulation._minimize()
final_energy = alchemical_argon_eq_simulation._context.getState(
getEnergy=True
).getPotentialEnergy()
assert final_energy < initial_energy
assert os.path.isfile("minimized-state.xml")
set_coordinates(
alchemical_argon_eq_simulation._context,
initial_coordinates,
initial_box_vectors,
)
alchemical_argon_eq_simulation._minimize()
final_energy_2 = alchemical_argon_eq_simulation._context.getState(
getEnergy=True
).getPotentialEnergy()
# The minimization should have check-pointed so the energy should
# be the same.
assert is_close(final_energy, final_energy_2)
def test_simulate(self, alchemical_argon_system, alchemical_argon_eq_simulation):
topology, coordinates, _ = alchemical_argon_system
topology.to_file("topology.pdb", coordinates)
initial_energy = alchemical_argon_eq_simulation._context.getState(
getEnergy=True
).getPotentialEnergy()
assert not os.path.isfile("test-final-state.xml")
assert not os.path.isfile("test-chk-state.xml")
alchemical_argon_eq_simulation._simulate(
alchemical_argon_eq_simulation._protocol.equilibration_protocol, "test"
)
final_energy_1 = alchemical_argon_eq_simulation._context.getState(
getEnergy=True
).getPotentialEnergy()
assert not is_close(final_energy_1, initial_energy)
assert not os.path.isfile("test-chk-state.xml") # Should have been cleaned-up
assert os.path.isfile("test-trajectory.dcd")
assert os.path.isfile("test-final-state.xml")
trajectory_1 = mdtraj.load_dcd("test-trajectory.dcd", "topology.pdb")
assert len(trajectory_1) == 1
shutil.move("test-final-state.xml", "test-chk-state.xml")
alchemical_argon_eq_simulation._simulate(
SimulationProtocol(n_iterations=2, n_steps_per_iteration=1), "test"
)
final_energy_2 = alchemical_argon_eq_simulation._context.getState(
getEnergy=True
).getPotentialEnergy()
assert not is_close(final_energy_2, final_energy_1)
trajectory_2 = mdtraj.load_dcd("test-trajectory.dcd", "topology.pdb")
assert len(trajectory_2) == 2
assert all_close(trajectory_1.xyz[0], trajectory_2.xyz[0])
final_energy_3 = alchemical_argon_eq_simulation._context.getState(
getEnergy=True
).getPotentialEnergy()
assert is_close(final_energy_2, final_energy_3)
def test_run(self, alchemical_argon_eq_simulation):
alchemical_argon_eq_simulation.run(os.path.curdir)
assert os.path.isfile("minimized-state.xml")
assert os.path.isfile("equilibration-final-state.xml")
assert os.path.isfile("production-final-state.xml")
class TestAlchemicalOpenMMSimulation(BaseTemporaryDirTest):
def test_init(self, alchemical_argon_system):
topology, coordinates, system = alchemical_argon_system
protocol = EquilibriumProtocol(
lambda_sterics=[1.0, 0.0],
lambda_electrostatics=[1.0, 1.0],
sampler="independent",
)
simulation = AlchemicalOpenMMSimulation(
system,
coordinates,
topology.box_vectors,
State(temperature=85.5, pressure=0.5),
protocol,
1,
"CPU",
)
# Sanity check super was called
assert isinstance(simulation._context, openmm.Context)
def test_begin_end_iteration(self):
topology = Topology.from_molecules([Molecule.from_smiles("[Ar]")] * 2)
system = _build_alchemical_lj_system(
1, 1, 1.0 * unit.kilojoules_per_mole, 1.0 * unit.angstrom
)
[*system.getForces()][0].setNonbondedMethod(
openmm.NonbondedForce.CutoffNonPeriodic
)
coordinates = numpy.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]]) * unit.angstrom
simulation = AlchemicalOpenMMSimulation(
system,
coordinates,
topology.box_vectors,
State(temperature=3.0 * unit.kelvin, pressure=None),
EquilibriumProtocol(
lambda_sterics=[1.0, 0.0],
lambda_electrostatics=[1.0, 1.0],
sampler="independent",
),
0,
"CPU",
)
expected_reduced_potential = simulation._compute_reduced_potential()
simulation._begin_iteration(0, "test")
assert simulation._energies_file is None
simulation._begin_iteration(0, "production")
assert simulation._energies_file is not None
simulation._end_iteration(0, "test")
assert simulation._energies_file is not None
simulation._end_iteration(0, "production")
assert os.path.isfile("lambda-potentials.csv")
lambda_potentials = numpy.genfromtxt("lambda-potentials.csv", delimiter=" ")
assert lambda_potentials.shape == (2,)
assert all_close(
lambda_potentials, numpy.array([expected_reduced_potential, 0.0])
)
class TestRepexAlchemicalOpenMMSimulation(BaseTemporaryDirTest):
def test_init(self, alchemical_argon_system):
topology, coordinates, system = alchemical_argon_system
protocol = EquilibriumProtocol(
lambda_sterics=[1.0, 0.0], lambda_electrostatics=[1.0, 1.0], sampler="repex"
)
simulation = RepexAlchemicalOpenMMSimulation(
system,
coordinates,
topology.box_vectors,
State(temperature=85.5, pressure=0.5),
protocol,
"CPU",
)
assert simulation._system == system
assert simulation._coordinates.shape == coordinates.shape
assert simulation._box_vectors.shape == topology.box_vectors.shape
assert numpy.isclose(simulation._state.temperature, 85.5)
assert numpy.isclose(simulation._state.pressure, 0.5)
assert simulation._platform == "CPU"
assert simulation._protocol == protocol
def test_setup_sampler(
self, alchemical_argon_system, repex_argon_eq_simulation, tmpdir
):
topology, coordinates, _ = alchemical_argon_system
expected_state_coordinates = [
(coordinates + i * unit.angstrom, topology.box_vectors) for i in range(3)
]
simulation = repex_argon_eq_simulation._setup_sampler(
expected_state_coordinates, storage_path=os.path.join(tmpdir, "storage.nc")
)
assert cache.global_context_cache.platform.getName() == "Reference"
assert simulation.n_states == 3
assert simulation.n_replicas == 3
assert (
simulation.number_of_iterations
== repex_argon_eq_simulation._protocol.production_protocol.n_iterations
)
for mcmc_move in simulation.mcmc_moves:
assert isinstance(mcmc_move, mcmc.LangevinDynamicsMove)
assert numpy.isclose(
mcmc_move.timestep.value_in_unit(unit.femtosecond),
repex_argon_eq_simulation._protocol.production_protocol.timestep,
)
assert numpy.isclose(
mcmc_move.collision_rate.value_in_unit(unit.picosecond ** -1),
repex_argon_eq_simulation._protocol.production_protocol.thermostat_friction,
)
assert (
mcmc_move.n_steps
== repex_argon_eq_simulation._protocol.production_protocol.n_steps_per_iteration
)
for sampler_state, (expected_coordinates, expected_box_vectors) in zip(
simulation.sampler_states, expected_state_coordinates
):
assert numpy.allclose(
expected_coordinates.value_in_unit(unit.angstrom),
sampler_state.positions.value_in_unit(unit.angstrom),
)
assert numpy.allclose(
expected_box_vectors.value_in_unit(unit.angstrom),
sampler_state.box_vectors.value_in_unit(unit.angstrom),
)
for thermodynamic_state, expected_lambda_sterics, expected_lambda_elec in zip(
simulation._thermodynamic_states,
repex_argon_eq_simulation._protocol.lambda_sterics,
repex_argon_eq_simulation._protocol.lambda_electrostatics,
):
assert numpy.isclose(
thermodynamic_state.temperature.value_in_unit(unit.kelvin), 85.5
)
assert len(thermodynamic_state._composable_states) == 1
assert numpy.isclose(
thermodynamic_state._composable_states[0].lambda_sterics,
expected_lambda_sterics,
)
assert numpy.isclose(
thermodynamic_state._composable_states[0].lambda_electrostatics,
expected_lambda_elec,
)
assert os.path.isfile(os.path.join(tmpdir, "storage.nc"))
def test_save_reduced_potentials(self, repex_argon_eq_simulation, tmpdir):
with temporary_cd(str(tmpdir)):
reporter = multistate.MultiStateReporter(
"storage.nc", checkpoint_interval=1, open_mode="w"
)
reporter.write_energies(
numpy.arange(9).reshape((3, 3)), numpy.eye(3), numpy.zeros((3, 0)), 0
)
reporter.write_replica_thermodynamic_states([0, 1, 2], 0)
reporter.write_energies(
numpy.arange(9).reshape((3, 3)), numpy.eye(3), numpy.zeros((3, 0)), 1
)
reporter.write_replica_thermodynamic_states([0, 1, 2], 1)
reporter.write_energies(
numpy.arange(9).reshape((3, 3)) + 9.0,
numpy.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]]),
numpy.zeros((3, 0)),
2,
)
reporter.write_replica_thermodynamic_states([2, 1, 0], 2)
reporter.write_last_iteration(2)
reporter.close()
repex_argon_eq_simulation._save_reduced_potentials("storage.nc")
saved_energies = numpy.stack(
[
numpy.genfromtxt(
os.path.join(f"state-{state_index}", "lambda-potentials.csv")
)
for state_index in range(3)
]
)
assert saved_energies.shape == (3, 2, 3)
# [iter][state_idx][state_e_idx]
expected_energies = numpy.array(
[
[[0.0, 1.0, 2.0], [15.0, 16.0, 17.0]],
[[3.0, 4.0, 5.0], [12.0, 13.0, 14.0]],
[[6.0, 7.0, 8.0], [9.0, 10.0, 11.0]],
]
)
assert numpy.allclose(saved_energies, expected_energies)
def test_run(self, repex_argon_eq_simulation, tmpdir):
with temporary_cd(str(tmpdir)):
repex_argon_eq_simulation.run("")
expected_files = [
"minimized-state.xml",
"equilibration-final-state.xml",
"production-storage.nc",
"production-storage_checkpoint.nc",
os.path.join("state-0", "lambda-potentials.csv"),
os.path.join("state-1", "lambda-potentials.csv"),
os.path.join("state-2", "lambda-potentials.csv"),
]
assert all(
os.path.isfile(expected_file) for expected_file in expected_files
)
class TestNonEquilibriumOpenMMSimulation(BaseTemporaryDirTest):
def test_init(self, alchemical_argon_system):
topology, coordinates, system = alchemical_argon_system
protocol = SwitchingProtocol(
n_electrostatic_steps=1,
n_steps_per_electrostatic_step=10,
n_steric_steps=2,
n_steps_per_steric_step=20,
timestep=0.5 * unit.femtosecond,
thermostat_friction=2.0 / unit.picosecond,
)
simulation = NonEquilibriumOpenMMSimulation(
system,
State(temperature=85.5, pressure=1.0),
coordinates,
topology.box_vectors,
-coordinates,
topology.box_vectors * 2.0,
protocol,
"Reference",
)
# Sanity check super was called
assert isinstance(simulation._context, openmm.Context)
integrator = simulation._context.getIntegrator()
assert is_close(integrator.getStepSize(), protocol.timestep * unit.femtoseconds)
assert is_close(
integrator.getFriction(), protocol.thermostat_friction / unit.picoseconds
)
assert simulation._protocol == protocol
assert numpy.allclose(simulation._state_0[0], coordinates)
assert numpy.allclose(simulation._state_1[0], -coordinates)
assert | numpy.allclose(simulation._state_0[1], topology.box_vectors) | numpy.allclose |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Hydrate Modified-van der Waals Platteeuw Equation of State
This file implements a hydrate equation of state (EOS)named
Modified- van der Waals Platteeuw after Ballard and Sloan (2002).
The file consists of a generic hydrate class 'Hydrate EOS' and the
class, 'HvdwpmEos', which incorporates all information for the
Ballard and Sloan EOS. Other hydrate EOS's will share similar features,
since they are all derived from the original van der Waals Platteeuw EOS,
so the generic 'HydrateEos' could be ported to another EOS. The classes will
take in as arguments a list of components, pressure, temperature, and
hydrate structure. Pressure and temperature can be modified after an
instance of SrkEos is created; however, the number of components, the
actual component list, and the hydrate structure cannot. The method 'calc'
is the main calculation of the class, which uses other methods to determine
the partial fugacity of each component given mole fractions, pressure,
temperature, and structure.
Functions
----------
delta_func :
Special calculation used in Kihara potential
w_func :
Spherical kihara potential
"""
import numpy as np
from scipy.integrate import quad
import pdb
# Constants
R = 8.3144621 # universal gas constant in J/mol-K
T_0 = 298.15 # reference temperature in K
P_0 = 1.0 # reference pressure in bar
k = 1.3806488e-23 # Boltzmann's constant in J/K
def delta_func(N, Rn, aj, r):
"""Function specifically used in langmuir constant calculation
Parameters
----------
N : int
Exponent used in calculation
Rn : float
Radius of cage
aj : float
Radius of guest molecule
r : float
General radius
Returns
----------
delta : float
Distance measure
"""
delta = ((1.0 - r/Rn - aj/Rn)**(-N) - (1.0 + r/Rn - aj/Rn)**(-N))/N
return delta
def w_func(zn, eps_k, r, Rn, sigma, aj):
"""Kihara spherical potential function
Parameters
----------
zn : int
Number of water molecules
eps_k : float
Kihara potential parameter, \epsilon (normalized by
Boltzmann's constant), for guest
r : float
General radius
Rn : float
Radius of cage
sigma : float
Kihara potential parameter, sigma, for guest
aj : float
Radius of guest molecule
Returns
----------
w : float
Kihara potential of guest at a specific radius
"""
w = (2 * zn * eps_k * (sigma ** 12 / (Rn ** 11 * r)
* (delta_func(10, Rn, aj, r)
+ (aj / Rn) * delta_func(11, Rn, aj, r))
- sigma ** 6 / (Rn ** 5 * r)
* (delta_func(4, Rn, aj, r)
+ (aj / Rn) * delta_func(5, Rn, aj, r))))
return w
class HydrateEos(object):
"""The parent class for this EOS that perform various calculations.
Methods
----------
make_constant_mats :
Performs calculations that only depend on pressure and temperature.
langmuir_consts :
Performs the langmuir constant calculation.
calc_langmuir :
Performs that calculates cage occupancies from langmuir constants.
delta_mu_func :
Calculates chemical potential difference according to van der Waals.
fugacity :
Calculates fugacity of only water in the hydrate phase.
calc:
Main calculation for hydrate phase EOS.
"""
def __init__(self, comps, T, P, structure='s1'):
"""Hydrate EOS object for fugacity calculations.
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'.
T : float
Temperature at initialization in Kelvin.
P : float
Pressure at initialization in bar.
structure : str
Structure of hydrate ('s1' or 's2').
Attributes
----------
water_ind : int
Index of for water component in all lists.
comps : list
List of 'Component' classes passed into 'HydrateEos'.
comp_names : list
List of components names.
num_comps : int
Number of components.
T : float
Temperature at initialization in Kelvin.
P : float
Pressure at initialization in bar.
gwbeta_RT : numpy array
Pre-allocated array for gibbs energy of water
in empty standard state.
volume_int : numpy array
Pre-allocated array for pressure-integrated volume
of hydrate.
volume : numpy array
Pre-allocated array for volume of hydrate.
activity : numpy array
Pre-allocated array for activity of water in hydrate.
delta_mu_RT : numpy array
Pre-allocated array for chemical potential difference
of water between aqueous and empty hydrate phases.
gw0_RT : numpy array
Pre-allocated array for gibbs energy of water in ideal
gas state.
Hs : dict
Dictionary of structure-specific properties of hydrate.
Keys and values
----------
R_sm : numpy array
Pre-allocated array for radii of each shell
in the small cages.
z_sm : numpy array
Pre-allocated array for number of water molecules
in each shell in the large cages.
R_lg : numpy array
Pre-allocated array for radii of each shell
in the small cages.
z_lg : numpy array
Pre-allocated array for number of water molecules
in each shell in the large cages.
alt_fug_vec : numpy array
Pre-allocated array for fugacity of non-water components
in phase at equilibrium with hydrate.
Y_small : numpy array
Pre-allocated array for cage occupancy of small cages for
each non-water component.
Y_large : numpy array
Pre-allocated array for cage occupancy of large cages for
each non-water component.
C_small : numpy array
Pre-allocated array for langmuir constants of small cages for
each non-water component.
C_large : numpy array
Pre-allocated array for langmuir constants of large cages for
each non-water component.
fug : float
Fugacity of water in hydrate.
Notes
----------
'Hs' will populate based on the 'eos_key' defined in the child class.
This attribute will store the structure specific information that is
stored in a class called 'HydrateStructure'.
"""
try:
self.water_ind = [ii for ii, x in enumerate(comps)
if x.compname == 'h2o'][0]
except ValueError:
raise RuntimeError(
"""Hydrate EOS requires water to be present!
\nPlease provide water in your component list.""")
self.comps = comps
self.comp_names = [x.compname for x in comps]
self.num_comps = len(comps)
self.T = T
self.P = P
self.gwbeta_RT = np.zeros(1)
self.volume_int = np.zeros(1)
self.volume = np.zeros(1)
self.activity = np.zeros(1)
self.delta_mu_RT = np.zeros(1)
self.gw0_RT = np.zeros(1)
self.Hs = HydrateStructure(structure)
self.alt_fug_vec = np.zeros(self.num_comps)
self.Y_small = np.zeros(self.num_comps)
self.Y_large = np.zeros(self.num_comps)
self.C_small = np.zeros(self.num_comps)
self.C_large = np.zeros(self.num_comps)
self.fug = 0
for key, value in dict.items(self.Hs.eos[self.eos_key]):
setattr(self.Hs, key, value)
self.R_sm = np.zeros(len(self.Hs.R['sm']))
self.z_sm = np.zeros_like(self.R_sm)
for ii in range(len(self.z_sm)):
self.z_sm[ii] = self.Hs.z['sm'][ii + 1]
self.R_lg = np.zeros(len(self.Hs.R['lg']))
self.z_lg = np.zeros_like(self.R_lg)
for ii in range(len(self.z_lg)):
self.z_lg[ii] = self.Hs.z['lg'][ii + 1]
def make_constant_mats(self, comps, T, P):
"""Portion of calculation that only depends on P and T.
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'.
T : float
Temperature in Kelvin.
P : float
Pressure in bar.
Notes
----------
Calculation assumes that pressure and temperature won't change
upon successive iteration of EOS. Instead, the calculation will
adjust molar fractions of each component at a fixed T and P.
However, if T and P do change then, it will recalculate these
constants.
"""
self.T = T
self.P = P
self.gw0_RT = comps[self.water_ind].gibbs_ideal(T, P)
def langmuir_consts(self, comps, T, P):
"""Calculation of langmuir constants.
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'.
T : float
Temperature in Kelvin.
P : float
Pressure in bar.
Returns
----------
C_small : numpy array
Langmuir constants for component in small cages.
C_large : numpy array
Langmuir constants for component in large cages.
"""
C_small = np.zeros(self.num_comps)
C_large = np.zeros(self.num_comps)
return C_small, C_large
def calc_langmuir(self, C, eq_fug):
"""Calculation of langmuir constants.
Parameters
----------
C : numpy array
Array of langmuir constants.
eq_fug : numpy array
Fugacity of each component for the phase that is in
equilibrium with hydrate.
Returns
----------
Y : numpy array
Fractional occupancy of each component in unspecified
cage type.
"""
Y = np.zeros(self.num_comps)
denominator = (1.0 + np.sum(C * eq_fug))
for ii, comp in enumerate(self.comps):
if comp.compname != 'h2o':
Y[ii] = C[ii] * eq_fug[ii] / denominator
else:
Y[ii] = 0
return Y
def delta_mu_func(self, comps, T, P):
"""Calculation of chemical potential difference of water in hydrate.
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'.
T : float
Temperature at initialization in Kelvin.
P : float
Pressure at initialization in bar.
Returns
----------
delta_mu : float
Chemical potential difference of water between aqueous phases
and empty standard hydrate.
"""
delta_mu = (
self.Hs.Nm['small']*np.log(1-np.sum(self.Y_small))
+ self.Hs.Nm['large']*np.log(1-np.sum(self.Y_large))
)/self.Hs.Num_h2o
return delta_mu
def fugacity(self, comps, T, P, x, eq_fug):
"""Calculation of fugacity of water in hydrate.
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'.
T : float
Temperature in Kelvin.
P : float
Pressure in bar.
x : list, numpy array
Dummy list of molar fraction in hydrate phase to maintain
argument parallelism with other EOS's.
eq_fug : numpy array
Equilibrium fugacity of each non-water component that will
be in equilibrium within some other phase.
"""
pass
def calc(self, comps, T, P, x, eq_fug):
"""Main calculation for the EOS which returns array of fugacities
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'.
T : float
Temperature in Kelvin.
P : float
Pressure in bar.
x : list, numpy array
Dummy list of molar fraction in hydrate phase to maintain
argument parallelism with other EOS's.
eq_fug : numpy array
Equilibrium fugacity of each non-water component that will
be in equilibrium within some other phase.
Returns
----------
fug : numpy array
Fugacity of water in aqueous phase.
"""
if comps != self.comps:
print("""Warning: Action not supported.
\n Number of_components have changed.
\n Please create a new fugacity object.""")
return None
else:
# Re-calculate constants if pressure or temperature changes.
if self.T != T or self.P != P:
self.make_constant_mats(comps, T, P)
fug = self.fugacity(comps, T, P, x, eq_fug)
return fug
class HvdwpmEos(HydrateEos):
"""The child class for this EOS that perform various calculations.
Methods
----------
make_constant_mats :
Performs calculations that only depend on pressure and temperature.
find_stdstate_volume :
Finds the standard state volume of hydrate.
find_hydrate_properties :
Performs calculations necessary to determine hydrate properties.
kappa_func :
Determines compressibility of hydrate with specific cage occupancies.
hydrate_size :
Calculates size of hydrate.
h_vol_Pint :
Volume of hydrate integrated with respect to pressure.
lattice_to_volume :
Convert the lattice size of hydrate in angstrom to a volume in
cm^3/mol.
cage_distortion :
Calculate distortion of cage size due to filling by guests.
filled_lattice_size :
Calculate size of hydrate filled with guests.
iterate_function :
Special function that must be iterated due to nonlinear dependencies.
integrand :
Setup integrand for calculation of langmuir constant.
compute_integral_constants :
Calculate portions of integral that do not depend on composition.
langmuir_consts :
Calculate langmuir constants.
activity_func :
Calculate activity of water in hydrate due to filling of cages.
fugacity :
Calculate fugacity of wate rin hydrate.
hyd_comp :
Conversion of cage occupancies to a hydrate composition.
Constants
----------
cp : dict
Dictionary of constants for heat capacity
eos_key : str
Key for use in HydrateStructure class information retrieval.s
"""
cp = {'a0': 0.735409713*R,
'a1': 1.4180551e-2*R,
'a2': -1.72746e-5*R,
'a3': 63.5104e-9*R}
eos_key = 'hvdwpm'
def __init__(self, comps, T, P, structure='s1'):
"""Hydrate EOS object for fugacity calculations.
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'
T : float
Temperature at initialization in Kelvin
P : float
Pressure at initialization in bar
structure : str
Structure of hydrate ('s1' or 's2')
Attributes
----------
kappa : numpy array
Compressibility of filled hydrate
kappa0 : float
Compressibility of empty hydrate of specific structure
a0_cubed : float
Size of standard empty hydrate
kappa_vec : numpy array
Compressibility of hydrate filled by a single guest
rep_sm_vec : numpy array
Repulsive constant for each guest in small cage
rep_lg_vec : numpy array
Repulsive constant for each guest in large cage
D_vec : numpy array
Diameter of each guest
a_new : float
Size of hydrate with specific composition
Y_small_0 : numpy array
Cage occupancy of small cage at standard state
Y_large_0 : numpy array
Cage occupancy of large cage at standard state
eq_fug : numpy array
Equilibrium fugacity of each component in another phase at
equilibrium with hydrate phase
stdstate_fug : numpy array
Fugacity of each component at standard state
vol_Tfactor : float
Change in hydrate volume from temperature dependence
lattice_Tfactor : float
Change in hydrate lattice size from temperature dependence
kappa_tmp : float
Temporary storage of kappa during convergence
a_0 : float
Lattice size at standard state
v_H_0 : float
Hydrate volume at standard state
v_H : float
Hydrate volume
repulsive_small : float
Repulsive constant in small cages
epulsive_small : float
Repulsive constant in large cages
"""
# Inherit all properties from HydrateEos
try:
super().__init__(comps, T, P, structure)
except:
super(HvdwpmEos, self).__init__(comps, T, P, structure)
self.kappa = np.zeros(1)
self.kappa0 = self.Hs.kappa
self.a0_cubed = self.lattice_to_volume(self.Hs.a0_ast)
self.kappa_vec = np.zeros(self.num_comps)
self.rep_sm_vec = np.zeros(self.num_comps)
self.rep_lg_vec = np.zeros(self.num_comps)
self.D_vec = np.zeros(self.num_comps)
self.a_new = self.Hs.a_norm
self.Y_small_0 = np.zeros(self.num_comps)
self.Y_large_0 = np.zeros(self.num_comps)
self.eq_fug = np.zeros(self.num_comps)
self.stdstate_fug = np.zeros(self.num_comps)
self.vol_Tfactor = None
self.lattice_Tfactor = None
self.kappa_tmp = None
self.a_0 = None
self.v_H_0 = None
self.v_H = None
self.repulsive_small = None
self.repulsive_large = None
# Retrieve information for components and populate within vectors
for ii, comp in enumerate(comps):
self.kappa_vec[ii] = comp.HvdWPM[self.Hs.hydstruc]['kappa']
self.rep_sm_vec[ii] = comp.HvdWPM[self.Hs.hydstruc]['rep']['small']
self.rep_lg_vec[ii] = comp.HvdWPM[self.Hs.hydstruc]['rep']['large']
self.D_vec[ii] = comp.diam
self.stdstate_fug[ii] = comp.stdst_fug
# Set up parameters that do not change with the system, which
# in the case means the fugacity of other phases.
self.make_constant_mats(comps, T, P)
# Set up parameters that depend on standard state (T_0, P_0)
# Now, the lattice size won't change. However, the volume will
# depend on P, T and kappa. And kappa depends on cage occupancy (Y)
# and cage occupancy depends on langmuir constants, which in turn
# depend on the volume. Thus, the langmuir constants will have to be
# determined at each call to 'calc'.
self.find_stdstate_volume(comps, T, P)
def make_constant_mats(self, comps, T, P):
"""Portion of calculation that only depends on P and T.
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'.
T : float
Temperature in Kelvin.
P : float
Pressure in bar.
Notes
----------
Calculation assumes that pressure and temperature won't change
upon successive iteration of EOS. Instead, the calculation will
adjust molar fractions of each component at a fixed T and P.
However, if T and P do change then, it will recalculate these
constants.
"""
try:
super().make_constant_mats(comps, T, P)
except:
super(HvdwpmEos, self).make_constant_mats(comps, T, P)
self.gwbeta_RT = (
self.Hs.gw_0beta/(R*T_0)
- (12*T*self.Hs.hw_0beta - 12*T_0*self.Hs.hw_0beta
+ 12*T_0**2*self.cp['a0'] + 6*T_0**3*self.cp['a1']
+ 4*T_0**4*self.cp['a2'] + 3*T_0**5*self.cp['a3']
- 12*T*T_0*self.cp['a0'] - 12*T*T_0**2*self.cp['a1']
+ 6*T**2*T_0*self.cp['a1'] - 6*T*T_0**3*self.cp['a2']
+ 2*T**3*T_0*self.cp['a2'] - 4*T*T_0**4*self.cp['a3']
+ T**4*T_0*self.cp['a3'] + 12*T*T_0*self.cp['a0']*np.log(T)
- 12*T*T_0*self.cp['a0']*np.log(T_0)) / (12*R*T*T_0)
+ (self.h_vol_Pint(T, P, self.a0_cubed, self.kappa0)
- self.h_vol_Pint(T, P_0, self.a0_cubed, self.kappa0)) * 1e-1 / (R * T)
)
self.vol_Tfactor = self.hydrate_size(T, P_0, 1.0, self.kappa0)
self.lattice_Tfactor = self.hydrate_size(T, P_0, 1.0,
self.kappa0, dim='linear')
def find_stdstate_volume(self, comps, T, P):
"""Calculation of standard state volume and other properties.
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'.
T : float
Temperature in Kelvin.
P : float
Pressure in bar.
Notes
----------
Standard state is an empty hydrate at reference pressure and temperature.
This still depends on composition.
"""
error = 1e6
TOL = 1e-8
C_small = np.zeros(self.num_comps)
C_large = np.zeros(self.num_comps)
# 'Lattice sz' will originally be equal to self.Hs.a0_ast because we
# set self.Y_*_0 equal to zero.
# That will produce one set of C's and new Y's. We will then iterate
# until convergence on 'C'.
kappa = self.kappa0
lattice_sz = self.Hs.a0_ast
while error > TOL:
out = self.iterate_function(comps, T_0, P_0,
self.stdstate_fug,
lattice_sz, kappa)
# Update these on every iteration
C_small_new = out[0]
C_large_new = out[1]
self.Y_small_0 = out[2]
self.Y_large_0 = out[3]
lattice_sz = self.filled_lattice_size()
kappa = self.kappa_func(self.Y_large_0)
error = 0.0
for ii, comp in enumerate(comps):
if comp.compname != 'h2o':
error += (abs(C_small_new[ii]
- C_small[ii])/C_small_new[ii]
+ abs(C_large_new[ii]
- C_large[ii])/C_large_new[ii])
C_small = C_small_new
C_large = C_large_new
self.kappa_tmp = kappa
self.a_0 = lattice_sz
self.v_H_0 = self.lattice_to_volume(lattice_sz)
def find_hydrate_properties(self, comps, T, P, eq_fug):
"""Hydrate properties at T, P, and with specific composition
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'
T : float
Temperature in Kelvin
P : float
Pressure in bar
eq_fug : numpy array
Equilibrium fugacity of each non-water component that will
be in equilibrium within some other phase
"""
error = 1e6
TOL = 1e-8
if hasattr(self, 'C_small'):
C_small = self.C_small
C_large = self.C_large
else:
C_small = np.zeros(self.num_comps)
C_large = np.zeros(self.num_comps)
if hasattr(self.kappa_tmp, 'copy'):
kappa = self.kappa_tmp.copy()
else:
kappa = self.kappa_tmp
lattice_sz = self.a_0
while error > TOL:
out = self.iterate_function(comps, T, P, eq_fug,
lattice_sz, kappa)
# Update these on every iteration
C_small_new = out[0]
C_large_new = out[1]
self.Y_small = out[2]
self.Y_large = out[3]
kappa = self.kappa_func(self.Y_large)
error = 0.0
for ii, comp in enumerate(comps):
if comp.compname != 'h2o':
error += (abs(C_small_new[ii]
- C_small[ii])/C_small_new[ii]
+ abs(C_large_new[ii]
- C_large[ii])/C_large_new[ii])
C_small = C_small_new
C_large = C_large_new
self.C_small = C_small
self.C_large = C_large
if hasattr(self.kappa_tmp, 'copy'):
kappa = self.kappa_tmp.copy()
else:
kappa = self.kappa_tmp
self.v_H = self.hydrate_size(T, P, self.v_H_0, kappa)
def kappa_func(self, Y_large):
"""Compressibility of hydrate function
Parameters
----------
Y_large : numpy array
Fractional occupancy of large hydrate cages
"""
if self.num_comps > 2:
kappa = 3.0*np.sum(self.kappa_vec*Y_large)
else:
kappa = self.kappa0
return kappa
def hydrate_size(self, T, P, v, kappa, dim='volumetric'):
"""Hydrate properties at T, P, and with specific composition
Parameters
----------
T : float
Temperature in Kelvin
P : float
Pressure in bar
v : float
Size of hydrate (either volumetric or linear)
kappa : float
Compressibility of hydrate
dim : str
Dimension of interest ('volumetric' or 'linear'
Returns
----------
H_size : float
Size of hydrate in dimension specified in argument list
Notes
----------
In various places, either the linear or volumetric sizes are necessary
components in a particular calculation. A small, constant difference is
required to switch between the two.
"""
if dim == 'volumetric':
factor = 1.0
elif dim == 'linear':
factor = 1.0/3.0
else:
raise ValueError("Invalid option for optional argument 'dim'!")
H_size = (v*np.exp(factor*(self.Hs.alf[1]*(T - T_0)
+ self.Hs.alf[2]*(T - T_0)**2
+ self.Hs.alf[3]*(T - T_0)**3
- kappa*(P - P_0))))
return H_size
def h_vol_Pint(self, T, P, v, kappa):
"""Hydrate volume integrated with respect to pressure
Parameters
----------
T : float
Temperature in Kelvin
P : float
Pressure in bar
v : float
Size of hydrate (either volumetric or linear)
kappa : float
Compressibility of hydrate
Returns
----------
v : float
Hydrate volume integrated wrt pressure in cm^3 - bar /mol
"""
v = self.hydrate_size(T, P, v, kappa) / (-kappa)
return v
def lattice_to_volume(self, lattice_sz):
"""Conversion of linear hydrate size to volumetric size
Parameters
----------
lattice_sz : float
Size of hydrate as a radius in angstrom
Returns
----------
v : float
Volume of hydrate in cm^3/mol
"""
if self.Hs.hydstruc != 'sH':
v = 6.0221413e23/self.Hs.Num_h2o/1e24*lattice_sz**3
else:
v = self.Hs.v0
return v
def cage_distortion(self):
"""Distortion of cages when filled with guests
Notes
----------
This depends on composition, but not on temperature or pressure.
"""
small_const = (
(1 + self.Hs.etam['small']/self.Hs.Num_h2o)*self.Y_small_0
/ (1 + (self.Hs.etam['small']/self.Hs.Num_h2o)*self.Y_small_0)
)
# Ballard did not differentiate between multiple or single guests
# as we do here. In his version, the weighted exponential is always
# used. However, we saw better agreement by separating single and
# multiple guests.
if self.num_comps > 1:
# Results of flash calculations for hydrocarbon systems do not produce results that are consistent
# with CSMGem. On August 31, 2017. I commented out the following lines to see if they are consisent.
# if self.Hs.hydstruc == 's1':
# self.repulsive_small = (small_const * np.exp(
# self.D_vec - np.sum(self.Y_small_0 * self.D_vec) / np.sum(self.Y_small_0)
# ))
# else:
# self.repulsive_small = small_const
# self.repulsive_small = (small_const * np.exp(
# self.D_vec - np.sum(self.Y_small_0 * self.D_vec)
# ))
self.repulsive_small = (small_const * np.exp(
-(self.D_vec - np.sum(self.Y_small_0 * self.D_vec))
))
self.repulsive_small[self.water_ind] = 0.0
else:
self.repulsive_small = small_const
self.repulsive_large = (
(1 + self.Hs.etam['large']/self.Hs.Num_h2o) * self.Y_large_0
/ (1 + (self.Hs.etam['large']/self.Hs.Num_h2o) * self.Y_large_0)
)
self.repulsive_large[self.water_ind] = 0.0
# Determine size of lattice due to the filling of cages at T_0, P_0
def filled_lattice_size(self):
"""Size of hydrate lattice when filled
Returns
----------
lattice sz : float
Size of lattice when filled by guests
"""
self.cage_distortion()
lattice_sz = (self.Hs.a0_ast
+ (self.Hs.Nm['small']
* np.sum(self.repulsive_small * self.rep_sm_vec))
+ (self.Hs.Nm['large']
* np.sum(self.repulsive_large * self.rep_lg_vec)))
return lattice_sz
def iterate_function(self, comps, T, P, fug, lattice_sz, kappa):
"""Function that must be iterated until convergence due to nonlinearity
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'
T : float
Temperature in Kelvin
P : float
Pressure in bar
fug : numpy array
Fugacity of each non-water component that will
be in equilibrium within some other phase
lattice_sz : float
Size of filled hydrate lattice
kappa : float
Compressibility of filled hydrate
Returns
----------
calc_list : list of numpy arrays
List of output variables such that each element is a
numpy array. First element is a numpy array of small cage
langmuir constants, second element is a numpy array of large
cage langmuir constants, third elements is a numpy array
of small cage fractional occupancies, and fourth element is
a numpy array of large cage fractional occupancies.
"""
C_small, C_large = self.langmuir_consts(comps, T, P,
lattice_sz, kappa)
Y_small = self.calc_langmuir(C_small, fug)
Y_large = self.calc_langmuir(C_large, fug)
calc_list = [C_small, C_large, Y_small, Y_large]
return calc_list
def integrand(self, r, Rn, z, eps_k, sigma, aj, T):
"""Kihara spherical potential function
Parameters
----------
r : float
General radius
Rn : list, numpy array
Radius of each cage in hydrate structure
z : int
Number of water molecules
eps_k : float
Kihara potential parameter, \epsilon (normalized by
Boltzmann's constant), of guest
sigma : float
Kihara potential parameter, sigma, og guest
aj : float
Radius of guest molecule
T : float
Temperature in Kelvin
Returns
----------
integrand_w : numpy array
Integrand as a function of radius
"""
integrand_sum = 0
for ii in range(len(Rn)):
integrand_sum += w_func(z[ii], eps_k, r, Rn[ii], sigma, aj)
integrand_w = r**2*np.exp((-1.0/T)*integrand_sum)
return integrand_w
def compute_integral_constants(self, T, P, lattice_sz, kappa):
"""Function to compute integral for langmuir constant calculation
Parameters
----------
T : float
Temperature in Kelvin
P : float
Pressure in bar
lattice_sz : float
Size of filled hydrate lattice
kappa : float
Compressibility of filled hydrate
"""
Pfactor = self.hydrate_size(T_0, P, 1.0, kappa, dim='linear')
a_factor = (lattice_sz/self.Hs.a_norm)*self.lattice_Tfactor*Pfactor
for ii in range(len(self.Hs.R['sm'])):
self.R_sm[ii] = self.Hs.R['sm'][ii + 1]*a_factor
for ii in range(len(self.Hs.R['lg'])):
self.R_lg[ii] = self.Hs.R['lg'][ii + 1]*a_factor
def langmuir_consts(self, comps, T, P, lattice_sz, kappa):
"""Calculates langmuir constant through many interior calculations
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'
T : float
Temperature in Kelvin
P : float
Pressure in bar
lattice_sz : float
Size of filled hydrate lattice
kappa : float
Compressibility of filled hydrate
Returns
----------
C_small : numpy array
Langmuir constants for each guest in small cage
C_large : numpy array
Langmuir constants for each guest in large cage
Notes
----------
Calculation will perform numerical integration and is numerically
expensive. Other methods are possible, but not as accurate given
the accompanying empirically fit parameter set.
"""
self.compute_integral_constants(T, P, lattice_sz, kappa)
C_small = np.zeros(self.num_comps)
C_large = np.zeros(self.num_comps)
C_const = 1e-10**3*4*np.pi/(k*T)*1e5
for ii, comp in enumerate(comps):
if ii != self.water_ind:
small_int = quad(self.integrand,
0,
min(self.R_sm) - comp.HvdWPM['kih']['a'],
args=(self.R_sm,
self.z_sm,
comp.HvdWPM['kih']['epsk'],
comp.HvdWPM['kih']['sig'],
comp.HvdWPM['kih']['a'],
T,))
large_int = quad(self.integrand,
0,
min(self.R_lg) - comp.HvdWPM['kih']['a'],
args=(self.R_lg,
self.z_lg,
comp.HvdWPM['kih']['epsk'],
comp.HvdWPM['kih']['sig'],
comp.HvdWPM['kih']['a'],
T,))
# Quad returns a tuple of the integral and the error.
# We want to retrieve the integrated value.
C_small[ii] = C_const*small_int[0]
C_large[ii] = C_const*large_int[0]
else:
C_small[ii] = 0
C_large[ii] = 0
return C_small, C_large
def activity_func(self, T, P, v_H_0):
"""Calculates activity of water between aqueous phase and filled hydrate
Parameters
----------
T : float
Temperature in Kelvin
P : float
Pressure in bar
v_H_0 : float
Volume of hydrate at standard state
Returns
----------
activity : float
Activity of water
"""
kappa_wtavg = self.kappa_func(self.Y_large)
activity = (
(v_H_0 - self.a0_cubed) / R * (self.Hs.a_fit/T_0
+ self.Hs.b_fit*(1/T - 1/T_0))
+ ((self.h_vol_Pint(T, P, v_H_0, kappa_wtavg)
- self.h_vol_Pint(T, P, self.a0_cubed, self.kappa0))
- (self.h_vol_Pint(T, P_0, v_H_0, kappa_wtavg)
- self.h_vol_Pint(T, P_0, self.a0_cubed, self.kappa0))) / (R * T)
) * 1e-1
return activity
def fugacity(self, comps, T, P, x, eq_fug):
"""Main calculation for the EOS which returns array of fugacities
Parameters
----------
comps : list
List of components as 'Component' objects created with
'component_properties.py'.
T : float
Temperature in Kelvin.
P : float
Pressure in bar.
x : list, numpy array
Dummy list of molar fraction in hydrate phase to maintain
argument parallelism with other EOS's.
eq_fug : numpy array
Equilibrium fugacity of each non-water component that will
be in equilibrium within some other phase.
Returns
----------
fug : float
Fugacity of water in aqueous phase.
"""
if (eq_fug == self.eq_fug).all():
fug = self.fug.copy()
else:
fug = np.zeros(self.num_comps)
fug[1:] = eq_fug[1:]
self.find_hydrate_properties(comps, T, P, eq_fug)
delta_mu_RT = self.delta_mu_func(comps, T, P)
activity = self.activity_func(T, P, self.v_H_0)
mu_H_RT = self.gwbeta_RT + activity + delta_mu_RT
fug[0] = | np.exp(mu_H_RT - self.gw0_RT) | numpy.exp |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(202, 'F m -3', transformations)
space_groups[202] = sg
space_groups['F m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(203, 'F d -3 :2', transformations)
space_groups[203] = sg
space_groups['F d -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(204, 'I m -3', transformations)
space_groups[204] = sg
space_groups['I m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(205, 'P a -3', transformations)
space_groups[205] = sg
space_groups['P a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(206, 'I a -3', transformations)
space_groups[206] = sg
space_groups['I a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(207, 'P 4 3 2', transformations)
space_groups[207] = sg
space_groups['P 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(208, 'P 42 3 2', transformations)
space_groups[208] = sg
space_groups['P 42 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(209, 'F 4 3 2', transformations)
space_groups[209] = sg
space_groups['F 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(210, 'F 41 3 2', transformations)
space_groups[210] = sg
space_groups['F 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(211, 'I 4 3 2', transformations)
space_groups[211] = sg
space_groups['I 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(212, 'P 43 3 2', transformations)
space_groups[212] = sg
space_groups['P 43 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(213, 'P 41 3 2', transformations)
space_groups[213] = sg
space_groups['P 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(214, 'I 41 3 2', transformations)
space_groups[214] = sg
space_groups['I 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(215, 'P -4 3 m', transformations)
space_groups[215] = sg
space_groups['P -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = | N.array([1,1,0]) | numpy.array |
import numpy as np
import pytest
from physt.histogram1d import Histogram1D
from physt import h1, h2, histogramdd
@pytest.fixture
def empty_adaptive1(create_adaptive) -> Histogram1D:
"""One-dimesion adaptive fixed-width histogram with bin_width=1."""
return create_adaptive((0,))
class TestAdaptive(object):
def test_create_empty(self):
h = h1(None, "fixed_width", bin_width=10, adaptive=True)
assert h.bin_count == 0
assert h.total == 0
assert np.allclose(h.bin_widths, 10)
assert np.isnan(h.mean())
assert np.isnan(h.std())
assert h.overflow == 0
assert h.underflow == 0
def test_fill_empty(self, create_adaptive):
h = create_adaptive((0,))
h.fill(2.4)
assert h.bin_count == 1
assert np.array_equal(h.bin_left_edges, [2])
assert np.array_equal(h.bin_right_edges, [3])
assert np.array_equal(h.frequencies, [1])
def test_fill_non_empty(self, create_adaptive):
h = create_adaptive((3,))
h.fill(3.7)
assert h.bin_count == 4
assert h.total == 4
assert np.array_equal(h.bin_left_edges, [0, 1, 2, 3])
assert np.array_equal(h.bin_right_edges, [1, 2, 3, 4])
assert np.array_equal(h.frequencies, [0, 1, 2, 1])
h.fill(-0.7)
assert h.bin_count == 5
assert h.total == 5
h.fill(10.1)
assert h.bin_count == 12
assert h.total == 6
assert np.array_equal(h.frequencies, [1, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1])
class TestFillNAdaptive(object):
def test_empty(self, empty_adaptive1):
h = empty_adaptive1
h.fill_n([1.2, 2.3, 2.5, 2.6])
assert np.array_equal(h.bin_left_edges, [1, 2])
assert h.total == 4
assert np.array_equal(h.frequencies, [1, 3])
def test_empty_right_edge(self, empty_adaptive1):
h = empty_adaptive1
h.fill_n([0.4, 0.4, 1.0])
assert np.array_equal(h.bin_left_edges, [0, 1])
assert h.total == 3
assert np.array_equal(h.frequencies, [2, 1])
def test_non_empty(self, create_adaptive):
h = create_adaptive((3,))
h.fill_n([-1.3, 4.1])
assert h.bin_left_edges[0] == -2.0
assert h.bin_left_edges[-1] == 4.0
assert h.bin_count == 7
assert h.total == 5
def test_with_weights(self, empty_adaptive1):
h = empty_adaptive1
h.fill_n([0.4, 0.5, 0.6, 1.2], [1, 1, 2, 3])
assert np.array_equal(h.frequencies, [4, 3])
assert np.array_equal(h.errors2, [6, 9])
assert np.array_equal(h.numpy_bins, [0, 1.0, 2.0])
def test_with_incorrect_weights(self, empty_adaptive1):
h = empty_adaptive1
with pytest.raises(ValueError):
h.fill_n([0, 1], [2, 3, 4])
with pytest.raises(ValueError):
h.fill_n([0, 1, 2, 3], [2, 3, 4])
def test_empty_exact(self, empty_adaptive1):
h = empty_adaptive1
h.fill_n([1.0])
assert np.array_equal(h.bin_left_edges, [1.0])
assert np.array_equal(h.frequencies, [1])
assert h.total == 1
class TestAdaptive2D(object):
def test_create_empty(self):
h = h2(None, None, "fixed_width", bin_width=10, adaptive=True)
for b in h._binnings:
assert b.is_adaptive()
assert h.ndim == 2
def test_create_nonempty(self):
d1 = [1, 21, 3]
d2 = [11, 12, 13]
h = h2(d1, d2, "fixed_width", bin_width=10, adaptive=True)
assert h.shape == (3, 1)
def test_fill_empty(self, create_adaptive):
h = create_adaptive((0, 0))
h.fill([1.2, 1.3])
assert h.total == 1
assert | np.array_equal(h.numpy_bins, [[1, 2], [1, 2]]) | numpy.array_equal |
# -*- coding: utf-8 -*-
import numpy as np
import scipy as sp
from sklearn import svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from scipy.sparse.linalg import svds
plt.rcParams['font.sans-serif'] = ['SimHei'] #指定默认字体
plt.rcParams['axes.unicode_minus'] = False #解决保存图像是负号'-'显示为方块的问题
def main():
data = []
labels = []
with open("./data/tree.txt") as ifile:
for line in ifile:
tokens = line.strip().split(' ')
data.append([float(tk) for tk in tokens[:-1]])
labels.append(tokens[-1])
x = np.array(data)
labels = np.array(labels)
y = np.zeros(labels.shape)
y[labels == 'fat'] = 1
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.0)
h = .02
# create a mesh to plot in
x_min, x_max = x_train[:, 0].min() - 0.1, x_train[:, 0].max() + 0.1
y_min, y_max = x_train[:, 1].min() - 1, x_train[:, 1].max() + 1
xx, yy = np.meshgrid(
np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
''''' SVM '''
# title for the plots
titles = [
'LinearSVC (linear kernel)', 'SVC with polynomial (degree 3) kernel',
'SVC with RBF kernel', 'SVC with Sigmoid kernel'
]
clf_linear = svm.SVC(kernel='linear').fit(x, y) # 线性函数
clf_poly = svm.SVC(kernel='poly', degree=3).fit(x, y) # 多项式函数
clf_rbf = svm.SVC().fit(x, y) # 径向基函数
clf_sigmoid = svm.SVC(kernel='sigmoid').fit(x, y) # Sigmoid函数
for i, clf in enumerate((clf_linear, clf_poly, clf_rbf, clf_sigmoid)):
answer = clf.predict(np.c_[xx.ravel(), yy.ravel()])
print(clf)
print( | np.mean(answer == y_train) | numpy.mean |
"""Bayesian Gaussian Mixture Models and
Dirichlet Process Gaussian Mixture Models"""
from __future__ import print_function
# Author: <NAME> (<EMAIL>)
# <NAME> <<EMAIL>>
#
# Based on mixture.py by:
# <NAME> <<EMAIL>>
# <NAME> <<EMAIL>>
#
# Important note for the deprecation cleaning of 0.20 :
# All the function and classes of this file have been deprecated in 0.18.
# When you remove this file please also remove the related files
# - 'sklearn/mixture/gmm.py'
# - 'sklearn/mixture/test_dpgmm.py'
# - 'sklearn/mixture/test_gmm.py'
import numpy as np
from scipy.special import digamma as _digamma, gammaln as _gammaln
from scipy import linalg
from scipy.spatial.distance import cdist
from ..externals.six.moves import xrange
from ..utils import check_random_state, check_array, deprecated
from ..utils.extmath import logsumexp, pinvh, squared_norm
from ..utils.validation import check_is_fitted
from .. import cluster
from .gmm import _GMMBase
@deprecated("The function digamma is deprecated in 0.18 and "
"will be removed in 0.20. Use scipy.special.digamma instead.")
def digamma(x):
return _digamma(x + np.finfo(np.float32).eps)
@deprecated("The function gammaln is deprecated in 0.18 and "
"will be removed in 0.20. Use scipy.special.gammaln instead.")
def gammaln(x):
return _gammaln(x + np.finfo(np.float32).eps)
@deprecated("The function log_normalize is deprecated in 0.18 and "
"will be removed in 0.20.")
def log_normalize(v, axis=0):
"""Normalized probabilities from unnormalized log-probabilites"""
v = np.rollaxis(v, axis)
v = v.copy()
v -= v.max(axis=0)
out = logsumexp(v)
v = | np.exp(v - out) | numpy.exp |
"""
generate_plots_PRD_2020.py is a Python routine that can be used to generate
the plots of <NAME>, <NAME>, <NAME>, <NAME>,
and <NAME>, "Numerical simulations of gravitational waves
from early-universe turbulence," Phys. Rev. D 102, 083512 (2020),
https://arxiv.org/abs/1903.08585.
It reads the pickle run variables that can be generated by the routine
initialize_PRD_2020.py.
The function run() executes the code.
"""
import os
import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u
# get working directory, where the runs and routines should be stored
dir0 = os.getcwd() + '/'
HOME = dir0 + '/..'
os.chdir(HOME)
from dirs import read_dirs as rd
import plot_sets
import run as r
import interferometry as inte
import cosmoGW
import spectra as sp
def run():
# import dictionary with the names identifying
# the runs and pointing to the corresponding directory
dirs = rd('PRD_2020_ini')
dirs = rd('PRD_2020_hel', dirs)
dirs = rd('PRD_2020_noh', dirs)
dirs = rd('PRD_2020_ac', dirs)
R = [s for s in dirs]
# read the runs stored in the pickle variables
runs = r.load_runs(R, dir0, dirs, quiet=False)
os.chdir(dir0)
return runs
def plot_EGW_EM_vs_k(runs, rr='ini2', save=True, show=True):
"""
Function that generates the plot of the magnetic spectrum
EM (k) = Omega_M(k)/k at the initial time of turbulence generation
and the GW spectrum EGW (k) = Omega_GW(k)/k, averaged over oscillations
in time.
It corresponds to figure 1 of <NAME>, <NAME>, <NAME>,
<NAME>, and <NAME>, "Numerical simulations of gravitational
waves from early-universe turbulence," Phys. Rev. D 102, 083512 (2020),
https://arxiv.org/abs/1903.08585.
Arguments:
runs -- dictionary that includes the run variables
rr -- string that selects which run to plot (default 'ini2')
save -- option to save the resulting figure as
plots/EGW_EM_vs_k_'name_run'.pdf' (default True)
show -- option to show the resulting figure (default True)
"""
plt.figure(figsize=(10,6))
plt.xscale('log')
plt.yscale('log')
plt.xlim(120, 6e4)
plt.ylim(1e-19, 1e-4)
plt.xlabel('$k$')
plt.ylabel(r'$\Omega_{\rm GW}(k)/k$ and $\Omega_{\rm M}(k)/k$',
fontsize=20)
run = runs.get(rr)
# plot the averaged over times GW spectrum
GWs_stat_sp = run.spectra.get('EGW_stat_sp')
k = run.spectra.get('k')[1:]
plt.plot(k, GWs_stat_sp, color='black')
# plot magnetic spectrum at the initial time
mag = run.spectra.get('mag')[0, 1:]
plt.plot(k, mag, color='black')
# plot k^4 line
k0 = np.logspace(np.log10(150), np.log10(500), 5)
plt.plot(k0, 1e-9*(k0/100)**4, color='black', ls='-.', lw=.7)
plt.text(300, 8e-9, r'$\sim\!k^4$', fontsize=20)
# plot k^(-5/3) line
k0 = np.logspace(np.log10(2000), np.log10(8000), 5)
plt.plot(k0, 1e-5*(k0/1000)**(-5/3), color='black', ls='-.', lw=.7)
plt.text(5e3, 1.6e-6, r'$\sim\!k^{-5/3}$', fontsize=20)
# plot k^(-11/3) line
k0 = np.logspace(np.log10(3000), np.log10(30000), 5)
plt.plot(k0, 1e-12*(k0/1000)**(-11/3), color='black', ls='-.', lw=.7)
plt.text(1e4, 5e-16, r'$\sim\!k^{-11/3}$', fontsize=20)
plt.text(1500, 1e-16, r'$\Omega_{\rm GW} (k)/k$', fontsize=20)
plt.text(800, 5e-8, r'$\Omega_{\rm M} (k)/k$', fontsize=20)
ax = plt.gca()
ax.set_xticks([100, 1000, 10000])
ytics = 10**np.array(np.linspace(-19, -5, 7))
ytics2 = 10**np.array(np.linspace(-19, -5, 15))
yticss = ['$10^{-19}$', '', '$10^{-17}$', '', '$10^{-15}$', '',
'$10^{-13}$', '', '$10^{-11}$', '', '$10^{-9}$', '',
'$10^{-7}$', '', '$10^{-5}$']
ax.set_yticks(ytics2)
ax.set_yticklabels(yticss)
plot_sets.axes_lines()
ax.tick_params(pad=10)
if save: plt.savefig('plots/EGW_EM_vs_k_' + run.name_run + '.pdf',
bbox_inches='tight')
if not show: plt.close()
def plot_EGW_vs_kt(runs, rr='ini2', save=True, show=True):
"""
Function that generates the plot of the compensated GW spectrum as a
function of k(t - tini) for the smallest wave numbers of the run.
It corresponds to figure 3 of <NAME>, <NAME>, <NAME>,
<NAME>, and <NAME>, "Numerical simulations of gravitational
waves from early-universe turbulence," Phys. Rev. D 102, 083512 (2020),
https://arxiv.org/abs/1903.08585.
Arguments:
runs -- dictionary that includes the run variables
rr -- string that selects which run to plot (default 'ini2')
save -- option to save the resulting figure as
plots/EGW_vs_kt.pdf (default True)
show -- option to show the resulting figure (default True)
"""
run = runs.get(rr)
k = run.spectra.get('k')[1:]
EGW = np.array(run.spectra.get('EGW')[:,1:], dtype='float')
t = run.spectra.get('t_EGW')
plt.figure(figsize=(10,6))
plt.xscale('log')
plt.yscale('log')
plt.xlim(1e-2, 40)
plt.ylim(8e-8, 1e-5)
plt.xlabel('$k (t - 1)$')
plt.ylabel(r'$\left[k_* \Omega_{\rm GW} (k, t)/k\right]^{1/2}$')
plot_sets.axes_lines()
# plot for initial wave numbers
plt.plot(k[0]*(t - 1), np.sqrt(EGW[:, 0]*run.kf),
color='black', lw=.8, #label='$k = %.0f$'%k[0])
label='$k = 100$')
plt.plot(k[1]*(t - 1), np.sqrt(EGW[:, 1]*run.kf),
color='red', ls='-.', lw=.8, #label='$k = %.0f$'%k[1])
label='$k = 200$')
plt.plot(k[2]*(t - 1), np.sqrt(EGW[:, 2]*run.kf),
color='blue', ls='dashed', lw=.8, #label='$k = %.0f$'%k[2])
label='$k = 300$')
plt.plot(k[3]*(t - 1), np.sqrt(EGW[:, 3]*run.kf),
color='green', ls='dotted', lw=.8, #label='$k = %.0f$'%k[3])
label='$k = 400$')
plt.legend(fontsize=22, loc='lower right', frameon=False)
if save: plt.savefig('plots/EGW_vs_kt.pdf', bbox_inches='tight')
if not show: plt.close()
def plot_OmMK_OmGW_vs_t(runs, save=True, show=True):
"""
Function that generates the plots of the total magnetic/kinetic energy
density as a function of time ('OmM_vs_t.pdf') and the GW energy density
as a function of time ('OmGW_vs_t.pdf').
It corresponds to figure 5 of <NAME>, <NAME>, <NAME>,
<NAME>, and <NAME>, "Numerical simulations of gravitational
waves from early-universe turbulence," Phys. Rev. D 102, 083512 (2020),
https://arxiv.org/abs/1903.08585.
Arguments:
runs -- dictionary that includes the run variables
save -- option to save the resulting figure as
plots/OmGW_vs_t.pdf (default True)
show -- option to show the resulting figure (default True)
"""
# chose the runs to be shown
rrs = ['ini1', 'ini2', 'ini3', 'hel1', 'hel2', 'ac1']
# chose the colors of each run
col = ['black', 'red', 'blue', 'red', 'blue', 'black']
# chose the line style for the plots
ls = ['solid']*6
ls[3] = 'dashed'
ls[4] = 'dashed'
ls[5] = 'dashed'
plt.figure(1, figsize=(10,6))
plt.figure(2, figsize=(10,6))
j = 0
for i in rrs:
run = runs.get(i)
k = run.spectra.get('k')[1:]
GWs_stat_sp = run.spectra.get('GWs_stat_sp')
t = run.ts.get('t')[1:]
indst = np.argsort(t)
t = t[indst]
EEGW = run.ts.get('EEGW')[1:][indst]
if run.turb == 'm': EEM = run.ts.get('EEM')[1:][indst]
if run.turb == 'k': EEM = run.ts.get('EEK')[1:][indst]
plt.figure(1)
plt.plot(t, EEGW, color=col[j], lw=.8, ls=ls[j])
# text with run name
if i=='ini1': plt.text(1.02, 5e-8, i, color=col[j])
if i=='ini2': plt.text(1.07, 5e-11, i, color=col[j])
if i=='ini3': plt.text(1.2, 6e-9, i, color=col[j])
if i=='hel1': plt.text(1.15, 2e-9, i, color=col[j])
if i=='hel2': plt.text(1.12, 7e-10, i, color=col[j])
if i=='ac1': plt.text(1.2, 1e-7, i, color=col[j])
plt.figure(2)
plt.plot(t, EEM, color=col[j], lw=.8, ls=ls[j])
# text with run name
if i=='ini1': plt.text(1.01, 8e-2, i, color=col[j])
if i=='ini2': plt.text(1.12, 3e-3, i, color=col[j])
if i=='ini3': plt.text(1.01, 9e-3, i, color=col[j])
if i=='hel1': plt.text(1.15, 1.3e-2, i, color=col[j])
if i=='hel2': plt.text(1.02, 1e-3, i, color=col[j])
if i=='ac1': plt.text(1.17, 1.5e-3, i, color=col[j])
j += 1
plt.figure(1)
plt.yscale('log')
plt.xlabel('$t$')
plt.xlim(1, 1.25)
plt.ylim(2e-11, 2e-7)
plt.ylabel(r'$\Omega_{\rm GW}$')
plot_sets.axes_lines()
if save: plt.savefig('plots/OmGW_vs_t.pdf', bbox_inches='tight')
if not show: plt.close()
plt.figure(2)
plt.yscale('log')
plt.xlim(1, 1.25)
plt.ylim(5e-4, 2e-1)
plt.xlabel('$t$')
plt.ylabel(r'$\Omega_{\rm M, K}$')
plot_sets.axes_lines()
if save: plt.savefig('plots/OmM_vs_t.pdf', bbox_inches='tight')
if not show: plt.close()
def plot_OmGW_hc_vs_f_ini(runs, T=1e5*u.MeV, g=100, SNR=10, Td=4,
save=True, show=True):
"""
Function that generates the plot of the GW energy density spectrum
of initial runs (ini1, ini2, and ini3), compared to the LISA sensitivity
and power law sensitivity (PLS).
It corresponds to figure 4 of <NAME>, <NAME>, <NAME>,
<NAME>, and <NAME>, "Numerical simulations of gravitational
waves from early-universe turbulence," Phys. Rev. D 102, 083512 (2020),
https://arxiv.org/abs/1903.08585.
Arguments:
runs -- dictionary that includes the run variables
T -- temperature scale (in natural units) at the time of turbulence
generation (default 100 GeV, i.e., electroweak scale)
g -- number of relativistic degrees of freedom at the time of
turbulence generation (default 100, i.e., electroweak scale)
SNR -- signal-to-noise ratio (SNR) of the resulting PLS (default 10)
Td -- duration of the mission (in years) of the resulting PLS
(default 4)
save -- option to save the resulting figure as
plots/OmGW_vs_f_ini.pdf (default True)
show -- option to show the resulting figure (default True)
"""
# read LISA and Taiji sensitivities
CWD = os.getcwd()
os.chdir('..')
#f_LISA, f_LISA_Taiji, LISA_sensitivity, LISA_OmPLS, LISA_XiPLS, \
# Taiji_OmPLS, Taiji_XiPLS, LISA_Taiji_XiPLS = inte.read_sens()
fs, LISA_Om, LISA_OmPLS = inte.read_sens(SNR=SNR, T=Td)
fs = fs*u.Hz
os.chdir(CWD)
# chose the runs to be shown
rrs = ['ini1', 'ini2', 'ini3']
# chose the colors of each run
col = ['black', 'red', 'blue']
plt.figure(1, figsize=(12,5))
plt.figure(2, figsize=(12,5))
j = 0
for i in rrs:
run = runs.get(i)
k = run.spectra.get('k')[1:]
EGW_stat = run.spectra.get('EGW_stat_sp')
f, OmGW_stat = cosmoGW.shift_OmGW_today(k, EGW_stat*k, T, g)
OmGW_stat = | np.array(OmGW_stat, dtype='float') | numpy.array |
print("################################################################################")
print("# Implementation of a multivariate pattern analysis based on the scikitlearn ")
print("# toolbox (http://scikit-learn.org/stable/). It reads a matlab file containing ")
print("# Xm: a matrix of trials x chans x timepoint. ")
print("# y: a vector indicating the class of each trial ")
print("# The classification algorithm is based on a support vector machine. ")
print("# (c) <NAME> 2012, jeanremi.king [at] gmail.com ")
print("################################################################################")
###############################################################################
print("LIBRARY")
import sys as sys
import numpy as np
from scipy import stats
from sklearn import svm
from sklearn.cross_validation import StratifiedKFold, LeaveOneOut, KFold
from sklearn.feature_selection import SelectPercentile, f_classif
import scipy.io as sio
from sklearn.preprocessing import Scaler
###############################################################################
print("INPUT DATA")
#-- get argument to load specific file
filenameX = str(sys.argv[1])
filenamey = str(sys.argv[2])
print(filenameX)
print(filenamey)
#-- Load data into python
mat = sio.loadmat(filenameX)
Xm_all = mat["Xm"] # data
#-- load classification parameters
mat = sio.loadmat(filenamey)
path = mat["path"][0]
nameX = mat["nameX"][0]
namey = mat["namey"][0]
folding = mat["folding"][0]
n_splits = mat["n_splits"] # svm penalization parameter
n_splits = np.reshape(n_splits, n_splits.size)
n_folds = mat["n_folds"] # fold number
n_folds = np.reshape(n_folds, n_folds.size)
svm_C = mat["C"] # svm penalization parameter
svm_C = np.reshape(svm_C, svm_C.size)
compute_probas = mat["compute_probas"] # svm penalization parameter
compute_probas = np.reshape(compute_probas, compute_probas.size)
compute_predict = mat["compute_predict"] # svm penalization parameter
compute_predict = np.reshape(compute_predict, compute_predict.size)
fs_n = mat["fs"] # feature selection
fs_n = np.reshape(fs_n, fs_n.size)
dims = mat["dims"] # select time windows to compute
dims = np.reshape(dims, dims.size) - 1 # reshape for skl compatibility
dims_tg = mat["dims_tg"] - 1 # svm penalization parameter
y_all = mat["y"] # class used for train and test
y_all = np.reshape(y_all, y_all.size) # reshape for skl compatibility
y2_all = mat["y2"] # class used for sample weights
y2_all = np.reshape(y2_all, y2_all.size) # reshape for skl compatibility
#-- build training and generalizing classes
Xm = Xm_all[y_all > 0, :, :] # training categories
Xmg = Xm_all[y_all < 0, :, :] # generalization categories
y = y_all[y_all > 0]
yg = y_all[y_all < 0]
y2 = y2_all[y_all > 0]
n_samples, n_features, unused = Xm.shape
n_samplesg, unused, unused = Xmg.shape
n_featuresg = n_features
n_dims = dims.shape[0]
n_dimsg = n_dims
n_dims_tg = dims_tg.shape[1]
n_dimsg_tg = dims_tg.shape[1]
n_classes = np.unique(y).shape[0]
#deal with sample_weight
sample_weight = np.ones(y.shape[0])
classes = np.unique(y2)
for c in range(classes.shape[0]):
sample_weight[y2 == classes[c]] = 1. / (np.sum(y2 == classes[c]))
###############################################################################
print("PREPARE CLASSIFICATION")
#--crossvalidation
if folding == 'stratified':
cv = StratifiedKFold(y, k=n_folds)
elif folding == 'kfolding':
cv = KFold(n=y.shape[0], k=n_folds)
elif folding == 'leaveoneout':
n_folds[0] = y.shape[0]
cv = LeaveOneOut(n=y.shape[0])
else:
print("unknown crossvalidation method!")
#-- classifier
clf = svm.SVC(kernel='linear', probability=True, C=svm_C)
#-- normalizer
scaler = Scaler()
#-- feature selection
fs = SelectPercentile(f_classif, percentile=fs_n)
print("INITIALIZE RESULTS")
if compute_predict:
predict = np.zeros([n_splits, n_samples, n_dims, n_dims_tg]) ** np.nan
predictg = np.zeros([n_splits, n_samplesg, n_dimsg, n_dimsg_tg, n_folds]) ** np.nan
else:
predict = []
predictg = []
if compute_probas:
probas = np.zeros([n_splits, n_samples, n_dims, n_dims_tg, n_classes]) ** np.nan
probasg = | np.zeros([n_splits, n_samplesg, n_dimsg, n_dimsg_tg, n_classes, n_folds]) | numpy.zeros |
import sys, os
sys.path.insert(0,'/global/u1/s/spandey/kmeans_radec/')
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import scipy.integrate as integrate
import random
import treecorr
import healpy as hp
from astropy.io import fits
import astropy.units as u
from astropy.coordinates import SkyCoord
import scipy.signal as spsg
import kmeans_radec
from kmeans_radec import KMeans, kmeans_sample
from numpy.random import rand
import pickle as pk
import matplotlib.cm as cm
import scipy.interpolate as interpolate
from numpy.linalg import inv
import pdb
import time
from scipy.integrate import quad
from scipy.optimize import fsolve
import scipy.optimize as op
import scipy as sp
from astropy import constants as const
import process_cats_class as pcc
import colossus
from colossus.cosmology import cosmology
from colossus.lss import bias
from colossus.lss import mass_function
from colossus.halo import mass_so
from colossus.halo import mass_defs
from colossus.halo import concentration
do_m = 1
do_rm = 1
do_g = 1
do_rg = 1
# ds_m = 1.1
ds_m = 1
cosmo_params_dict = {'flat': True, 'H0': 70.0, 'Om0': 0.25, 'Ob0': 0.044, 'sigma8': 0.8, 'ns': 0.95}
zmin_hdens = 0.15
zmax_hdens = 0.6
zmin_hlum = 0.6
zmax_hlum = 0.75
zmin_hrlum = 0.75
zmax_hrlum = 0.9
other_params_dict = {}
other_params_dict['zmin_bins'] = [0.15,0.3,0.45,0.6,0.75]
other_params_dict['zmax_bins'] = [0.3,0.45,0.6,0.75,0.9]
other_params_dict['bin_n_array'] = [1,2,3,4,5]
other_params_dict['bin_array'] = ['bin1','bin2','bin3','bin4','bin5']
# njk_radec = 180
# njk_z = 1
# njk_radec = 300
# njk_z = 1
njk_radec = 100
njk_z = 1
other_params_dict['njk_radec'] = njk_radec
other_params_dict['njk_z'] = njk_z
gnf = pcc.general_funcs(cosmo_params_dict)
z_array = np.linspace(0, 1.5, 10000)
chi_array = np.zeros(len(z_array))
for j in range(len(z_array)):
chi_array[j] = gnf.get_Dcom(z_array[j])
other_params_dict['chi_interp'] = interpolate.interp1d(z_array, chi_array)
chi_array = np.linspace(0, 4000, 50000)
z_array = np.zeros(len(chi_array))
for j in range(len(z_array)):
z_array[j] = gnf.get_z_from_chi(chi_array[j])
other_params_dict['z_interp'] = interpolate.interp1d(chi_array, z_array)
# def get_int(chi_max, chi_min):
# chi_array = np.linspace(chi_min, chi_max, 5000)
# int_total = sp.integrate.simps(chi_array ** 2, chi_array)
# return int_total
save_dir = '/global/project/projectdirs/des/shivamp/actxdes/data_set/mice_sims/process_cats/'
# save_filename_matter = 'matter_ra_dec_r_z_bin_jk_L3072N4096-LC129-1in700_njkradec_' + str(njk_radec) + '_njkz_' + str(
# njk_z) + '_ds_' + str(ds_m) + '.fits'
# save_filename_matter_randoms = 'randoms_matter_ra_dec_r_z_bin_jk_L3072N4096-LC129-1in700_njkradec_' + str(
# njk_radec) + '_njkz_' + str(njk_z) + '_ds_' + str(ds_m) + '.fits'
save_filename_galaxy = 'galaxy_ra_dec_r_z_bin_jk_mice_des_run_redmapper_v6.4.16_redmagic_njkradec_' + str(
njk_radec) + '_njkz_' + str(njk_z) + '_v2.fits'
save_filename_galaxy_randoms = 'randoms_galaxy_ra_dec_r_z_bin_jk_mice_des_run_redmapper_v6.4.16_redmagic_redmagic_njkradec_' + str(
njk_radec) + '_njkz_' + str(njk_z) + '_v2.fits'
# save_filename_jk_obj = '/global/project/projectdirs/des/shivamp/actxdes/data_set/mice_sims/process_cats/jkobj_mice_lmhalo_12.0_12.5_njkradec_180_njkz_1v2.pk'
save_filename_jk_obj = 'jkobj_mice' + '_njkradec_' + str(njk_radec) + '_njkz_' + str(njk_z) + '_v2.pk'
print('loading galaxies and matter cat')
file_matter_mice = fits.open('/global/project/projectdirs/des/y3-bias/MICE_all_data/v2/matter_ra_dec_r_z_L3072N4096-LC129-1in700.fits')[1].data
ra_m, dec_m, z_m = file_matter_mice['RA'],file_matter_mice['DEC'],file_matter_mice['Z']
if ds_m > 1:
ind_ds = np.unique(np.random.randint(0,len(ra_m),int(len(ra_m)/ds_m)))
ds_m_save = np.around(len(z_m)/(1.0*len(ind_ds)),2)
print('matter downsampled/original = ' + str(len(z_m)/(1.0*len(ind_ds))))
ra_m, dec_m, z_m = ra_m[ind_ds], dec_m[ind_ds], z_m[ind_ds]
else:
ds_m_save = ds_m
save_filename_matter = 'matter_ra_dec_r_z_bin_jk_L3072N4096-LC129-1in700_njkradec_' + str(njk_radec) + '_njkz_' + str(
njk_z) + '_ds_' + str(ds_m_save) + '_v2.fits'
save_filename_matter_randoms = 'randoms_matter_ra_dec_r_z_bin_jk_L3072N4096-LC129-1in700_njkradec_' + str(
njk_radec) + '_njkz_' + str(njk_z) + '_ds_' + str(ds_m_save) + '_v2.fits'
z_min, z_max = np.min(z_m), np.max(z_m)
nzbins_total = 1000
zarray_all = np.linspace(z_min, z_max, nzbins_total)
zarray_edges = (zarray_all[1:] + zarray_all[:-1]) / 2.
zarray = zarray_all[1:-1]
chi_array_r = gnf.get_Dcom_array(zarray)
dchi_dz_array_r = (const.c.to(u.km / u.s)).value / (gnf.get_Hz(zarray))
chi_max = gnf.get_Dcom_array([z_max])[0]
chi_min = gnf.get_Dcom_array([z_min])[0]
VT = (4 * np.pi / 3) * (chi_max ** 3 - chi_min ** 3)
dndz = (4 * np.pi) * (chi_array_r ** 2) * dchi_dz_array_r / VT
# dndm_model = 'crocce10'
# bias_model = 'bhattacharya11'
# mdef = 'fof'
# cosmo_params = {'flat': True, 'H0': 70.0, 'Om0': 0.25, 'Ob0': 0.0448, 'sigma8': 0.8, 'ns': 0.95}
# cosmology.addCosmology('mock_cosmo', cosmo_params)
# cosmo_colossus = cosmology.setCosmology('mock_cosmo')
# h = cosmo_params['H0'] / 100.
print('getting jk obj map from galaxies')
# ind_jk_g = np.where((z_g_hdens > other_params_dict['zmin_bins'][0]) & (z_g_hdens < other_params_dict['zmax_bins'][0]))[0]
# jkobj_map_radec = pcc.get_jkobj(np.transpose([ra_g_hdens[ind_jk_g], dec_g_hdens[ind_jk_g]]),njk_radec)
# other_params_dict['jkobj_map_radec'] = jkobj_map_radec
# np.savetxt(save_dir + 'jk_centers_mice2_des_run_redmapper_v6.4.16_redmagic_njkradec_' + str(njk_radec) + '.txt',jkobj_map_radec.centers)
gal_hdens = fits.open('/global/project/projectdirs/des/y3-bias/MICE_all_data/v2/mice2_des_run_redmapper_v6.4.16_redmagic_highdens_0.5-10.fit')[1].data
ra_g_hdens_all, dec_g_hdens_all, z_g_hdens_all = gal_hdens['RA'],gal_hdens['DEC'],gal_hdens['ZSPEC']
ind_hdens = np.where((z_g_hdens_all > zmin_hdens) & (z_g_hdens_all < zmax_hdens))[0]
ra_g_hdens, dec_g_hdens, z_g_hdens = ra_g_hdens_all[ind_hdens], dec_g_hdens_all[ind_hdens], z_g_hdens_all[ind_hdens]
if os.path.isfile(save_dir + save_filename_jk_obj):
jkobj_map_radec_centers = pk.load(open(save_dir + save_filename_jk_obj,'rb'))['jkobj_map_radec_centers']
jkobj_map_radec = KMeans(jkobj_map_radec_centers)
else:
ind_jk_g = np.where((z_g_hdens > other_params_dict['zmin_bins'][0]) & (z_g_hdens < (other_params_dict['zmin_bins'][0] + 0.1) ))[0]
jkobj_map_radec = pcc.get_jkobj(np.transpose([ra_g_hdens[ind_jk_g], dec_g_hdens[ind_jk_g]]),njk_radec)
jk_dict = {'jkobj_map_radec_centers':jkobj_map_radec.centers}
pk.dump(jk_dict, open(save_dir + save_filename_jk_obj, 'wb'),protocol=2)
other_params_dict['jkobj_map_radec'] = jkobj_map_radec
CF_hdens_all = pcc.Catalog_funcs(ra_g_hdens_all, dec_g_hdens_all, z_g_hdens_all ,cosmo_params_dict,other_params_dict)
nz_unnorm, z_edge = np.histogram(z_g_hdens_all, zarray_edges)
nz_unnorm_smooth = spsg.savgol_filter(nz_unnorm, 21, 5)
nz_normed = nz_unnorm/(integrate.simps(nz_unnorm,zarray))
nz_normed_smooth = nz_unnorm_smooth/(integrate.simps(nz_unnorm_smooth,zarray))
ra_rand_g_hdens_all, dec_rand_g_hdens_all, z_rand_g_hdens_all = CF_hdens_all.create_random_cat_uniform_esutil(zarray=zarray, nz_normed=nz_normed_smooth, nrand_fac=10, ra_min=0, ra_max=90, dec_min=0, dec_max=90)
ind_hdens = np.where((z_rand_g_hdens_all > zmin_hdens) & (z_rand_g_hdens_all < zmax_hdens))[0]
ra_rand_g_hdens, dec_rand_g_hdens, z_rand_g_hdens = ra_rand_g_hdens_all[ind_hdens], dec_rand_g_hdens_all[ind_hdens], z_rand_g_hdens_all[ind_hdens]
do_plot = True
if do_plot:
fig, ax = plt.subplots(1,1, figsize = (10,8))
ax.set_xlim(0.1,0.9)
ax.plot(zarray, nz_normed_smooth, 'k-', label='Smoothed',linewidth=1.5)
ax.plot(zarray, nz_normed, color='red', label='Original',linewidth=1.8)
ax.legend(fontsize=18, loc='upper left')
plt.xlabel(r'z', fontsize=22)
plt.ylabel(r'n(z)', fontsize=26)
plt.tick_params(axis='both', which='major', labelsize=18)
plt.tick_params(axis='both', which='minor', labelsize=18)
plt.tight_layout()
plt.savefig('nz_mice_v2_redmagic_hdens_comp.png',dpi=360)
gal_hlum = fits.open('/global/project/projectdirs/des/y3-bias/MICE_all_data/v2/mice2_des_run_redmapper_v6.4.16_redmagic_highlum_1.0-04.fit')[1].data
ra_g_hlum_all, dec_g_hlum_all, z_g_hlum_all = gal_hlum['RA'],gal_hlum['DEC'],gal_hlum['ZSPEC']
ind_hlum = np.where((z_g_hlum_all > zmin_hlum) & (z_g_hlum_all < zmax_hlum))[0]
ra_g_hlum, dec_g_hlum, z_g_hlum = ra_g_hlum_all[ind_hlum], dec_g_hlum_all[ind_hlum], z_g_hlum_all[ind_hlum]
CF_hlum_all = pcc.Catalog_funcs(ra_g_hlum_all, dec_g_hlum_all, z_g_hlum_all ,cosmo_params_dict,other_params_dict)
nz_unnorm, z_edge = np.histogram(z_g_hlum_all, zarray_edges)
nz_unnorm_smooth = spsg.savgol_filter(nz_unnorm, 21, 5)
nz_normed = nz_unnorm/(integrate.simps(nz_unnorm,zarray))
nz_normed_smooth = nz_unnorm_smooth/(integrate.simps(nz_unnorm_smooth,zarray))
ra_rand_g_hlum_all, dec_rand_g_hlum_all, z_rand_g_hlum_all = CF_hlum_all.create_random_cat_uniform_esutil(zarray=zarray, nz_normed=nz_normed_smooth, nrand_fac=10, ra_min=0, ra_max=90, dec_min=0, dec_max=90)
ind_hlum = np.where((z_rand_g_hlum_all > zmin_hlum) & (z_rand_g_hlum_all < zmax_hlum))[0]
ra_rand_g_hlum, dec_rand_g_hlum, z_rand_g_hlum = ra_rand_g_hlum_all[ind_hlum], dec_rand_g_hlum_all[ind_hlum], z_rand_g_hlum_all[ind_hlum]
do_plot = True
if do_plot:
fig, ax = plt.subplots(1,1, figsize = (10,8))
ax.set_xlim(0.1,0.9)
ax.plot(zarray, nz_normed_smooth, 'k-', label='Smoothed',linewidth=1.5)
ax.plot(zarray, nz_normed, color='red', label='Original',linewidth=1.8)
ax.legend(fontsize=18, loc='upper left')
plt.xlabel(r'z', fontsize=22)
plt.ylabel(r'n(z)', fontsize=26)
plt.tick_params(axis='both', which='major', labelsize=18)
plt.tick_params(axis='both', which='minor', labelsize=18)
plt.tight_layout()
plt.savefig('nz_mice_v2_redmagic_hlum_comp.png',dpi=360)
gal_hrlum = fits.open('/global/project/projectdirs/des/y3-bias/MICE_all_data/v2/mice2_des_run_redmapper_v6.4.16_redmagic_higherlum_1.5-01.fit')[1].data
ra_g_hrlum_all, dec_g_hrlum_all, z_g_hrlum_all = gal_hrlum['RA'],gal_hrlum['DEC'],gal_hrlum['ZSPEC']
ind_hrlum = np.where((z_g_hrlum_all > zmin_hrlum) & (z_g_hrlum_all < zmax_hrlum))[0]
ra_g_hrlum, dec_g_hrlum, z_g_hrlum = ra_g_hrlum_all[ind_hrlum], dec_g_hrlum_all[ind_hrlum], z_g_hrlum_all[ind_hrlum]
CF_hrlum_all = pcc.Catalog_funcs(ra_g_hrlum_all, dec_g_hrlum_all, z_g_hrlum_all ,cosmo_params_dict,other_params_dict)
nz_unnorm, z_edge = np.histogram(z_g_hrlum_all, zarray_edges)
nz_unnorm_smooth = spsg.savgol_filter(nz_unnorm, 21, 5)
nz_normed = nz_unnorm/(integrate.simps(nz_unnorm,zarray))
nz_normed_smooth = nz_unnorm_smooth/(integrate.simps(nz_unnorm_smooth,zarray))
ra_rand_g_hrlum_all, dec_rand_g_hrlum_all, z_rand_g_hrlum_all = CF_hrlum_all.create_random_cat_uniform_esutil(zarray=zarray, nz_normed=nz_normed_smooth, nrand_fac=10, ra_min=0, ra_max=90, dec_min=0, dec_max=90)
ind_hrlum = | np.where((z_rand_g_hrlum_all > zmin_hrlum) & (z_rand_g_hrlum_all < zmax_hrlum)) | numpy.where |
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 12 18:20:00 2020
@author: http://research.iac.es/sieinvens/python-course/source/scipy.html
"""
"""Ejemplo de Ajuste de funciones generales con MMCC con Python
HAY QUE ESTUDIARLO PARA UTILIZAR LEASTSQ"""
"""import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import leastsq
# Datos de laboratorio
datos_y = np.array([ 2.9, 6.1, 10.9, 12.8, 19.2])
datos_x = np.array([ 1.0, 2.0, 3.0, 4.0, 5.0])
# Función para calcular los residuos, donde
# se calcula (datos - modelo)
def residuos(p, y, x):
error = y - (p[0]*x + p[1])
return error
# Parámetros iniciales estimados
# y = p0[0]*x + p0[0]
p0 = [2.0, 0.0]
# Hacemos el ajuste por minimos cuadrados con leastsq(). El primer parámetro
# es la funcion de residuos, luego los parámetro iniciales y una tupla con los
# argumentos de la funcion de residuos, en este caso, datos_y y datos_x en
# ese orden, porque así se definió la función de error
ajuste = leastsq(residuos, p0, args=(datos_y, datos_x))
# El resultado es una lista, cuyo primer elemento es otra
# lista con los parámetros del ajuste
print(ajuste[0])
# array([ 3.93, -1.41])"""
import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import leastsq
from scipy import random
# Generamos unos datos artificiales para hacer el ejemplo
# A datos_y se le añade "ruido" que simula error de
# medida, añadiendole un valor aleatorio
datos_x = | np.arange(0, 0.1, 0.003) | numpy.arange |
import numpy as np
from numpy import ndarray
from yacs.config import CfgNode
from albumentations import OneOf, Compose, MotionBlur, MedianBlur, Blur, RandomBrightnessContrast, GaussNoise, \
GridDistortion, Rotate, HorizontalFlip, CoarseDropout, Cutout
from .grid_mask import GridMask
from typing import Union, List, Tuple
from .augmix import augmentations, augment_and_mix
import cv2
from cv2 import resize
import torch
def content_crop(img: ndarray, white_background: bool):
"""
Center the content, removed
https://www.kaggle.com/iafoss/image-preprocessing-128x128
:param img: grapheme image matrix
:param white_background: whether the image
:return: cropped image matrix
"""
# Remove the surrounding 5 pixels
img = img[5:-5, 5:-5]
if white_background:
y_list, x_list = | np.where(img < 235) | numpy.where |
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>,
# <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# <NAME>, <NAME>, <NAME>, and <NAME>.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
# MDAnalysis -- density analysis
# Copyright (c) 2007-2011 <NAME> <<EMAIL>>
# (based on code from Hop --- a framework to analyze solvation dynamics from MD simulations)
r"""Generating densities from trajectories --- :mod:`MDAnalysis.analysis.density`
=============================================================================
:Author: O<NAME>
:Year: 2011
:Copyright: GNU Public License v3
The module provides classes and functions to generate and represent
volumetric data, in particular densities.
Generating a density from a MD trajectory
-----------------------------------------
A common use case is to analyze the solvent density around a protein of
interest. The density is calculated with :func:`density_from_Universe` in the
fixed coordinate system of the simulation unit cell. It is therefore necessary
to orient and fix the protein with respect to the box coordinate system. In
practice this means centering and superimposing the protein, frame by frame, on
a reference structure and translating and rotating all other components of the
simulation with the protein. In this way, the solvent will appear in the
reference frame of the protein.
An input trajectory must
1. have been centered on the protein of interest;
2. have all molecules made whole that have been broken across periodic
boundaries [#pbc]_;
3. have the solvent molecules remapped so that they are closest to the
solute (this is important when using triclinic unit cells such as
a dodecahedron or a truncated octahedron) [#pbc]_.
4. have a fixed frame of reference; for instance, by superimposing a protein
on a reference structure so that one can study the solvent density around
it [#fit]_.
To generate the density of water molecules around a protein (assuming that the
trajectory is already appropriately treated for periodic boundary artifacts and
is suitably superimposed to provide a fixed reference frame) [#testraj]_ ::
from MDAnalysis.analysis.density import density_from_Universe
u = Universe(TPR, XTC)
D = density_from_Universe(u, delta=1.0, atomselection="name OW")
D.convert_density('TIP4P')
D.export("water.dx", type="double")
The positions of all water oxygens are histogrammed on a grid with spacing
*delta* = 1 Å. Initially the density is measured in :math:`\text{Å}^{-3}`. With
the :meth:`Density.convert_density` method, the units of measurement are
changed. In the example we are now measuring the density relative to the
literature value of the TIP4P water model at ambient conditions (see the values
in :data:`MDAnalysis.units.water` for details). Finally, the density is written
as an OpenDX_ compatible file that can be read in VMD_, Chimera_, or PyMOL_.
See :class:`Density` for details. In particular, the density is stored
as a NumPy array in :attr:`Density.grid`, which can be processed in
any manner.
Creating densities
------------------
The following functions take trajectory or coordinate data and generate a
:class:`Density` object.
.. autofunction:: density_from_Universe
.. autofunction:: density_from_PDB
.. autofunction:: Bfactor2RMSF
Supporting classes and functions
--------------------------------
The main output of the density creation functions is a
:class:`Density` instance, which is derived from a
:class:`gridData.core.Grid`. A :class:`Density` is essentially, a 3D
array with origin and lengths together with associated metadata (which
can be used in downstream processing).
.. autoclass:: Density
:members:
:inherited-members:
:show-inheritance:
.. autoclass:: BfactorDensityCreator
:members:
.. autofunction:: notwithin_coordinates_factory
.. rubric:: Footnotes
.. [#pbc] Making molecules whole can be accomplished with the
:meth:`MDAnalysis.core.groups.AtomGroup.wrap` of
:attr:`Universe.atoms` (use ``compound="fragments"``).
When using, for instance, the Gromacs_ command `gmx trjconv`_
.. code-block:: bash
gmx trjconv -pbc mol -center -ur compact
one can make the molecules whole ``-pbc whole``, center it on a group
(``-center``), and also pack all molecules in a compact unitcell
representation, which can be useful for density generation.
.. [#fit] Superposition can be performed with
:class:`MDAnalysis.analysis.align.AlignTraj`.
The Gromacs_ command `gmx trjconv`_
.. code-block:: bash
gmx trjconv -fit rot+trans
will also accomplish such a superposition. Note that the fitting has
to be done in a *separate* step from the treatment of the periodic
boundaries [#pbc]_.
.. [#testraj] Note that the trajectory in the example (`XTC`) is *not* properly
made whole and fitted to a reference structure; these steps were
omitted to clearly show the steps necessary for the actual density
calculation.
.. Links
.. -----
.. _OpenDX: http://www.opendx.org/
.. _VMD: http://www.ks.uiuc.edu/Research/vmd/
.. _Chimera: https://www.cgl.ucsf.edu/chimera/
.. _PyMOL: http://www.pymol.org/
.. _Gromacs: http://www.gromacs.org
.. _`gmx trjconv`: http://manual.gromacs.org/programs/gmx-trjconv.html
"""
from __future__ import print_function, division, absolute_import
from six.moves import range, zip
from six import string_types
import numpy as np
import sys
import os
import os.path
import errno
import warnings
from gridData import Grid
import MDAnalysis
from MDAnalysis.core import groups
from MDAnalysis.lib.util import fixedwidth_bins, iterable, asiterable
from MDAnalysis.lib import NeighborSearch as NS
from MDAnalysis import NoDataError, MissingDataWarning
from .. import units
from ..lib import distances
from MDAnalysis.lib.log import ProgressMeter
import logging
logger = logging.getLogger("MDAnalysis.analysis.density")
class Density(Grid):
r"""Class representing a density on a regular cartesian grid.
Parameters
----------
grid : array_like
histogram or density, typically a :class:`numpy.ndarray`
edges : list
list of arrays, the lower and upper bin edges along the axes
parameters : dict
dictionary of class parameters; saved with
:meth:`Density.save`. The following keys are meaningful to
the class. Meaning of the values are listed:
*isDensity*
- ``False``: grid is a histogram with counts [default]
- ``True``: a density
Applying :meth:`Density.make_density`` sets it to ``True``.
units : dict
A dict with the keys
- *length*: physical unit of grid edges (Angstrom or nm) [Angstrom]
- *density*: unit of the density if ``isDensity=True`` or ``None``
otherwise; the default is "Angstrom^{-3}" for densities
(meaning :math:`\text{Å}^{-3}`).
(Actually, the default unit is the value of
``MDAnalysis.core.flags['length_unit']``; in most
cases this is "Angstrom".)
metadata : dict
a user defined dictionary of arbitrary values associated with the
density; the class does not touch :attr:`Density.metadata` but
stores it with :meth:`Density.save`
Attributes
----------
grid : array
counts or density
edges : list of 1d-arrays
The boundaries of each cell in `grid` along all axes (equivalent
to what :func:`numpy.histogramdd` returns).
delta : array
Cell size in each dimension.
origin : array
Coordinates of the *center* of the cell at index `grid[0, 0, 0, ...,
0]`, which is considered to be the front lower left corner.
units : dict
The units for lengths and density; change units with the method
:meth:`~Density.convert_length` or :meth:`~Density.convert_density`.
Notes
-----
The data (:attr:`Density.grid`) can be manipulated as a standard numpy
array. Changes can be saved to a file using the :meth:`Density.save` method. The
grid can be restored using the :meth:`Density.load` method or by supplying the
filename to the constructor.
The attribute :attr:`Density.metadata` holds a user-defined dictionary that
can be used to annotate the data. It is also saved with :meth:`Density.save`.
The :meth:`Density.export` method always exports a 3D object (written in
such a way to be readable in VMD_, Chimera_, and PyMOL_), the rest should
work for an array of any dimension. Note that PyMOL_ only understands DX
files with the DX data type "double" in the "array" object (see `known
issues when writing OpenDX files`_ and issue
`MDAnalysis/GridDataFormats#35`_ for details). Using the keyword
``type="double"`` for the method :meth:`Density.export`, the user can
ensure that the DX file is written in a format suitable for PyMOL_.
If the input histogram consists of counts per cell then the
:meth:`Density.make_density` method converts the grid to a physical density. For
a probability density, divide it by :meth:`Density.grid.sum` or use ``normed=True``
right away in :func:`~numpy.histogramdd`.
The user *should* set the *parameters* keyword (see docs for the
constructor); in particular, if the data are already a density, one must
set ``isDensity=True`` because there is no reliable way to detect if
data represent counts or a density. As a special convenience, if data are
read from a file and the user has not set ``isDensity`` then it is assumed
that the data are in fact a density.
.. _`MDAnalysis/GridDataFormats#35`:
https://github.com/MDAnalysis/GridDataFormats/issues/35
.. _`known issues when writing OpenDX files`:
https://www.mdanalysis.org/GridDataFormats/gridData/formats/OpenDX.html#known-issues-for-writing-opendx-files
See Also
--------
gridData.core.Grid : the base class of :class:`Density`.
Examples
--------
Typical use:
1. From a histogram (i.e. counts on a grid)::
h,edges = numpy.histogramdd(...)
D = Density(h, edges, parameters={'isDensity': False}, units={'length': 'A'})
D.make_density()
2. From a saved density file (e.g. in OpenDX format), where the lengths are
in Angstrom and the density in 1/A**3::
D = Density("density.dx")
3. From a saved density file (e.g. in OpenDX format), where the lengths are
in Angstrom and the density is measured relative to the density of water
at ambient conditions::
D = Density("density.dx", units={'density': 'water'})
4. From a saved *histogram* (less common, but in order to demonstrate the
*parameters* keyword) where the lengths are in nm::
D = Density("counts.dx", parameters={'isDensity': False}, units={'length': 'nm'})
D.make_density()
D.convert_length('Angstrom^{-3}')
D.convert_density('water')
After the final step, ``D`` will contain a density on a grid measured in
Ångstrom, with the density values itself measured relative to the
density of water.
:class:`Density` objects can be algebraically manipulated (added,
subtracted, multiplied, ...) but there are *no sanity checks* in place to
make sure that units, metadata, etc are compatible!
.. Note::
It is suggested to construct the Grid object from a histogram,
to supply the appropriate length unit, and to use
:meth:`Density.make_density` to obtain a density. This ensures
that the length- and the density unit correspond to each other.
"""
def __init__(self, *args, **kwargs):
length_unit = MDAnalysis.core.flags['length_unit']
parameters = kwargs.pop('parameters', {})
if len(args) > 0 and isinstance(args[0], string_types) or isinstance(kwargs.get('grid', None), string_types):
# try to be smart: when reading from a file then it is likely that this
# is a density
parameters.setdefault('isDensity', True)
else:
parameters.setdefault('isDensity', False)
units = kwargs.pop('units', {})
units.setdefault('length', length_unit)
if parameters['isDensity']:
units.setdefault('density', length_unit)
else:
units.setdefault('density', None)
super(Density, self).__init__(*args, **kwargs)
self.parameters = parameters # isDensity: set by make_density()
self.units = units
def _check_set_unit(self, u):
"""Check and set units.
First check that all units and their values in the dict `u` are valid
and then set the object's units attribute.
Parameters
----------
u : dict
``{unit_type : value, ...}``
Raises
------
ValueError
if unit types or unit values are not recognized or if required
unit types are not in :attr:`units`
"""
# all this unit crap should be a class...
try:
for unit_type, value in u.items():
if value is None: # check here, too iffy to use dictionary[None]=None
self.units[unit_type] = None
continue
try:
units.conversion_factor[unit_type][value]
self.units[unit_type] = value
except KeyError:
raise ValueError('Unit ' + str(value) + ' of type ' + str(unit_type) + ' is not recognized.')
except AttributeError:
errmsg = '"unit" must be a dictionary with keys "length" and "density.'
logger.fatal(errmsg)
raise ValueError(errmsg)
# need at least length and density (can be None)
if 'length' not in self.units:
raise ValueError('"unit" must contain a unit for "length".')
if 'density' not in self.units:
self.units['density'] = None
def make_density(self):
"""Convert the grid (a histogram, counts in a cell) to a density (counts/volume).
This method changes the grid irrevocably.
For a probability density, manually divide by :meth:`grid.sum`.
If this is already a density, then a warning is issued and nothing is
done, so calling `make_density` multiple times does not do any harm.
"""
# Make it a density by dividing by the volume of each grid cell
# (from numpy.histogramdd, which is for general n-D grids)
if self.parameters['isDensity']:
msg = "Running make_density() makes no sense: Grid is already a density. Nothing done."
logger.warning(msg)
warnings.warn(msg)
return
dedges = [np.diff(edge) for edge in self.edges]
D = len(self.edges)
for i in range(D):
shape = np.ones(D, int)
shape[i] = len(dedges[i])
self.grid /= dedges[i].reshape(shape)
self.parameters['isDensity'] = True
# see units.densityUnit_factor for units
self.units['density'] = self.units['length'] + "^{-3}"
def convert_length(self, unit='Angstrom'):
"""Convert Grid object to the new `unit`.
Parameters
----------
unit : str (optional)
unit that the grid should be converted to: one of
"Angstrom", "nm"
Notes
-----
This changes the edges but will not change the density; it is the
user's responsibility to supply the appropriate unit if the Grid object
is constructed from a density. It is suggested to start from a
histogram and a length unit and use :meth:`make_density`.
"""
if unit == self.units['length']:
return
cvnfact = units.get_conversion_factor('length', self.units['length'], unit)
self.edges = [x * cvnfact for x in self.edges]
self.units['length'] = unit
self._update() # needed to recalculate midpoints and origin
def convert_density(self, unit='Angstrom'):
"""Convert the density to the physical units given by `unit`.
Parameters
----------
unit : str (optional)
The target unit that the density should be converted to.
`unit` can be one of the following:
============= ===============================================================
name description of the unit
============= ===============================================================
Angstrom^{-3} particles/A**3
nm^{-3} particles/nm**3
SPC density of SPC water at standard conditions
TIP3P ... see :data:`MDAnalysis.units.water`
TIP4P ... see :data:`MDAnalysis.units.water`
water density of real water at standard conditions (0.997 g/cm**3)
Molar mol/l
============= ===============================================================
Raises
------
RuntimeError
If the density does not have a unit associated with it to begin
with (i.e., is not a density) then no conversion can take place.
ValueError
for unknown `unit`.
Notes
-----
(1) This method only works if there is already a length unit associated with the
density; otherwise raises :exc:`RuntimeError`
(2) Conversions always go back to unity so there can be rounding
and floating point artifacts for multiple conversions.
"""
if not self.parameters['isDensity']:
errmsg = 'The grid is not a density so converty_density() makes no sense.'
logger.fatal(errmsg)
raise RuntimeError(errmsg)
if unit == self.units['density']:
return
try:
self.grid *= units.get_conversion_factor('density',
self.units['density'], unit)
except KeyError:
raise ValueError("The name of the unit ({0!r} supplied) must be one of:\n{1!r}".format(unit, units.conversion_factor['density'].keys()))
self.units['density'] = unit
def __repr__(self):
if self.parameters['isDensity']:
grid_type = 'density'
else:
grid_type = 'histogram'
return '<Density ' + grid_type + ' with ' + str(self.grid.shape) + ' bins>'
def _set_user_grid(gridcenter, xdim, ydim, zdim, smin, smax):
"""Helper function to set the grid dimensions to user defined values
Parameters
----------
gridcenter : numpy ndarray, float32
3 element ndarray containing the x, y and z coordinates of the grid
box center
xdim : float
Box edge length in the x dimension
ydim : float
Box edge length in the y dimension
zdim : float
Box edge length in the y dimension
smin : numpy ndarray, float32
Minimum x,y,z coordinates for the input selection
smax : numpy ndarray, float32
Maximum x,y,z coordinates for the input selection
Returns
-------
umin : numpy ndarray, float32
Minimum x,y,z coordinates of the user defined grid
umax : numpy ndarray, float32
Maximum x,y,z coordinates of the user defined grid
"""
# Check user inputs
try:
gridcenter = np.asarray(gridcenter, dtype=np.float32)
except ValueError:
raise ValueError("Non-number values assigned to gridcenter")
if gridcenter.shape != (3,):
raise ValueError("gridcenter must be a 3D coordinate")
try:
xyzdim = np.array([xdim, ydim, zdim], dtype=np.float32)
except ValueError:
raise ValueError("xdim, ydim, and zdim must be numbers")
# Set min/max by shifting by half the edge length of each dimension
umin = gridcenter - xyzdim/2
umax = gridcenter + xyzdim/2
# Here we test if coords of selection fall outside of the defined grid
# if this happens, we warn users they may want to resize their grids
if any(smin < umin) or any(smax > umax):
msg = ("Atom selection does not fit grid --- "
"you may want to define a larger box")
warnings.warn(msg)
logger.warning(msg)
return umin, umax
def density_from_Universe(universe, delta=1.0, atomselection='name OH2',
start=None, stop=None, step=None,
metadata=None, padding=2.0, cutoff=0, soluteselection=None,
use_kdtree=True, update_selection=False,
verbose=False, interval=1, quiet=None,
parameters=None,
gridcenter=None, xdim=None, ydim=None, zdim=None):
"""Create a density grid from a :class:`MDAnalysis.Universe` object.
The trajectory is read, frame by frame, and the atoms selected with `atomselection` are
histogrammed on a grid with spacing `delta`.
Parameters
----------
universe : MDAnalysis.Universe
:class:`MDAnalysis.Universe` object with a trajectory
atomselection : str (optional)
selection string (MDAnalysis syntax) for the species to be analyzed
["name OH2"]
delta : float (optional)
bin size for the density grid in Angstroem (same in x,y,z) [1.0]
start : int (optional)
stop : int (optional)
step : int (optional)
Slice the trajectory as ``trajectory[start:stop:step]``; default
is to read the whole trajectory.
metadata : dict. optional
`dict` of additional data to be saved with the object; the meta data
are passed through as they are.
padding : float (optional)
increase histogram dimensions by padding (on top of initial box size)
in Angstroem. Padding is ignored when setting a user defined grid. [2.0]
soluteselection : str (optional)
MDAnalysis selection for the solute, e.g. "protein" [``None``]
cutoff : float (optional)
With `cutoff`, select "<atomsel> NOT WITHIN <cutoff> OF <soluteselection>"
(Special routines that are faster than the standard ``AROUND`` selection);
any value that evaluates to ``False`` (such as the default 0) disables this
special selection.
update_selection : bool (optional)
Should the selection of atoms be updated for every step? [``False``]
- ``True``: atom selection is updated for each frame, can be slow
- ``False``: atoms are only selected at the beginning
verbose : bool (optional)
Print status update to the screen for every *interval* frame? [``True``]
- ``False``: no status updates when a new frame is processed
- ``True``: status update every frame (including number of atoms
processed, which is interesting with ``update_selection=True``)
interval : int (optional)
Show status update every `interval` frame [1]
parameters : dict (optional)
`dict` with some special parameters for :class:`Density` (see docs)
gridcenter : numpy ndarray, float32 (optional)
3 element numpy array detailing the x, y and z coordinates of the
center of a user defined grid box in Angstroem [``None``]
xdim : float (optional)
User defined x dimension box edge in ångström; ignored if
gridcenter is ``None``
ydim : float (optional)
User defined y dimension box edge in ångström; ignored if
gridcenter is ``None``
zdim : float (optional)
User defined z dimension box edge in ångström; ignored if
gridcenter is ``None``
Returns
-------
:class:`Density`
A :class:`Density` instance with the histogrammed data together
with associated metadata.
Notes
-----
By default, the `atomselection` is static, i.e., atoms are only selected
once at the beginning. If you want *dynamically changing selections* (such
as "name OW and around 4.0 (protein and not name H*)", i.e., the water
oxygen atoms that are within 4 Å of the protein heavy atoms) then set
``update_selection=True``. For the special case of calculating a density of
the "bulk" solvent away from a solute use the optimized selections with
keywords *cutoff* and *soluteselection* (see Examples below).
Examples
--------
Basic use for creating a water density (just using the water oxygen atoms "OW")::
density = density_from_Universe(universe, delta=1.0, atomselection='name OW')
If you are only interested in water within a certain region, e.g., within a
vicinity around a binding site, you can use a selection that updates every
step by setting the `update_selection` keyword argument::
site_density = density_from_Universe(universe, delta=1.0,
atomselection='name OW and around 5 (resid 156 157 305)',
update_selection=True)
A special case for an updating selection is to create the "bulk density",
i.e., the water outside the immediate solvation shell of a protein: Select
all water oxygen atoms that are *farther away* than a given cut-off (say, 4
Å) from the solute (here, heavy atoms of the protein)::
bulk = density_from_Universe(universe, delta=1.0, atomselection='name OW',
solute="protein and not name H*",
cutoff=4)
(Using the special case for the bulk with `soluteselection` and `cutoff`
improves performance over the simple `update_selection` approach.)
If you are interested in explicitly setting a grid box of a given edge size
and origin, you can use the gridcenter and x/y/zdim arguments. For example
to plot the density of waters within 5 Å of a ligand (in this case the
ligand has been assigned the residue name "LIG") in a cubic grid with 20 Å
edges which is centered on the centre of mass (COM) of the ligand::
# Create a selection based on the ligand
ligand_selection = universe.select_atoms("resname LIG")
# Extract the COM of the ligand
ligand_COM = ligand_selection.center_of_mass()
# Generate a density of waters on a cubic grid centered on the ligand COM
# In this case, we update the atom selection as shown above.
water_density = density_from_Universe(universe, delta=1.0,
atomselection='name OW around 5 resname LIG',
update_selection=True,
gridcenter=ligand_COM,
xdim=20.0, ydim=20.0, zdim=20.0)
(It should be noted that the `padding` keyword is not used when a user
defined grid is assigned).
.. versionchanged:: 0.20.0
ProgressMeter now iterates over the number of frames analysed.
.. versionchanged:: 0.19.0
*gridcenter*, *xdim*, *ydim* and *zdim* keywords added to allow for user
defined boxes
.. versionchanged:: 0.13.0
*update_selection* and *quiet* keywords added
.. deprecated:: 0.16
The keyword argument *quiet* is deprecated in favor of *verbose*.
"""
u = universe
if cutoff > 0 and soluteselection is not None:
# special fast selection for '<atomsel> not within <cutoff> of <solutesel>'
notwithin_coordinates = notwithin_coordinates_factory(
u, atomselection, soluteselection, cutoff,
use_kdtree=use_kdtree, updating_selection=update_selection)
def current_coordinates():
return notwithin_coordinates()
else:
group = u.select_atoms(atomselection, updating=update_selection)
def current_coordinates():
return group.positions
coord = current_coordinates()
logger.info(
"Selected {0:d} atoms out of {1:d} atoms ({2!s}) from {3:d} total."
"".format(coord.shape[0], len(u.select_atoms(atomselection)),
atomselection, len(u.atoms))
)
# mild warning; typically this is run on RMS-fitted trajectories and
# so the box information is rather meaningless
box, angles = u.trajectory.ts.dimensions[:3], u.trajectory.ts.dimensions[3:]
if tuple(angles) != (90., 90., 90.):
msg = "Non-orthorhombic unit-cell --- make sure that it has been remapped properly!"
warnings.warn(msg)
logger.warning(msg)
if gridcenter is not None:
# Generate a copy of smin/smax from coords to later check if the
# defined box might be too small for the selection
smin = np.min(coord, axis=0)
smax = np.max(coord, axis=0)
# Overwrite smin/smax with user defined values
smin, smax = _set_user_grid(gridcenter, xdim, ydim, zdim, smin, smax)
else:
# Make the box bigger to avoid as much as possible 'outlier'. This
# is important if the sites are defined at a high density: in this
# case the bulk regions don't have to be close to 1 * n0 but can
# be less. It's much more difficult to deal with outliers. The
# ideal solution would use images: implement 'looking across the
# periodic boundaries' but that gets complicate when the box
# rotates due to RMS fitting.
smin = np.min(coord, axis=0) - padding
smax = np.max(coord, axis=0) + padding
BINS = fixedwidth_bins(delta, smin, smax)
arange = np.vstack((BINS['min'], BINS['max']))
arange = np.transpose(arange)
bins = BINS['Nbins']
# create empty grid with the right dimensions (and get the edges)
grid, edges = np.histogramdd(np.zeros((1, 3)), bins=bins, range=arange, normed=False)
grid *= 0.0
h = grid.copy()
start, stop, step = u.trajectory.check_slice_indices(start, stop, step)
n_frames = len(range(start, stop, step))
pm = ProgressMeter(n_frames, interval=interval,
verbose=verbose,
format="Histogramming %(n_atoms)6d atoms in frame "
"%(step)5d/%(numsteps)d [%(percentage)5.1f%%]")
for index, ts in enumerate(u.trajectory[start:stop:step]):
coord = current_coordinates()
pm.echo(index, n_atoms=len(coord))
if len(coord) == 0:
continue
h[:], edges[:] = np.histogramdd(coord, bins=bins, range=arange, normed=False)
grid += h # accumulate average histogram
grid /= float(n_frames)
metadata = metadata if metadata is not None else {}
metadata['psf'] = u.filename
metadata['dcd'] = u.trajectory.filename
metadata['atomselection'] = atomselection
metadata['n_frames'] = n_frames
metadata['totaltime'] = round(u.trajectory.n_frames * u.trajectory.dt, 3)
metadata['dt'] = u.trajectory.dt
metadata['time_unit'] = MDAnalysis.core.flags['time_unit']
try:
metadata['trajectory_skip'] = u.trajectory.skip_timestep # frames
except AttributeError:
metadata['trajectory_skip'] = 1 # seems to not be used..
try:
metadata['trajectory_delta'] = u.trajectory.delta # in native units
except AttributeError:
metadata['trajectory_delta'] = 1
if cutoff > 0 and soluteselection is not None:
metadata['soluteselection'] = soluteselection
metadata['cutoff'] = cutoff # in Angstrom
parameters = parameters if parameters is not None else {}
parameters['isDensity'] = False # must override
g = Density(grid=grid, edges=edges, units={'length': MDAnalysis.core.flags['length_unit']},
parameters=parameters, metadata=metadata)
g.make_density()
logger.info("Density completed (initial density in Angstrom**-3)")
return g
def notwithin_coordinates_factory(universe, sel1, sel2, cutoff,
not_within=True, use_kdtree=True, updating_selection=False):
"""Generate optimized selection for '*sel1* not within *cutoff* of *sel2*'
Parameters
----------
universe : MDAnalysis.Universe
Universe object on which to operate
sel1 : str
Selection string for the *solvent* selection (should be
the group with the *larger number of atoms* to make the
KD-Tree search more efficient)
sel2 : str
Selection string for the *solute* selection
cutoff : float
Distance cutoff
not_within : bool
- ``True``: selection behaves as "not within" (As described above)
- ``False``: selection is a "<sel1> WITHIN <cutoff> OF <sel2>"
use_kdtree : bool
- ``True``: use fast KD-Tree based selections
- ``False``: use distance matrix approach
updating_selection : bool
If ``True``, re-evaluate the selection string each frame.
Notes
-----
* Periodic boundary conditions are *not* taken into account: the naive
minimum image convention employed in the distance check is currently
not being applied to remap the coordinates themselves, and hence it
would lead to counts in the wrong region.
* With ``updating_selection=True``, the selection is evaluated every turn;
do not use distance based selections (such as "AROUND") in your selection
string because it will likely completely negate any gains from using
this function factory in the first place.
Examples
--------
:func:`notwithin_coordinates_factory` creates an optimized function that, when called,
returns the coordinates of the "solvent" selection that are *not within* a given cut-off
distance of the "solute". Because it is KD-tree based, it is cheap to query the KD-tree with
a different cut-off::
notwithin_coordinates = notwithin_coordinates_factory(universe, 'name OH2', 'protein and not name H*', 3.5)
...
coord = notwithin_coordinates() # get coordinates outside cutoff 3.5 A
coord = notwithin_coordinates(cutoff2) # can use different cut off
For programmatic convenience, the function can also function as a factory for a simple
*within cutoff* query if the keyword ``not_within=False`` is set::
within_coordinates = notwithin_coordinates_factory(universe, 'name OH2','protein and not name H*', 3.5,
not_within=False)
...
coord = within_coordinates() # get coordinates within cutoff 3.5 A
coord = within_coordinates(cutoff2) # can use different cut off
(Readability is enhanced by properly naming the generated function
``within_coordinates()``.)
"""
# Benchmark of FABP system (solvent 3400 OH2, protein 2100 atoms) on G4 powerbook, 500 frames
# cpu/s relative speedup use_kdtree
# distance matrix 633 1 1 False
# AROUND + kdtree 420 0.66 1.5 n/a ('name OH2 around 4 protein')
# manual + kdtree 182 0.29 3.5 True
solvent = universe.select_atoms(sel1, updating=updating_selection)
protein = universe.select_atoms(sel2, updating=updating_selection)
if use_kdtree:
# using faster hand-coded 'not within' selection with kd-tree
if not_within is True: # default
def notwithin_coordinates(cutoff=cutoff):
# must update every time step
ns_w = NS.AtomNeighborSearch(solvent) # build kd-tree on solvent (N_w > N_protein)
solvation_shell = ns_w.search(protein, cutoff) # solvent within CUTOFF of protein
# Find indices in solvent NOT in solvation shell
uniq_idx = np.setdiff1d(solvent.ix, solvation_shell.ix)
# Then reselect these from Universe.atoms (as these indices are global)
group = universe.atoms[uniq_idx]
return group.positions
else:
def notwithin_coordinates(cutoff=cutoff):
# acts as '<solvent> WITHIN <cutoff> OF <protein>'
# must update every time step
ns_w = NS.AtomNeighborSearch(solvent) # build kd-tree on solvent (N_w > N_protein)
group = ns_w.search(protein, cutoff) # solvent within CUTOFF of protein
return group.positions
else:
# slower distance matrix based (calculate all with all distances first)
dist = np.zeros((len(solvent), len(protein)), dtype=np.float64)
box = None # as long as s_coor is not minimum-image remapped
if not_within is True: # default
compare = np.greater
aggregatefunc = np.all
else:
compare = np.less_equal
aggregatefunc = np.any
def notwithin_coordinates(cutoff=cutoff):
s_coor = solvent.positions
p_coor = protein.positions
# Does water i satisfy d[i,j] > r for ALL j?
d = distances.distance_array(s_coor, p_coor, box=box, result=dist)
return s_coor[aggregatefunc(compare(d, cutoff), axis=1)]
return notwithin_coordinates
def Bfactor2RMSF(B):
r"""Atomic root mean square fluctuation (in Angstrom) from the crystallographic B-factor
RMSF and B-factor are related by [Willis1975]_
.. math::
B = \frac{8\pi^2}{3} \rm{RMSF}^2
and this function returns
.. math::
\rm{RMSF} = \sqrt{\frac{3 B}{8\pi^2}}
.. rubric:: References
.. [Willis1975] BTM Willis and AW Pryor. *Thermal vibrations in crystallography*. Cambridge Univ. Press, 1975
"""
return np.sqrt(3. * B / 8.) / np.pi
def density_from_PDB(pdb, **kwargs):
"""Create a density from a single frame PDB.
Typical use is to make a density from the crystal water
molecules. The density is created from isotropic gaussians
centered at each selected atoms. If B-factors are present in the
file then they are used to calculate the width of the gaussian.
Using the *sigma* keyword, one can override this choice and
prescribe a gaussian width for all atoms (in Angstrom), which is
calculated as described for :func:`Bfactor2RMSF`.
Parameters
----------
pdb : str
PDB filename (should have the temperatureFactor set); ANISO
records are currently *not* processed
atomselection : str
selection string (MDAnalysis syntax) for the species to be analyzed
['resname HOH and name O']
delta : float
bin size for the density grid in Angstroem (same in x,y,z) [1.0]
metadata : dict
dictionary of additional data to be saved with the object [``None``]
padding : float
increase histogram dimensions by padding (on top of initial box size) [1.0]
sigma : float
width (in Angstrom) of the gaussians that are used to build up the
density; if ``None`` then uses B-factors from *pdb* [``None``]
Returns
-------
:class:`Density`
object with a density measured relative to the water density at
standard conditions
Notes
-----
The current implementation is *painfully* slow.
See Also
--------
:func:`Bfactor2RMSF` and :class:`BfactorDensityCreator`
"""
return BfactorDensityCreator(pdb, **kwargs).Density()
class BfactorDensityCreator(object):
"""Create a density grid from a pdb file using MDAnalysis.
The main purpose of this function is to convert crystal waters in
an X-ray structure into a density so that one can compare the
experimental density with the one from molecular dynamics
trajectories. Because a pdb is a single snapshot, the density is
estimated by placing Gaussians of width sigma at the position of
all selected atoms.
Sigma can be fixed or taken from the B-factor field, in which case
sigma is taken as sqrt(3.*B/8.)/pi (see :func:`BFactor2RMSF`).
.. TODO
.. * Make Gaussian convolution more efficient (at least for same
.. sigma) because right now it is *very* slow (which may be
.. acceptable if one only runs this once)
.. * Using a temporary Creator class with the
.. :meth:`BfactorDensityCreator.Density` helper method is clumsy.
"""
def __init__(self, pdb, delta=1.0, atomselection='resname HOH and name O',
metadata=None, padding=1.0, sigma=None):
"""Construct the density from psf and pdb and the atomselection.
Parameters
----------
pdb : str
PDB file or :class:`MDAnalysis.Universe`;
atomselection : str
selection string (MDAnalysis syntax) for the species to be analyzed
delta : float
bin size for the density grid in Angstroem (same in x,y,z) [1.0]
metadata : dict
dictionary of additional data to be saved with the object
padding : float
increase histogram dimensions by padding (on top of initial box size)
sigma : float
width (in Angstrom) of the gaussians that are used to build up the
density; if ``None`` (the default) then uses B-factors from pdb
Notes
-----
For assigning X-ray waters to MD densities one might have to use a sigma
of about 0.5 A to obtain a well-defined and resolved x-ray water density
that can be easily matched to a broader density distribution.
Examples
--------
The following creates the density with the B-factors from the pdb file::
DC = BfactorDensityCreator(pdb, delta=1.0, atomselection="name HOH",
padding=2, sigma=None)
density = DC.Density()
See Also
--------
:func:`density_from_PDB` for a convenience function
"""
u = MDAnalysis.as_Universe(pdb)
group = u.select_atoms(atomselection)
coord = group.positions
logger.info("Selected {0:d} atoms ({1!s}) out of {2:d} total.".format(coord.shape[0], atomselection, len(u.atoms)))
smin = np.min(coord, axis=0) - padding
smax = | np.max(coord, axis=0) | numpy.max |
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
import warnings
from matplotlib import rc
from matplotlib.backends import backend_gtk3
from settings import OUTPUT_DIR
warnings.filterwarnings('ignore', module=backend_gtk3.__name__)
ADJACENCY_MATRIX = np.array([[0, 0, 1], [1, 0, 0], [1, 1, 0]])
INITIAL_VALUES = np.array([0.0, 0.0, 1.0])
TOTAL_TIME = 5.0
NUMBER_OF_NODES = ADJACENCY_MATRIX.shape[0]
def _calculate_self_dynamics(last_state):
result = []
for node_index in range(NUMBER_OF_NODES):
result.append(-1 * last_state[node_index])
return np.array(result)
def _calculate_neighbor_dynamics(last_state):
result = []
for node_index in range(NUMBER_OF_NODES):
sum_result = 0
for neighbor_index in range(NUMBER_OF_NODES):
if ADJACENCY_MATRIX[node_index, neighbor_index]:
sum_result += (1 - last_state[node_index]) * last_state[neighbor_index]
result.append(sum_result)
return np.array(result)
def _draw_node_plot(self_dynamics, neighbor_dynamics, node_index, frames):
data_frame = pd.DataFrame({
'iterations': | np.arange(self_dynamics.shape[0]) | numpy.arange |
"""
Reliable and extremely fast kernel density estimator for one and two-dimensional
samples.
The kernel density estimations here are kept as simple and as separated from the rest
of the code as possible. They do nothing but kernel density estimation. The
motivation for their partial reimplementation is that the existing kernel density
estimators are:
* suboptimal (like scipy where no kernel bandwidth optimization is done), or
* come with a gorilla holding a banana and the entire jungle although only the
banana is needed.
Do one thing and do it well.
Botev's Matlab codes are the starting point of this implementation as those mostly
follow the above principle.
TODO:
- [low] add cdf estimate as in ``kde_1d.m``.
- [high] more thorough input check, mostly shape and type.
- [high] check the details of ``histc`` in Matlab and ``np.histogram`` make sure that
appending a zero to ``sample_hist`` is always valid.
"""
import copy
import logging
from typing import Iterable, Tuple, Union
import numpy as np
from scipy import fft, optimize
from scipy.stats import gaussian_kde
N_X_VEC = int(2**14)
N_ROW_MX = int(2**8)
# ======================================================================================
# 1D
# ======================================================================================
def kde_1d(
sample_vec: Union[np.ndarray, list],
n_x_vec: int = N_X_VEC,
x_min: Union[int, float] = None,
x_max: Union[int, float] = None,
weight_vec: Union[np.ndarray, list] = None,
return_bandwidth: bool = False,
) -> Union[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, float]]:
"""
Reliable and extremely fast kernel density estimator for one-dimensional sample.
Gaussian kernel is assumed and the bandwidth is chosen automatically.
Unlike many other implementations, this one is immune to problems caused by
multimodal densities with widely separated modes. The estimation does not
deteriorate for multimodal densities, because we never assume a parametric model
for the sample.
.. note::
* The elements of ``sample_vec`` that fall between ``x_min`` and ``x_max`` will
be treated as the full sample, i.e. the kernel density over ``[x_min, x_max]``
will integrate to one.
* If the search for finding the optimal bandwidth fails the functions falls
back to ``scipy.stats.gaussian_kde``.
Args:
sample_vec:
A vector of sample points from which the density estimate is constructed.
n_x_vec:
The number of ``x_vec`` points used in the uniform discretization of
the interval ``[x_min, x_max]``. ``n_x_vec`` has to be a power of two. If
``n_x_vec`` is not a power of two, then ``n_x_vec`` is rounded up to the
next power of two, i.e., ``n_x_vec`` is set to
``n_x_vec=2**ceil(log2(n_x_vec))``; the default value of ``n_x_vec`` is
``n_x_vec=2**14``.
x_min:
The lower boundary of the interval over which the density estimate is
constructed.
x_max:
The upper boundary of the interval over which the density estimate is
constructed.
weight_vec:
Weights of sample points. This must have the same shape as ``sample_vec``.
If ``None`` (default), the samples are assumed to be equally weighted.
Only the values of elements relative to each other matter,
i.e. multiplying ``weight_vec`` by a non-negative scalar does not change
the results.
return_bandwidth:
Should the used bandwidth be returned?
Raises:
ValueError: If ``weight_vec`` has at least one negative value.
Warns:
Root finding failed (Brent's method): Optimal bandwidth finding failed,
falling back to the rule-of-thumb bandwidth of ``scipy.stats.gaussian_kde``.
Returns:
Kernel densities, a vector of length ``n_x_vec`` with the values of
the density estimate at the grid points (``x_vec``).
Kernel density grid (``x_vec``), a vector of grid points over which
the kernel density estimate is computed.
Optimal bandwidth (Gaussian kernel assumed), returned only if
``return_bandwidth`` is ``True``.
Examples:
.. code-block:: python
import numpy as np
import matplotlib.pyplot as plt
from lightkde import kde_1d
.. code-block:: python
sample_vec = [
-1.3145, -0.5197, 0.9326, 3.2358, 0.3814,
-0.3226, 2.1121, 1.1357, 0.4376, -0.0332
]
density_vec, x_vec = kde_1d(sample_vec)
.. code-block:: python
sample_vec = np.hstack((np.random.normal(loc=-8, size=100),
np.random.normal(loc=-3, size=100),
np.random.normal(loc=7, size=100)))
density_vec, x_vec = kde_1d(sample_vec)
plt.subplots()
plt.plot(x_vec, density_vec)
plt.show()
The kde bandwidth selection method is outlined in [1]. This implementation is
based on the implementation of <NAME> [2] who based his
implementation on the Matlab implementation by <NAME> [3].
References:
[1] <NAME>, <NAME>, and <NAME> (2010) Annals of
Statistics, Volume 38, Number 5, pages 2916-2957.
[2] https://github.com/Daniel-B-Smith/KDE-for-SciPy/blob/a9982909bbb92a7e243e5fc9a74f957d883f1c5d/kde.py # noqa: E501
Updated on: 6 Feb 2013.
[3] https://nl.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator # noqa: E501
Updated on: 30 Dec 2015.
"""
sample_vec = np.array(sample_vec).ravel()
n_sample = len(np.unique(sample_vec))
# Parameters to set up the x_vec on which to calculate
n_x_vec = int(2 ** np.ceil(np.log2(n_x_vec)))
if x_min is None or x_max is None:
sample_min = np.min(sample_vec)
sample_max = np.max(sample_vec)
sample_range = sample_max - sample_min
x_min = sample_min - sample_range / 10 if x_min is None else x_min
x_max = sample_max + sample_range / 10 if x_max is None else x_max
# watch out, scaling of weight_vec
if weight_vec is not None:
weight_vec = np.atleast_1d(weight_vec).squeeze()
if np.any(weight_vec < 0):
raise ValueError("Argument: weight_vec cannot have negative elements!")
weight_vec = weight_vec / np.sum(weight_vec) * n_sample
# Range of x_vec
x_range = x_max - x_min
# Histogram the sample_vec to get a crude first approximation of the density
step = x_range / (n_x_vec - 1)
x_vec = np.arange(start=x_min, stop=x_max + 0.1 * step, step=step)
sample_hist, bin_edges = np.histogram(sample_vec, bins=x_vec, weights=weight_vec)
# for easier comparison with Matlab, the count for [x_vec[-1], +Inf [ is also
# added, i.e. 0
sample_hist = np.append(sample_hist, 0)
sample_hist = sample_hist / n_sample
# discrete cosine transform of initial sample_vec
dct_sample = fft.dct(sample_hist, norm=None)
ic = | np.arange(1, n_x_vec, dtype=float) | numpy.arange |
import os
import cv2
from PIL import Image
import numpy as np
from up.utils.general.registry_factory import IMAGE_READER_REGISTRY
from up.utils.general.petrel_helper import PetrelHelper
__all__ = ['FileSystemCVReader', 'FileSystemPILReader']
def get_cur_image_dir(image_dir, idx):
if isinstance(image_dir, list) or isinstance(image_dir, tuple):
assert idx < len(image_dir)
return image_dir[idx]
return image_dir
class ImageReader(object):
def __init__(self, image_dir, color_mode, memcached=None):
super(ImageReader, self).__init__()
if image_dir == '/' or image_dir == '//':
image_dir = ''
self.image_dir = image_dir
self.color_mode = color_mode
def image_directory(self):
return self.image_dir
def image_color(self):
return self.color_mode
def hash_filename(self, filename):
import hashlib
md5 = hashlib.md5()
md5.update(filename.encode('utf-8'))
hash_filename = md5.hexdigest()
return hash_filename
def read(self, filename):
return self.fs_read(filename)
def __call__(self, filename, image_dir_idx=0):
if filename.startswith("//"):
filename = filename[1:]
image_dir = get_cur_image_dir(self.image_dir, image_dir_idx)
filename = os.path.join(image_dir, filename)
img = self.read(filename)
return img
@IMAGE_READER_REGISTRY.register('fs_opencv')
class FileSystemCVReader(ImageReader):
def __init__(self, image_dir, color_mode, memcached=None, to_float32=False):
super(FileSystemCVReader, self).__init__(image_dir, color_mode, memcached)
assert color_mode in ['RGB', 'BGR', 'GRAY'], '{} not supported'.format(color_mode)
if color_mode == 'RGB':
self.cvt_color = getattr(cv2, 'COLOR_BGR2{}'.format(color_mode))
else:
self.cvt_color = None
self.to_float32 = to_float32
self.memcached = memcached
if memcached:
self.initialized = False
def fs_read(self, filename):
assert os.path.exists(filename), filename
if self.memcached:
import mc
self._init_memcached()
value = mc.pyvector()
assert len(filename) < 250, 'memcached rquires length of path < 250'
self.mclient.Get(filename, value)
value_buf = mc.ConvertBuffer(value)
img_array = np.frombuffer(value_buf, np.uint8)
if self.color_mode == 'GRAY':
img = cv2.imdecode(img_array, 0)
else:
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
else:
if self.color_mode == 'GRAY':
img = cv2.imread(filename, 0)
else:
img = cv2.imread(filename, cv2.IMREAD_COLOR)
if self.color_mode == 'RGB':
img = cv2.cvtColor(img, self.cvt_color)
if self.to_float32:
img = img.astype(np.float32)
return img
def _init_memcached(self):
if not self.initialized:
import mc
server_list_config_file = "/mnt/lustre/share/memcached_client/server_list.conf"
client_config_file = "/mnt/lustre/share/memcached_client/client.conf"
self.mclient = mc.MemcachedClient.GetInstance(server_list_config_file, client_config_file)
self.initialized = True
def fake_image(self, *size):
if len(size) == 0:
if self.color_mode == 'GRAY':
size = (512, 512, 1)
else:
size = (512, 512, 3)
return np.zeros(size, dtype=np.uint8)
@IMAGE_READER_REGISTRY.register('fs_pillow')
class FileSystemPILReader(ImageReader):
def __init__(self, image_dir, color_mode, memcached=None):
super(FileSystemPILReader, self).__init__(image_dir, color_mode, memcached)
assert color_mode == 'RGB', 'only RGB mode supported for pillow for now'
def fake_image(self, *size):
if len(size) == 0:
size = (512, 512, 3)
return Image.new(self.color_mode, size)
def fs_read(self, filename):
assert os.path.exists(filename), filename
img = Image.open(filename).convert(self.color_mode)
return img
@IMAGE_READER_REGISTRY.register('ceph_opencv')
class CephSystemCVReader(ImageReader):
def __init__(self, image_dir, color_mode, memcached=True,
conf_path=PetrelHelper.default_conf_path, default_cluster=''):
super(CephSystemCVReader, self).__init__(image_dir, color_mode)
self.image_dir = image_dir
self.color_mode = color_mode
assert color_mode in ['RGB', 'BGR', 'GRAY'], '{} not supported'.format(color_mode)
if color_mode != 'BGR':
self.cvt_color = getattr(cv2, 'COLOR_BGR2{}'.format(color_mode))
else:
self.cvt_color = None
self.conf_path = os.path.expanduser(conf_path)
self.memcached = memcached
self.initialized = False
self.default_cluster = default_cluster
def image_directory(self):
return self.image_dir
def image_color(self):
return self.color_mode
def ceph_join(self, root, filename):
if 's3://' in filename:
abs_filename = filename
else:
abs_filename = os.path.join(root, filename)
if abs_filename.startswith('s3://') and self.default_cluster:
abs_filename = self.default_cluster + ':' + abs_filename
return abs_filename
def bytes_to_img(self, value):
img_array = | np.frombuffer(value, np.uint8) | numpy.frombuffer |
#! /usr/bin/env python
import os
import numpy as np
import astropy.io.fits as fits
from . import noise_simulation as ng
def add_dark_current(ramp, seed, gain, darksignal):
"""
Adds dark current to the input signal
Parameters
----------
ramp: sequence
The array of ramp images
seed: int
The seed for the dark signal
gain: float
The detector gain
darksignal: sequence
A 2D map of the dark signal to project onto the ramp
Returns
-------
np.ndarray
The dark signal ramp
"""
# Get the random seed and array shape
np.random.seed(seed)
dims = ramp.shape
# Add the dark signal to the ramp
total = darksignal*0.
for n in range(dims[0]):
signal = np.random.poisson(darksignal)/gain
total = total+signal
ramp[n,:,:] = ramp[n,:,:]+total
return ramp
def make_exposure(nints, ngrps, darksignal, gain, pca0_file, noise_seed=None,
dark_seed=None, offset=500):
"""
Make a simulated exposure with no source signal
Parameters
----------
nints: int
The number of integrations
ngrps: int
The number of groups per integration
darksignal: sequence
A dark frame
gain: float
The gain on the detector
pca0_file: str
The path to the PCA-zero file
noise_seed: int
The seed for the generated noise
dark_seed: int
The seed for the generated dark
offset: int
The pedestal offset
Returns
-------
np.ndarray
A simulated ramp of darks
"""
if nints < 1 or ngrps < 1:
return None
if not noise_seed:
noise_seed = 7+int(np.random.uniform()*4000000000.)
if not dark_seed:
dark_seed = 5+int(np.random.uniform()*4000000000.)
np.random.seed(dark_seed)
# Make empty data array
nrows, ncols = darksignal.shape
simulated_data = np.zeros([nints*ngrps,nrows,ncols], dtype=np.float32)
# Define some constants
pedestal = 18.30
c_pink = 9.6
u_pink = 3.2
acn = 2.0
bias_amp = 0.
#bias_amp = 5358.87
#bias_offset = 20944.06
pca0_amp = 0.
rd_noise = 12.95
dark_current = 0.0
dc_seed = dark_seed
bias_offset = offset*gain
# Define the HXRGN instance to make a SUSBSTRIP256 array
#(in detector coordinates)
noisecube = ng.HXRGNoise(naxis1=nrows, naxis2=ncols, naxis3=ngrps,
pca0_file=pca0_file, x0=0, y0=0, det_size=2048,
verbose=False)
# iterate over integrations
for loop in range(nints):
seed1 = noise_seed+24*int(loop)
ramp = noisecube.mknoise(c_pink=c_pink, u_pink=u_pink,
bias_amp=bias_amp, bias_offset=bias_offset,
acn=acn, pca0_amp=pca0_amp, rd_noise=rd_noise,
pedestal=pedestal, dark_current=dark_current,
dc_seed=dc_seed, noise_seed=seed1, gain=gain)
if len(ramp.shape)==2:
ramp = ramp[np.newaxis,:,:]
ramp = np.transpose(ramp,(0,2,1))
ramp = ramp[::,::-1,::-1]
ramp = add_dark_current(ramp, dc_seed, gain, darksignal)
simulated_data[loop*ngrps:(loop+1)*ngrps,:,:] = np.copy(ramp)
ramp = 0
return simulated_data
def make_photon_yield(photon_yield, orders):
"""
Generates a map of the photon yield for each order.
The shape of both arrays should be [order, nrows, ncols]
Parameters
----------
photon_yield: str
The path to the file containg the calculated photon yield at each pixel
orders: sequence
An array of the median image of each order
Returns
-------
np.ndarray
The array containing the photon yield map for each order
"""
# Get the shape and create empty arrays
dims = orders.shape
sum1 = np.zeros((dims[1], dims[2]), dtype=np.float32)
sum2 = np.zeros((dims[1], dims[2]), dtype=np.float32)
# Add the photon yield for each order
for n in range(dims[0]):
sum1 = sum1+photon_yield[n, :, :]*orders[n, :, :]
sum2 = sum2+orders[n, :, :]
# Take the ratio of the photon yield to the signal
pyimage = sum1/sum2
pyimage[np.where(sum2 == 0.)] = 1.
return pyimage
def add_signal(signals, cube, pyimage, frametime, gain, zodi, zodi_scale,
photon_yield=False):
"""
Add the science signal to the generated noise
Parameters
----------
signals: sequence
The science frames
cube: sequence
The generated dark ramp
pyimage: sequence
The photon yield per order
frametime: float
The number of seconds per frame
gain: float
The detector gain
zodi: sequence
The zodiacal background image
zodi_scale: float
The scale factor for the zodi background
"""
# Get the data dimensions
dims1 = cube.shape
dims2 = signals.shape
if dims1 != dims2:
raise ValueError(dims1, "not equal to", dims2)
# Make a new ramp
newcube = cube.copy()*0.
# The background is assumed to be in electrons/second/pixel, not ADU/s/pixel.
background = zodi*zodi_scale*frametime
# Iterate over each group
for n in range(dims1[0]):
framesignal = signals[n,:,:]*gain*frametime
# Add photon yield
if photon_yield:
newvalues = np.random.poisson(framesignal)
target = pyimage-1.
for k in range(dims1[1]):
for l in range(dims1[2]):
if target[k,l] > 0.:
n = int(newvalues[k,l])
values = np.random.poisson(target[k,l], size=n)
newvalues[k,l] = newvalues[k,l]+np.sum(values)
newvalues = newvalues+ | np.random.poisson(background) | numpy.random.poisson |
#!/usr/bin/python
# coding=utf8
# author=zhtsh
import pandas as pd
import numpy as np
from os import path
import network2
def vectorized_result(j):
e = np.zeros((2, 1))
e[j] = 1.0
return e
if __name__ == '__main__':
data_dir_path = path.abspath(path.join(path.dirname(__file__), '../data'))
train_df = pd.read_csv(path.join(data_dir_path, './train.csv'))
test_df = pd.read_csv(path.join(data_dir_path, './test.csv'))
train_df = train_df.drop(['Ticket', 'Cabin'], axis=1)
test_df = test_df.drop(['Ticket', 'Cabin'], axis=1)
combine = [train_df, test_df]
# process name column
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
for dataset in combine:
dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False)
dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',\
'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
dataset['Title'] = dataset['Title'].map(title_mapping)
dataset['Title'] = dataset['Title'].fillna(0)
train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
test_df = test_df.drop(['Name'], axis=1)
combine = [train_df, test_df]
# process sex column
for dataset in combine:
dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int)
# process age column
# first fill nan value
guess_ages = np.zeros((2,3))
for dataset in combine:
for i in range(0, 2):
for j in range(0, 3):
guess_df = dataset[(dataset['Sex'] == i) & \
(dataset['Pclass'] == j+1)]['Age'].dropna()
# age_mean = guess_df.mean()
# age_std = guess_df.std()
# age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std)
age_guess = guess_df.median()
# Convert random age float to nearest .5 age
guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5
for i in range(0, 2):
for j in range(0, 3):
dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1),\
'Age'] = guess_ages[i,j]
dataset['Age'] = dataset['Age'].astype(int)
for dataset in combine:
dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0
dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
dataset.loc[ dataset['Age'] > 64, 'Age'] = 4
# process SibSp and Parch column, new column IsAlone
for dataset in combine:
dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
dataset['IsAlone'] = 0
dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1
train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
combine = [train_df, test_df]
# new Age*Class column
for dataset in combine:
dataset['Age*Class'] = dataset.Age * dataset.Pclass
# process Embarked column
freq_port = train_df.Embarked.dropna().mode()[0]
for dataset in combine:
dataset['Embarked'] = dataset['Embarked'].fillna(freq_port)
dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int)
# process Fare column
test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True)
for dataset in combine:
dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2
dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3
dataset['Fare'] = dataset['Fare'].astype(int)
X_train = train_df.drop("Survived", axis=1)
Y_train = train_df["Survived"]
X_test = test_df.drop("PassengerId", axis=1).copy()
# train dnn model and predict
net = network2.Network([8, 20, 2])
training_inputs = [ | np.reshape(x, (8, 1)) | numpy.reshape |
import unittest
import numpy as np
from bert2tf import Executor, PlmBert, BertTokenizer
from tests import Bert2TFTestCase
class MyTestCase(Bert2TFTestCase):
@unittest.skip('just run on local machine')
def test_create_plm_bert_model(self):
model = Executor.load_config('PlmBert', use_with={
'config': '../../resources/pre_models/plm_bert/plm_bert_config.json'})
self.assertEqual(isinstance(model, PlmBert), True)
model = Executor.load_config('yaml/plm_bert.yml')
self.assertEqual(isinstance(model, PlmBert), True)
model = PlmBert(config='../../resources/pre_models/plm_bert/plm_bert_config.json')
self.assertEqual(isinstance(model, PlmBert), True)
@unittest.skip('just run on local machine')
def test_plm_bert_encode(self):
model = Executor.load_config('yaml/plm_bert.yml')
tokenizer = BertTokenizer('../../resources/pre_models/plm_bert/vocab.txt')
input_ids, input_mask, segment_ids = tokenizer.encode('今天天气不好')
result = model([np.array([input_ids]), | np.array([input_mask]) | numpy.array |
import logging
import numpy as np
import math
import pyproj
import datetime
from scipy.signal import savgol_filter
import core.settings as settings
import core.helper as helper
class TECEstimation:
"""
Comprises the full workflow to calculate/estimate local TEC. The workflow consists in TEC relative, absolute,
and vertical estimation, besides the slant factor, which gives the ionopheric point where the TEC has been estimated
"""
def relative(self, tec, obs, factor_glonass, dcb, p1_or_c1_col, p2_or_c2_col):
"""
Calculate the pseudo-range or pseudo-distance, which is the first TEC calculation, called relative TEC or simply
R TEC. The R TEC includes, then, not only the TEC, but also all the extra influences, such as atmosphere
attenuations, and eletronic errors
:param tec: Dict with TEC python object
:param obs: The measures of the current rinex
:param factor_glonass: The channels values of each GLONASS PRNs to calc the selective factor
:param dcb: The parsed DCB object, with the satellites bias, in order to
subtract from relative TEC (in nanosecs)
:param p1_or_c1_col: Either the P1 or C1 measures might be used. Here, a string defined the name of the column
of the measure used
:param p2_or_c2_col: Either the P2 or C2 measures might be used. Here, a string defined the name of the column
of the measure used
:return: The python relative TEC object, which will content all the TEC calculations along the process
"""
tec_r = {}
utils = helper.Utils()
# logging.info(">>>> Converting DCB nanoseconds in TEC unit...")
# dcb_tecu = helper.Utils.convert_dcb_ns_to_tecu(dcb, factor_glonass)
# logging.info(">> Correcting DCB values...")
# dcb_corrected = helper.Utils.correct_dcb_values(dcb, factor_glonass)
logging.info(">>>> Calculating relative TEC and removing satellite DCB...")
for prn in obs.sv.values:
p2_or_c2 = obs[p2_or_c2_col[prn[0:1]]].sel(sv=prn).values
p1_or_c1 = obs[p1_or_c1_col[prn[0:1]]].sel(sv=prn).values
factor, dcb_compensate = utils.check_availability(factor_glonass, dcb, prn)
relative = utils.check_arc_gaps(tec, factor, p2_or_c2, p1_or_c1, prn)
tec_r[prn] = (relative - dcb_compensate).tolist()
# utils.plot_relative(prn, tec['relative-l1-l2'][prn][0], tec_r[prn])
return tec_r
def slant(self, hdr, obs, orbit, type):
"""
Consists in a more accurate acquirement of each satellite's slant in the ionospheric point regarding a specific
receiver.
:param hdr: The header the current rinex
:param obs: The measures of the current rinex
:param orbit: The python orbit object, with the daily and updated satellite locations
:param type: Type of parameters to be calculated (For DTEC (0) or bias estimation (1))
:return: The updated TEC object, now, with slant factor calculated. The tec['slant'] dict:
tec['slant'] = {
'G01' = [
[SLANT_FACTOR_OVER_THE_DAY], [ZENITAL_ANGLE_OVER_THE_DAY],
[ELEVATION_OVER_THE_DAY], [LATITUDE_PP_OVER_THE_DAY], [LONG_PP_OVER_THE_DAY]
],
'G02' = [
[SLANT_FACTOR_OVER_THE_DAY], [ZENITAL_ANGLE_OVER_THE_DAY],
[ELEVATION_OVER_THE_DAY], [LATITUDE_PP_OVER_THE_DAY], [LONG_PP_OVER_THE_DAY]
],
...
}
"""
tec_s = {}
utils = helper.Utils()
geodesy = helper.Geodesy()
rec_x = hdr['position'][0]
rec_y = hdr['position'][1]
rec_z = hdr['position'][2]
ecef = pyproj.Proj(proj='geocent', ellps='WGS84', datum='WGS84')
lla = pyproj.Proj(proj='latlong', ellps='WGS84', datum='WGS84')
lon, lat, alt = pyproj.transform(ecef, lla, rec_x, rec_y, rec_z, radians=False)
degrad = float(math.pi / 180.0)
dpi = float('{:.16f}'.format(math.pi))
lon = (lon + 360) * degrad
lat *= degrad
sin_rec_x = math.sin(lon)
sin_rec_y = math.sin(lat)
cos_rec_x = math.cos(lon)
cos_rec_y = math.cos(lat)
for prn in obs.sv.values:
if prn not in orbit.keys():
continue
sat_x = utils.array_dict_to_array(orbit[prn], 'x')
sat_x = [x * 1000 for x in sat_x]
sat_y = utils.array_dict_to_array(orbit[prn], 'y')
sat_y = [y * 1000 for y in sat_y]
sat_z = utils.array_dict_to_array(orbit[prn], 'z')
sat_z = [z * 1000 for z in sat_z]
if type is 0:
diff_x = np.array([item - rec_x for item in sat_x])
diff_y = np.array([item - rec_y for item in sat_y])
diff_z = np.array([item - rec_z for item in sat_z])
term1 = -cos_rec_x * sin_rec_y * diff_x
term2 = sin_rec_x * sin_rec_y * diff_y
term3 = cos_rec_y * diff_z
term4 = -sin_rec_x * diff_x
term5 = cos_rec_x * diff_y
term6 = cos_rec_x * cos_rec_y * diff_x
term7 = sin_rec_x * cos_rec_y * diff_y
term8 = sin_rec_y * diff_z
north = term1 - term2 + term3
east = term4 + term5
vertical = term6 + term7 + term8
vertical_norm = np.sqrt(np.power(cos_rec_x * cos_rec_y, 2) +
np.power(sin_rec_x * cos_rec_y, 2) +
np.power(sin_rec_y, 2))
r = np.sqrt(np.power(diff_x, 2) + np.power(diff_y, 2) + np.power(diff_z, 2))
ang_zenital = np.arccos(vertical / (r * vertical_norm))
ang_elev = ((dpi / 2) - ang_zenital) / degrad
slant_factor = np.arcsin((settings.EARTH_RAY / (settings.EARTH_RAY + settings.AVERAGE_HEIGHT)) *
np.cos(ang_elev * degrad))
slant_factor = np.cos(slant_factor)
azimute = np.arctan2(east, north)
azimute[azimute < 0] += (2 * math.pi)
azimute = azimute / degrad
var1 = ang_elev * degrad
w = (dpi / 2) - var1 - np.arcsin(
settings.EARTH_RAY / (settings.EARTH_RAY + settings.AVERAGE_HEIGHT) * np.cos(var1))
var2 = sin_rec_y * np.cos(w)
var3 = cos_rec_y * np.sin(w) * np.cos(azimute * degrad)
lat_pp = np.arcsin(var2 + var3)
var4 = np.sin(w) * np.sin(azimute * degrad)
long_pp = lon + np.arcsin(var4 / np.cos(lat_pp))
lat_pp = lat_pp / degrad
long_pp = long_pp / degrad
lat_pp = lat_pp.tolist()
long_pp = long_pp.tolist()
elif type is 1:
ion_x, ion_y, ion_z = geodesy.sub_ion_point(settings.ALT_IONO, sat_x, sat_y, sat_z, rec_x, rec_y, rec_z)
top_ion_x, top_ion_y, top_ion_z = geodesy.sub_ion_point(settings.ALT_IONO_TOP, sat_x, sat_y, sat_z,
rec_x, rec_y, rec_z)
bot_ion_x, bot_ion_y, bot_ion_z = geodesy.sub_ion_point(settings.ALT_IONO_BOTTOM, sat_x, sat_y, sat_z,
rec_x, rec_y, rec_z)
lat_pp, long_pp, alt_pp = geodesy.car_2_pol(ion_x, ion_y, ion_z)
ang_zenital = geodesy.calc_zenital_angle(sat_x, sat_y, sat_z, rec_x, rec_y, rec_z)
ang_elev = ((dpi / 2) - ang_zenital) / degrad
slant_factor = pow(np.array(top_ion_x) - np.array(bot_ion_x), 2) + \
pow(np.array(top_ion_y) - np.array(bot_ion_y), 2) + \
pow(np.array(top_ion_z) - np.array(bot_ion_z), 2)
slant_factor = np.sqrt(slant_factor) / (settings.ALT_IONO_TOP - settings.ALT_IONO_BOTTOM)
else:
logging.error(">>>> Type of slant factor calculation is incorrect. The procedure will be "
"interrupted for this file!")
raise Exception(">>>> Type of slant factor calculation is incorrect. The procedure will be "
"interrupted for this file!")
slant_factor = slant_factor.tolist()
ang_zenital = ang_zenital.tolist()
ang_elev = ang_elev.tolist()
# utils.plot_slant(prn, slant_factor, ang_zenital, ang_elev, lat_pp, long_pp)
tec_s[prn] = [slant_factor, ang_zenital, ang_elev, lat_pp, long_pp]
return tec_s
def detrended(self, tec, factor_glonass, l2_channel):
"""
Calculate the Detrended TEC
:param tec: Dict with TEC python object
:param factor_glonass: The channels values of each GLONASS PRNs to calc the selective factor
:param l2_channel: A True value means that L2 was present at the file, then, used for the calculus. By using
this measure, the frequency 2 should be used. If False, the frequency 3 is used.
:return: The updated TEC object, now, with detrended TEC calculated
"""
tec_d = {}
input = helper.InputFiles()
for prn in tec['relative-l1-l2']:
l1 = np.array(tec['relative-l1-l2'][prn][1])
l2_or_l3 = np.array(tec['relative-l1-l2'][prn][2])
f1, f2, f3, factor_1, factor_2, factor_3 = input.frequency_by_constellation(prn, factor_glonass)
if l2_channel:
term1 = ((l1 / f1) - (l2_or_l3 / f2)) * settings.C
else:
term1 = ((l1 / f1) - (l2_or_l3 / f3)) * settings.C
sTEC_diff = factor_3 * term1
savgol = savgol_filter(sTEC_diff, 121, 2, mode='nearest')
tec_d[prn] = (sTEC_diff - savgol).tolist()
# utils = helper.Utils()
# utils.plot_dtrended(prn, l1, l2_or_l3, sTEC_diff, savgol, tec_d[prn])
return tec_d
def absolute(self, tec, constellations):
"""
The absolute TEC consists in the TEC without the contribution of bias. In this method, the Python TEC object
is updated with the subtraction of bias.
:param tec: Dict with TEC python object
:param constellations: Which constellations was eligible to be used during the calculus
:return: The updated TEC object, now, with absolute TEC calculated
"""
tec_a = {}
b = tec['bias']['B']
bias_receiver = b[len(b)-len(constellations):len(b)]
if len(bias_receiver) != len(constellations):
logging.warning(">>>> Number of bias estimated ({}) is different of constellations considered ({})!".
format(len(bias_receiver), len(constellations)))
for c, const in enumerate(constellations):
for prn, values in tec['relative'].items():
if prn[0:1] is not const:
continue
absolute = np.array(tec['relative'][prn]) - bias_receiver[c]
tec_a[prn] = absolute.tolist()
return tec_a
def vertical(self, tec, orbit):
"""
When calculated, the TEC is function of satellites incident angles, sometimes, in the horizon. The vertical
TEC is the process to remove this influence, bringing the TEC perpendicular to the receiver, called vertical
TEC -> Vertical = Absolute / Slant. At the first part of this method, the slant variable is reduce to the
range of the rinex, in a way that both cover the same range of datetime over the day. The vertical TEC is then
calculated.
:param tec: Dict with TEC python object
:param orbit: The Orbit dict, with all the informations of satellites, including x, y, z locations, and time
:return: The updated TEC object, now, with vertical TEC calculated
"""
tec_v = {}
for prn, values in tec['absolute'].items():
if prn not in tec['slant'].keys():
continue
absolute_np = np.array(tec['absolute'][prn])
slant_np = np.array(tec['slant'][prn][0])
if absolute_np.shape[0] != slant_np.shape[0]:
slant_np_aux = []
for i, item in enumerate(orbit['date']):
if item in tec['time']:
slant_np_aux.append(slant_np[i])
slant_np = np.array(slant_np_aux)
tec_v[prn] = (absolute_np / slant_np).tolist()
# utils = helper.Utils()
# utils.plot_absolute_vertical(prn, tec['absolute'][prn], tec_v[prn])
return tec_v
class BiasEstimation:
"""
Comprises the methods responsible to the estimate of bias receiver. This includes all the process of discovering
the unknown variables by the use of MMQ (Least-Square)
"""
def _split_datetime_array(self, array_datetime):
"""
Split a datetime array in fractions of time, where each fractions corresponds a pre-determined period (delta).
Thus, considering an array of 24h datetime, and a delta of 15 minutes, the return will be fractions of date
indexes corresponding to every 15 minutes until the end of the day
:param array_datetime: Array of datetimes
:return: Fractions of date indexes corresponding to every delta in the day. The delta is set up by the
TEC_RESOLUTION constant variable
"""
indexes_fraction = []
indexes_fraction_aux = []
if settings.TEC_RESOLUTION == 'hours':
delta = datetime.timedelta(hours=int(settings.TEC_RESOLUTION_VALUE))
elif settings.TEC_RESOLUTION == 'minutes':
delta = datetime.timedelta(minutes=int(settings.TEC_RESOLUTION_VALUE))
else:
delta = datetime.timedelta(hours=1)
logging.info(">>>> TEC resolution estimation not declare. Hourly TEC was defined as default! Please, "
"check your .env and look for TEC_RESOLUTION and TEC_RESOLUTION_VALUE to set correctly!")
fraction_limit = array_datetime[0] + delta
for i, item in enumerate(array_datetime):
if item < fraction_limit:
indexes_fraction_aux.append(i)
else:
fraction_limit = item + delta
indexes_fraction.append(indexes_fraction_aux)
indexes_fraction_aux = []
indexes_fraction_aux.append(i)
indexes_fraction.append(indexes_fraction_aux)
return indexes_fraction
def _build_coefficients(self, tec, constellations):
"""
Build the coefficients of the equation system. These terms are defined through a Least-Square Fitting method,
which consist in the minimization of set of unknown variable, dispose in a set of equations, so called,
equation system (see Otsuka et al. A new Technique for mapping of TEC using GPS network in Japan).
The coefficients, are values organized by hours, each hour will receive a mean value of a specific PRN.
For instance, for hour '0h' of group_1, will receive an array with TOTAL_OF_SATELLITES positions, each
position corresponds to a mean value of 1 / tec slant, for group_2, the each position corresponds to a mean
value of relative / tec slant
:param tec: The TEC object, with relative and slant factor, calculated by PRN
:param constellations: Which constellations was eligible to be used during the calculus
:return: The group 1 and 2 of coefficients, which is hourly mean of 1 / slant_factor, and
hourly mean of tec_relative / slant_factor, respectively
For example:
coefficients = {
'group_1':
{
'every_00.00.10_frac_0': [G01_mean, G02_mean, ..., N_sat_mean],
'every_00.00.10_frac_1': [G01_mean, G02_mean, ..., N_sat_mean],
'every_00.00.10_frac_2': [G01_mean, G02_mean, ..., N_sat_mean],
...
'every_00.00.10_frac_INTERVAL_A_DAY': [G01_mean, G02_mean, ..., N_sat_mean],
},
'group_2':
{
'every_00.00.10_frac_0': [G01_mean, G02_mean, ..., N_sat_mean],
'every_00.00.10_frac_1': [G01_mean, G02_mean, ..., N_sat_mean],
'every_00.00.10_frac_2': [G01_mean, G02_mean, ..., N_sat_mean],
...
'every_00.00.10_frac_INTERVAL_A_DAY': [G01_mean, G02_mean, ..., N_sat_mean],
}
}
"""
coefficients = {}
group_1 = {}
group_2 = {}
res = str(settings.TEC_RESOLUTION_VALUE) + '_' + str(settings.TEC_RESOLUTION)
indexes = self._split_datetime_array(tec['time'])
for i, ind in enumerate(indexes):
group_1_aux_dict = {}
group_2_aux_dict = {}
for const in constellations:
group_1_aux = []
group_2_aux = []
for prn in tec['slant']:
if prn[0:1] is not const:
continue
elements_slant = np.take(tec['slant'][prn][0], ind)
elements_relat = np.take(tec['relative'][prn], ind)
elements_slant[np.isnan(elements_slant)] = 0.0
elements_relat[np.isnan(elements_relat)] = 0.0
elements_slant_pos = np.where(~(elements_slant <= settings.SLANT_FACTOR_LIMIT))[0]
elements_slant = elements_slant[elements_slant <= settings.SLANT_FACTOR_LIMIT]
elements_relat = np.delete(elements_relat, elements_slant_pos)
# elements_relat_pos = np.where(~(elements_relat == np.nan))[0]
# elements_relat = elements_relat[elements_relat == np.nan]
# elements_slant = np.delete(elements_slant, elements_relat_pos)
if len(elements_relat) == 0:
avg_rel = 0.0
avg_sla = 0.0
else:
if len(elements_slant) == 0:
avg_sla = 0.0
avg_rel = 0.0
else:
_1_slant = np.divide(1, elements_slant)
_relative_slant = np.divide(elements_relat, elements_slant)
_1_slant = _1_slant[_1_slant.nonzero()[0]]
_1_slant = _1_slant[np.where(~np.isinf(_1_slant))[0]]
_relative_slant = _relative_slant[_relative_slant.nonzero()[0]]
_relative_slant = _relative_slant[np.where(~np.isinf(_relative_slant))[0]]
avg_sla = np.mean(_1_slant, dtype=np.float32)
avg_rel = np.mean(_relative_slant, dtype=np.float32)
if avg_sla == np.nan:
avg_sla = 0.0
if avg_rel == np.nan:
avg_rel = 0.0
group_1_aux.append(avg_sla)
group_2_aux.append(avg_rel)
group_1_aux_dict[const] = group_1_aux
group_2_aux_dict[const] = group_2_aux
group_1["every_" + res + "_frac_" + str(i)] = group_1_aux_dict
group_2["every_" + res + "_frac_" + str(i)] = group_2_aux_dict
coefficients['group_1'] = group_1
coefficients['group_2'] = group_2
return coefficients
def _build_matrix_f(self, group1_coefficients):
"""
Build part of the A matrix, which it is splited in matrix E and F. Matrix B is built on top of
coefficients 1/slant_factor
:param group1_coefficients:
:return: Numpy matrix F
"""
keys = list(group1_coefficients.keys())
intervals_a_day = len(list(group1_coefficients.keys()))
flattened_values = [y for x in list(group1_coefficients[keys[0]].values()) for y in x]
total_n_prns = len(flattened_values)
number_valid_constellations = len(group1_coefficients[keys[0]])
rows = total_n_prns * intervals_a_day
f = np.zeros([rows, number_valid_constellations], dtype=float)
pivot = 0
for element in group1_coefficients:
for c, const in enumerate(group1_coefficients[element]):
n_prns = len(group1_coefficients[element][const])
f[pivot:pivot + n_prns, c] = group1_coefficients[element][const]
pivot += n_prns
return f
def _build_matrix_e(self, group1_coefficients):
"""
Build part of the A matrix, which it is splited in matrix E and F. Matrix E is simply a matrix with 1's, based
on the number of PRNs observed
:param group1_coefficients:
:return: A numpy E matrix
"""
keys = list(group1_coefficients.keys())
intervals_a_day = len(list(group1_coefficients.keys()))
flattened_values = [y for x in list(group1_coefficients[keys[0]].values()) for y in x]
total_n_prns = len(flattened_values)
e = np.zeros([total_n_prns * intervals_a_day, intervals_a_day], dtype=float)
for f, frac in enumerate(group1_coefficients):
initial_row = f * total_n_prns
final_row = initial_row + total_n_prns
e[initial_row:final_row, f] = 1
return e
def _build_matrix_a(self, group1_coefficients):
"""
Build the A matrix, which is an union between matrix E and B
:param group1_coefficients:
:return: A numpy A matrix
"""
e = self._build_matrix_e(group1_coefficients)
f = self._build_matrix_f(group1_coefficients)
a = np.concatenate((e, f), 1)
return a
def _build_matrix_p(self, group1_coefficients):
"""
Build the P matrix, which is a eye matrix built on top of coefficients 1 / slant_factor, also
based on the number of PRNs observed
:param group1_coefficients:
:return: A numpy P matrix
"""
keys = list(group1_coefficients.keys())
intervals_a_day = len(list(group1_coefficients.keys()))
flattened_values = [y for x in list(group1_coefficients[keys[0]].values()) for y in x]
total_n_prns = len(flattened_values)
rows = total_n_prns * intervals_a_day
pivot = 0
p = np.zeros([rows, rows], dtype=float)
for element in group1_coefficients:
for c, const in enumerate(group1_coefficients[element]):
n_prns = len(group1_coefficients[element][const])
np.fill_diagonal(p[pivot:pivot + rows, pivot:pivot + rows], group1_coefficients[element][const])
pivot += n_prns
return p
def _build_matrix_l(self, group2_coefficients):
"""
Build the L matrix, which is a column matrix built on top of coefficients tec_relative / slant_factor, also
based on the number of PRNs observed
:param group2_coefficients:
:return: A numpy L matrix
"""
keys = list(group2_coefficients.keys())
intervals_a_day = len(list(group2_coefficients.keys()))
flattened_values = [y for x in list(group2_coefficients[keys[0]].values()) for y in x]
total_n_prns = len(flattened_values)
rows = total_n_prns * intervals_a_day
pivot = 0
l = np.zeros([rows, 1], dtype=float)
for element in group2_coefficients:
for c, const in enumerate(group2_coefficients[element]):
n_prns = len(group2_coefficients[element][const])
l[pivot:pivot + n_prns, 0] = group2_coefficients[element][const]
pivot += n_prns
return l
def estimate_bias(self, tec, constellations):
"""
The bias estimate comprises the resolution of a equation system, which can be represented by a set of matrixes.
The unknowns are built over averages values over the day, as shown in Otsuka et al. 2002. The solution, however,
is given by the resolution of an equation system, given by the matrixes A, P, and L, where the estimated TEC
and receiver bias (B) is given by inv(A^T P A) * (A^T P L)
:param tec: The measures of the current rinex
:param constellations: Which constellations was eligible to be used during the calculus
:return: The settings.INTERVAL_A_DAY elements corresponding to averages TEC over the day, more one last value,
corresponding to the receptor/receiver bias
"""
matrixes = {}
bias = {}
logging.info(">> Preparing coefficients...")
coefficients = self._build_coefficients(tec, constellations)
logging.info(">> Split intervals in each {} {}...".format(settings.TEC_RESOLUTION_VALUE,
settings.TEC_RESOLUTION))
intervals_a_day = len(list(coefficients['group_1'].keys()))
logging.info(">> Building matrix A...")
a = self._build_matrix_a(coefficients['group_1'])
at = np.transpose(a)
logging.info(">> Building matrix P...")
p = self._build_matrix_p(coefficients['group_1'])
logging.info(">> Building matrix L...")
l = self._build_matrix_l(coefficients['group_2'])
l[np.isnan(l)] = 0
np.savetxt("/home/lotte/Desktop/a.csv", a, delimiter=" ")
np.savetxt("/home/lotte/Desktop/p.csv", p, delimiter=" ")
np.savetxt("/home/lotte/Desktop/l.csv", l, delimiter=" ")
if a.shape[0] != p.shape[0]:
logging.error(">>>> Matrix A dimension ({}) in row, does not match with P ({}). There is "
"something wrong! Process stopped!\n".format(a.shape, p.shape))
raise Exception(">>>> Matrix A dimension ({}) in row, does not match with P ({}). There is "
"something wrong! Process stopped!\n".format(a.shape, p.shape))
if p.shape[0] != l.shape[0]:
logging.error(">>>> Matrix P dimension ({}) in row, does not match with L ({}) in row. There is "
"something wrong! Process stopped!\n".format(p.shape, l.shape))
raise Exception(">>>> Matrix P dimension ({}) in row, does not match with L ({}) in row. There is "
"something wrong! Process stopped!\n".format(p.shape, l.shape))
logging.info(">>>> Matrix A ({}), P ({}), and L ({}) successful built!".format(a.shape, p.shape, l.shape))
logging.info(">> Estimating daily TEC and receiver bias...")
term1 = np.dot(at, p)
term2 = np.dot(term1, a)
inv_atpa = np.linalg.inv(term2)
atpl = np.dot(term1, l)
b = np.dot(inv_atpa, atpl)
if b.shape[0] != (intervals_a_day + len(constellations)):
logging.error(">>>> Matrix B dimension, does not match with the number of TEC by day ({}) and "
"receiver bias estimation ({}). There is something wrong! "
"Process stopped!\n".format(b.shape, intervals_a_day, len(constellations)))
raise Exception(">>>> Matrix B dimension, does not match with the number of TEC by day ({}) and "
"receiver bias estimation ({}). There is something wrong! "
"Process stopped!\n".format(b.shape, intervals_a_day, len(constellations)))
else:
logging.info(">>>> Matrix B successful calculated! TEC estimation every {} {} a day ({} fractions), plus,"
" {} receiver bias:".format(settings.TEC_RESOLUTION_VALUE,
settings.TEC_RESOLUTION,
intervals_a_day, len(constellations)))
for i, item in enumerate(b[len(b)-len(constellations):len(b)]):
logging.info(">>>>>> {}: {}".format(constellations[i], item[0]))
matrixes['A'] = a.tolist()
matrixes['P'] = p.tolist()
matrixes['L'] = l.tolist()
matrixes['invATPA'] = inv_atpa.tolist()
matrixes['ATPL'] = atpl.tolist()
b = [y for x in b.tolist() for y in x]
bias['B'] = b
return matrixes, bias
class QualityControl:
"""
Comprises the methods responsible to analyse the quality of the measures used to estimate the TEC and bias.
"""
def _var(self, a, p, l, b, atpl):
"""
Calculate the variance a posteriori for each estimated value, based on the bias matrixes used before
:param a: Numpy A matrix: coefficients (group 1) mounted in a custom matrix
:param p: Numpy P matrix: coefficients (group 1) mounted in a squared matrix
:param l: Numpy L matrix: coefficients (group 2) mounted in a matrix column
:param b: Numpy B matrix (bias)
:param atpl: Numpy matrix - inverse of (A^T * P * L)
:return: Numpy matrix with the calculated variance metric for each estimated value
"""
lt = np.transpose(l)
bt = np.transpose(b)
mat1 = lt.dot(p).dot(l)
mat2 = bt.dot(atpl)
mat3 = mat1 - mat2
a_rows = np.size(a, 0)
b_rows = np.size(b, 0)
degree_of_freedom = a_rows - b_rows
var = mat3 / degree_of_freedom
return var
def _accuracy(self, inv_atpa):
"""
Calculate the accuracy for each estimated value, based on the bias matrixes used before
:param inv_atpa: inverse of (A^T * P * A)
:return: Numpy matrix with the calculated accuracy metric for each estimated value
"""
accuracy = np.sqrt(np.diag(inv_atpa))
return accuracy
def _quality(self, inv_atpa, var):
"""
Calculate the quality for each estimated value, based on the inverse of (A^T * P * A) matrix
:param inv_atpa: Numpy matrix - inverse of (A^T * P * A)
:param var: Variance a posteriori
:return: Numpy matrix with the calculated quality metric for each estimated value
"""
quality = np.sqrt( | np.diag(inv_atpa * var) | numpy.diag |
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def p_i(vektor):
return np.exp(vektor)/(1+np.exp(vektor))
def varianca(vektor, skupine):
return np.diag(np.array(skupine) * (np.array(vektor) * (1 - np.array(vektor))))
def izracunaj_koeficiente(max_iteracij, matrika, vektor_rezultatov,vektor_skupin = [], zacetni_beta = [], epsilon=0.001):
"""
logistični model predpostavlja: logit(p_i) = 1*beta_0 + x_i1*beta_1 + ... + x_ir*beta_r
X je matrika teh koeficientov dimenzije: (n, r+1)
vektor rezultatov so realizacije slučajnega vektorja, dimenzije: (n,)
score dimenzije: (r+1,1)
info dimenzije: (r+1,r+1)
var dimenzije: (n,n)
"""
n = np.shape(vektor_rezultatov)[0]
r_plus1 = np.shape(matrika)[1]
if not any(np.array(vektor_skupin)):
vektor_skupin = np.ones(( | np.shape(vektor_rezultatov) | numpy.shape |
import os
import warnings
from tempfile import TemporaryDirectory as InTemporaryDirectory
import numpy as np
import numpy.testing as npt
import pytest
from fury import actor, window, io
from fury.testing import captured_output, assert_less_equal, assert_greater
from fury.decorators import skip_osx, skip_win
def test_scene():
scene = window.Scene()
npt.assert_equal(scene.size(), (0, 0))
# background color for scene (1, 0.5, 0)
# 0.001 added here to remove numerical errors when moving from float
# to int values
bg_float = (1, 0.501, 0)
# that will come in the image in the 0-255 uint scale
bg_color = tuple((np.round(255 * np.array(bg_float))).astype('uint8'))
scene.background(bg_float)
# window.show(scene)
arr = window.snapshot(scene)
report = window.analyze_snapshot(arr,
bg_color=bg_color,
colors=[bg_color, (0, 127, 0)])
npt.assert_equal(report.objects, 0)
npt.assert_equal(report.colors_found, [True, False])
axes = actor.axes()
scene.add(axes)
# window.show(scene)
arr = window.snapshot(scene)
report = window.analyze_snapshot(arr, bg_color)
| npt.assert_equal(report.objects, 1) | numpy.testing.assert_equal |
import numpy as np
import modeling.geometric_model as gm
import modeling.collision_model as cm
import visualization.panda.world as wd
import basis.robot_math as rm
import math
from scipy.spatial import cKDTree
base = wd.World(cam_pos=np.array([-.3,-.7,.1]), lookat_pos=np.array([0,0,0]))
# gm.gen_frame().attach_to(base)
bowl_model = cm.CollisionModel(initor="./objects/bowl.stl")
bowl_model.set_rgba([.3,.3,.3,1])
bowl_model.set_rotmat(rm.rotmat_from_euler(math.pi,0,0))
bowl_model.attach_to(base)
pn_direction = np.array([0, 0, -1])
bowl_samples, bowl_sample_normals = bowl_model.sample_surface(toggle_option='normals', radius=.002)
selection = bowl_sample_normals.dot(-pn_direction)>.1
bowl_samples = bowl_samples[selection]
bowl_sample_normals=bowl_sample_normals[selection]
tree = cKDTree(bowl_samples)
pt_direction = rm.orthogonal_vector(pn_direction, toggle_unit=True)
tmp_direction = np.cross(pn_direction, pt_direction)
plane_rotmat = np.column_stack((pt_direction, tmp_direction, pn_direction))
homomat=np.eye(4)
homomat[:3,:3] = plane_rotmat
homomat[:3,3] = np.array([-.07,-.03,.1])
twod_plane = gm.gen_box(np.array([.2, .2, .001]), homomat=homomat, rgba=[1,1,1,.3])
twod_plane.attach_to(base)
circle_radius=.05
line_segs = [[homomat[:3,3], homomat[:3,3]+pt_direction*.05], [homomat[:3,3]+pt_direction*.05, homomat[:3,3]+pt_direction*.05+tmp_direction*.05],
[homomat[:3,3]+pt_direction*.05+tmp_direction*.05, homomat[:3,3]+tmp_direction*.05], [homomat[:3,3]+tmp_direction*.05, homomat[:3,3]]]
# gm.gen_linesegs(line_segs).attach_to(base)
for sec in line_segs:
gm.gen_stick(spos=sec[0], epos=sec[1], rgba=[0, 0, 0, 1], thickness=.002, type='round').attach_to(base)
epos = (line_segs[0][1]-line_segs[0][0])*.7+line_segs[0][0]
gm.gen_arrow(spos=line_segs[0][0], epos=epos, thickness=0.004).attach_to(base)
spt = homomat[:3,3]
# gm.gen_stick(spt, spt + pn_direction * 10, rgba=[0,1,0,1]).attach_to(base)
# base.run()
gm.gen_dasharrow(spt, spt-pn_direction*.07, thickness=.004).attach_to(base) # p0
cpt, cnrml = bowl_model.ray_hit(spt, spt + pn_direction * 10000, option='closest')
gm.gen_dashstick(spt, cpt, rgba=[.57,.57,.57,.7], thickness=0.003).attach_to(base)
gm.gen_sphere(pos=cpt, radius=.005).attach_to(base)
gm.gen_dasharrow(cpt, cpt-pn_direction*.07, thickness=.004).attach_to(base) # p0
gm.gen_dasharrow(cpt, cpt+cnrml*.07, thickness=.004).attach_to(base) # p0
angle = rm.angle_between_vectors(-pn_direction, cnrml)
vec = np.cross(-pn_direction, cnrml)
rotmat = rm.rotmat_from_axangle(vec, angle)
new_plane_homomat = np.eye(4)
new_plane_homomat[:3,:3] = rotmat.dot(homomat[:3,:3])
new_plane_homomat[:3,3] = cpt
twod_plane = gm.gen_box( | np.array([.2, .2, .001]) | numpy.array |
from sys import argv
import numpy as np
import scipy as sp
from scipy.linalg import eig,svd,eigh
from scipy.sparse.linalg import eigs
from sklearn.neighbors import kneighbors_graph
from copy import deepcopy
from .utils import *
from pymanopt.manifolds import Grassmann
import nudged
from sklearn.metrics.pairwise import pairwise_distances
def findSingleLP(X,d,k,sigma,embMethod='lpp'):
D,N = X.shape
W = np.zeros((N,N))
B = np.zeros((N,N))
if embMethod == 'pca':
for i in range(N-1):
for j in range(i+1,N):
W[i,j] = 1.0/N
W = 0.5*(W + W.T)
B = np.eye(N)
L = B - W
M1 = X.dot(L).dot(X.T)
Mc = np.eye(M1.shape[0])
elif embMethod == 'lpp':
G = kneighbors_graph(X.T,k,mode='distance',include_self=False).toarray()
W = 0.5*(G + G.T)
W[W!=0] = np.exp(-W[W!=0] / (2*sigma*sigma))
B = np.diag(np.sum(W,axis=0))
L = B - W
M1 = X.dot(L).dot(X.T)
Mc = X.dot(B).dot(X.T)
elif embMethod == 'rand':
Gnk = Grassmann(D,2)
proj = Gnk.rand()
return [proj]
elif embMethod == 'syn':
proj = np.zeros((D,2))
card = 2
#ids = np.arange(D)
ids = np.array([1,0,4,3]) # For ecoli 2
#ids = np.array([2,7,3,0]) # For yeast 2
#ids = np.array([12, 39, 5, 0, 45, 43]) # For seaWater 3
#ids = np.array([0, 46, 5, 14, 11, 40, 49, 43]) # For seaWater 4
np.random.shuffle(ids)
#print ids
proj[ids[:card],0] = 1/np.sqrt(card)
proj[ids[card:2*card],1] = 1/np.sqrt(card)
#proj[ids[card-1:2*card-1],1] = 1/np.sqrt(card) # For cities
return [proj]
u,s = eig(M1)
if np.min(u) < 0:
M1 = M1 - np.min(u)*np.eye(M1.shape[0])
u,s = eig(Mc)
if np.min(u) < 0:
Mc = Mc - np.min(u)*np.eye(Mc.shape[0])
eigvals,eigvecs = eig(M1,Mc)
eigvecs = np.dot(sp.linalg.sqrtm(Mc),eigvecs)
if embMethod == 'pca':
ind = np.argsort(-eigvals)
proj = eigvecs[:,ind[0:d]]
elif embMethod == 'lpp':
ind = np.argsort(eigvals)
proj = eigvecs[:,ind[0:d]]
return [proj]
def findMultipleLP(X,d,k,sigma,maxIter,embMethod='lpp',labs = None):
N = X.shape[1]
W = np.zeros((N,N))
B = np.zeros((N,N))
if embMethod == 'pca':
for i in range(N-1):
for j in range(i+1,N):
W[i,j] = 1.0/N
W = np.maximum(W, W.T)
B = np.eye(N)
L = B - W
M1 = X.dot(L).dot(X.T)
Mc = np.eye(M1.shape[0])
elif embMethod == 'lpp':
G = kneighbors_graph(X.T,k,mode='distance',include_self=False).toarray()
W = 0.5*(G + G.T)
W[W!=0] = np.exp(-W[W!=0] / (2*sigma*sigma))
B = np.diag(np.sum(W,axis=0))
L = B - W
M1 = X.dot(L).dot(X.T)
Mc = X.dot(B).dot(X.T)
elif embMethod == 'lde':
Gw = np.zeros((N,N))
Gb = np.zeros((N,N))
dists = pairwise_distances(X.T)
for ii in range(N):
inds = np.where(labs == labs[ii])[0]
sinds = np.argsort(dists[ii,inds])
Gw[ii,inds[sinds[:k]]] = 1
inds = np.where(labs != labs[ii])[0]
sinds = np.argsort(dists[ii,inds])
Gb[ii,inds[sinds[:k]]] = 1
Gw = np.maximum(Gw, Gw.T)
Bw = np.diag(np.sum(Gw,axis=0))
Lw = Bw - Gw
M1 = X.dot(Lw).dot(X.T)
Gb = np.maximum(Gb, Gb.T)
Bb = np.diag(np.sum(Gb,axis=0))
Lb = Bb - Gb
Mc = X.dot(Lb).dot(X.T)
u,s = eig(M1)
u = np.real(u)
if np.min(u) < 0:
M1 = M1 - np.min(u)*np.eye(M1.shape[0])
u,s = eig(Mc)
u = np.real(u)
if np.min(u) < 0:
Mc = Mc - np.min(u)*np.eye(Mc.shape[0])
projList = []
projListFinal = []
if embMethod == 'lde':
# gamma = 1e3 # bio 1e3
gamma = 5e2
thresh = 0.5*2
else:
gamma = 1e4
thresh = 0.6*2
for iters in range(1,maxIter+1):
if iters > 1:
#print np.linalg.norm(X.dot(L).dot(X.T)), np.linalg.norm(C)
if embMethod == 'pca':
M1 = X.dot(L).dot(X.T) - gamma*C
elif embMethod == 'lpp':
M1 = X.dot(L).dot(X.T) + gamma*C
elif embMethod == 'lde':
M1 = X.dot(Lw).dot(X.T) + gamma*C
M1 = 0.5*(M1 + M1.T)
u,s = np.linalg.eig(M1)
if np.min(u) < 0:
M1 = M1 - np.min(u)*np.eye(M1.shape[0])
eigvals,eigvecs = eig(M1,Mc)
eigvals = np.real(eigvals)
eigvecs = np.real(eigvecs)
eigvecs = np.dot(np.real(sp.linalg.sqrtm(Mc)),eigvecs)
if embMethod == 'pca':
ind = np.argsort(-eigvals)
temp = eigvecs[:,ind[0:d]]
elif embMethod == 'lpp' or embMethod == 'lde':
ind = np.argsort(eigvals)
temp = eigvecs[:,ind[0:d]]
for dim in range(2):
temp[:,dim] /= np.linalg.norm(temp[:,dim])
if len(projList) == 0:
projList.append(temp)
C = matprod(temp,temp.T)
projListFinal.append(temp)
else:
projList.append(temp)
C = grassSum(projList)
#print np.linalg.norm(temp[:,0]), np.linalg.norm(temp[:,1])
mval = 1e10
for kk in projListFinal:
mval = np.minimum(mval, 2 - np.linalg.norm(matprod(temp.T,kk)))
if mval > thresh:
err = []
emb1 = (temp.T.dot(X)).T
emb1 = emb1.tolist()
for ps in projListFinal:
emb2 = (ps.T.dot(X)).T
emb2 = emb2.tolist()
trans = nudged.estimate(emb1, emb2)
tt = np.linalg.norm(np.array(emb2) - np.array(trans.transform(emb1)))/np.linalg.norm(emb2)
err.append(tt)
# print np.linalg.norm(emb1), err
#print mval, np.min(np.array(err))
if np.min(np.array(err)) > 0.8:
projListFinal.append(temp)
#print len(projList), len(projListFinal)
return projListFinal
def grassSum(projList):
T = len(projList)
n = projList[0].shape[0]
Bs = np.zeros((n,n))
#print projList[0]
for t in range(0,T):
Bs += matprod(projList[t],projList[t].T)
return Bs
def grassMean(projList):
T = len(projList)
n = projList[0].shape[0]
Bs = np.zeros((n,n))
idn = np.eye(n)
for t in range(0,T):
temp = matprod(projList[t],projList[t].T)
Bs += idn - temp
Bs = 0.5*(Bs + Bs.T)
u,s = np.linalg.eig(Bs)
u = np.real(u)
if np.min(u) < 0:
Bs = Bs - np.min(u)*np.eye(Bs.shape[0])
eigvalue,eigvector = eig(Bs)
eigvalue = np.real(eigvalue)
eigvector = np.real(eigvector)
ind = np.argsort(eigvalue)
eigvector = (eigvector[:,ind[0:2]])
return eigvector
def DNM_TR(A,B,d,dectype):
def partial_evd(A,B,ll,d):
D, W = eigs(A - ll*B, k = d, which = 'LR')
D = np.real(D)
W = np.real(W)
return D, W
def full_evd(A,B,ll,d):
D, W = eig(A-ll*B)
D = np.real(D)
W = np.real(W)
sind = np.argsort(-D)
D = D[sind[range(d)]]
W = W[:,sind[range(d)]]
return D, W
maxiter = 100
tol = 1e-5
ll = 0
llold = np.Inf
llall = []
if dectype.lower() == 'partial':
f = partial_evd
elif dectype.lower() == 'full':
f = full_evd
else:
print ('Invalid option for dectype')
for i in range(maxiter):
D, W = f(A,B,ll,d)
betap = -np.diag(matprod(W.T,B,W))
llold = ll
ll = np.sum(llold*betap-D)/np.sum(betap)
llall.append(ll)
if (i > 1):
if ( | np.abs(ll-llold) | numpy.abs |
""" Test Solver class."""
from scipy.optimize import Bounds
import pytest
import numpy as np
from sao_opt.solver import TrustConstrSolver
def sphere(design_var):
""" Evalute design_var in sphere function."""
return np.sum( | np.power(design_var, 2) | numpy.power |
"""Functions for inferences in maximum likelihood models."""
import numpy as np
import pandas as pd
from estimagic.exceptions import INVALID_INFERENCE_MSG
from estimagic.inference.shared import process_pandas_arguments
from estimagic.utilities import robust_inverse
def cov_hessian(hess):
"""Covariance based on the negative inverse of the hessian of loglike.
While this method makes slightly weaker statistical assumptions than a covariance
estimate based on the outer product of gradients, it is numerically much more
problematic for the following reasons:
- It is much more difficult to estimate a hessian numerically or with automatic
differentiation than it is to estimate the gradient / jacobian
- The resulting hessian might not be positive definite and thus not invertible.
Args:
hess (numpy.ndarray): 2d array hessian matrix of dimension (nparams, nparams)
Returns:
numpy.ndarray: covariance matrix (nparams, nparams)
Resources: <NAME> - A guide to modern econometrics :cite:`Verbeek2008`
"""
_hess, names = process_pandas_arguments(hess=hess)
info_matrix = -1 * _hess
cov = robust_inverse(info_matrix, msg=INVALID_INFERENCE_MSG)
if "params" in names:
cov = pd.DataFrame(cov, columns=names["params"], index=names["params"])
return cov
def cov_jacobian(jac):
"""Covariance based on outer product of jacobian of loglikeobs.
Args:
jac (numpy.ndarray): 2d array jacobian matrix of dimension (nobs, nparams)
Returns:
numpy.ndarray: covariance matrix of size (nparams, nparams)
Resources: <NAME> - A guide to modern econometrics.
"""
_jac, names = process_pandas_arguments(jac=jac)
info_matrix = np.dot((_jac.T), _jac)
cov = robust_inverse(info_matrix, msg=INVALID_INFERENCE_MSG)
if "params" in names:
cov = pd.DataFrame(cov, columns=names["params"], index=names["params"])
return cov
def cov_robust(jac, hess):
"""Covariance of parameters based on HJJH dot product.
H stands for Hessian of the log likelihood function and J for Jacobian,
of the log likelihood per individual.
Args:
jac (numpy.ndarray): 2d array jacobian matrix of dimension (nobs, nparams)
hess (numpy.ndarray): 2d array hessian matrix of dimension (nparams, nparams)
Returns:
numpy.ndarray: covariance HJJH matrix (nparams, nparams)
Resources:
https://tinyurl.com/yym5d4cw
"""
_jac, _hess, names = process_pandas_arguments(jac=jac, hess=hess)
info_matrix = np.dot((_jac.T), _jac)
cov_hes = cov_hessian(_hess)
cov = np.dot(cov_hes, | np.dot(info_matrix, cov_hes) | numpy.dot |
import numpy as np
from .dimension import embed
from .rotate import rotate_2D
__all__ = ["torus", "dsphere", "sphere", "swiss_roll", "infty_sign", "eyeglasses"]
# TODO: Make a base class that controls `ambient` and `noise`.
class Shape:
def __init__(self):
pass
def dsphere(n=100, d=2, r=1, noise=None, ambient=None, seed=None):
"""
Sample `n` data points on a d-sphere.
Parameters
-----------
n : int
Number of data points in shape.
r : float
Radius of sphere.
ambient : int, default=None
Embed the sphere into a space with ambient dimension equal to `ambient`. The sphere is randomly rotated in this high dimensional space.
seed : int, default=None
Seed for random state.
"""
np.random.seed(seed)
data = np.random.randn(n, d + 1)
# Normalize points to the sphere
data = r * data / np.sqrt(np.sum(data ** 2, 1)[:, None])
if noise:
data += noise * np.random.randn(*data.shape)
if ambient:
assert ambient > d, "Must embed in higher dimensions"
data = embed(data, ambient)
return data
def sphere(n=100, r=1, noise=None, ambient=None, seed=None):
"""
Sample `n` data points on a sphere.
Parameters
-----------
n : int
Number of data points in shape.
r : float
Radius of sphere.
ambient : int, default=None
Embed the sphere into a space with ambient dimension equal to `ambient`. The sphere is randomly rotated in this high dimensional space.
seed : int, default=None
Seed for random state.
"""
np.random.seed(seed)
theta = np.random.random((n,)) * 2.0 * np.pi
phi = np.random.random((n,)) * np.pi
rad = np.ones((n,)) * r
data = np.zeros((n, 3))
data[:, 0] = rad * np.cos(theta) * | np.cos(phi) | numpy.cos |
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""Generate map plots.
Example::
$ python plot_maps.py -c : plot from files from combined
output file
$ python plot_maps.py -m max_id : plot from files with maximal subset
id of max_id
$ python plot_maps.py -h : display this help
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.colors as colors
from matplotlib.ticker import LogFormatter
import cartopy
import cartopy.crs as ccrs
# General plot settings.
cline_label_format_default = '%.1f'
n_fill_levels_default = 14
n_line_levels_default = 6
color_map = plt.get_cmap('YlOrRd') # 'coolwarm' 'RdBu' 'bwr' # plt.get_cmap('YlOrRd')
if __name__ == "__main__":
# TODO this has to be changed to work via class!
# from ..utils.convenience_utils import hour_to_date_str
from plotting_utils import read_dataset_user_input
# Load the processed data from the NetCDF files specified in the input.
nc = read_dataset_user_input()
# TODO remove - use config for this!
lons = nc['longitude'].values
lats = nc['latitude'].values
height_range_floor = 50.
height_range_ceilings = list(nc['height_range_ceiling'].values)
fixed_heights = list(nc['fixed_height'].values)
integration_range_ids = list(nc['integration_range_id'].values)
p_integral_mean = nc['p_integral_mean'].values
# Hours since 1900-01-01 00:00:00, see: print(nc['time'].values).
hours = nc['time'].values
# print("Analyzing " + hour_to_date_str(hours[0]) + " till "
# + hour_to_date_str(hours[-1]))
# TODO fix from config
else:
lons = list(np.arange(-20, 20.25, .25))
lats = list(np.arange(65, 29.75, -.25))
# #lons = np.arange(-12, -5.0, .25) # config.Data.all_lons
# #lats = np.arange(51, 56.25, .25) # config.Data.all_lats
# else:
# # TODO make more understandable
# # TODO make into utils -> use for map plots in production
# # TODO fix from config
# # Ireland
# # lons = list(np.arange(-12, -5.0, .25)) # -5.75, .25))
# # lats = list(np.arange(51, 56.25, .25))
# # Europe map
# lons = list(np.arange(-20, 20.25, .25))
# lats = list(np.arange(65, 29.75, -.25))
# Plotting map - region selection # TODO rework -> config
plot_northern_germany = False
label_cities = False
map_plot_aspect_ratio = 9 / 12.5 # len(lons)/len(lats) # TODO this makes sense - adapt fixed number later on -> adaptable
mrc = ccrs.Mercator()
def calc_fig_height(fig_width, subplot_shape, plot_frame_top,
plot_frame_bottom, plot_frame_left, plot_frame_right):
""""Calculate figure height, such that all maps have the same resolution.
Args:
fig_width (float): Figure width in inches.
subplot_shape (tuple of int): Containing number of rows and columns of
subplot.
plot_frame_top (float): Top of plot as a fraction of the figure window
height w.r.t. bottom.
plot_frame_bottom (float): Bottom of plot as a fraction of the figure
window height w.r.t. bottom.
plot_frame_left (float): Left side of plot as a fraction of the figure
window width w.r.t. left.
plot_frame_right (float): Right side of plot as a fraction of the
figure window width w.r.t. left.
Returns:
float: Figure height in inches.
"""
plot_frame_width = fig_width*(plot_frame_right - plot_frame_left)
plot_frame_height = plot_frame_width/(map_plot_aspect_ratio *
subplot_shape[1] / subplot_shape[0])
fig_height = plot_frame_height/(plot_frame_top - plot_frame_bottom)
return fig_height
def eval_contour_fill_levels(plot_items):
""""Evaluate the plot data, e.g. if values are within contour fill
levels limits.
Args:
plot_items (list of dict): List containing the plot property dicts.
"""
for i, item in enumerate(plot_items):
max_value = np.amax(item['data'])
min_value = np.amin(item['data'])
print("Max and min value of plot"
" {}: {:.3f} and {:.3f}".format(i, max_value, min_value))
if item['contour_fill_levels'][-1] < max_value:
print("Contour fills "
"(max={:.3f}) do not cover max value of plot {}"
.format(item['contour_fill_levels'][-1], i))
if item['contour_fill_levels'][0] > min_value:
print("Contour fills "
"(min={:.3f}) do not cover min value of plot {}"
.format(item['contour_fill_levels'][0], i))
def individual_plot(z, cf_lvls, cl_lvls,
cline_label_format=cline_label_format_default,
log_scale=False,
extend="neither",
overflow=None):
""""Individual plot of coastlines and contours.
Args:
z (ndarray): 2D array containing contour plot data.
cf_lvls (list): Contour fill levels.
cl_lvls (list): Contour line levels.
cline_label_format (str, optional): Contour line label format string.
Defaults to `cline_label_format_default`.
log_scale (bool): Logarithmic scaled contour levels are used if True,
linearly scaled if False.
extend (str): Setting for extension of contour fill levels.
Returns:
QuadContourSet: Contour fills object.
"""
# Care if colorbar ticks are set beforehand, see plot_single_map
# colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 56))
# colors_land = plt.cm.terrain(np.linspace(0.25, 1, 200))
# # combine them and build a new colormap
# colors_stack = np.vstack((colors_undersea, colors_land))
# color_map = colors.LinearSegmentedColormap.from_list('color_map',
# colors_stack)
color_map = plt.get_cmap('YlOrRd')
if overflow is not None:
n_normal = 224
n_over = 32
top_overflow = overflow
colors_underflow = []
underflow_bounds = []
min_val = np.min(z)
if isinstance(overflow, list):
top_overflow = overflow[1]
min_val = overflow[0]
n_over = int(n_over/2)
colors_underflow = list(plt.get_cmap('coolwarm')(
np.linspace(0, 0.21, n_over)))
underflow_bounds = list(np.linspace( | np.min(z) | numpy.min |
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: <NAME>
## Computer Vision Center (CVC). Universitat Autonoma de Barcelona
## Email: <EMAIL>
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
from datasets import omniglot
import torchvision.transforms as transforms
from PIL import Image
import os.path
import json
import math
from numpy import array
import numpy as np
#moved inside constructor
#np.random.seed(2191) # for reproducibility
# LAMBDA FUNCTIONS
filenameToPILImage = lambda x: Image.open(x).convert('L')
PiLImageResize = lambda x: x.resize((28,28))
np_reshape = lambda x: np.reshape(x, (28, 28, 1))
def base_classes_file_data( base_classes_file ):
return array( json.load( open( base_classes_file ) ) )
class OmniglotNShotDataset():
def __init__(self, dataroot, batch_size = 100, classes_per_set=10, samples_per_class=1, is_use_sample_data = True, input_file="", input_labels_file="", total_input_files=-1, is_evaluation_only = False, evaluation_input_file = "", evaluation_labels_file = "", evaluate_classes = 1, is_eval_with_train_data = 0, negative_test_offset = 0, is_apply_pca_first = 0, cache_samples_for_evaluation = 100, is_run_time_predictions = False, pca_components = 900, is_evaluation_res_in_obj = False, total_base_classes = 0, is_visualize_data = False, is_run_validation_batch = True, is_compare = False, is_load_test_record = False, test_record_class = -1, test_record_index = -1, is_debug = True, is_switch_dim = False, is_batch_persistancy = False, is_load_file_data_only=False, test_batch_records=20):
self.is_debug = is_debug
if is_evaluation_only == False:
np.random.seed(2191) # for reproducibility
else:
#for variational testing
np.random.seed( np.random.randint(0, 1000) )
if is_use_sample_data:
if not os.path.isfile(os.path.join(dataroot,'data.npy')):
self.x = omniglot.OMNIGLOT(dataroot, download=True,
transform=transforms.Compose([filenameToPILImage,
PiLImageResize,
np_reshape]))
"""
# Convert to the format of AntreasAntoniou. Format [nClasses,nCharacters,28,28,1]
"""
temp = dict()
for (img, label) in self.x:
if label in temp:
temp[label].append(img)
else:
temp[label]=[img]
self.x = [] # Free memory
for classes in temp.keys():
self.x.append(np.array(temp[ list(temp.keys())[classes]]))
self.x = np.array(self.x)
temp = [] # Free memory
np.save(os.path.join(dataroot,'data.npy'),self.x)
else:
self.x = np.load(os.path.join(dataroot,'data.npy'))
else:
self.x = []
self.x_to_be_predicted = []
self.x_to_be_predicted_cls_indexes = {}
self.prediction_classes = 9
self.total_base_classes = total_base_classes #56
self.tvt_records = 500 #70 # 25 #11 #3 #19
self.tvt_records_fall_short_clss = {}
self.re_records = 0 #2 #2 #10
self.choice_replace = True #necessary when number of samples are small
self.is_batch_persistancy = is_batch_persistancy
base_classes_file = input_file+"_base_classes.json"
self.evaluate_classes = evaluate_classes
self.is_eval_with_train_data = True if is_eval_with_train_data == 1 else False
self.negative_test_offset = negative_test_offset
self.is_run_time_predictions = is_run_time_predictions
self.is_evaluation_res_in_obj = is_evaluation_res_in_obj
self.test_batch_records = test_batch_records
is_disable_heavy_functions_temporarily = True
main_lsize = 1
if not os.path.exists( base_classes_file ) and is_load_test_record:
main_lsize = 2
#
if is_evaluation_only == False or not os.path.exists( base_classes_file ) or is_load_test_record:
if is_debug:
print( "(!) Merging inputs, should only be executed in training mode." )
input = []
input_labels = []
if is_debug:
print("total_input_files")
print(total_input_files)
for i in range(0, total_input_files):
if is_debug:
print("total_input_files i " + str(i))
if i == 0:
input = array( json.load( open( input_file.replace('{i}', str(i)) ) ) )
input_labels = array( json.load( open( input_labels_file.replace('{i}', str(i)) ) ) )
else:
input = np.concatenate( ( input, array( json.load( open( input_file.replace('{i}', str(i)) ) ) ) ), axis=0 )
input_labels = np.concatenate( ( input_labels, array( json.load( open( input_labels_file.replace('{i}', str(i)) ) ) ) ), axis=0 )
temp = dict()
temp_to_be_predicted = dict()
sizei = len(input)
if is_debug:
print("sizei")
print(sizei)
test_record_index_cnt = -1
for li in range(0, main_lsize):
for i in | np.arange(sizei) | numpy.arange |
from copy import deepcopy
from warnings import warn
import types
from distutils.version import LooseVersion
from scipy.spatial.distance import cdist
import numpy as np
import nibabel as nib
from nibabel.affines import apply_affine
from dipy.tracking.streamlinespeed import set_number_of_points
from dipy.tracking.streamlinespeed import length
from dipy.tracking.distances import bundles_distances_mdf
from dipy.tracking.streamlinespeed import compress_streamlines
import dipy.tracking.utils as ut
from dipy.tracking.utils import streamline_near_roi
from dipy.core.geometry import dist_to_corner
import dipy.align.vector_fields as vfu
if LooseVersion(nib.__version__) >= '2.3':
from nibabel.streamlines import ArraySequence as Streamlines
else:
# This patch fix a streamline bug on windows machine.
# For more information, look at https://github.com/nipy/nibabel/pull/597
# This patch can be removed when nibabel minimal version is updated to 2.3
# Currently, nibabel 2.3 does not exist.
from nibabel.streamlines import ArraySequence
from functools import reduce
from operator import mul
MEGABYTE = 1024 * 1024
class _BuildCache(object):
def __init__(self, arr_seq, common_shape, dtype):
self.offsets = list(arr_seq._offsets)
self.lengths = list(arr_seq._lengths)
self.next_offset = arr_seq._get_next_offset()
self.bytes_per_buf = arr_seq._buffer_size * MEGABYTE
# Use the passed dtype only if null data array
if arr_seq._data.size == 0:
self.dtype = dtype
else:
arr_seq._data.dtype
if (arr_seq.common_shape != () and
common_shape != arr_seq.common_shape):
raise ValueError(
"All dimensions, except the first one, must match exactly")
self.common_shape = common_shape
n_in_row = reduce(mul, common_shape, 1)
bytes_per_row = n_in_row * dtype.itemsize
self.rows_per_buf = max(1, self.bytes_per_buf // bytes_per_row)
def update_seq(self, arr_seq):
arr_seq._offsets = np.array(self.offsets)
arr_seq._lengths = np.array(self.lengths)
class Streamlines(ArraySequence):
def __init__(self, *args, **kwargs):
super(Streamlines, self).__init__(*args, **kwargs)
def append(self, element, cache_build=False):
"""
Appends `element` to this array sequence.
Append can be a lot faster if it knows that it is appending several
elements instead of a single element. In that case it can cache
the parameters it uses between append operations, in a "build
cache". To tell append to do this, use ``cache_build=True``. If
you use ``cache_build=True``, you need to finalize the append
operations with :meth:`finalize_append`.
Parameters
----------
element : ndarray Element to append. The shape must match already
inserted elements shape except for the first dimension.
cache_build : {False, True} Whether to save the build cache
from this append routine. If True, append can assume it is the
only player updating `self`, and the caller must finalize
`self` after all append operations, with
``self.finalize_append()``. Returns
-------
None Notes
-----
If you need to add multiple elements you should consider
`ArraySequence.extend`.
"""
element = np.asarray(element)
if element.size == 0:
return
el_shape = element.shape
n_items, common_shape = el_shape[0], el_shape[1:]
build_cache = self._build_cache
in_cached_build = build_cache is not None
if not in_cached_build: # One shot append, not part of sequence
build_cache = _BuildCache(self, common_shape, element.dtype)
next_offset = build_cache.next_offset
req_rows = next_offset + n_items
if self._data.shape[0] < req_rows:
self._resize_data_to(req_rows, build_cache)
self._data[next_offset:req_rows] = element
build_cache.offsets.append(next_offset)
build_cache.lengths.append(n_items)
build_cache.next_offset = req_rows
if in_cached_build:
return
if cache_build:
self._build_cache = build_cache
else:
build_cache.update_seq(self)
def finalize_append(self):
""" Finalize process of appending several elements to `self`
:meth:`append` can be a lot faster if it knows that it is appending
several elements instead of a single element. To tell the append
method this is the case, use ``cache_build=True``. This method
finalizes the series of append operations after a call to
:meth:`append` with ``cache_build=True``.
"""
if self._build_cache is None:
return
self._build_cache.update_seq(self)
self._build_cache = None
self.shrink_data()
def extend(self, elements):
""" Appends all `elements` to this array sequence.
Parameters
----------
elements : iterable of ndarrays or :class:`ArraySequence` instance
If iterable of ndarrays, each ndarray will be concatenated
along the first dimension then appended to the data of this
ArraySequence.
If :class:`ArraySequence` object, its data are simply appended
to the data of this ArraySequence.
Returns
-------
None Notes
-----
The shape of the elements to be added must match the one of the
data of this :class:`ArraySequence` except for the first dimension.
"""
# If possible try pre-allocating memory.
try:
iter_len = len(elements)
except TypeError:
pass
else: # We do know the iterable length
if iter_len == 0:
return
e0 = np.asarray(elements[0])
n_elements = np.sum([len(e) for e in elements])
self._build_cache = _BuildCache(self, e0.shape[1:], e0.dtype)
self._resize_data_to(self._get_next_offset() + n_elements,
self._build_cache)
for e in elements:
self.append(e, cache_build=True)
self.finalize_append()
def unlist_streamlines(streamlines):
""" Return the streamlines not as a list but as an array and an offset
Parameters
----------
streamlines: sequence
Returns
-------
points : array
offsets : array
"""
points = np.concatenate(streamlines, axis=0)
offsets = np.zeros(len(streamlines), dtype='i8')
curr_pos = 0
for (i, s) in enumerate(streamlines):
prev_pos = curr_pos
curr_pos += s.shape[0]
points[prev_pos:curr_pos] = s
offsets[i] = curr_pos
return points, offsets
def relist_streamlines(points, offsets):
""" Given a representation of a set of streamlines as a large array and
an offsets array return the streamlines as a list of shorter arrays.
Parameters
-----------
points : array
offsets : array
Returns
-------
streamlines: sequence
"""
streamlines = []
streamlines.append(points[0: offsets[0]])
for i in range(len(offsets) - 1):
streamlines.append(points[offsets[i]: offsets[i + 1]])
return streamlines
def center_streamlines(streamlines):
""" Move streamlines to the origin
Parameters
----------
streamlines : list
List of 2D ndarrays of shape[-1]==3
Returns
-------
new_streamlines : list
List of 2D ndarrays of shape[-1]==3
inv_shift : ndarray
Translation in x,y,z to go back in the initial position
"""
center = np.mean(np.concatenate(streamlines, axis=0), axis=0)
return [s - center for s in streamlines], center
def deform_streamlines(streamlines,
deform_field,
stream_to_current_grid,
current_grid_to_world,
stream_to_ref_grid,
ref_grid_to_world):
""" Apply deformation field to streamlines
Parameters
----------
streamlines : list
List of 2D ndarrays of shape[-1]==3
deform_field : 4D numpy array
x,y,z displacements stored in volume, shape[-1]==3
stream_to_current_grid : array, (4, 4)
transform matrix voxmm space to original grid space
current_grid_to_world : array (4, 4)
transform matrix original grid space to world coordinates
stream_to_ref_grid : array (4, 4)
transform matrix voxmm space to new grid space
ref_grid_to_world : array(4, 4)
transform matrix new grid space to world coordinates
Returns
-------
new_streamlines : list
List of the transformed 2D ndarrays of shape[-1]==3
"""
if deform_field.shape[-1] != 3:
raise ValueError("Last dimension of deform_field needs shape==3")
stream_in_curr_grid = transform_streamlines(streamlines,
stream_to_current_grid)
displacements = values_from_volume(deform_field, stream_in_curr_grid)
stream_in_world = transform_streamlines(stream_in_curr_grid,
current_grid_to_world)
new_streams_in_world = [sum(d, s) for d, s in zip(displacements,
stream_in_world)]
new_streams_grid = transform_streamlines(new_streams_in_world,
np.linalg.inv(ref_grid_to_world))
new_streamlines = transform_streamlines(new_streams_grid,
np.linalg.inv(stream_to_ref_grid))
return new_streamlines
def transform_streamlines(streamlines, mat, in_place=False):
""" Apply affine transformation to streamlines
Parameters
----------
streamlines : Streamlines
Streamlines object
mat : array, (4, 4)
transformation matrix
in_place : bool
If True then change data in place.
Be careful changes input streamlines.
Returns
-------
new_streamlines : Streamlines
Sequence transformed 2D ndarrays of shape[-1]==3
"""
# using new Streamlines API
if isinstance(streamlines, Streamlines):
if in_place:
streamlines._data = apply_affine(mat, streamlines._data)
return streamlines
new_streamlines = streamlines.copy()
new_streamlines._data = apply_affine(mat, new_streamlines._data)
return new_streamlines
# supporting old data structure of streamlines
return [apply_affine(mat, s) for s in streamlines]
def select_random_set_of_streamlines(streamlines, select, rng=None):
""" Select a random set of streamlines
Parameters
----------
streamlines : Steamlines
Object of 2D ndarrays of shape[-1]==3
select : int
Number of streamlines to select. If there are less streamlines
than ``select`` then ``select=len(streamlines)``.
rng : RandomState
Default None.
Returns
-------
selected_streamlines : list
Notes
-----
The same streamline will not be selected twice.
"""
len_s = len(streamlines)
if rng is None:
rng = np.random.RandomState()
index = rng.choice(len_s, min(select, len_s), replace=False)
if isinstance(streamlines, Streamlines):
return streamlines[index]
return [streamlines[i] for i in index]
def select_by_rois(streamlines, rois, include, mode=None, affine=None,
tol=None):
"""Select streamlines based on logical relations with several regions of
interest (ROIs). For example, select streamlines that pass near ROI1,
but only if they do not pass near ROI2.
Parameters
----------
streamlines : list
A list of candidate streamlines for selection
rois : list or ndarray
A list of 3D arrays, each with shape (x, y, z) corresponding to the
shape of the brain volume, or a 4D array with shape (n_rois, x, y,
z). Non-zeros in each volume are considered to be within the region
include : array or list
A list or 1D array of boolean values marking inclusion or exclusion
criteria. If a streamline is near any of the inclusion ROIs, it
should evaluate to True, unless it is also near any of the exclusion
ROIs.
mode : string, optional
One of {"any", "all", "either_end", "both_end"}, where a streamline is
associated with an ROI if:
"any" : any point is within tol from ROI. Default.
"all" : all points are within tol from ROI.
"either_end" : either of the end-points is within tol from ROI
"both_end" : both end points are within tol from ROI.
affine : ndarray
Affine transformation from voxels to streamlines. Default: identity.
tol : float
Distance (in the units of the streamlines, usually mm). If any
coordinate in the streamline is within this distance from the center
of any voxel in the ROI, the filtering criterion is set to True for
this streamline, otherwise False. Defaults to the distance between
the center of each voxel and the corner of the voxel.
Notes
-----
The only operation currently possible is "(A or B or ...) and not (X or Y
or ...)", where A, B are inclusion regions and X, Y are exclusion regions.
Returns
-------
generator
Generates the streamlines to be included based on these criteria.
See also
--------
:func:`dipy.tracking.utils.near_roi`
:func:`dipy.tracking.utils.reduce_rois`
Examples
--------
>>> streamlines = [np.array([[0, 0., 0.9],
... [1.9, 0., 0.]]),
... np.array([[0., 0., 0],
... [0, 1., 1.],
... [0, 2., 2.]]),
... np.array([[2, 2, 2],
... [3, 3, 3]])]
>>> mask1 = np.zeros((4, 4, 4), dtype=bool)
>>> mask2 = np.zeros_like(mask1)
>>> mask1[0, 0, 0] = True
>>> mask2[1, 0, 0] = True
>>> selection = select_by_rois(streamlines, [mask1, mask2],
... [True, True],
... tol=1)
>>> list(selection) # The result is a generator
[array([[ 0. , 0. , 0.9],
[ 1.9, 0. , 0. ]]), array([[ 0., 0., 0.],
[ 0., 1., 1.],
[ 0., 2., 2.]])]
>>> selection = select_by_rois(streamlines, [mask1, mask2],
... [True, False],
... tol=0.87)
>>> list(selection)
[array([[ 0., 0., 0.],
[ 0., 1., 1.],
[ 0., 2., 2.]])]
>>> selection = select_by_rois(streamlines, [mask1, mask2],
... [True, True],
... mode="both_end",
... tol=1.0)
>>> list(selection)
[array([[ 0. , 0. , 0.9],
[ 1.9, 0. , 0. ]])]
>>> mask2[0, 2, 2] = True
>>> selection = select_by_rois(streamlines, [mask1, mask2],
... [True, True],
... mode="both_end",
... tol=1.0)
>>> list(selection)
[array([[ 0. , 0. , 0.9],
[ 1.9, 0. , 0. ]]), array([[ 0., 0., 0.],
[ 0., 1., 1.],
[ 0., 2., 2.]])]
"""
if affine is None:
affine = np.eye(4)
# This calculates the maximal distance to a corner of the voxel:
dtc = dist_to_corner(affine)
if tol is None:
tol = dtc
elif tol < dtc:
w_s = "Tolerance input provided would create gaps in your"
w_s += " inclusion ROI. Setting to: %s" % dist_to_corner
warn(w_s)
tol = dtc
include_roi, exclude_roi = ut.reduce_rois(rois, include)
include_roi_coords = np.array(np.where(include_roi)).T
x_include_roi_coords = apply_affine(affine, include_roi_coords)
exclude_roi_coords = np.array(np.where(exclude_roi)).T
x_exclude_roi_coords = apply_affine(affine, exclude_roi_coords)
if mode is None:
mode = "any"
for sl in streamlines:
include = streamline_near_roi(sl, x_include_roi_coords, tol=tol,
mode=mode)
exclude = streamline_near_roi(sl, x_exclude_roi_coords, tol=tol,
mode=mode)
if include & ~exclude:
yield sl
def cluster_confidence(streamlines, max_mdf=5, subsample=12, power=1,
override=False):
""" Computes the cluster confidence index (cci), which is an
estimation of the support a set of streamlines gives to
a particular pathway.
Ex: A single streamline with no others in the dataset
following a similar pathway has a low cci. A streamline
in a bundle of 100 streamlines that follow similar
pathways has a high cci.
See: Jordan et al. 2017
(Based on streamline MDF distance from Garyfallidis et al. 2012)
Parameters
----------
streamlines : list of 2D (N, 3) arrays
A sequence of streamlines of length N (# streamlines)
max_mdf : int
The maximum MDF distance (mm) that will be considered a
"supporting" streamline and included in cci calculation
subsample: int
The number of points that are considered for each streamline
in the calculation. To save on calculation time, each
streamline is subsampled to subsampleN points.
power: int
The power to which the MDF distance for each streamline
will be raised to determine how much it contributes to
the cci. High values of power make the contribution value
degrade much faster. Example: a streamline with 5mm MDF
similarity contributes 1/5 to the cci if power is 1, but
only contributes 1/5^2 = 1/25 if power is 2.
override: bool, False by default
override means that the cci calculation will still occur even
though there are short streamlines in the dataset that may alter
expected behaviour.
Returns
-------
Returns an array of CCI scores
References
----------
[Jordan17] <NAME>. Et al., Cluster Confidence Index: A Streamline-Wise
Pathway Reproducibility Metric for Diffusion-Weighted MRI Tractography,
Journal of Neuroimaging, vol 28, no 1, 2017.
[Garyfallidis12] <NAME>. et al., QuickBundles a method for
tractography simplification, Frontiers in Neuroscience,
vol 6, no 175, 2012.
"""
# error if any streamlines are shorter than 20mm
lengths = list(length(streamlines))
if min(lengths) < 20 and not override:
raise ValueError('Short streamlines found. We recommend removing them.'
' To continue without removing short streamlines set'
' override=True')
# calculate the pairwise MDF distance between all streamlines in dataset
subsamp_sls = set_number_of_points(streamlines, subsample)
cci_score_mtrx = np.zeros([len(subsamp_sls)])
for i, sl in enumerate(subsamp_sls):
mdf_mx = bundles_distances_mdf([subsamp_sls[i]], subsamp_sls)
if (mdf_mx == 0).sum() > 1:
raise ValueError('Identical streamlines. CCI calculation invalid')
mdf_mx_oi = (mdf_mx > 0) & (mdf_mx < max_mdf) & ~ | np.isnan(mdf_mx) | numpy.isnan |
# This code is taken from DOPE github source code:
# https://github.com/chinancheng/DOPE.pytorch/blob/master/cuboid.py
# for 3D bounding box visualization
# Copyright (c) 2018 NVIDIA Corporation. All rights reserved.
# This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
# 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
from enum import IntEnum, unique
import numpy as np
# Related to the object's local coordinate system
# @unique
class CuboidVertexType(IntEnum):
FrontTopRight = 0
FrontTopLeft = 1
FrontBottomLeft = 2
FrontBottomRight = 3
RearTopRight = 4
RearTopLeft = 5
RearBottomLeft = 6
RearBottomRight = 7
Center = 8
TotalCornerVertexCount = 8 # Corner vertexes doesn't include the center point
TotalVertexCount = 9
# List of the vertex indexes in each line edges of the cuboid
CuboidLineIndexes = [
# Front face
[ CuboidVertexType.FrontTopLeft, CuboidVertexType.FrontTopRight ],
[ CuboidVertexType.FrontTopRight, CuboidVertexType.FrontBottomRight ],
[ CuboidVertexType.FrontBottomRight, CuboidVertexType.FrontBottomLeft ],
[ CuboidVertexType.FrontBottomLeft, CuboidVertexType.FrontTopLeft ],
# Back face
[ CuboidVertexType.RearTopLeft, CuboidVertexType.RearTopRight ],
[ CuboidVertexType.RearTopRight, CuboidVertexType.RearBottomRight ],
[ CuboidVertexType.RearBottomRight, CuboidVertexType.RearBottomLeft ],
[ CuboidVertexType.RearBottomLeft, CuboidVertexType.RearTopLeft ],
# Left face
[ CuboidVertexType.FrontBottomLeft, CuboidVertexType.RearBottomLeft ],
[ CuboidVertexType.FrontTopLeft, CuboidVertexType.RearTopLeft ],
# Right face
[ CuboidVertexType.FrontBottomRight, CuboidVertexType.RearBottomRight ],
[ CuboidVertexType.FrontTopRight, CuboidVertexType.RearTopRight ],
]
# ========================= Cuboid3d =========================
class Cuboid3d():
'''This class contains a 3D cuboid.'''
# Create a box with a certain size
def __init__(self, size3d = [1.0, 1.0, 1.0], center_location = [0, 0, 0],
coord_system = None, parent_object = None):
# NOTE: This local coordinate system is similar
# to the intrinsic transform matrix of a 3d object
self.center_location = center_location
self.coord_system = coord_system
self.size3d = size3d
self._vertices = [0, 0, 0] * CuboidVertexType.TotalVertexCount
self.generate_vertexes()
def get_vertex(self, vertex_type):
"""Returns the location of a vertex.
Args:
vertex_type: enum of type CuboidVertexType
Returns:
Numpy array(3) - Location of the vertex type in the cuboid
"""
return self._vertices[vertex_type]
def get_vertices(self):
return self._vertices
def generate_vertexes(self):
width, height, depth = self.size3d
# By default just use the normal OpenCV coordinate system
if (self.coord_system is None):
cx, cy, cz = self.center_location
# X axis point to the right
right = cx + width / 2.0
left = cx - width / 2.0
# Y axis point downward
top = cy - height / 2.0
bottom = cy + height / 2.0
# Z axis point forward
front = cz + depth / 2.0
rear = cz - depth / 2.0
# List of 8 vertices of the box
self._vertices = [
[right, top, front], # Front Top Right
[left, top, front], # Front Top Left
[left, bottom, front], # Front Bottom Left
[right, bottom, front], # Front Bottom Right
[right, top, rear], # Rear Top Right
[left, top, rear], # Rear Top Left
[left, bottom, rear], # Rear Bottom Left
[right, bottom, rear], # Rear Bottom Right
self.center_location, # Center
]
else:
sx, sy, sz = self.size3d
forward = np.array(self.coord_system.forward, dtype=float) * sy * 0.5
up = np.array(self.coord_system.up, dtype=float) * sz * 0.5
right = | np.array(self.coord_system.right, dtype=float) | numpy.array |
# -*- coding: utf-8 -*-
"""
MIT License
Copyright (c) 2022 cmla-psu/<NAME>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import numpy as np
import time
from softmax import configuration, workload, matrix_query, func_var
from convexdp import ConvexDP, ca_variance, wCA, wCA2
def PL94():
"""Dataset PL94."""
# age marginal
first_1 = np.eye(2)
second_1 = np.ones((1, 2))
third_1 = np.ones((1, 63))
work_age = np.kron(np.kron(first_1, second_1), third_1)
# ethnicity marginal
first_2 = np.ones((1, 2))
second_2 = np.eye(2)
third_2 = np.ones((1, 63))
work_eth = np.kron( | np.kron(first_2, second_2) | numpy.kron |
"""
2021/5/8
Noisy dataset: MNIST, CIFAR10
"""
import matplotlib.pyplot as plt
import numpy as np
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, transforms, utils
# np.random.seed(0)
class MNISTNoisy(Dataset):
def __init__(self, root, train, transform, download, noise_type='symmetric', noise_rate=0.2):
self.mnist = datasets.MNIST(root, train, transform, download=download)
self.noise_type = noise_type
self.noise_rate = noise_rate
self.clean_sample_idx = []
self.noisy_sample_idx = []
# add label noise
if self.noise_type == 'symmetric':
self.uniform(noise_rate, 10)
elif self.noise_type == 'asymmetric':
self.flip(noise_rate, 10)
def uniform(self, noise_rate: float, num_classes: int):
"""Add symmetric noise"""
# noise transition matrix
ntm = noise_rate * np.full((num_classes, num_classes), 1 / (num_classes - 1))
np.fill_diagonal(ntm, 1 - noise_rate)
sample_indices = np.arange(len(self.mnist))
# np.random.shuffle(indices)
# generate noisy label by noise transition matrix
for i in sample_indices:
label = np.random.choice(num_classes, p=ntm[self.mnist.targets[i]]) # new label
if label != self.mnist.targets[i]:
self.noisy_sample_idx.append(i)
self.mnist.targets[i] = label
self.clean_sample_idx = np.setdiff1d(sample_indices, self.noisy_sample_idx)
print('Noise type: Symmetric')
print('Noise rate:', noise_rate)
print('Noise transition matrix:\n', ntm)
print('Clean samples:', len(self.clean_sample_idx), 'Noisy samples:', len(self.noisy_sample_idx))
def flip(self, noise_rate: float, num_classes: int):
"""Add asymmetric noise"""
# noise transition matrix
ntm = np.eye(num_classes) * (1 - noise_rate)
d = {7: 1, 2: 7, 5: 6, 6: 5, 3: 8} # 7->1, 2->7, 5->6, 6->5, 3->8
for raw_class, new_class in d.items():
ntm[raw_class][new_class] = noise_rate
for i in [0, 1, 4, 8, 9]:
ntm[i][i] = 1
sample_indices = np.arange(len(self.mnist))
# generate noisy label by noise transition matrix
for i in sample_indices:
label = np.random.choice(num_classes, p=ntm[self.mnist.targets[i]])
if label != self.mnist.targets[i]:
self.noisy_sample_idx.append(i)
self.mnist.targets[i] = label
self.clean_sample_idx = | np.setdiff1d(sample_indices, self.noisy_sample_idx) | numpy.setdiff1d |
import numpy as np
from math import ceil
import copy
import random
from imblearn.under_sampling import NearMiss
from imblearn.over_sampling import SMOTE, ADASYN
from sklearn.ensemble import RandomForestClassifier
try: # < version 1.1.0
from art.attacks import BoundaryAttack, ZooAttack, HopSkipJump
except ImportError: # >= version 1.1.0
from art.attacks.evasion import BoundaryAttack, ZooAttack, HopSkipJump
from art.classifiers import SklearnClassifier
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.metrics.pairwise import euclidean_distances
from drift_dac.features_utils import is_integer_feature
from drift_dac.perturbation_shared_utils import Shift, sample_random_indices, PerturbationConstants, any_other_label
__all__ = ['GaussianNoise', 'SwitchCategorical', 'SubsampleJoint', 'SubsampleNumeric', 'SubsampleCategorical',
'UnderSample', 'OverSample', 'Adversarial', 'ConstantNumeric', 'ConstantCategorical', 'MissingValues',
'PlusMinusSomePercent', 'FlipSign', 'Outliers', 'Scaling', 'SwappedValues', 'ErrorBasedSampling',
'NearestNeighbors']
class GaussianNoise(Shift):
""" Apply Gaussian noise to a portion of data.
Args:
noise_key (str): value in ['small', 'medium', 'large] indicating the level of noise.
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
clip (bool): flag to clip the value of a perturbed feature to the maximum value in the feature range.
ceil_int (bool): flag to ceil the value of a perturbed feature for integer features.
noise (float): level of noise
Attributes:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
clip (bool): flag to clip the value of a perturbed feature to the maximum value in the feature range.
ceil_int (bool): flag to ceil the value of a perturbed feature for integer features.
noise (float): amount of noise
"""
def __init__(self, noise_key='small', samples_fraction=1.0, features_fraction=1.0, clip=True, ceil_int=True,
noise=None):
super(GaussianNoise, self).__init__()
self.samples_fraction = samples_fraction
self.features_fraction = features_fraction
self.clip = clip
self.ceil_int = ceil_int
if noise is None:
noise_levels = {
'large': 100.0,
'medium': 10.0,
'small': 1.0
}
self.noise = noise_levels[noise_key]
else:
self.noise = noise
self.name = noise_key + '_gn_shift_%.2f_%.2f' % (samples_fraction, features_fraction)
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y=None):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = copy.deepcopy(y)
Xt, yt, self.shifted_indices, self.shifted_features = gaussian_noise_shift(Xt, yt,
self.noise, self.samples_fraction,
self.features_fraction, self.clip,
self.ceil_int)
return Xt, yt
class SwitchCategorical(Shift):
""" Assign a random category of categorical variables to a portion of data.
Args:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
Attributes:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=0.5, features_fraction=1.0):
super(SwitchCategorical, self).__init__()
self.samples_fraction = samples_fraction
self.features_fraction = features_fraction
self.name = 'switch_categorical_features_shift_%.2f_%.2f' % (samples_fraction, features_fraction)
self.feature_type = PerturbationConstants.CATEGORICAL
def transform(self, X, y=None):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = copy.deepcopy(y)
Xt, yt, self.shifted_indices, self.shifted_features = switch_categorical_features_shift(Xt, yt,
self.samples_fraction,
self.features_fraction)
return Xt, yt
class SubsampleJoint(Shift):
""" Keep an observation with a probability which decreases as points are further away from the samples mean.
Args:
gamma (float): fraction of samples close to the mean to remove.
Attributes:
gamma (float): fraction of samples close to the mean to remove.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, gamma=0.2):
super(SubsampleJoint, self).__init__()
self.gamma = 1 - gamma # fraction of samples to keep
self.name = 'subsample_joint_shift_%.2f' % gamma
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = copy.deepcopy(y)
Xt, yt, self.shifted_features = subsample_joint_shift(Xt, yt, gamma=self.gamma)
return Xt, yt
class SubsampleNumeric(Shift):
""" Subsample with probability p when feature value less than the feature median value. If one_side=False, this also
subsamples with probability 1-p when the feature value is larger than the feature median value.
Args:
features_fraction (float): proportion of samples to perturb.
p (float): probability of sampling small values of features
one_side (bool): flag to subsample only samples with small feature values (True, default) or also large values.
Attributes:
features_fraction (float): proportion of samples to perturb.
p (float): probability of sampling small values of features
one_side (bool): flag to subsample only samples with small feature values (True, default) or also large values.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, p=0.5, features_fraction=0.5, one_side=True):
super(SubsampleNumeric, self).__init__()
self.features_fraction = features_fraction
self.p = p
self.one_side = one_side
self.name = 'subsample_feature_shift_%.2f' % features_fraction
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = copy.deepcopy(y)
Xt, yt, self.shifted_features = subsample_feature_shift(Xt, yt, feat_delta=self.features_fraction, p=self.p,
one_side=self.one_side)
return Xt, yt
class SubsampleCategorical(Shift):
""" Subsample with probability p when feature value falls in a sub list of categories (randomly defined).
If one_side=False, this also subsamples with probability 1-p when the feature value in the remaining categories.
This perturbation is applied to all categorical features.
Args:
p (float): probability of sampling subset of values of features
features_fraction (float): proportion of samples to perturb.
one_side (bool): flag to subsample only samples with small feature values (True, default) or also large values.
Attributes:
p (float): probability of sampling subset of values of features
features_fraction (float): proportion of samples to perturb.
one_side (bool): flag to subsample only samples with small feature values (True, default) or also large values.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, p=0.5, features_fraction=1.0, one_side=True):
super(SubsampleCategorical, self).__init__()
self.p = p
self.features_fraction = features_fraction
self.one_side = one_side
self.name = 'subsample_categorical_feature_shift_%.2f' % p
self.feature_type = PerturbationConstants.CATEGORICAL
def transform(self, X, y):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = copy.deepcopy(y)
n_categorical = Xt.shape[1]
feat_indices = np.random.choice(n_categorical, ceil(n_categorical * self.features_fraction), replace=False)
for f in feat_indices:
Xt, yt = subsample_categorical_feature_shift(Xt, yt, f, p=self.p, one_side=self.one_side)
return Xt, yt
class UnderSample(Shift):
""" Subsample selecting samples close to the minority class (NearMiss3 heuristics).
Args:
samples_fraction (float): proportion of samples to perturb.
Attributes:
samples_fraction (float): proportion of samples to perturb.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=0.5):
super(UnderSample, self).__init__()
self.samples_fraction = samples_fraction
self.name = 'under_sample_shift_%.2f' % samples_fraction
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = copy.deepcopy(y)
Xt = SimpleImputer(strategy='median').fit_transform(Xt)
Xt, yt = under_sampling_shift(Xt, yt, self.samples_fraction)
return Xt, yt
class OverSample(Shift):
""" First subsample selecting samples close to the minority class (NearMiss3 heuristics), then add interpolated
samples via SMOTE technique.
Args:
samples_fraction (float): proportion of samples to perturb.
Attributes:
samples_fraction (float): proportion of samples to perturb.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=0.5):
super(OverSample, self).__init__()
self.samples_fraction = samples_fraction
self.name = 'over_sample_shift_%.2f' % samples_fraction
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = copy.deepcopy(y)
Xt = SimpleImputer(strategy='median').fit_transform(Xt)
Xt, yt = over_sampling_shift(Xt, yt, self.samples_fraction)
return Xt, yt
class Adversarial(Shift):
""" Perturb a portion of samples and features via black-box adversarial perturbations attempting to make a
classifier mis-predict the samples class.
Args:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
attack_type (str): name of the desired adversarial attack in ['zoo', 'boundary', 'hop-skip-jump'].
model (sklearn.BaseEstimator): unfitted sklearn classifier against which to perform the adversarial attack.
Attributes:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
attack_type (str): name of the desired adversarial attack in ['zoo', 'boundary', 'hop-skip-jump'].
model (sklearn.BaseEstimator): unfitted sklearn classifier against which to perform the adversarial attack.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=1.0, features_fraction=1.0, attack_type='boundary',
model=RandomForestClassifier()):
super(Adversarial, self).__init__()
self.samples_fraction = samples_fraction
self.features_fraction = features_fraction
self.attack_type = attack_type
self.model = model
self.name = 'adversarial_attack_shift_%s_%.2f_%.2f' % (attack_type, samples_fraction, features_fraction)
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = copy.deepcopy(y)
Xt, yt, self.shifted_indices, self.shifted_features = adversarial_attack_shift(Xt, yt, self.samples_fraction,
self.model,
self.attack_type,
self.features_fraction)
return Xt, yt
class ConstantNumeric(Shift):
""" Assign a constant value (median) to a portion of data.
Args:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
Attributes:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=1.0, features_fraction=1.0):
super(ConstantNumeric, self).__init__()
self.samples_fraction = samples_fraction
self.features_fraction = features_fraction
self.name = 'constant_feature_shift_%.2f_%.2f' % (samples_fraction, features_fraction)
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y=None):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = copy.deepcopy(y)
Xt, yt, self.shifted_indices, self.shifted_features = constant_value_shift(Xt, yt, self.samples_fraction,
self.features_fraction)
return Xt, yt
class ConstantCategorical(Shift):
""" Assign a random constant category to a portion of data.
Args:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
Attributes:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=1.0, features_fraction=1.0):
super(ConstantCategorical, self).__init__()
self.samples_fraction = samples_fraction
self.features_fraction = features_fraction
self.name = 'constant_feature_shift_%.2f_%.2f' % (samples_fraction, features_fraction)
self.feature_type = PerturbationConstants.CATEGORICAL
def transform(self, X, y=None):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = copy.deepcopy(y)
Xt, yt, self.shifted_indices, self.shifted_features = constant_categorical_shift(Xt, yt, self.samples_fraction,
self.features_fraction)
return Xt, yt
class MissingValues(Shift):
""" Insert missing values into a portion of data.
Args:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
value_to_put_in (float): desired representation of the missing value
Attributes:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
value_to_put_in (float): desired representation of the missing value
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=1.0, features_fraction=1.0, value_to_put_in=None):
super(MissingValues, self).__init__()
self.samples_fraction = samples_fraction
self.features_fraction = features_fraction
self.value_to_put_in = value_to_put_in
self.name = 'missing_value_shift_%.2f_%.2f' % (samples_fraction, features_fraction)
self.feature_type = PerturbationConstants.ANY
def transform(self, X, y=None):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = y
self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction)
self.shifted_features = sample_random_indices(Xt.shape[1], self.features_fraction)
if self.value_to_put_in is None and np.issubdtype(Xt[:, self.shifted_features].dtype, np.integer):
self.value_to_put_in = -9999
Xt[np.transpose(np.array(self.shifted_indices)[np.newaxis]), np.array(self.shifted_features)[
np.newaxis]] = self.value_to_put_in
return Xt, yt
class FlipSign(Shift):
""" Flip the sign of a portion of data.
Args:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
Attributes:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=1.0, features_fraction=1.0):
super(FlipSign, self).__init__()
self.samples_fraction = samples_fraction
self.features_fraction = features_fraction
self.name = 'flip_sign_shift_%.2f_%.2f' % (samples_fraction, features_fraction)
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y=None):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = y
self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction)
numerical_features = np.array(range(Xt.shape[1]))
n_feats = len(numerical_features)
self.shifted_features = list(
np.array(numerical_features)[sample_random_indices(n_feats, self.features_fraction)])
Xt[np.transpose(np.array(self.shifted_indices)[np.newaxis]), np.array(self.shifted_features)[np.newaxis]] *= -1
return Xt, yt
class PlusMinusSomePercent(Shift):
""" Increment the feature values by a percentage for a portion of data.
Args:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
percentage (float): percentage of the value to add/subtract.
Attributes:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
percentage (float): percentage of the value to add/subtract.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=1.0, features_fraction=1.0, percentage=0.1):
super(PlusMinusSomePercent, self).__init__()
self.samples_fraction = samples_fraction
self.features_fraction = features_fraction
self.percentage = percentage
self.name = 'plus_minus_perc_shift_%.2f_%.2f_%.2f' % (samples_fraction, features_fraction, percentage)
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y=None):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = y
self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction)
numerical_features = np.array(range(Xt.shape[1]))
n_feats = len(numerical_features)
self.shifted_features = list(
np.array(numerical_features)[sample_random_indices(n_feats, self.features_fraction)])
row_indices, col_indices = np.transpose(np.array(self.shifted_indices)[np.newaxis]), \
np.array(self.shifted_features)[np.newaxis]
Xt[row_indices, col_indices] += \
Xt[row_indices, col_indices] * np.random.uniform(-self.percentage, self.percentage,
size=(len(self.shifted_indices),
len(self.shifted_features)))
return Xt, yt
class Outliers(Shift):
""" Replace a portion of data with outliers, obtained by adding random Gaussian noise.
Args:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
Attributes:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=1.0, features_fraction=1.0):
super(Outliers, self).__init__()
self.samples_fraction = samples_fraction
self.features_fraction = features_fraction
self.name = 'outlier_shift_%.2f_%.2f' % (samples_fraction, features_fraction)
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y=None):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = y
self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction)
numerical_features = np.array(range(Xt.shape[1]))
n_feats = len(numerical_features)
self.shifted_features = list(
np.array(numerical_features)[sample_random_indices(n_feats, self.features_fraction)])
stddevs = {column: np.std(Xt[:, column]) for column in self.shifted_features}
scales = {column: random.uniform(1, 5) for column in self.shifted_features}
for column in self.shifted_features:
noise = np.random.normal(0, scales[column] * stddevs[column], size=Xt[self.shifted_indices, column].shape)
Xt[self.shifted_indices, column] += noise
return Xt, yt
class Scaling(Shift):
""" Scale a portion of samples and features by a random value in [10, 100, 1000].
Args:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
Attributes:
samples_fraction (float): proportion of samples to perturb.
features_fraction (float): proportion of features to perturb.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=1.0, features_fraction=1.0):
super(Scaling, self).__init__()
self.samples_fraction = samples_fraction
self.features_fraction = features_fraction
self.name = 'scaling_shift_%.2f_%.2f' % (samples_fraction, features_fraction)
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y=None):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = y
self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction)
numerical_features = np.array(range(Xt.shape[1]))
n_feats = len(numerical_features)
self.shifted_features = list(
np.array(numerical_features)[sample_random_indices(n_feats, self.features_fraction)])
row_indices, col_indices = np.transpose(np.array(self.shifted_indices)[np.newaxis]), \
np.array(self.shifted_features)[np.newaxis]
scale_factor = np.random.choice([10, 100, 1000])
Xt[row_indices, col_indices] *= scale_factor
return Xt, yt
class SwappedValues(Shift):
""" Swap the values of two random features for a desired portion of samples.
Args:
samples_fraction (float): proportion of samples to perturb.
Attributes:
samples_fraction (float): proportion of samples to perturb.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, samples_fraction=1.0):
super(SwappedValues, self).__init__()
self.samples_fraction = samples_fraction
self.name = 'swapped_values_shift_%.2f' % samples_fraction
self.feature_type = PerturbationConstants.NUMERIC
def transform(self, X, y=None):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
Xt = copy.deepcopy(X)
yt = y
self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction)
self.shifted_features = sorted(list(np.random.choice(Xt.shape[1], size=2, replace=False)))
(column_a, column_b) = self.shifted_features[0], self.shifted_features[1]
values_of_column_a = copy.deepcopy(Xt[self.shifted_indices, column_a])
values_of_column_b = Xt[self.shifted_indices, column_b]
Xt[self.shifted_indices, column_a] = values_of_column_b
Xt[self.shifted_indices, column_b] = values_of_column_a
return Xt, yt
class ErrorBasedSampling(Shift):
""" Sample the observations to have a desired amount of wrongly predicted samples from a reference model.
Args:
error_fraction (float): proportion of wrongly predicted samples.
model (sklearn.BaseEstimator): classifier with respect to which errors are computed.
labelenc (sklearn.BaseEncoder): label encoder for the classifier.
Attributes:
error_fraction (float): proportion of wrongly predicted samples.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
model (sklearn.BaseEstimator): classifier with respect to which errors are computed.
labelenc (sklearn.BaseEncoder): label encoder for the classifier.
"""
def __init__(self, error_fraction=1.0, model=None, labelenc=None):
super(ErrorBasedSampling, self).__init__()
self.error_fraction = error_fraction
self.name = 'error_sampling_shift_%.2f' % error_fraction
self.feature_type = PerturbationConstants.ANY
self.model = model
self.labelenc = labelenc
def transform(self, X, y):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
if self.model is None:
raise NotImplementedError('You need to input a model. Reference model not implemented yet.')
y_pred = self.model.predict(X)
if self.labelenc is None:
y_enc = y
else:
y_enc = self.labelenc.transform(y)
error_indices = np.where(y_pred != y_enc)[0]
correct_indices = np.where(y_pred == y_enc)[0]
if error_indices.sum() == 0:
raise ValueError('The model has 0 error on the dataset. ErrorBasedSampling cannot be built.')
n_samples = X.shape[0]
n_errors = int(np.ceil(self.error_fraction * n_samples))
n_correct = n_samples - n_errors
error_row_indices = np.random.choice(error_indices, size=n_errors, replace=True)
correct_row_indices = np.random.choice(correct_indices, size=n_correct, replace=True)
row_indices = np.r_[error_row_indices, correct_row_indices]
np.random.shuffle(row_indices)
Xt = X[row_indices, :]
yt = y[row_indices]
return Xt, yt
class NearestNeighbors(Shift):
""" Simulate a particular demographic either appearing, or disappearing from production traffic.
It does so by sampling a data point and then uses nearest neighbors to identify other data points that are similar
(nearest neighbors) or dissimilar (furthest neighbors) and remove them from the dataset.
Ref: https://arxiv.org/abs/2012.08625
Args:
fraction_to_remove (float): proportion of samples to remove from the nearest/furthest set.
near_far_probability (float): probability of nearest or furthest bias.
Attributes:
fraction_to_remove (float): proportion of samples to remove from the nearest/furthest set.
near_far_probability (float): probability of nearest or furthest bias.
name (str): name of the perturbation
feature_type (int): identifier of the type of feature for which this perturbation is valid
(see PerturbationConstants).
"""
def __init__(self, fraction_to_remove=0.5, near_far_probability=0.5):
super(NearestNeighbors, self).__init__()
self.fraction_to_remove = fraction_to_remove
self.name = 'nearest_neighbors_shift_%.2f_%.2f' % (fraction_to_remove, near_far_probability)
self.feature_type = PerturbationConstants.NUMERIC
self.near_far_probability = near_far_probability
def transform(self, X, y):
""" Apply the perturbation to a dataset.
Args:
X (numpy.ndarray): feature data.
y (numpy.ndarray): target data.
"""
initial_size = X.shape[0]
# choose random point p
p_idx = np.random.choice(X.shape[0], size=1)
# sort samples by distance to p
dist_to_p = euclidean_distances(X, X[p_idx])[:, 0]
idx_by_distance = np.argsort(dist_to_p)
remove_size = int( | np.ceil(self.fraction_to_remove * initial_size) | numpy.ceil |
Subsets and Splits