prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python3 -u # coding: utf-8 # copyright: sktime developers, BSD-3-Clause License (see LICENSE file) __author__ = "<NAME>" import numpy as np import pandas as pd import pytest from sktime.forecasting.naive import NaiveForecaster from sktime.forecasting.tests import TEST_OOS_FHS from sktime.forecasting.tests import TEST_SPS from sktime.forecasting.tests import TEST_WINDOW_LENGTHS from sktime.utils.validation.forecasting import check_fh n_timepoints = 30 n_train = 20 s = pd.Series(np.arange(n_timepoints)) y_train = s.iloc[:n_train] y_test = s.iloc[n_train:] @pytest.mark.parametrize("fh", TEST_OOS_FHS) def test_strategy_last(fh): f = NaiveForecaster(strategy="last") f.fit(y_train) y_pred = f.predict(fh) expected = np.repeat(y_train.iloc[-1], len(f.fh)) np.testing.assert_array_equal(y_pred, expected) @pytest.mark.parametrize("fh", TEST_OOS_FHS) @pytest.mark.parametrize("window_length", TEST_WINDOW_LENGTHS) def test_strategy_mean(fh, window_length): f = NaiveForecaster(strategy="mean", window_length=window_length) f.fit(y_train) y_pred = f.predict(fh) if window_length is None: window_length = len(y_train) expected = np.repeat(y_train.iloc[-window_length:].mean(), len(f.fh))
np.testing.assert_array_equal(y_pred, expected)
numpy.testing.assert_array_equal
"""Test triarray.matrix.""" import numpy as np import pytest import triarray as tri def check_getitem_same(mat1, mat2, index): """Check indexing returns the same results between two matrix objects.""" assert np.array_equal(mat1[index], mat2[index]) @pytest.fixture() def trimatrix(indices, upper, diag_val): """TriMatrix that should correspond to the index_matrix fixture.""" return tri.TriMatrix(indices, upper=upper, diag_val=diag_val) def test_attrs(n, indices, trimatrix, upper, diag_val): """Test basic attributes.""" assert trimatrix.size == n assert trimatrix.upper == upper assert trimatrix.diag_val == diag_val # Check array uses same memory # Not sure what trickery might happen with Numba but I think comparing the # memoryview objects in the data attribute should work fine assert indices.data == trimatrix.array.data def test_invalid_array_size(): """Test constructor with invalid array size.""" with pytest.raises(ValueError): tri.TriMatrix(np.arange(11)) def test_index_conversion(trimatrix, index_matrix): for row in range(trimatrix.size): for col in range(trimatrix.size): if row == col: # Can't get index along diagonal with pytest.raises(ValueError): trimatrix.flat_index(row, col) else: idx = trimatrix.flat_index(row, col) assert trimatrix.array[idx] == index_matrix[row, col] assert trimatrix.flat_index(row, col) == idx def test_to_array(trimatrix, index_matrix): """Test conversion to array using method and various indices.""" assert np.array_equal(trimatrix.to_array(), index_matrix) assert np.array_equal(trimatrix[()], index_matrix) assert np.array_equal(trimatrix[:], index_matrix) assert np.array_equal(trimatrix[:, :], index_matrix) def test_getitem_single(trimatrix, index_matrix, diag_val): """Test getting a single element from the matrix.""" for row in range(trimatrix.size): for col in range(trimatrix.size): assert trimatrix[row, col] == index_matrix[row, col] assert trimatrix.get_item(row, col) == index_matrix[row, col] def test_get_row_single(trimatrix, index_matrix): """Test various methods of getting single rows.""" out = np.zeros(trimatrix.size, dtype=index_matrix.dtype) for row in range(trimatrix.size): row_vals = index_matrix[row] assert np.array_equal(trimatrix[row], row_vals) assert np.array_equal(trimatrix[row, :], row_vals) assert np.array_equal(trimatrix[:, row], row_vals) assert np.array_equal(trimatrix.get_row(row), row_vals) trimatrix.get_row(row, out=out) assert np.array_equal(out, row_vals) def test_get_row_array(n, trimatrix, index_matrix): """Test getting many rows by indexing with single integer array.""" def check_rows(rows): check_getitem_same(trimatrix, index_matrix, rows) check_getitem_same(trimatrix, index_matrix, (rows, slice(None))) check_getitem_same(trimatrix, index_matrix, (slice(None), rows)) # 1D array - every 10th row step = int(np.ceil(n / 10)) rows =
np.arange(0, n, step)
numpy.arange
from ast import cmpop import os import numpy as np import matplotlib.pyplot as plt import imageio from matplotlib.colors import Normalize import ipywidgets as ipw from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.interpolate import splev from .. import splineutils out = ipw.Output() def show_geometry_props(data, res, size=(16, 9), titles=["Length", "Area", "Circularity"]): """ Display length, area and circularity information for time-lapse. Parameters ---------- data: data object created from dataset.Data res: res object created from results.Results size: tuple image size titles: list titles for each plot Returns ------- fig: matplotlib figure ax: matplotlib axis """ length = np.zeros((data.K,)) area = np.zeros((data.K,)) for k in range(data.K): length[k] = splineutils.spline_contour_length(res.spline[k]) area[k] = splineutils.spline_area(res.spline[k]) fig, ax = plt.subplots(1, 3, figsize=size) ax[0].plot(length) ax[0].set_title(titles[0]) ax[1].plot(area) ax[1].set_title(titles[1]) ax[2].plot(length ** 2 / area / 4 / np.pi) ax[2].set_title(titles[2]) fig.tight_layout() return fig, ax def show_geometry(data, res, size=(16, 9), prop='length', title=None): """ Display length, area and circularity information for time-lapse. Parameters ---------- data: data object created from dataset.Data res: res object created from results.Results size: tuple image size prop: str property to display title: str title for plot Returns ------- fig: matplotlib figure ax: matplotlib axis """ length =
np.zeros((data.K,))
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import torch from torch import nn device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") dtype = torch.cuda.FloatTensor from torch.autograd import Variable import torch.nn.functional as F from torch.optim.lr_scheduler import StepLR,ReduceLROnPlateau import torch.multiprocessing as multiprocessing from torch.multiprocessing import Pool # from multiprocessing import Pool import traceback import numpy as np import warnings with warnings.catch_warnings(): warnings.simplefilter('ignore') import h5py import time,sys,os,glob from datetime import datetime try: # Python 2.x from itertools import imap except ImportError: # Python 3.x imap=map from scipy import constants speedoflight = constants.c / 1000.0 import Payne from ..utils.pullspectra import pullspectra from ..utils import optim class Net(object): def __init__(self, NNpath): self.readNN(nnpath=NNpath) def readNN(self,nnpath=''): th5 = h5py.File(nnpath,'r') self.w_array_0 = np.array(th5['w_array_0']) self.w_array_1 = np.array(th5['w_array_1']) self.w_array_2 = np.array(th5['w_array_2']) self.b_array_0 = np.array(th5['b_array_0']) self.b_array_1 = np.array(th5['b_array_1']) self.b_array_2 = np.array(th5['b_array_2']) self.xmin = np.array(th5['x_min']) self.xmax = np.array(th5['x_max']) self.wavelength = np.array(th5['wavelength']) th5.close() self.resolution = 100000 def leaky_relu(self,z): ''' This is the activation function used by default in all our neural networks. ''' return z*(z > 0) + 0.01*z*(z < 0) def encode(self,x): x_np = np.array(x) x_scaled = (x_np-self.xmin)/(self.xmax-self.xmin) - 0.5 return x_scaled def eval(self,x): x_i = self.encode(x) inside =
np.einsum('ij,j->i', self.w_array_0, x_i)
numpy.einsum
''' ------------------------------------------------------------------------ Functions for generating demographic objects necessary for the OG-USA model This module defines the following function(s): get_fert() get_mort() pop_rebin() get_imm_resid() immsolve() get_pop_objs() ------------------------------------------------------------------------ ''' import os import pickle import numpy as np import pandas as pd import scipy.optimize as opt import scipy.interpolate as si import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import parameter_plots as pp # create output directory for figures CUR_PATH = os.path.split(os.path.abspath(__file__))[0] OUTPUT_DIR = os.path.join(CUR_PATH, 'OUTPUT', 'Demographics') if os.access(OUTPUT_DIR, os.F_OK) is False: os.makedirs(OUTPUT_DIR) ''' ------------------------------------------------------------------------ Define functions ------------------------------------------------------------------------ ''' def get_true_demog_data(min_age, max_age): ''' Return the true demographic data for a country. Args: min_age (int): age in years at which agents are born, >= 0 max_age (int): age in years at which agents die with certainty, >= 4 Returns: fert_data (Numpy array): fertility rates for each model period of life mort_data (Numpy array): mortality rates for each model period of life imm_data (Numpy array): immigration rates for each model period of life pop_data (Numpy array): population for each model period of life ''' # Filepaths fert_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'fert.p') mort_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'mort.p') pop_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'pop.p') imm_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'imm.p') # Load data fert_data = pickle.load(open(fert_filepath, 'rb')) mort_data = pickle.load(open(mort_filepath, 'rb')) pop_data = pickle.load(open(pop_filepath, 'rb')) imm_data = pickle.load(open(imm_filepath, 'rb')) # Take most recent population pop_2014 = pop_data[2014][max(min_age, 0): min(max_age + 1, len(pop_data[2014]))] pop_2015 = pop_data[2015][max(min_age, 0): min(max_age + 1, len(pop_data[2015]))] # Take immigration as average over last 3 years drop_immyears = sorted(imm_data.columns)[:- 3] imm_data = imm_data.drop(drop_immyears, axis=1) imm_data = imm_data.mean(axis=1) return pop_2014, pop_2015, fert_data[2014], mort_data[2014], imm_data def select_fert_data(fert, set_zeroes=False): new_fert = fert[fert['AgeDef'] == 'ARDY'] new_fert = new_fert[new_fert['Collection'] == 'HFD'] new_fert = new_fert[(new_fert['RefCode'] == 'JPN_11')] new_fert.drop(['AgeDef', 'Collection', 'RefCode'], axis=1, inplace=True) new_fert.columns = ['Year', 'Age', 'Values'] if set_zeroes: new_fert['Values'][new_fert['Age'] == 14] = 0 new_fert['Values'][new_fert['Age'] == 15] = 0 new_fert['Values'][new_fert['Age'] == 49] = 0 new_fert['Values'][new_fert['Age'] == 50] = 0 return new_fert.astype(float) # a = get_fert(100, 0, 99, 'jpn', 'dynamic_partial') def get_fert(totpers, min_age, max_age, graph=False, demog_files=[False, False, False]): ''' Generate a vector of fertility rates by model period age that corresponds to the fertility rate data by age in years. Args: totpers (int): total number of agent life periods (E+S), >= 3 min_age (int): age in years at which agents are born, >= 0 max_age (int): age in years at which agents die with certainty, >= 4 graph (bool): =True if want graphical output demog_files (Pandas dataframe): alternate demographic forecasts Returns: fert_rates (Numpy array): fertility rates for each model period of life ''' fert_all, mort_all, imm_all = demog_files # Get data curr_pop, _, curr_fert, _, _ = get_true_demog_data(min_age, max_age) # Birth ages birth_ages =
np.arange(14, 51)
numpy.arange
from engine.steps.IStep import IStep from keras.models import load_model from keras.preprocessing.image import img_to_array #from sklearn.preprocessing import LabelBinarizer import numpy as np import time import cv2 from imutils.video import VideoStream import imutils class step_detect(IStep): """ detect driving direction """ def __init__(self, output_channel, name=None ): super().__init__(self, output_channel, name) def IRun(self): # load the trained convolutional neural network and the label binarizer print("[INFO] loading network...") self.model = self.output_channel['model'] self.labels = self.output_channel['labels'] self.image_size = self.output_channel['image_size'] #self.resolution = self.output_channel['resolution'] camera = self.output_channel['camera'] self.detect( model=self.model, lb=self.labels, resize=self.image_size, camera=camera ) def IParseConfig( self, config_json ): pass def IDispose( self ): pass @staticmethod def detect(model, lb, resize, camera ): print( "[I] start detecting...") #camera.start() i=1 while True: t0 = time.time() img = camera.read() #img = imutils.resize(img, width=w, height=h) t1 = time.time() print( "[I] capture image " + str(i)+': ' + str(t1-t0) ) image = cv2.resize(img, resize ) image = image.astype("float") / 255.0 image = img_to_array(image) image =
np.expand_dims(image, axis=0)
numpy.expand_dims
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import os import sys import subprocess import csv import scipy import scipy.stats import aifc import read_aif data_folder = sys.argv[1] N_subjects = 21 result_folder = sys.argv[2] if not os.path.exists(result_folder): os.mkdir(result_folder) #calculate and read behavioural results into behaviouraldict: #{'S01': {'snareCue_times': [46.28689342,...], ...}, 'S02': {...} } behaviouraldict = {} for i in range(1, N_subjects+1): # load the results into a dictionary try: with np.load(os.path.join(result_folder,'S%02d' % i, 'behavioural_results.npz'), allow_pickle=True) as behave_file: behaviouraldict['S%02d' % i] = dict(behave_file) except: print('Please run read_aif.py for every subjects first.') ###1. plot performance vs musical background: #read subject background (LQ and music qualification) #background is a dict {"N_subjects":[LQ, Quali, Level, years]} background = {} with open(os.path.join(data_folder,'additionalSubjectInfo.csv'),'r') as infile: reader = csv.DictReader(infile, fieldnames=None, delimiter=';') for row in reader: key = "S%02d" % int(row['Subjectnr']) #same format as behaviouraldict value = [int(row['LQ']),int(row['MusicQualification']), int(row['MusicianshipLevel']),int(row['TrainingYears'])] background[key] = value raw_musicscores = np.array([v for k,v in sorted(background.items())]) z_musicscores = (raw_musicscores - np.mean(raw_musicscores,0) )/raw_musicscores.std(0) musicscore = z_musicscores[:,1:].mean(1) # do not include the LQ snare_abs_performance = np.zeros(N_subjects) snare_mean_performance = np.zeros(N_subjects) snare_se_performance = np.zeros(N_subjects) wb_abs_performance = np.zeros(N_subjects) wb_mean_performance = np.zeros(N_subjects) wb_se_performance = np.zeros(N_subjects) snare_rel_performance = np.zeros(N_subjects) wb_rel_performance = np.zeros(N_subjects) for k,v in sorted(behaviouraldict.items()): i = int(k[1:])-1 #'S01'=> entry 0 snaredev = v['snare_deviation'] snaredev = snaredev[np.isfinite(snaredev)] wbdev = v['wdBlk_deviation'] wbdev = wbdev[np.isfinite(wbdev)] snare_abs_performance[i] = np.abs(snaredev).mean() snare_mean_performance[i] = snaredev.mean() snare_se_performance[i] = snaredev.std()/np.sqrt(len(snare_mean_performance)) wb_abs_performance[i] = np.abs(wbdev).mean() wb_mean_performance[i] = wbdev.mean() wb_se_performance[i] = wbdev.std()/np.sqrt(len(wb_mean_performance)) snare_rel_performance[i] = np.std(snaredev) wb_rel_performance[i] = np.std(wbdev) snare_abs_expregress = scipy.stats.linregress( musicscore[0:N_subjects], np.log(snare_abs_performance)) snare_abs_rss = np.sum((np.log(snare_abs_performance) - (snare_abs_expregress[1] + musicscore[0:N_subjects]*snare_abs_expregress[0]))**2) snare_abs_tss = np.sum((
np.log(snare_abs_performance)
numpy.log
# -*- coding: utf-8 -*- """ Created on Tue Mar 17 13:22:52 2015 @author: mittelberger """ import cv2 import numpy as np import os import re import logging from multiprocessing import Pool #import matplotlib.pyplot as plt import time import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") try: from .maptools import tifffile except: from maptools import tifffile import scipy.optimize try: from maptools import autotune as at except: from .maptools import autotune as at from ElectronCounting import c_electron_counting ####################################################################################################################### ####################################################################################################################### ####################################################################################################################### dirpath = '/home/mittelberger2/Documents/reconstructions/low-dose-reconstruction/raw_data/map_2016_09_05_09_44' imsize = 12 graphene_threshold = 0.028 light_threshold = -1 heavy_threshold = 0.043 dirt_border = 50 minimum_graphene_area = 0.3 minimum_number_peaks = 8 maximum_number_peaks = 12 only_process_this_number_of_images = -1 # -1 all only_process_images_of_shape = None # None or tuple remove_left_edge_number_pixels = -1 # -1 nothing to remove save_fft = True # Add 4 digit numbers to beginning of filenames rename_images = False # Should electron counting be done calculate_actual_counts = True # Should we also save electron counted images when there are no peaks found always_save_images = False # parameters for electron counting baseline = 0.0 countlevel = 0.085 peakwidth = 0.212 # only integrate electron signal and do not convert to counts only_integrate = False # Pattern that has to match the filename in order for the file # to be included into the processing filename_match_pattern = '\d{4}' ####################################################################################################################### ####################################################################################################################### ####################################################################################################################### def ellipse(polar_angle, a, b, rotation): """ Returns the radius of a point lying on an ellipse with the given parameters. """ return a*b/np.sqrt((b*np.cos(polar_angle-rotation))**2+(a*np.sin(polar_angle-rotation))**2) def fit_ellipse(angles, radii): if len(angles) != len(radii): raise ValueError('The input sequences have to have the same lenght!.') if len(angles) < 3: logging.warn('Can only fit a circle and not an ellipse to a set of less than 3 points.') return (np.mean(radii), np.mean(radii), 0.) try: popt, pcov = scipy.optimize.curve_fit(ellipse, angles, radii, p0=(np.mean(radii), np.mean(radii), 0.0)) except: logging.warn('Fit of the ellipse faied. Using a circle as best approximation of the data.') return (np.mean(radii), np.mean(radii), 0.) else: popt[2] %= np.pi return tuple(popt) def rotation_radius(Peak, find_distortions=True): """ Finds the rotation of the graphene lattice in a frame with repect to the x-axis Parameters ----------- image : array-like Image data as array imsize : float Size of the input image in nm Returns -------- angle : float Angle (in rad) between x-axis and the first reflection in counter-clockwise direction """ try: peaks_first, peaks_second = Peak.find_peaks(half_line_thickness=2, position_tolerance = 20, integration_radius = 1, second_order=True) except: raise else: #Calculate angles to x-axis and radius of reflections angles = [] radii = [] #center = np.array(np.shape(image))/2 center = np.array(Peak.center) for peak in peaks_first: if not (peak == 0).all(): peak = peak[0:2]-center angles.append(at.positive_angle(np.arctan2(-peak[0], peak[1]))) radii.append(np.sqrt(np.sum(peak**2))) # sum_rotation = 0 # for angle in angles: ## while angle > np.pi/3.0: ## angle -= np.pi/3.0 # sum_rotation += angle%(np.pi/3) #angles2 = np.array(angles)%np.pi/3 angles2 = np.array(angles) * 6 cos_angles = np.cos(angles2) sin_angles = np.sin(angles2) mean_angle = at.positive_angle(np.arctan2(np.mean(sin_angles), np.mean(cos_angles))) / 6 #mean_angle = angles[0] if find_distortions: #sum_rotation/float(len(angles)) return (mean_angle, np.mean(radii), np.count_nonzero(peaks_first[:,-1]) + np.count_nonzero(peaks_second[:,-1]), np.sum(peaks_first[:,-1]) + np.sum(peaks_second[:,-1])) + fit_ellipse(angles, radii) else: return (mean_angle, np.mean(radii), np.count_nonzero(peaks_first[:,-1]) + np.count_nonzero(peaks_second[:,-1]), np.sum(peaks_first[:,-1])+np.sum(peaks_second[:,-1])) def calculate_counts(image, threshold=1e-9): """ Returns the divisor to translate float values in "image" to actual counts. """ #set all values <0 to 0 image[image<0] = 0.0 #flatten and sort image by pixel values sort_im = np.sort(np.ravel(image)) #find "steps" in intensity differences = sort_im[1:] - sort_im[0:-1] steps = differences[differences>threshold] #int_steps = [] min_step = np.amin(steps) int_steps = steps[steps<1.5*min_step] # for i in range(len(steps)): # if len(int_steps) > 2: # mean_step = np.mean(int_steps) # else: # mean_step = 0.0 # if mean_step == 0.0 or (steps[i] < mean_step*1.5 and steps[i] > 0.5*mean_step): # int_steps.append(steps[i]) # int_steps = [] # for i in range(1, len(sort_im)): # difference = sort_im[i] - sort_im[i-1] # #only append values if they are "one step" (i.e. one count more) # if difference > 1e-9: # if len(int_steps) > 2: # mean_step = np.mean(int_steps) # else: # mean_step = 0.0 # if mean_step == 0.0 or (difference < mean_step*1.5 and difference > 0.5*mean_step): # int_steps.append(difference) return (np.mean(int_steps), np.std(int_steps)) def counts(path): im = cv2.imread(path, -1) return calculate_counts(im) def create_mask(Peak, graphene_threshold, light_threshold, heavy_threshold, dirt_border=0): pixelsize = imsize/Peak.shape[0] if graphene_threshold > 0: mask = Peak.dirt_detector(dirt_threshold=graphene_threshold, median_blur_diam=0.6/pixelsize, gaussian_blur_radius=0.03/pixelsize) if dirt_border > 0: mask = cv2.erode(mask,
np.ones((dirt_border, dirt_border))
numpy.ones
"""Test the refinement routines in RBFOpt. This module contains unit tests for the module rbfopt_refinement. Licensed under Revised BSD license, see LICENSE. (C) Copyright International Business Machines Corporation 2017. """ from __future__ import print_function from __future__ import division from __future__ import absolute_import import unittest import rbfopt import rbfopt.rbfopt_utils as ru import rbfopt.rbfopt_refinement as ref from rbfopt.rbfopt_settings import RbfoptSettings import numpy as np def dist(a, b): """Distance function, for convenience reimplemented here. """ return np.sqrt(np.dot(a-b, a-b)) class TestRefinement(unittest.TestCase): """Test the rbfopt_refinement module.""" def setUp(self): """Create data for subsequent tests.""" np.random.seed(71294123) self.n = 3 self.k = 10 self.var_lower = np.array([i for i in range(self.n)]) self.var_upper = np.array([i + 10 for i in range(self.n)]) self.node_pos = np.array([self.var_lower, self.var_upper, [1, 2, 3], [9, 5, 8.8], [5.5, 7, 12], [3.2, 10.2, 4], [2.1, 1.1, 7.4], [6.6, 9.1, 2.0], [10, 8.8, 11.1], [7, 7, 7]]) self.node_val = np.array([2*i for i in range(self.k)]) self.integer_vars = np.array([0, 2]) # Compute maximum distance between nodes max_dist = 0 for node1 in self.node_pos: for node2 in self.node_pos: max_dist = max(max_dist, dist(node1, node2)) self.max_dist = max_dist # -- end function def test_init_refinement(self): """Test the init_refinement function. """ settings = RbfoptSettings() # Compute maximum distance between nodes for k in range(2, self.k): model_set, radius = ref.init_refinement(settings, self.n, k, self.node_pos[:k], self.node_pos[k-1]) self.assertEqual(len(model_set), min(k, self.n + 1), msg='Wrong size of model set') self.assertLessEqual(radius, self.max_dist) # -- end function def test_get_linear_model(self): """Test the get_linear_model function. """ settings = RbfoptSettings() model_set = np.arange(self.k) for i in range(5): h = np.random.rand(self.n) b = np.random.rand() node_val = (np.dot(h, self.node_pos.T)).T + b hm, bm, rank_def = ref.get_linear_model( settings, self.n, self.k, self.node_pos, node_val, model_set) self.assertAlmostEqual(dist(h, hm), 0, msg='Wrong linear part of linear model') self.assertAlmostEqual(b - bm, 0, msg='Wrong constant part of linear model') # -- end function def test_get_candidate_point(self): """Test the get_candidate_point function. """ settings = RbfoptSettings() for i in range(self.k): h = np.random.rand(self.n) b = np.random.rand() ref_radius = np.random.uniform(self.max_dist/2) point, diff, grad_norm = ref.get_candidate_point( settings, self.n, self.k, self.var_lower, self.var_upper, h, self.node_pos[i], ref_radius) self.assertGreaterEqual(np.dot(h, self.node_pos[i]), np.dot(h, point), msg='Function value did not decrease') self.assertLessEqual(dist(self.node_pos[i], point), ref_radius + 1.0e-6, msg='Point moved too far') self.assertAlmostEqual(diff, np.dot(h, self.node_pos[i] - point), msg='Wrong model difference estimate') self.assertAlmostEqual(grad_norm, dist(h, np.zeros(self.n)), msg='Wrong gradient norm') for j in range(self.n): self.assertLessEqual(self.var_lower[j], point[j], msg='Point outside bounds') self.assertGreaterEqual(self.var_upper[j], point[j], msg='Point outside bounds') # -- end function def test_get_integer_candidate(self): """Test the get_integer_candidate function. """ settings = RbfoptSettings() model_set = np.arange(self.k) for i in range(self.k): h = np.random.rand(self.n) b = np.random.rand() ref_radius =
np.random.uniform(self.max_dist/2)
numpy.random.uniform
import sys import copy from pathlib import Path import fnmatch import numpy as np from scipy.interpolate import interp1d, interp2d import matplotlib.dates as mdates from matplotlib.offsetbox import AnchoredText import gsw from netCDF4 import Dataset from .. import io from .. import interp from .. import unit from .. import util from .. import configure # ---------------------------------------------------------------------------- # LOCAL MACHINE SETUP # ---------------------------------------------------------------------------- global REF_PATH REF_PATH = Path(__file__).parent.absolute() / 'ref' def get_config_dirs(): ''' Get previously set local directories to look for Argo, WOA, and NCEP data. ''' config = configure.read_config() if 'argo_path' in config.keys(): global ARGO_PATH ARGO_PATH = config['argo_path'] if 'ncep_path' in config.keys(): global NCEP_PATH NCEP_PATH = config['ncep_path'] if 'woa_path' in config.keys(): global WOA_PATH WOA_PATH = config['woa_path'] def set_dirs(argo_path='./', woa_path=None, ncep_path=None): ''' Set local directories to look for Argo, WOA, and NCEP data. Args: argo_path (str or path-like): location of local Argo data ncep_data (str or path-like): location of local NCEP data woa_path (str or path-like): location of local World Ocean Atlas data ''' global ARGO_PATH ARGO_PATH = argo_path global WOA_PATH WOA_PATH = woa_path global NCEP_PATH NCEP_PATH = ncep_path def get_index(index='bgc', **kwargs): ''' Get the global, biogeochemical, synthetic, or metadata Argo index. Args: index (str): *bgc* for the biogeochemical Argo index, *global* for the core index, *synthetic* for the synthetic index, or *meta* for the metadata index ''' if index == 'bgc': if '__bgcindex__' not in globals(): global __bgcindex__ __bgcindex__ = io.read_index() return_index = __bgcindex__ elif index == 'global': if '__globalindex__' not in globals(): global __globalindex__ __globalindex__ = io.read_index(mission='C') return_index = __globalindex__ elif index == 'synthetic': if '__synthindex__' not in globals(): global __synthindex__ __synthindex__ = io.read_index(mission='S') return_index = __synthindex__ elif index == 'meta': if '__metaindex__' not in globals(): global __metaindex__ __metaindex__ = io.read_index(mission='M') return_index = __metaindex__ elif index == 'traj': if '__trajindex__' not in globals(): global __trajindex__ __trajindex__ = io.read_index(mission='T') return_index = __trajindex__ else: raise ValueError('Input "{}" is unrecognized'.format(index)) for arg, val in kwargs.items(): return_index = return_index[return_index[arg] == val] return return_index.reset_index() # ---------------------------------------------------------------------------- # FLOAT CLASS # ---------------------------------------------------------------------------- # class traj: # ''' # Class that loads Argo trajectory file data for a given float ID number # (wmo). # ''' # def __init__(self, wmo, keep_fillvalue=False, verbose=False): # self.__trajdict__, self.__trajfile__ = load_traj(ARGO_PATH, wmo, verbose=verbose) # # local path info # self.argo_path = ARGO_PATH # self.woa_path = WOA_PATH # self.ncep_path = NCEP_PATH # if not keep_fillvalue: # self.rm_fillvalue() class profiles: set_dirs = set_dirs def __init__(self, floats, cycles=None, mission='B', mode='RD', keep_fillvalue=False, rcheck=True, verbose=False): if type(floats) is int: floats = [floats] self.__argofiles__ = organize_files(get_files(ARGO_PATH, floats, cycles=cycles, mission=mission, mode=mode)) self.__floatdict__ = load_profiles(self.__argofiles__, verbose=verbose) self.__rawfloatdict__ = self.__floatdict__ # local path info self.argo_path = ARGO_PATH self.woa_path = WOA_PATH self.ncep_path = NCEP_PATH self.assign(self.__floatdict__) if not keep_fillvalue: self.rm_fillvalue() if rcheck: self.check_range('all', verbose=verbose) def assign(self, floatdict): # metadata and dimension variables self.floatType = floatdict['floatType'] self.N_LEVELS = floatdict['N_LEVELS'] self.CYCLE = floatdict['CYCLES'] self.CYCLE_GRID = floatdict['CYCLE_GRID'] # time and location data self.SDN = floatdict['SDN'] self.SDN_GRID = floatdict['SDN_GRID'] self.LATITUDE = floatdict['LATITUDE'] self.LATITUDE_GRID = floatdict['LATITUDE_GRID'] self.LONGITUDE = floatdict['LONGITUDE'] self.LONGITUDE_GRID = floatdict['LONGITUDE_GRID'] self.WMO = floatdict['WMO'] # core variables self.PRES = floatdict['PRES'] # self.PRES_QC = floatdict['PRES_QC'] if 'TEMP' in floatdict.keys(): self.TEMP = floatdict['TEMP'] self.TEMP_QC = floatdict['TEMP_QC'] self.PSAL = floatdict['PSAL'] self.PSAL_QC = floatdict['PSAL_QC'] # potential density self.PDEN = gsw.pot_rho_t_exact(gsw.SA_from_SP(self.PSAL, self.PRES, self.LONGITUDE_GRID, self.LATITUDE_GRID), self.TEMP, self.LONGITUDE_GRID, self.LATITUDE_GRID) - 1000 # bgc variables - not necessarily all there so check if the fields exist if 'DOXY' in floatdict.keys(): self.DOXY = floatdict['DOXY'] self.DOXY_QC = floatdict['DOXY_QC'] if 'CHLA' in floatdict.keys(): self.CHLA = floatdict['CHLA'] self.CHLA_QC = floatdict['CHLA_QC'] if 'BBP700' in floatdict.keys(): self.BBP700 = floatdict['BBP700'] self.BBP700_QC = floatdict['BBP700_QC'] if 'CDOM' in floatdict.keys(): self.CDOM = floatdict['CDOM'] self.CDOM_QC = floatdict['CDOM_QC'] # adjusted variables if 'DOXY_ADJUSTED' in floatdict.keys(): self.DOXY_ADJUSTED = floatdict['DOXY_ADJUSTED'] self.DOXY_ADJUSTED_QC = floatdict['DOXY_ADJUSTED_QC'] if 'CHLA_ADJUSTED' in floatdict.keys(): self.CHLA_ADJUSTED = floatdict['CHLA_ADJUSTED'] self.CHLA_ADJUSTED_QC = floatdict['CHLA_ADJUSTED_QC'] if 'BBP700_ADJUSTED' in floatdict.keys(): self.BBP700_ADJUSTED = floatdict['BBP700_ADJUSTED'] self.BBP700_ADJUSTED_QC = floatdict['BBP700_ADJUSTED_QC'] if 'CDOM_ADJUSTED' in floatdict.keys(): self.CDOM_ADJUSTED = floatdict['CDOM_ADJUSTED'] self.CDOM_ADJUSTED_QC = floatdict['CDOM_ADJUSTED_QC'] if 'O2Sat' in floatdict.keys(): self.O2Sat = floatdict['O2Sat'] self.O2Sat_QC = floatdict['O2Sat_QC'] def rm_fillvalue(self): self.__nofillvaluefloatdict__ = dict_fillvalue_clean(self.__rawfloatdict__) self.__floatdict__ = self.__nofillvaluefloatdict__ self.assign(self.__nofillvaluefloatdict__) self.to_dataframe() def clean(self, bad_flags=None): self.__cleanfloatdict__ = dict_clean(self.__floatdict__, bad_flags=bad_flags) self.__floatdict__ = self.__cleanfloatdict__ self.assign(self.__cleanfloatdict__) self.to_dataframe() def reset(self): self.__floatdict__ = self.__rawfloatdict__ self.assign(self.__rawfloatdict__) self.to_dataframe() def check_range(self, key, verbose=False): ''' Performs a range check for variables that have a RTQC range available. Replaces values outside the range with NaN values. Takes string input to do the range check on that variable. Available variables are PRES, TEMP, PSAL, and DOXY. Can also take input 'all' to do the range check on all four variables, or a list of strings to do each of those variables. ''' if key == 'all': key = ['PRES', 'TEMP', 'PSAL', 'DOXY'] elif type(key) is not list: key = [key] for k in key: if k in self.__floatdict__.keys(): self.__rangecheckdict__ = range_check(k, self.__floatdict__, verbose=verbose) self.__floatdict__ = self.__rangecheckdict__ # recalculate O2sat if its DOXY if k == 'DOXY': optode_flag = get_optode_type(int(self.__rangecheckdict__['WMO'])) == 'AANDERAA_OPTODE_4330' self.__rangecheckdict__['O2Sat'] = 100*self.__rangecheckdict__['DOXY']/unit.oxy_sol(self.__rangecheckdict__['PSAL'], self.__rangecheckdict__['TEMP'], a4330=optode_flag) self.assign(self.__rangecheckdict__) def to_dict(self): return copy.deepcopy(self.__floatdict__) def to_dataframe(self): import pandas as pd df = pd.DataFrame() df['CYCLE'] = self.CYCLE_GRID df['SDN'] = self.SDN_GRID df['WMO'] = self.WMO df['LATITUDE'] = self.LATITUDE_GRID df['LONGITUDE'] = self.LONGITUDE_GRID df['PRES'] = self.PRES df['TEMP'] = self.TEMP df['TEMP_QC'] = self.TEMP_QC df['PSAL'] = self.PSAL df['PSAL_QC'] = self.PSAL_QC df['PDEN'] = self.PDEN if 'DOXY' in self.__floatdict__.keys(): df['DOXY'] = self.DOXY df['DOXY_QC'] = self.DOXY_QC if 'CHLA' in self.__floatdict__.keys(): df['CHLA'] = self.CHLA df['CHLA_QC'] = self.CHLA_QC if 'BBP700' in self.__floatdict__.keys(): df['BBP700'] = self.BBP700 df['BBP700_QC'] = self.BBP700_QC if 'CDOM' in self.__floatdict__.keys(): df['CDOM'] = self.CDOM df['CDOM_QC'] = self.CDOM_QC if 'DOXY_ADJUSTED' in self.__floatdict__.keys(): df['DOXY_ADJUSTED'] = self.DOXY_ADJUSTED df['DOXY_ADJUSTED_QC'] = self.DOXY_ADJUSTED_QC if 'CHLA_ADJUSTED' in self.__floatdict__.keys(): df['CHLA_ADJUSTED'] = self.CHLA_ADJUSTED df['CHLA_ADJUSTED_QC'] = self.CHLA_ADJUSTED_QC if 'BBP700_ADJUSTED' in self.__floatdict__.keys(): df['BBP700_ADJUSTED'] = self.BBP700_ADJUSTED df['BBP700_ADJUSTED_QC'] = self.BBP700_ADJUSTED_QC if 'CDOM_ADJUSTED' in self.__floatdict__.keys(): df['CDOM_ADJUSTED'] = self.CDOM_ADJUSTED df['CDOM_ADJUSTED_QC'] = self.CDOM_ADJUSTED_QC if 'O2Sat' in self.__floatdict__.keys(): df['O2Sat'] = self.O2Sat df['O2Sat_QC'] = self.O2Sat_QC self.df = df return copy.deepcopy(self.df) def get_track(self): self.track = track(self.__floatdict__) return self.track def get_ncep(self): if not hasattr(self, 'track'): self.get_track() self.NCEP = ncep_to_float_track('pres', self.track, local_path=self.ncep_path) return self.NCEP def get_woa(self): if not hasattr(self, 'track'): self.get_track() self.z_WOA, self.WOA, self.__WOAweights__ = woa_to_float_track(self.track, 'O2sat', local_path=self.woa_path) return self.WOA def calc_gains(self, ref='WOA'): if not hasattr(self, 'track'): self.get_track() if ref == 'NCEP': sys.stdout.write('In-air data contained in BRtraj file, NCEP not a valid reference for individual profile files, returning None\n') self.gains = None if ref == 'WOA': # check if reference data is already calculated if not hasattr(self, 'WOA'): self.get_woa() self.__WOAgains__, self.__WOAfloatref__, self.__WOAref__ = calc_gain(self.__floatdict__, dict(z=self.z_WOA, WOA=self.WOA), inair=False) self.gains = self.__WOAgains__ return self.gains def calc_fixed_error(self, fix_err=10): self.DOXY_ADJUSTED_ERROR = calc_fixed_doxy_adjusted_error(self.__floatdict__, fix_err=fix_err) self.__floatdict__['DOXY_ADJUSTED_ERROR'] = self.DOXY_ADJUSTED_ERROR return copy.deepcopy(self.DOXY_ADJUSTED_ERROR) def reassign_flags(self): return def assess_profile_flags(self): return def describe(self): if not hasattr(self, 'df'): self.to_dataframe() sys.stdout.write('Data for profile files for floats ') for i,w in enumerate(self.df.WMO.unique()): if i > 0: sys.stdout.write(', ') sys.stdout.write('{}'.format(int(w))) sys.stdout.write('\n') sys.stdout.write('Variables:\n') for k in self.__floatdict__.keys(): sys.stdout.write('{}\n'.format(k)) sys.stdout.write('\n') # ---------------------------------------------------------------------------- # FUNCTIONS # ---------------------------------------------------------------------------- def apply_gain(DOXY, G): DOXY_ADJUSTED = G*DOXY return DOXY_ADJUSTED def calc_doxy_error(DOXY, G, eG): return None def get_files(local_path, wmo_numbers, cycles=None, mission='B', mode='RD', verbose=True): local_path = Path(local_path) if mission == 'B': if '__bgcindex__' not in globals(): global __bgcindex__ __bgcindex__ = get_index() subset_index = __bgcindex__[__bgcindex__.wmo.isin(wmo_numbers)] elif mission == 'C': if '__globalindex__' not in globals(): global __globalindex__ __globalindex__ = get_index(index='global') subset_index = __globalindex__[__globalindex__.wmo.isin(wmo_numbers)] else: raise ValueError('Invalid input for parameter "mission"') if cycles is not None: subset_index = subset_index[subset_index.cycle.isin(cycles)] wcs = ['*' + a + b + '*.nc' for a in mission for b in mode] wcs = [w.replace('C','') for w in wcs] matches = [fn for sub in [fnmatch.filter(subset_index.file, w) for w in wcs] for fn in sub] subset_index = subset_index[subset_index.file.isin(matches)] local_files = [(local_path / dac / str(wmo) / 'profiles' / fn.split('/')[-1]) for dac, wmo, fn in zip(subset_index.dac, subset_index.wmo, subset_index.file)] remove_ix = [] for i,fn in enumerate(local_files): if not Path(fn).exists(): if verbose: sys.stdout.write('File {} does not exists locally - removing from returned list, suggest the user downloads using bgcArgo.io.get_argo(...)\n'.format(fn)) remove_ix.append(i) if len(remove_ix) > 0: for ix in remove_ix[::-1]: local_files.pop(ix) return local_files def organize_files(files): ''' Sort files according to time they were recorded. ''' lead_letter = files[0].name[0] if lead_letter == 'R' or lead_letter == 'D': index = get_index('global') else: if '__bgcindex__' not in globals(): global __bgcindex__ __bgcindex__ = get_index() index = __bgcindex__ dates = np.array([index[index.file.str.find(fn.name) != -1].date.iloc[0] for fn in files]) sorted_files = list(np.array(files)[np.argsort(dates)]) return sorted_files # def load_traj(local_path, wmo): # return trajData, trajFile def load_argo(local_path, wmo, grid=False, verbose=True): ''' Function to load in all data from a single float, using BRtraj, meta, and Sprof files. Args: local_path: local path of float data wmo: float ID number Returns: floatData: python dict() object with the following fields - floatName: WMO number, from input - floatType: Kind of float (APEX, ARVOR, etc.) - N_LEVELS: Number of depth levels, Argo dimension N_LEVELS - N_PROF: Number of profiles, Argo dimension N_PROF - LATITUDE: Latitude (-90, 90) for each profile - LONGITUDE: Longitude (-180, 180) for each profile - SDN: Serial Date Number for each profile - PRES: Pressure (dbar), compressed to vector (1D array) - TEMP: Temperature (deg C) - PSAL: Salinity (psu) if the variables are available, it will also contain: - DOXY: Dissolved Oxygen (micromole/kg) - O2sat: Oxygen percent saturation (%) - PPOX_DOXY: Oxygen partial pressure (mbar) [if avail.] - TRAJ_CYCLE: Cycle number for PPOX_DOXY [if avail.] - inair: Boolean to indicate if in-air data exists for all the variables listen above, there will also exist <PARAM>_QC fields for quality flags, and <PARAM>_ADJUSTED fields if they exist. CYCLES, LATITUDE, LONGITUDE, and SDN all also have analogous <VAR>_GRID fields that match the dimension of PRES, TEMP, PSAL, DOXY, and O2SAT Author: <NAME> Fisheries and Oceans Canada <EMAIL> Acknowledgement: this code is adapted from the SOCCOM SAGE_O2Argo matlab code, available via https://github.com/SOCCOM-BGCArgo/ARGO_PROCESSING, written by <NAME> & <NAME> Change log: - 2020-04-22: updated so that pressure mask determines all variables - need to add all quality flags to output - 2020-04-29: switched file/path handling from os module to pathlib - 2020-10-28: read variable DOXY from BRtraj file and convert to PPOX_DOXY if PPOX_DOXY not in file ''' # make local_path a Path() object from a string, account for windows path local_path = Path(local_path) dac = io.get_dac(wmo) if type(wmo) is not str: wmo = str(wmo) # check that necessary files exist - can continue without BRtraj file but # need Sprof and meta files BRtraj = local_path / dac / wmo / '{}_BRtraj.nc'.format(wmo) Sprof = local_path / dac / wmo / '{}_Sprof.nc'.format(wmo) meta = local_path / dac /wmo / '{}_meta.nc'.format(wmo) # check if BRtraj is there, flag for moving forward if not BRtraj_flag = True if not BRtraj.exists(): BRtraj_nc = None BRtraj_flag = False if verbose: sys.stdout.write('Continuing without BRtraj file\n') elif BRtraj.exists(): BRtraj_nc = Dataset(BRtraj, 'r') if 'PPOX_DOXY' not in BRtraj_nc.variables.keys() and 'DOXY' not in BRtraj_nc.variables.keys(): BRtraj_flag = False if verbose: sys.stdout.write('BRtraj file exists, but no in-air data exists, continuing without using BRtraj file\n') else: BRtraj_nc = None # Sprof and meta are required, so raise error if they are not there if not Sprof.exists(): raise FileNotFoundError('No such Sprof file: {}'.format(Sprof)) if not meta.exists(): raise FileNotFoundError('No such meta file: {}'.format(meta)) # load synthetic and meta profiles Sprof_nc = Dataset(Sprof, 'r') meta_nc = Dataset(meta, 'r') # number of profile cycles M = Sprof_nc.dimensions['N_LEVELS'].size N = Sprof_nc.dimensions['N_PROF'].size floatData = read_all_variables(Sprof_nc) floatData['SDN'] = floatData['JULD'] + mdates.datestr2num('1950-01-01') floatData['CYCLES'] = floatData['CYCLE_NUMBER'] floatData['WMO'] = wmo qc_keys = [s for s in floatData.keys() if '_QC' in s and 'PROFILE' not in s] for qc in qc_keys: floatData[qc] = io.read_qc(floatData[qc]) if grid: ftype = '' if 'PLATFORM_TYPE' in meta_nc.variables.keys(): for let in meta_nc.variables['PLATFORM_TYPE'][:].compressed(): ftype = ftype + let.decode('UTF-8') floatData['floatType'] = ftype floatData['SDN_GRID'] = np.tile(floatData['SDN'],(M,1)).T.flatten() floatData['CYCLE_GRID'] = np.tile(floatData['CYCLES'],(M,1)).T.flatten() floatData['LATITUDE_GRID'] = np.tile(floatData['LATITUDE'],(M,1)).T.flatten() floatData['LONGITUDE_GRID'] = np.tile(floatData['LONGITUDE'],(M,1)).T.flatten() floatData['PDEN'] = gsw.pot_rho_t_exact(gsw.SA_from_SP(floatData['PSAL'], floatData['PRES'], floatData['LONGITUDE_GRID'], floatData['LATITUDE_GRID']), floatData['TEMP'], floatData['PRES'], 0) if 'DOXY' in floatData.keys(): optode_flag = get_optode_type(int(wmo)) == 'AANDERAA_OPTODE_4330' floatData['O2Sat'] = 100*floatData['DOXY']/unit.oxy_sol(floatData['PSAL'], floatData['TEMP'], floatData['PDEN'], a4330=optode_flag) # match the fill values ix = np.logical_or(np.logical_or(floatData['PSAL'] >= 99999., floatData['TEMP'] >= 99999.), floatData['DOXY'] >= 99999.) floatData['O2Sat'][ix] = 99999. # get the worst QC flag from each quantity that goes into the calculation floatData['O2Sat_QC'] = util.get_worst_flag(floatData['TEMP_QC'], floatData['PSAL_QC'], floatData['DOXY_QC']) if BRtraj_flag: if 'PPOX_DOXY' in BRtraj_nc.variables.keys() and 'TEMP_DOXY' in BRtraj_nc.variables.keys(): floatData['PPOX_DOXY'] = BRtraj_nc.variables['PPOX_DOXY'][:].data.flatten() floatData['TEMP_DOXY'] = BRtraj_nc.variables['TEMP_DOXY'][:].data.flatten() floatData['TRAJ_CYCLE'] = BRtraj_nc.variables['CYCLE_NUMBER'][:].data.flatten() floatData['inair'] = True elif 'DOXY' in BRtraj_nc.variables.keys() and 'TEMP_DOXY' in BRtraj_nc.variables.keys(): # unit conversion from umol kg-1 to pO2, some shaky S and P assumptions? floatData['PPOX_DOXY'] = unit.doxy_to_pO2(unit.umol_per_sw_to_mmol_per_L( BRtraj_nc.variables['DOXY'][:].data.flatten(), 0, # salinity is 0 in air??? BRtraj_nc.variables['TEMP_DOXY'][:].data.flatten(), 0 # pressure is 0 in air??? ), 0, BRtraj_nc.variables['TEMP_DOXY'][:].data.flatten()) floatData['TEMP_DOXY'] = BRtraj_nc.variables['TEMP_DOXY'][:].data.flatten() floatData['TRAJ_CYCLE'] = BRtraj_nc.variables['CYCLE_NUMBER'][:].data.flatten() floatData['inair'] = True else: floatData['inair'] = False else: floatData['inair'] = False return floatData, Sprof, BRtraj, meta def load_profiles(files, verbose=False): common_variables = util.get_vars(files) core_files = len(files)*[' '] for i,f in enumerate(files): data_mode = f.name[1] if data_mode == 'D': core_files[i] = f.parent / f.name.replace('B','') else: test_file = f.parent / f.name.replace('B','') if not test_file.exists(): test_file = f.parent / f.name.replace('BR', 'D') if not test_file.exists(): raise FileNotFoundError('Corresponding core file not found') core_files[i] = test_file floatData = dict( floatName=[], N_LEVELS=[], N_PROF=[], CYCLES=np.array([], dtype=int), floatType=[] ) for v in ['PRES', 'TEMP', 'PSAL', 'SDN']: floatData[v] = np.array([]) floatData[v + '_QC'] = np.array([]) for v in ['WMO', 'LATITUDE', 'LONGITUDE', 'POSITION_QC', 'SDN_GRID', 'LATITUDE_GRID', 'LONGITUDE_GRID', 'CYCLE_GRID']: floatData[v] = np.array([]) for v in common_variables: floatData[v] = np.array([]) floatData[v + '_QC'] = np.array([]) if v + '_ADJUSTED' in common_variables: floatData[v + '_ADJUSTED'] = np.array([]) floatData[v + '_ADJUSTED' + '_QC'] = np.array([]) for fn, cn in zip(files, core_files): if verbose: print(fn, cn) # try to load the profile as absolute path or relative path try: nc = Dataset(fn, 'r') except: try: nc = Dataset(Path(ARGO_PATH) / fn, 'r') except: raise FileNotFoundError('No such file {} or {}'.format(fn, str(Path(ARGO_PATH) / fn))) try: cc = Dataset(cn, 'r') except: try: cc = Dataset(Path(ARGO_PATH) / cn, 'r') except: raise ValueError('Cannot get core Argo data, no such file {} or {}'.format(fn, str(Path(ARGO_PATH) / fn))) # number of profile cycles M = cc.dimensions['N_LEVELS'].size N = cc.dimensions['N_PROF'].size wmo = '' if N > 1: for let in nc.variables['PLATFORM_NUMBER'][:][0,:].compressed(): wmo = wmo + let.decode('UTF-8') else: for let in nc.variables['PLATFORM_NUMBER'][:].compressed(): wmo = wmo + let.decode('UTF-8') cycle = nc.variables['CYCLE_NUMBER'][:].data.flatten() ftype = '' if 'PLATFORM_TYPE' in nc.variables.keys(): for let in nc.variables['PLATFORM_TYPE'][:].compressed(): ftype = ftype + let.decode('UTF-8') floatData['floatName'] = floatData['floatName'] + [int(wmo)] floatData['N_LEVELS'] = floatData['N_LEVELS'] + [M] floatData['N_PROF'] = floatData['N_PROF'] + [N] floatData['CYCLES'] = np.append(floatData['CYCLES'], cycle) floatData['CYCLE_GRID'] = np.append(floatData['CYCLE_GRID'], np.array(N*M*[cycle[0]])) floatData['floatType'] = floatData['floatType'] + [ftype] floatData['WMO'] = np.append(floatData['WMO'], np.array(M*N*[wmo])) # load in variables that will be in every file floatData['PRES'] = np.append(floatData['PRES'], cc.variables['PRES'][:].data.flatten()) floatData['PRES_QC'] = np.append(floatData['PRES_QC'], io.read_qc(cc.variables['PRES_QC'][:].data.flatten())) floatData['TEMP'] = np.append(floatData['TEMP'], cc.variables['TEMP'][:].data.flatten()) floatData['TEMP_QC'] = np.append(floatData['TEMP_QC'], io.read_qc(cc.variables['TEMP_QC'][:].data.flatten())) floatData['PSAL'] = np.append(floatData['PSAL'], cc.variables['PSAL'][:].data.flatten()) floatData['PSAL_QC'] = np.append(floatData['PSAL_QC'], io.read_qc(cc.variables['PSAL_QC'][:].data.flatten())) floatData['SDN'] = np.append(floatData['SDN'], cc.variables['JULD'][:].data.flatten() + mdates.datestr2num('1950-01-01')) floatData['SDN_QC'] = np.append(floatData['SDN_QC'], io.read_qc(cc.variables['JULD_QC'][:].data.flatten())) floatData['SDN_GRID'] = np.append(floatData['SDN_GRID'], np.array(N*M*[np.nanmean(cc.variables['JULD'][:].data.flatten() + mdates.datestr2num('1950-01-01'))])) floatData['LATITUDE'] = np.append(floatData['LATITUDE'], cc.variables['LATITUDE'][:].data.flatten()) floatData['LATITUDE_GRID'] = np.append(floatData['LATITUDE_GRID'], np.array(N*M*[np.nanmean(cc.variables['LATITUDE'][:].data.flatten())])) floatData['LONGITUDE'] = np.append(floatData['LONGITUDE'], cc.variables['LONGITUDE'][:].data.flatten()) floatData['LONGITUDE_GRID'] = np.append(floatData['LONGITUDE_GRID'], np.array(N*M*[np.nanmean(cc.variables['LONGITUDE'][:].data.flatten())])) floatData['POSITION_QC'] = np.append(floatData['POSITION_QC'], io.read_qc(cc.variables['POSITION_QC'][:].data.flatten())) print(common_variables) # loop through other possible BGC variables for v in common_variables: var_check = v in nc.variables.keys() and 'N_LEVELS' in nc.variables[v].dimensions dtype_check = nc.variables[v].dtype == 'float32' or nc.variables[v].dtype == 'float64' check = var_check and dtype_check if check: floatData[v] = np.append(floatData[v], vertically_align(cc.variables['PRES'][:].data.flatten(), nc.variables['PRES'][:].data.flatten(), nc.variables[v][:].data.flatten())) floatData['dPRES'] = delta_pres(cc.variables['PRES'][:].data.flatten(), nc.variables['PRES'][:].data.flatten()) for v in floatData.keys(): v_qc = v + '_QC' if v_qc in common_variables: floatData[v_qc] = np.append(floatData[v_qc], io.read_qc(nc.variables[v_qc][:].data.flatten())) if 'DOXY' in floatData.keys(): floatData['O2Sat'] = 100*floatData['DOXY']/unit.oxy_sol(floatData['PSAL'], floatData['TEMP']) floatData['O2Sat_QC'] = util.get_worst_flag(floatData['TEMP_QC'], floatData['PSAL_QC'], floatData['DOXY_QC']) return floatData def read_all_variables(nc): ''' Read all variables and dimensions from an Argo netCDF file. Args: nc: a netCDF file object Returns: floatData: python dict with all variable and dimension names ''' floatData = dict() for name, dim in nc.dimensions.items(): floatData[name] = dim.size for name, var in nc.variables.items(): floatData[name] = var[:].data.flatten() return floatData def read_sprof_gridded_variables(nc): ''' Read all variables and dimensions from an Argo Sprof file, do not flatten arrays, keep as 2D arrays. Args: nc: a netCDF file object Returns: floatData: python dict with all variable and dimension names ''' floatData = dict() for name, dim in nc.dimensions.items(): floatData[name] = dim.size for name, var in nc.variables.items(): floatData[name] = var[:].data return floatData def read_history_qctest(nc): QC_ACTION = np.squeeze(nc.variables['HISTORY_ACTION'][:].data) actions = [] for row in QC_ACTION: rval = '' for let in row: rval = rval + let.decode('UTF-8') actions.append(rval.strip()) actions = np.array(actions) QC_TESTS =
np.squeeze(nc.variables['HISTORY_QCTEST'][:].data)
numpy.squeeze
#!/usr/bin/env python from __future__ import division, print_function, absolute_import import numpy as np from itertools import combinations from numpy.testing import assert_allclose, assert_, assert_raises, assert_equal import pywt # Check that float32, float64, complex64, complex128 are preserved. # Other real types get converted to float64. # complex256 gets converted to complex128 dtypes_in = [np.int8, np.float16, np.float32, np.float64, np.complex64, np.complex128] dtypes_out = [np.float64, np.float32, np.float32, np.float64, np.complex64, np.complex128] # test complex256 as well if it is available try: dtypes_in += [np.complex256, ] dtypes_out += [np.complex128, ] except AttributeError: pass def test_dwtn_input(): # Array-like must be accepted pywt.dwtn([1, 2, 3, 4], 'haar') # Others must not data = dict() assert_raises(TypeError, pywt.dwtn, data, 'haar') # Must be at least 1D assert_raises(ValueError, pywt.dwtn, 2, 'haar') def test_3D_reconstruct(): data = np.array([ [[0, 4, 1, 5, 1, 4], [0, 5, 26, 3, 2, 1], [5, 8, 2, 33, 4, 9], [2, 5, 19, 4, 19, 1]], [[1, 5, 1, 2, 3, 4], [7, 12, 6, 52, 7, 8], [2, 12, 3, 52, 6, 8], [5, 2, 6, 78, 12, 2]]]) wavelet = pywt.Wavelet('haar') for mode in pywt.Modes.modes: d = pywt.dwtn(data, wavelet, mode=mode) assert_allclose(data, pywt.idwtn(d, wavelet, mode=mode), rtol=1e-13, atol=1e-13) def test_dwdtn_idwtn_allwavelets(): rstate =
np.random.RandomState(1234)
numpy.random.RandomState
from hazma.rambo import generate_phase_space from hazma.rh_neutrino import RHNeutrino from hazma.parameters import ( Vud, GF, fpi, qe, charged_pion_mass as mpi, ) from hazma.field_theory_helper_functions.common_functions import ( minkowski_dot as LDot, ) from hazma.gamma_ray import gamma_ray_fsr import numpy as np import matplotlib.pyplot as plt sw = np.sqrt(0.222) def msqrd_n_to_pi_l_g(momenta, model): smix = model.stheta mx = model.mx ml = model.ml p1 = momenta[0] # lepton p2 = momenta[1] # pion p3 = momenta[2] # photon P = p1 + p2 + p3 s = LDot(P - p1, P - p1) t = LDot(P - p2, P - p2) return ( ( 8 * fpi ** 2 * GF ** 2 * qe ** 2 * smix ** 2 * ( -2 * ml ** 8 * mpi ** 2 + ml ** 6 * ( mpi ** 4 + mx ** 2 * (6 * mpi ** 2 - 2 * s) + 2 * mpi ** 2 * t + s * (s + 2 * t) ) + mx ** 2 * t * ( -2 * mx ** 4 * (mpi ** 2 - s) - (mpi ** 4 + s ** 2) * (mpi ** 2 - s - t) + 2 * mx ** 2 * (mpi ** 4 - s * (s + t)) ) - ml ** 4 * ( -3 * mpi ** 6 + mx ** 4 * (6 * mpi ** 2 - 4 * s) - mpi ** 2 * s * (3 * s + 4 * t) + mpi ** 4 * (5 * s + 4 * t) + s * (s ** 2 + 4 * s * t + 2 * t ** 2) + mx ** 2 * ( -5 * mpi ** 4 - s * (s - 2 * t) + mpi ** 2 * (4 * s + 6 * t) ) ) + ml ** 2 * ( 2 * mx ** 6 * (mpi ** 2 - s) - (mpi ** 4 + s ** 2) * (mpi ** 2 - s - t) * t + mx ** 4 * (-4 * mpi ** 4 - 2 * s * t + mpi ** 2 * (4 * s + 6 * t)) + mx ** 2 * ( 3 * mpi ** 6 + mpi ** 2 * s * (3 * s - 4 * t) - mpi ** 4 * (5 * s + 2 * t) + s * (-(s ** 2) + 2 * s * t + 4 * t ** 2) ) ) ) * Vud ** 2 ) / ((mpi ** 2 - s) ** 2 * (ml ** 2 - t) ** 2) / 2.0 ) def width_nu_l_l(model): """ Compute the width for right-handed neutrino to an active neutrino and two charged leptons. Returns ------- width: float Partial width for N -> nu + l + l. """ mx = model.mx ml = model.ml if mx < 2.0 * ml: return 0.0 smix = model.stheta return ( -(GF ** 2) * smix ** 2 * ( mx * np.sqrt(-4 * ml ** 2 + mx ** 2) * ( -(mx ** 6 * (1 + 4 * sw ** 2 + 8 * sw ** 4)) + 12 * ml ** 6 * (1 + 12 * sw ** 2 + 24 * sw ** 4) + 2 * ml ** 2 * mx ** 4 * (7 + 20 * sw ** 2 + 40 * sw ** 4) - 2 * ml ** 4 * mx ** 2 * (-1 + 36 * sw ** 2 + 72 * sw ** 4) ) - 48 * ( -(ml ** 4 * mx ** 4) - 8 * ml ** 6 * mx ** 2 * sw ** 2 * (1 + 2 * sw ** 2) + ml ** 8 * (1 + 12 * sw ** 2 + 24 * sw ** 4) ) * np.log((2 * ml) / (mx + np.sqrt(-4 * ml ** 2 + mx ** 2))) ) ) / (192.0 * mx ** 3 * np.pi ** 3) def msqrd_n_to_nu_l_l(momenta, model): """ Compute the squared matrix-element for a RH neutrino decaying into a neutrino and two charged leptons at leading order in the Fermi constant. Momenta are ordered as follows: {nu,l+,l-}. Parameters ---------- momenta: List List of NumPy arrays storing the four-momenta of the final state particles. Returns ------- msqrd: float The matrix element for N -> nu + l + l for the given model and four-momenta. """ pnu = momenta[0] plp = momenta[1] plm = momenta[2] P = pnu + plp + plm s = LDot(P - pnu, P - pnu) t = LDot(P - plp, P - plp) smix = model.stheta ml = model.ml mx = model.mx return ( 8 * GF ** 2 * smix ** 2 * (-1 + smix ** 2) * ( 2 * ml ** 4 * (1 + 4 * sw ** 2 + 8 * sw ** 4) + 2 * ml ** 2 * (mx ** 2 - s - 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * t) + (1 + 4 * sw ** 2 + 8 * sw ** 4) * (s ** 2 + 2 * s * t + 2 * t ** 2 - mx ** 2 * (s + 2 * t)) ) ) def msqrd_n_to_nu_l_l_g(momenta, model): k1 = momenta[0] k2 = momenta[1] k3 = momenta[2] k4 = momenta[3] smix = model.stheta ml = model.ml return ( 16 * GF ** 2 * qe ** 2 * smix ** 2 * (-1 + smix ** 2) * ( 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k1, k3) ** 2 * LDot(k2, k4) ** 2 * LDot(k3, k4) + 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k1, k2) ** 2 * LDot(k2, k4) * LDot(k3, k4) ** 2 + LDot(k1, k4) * ( (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k2, k4) ** 3 * (ml ** 2 - LDot(k3, k4)) + ml ** 2 * LDot(k3, k4) ** 2 * ( (ml + 4 * ml * sw ** 2) ** 2 + (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k2, k3) + (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4) ) + LDot(k2, k4) ** 2 * ( (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k2, k3) * (ml ** 2 - 2 * LDot(k3, k4)) + ml ** 2 * ( (ml + 4 * ml * sw ** 2) ** 2 + (-1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4) ) ) - LDot(k2, k4) * LDot(k3, k4) * ( -8 * ml ** 2 * sw ** 2 * (1 + 2 * sw ** 2) * LDot(k1, k4) + 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k2, k3) ** 2 + 2 * LDot(k2, k3) * ( (ml + 4 * ml * sw ** 2) ** 2 + (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4) ) + LDot(k3, k4) * ( ml ** 2 * (1 - 4 * sw ** 2 - 8 * sw ** 4) + (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4) ) ) ) + LDot(k1, k3) * ( (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k2, k4) ** 3 * (ml ** 2 - LDot(k3, k4)) + ml ** 2 * LDot(k3, k4) ** 2 * ( (ml + 4 * ml * sw ** 2) ** 2 + 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k1, k4) + LDot(k2, k3) + LDot(k3, k4) + 4 * sw ** 2 * (1 + 2 * sw ** 2) * (LDot(k2, k3) + LDot(k3, k4)) ) + LDot(k2, k4) ** 2 * ( ml ** 4 * (1 + 4 * sw ** 2) ** 2 + (1 + 4 * sw ** 2 + 8 * sw ** 4) * ( LDot(k2, k3) * (ml ** 2 - 2 * LDot(k3, k4)) + ml ** 2 * LDot(k3, k4) ) ) - LDot(k2, k4) * LDot(k3, k4) * ( 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k2, k3) ** 2 + (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4) * (-(ml ** 2) + 2 * LDot(k1, k4) + LDot(k3, k4)) + 2 * LDot(k2, k3) * ( (ml + 4 * ml * sw ** 2) ** 2 + (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k1, k4) + (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4) ) ) ) + LDot(k1, k2) * ( (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k2, k4) ** 3 * (ml ** 2 - LDot(k3, k4)) + LDot(k2, k4) * LDot(k3, k4) * ( -2 * LDot(k2, k3) * ( (ml + 4 * ml * sw ** 2) ** 2 + 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k1, k3) + LDot(k1, k4) + LDot(k2, k3) + 4 * sw ** 2 * (1 + 2 * sw ** 2) * (LDot(k1, k4) + LDot(k2, k3)) ) + (1 + 4 * sw ** 2 + 8 * sw ** 4) * (ml ** 2 - 2 * LDot(k1, k3) - 2 * LDot(k2, k3)) * LDot(k3, k4) - (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k3, k4) ** 2 ) + ml ** 2 * LDot(k3, k4) ** 2 * ( (ml + 4 * ml * sw ** 2) ** 2 + 2 * (1 + 4 * sw ** 2 + 8 * sw ** 4) * LDot(k1, k3) + LDot(k2, k3) + LDot(k3, k4) + 4 * sw ** 2 * (1 + 2 * sw ** 2) * (LDot(k2, k3) + LDot(k3, k4)) ) + LDot(k2, k4) ** 2 * ( ml ** 4 * (1 + 4 * sw ** 2) ** 2 + (1 + 4 * sw ** 2 + 8 * sw ** 4) * ( ml ** 2 * (2 * (LDot(k1, k3) + LDot(k1, k4)) + LDot(k2, k3)) + ( ml ** 2 - 2 * LDot(k1, k3) - 2 * LDot(k1, k4) - 2 * LDot(k2, k3) ) * LDot(k3, k4) ) ) ) ) ) / (LDot(k2, k4) ** 2 * LDot(k3, k4) ** 2) def __dnde_rambo(photon_energy, mx, masses, msqrd, width, nevents=1000): if mx * (mx - 2 * photon_energy) < np.sum(masses) ** 2: return (0.0, 0.0) # Energy of the photon in the rest frame where final state particles # (excluding the photon) e_gamma = (photon_energy * mx) / np.sqrt(mx * (-2 * photon_energy + mx)) # Total energy of the final state particles (excluding the photon) in their # rest frame cme = np.sqrt(mx * (-2 * photon_energy + mx)) # Number of final state particles nfsp = len(masses) # Generate events for the final state particles in their rest frame events = generate_phase_space(masses, cme, nevents) # Photon momenta in N + photon rest frame phis = np.random.rand(nevents) * 2.0 * np.pi cts = 2.0 * np.random.rand(nevents) - 1.0 g_momenta = [ np.array( [ e_gamma, e_gamma * np.cos(phi) * np.sqrt(1 - ct ** 2), e_gamma * np.sin(phi) * np.sqrt(1 - ct ** 2), e_gamma * ct, ] ) for phi, ct in zip(phis, cts) ] # momenta in the rest frame of N + photon fsp_momenta = [ np.append(event[:-1], pg) for event, pg in zip(events, g_momenta) ] weights = [event[-1] for event in events] terms = [ weight * msqrd(ps_fps.reshape((nfsp + 1, 4))) for ps_fps, weight in zip(fsp_momenta, weights) ] res = np.average(terms) std = np.std(terms) / np.sqrt(nevents) pre = ( 1.0 / (2.0 * mx) / width * photon_energy / (16 * np.pi ** 3) * (4.0 * np.pi) ) return pre * res, pre * std def dnde_rambo(photon_energies, mx, masses, msqrd, width, nevents=1000): if hasattr(photon_energies, "__len__"): return np.array( [ __dnde_rambo(e, mx, masses, msqrd, width, nevents=nevents) for e in photon_energies ] ) return __dnde_rambo( photon_energies, mx, masses, msqrd, width, nevents=nevents ) def test_n_to_pi_e_g(): model = RHNeutrino(500.0, 1e-3, "e") es = np.logspace(-2, np.log10(model.mx), 200) dndes = model.dnde_pi_l_fsr(es) msqrd = lambda moms: msqrd_n_to_pi_l_g(moms, model) dndesr = dnde_rambo( es, model.mx, [model.ml, mpi], msqrd, model.width_pi_l() ) plt.plot(es, [dnde[0] for dnde in dndesr]) plt.fill_between( es, [dnde[0] + dnde[1] for dnde in dndesr], [dnde[0] - dnde[1] for dnde in dndesr], alpha=0.7, color="mediumorchid", ) plt.plot(es, dndes, ls="--", c="k") plt.yscale("log") plt.xscale("log") plt.xlim([np.min(es), np.max(es)]) plt.show() def test_n_to_pi_mu_g(): model = RHNeutrino(500.0, 1e-3, "mu") es = np.logspace(-2, np.log10(model.mx), 200) dndes = model.dnde_pi_l_fsr(es) msqrd = lambda moms: msqrd_n_to_pi_l_g(moms, model) dndesr = dnde_rambo( es, model.mx, [model.ml, mpi], msqrd, model.width_pi_l() ) plt.plot(es, [dnde[0] for dnde in dndesr]) plt.fill_between( es, [dnde[0] + dnde[1] for dnde in dndesr], [dnde[0] - dnde[1] for dnde in dndesr], alpha=0.7, color="mediumorchid", ) plt.plot(es, dndes, ls="--", c="k") plt.yscale("log") plt.xscale("log") plt.xlim([np.min(es), np.max(es)]) plt.show() def test_n_to_nu_e_e_g(): model = RHNeutrino(500.0, 1e-3, "e") es = np.logspace(-2, np.log10(model.mx), 100) msqrd = lambda moms: msqrd_n_to_nu_l_l_g(moms, model) msqrd_tree = lambda moms: msqrd_n_to_nu_l_l(moms, model) dndes = gamma_ray_fsr( [model.mx], [0.0, model.ml, model.ml, 0.0], model.mx, mat_elem_sqrd_tree=msqrd_tree, mat_elem_sqrd_rad=msqrd, num_ps_pts=500000, num_bins=50, ) dndesr = dnde_rambo( es, model.mx, [0.0, model.ml, model.ml], msqrd, width_nu_l_l(model) ) print([dnde[0] for dnde in dndesr]) plt.plot(es, [dnde[0] for dnde in dndesr]) plt.fill_between( es, [dnde[0] + dnde[1] for dnde in dndesr], [dnde[0] - dnde[1] for dnde in dndesr], alpha=0.7, color="mediumorchid", ) plt.plot(dndes[0], dndes[1]) plt.yscale("log") plt.xscale("log") plt.xlim([
np.min(es)
numpy.min
#! /usr/bin/env python """ Module with detection algorithms. """ from __future__ import division, print_function __author__ = '<NAME>' __all__ = ['detection', 'mask_source_centers', 'peak_coordinates'] import numpy as np from scipy.ndimage.filters import correlate from skimage import feature from astropy.stats import sigma_clipped_stats from astropy.stats import gaussian_fwhm_to_sigma, gaussian_sigma_to_fwhm from astropy.table import Table from astropy.modeling import models, fitting from skimage.feature import peak_local_max from ..var import (mask_circle, pp_subplots, get_square, frame_center, fit_2dgaussian, frame_filter_lowpass) from ..conf.utils_conf import sep from .snr import snr_ss from .frame_analysis import frame_quick_report # TODO: Add the option of computing and thresholding an S/N map def detection(array, psf, bkg_sigma=1, mode='lpeaks', matched_filter=False, mask=True, snr_thresh=5, plot=True, debug=False, full_output=False, verbose=True, save_plot=None, plot_title=None, angscale=False, pxscale=0.01): """ Finds blobs in a 2d array. The algorithm is designed for automatically finding planets in post-processed high contrast final frames. Blob can be defined as a region of an image in which some properties are constant or vary within a prescribed range of values. See <Notes> below to read about the algorithm details. Parameters ---------- array : array_like, 2d Input frame. psf : array_like Input psf, normalized with ``vip_hci.phot.normalize_psf``. bkg_sigma : float, optional The number standard deviations above the clipped median for setting the background level. mode : {'lpeaks','log','dog'}, optional Sets with algorithm to use. Each algorithm yields different results. matched_filter : bool, optional Whether to correlate with the psf of not. mask : bool, optional Whether to mask the central region (circular aperture of 2*fwhm radius). snr_thresh : float, optional SNR threshold for deciding whether the blob is a detection or not. plot : bool, optional If True plots the frame showing the detected blobs on top. debug : bool, optional Whether to print and plot additional/intermediate results. full_output : bool, optional Whether to output just the coordinates of blobs that fulfill the SNR constraint or a table with all the blobs and the peak pixels and SNR. verbose : bool, optional Whether to print to stdout information about found blobs. save_plot: string If provided, the plot is saved to the path. plot_title : str, optional Title of the plot. angscale: bool, optional If True the plot axes are converted to angular scale. pxscale : float, optional Pixel scale in arcseconds/px. Default 0.01 for Keck/NIRC2. Returns ------- yy, xx : array_like Two vectors with the y and x coordinates of the centers of the sources (potential planets). If full_output is True then a table with all the candidates that passed the 2d Gaussian fit constrains and their S/N is returned. Notes ----- The FWHM of the PSF is measured directly on the provided array. If the parameter matched_filter is True then the PSF is used to run a matched filter (correlation) which is equivalent to a convolution filter. Filtering the image will smooth the noise and maximize detectability of objects with a shape similar to the kernel. The background level or threshold is found with sigma clipped statistics (5 sigma over the median) on the image/correlated image. Then 5 different strategies can be used to detect the blobs (potential planets): Local maxima + 2d Gaussian fit. The local peaks above the background on the (correlated) frame are detected. A maximum filter is used for finding local maxima. This operation dilates the original image and merges neighboring local maxima closer than the size of the dilation. Locations where the original image is equal to the dilated image are returned as local maxima. The minimum separation between the peaks is 1*FWHM. A 2d Gaussian fit is done on each of the maxima constraining the position on the subimage and the sigma of the fit. Finally the blobs are filtered based on its SNR. Laplacian of Gaussian + 2d Gaussian fit. It computes the Laplacian of Gaussian images with successively increasing standard deviation and stacks them up in a cube. Blobs are local maximas in this cube. LOG assumes that the blobs are again assumed to be bright on dark. A 2d Gaussian fit is done on each of the candidates constraining the position on the subimage and the sigma of the fit. Finally the blobs are filtered based on its SNR. Difference of Gaussians. This is a faster approximation of LoG approach. In this case the image is blurred with increasing standard deviations and the difference between two successively blurred images are stacked up in a cube. DOG assumes that the blobs are again assumed to be bright on dark. A 2d Gaussian fit is done on each of the candidates constraining the position on the subimage and the sigma of the fit. Finally the blobs are filtered based on its SNR. """ def check_blobs(array_padded, coords_temp, fwhm, debug): y_temp = coords_temp[:,0] x_temp = coords_temp[:,1] coords = [] # Fitting a 2d gaussian to each local maxima position for y, x in zip(y_temp, x_temp): subsi = 2 * int(np.ceil(fwhm)) if subsi %2 == 0: subsi += 1 subim, suby, subx = get_square(array_padded, subsi, y+pad, x+pad, position=True, force=True) cy, cx = frame_center(subim) gauss = models.Gaussian2D(amplitude=subim.max(), x_mean=cx, y_mean=cy, theta=0, x_stddev=fwhm*gaussian_fwhm_to_sigma, y_stddev=fwhm*gaussian_fwhm_to_sigma) sy, sx = np.indices(subim.shape) fitter = fitting.LevMarLSQFitter() fit = fitter(gauss, sx, sy, subim) # checking that the amplitude is positive > 0 # checking whether the x and y centroids of the 2d gaussian fit # coincide with the center of the subimage (within 2px error) # checking whether the mean of the fwhm in y and x of the fit # are close to the FWHM_PSF with a margin of 3px fwhm_y = fit.y_stddev.value*gaussian_sigma_to_fwhm fwhm_x = fit.x_stddev.value*gaussian_sigma_to_fwhm mean_fwhm_fit = np.mean([np.abs(fwhm_x), np.abs(fwhm_y)]) if fit.amplitude.value > 0 \ and np.allclose(fit.y_mean.value, cy, atol=2) \ and np.allclose(fit.x_mean.value, cx, atol=2) \ and np.allclose(mean_fwhm_fit, fwhm, atol=3): coords.append((suby + fit.y_mean.value, subx + fit.x_mean.value)) if debug: print('Coordinates (Y,X): {:.3f},{:.3f}'.format(y, x)) print('fit peak = {:.3f}'.format(fit.amplitude.value)) msg = 'fwhm_y in px = {:.3f}, fwhm_x in px = {:.3f}' print(msg.format(fwhm_y, fwhm_x)) print('mean fit fwhm = {:.3f}'.format(mean_fwhm_fit)) pp_subplots(subim, colorb=True, axis=False, dpi=60) return coords def print_coords(coords): print('Blobs found:', len(coords)) print(' ycen xcen') print('------ ------') for i in range(len(coords[:, 0])): print('{:.3f} \t {:.3f}'.format(coords[i,0], coords[i,1])) def print_abort(): if verbose: print(sep) print('No potential sources found') print(sep) # -------------------------------------------------------------------------- if array.ndim != 2: raise TypeError('Input array is not a frame or 2d array') if psf.ndim != 2 and psf.shape[0] < array.shape[0]: raise TypeError('Input psf is not a 2d array or has wrong size') # Getting the FWHM from the PSF array cenpsf = frame_center(psf) outdf = fit_2dgaussian(psf, cent=(cenpsf), debug=debug, full_output=True) fwhm_x, fwhm_y = outdf['fwhm_x'], outdf['fwhm_y'] fwhm = np.mean([fwhm_x, fwhm_y]) if verbose: print('FWHM = {:.2f} pxs\n'.format(fwhm)) if debug: print('FWHM_y', fwhm_y) print('FWHM_x', fwhm_x) # Masking the center, 2*lambda/D is the expected IWA if mask: array = mask_circle(array, radius=fwhm) # Matched filter if matched_filter: frame_det = correlate(array, psf) else: frame_det = array # Estimation of background level _, median, stddev = sigma_clipped_stats(frame_det, sigma=5, iters=None) bkg_level = median + (stddev * bkg_sigma) if debug: print('Sigma clipped median = {:.3f}'.format(median)) print('Sigma clipped stddev = {:.3f}'.format(stddev)) print('Background threshold = {:.3f}'.format(bkg_level)) print() if mode == 'lpeaks' or mode == 'log' or mode == 'dog': # Padding the image with zeros to avoid errors at the edges pad = 10 array_padded = np.lib.pad(array, pad, 'constant', constant_values=0) if debug and plot and matched_filter: print('Input frame after matched filtering:') pp_subplots(frame_det, rows=2, colorb=True) if mode == 'lpeaks': # Finding local peaks (can be done in the correlated frame) coords_temp = peak_local_max(frame_det, threshold_abs=bkg_level, min_distance=int(np.ceil(fwhm)), num_peaks=20) coords = check_blobs(array_padded, coords_temp, fwhm, debug) coords = np.array(coords) if verbose and coords.shape[0] > 0: print_coords(coords) elif mode == 'log': sigma = fwhm*gaussian_fwhm_to_sigma coords = feature.blob_log(frame_det.astype('float'), threshold=bkg_level, min_sigma=sigma-.5, max_sigma=sigma+.5) if len(coords) == 0: print_abort() return 0, 0 coords = coords[:,:2] coords = check_blobs(array_padded, coords, fwhm, debug) coords = np.array(coords) if coords.shape[0] > 0 and verbose: print_coords(coords) elif mode == 'dog': sigma = fwhm*gaussian_fwhm_to_sigma coords = feature.blob_dog(frame_det.astype('float'), threshold=bkg_level, min_sigma=sigma-.5, max_sigma=sigma+.5) if len(coords) == 0: print_abort() return 0, 0 coords = coords[:, :2] coords = check_blobs(array_padded, coords, fwhm, debug) coords = np.array(coords) if coords.shape[0] > 0 and verbose: print_coords(coords) else: msg = 'Wrong mode. Available modes: lpeaks, log, dog.' raise TypeError(msg) if coords.shape[0] == 0: print_abort() return 0, 0 yy = coords[:, 0] xx = coords[:, 1] yy_final = [] xx_final = [] yy_out = [] xx_out = [] snr_list = [] xx -= pad yy -= pad # Checking S/N for potential sources for i in range(yy.shape[0]): y = yy[i] x = xx[i] if verbose: print(sep) print('X,Y = ({:.1f},{:.1f})'.format(x,y)) snr = snr_ss(array, (x,y), fwhm, False, verbose=False) snr_list.append(snr) if snr >= snr_thresh: if verbose: _ = frame_quick_report(array, fwhm, (x,y), verbose=verbose) yy_final.append(y) xx_final.append(x) else: yy_out.append(y) xx_out.append(x) if verbose: print('S/N constraint NOT fulfilled (S/N = {:.3f})'.format(snr)) if debug: _ = frame_quick_report(array, fwhm, (x,y), verbose=verbose) if debug or full_output: table = Table([yy.tolist(), xx.tolist(), snr_list], names=('y', 'x', 'px_snr')) table.sort('px_snr') yy_final =
np.array(yy_final)
numpy.array
# General Library import pandas as pd import numpy as np # Clustering Implementation from KMeans import KMeans from dbscan import DBSCAN from Agglomerative import Agglomerative from Metric import clustering_accuracy_score # Sklearn Library from sklearn import datasets from sklearn.cluster import KMeans as sklearn_KMeans from sklearn.cluster import AgglomerativeClustering as sklearn_AgglomerativeClustering from sklearn.cluster import DBSCAN as sklearn_DBSCAN from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split # Uncomment below code to load iris # iris = datasets.load_iris() # X = iris.data # y = iris.target # read data file_path = "iris.data" df = pd.read_csv(file_path, header=None) X = df.iloc[:,:-1] y_temp = df.iloc[:,-1:] y = y_temp.replace({'Iris-setosa' : 0, 'Iris-versicolor' : 1, 'Iris-virginica' : 2}) number_of_cluster = 3 kf = StratifiedKFold(n_splits=2) # KMeans model kmeans = KMeans(number_of_cluster) sk_kmeans = sklearn_KMeans(n_clusters=number_of_cluster) # Agglomerative parameter for linkage linkage_list = ['single', 'complete', 'average', 'average-group'] # DBSCAN model epss = [0.5, 1] min_ptss = [4, 5] # Accuracy Mean Count Initialization # Accuracy Mean Count Initialization kmeans_accuracy = 0 sk_kmeans_accuracy = 0 agglo_accuracy_single = 0 agglo_accuracy_complete = 0 agglo_accuracy_average = 0 agglo_accuracy_average_group = 0 sk_agglo_accuracy_single = 0 sk_agglo_accuracy_complete = 0 sk_agglo_accuracy_average = 0 dbscan_accuracy = 0 sk_dbscan_accuracy = 0 print ('=== ACCURACY FROM PREDICT ===') print () k = 0 for train_index, test_index in kf.split(X, y): print (str(k) + '-fold') X_train, y_train = X.iloc[train_index], y.iloc[train_index] X_test, y_test = X.iloc[test_index], y.iloc[test_index] # KMeans kmeans.fit(np.asarray(X_train)) result = kmeans.predict(np.asarray(X_test)) accuracy, dict = clustering_accuracy_score(np.asarray(y_test), np.asarray(result)) kmeans_accuracy += accuracy print ('KMeans') print ('Accuracy\t', accuracy) print ('Format {Real class : cluster}') print ('Dict\t\t', str(dict)) print () sk_kmeans.fit(X_train) sk_result = sk_kmeans.predict(X_test) accuracy, dict = clustering_accuracy_score(np.asarray(y_test), np.asarray(sk_result)) sk_kmeans_accuracy += accuracy print ('Sklearn KMeans') print ('Accuracy\t', accuracy) print ('Format {Real class : cluster}') print ('Dict\t\t', str(dict)) print () # Agglomerative for linkage_type in linkage_list : agglo = Agglomerative(number_of_cluster, linkage_type) agglo.fit(X_train) result = agglo.predict(X_test) accuracy, dict = clustering_accuracy_score(np.asarray(y_test), np.asarray(result)) if linkage_type == 'single' : agglo_accuracy_single += accuracy elif linkage_type == 'complete' : agglo_accuracy_complete += accuracy elif linkage_type == 'average' : agglo_accuracy_average += accuracy elif linkage_type == 'average-group' : agglo_accuracy_average_group += accuracy print ('Agglomerative - ' + str(linkage_type)) print ('Accuracy\t', accuracy) print ('Format {Real class : cluster}') print ('Dict\t\t', str(dict)) print () # DBSCAN for i in range (0, len(epss)) : eps = epss[i] min_pts = min_ptss[i] dbscan = DBSCAN(eps, min_pts) sk_dbscan = sklearn_DBSCAN(eps=eps, min_samples=min_pts) dbscan.fit(X_train) result = dbscan.predict(X_test) accuracy, dict = clustering_accuracy_score(
np.asarray(y_test)
numpy.asarray
import numpy as np import pandas as pd from tensorflow import keras from tensorflow.keras import layers import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt master_url_root = "https://raw.githubusercontent.com/numenta/NAB/master/data/" df_small_noise_url_suffix = "artificialNoAnomaly/art_daily_small_noise.csv" df_small_noise_url = master_url_root + df_small_noise_url_suffix df_small_noise = pd.read_csv( df_small_noise_url, parse_dates=True, index_col="timestamp" ) df_daily_jumpsup_url_suffix = "artificialWithAnomaly/art_daily_jumpsup.csv" df_daily_jumpsup_url = master_url_root + df_daily_jumpsup_url_suffix df_daily_jumpsup = pd.read_csv( df_daily_jumpsup_url, parse_dates=True, index_col="timestamp" ) print(df_small_noise.head()) print(df_daily_jumpsup.head()) fig, ax = plt.subplots() df_small_noise.plot(legend=False, ax=ax) plt.show(block=True) fig, ax = plt.subplots() df_daily_jumpsup.plot(legend=False, ax=ax) plt.show(block=True) # Normalize and save the mean and std we get, # for normalizing test data. training_mean = df_small_noise.mean() training_std = df_small_noise.std() df_training_value = (df_small_noise - training_mean) / training_std print("Number of training samples:", len(df_training_value)) # CREATE SEQUENCE TIME_STEPS = 288 # Generated training sequences for use in the model. def create_sequences(values, time_steps=TIME_STEPS): output = [] for i in range(len(values) - time_steps): output.append(values[i : (i + time_steps)]) return
np.stack(output)
numpy.stack
import pydicom import numpy as np import colorsys import random import cv2 from skimage.measure import find_contours import matplotlib.pyplot as plt from matplotlib import patches def random_colors(N, bright=True): """ Generate random colors. To get visually distinct colors, generate them in HSV space then convert to RGB. Args: N (int): Number of colors. """ brightness = 1.0 if bright else 0.7 hsv = [(i / N, 1, brightness) for i in range(N)] colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) random.shuffle(colors) return colors # based on functions in: https://github.com/matterport/Mask_RCNN/blob/master/mrcnn/visualize.py def display_images(image_ids, titles=None, cols=3, cmap="gray", norm=None, interpolation=None): """Display images given image ids. Args: image_ids (list): List of image ids. TODO: figsize should not be hardcoded """ titles = titles if titles is not None else [""] * len(image_ids) rows = len(image_ids) // cols + 1 plt.figure(figsize=(14, 14 * rows // cols)) i = 1 for image_id, title in zip(image_ids, titles): plt.subplot(rows, cols, i) plt.title(title, fontsize=9) plt.axis("off") image = load_dicom_image(image_id, rescale=True) plt.imshow(image, cmap=cmap, norm=norm, interpolation=interpolation) i += 1 plt.show() def load_dicom_image(image_id, to_RGB=False, rescale=False): """ Load a DICOM image. Args: image_id (str): image id (filepath). to_RGB (bool, optional): Convert grayscale image to RGB. Returns: image array. """ ds = pydicom.dcmread(image_id) try: image = ds.pixel_array except Exception: msg = ( "Could not read pixel array from DICOM with TransferSyntaxUID " + ds.file_meta.TransferSyntaxUID + ". Likely unsupported compression format." ) print(msg) if rescale: max_pixel_value = np.amax(image) min_pixel_value = np.amin(image) if max_pixel_value >= 255: # print("Input image pixel range exceeds 255, rescaling for visualization.") pixel_range = np.abs(max_pixel_value - min_pixel_value) pixel_range = pixel_range if pixel_range != 0 else 1 image = image.astype(np.float32) / pixel_range * 255 image = image.astype(np.uint8) if to_RGB: # If grayscale. Convert to RGB for consistency. if len(image.shape) != 3 or image.shape[2] != 3: image = np.stack((image,) * 3, -1) return image def load_mask(image_id, dataset): """Load instance masks for the given image. Masks can be different types, mask is a binary true/false map of the same size as the image. """ # annotations = imgs_anns[image_id] annotations = dataset.get_annotations_by_image_id(image_id) count = len(annotations) print("Number of annotations: %d" % count) image = load_dicom_image(image_id) width = image.shape[1] height = image.shape[0] if count == 0: print("No annotations") mask = np.zeros((height, width, 1), dtype=np.uint8) class_ids = np.zeros((1,), dtype=np.int32) else: mask = np.zeros((height, width, count), dtype=np.uint8) class_ids = np.zeros((count,), dtype=np.int32) for i, a in enumerate(annotations): label_id = a["labelId"] annotation_mode = dataset.label_id_to_class_annotation_mode(label_id) # print(annotation_mode) if annotation_mode == "bbox": # Bounding Box x = int(a["data"]["x"]) y = int(a["data"]["y"]) w = int(a["data"]["width"]) h = int(a["data"]["height"]) mask_instance = mask[:, :, i].copy() cv2.rectangle(mask_instance, (x, y), (x + w, y + h), 255, -1) mask[:, :, i] = mask_instance # FreeForm or Polygon elif annotation_mode == "freeform" or annotation_mode == "polygon": vertices = np.array(a["data"]["vertices"]) vertices = vertices.reshape((-1, 2)) mask_instance = mask[:, :, i].copy() cv2.fillPoly(mask_instance, np.int32([vertices]), (255, 255, 255)) mask[:, :, i] = mask_instance # Line elif annotation_mode == "line": vertices = np.array(a["data"]["vertices"]) vertices = vertices.reshape((-1, 2)) mask_instance = mask[:, :, i].copy() cv2.polylines(mask_instance, np.int32([vertices]), False, (255, 255, 255), 12) mask[:, :, i] = mask_instance elif annotation_mode == "location": # Bounding Box x = int(a["data"]["x"]) y = int(a["data"]["y"]) mask_instance = mask[:, :, i].copy() cv2.circle(mask_instance, (x, y), 7, (255, 255, 255), -1) mask[:, :, i] = mask_instance elif annotation_mode == "mask": mask_instance = mask[:, :, i].copy() if a.data["foreground"]: for i in a.data["foreground"]: mask_instance = cv2.fillPoly(mask_instance, [np.array(i, dtype=np.int32)], (255, 255, 255)) if a.data["background"]: for i in a.data["background"]: mask_instance = cv2.fillPoly(mask_instance, [np.array(i, dtype=np.int32)], (0,0,0)) mask[:, :, i] = mask_instance elif annotation_mode is None: print("Not a local instance") # load class id class_ids[i] = dataset.label_id_to_class_id(label_id) return mask.astype(np.bool), class_ids.astype(np.int32) def apply_mask(image, mask, color, alpha=0.3): """Apply the given mask to the image. Args: image: height, widht, channel. Returns: image with applied color mask. """ for c in range(3): image[:, :, c] = np.where( mask == 1, image[:, :, c] * (1 - alpha) + alpha * color[c] * 255, image[:, :, c] ) return image def extract_bboxes(mask): """Compute bounding boxes from masks. Args: mask [height, width, num_instances]: Mask pixels are either 1 or 0. Returns: bounding box array [num_instances, (y1, x1, y2, x2)]. """ boxes = np.zeros([mask.shape[-1], 4], dtype=np.int32) for i in range(mask.shape[-1]): m = mask[:, :, i] # Bounding box. horizontal_indicies = np.where(np.any(m, axis=0))[0] vertical_indicies = np.where(np.any(m, axis=1))[0] if horizontal_indicies.shape[0]: x1, x2 = horizontal_indicies[[0, -1]] y1, y2 = vertical_indicies[[0, -1]] # x2 and y2 should not be part of the box. Increment by 1. x2 += 1 y2 += 1 else: # No mask for this instance. Might happen due to # resizing or cropping. Set bbox to zeros x1, x2, y1, y2 = 0, 0, 0, 0 boxes[i] = np.array([y1, x1, y2, x2]) return boxes.astype(np.int32) def get_image_ground_truth(image_id, dataset): """Load and return ground truth data for an image (image, mask, bounding boxes). Args: image_id: Image id. Returns: image: [height, width, 3] class_ids: [instance_count] Integer class IDs bbox: [instance_count, (y1, x1, y2, x2)] mask: [height, width, instance_count]. The height and width are those of the image unless use_mini_mask is True, in which case they are defined in MINI_MASK_SHAPE. """ # image = load_dicom_image(image_id, to_RGB=True) image = load_dicom_image(image_id, to_RGB=True, rescale=True) mask, class_ids = load_mask(image_id, dataset) _idx =
np.sum(mask, axis=(0, 1))
numpy.sum
import numpy as np from sklearn.decomposition import PCA import pandas as pd import matplotlib.pyplot as plt import random import seaborn as sns from sklearn.cluster import KMeans from sklearn.metrics import confusion_matrix from sklearn.metrics.cluster import adjusted_rand_score from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split import pandas.util.testing as tm from keras.datasets import mnist import tensorflow_datasets as tfds import tensorflow as tf from google.colab import files import sys import itertools as it #@title ElasticNetSubspaceClustering import warnings import progressbar import spams import time from scipy import sparse from sklearn import cluster from sklearn.base import BaseEstimator, ClusterMixin from sklearn.decomposition import sparse_encode from sklearn.linear_model import orthogonal_mp from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import normalize from sklearn.utils import check_random_state, check_array, check_symmetric class SelfRepresentation(BaseEstimator, ClusterMixin): def __init__(self, n_clusters=8, affinity='symmetrize', random_state=None, n_init=20, n_jobs=1): self.n_clusters = n_clusters self.affinity = affinity self.random_state = random_state self.n_init = n_init self.n_jobs = n_jobs def fit(self, X, y=None): X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) time_base = time.time() self._self_representation(X) self.timer_self_representation_ = time.time() - time_base self._representation_to_affinity() self._spectral_clustering() self.timer_time_ = time.time() - time_base return self def fit_self_representation(self, X, y=None): X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) time_base = time.time() self._self_representation(X) self.timer_self_representation_ = time.time() - time_base return self def _representation_to_affinity(self): normalized_representation_matrix_ = normalize(self.representation_matrix_, 'l2') if self.affinity == 'symmetrize': self.affinity_matrix_ = 0.5 * (np.absolute(normalized_representation_matrix_) + np.absolute(normalized_representation_matrix_.T)) elif self.affinity == 'nearest_neighbors': neighbors_graph = kneighbors_graph(normalized_representation_matrix_, 3, mode='connectivity', include_self=False) self.affinity_matrix_ = 0.5 * (neighbors_graph + neighbors_graph.T) def _spectral_clustering(self): affinity_matrix_ = check_symmetric(self.affinity_matrix_) random_state = check_random_state(self.random_state) laplacian = sparse.csgraph.laplacian(affinity_matrix_, normed=True) _, vec = sparse.linalg.eigsh(sparse.identity(laplacian.shape[0]) - laplacian, k=self.n_clusters, sigma=None, which='LA') embedding = normalize(vec) _, self.labels_, _ = cluster.k_means(embedding, self.n_clusters, random_state=random_state, n_init=self.n_init) def active_support_elastic_net(X, y, alpha, tau=1.0, algorithm='spams', support_init='knn', support_size=100, maxiter=40): n_samples = X.shape[0] if n_samples <= support_size: # skip active support search for small scale data supp =
np.arange(n_samples, dtype=int)
numpy.arange
import numpy as np from scipy.stats import norm import matplotlib.pyplot as plt # In[Functions]: # Knowledge Gradient with Correlated Beliefs (KGCB) # notation for the following: # K is the number of alternatives. # M is the number of time-steps # K x M stands for a matrix with K rows and M columns # This function takes in # mu: true values for the mean (K x 1) # mu_0: prior for the mean (K x 1) # beta_w: measurement precision (1/lambda(x)) (K x 1) # cov_m: initial covariance matrix (K,K) # m: how many measurements will be made (scalar) # And returns # mu_est: Final estimates for the means (K x 1) # oc: Opportunity cost at each iteration (1 x M) # choices: Alternatives picked at each iteration (1 x M) # mu_est_all: Estimates at each iteration (K x M) def kgcb(mu_0, beta_w, cov_m, iteration): kk = len(mu_0) # number of available choices mu_est = mu_0.copy() ##THIS IS THE CODE TO COPY FOR THE POLICY## py = [] # loop over all choices for iter1 in range(kk): a = mu_est.copy() b = np.divide(cov_m[iter1], np.sqrt(1/beta_w[iter1]+cov_m[iter1][iter1])) kg = EmaxAffine(a,b) py.append(kg) x = np.argmax([(82-iteration)*py[i]+mu_est[i] for i in range(kk)]) return x # Get Knowledge Gradient Prior def Get_kg(mu_0, beta_w, cov_m): kk = len(mu_0) # number of available choices # py is the KG for alternatives py = [] for iter1 in range(kk): a = mu_0 b = np.divide(cov_m[iter1], np.sqrt(1/beta_w[iter1]+cov_m[iter1][iter1])) kg = EmaxAffine(a,b) py.append(kg) return(py) # Calculate the KG value defined by # E[max_x a_x + b_x Z]-max_x a_x, where Z is a standard # normal random variable and a,b are 1xM input vectors. def EmaxAffine(a, b): a, b = AffineBreakpointsPrep(a, b) c, keep = AffineBreakpoints(a, b) keep = [int(keep[i]) for i in range(len(keep))] a = a[keep] b = b[keep] c = np.insert(c[np.add(keep, 1)], 0, 0) M = len(keep) logbdiff = np.log(np.diff(b)) if M == 1: logy = np.log(a) elif M >= 2: logy = LogSumExp(np.add(logbdiff, LogEI(-np.absolute(c[1:M])))) y = np.exp(logy) return y # Prepares vectors for passing to AffineEmaxBreakpoints, changing their # order and removing elements with duplicate slope. def AffineBreakpointsPrep(a, b): a = np.array(a) b = np.array(b) # Sort the pairs (a_i,b_i) in ascending order of slope (b_i), # breaking ties in slope with the y-intercept (a_i). order =
np.lexsort((a, b))
numpy.lexsort
import itertools import math import numpy as np import scipy.fftpack from mmfutils.containers import ObjectBase from . import interfaces from .interfaces import ( implementer, IBasis, IBasisKx, IBasisLz, IBasisWithConvolution, BasisMixin, ) from mmfutils.performance.fft import fft, ifft, fftn, ifftn, resample from .utils import prod, dst, idst, get_xyz, get_kxyz from mmfutils.math import bessel sp = scipy _TINY = np.finfo(float).tiny __all__ = ["SphericalBasis", "PeriodicBasis", "CartesianBasis", "interfaces"] @implementer(IBasisWithConvolution) class SphericalBasis(ObjectBase, BasisMixin): """1-dimensional basis for radial problems. We represent exactly `N` positive abscissa, excluding the origin and use the discrete sine transform. We represent the square-root of the wavefunctions here so that a factor of `r` is required to convert these into the radial functions. Unlike the DVR techniques, this approach allows us to compute the Coulomb interaction for example. """ def __init__(self, N, R): self.N = N self.R = R super().__init__() def init(self): dx = self.R / self.N r = np.arange(1, self.N + 1) * dx k = np.pi * (0.5 +
np.arange(self.N)
numpy.arange
from argparse import ArgumentParser import numpy as np import numpy, json import torch from tqdm.auto import tqdm import cv2 as cv import cv2 import os import random as rng from os.path import join from scipy.ndimage import label from data.scannet_single_scene_dataset import ScanNet_Single_House_Dataset from model.texture.utils import get_rgb_transform, get_uv_transform, get_label_transform from data.utils import unproject from torchvision.transforms import Resize, ToTensor, Compose from model.gatys_style.rgb_transform import pre, post from scipy.spatial import distance as dist def filter_hsv(src): # It converts the BGR color space of image to HSV color space hsv = cv2.cvtColor(src, cv2.COLOR_BGR2HSV) # Threshold of red in HSV space (beginning of H) lower_red = np.array([0, int(0.6 * 255), int(0.6 * 255)]) upper_red = np.array([15, int(1.0 * 255), int(1.0 * 255)]) mask = cv2.inRange(hsv, lower_red, upper_red) # Threshold of red in HSV space (end of H) lower_red = np.array([160, int(0.4 * 255), int(0.4 * 255)]) upper_red = np.array([179, int(1.0 * 255), int(1.0 * 255)]) mask += cv2.inRange(hsv, lower_red, upper_red) # The black region in the mask has the value of 0, # so when multiplied with original image removes all non-blue regions hsv_filtered = cv2.bitwise_and(src, src, mask=mask) return hsv_filtered def cov_from_lookup(center, ys, lut, filter_zero=True): assert len(center) == len(ys) xs = [] for c in center: pos_w, pos_h = c x = lut[pos_h, pos_w, 0] xs.append(x) xy = sorted(zip(xs, ys), key=lambda pair: pair[0]) if filter_zero: xy = [i for i in xy if i[0] != 0] xs = [i[0] for i in xy] ys = [i[1] for i in xy] A = np.array([xs, ys]) corr = np.corrcoef(A)[0, 1] return corr, A, xs, ys def order_points(pts): # sort the points based on their x-coordinates xSorted = pts[np.argsort(pts[:, 0]), :] # grab the left-most and right-most points from the sorted # x-roodinate points leftMost = xSorted[:2, :] rightMost = xSorted[2:, :] # now, sort the left-most coordinates according to their # y-coordinates so we can grab the top-left and bottom-left # points, respectively leftMost = leftMost[np.argsort(leftMost[:, 1]), :] (tl, bl) = leftMost # now that we have the top-left coordinate, use it as an # anchor to calculate the Euclidean distance between the # top-left and right-most points; by the Pythagorean # theorem, the point with the largest distance will be # our bottom-right point D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0] (br, tr) = rightMost[np.argsort(D)[::-1], :] # return the coordinates in top-left, top-right, # bottom-right, and bottom-left order return tl, tr, br, bl def mid_point(a, b): return a + (b - a) / 2.0 def is_in_range(p, w, h): x, y = p x = round(x) y = round(y) return 0 <= x < w and 0 <= y < h def clamp_to_range(p, w, h): x, y = p x = round(x) y = round(y) x = max(0, min(x, w - 1)) y = max(0, min(y, h - 1)) return x, y def ellipse_stats(a, b): radius = (a / 2.0 + b / 2.0) / 2.0 # average of both diameters stretch = abs(1.0 * a / b) if a > b else abs(1.0 * b / a) size = a * b if a == 0 or b == 0: raise ValueError('foo') return radius, stretch, size def is_valid_point(p, depth): w, h = p return depth.squeeze()[h, w] > 0 def median_radius_level(radii, opt, suffix=''): statistics = { f"smallest{suffix}": 0, f"small{suffix}": 0, f"large{suffix}": 0, f"largest{suffix}": 0 } colors = [] median_radius = np.median(np.array(radii)) t = opt.t n = len(radii) for radius in radii: if radius < median_radius / t: colors.append((255, 0, 0)) # blue k = 'smallest' elif radius < median_radius: colors.append((0, 255, 0)) # green k = 'small' elif median_radius < radius < median_radius * t: colors.append((0, 255, 255)) # yellow k = 'large' else: colors.append((255, 0, 255)) # purple k = 'largest' k = f"{k}{suffix}" statistics[k] = statistics[k] + 1 statistics = {k: v * 1.0 / n for k, v in statistics.items()} return statistics, n, colors def unit_vector(vector): """ Returns the unit vector of the vector. """ return vector /
np.linalg.norm(vector)
numpy.linalg.norm
import numpy as np from matplotlib import pyplot as plt from matplotlib import cm as cm import click import re re_time = re.compile(r'^\d+.?\d*e?-?\d*') re_point = re.compile( r'([A-Z])\((-?\d+.?\d*e?-?\d*), (-?\d+.?\d*e?-?\d*)\)' ) H_RANGE = tuple( np.array([-0.5, 0.5]) * 32 ) V_RANGE = tuple( np.array([-0.5, 0.5]) * 18 ) SPACE_FACTOR = 20 SPACE_BIAS = np.array([0.25, 0.25]) @click.group() def main(): pass def render_frame(filename, width, height, cells, mutants): x = np.linspace(*H_RANGE, width) y =
np.linspace(*V_RANGE, height)
numpy.linspace
import numpy as np import pytest def test_vector_vector_cross(backend): from csdl.examples.valid.ex_cross_vector_vector import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) vec1 = np.arange(3) vec2 = np.arange(3) + 1 desired_output = np.cross(vec1, vec2) np.testing.assert_almost_equal(sim['VecVecCross'], desired_output) partials_error = sim.check_partials(includes=['comp_VecVecCross'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error, atol=1.e-6, rtol=1.e-6) def test_cross(backend): from csdl.examples.valid.ex_cross_tensor_tensor import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) shape = (2, 5, 4, 3) num_elements = np.prod(shape) ten1 =
np.arange(num_elements)
numpy.arange
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from collections import OrderedDict import pickle import sys from distutils.version import LooseVersion import pytest import numpy as np import pyarrow as pa import pyarrow.tests.util as test_util def test_schema_constructor_errors(): msg = ("Do not call Schema's constructor directly, use `pyarrow.schema` " "instead") with pytest.raises(TypeError, match=msg): pa.Schema() def test_type_integers(): dtypes = ['int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64'] for name in dtypes: factory = getattr(pa, name) t = factory() assert str(t) == name def test_type_to_pandas_dtype(): M8_ns = np.dtype('datetime64[ns]') cases = [ (pa.null(), np.float64), (pa.bool_(), np.bool_), (pa.int8(), np.int8), (pa.int16(), np.int16), (pa.int32(), np.int32), (pa.int64(), np.int64), (pa.uint8(), np.uint8), (pa.uint16(), np.uint16), (pa.uint32(), np.uint32), (pa.uint64(), np.uint64), (pa.float16(), np.float16), (pa.float32(), np.float32), (pa.float64(), np.float64), (pa.date32(), M8_ns), (pa.date64(), M8_ns), (pa.timestamp('ms'), M8_ns), (pa.binary(), np.object_), (pa.binary(12), np.object_), (pa.string(), np.object_), (pa.list_(pa.int8()), np.object_), # (pa.list_(pa.int8(), 2), np.object_), # TODO needs pandas conversion ] for arrow_type, numpy_type in cases: assert arrow_type.to_pandas_dtype() == numpy_type @pytest.mark.pandas def test_type_to_pandas_dtype_check_import(): # ARROW-7980 test_util.invoke_script('arrow_7980.py') def test_type_list(): value_type = pa.int32() list_type = pa.list_(value_type) assert str(list_type) == 'list<item: int32>' field = pa.field('my_item', pa.string()) l2 = pa.list_(field) assert str(l2) == 'list<my_item: string>' def test_type_comparisons(): val = pa.int32() assert val == pa.int32() assert val == 'int32' assert val != 5 def test_type_for_alias(): cases = [ ('i1', pa.int8()), ('int8', pa.int8()), ('i2', pa.int16()), ('int16', pa.int16()), ('i4', pa.int32()), ('int32', pa.int32()), ('i8', pa.int64()), ('int64', pa.int64()), ('u1', pa.uint8()), ('uint8', pa.uint8()), ('u2', pa.uint16()), ('uint16', pa.uint16()), ('u4', pa.uint32()), ('uint32', pa.uint32()), ('u8', pa.uint64()), ('uint64', pa.uint64()), ('f4', pa.float32()), ('float32', pa.float32()), ('f8', pa.float64()), ('float64', pa.float64()), ('date32', pa.date32()), ('date64', pa.date64()), ('string', pa.string()), ('str', pa.string()), ('binary', pa.binary()), ('time32[s]', pa.time32('s')), ('time32[ms]', pa.time32('ms')), ('time64[us]', pa.time64('us')), ('time64[ns]', pa.time64('ns')), ('timestamp[s]', pa.timestamp('s')), ('timestamp[ms]', pa.timestamp('ms')), ('timestamp[us]', pa.timestamp('us')), ('timestamp[ns]', pa.timestamp('ns')), ('duration[s]', pa.duration('s')), ('duration[ms]', pa.duration('ms')), ('duration[us]', pa.duration('us')), ('duration[ns]', pa.duration('ns')), ] for val, expected in cases: assert pa.type_for_alias(val) == expected def test_type_string(): t = pa.string() assert str(t) == 'string' def test_type_timestamp_with_tz(): tz = 'America/Los_Angeles' t = pa.timestamp('ns', tz=tz) assert t.unit == 'ns' assert t.tz == tz def test_time_types(): t1 = pa.time32('s') t2 = pa.time32('ms') t3 = pa.time64('us') t4 = pa.time64('ns') assert t1.unit == 's' assert t2.unit == 'ms' assert t3.unit == 'us' assert t4.unit == 'ns' assert str(t1) == 'time32[s]' assert str(t4) == 'time64[ns]' with pytest.raises(ValueError): pa.time32('us') with pytest.raises(ValueError): pa.time64('s') def test_from_numpy_dtype(): cases = [ (np.dtype('bool'), pa.bool_()), (
np.dtype('int8')
numpy.dtype
import os import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from pathlib import Path from tqdm import tqdm import shutil import tensorflow as tf import tensorflow_datasets as tfds import uuid from pdf2image import convert_from_path import argparse from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import RandomOverSampler import streamlit as st DEFAULT_TRAIN_PATH = Path(__file__).resolve().parent.parent / 'data' / 'train' DEFAULT_VALID_PATH = Path(__file__).resolve().parent.parent / 'data' / 'valid' DEFAULT_TEST_PATH = Path(__file__).resolve().parent.parent / 'data' / 'test' def create_aux_dataframe(dataset_path): """ Generates an auxiliary pandas.DataFrame that maps each image file inside the dataset directories to its class. This makes it easy to split the data into train, test and validation splits. :param dataset_path: str or pathlib.Path Path to the dataset directory :return: pandas.DataFrame Index as the file_path (pathlib.Path object) and columns as class (one hot encoded matrix and label vector) """ directory_list = [directory for directory in Path(dataset_path).iterdir() if os.path.isdir(directory)] df = pd.DataFrame(columns=[directory.name for directory in directory_list]) for directory in directory_list: files_path_list = [file.resolve() for file in directory.iterdir() if file.suffix != '.pdf'] df_ = pd.DataFrame(index=files_path_list, columns=df.columns) for col in df_.columns: if col == directory.name: one_hot_vector = np.ones(shape=(df_.shape[0],)) df_[col] = one_hot_vector else: one_hot_vector =
np.zeros(shape=(df_.shape[0],))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 14 11:32:08 2020 @author: jialiu """ import numpy as np from scipy.stats import multivariate_normal import math from scipy.stats import invgamma from scipy.stats import gamma from scipy.stats import truncnorm from scipy.stats import norm as normal from scipy.optimize import minimize as minimize from numpy.random import dirichlet as dirichlet from collections import Counter from numpy.linalg import norm as norm from scipy.optimize import lsq_linear from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.legend as legend import pmagpy.ipmag as ipmag import pmagpy.pmag as pmag import numpy as np from random import randint from scipy.stats import multinomial import pdb import sys sys.path.insert(1, '/user_path/PSV/BCE19-dirPSV') """ we call some functions in pmagpy (Tauxe, L. et al., 2016) and PSV_dir_predictions (Brandt et al. 2020) software packages, there are two ways do so either install the software package or save it in some where--- /user_path/PSV/BCE19-dirPSV ---and call it from its path. We chose the 2nd way to call the functions in PSV_dir_predictions, since we made some modifications of one function s_lm2, see below: -------------------------------------------------------------- def s_lm2(l,m,alpha,beta,sig10_2,sig11_2,sig20_2,sig21_2,sig22_2): c_a = 0.547 if ((l-m)/2. - int((l-m)/2)) == 0: s_lm2 = ((c_a**(2*l))*(alpha**2))/((l+1)*(2*l+1)) else: s_lm2 = (c_a**(2*l))*((alpha*beta)**2)/((l+1)*(2*l+1)) if (l==1 and m==0): if (sig10_2>=0): #----------allowed it to be zero in order to calculate those K_l^m terms by cof_K1, cof_K2 and cof_Sigma #print('sig10=%.2f' % np.sqrt(sig10_2)) s_lm2 = sig10_2 if (l==1 and m==1): if (sig11_2>=0): #----------allowed it to be zero in order to calculate those K_l^m terms by cof_K1, cof_K2 and cof_Sigma #print('sig11=%.2f' % np.sqrt(sig11_2)) s_lm2 = sig11_2 if (l==2 and m==0): if (sig20_2>=0): #----------allowed it to be zero in order to calculate those K_l^m terms by cof_K1, cof_K2 and cof_Sigma #print('sig20=%.2f' % np.sqrt(sig20_2)) s_lm2 = sig20_2 if (l==2 and m==1): if (sig21_2>=0): #----------allowed it to be zero in order to calculate those K_l^m terms by cof_K1, cof_K2 and cof_Sigma #print('sig21=%.2f' % np.sqrt(sig21_2)) s_lm2 = sig21_2 if (l==2 and m==2): if (sig22_2>=0): #----------allowed it to be zero in order to calculate those K_l^m terms by cof_K1, cof_K2 and cof_Sigma #print('sig22=%.2f' % np.sqrt(sig22_2)) s_lm2 = sig22_2 return s_lm2 """ import PSV_dir_predictions as psv import Synthetic_directions_GGP as simGGP def slice_samp_r_weight(r0, u,mu,K,p): a = np.linalg.solve(K,u) b = np.linalg.solve(K,mu) a = np.dot(u.T, a) b = np.dot(u.T, b) def f(r): return np.exp(-0.5*a*(r-b/a)**2) nv = np.random.uniform(0, f(r0)) nv1 = -2*np.log(nv)/a u1 = np.random.uniform(0, 1) if nv1 < 0.0 or np.isinf(nv1): nv1 = 0.0 tem1 = b/a tem2 = np.sqrt(nv1) g_lo = tem1 + np.max([-tem1, -tem2]) g_hi = tem1 + tem2 r = np.power( (g_hi**p -g_lo**p)*u1 + g_lo**p, 1/p) if np.isnan(r): r=1.0 return r def KLdist(A,B): KLdist = np.trace(np.linalg.solve(A,B)) - np.log(np.linalg.det(B)/np.linalg.det(A)) return KLdist """ Construct design matrix X from the zonal field for a given latitude and returns the horizontal and vertical components Btetha, Br where a is the Earth radius and r is the distance you want to calculate from the center of earth a_r = a/r for example: a_r = 1.0 for the surface of Earth """ def deg_mat_zonal(lat,G4,a_r=1.0): #correct 07.1.2021 Theta = 90-lat costheta = np.cos(np.deg2rad(Theta)) sintheta = np.sin(np.deg2rad(Theta)) Br1 = -2*(a_r**3)*costheta Br2 = -(3/2)*(a_r**4)*(3*(costheta**2) - 1) Br3 = -(a_r**5)*2*(5*(costheta**3) - 3*costheta) Br4 = -(a_r**6)*(5/8)*(35*(costheta**4) - 30*(costheta**2)+3) Bt1 = -(a_r**3)*sintheta Bt2 = -(a_r**4)*3*sintheta*costheta Bt3 = -(a_r**5)/2*(15*sintheta*(costheta**2) - 3*sintheta) Bt4 = -(a_r**6)/2*(35*sintheta*(costheta**3) - 15*sintheta*costheta) if G4==0.0: X= np.array([[Bt1,Bt2,Bt3],[Br1,Br2,Br3]]) else: X= np.array([[Bt1,Bt2,Bt3,Bt4], [Br1,Br2,Br3,Br4]]) return X def sim_GGP_data(GGPmodel,lat,degree,k): if k!=0: lat_n = np.repeat(lat,k) else: lat_n = lat inten = [] for i in range(len(lat_n)): one_pt = simGGP.dii_fromGGPmodels(1,lat_n[i],GGPmodel, degree=degree) dir_onept = pmag.dir2cart([ one_pt[0][0],one_pt[0][1]]) if i == 0: GGPdata = dir_onept else: GGPdata = np.vstack((GGPdata, dir_onept)) inten.append(one_pt[0][2]) return GGPdata, inten, lat_n def simuPN_GGP(GGPmodel,lat, degree, k): # g10 = GGPmodel['g10'] # g20 = GGPmodel['g20'] # g30 = GGPmodel['g30'] sig10 = GGPmodel['sig10'] sig11 = GGPmodel['sig11'] sig20 = GGPmodel['sig20'] sig21 = GGPmodel['sig21'] sig22 = GGPmodel['sig22'] alpha = GGPmodel['alpha'] beta = GGPmodel['beta'] if k!=0: lat_n = np.repeat(lat,3) else: lat_n = lat n = len(lat_n) u = np.zeros((n,3), dtype=float) r = np.zeros((n,1), dtype=float) for i in range(n): Sigma_i = psv.Cov(alpha,beta,lat_n[i], degree,sig10**2,sig11**2,sig20**2,sig21**2,sig22**2) mu_i = psv.m_TAF(GGPmodel, lat_n[i]) x = multivariate_normal.rvs(mu_i.tolist(), Sigma_i.tolist()) x_len = np.linalg.norm(x) u[i] = x/x_len r[i] = x_len return u,r #simulate xi def simuXI(x0,var,n): q = len(x0) XI= np.zeros((q,n+1)) XIh= np.zeros((q,n+1)) for j in range(q): low_x0 = x0[j] - var*x0[j] hi_x0 = x0[j] + var*x0[j] xi_j1 = np.random.uniform(low_x0,x0[j],size = n+1) xi_j2 = np.random.uniform(x0[j],hi_x0,size = n+1) XI[j] = xi_j1 XIh[j] = xi_j2 XIh2 = XIh + var*XIh XI2 = XI - var*XI return XI,XIh, XIh2,XI2 def log_mnorm(m,Sig,xi): cov_len = len(xi) u = xi - m try: a = np.linalg.solve(Sig,u) except: Sig = Sig + np.diag(np.ones(cov_len))*1e-5 a = np.linalg.solve(Sig,u) return -0.5*(np.log(np.linalg.det(Sig)) + np.dot(u.T,a)) def nSigma(Y,lat,sig_paras,degree=8): n=len(Y) sig10_2, sig11_2,sig20_2,sig21_2, alpha, beta = sig_paras Sigma = np.zeros((n,3,3)) detSig = np.zeros((n,1)) lat0 =0 for i in range(n): if lat[i] != lat0: Sigma_i = psv.Cov(alpha,beta,lat[i], degree,sig10_2,sig11_2,sig20_2,sig21_2,sig20_2) lat0 =lat[i] Sigma[i] = Sigma_i detSig[i] = np.linalg.det(Sigma_i) else: Sigma[i] = Sigma[i-1] detSig[i] = detSig[i-1] return Sigma, detSig def log_post_fun(u, cof_K, sig_paras): n = len(u) cov_len = cof_K.shape[0] sumlik = 0 for i in range(n): #This step can be done in parallel! line 503--513 K = 0 for j in range(cov_len): #covariates j K = K + sig_paras[j]* cof_K[j][i] Kpre = Omega_mat(K) A = u[i].reshape(3,1)*u[i].reshape(1,3) unew = A V = np.dot(unew, Kpre) sumlik = sumlik + np.matrix.trace(V) + np.log(np.linalg.det(K) ) lik = -0.5*sumlik return lik def log_post_funIG(u, cof_K, sig_paras, a1, b1): #place an exponential prior n = len(u) cov_len = cof_K.shape[0] sumlik = 0 for i in range(n): #This step can be done in parallel! l K = 0 for j in range(cov_len): #covariates j K = K + sig_paras[j]* cof_K[j][i] Kpre = Omega_mat(K) A = u[i].reshape(3,1)*u[i].reshape(1,3) unew = A #+ n* K inverse exponential prior V = np.dot(unew, Kpre) sumlik = sumlik + np.matrix.trace(V) + np.log(np.linalg.det(K) ) lik = -0.5*sumlik def log_inverse_gamma(x, a,b): log_ig = 0 for j in range(len(x)): log_ig = log_ig - ((a[j] + 1)*np.log(x[j]) + b[j]/x[j]) return log_ig a1= 0.01 b1 =0.01 if cov_len == 5: lik = lik + log_inverse_gamma(sig_paras,
np.ones(5)
numpy.ones
#!/bin/env python # -*- coding: utf-8 -*- """ Python matplotlib Make whisker plots of ToE hist+RCP85 vs. histNat (or Picontrol) in all 5 domains, with x axis being the GSAT anomaly """ import sys import numpy as np import xarray as xr import matplotlib.pyplot as plt from netCDF4 import Dataset as open_ncfile from maps_matplot_lib import defVarmme from modelsDef import defModels, defModelsCO2piC from matplotlib.ticker import AutoMinorLocator, MultipleLocator import glob import os import datetime from functions_ToE import read_toe_rcp85, read_gsat_rcp85, read_toe_1pctCO2, read_gsat_1pctCO2 # ----- Work ----- # Directory indir_rcphn = '/home/ysilvy/Density_bining/Yona_analysis/data/toe_rcp85_histNat_average_signal/' indir_rcppiC = '/home/ysilvy/Density_bining/Yona_analysis/data/toe_rcp85_PiControl_average_signal/' indir_CO2piC = '/home/ysilvy/Density_bining/Yona_analysis/data/toe_1pctCO2vsPiC_average_signal/' indir_gsat = '/home/ysilvy/Density_bining/Yona_analysis/data/gsat/' models = defModels() modelsCO2 = defModelsCO2piC() domains = ['Southern ST', 'SO', 'Northern ST', 'North Atlantic', 'North Pacific'] varname = defVarmme('salinity'); v = 'S' method = 'average_signal' # Average signal and noise in the box, then compute ToE method_noise_histNat = 'average_histNat' # Average histNat (or PiControl) in the specified domains then determine the std of this averaged value method_noise_piC = 'average_piC' # output format # outfmt = 'view' outfmt = 'save' # =========== # ----- Variables ------ var = varname['var_zonal_w/bowl'] legVar = varname['legVar'] unit = varname['unit'] timN = 240 degree_sign= u'\N{DEGREE SIGN}' # ------ Define directories, etc.. ----- indir1 = indir_rcphn varread1 = var+'ToE2' ignore1 = [] color = '#004f82' # ----- Read ToE and tas for each model ------ listfiles1 = sorted(glob.glob(indir1 + method_noise_histNat + '/*'+legVar+'_toe_rcp_histNat*.nc')) nmodels1 = len(listfiles1)-len(ignore1) # Read ToE varToEA_1, varToEP_1, varToEI_1, nMembers1 = read_toe_rcp85(varread1,listfiles1,ignore1,len(domains)) # Read GSAT gsat_anom1 = read_gsat_rcp85(indir_gsat+'hist-rcp85/',listfiles1,ignore1) nruns1 = np.sum(nMembers1) nruns1 = int(nruns1) # Smooth gsat anomaly time series da_gsat_anom1 = xr.DataArray(gsat_anom1, dims=('time','members')) gsat_anom1_smooth = da_gsat_anom1.rolling(time=10,center=True,min_periods=1).mean() # ---- Associate ToE to GSAT anomaly ---- maskdata = np.nan time1 = np.arange(1861,2101) # Make new data associating each ToE to its corresponding temperature anomaly def associate_gsat_ToE(varToE,time,gsat_anom): """ Make new data array associating each ToE to its corresponding temperature anomaly """ ndomains = varToE.shape[1] nruns = varToE.shape[0] varToE_gsat = np.ma.empty((nruns,ndomains)) for idomain in range(ndomains): # Loop on regions for irun in range(nruns): # Loop on all realizations toe = varToE[irun,idomain] # Read ToE if not np.ma.is_masked(toe): iyear = np.argwhere(time==toe)[0][0] # Read index of said ToE in time vector varToE_gsat[irun,idomain] = gsat_anom[iyear,irun] # Fill new data array with gsat anomaly else: varToE_gsat[irun,idomain] = np.ma.masked return varToE_gsat varToEA_1_gsat = associate_gsat_ToE(varToEA_1,time1,gsat_anom1_smooth) varToEP_1_gsat = associate_gsat_ToE(varToEP_1,time1,gsat_anom1_smooth) varToEI_1_gsat = associate_gsat_ToE(varToEI_1,time1,gsat_anom1_smooth) # -- Median of members nruns=0 medvarToEA_1_gsat = np.ma.masked_all((nmodels1,len(domains))) medvarToEP_1_gsat = np.ma.masked_all((nmodels1,len(domains))) medvarToEI_1_gsat = np.ma.masked_all((nmodels1,len(domains))) for i in range(nmodels1): medvarToEA_1_gsat[i,:] = np.ma.median(varToEA_1_gsat[nruns:nruns+int(nMembers1[i]),:],axis=0) medvarToEP_1_gsat[i,:] = np.ma.median(varToEP_1_gsat[nruns:nruns+int(nMembers1[i]),:],axis=0) medvarToEI_1_gsat[i,:] = np.ma.median(varToEI_1_gsat[nruns:nruns+int(nMembers1[i]),:],axis=0) nruns = nruns + int(nMembers1[i]) # -- Organize data # New domain labels new_domains = ['SO subpolar', 'SH subtropics', 'NH subtropics', 'subpolar North Pacific'] # regroup previous "North Atlantic" with NH subtropics data1 = [medvarToEA_1_gsat[:,1], medvarToEP_1_gsat[:,1], medvarToEI_1_gsat[:,1], maskdata, medvarToEA_1_gsat[:,0], medvarToEP_1_gsat[:,0], medvarToEI_1_gsat[:,0], maskdata, medvarToEA_1_gsat[:,3], medvarToEP_1_gsat[:,2], maskdata, medvarToEP_1_gsat[:,4]] # ----- Make pseudo-time axis ----- # Choose which years to show and find corresponding gsat anomaly xgsat =
np.arange(-1,6.01,0.02)
numpy.arange
import numpy as np import tensorflow as tf from tensorflow.contrib.rnn import LSTMCell, GRUCell import sys import time from sklearn.metrics import f1_score import random class han(object): ''' hierarchical attention network by yang et. al. parameters: - embedding_matrix: numpy array numpy array of word embeddings each row should represent a word embedding NOTE: the word index 0 is dropped, so the first row is ignored - num_classes: int number of output classes - max_sents: int maximum number of sentences/lines per document - max_words: int maximum number of words per sentence/line - rnn_type: string (default: "gru") rnn cells to use, can be "gru" or "lstm" - rnn_units: int (default: 50) number of rnn units to use for embedding layers - attention_size: int (default: 200) number of dimensions to use for attention hidden layer - lr: float (default: 0.0001) learning rate for adam optimizer methods: - train(data,labels,batch_size=64,epochs=30,patience=5, validation_data,savebest=False,filepath=None) train network on given data - predict(data) return the predicted labels for given data - score(data,labels) return the micro and macro f-scores of predicted labels on given data - save(filepath) save the model weights to a file - load(filepath) load model weights from a file ''' def __init__(self,embedding_matrix,num_classes,max_sents,max_words,rnn_type="gru", rnn_units=200,attention_size=300,lr=0.0001): self.rnn_units = rnn_units if rnn_type == "gru": self.rnn_cell = GRUCell elif rnn_type == "lstm": self.rnn_cell = LSTMCell else: raise Exception("rnn_type parameter must be set to gru or lstm") self.embedding_matrix = embedding_matrix.astype(np.float32) self.ms = max_sents self.mw = max_words self.attention_size = attention_size #doc input self.doc_input = tf.placeholder(tf.int32, shape=[None,max_sents,max_words]) doc_embed = tf.map_fn(self._han_step,self.doc_input,dtype=tf.float32) #classification functions output = tf.layers.dense(doc_embed,num_classes, kernel_initializer=tf.contrib.layers.xavier_initializer()) self.prediction = tf.nn.softmax(output) #loss, accuracy, and training functions self.labels = tf.placeholder(tf.int32,shape=[None]) self.loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=output,labels=self.labels)) self.optimizer = tf.train.AdamOptimizer(lr,0.9,0.99).minimize(self.loss) #init op self.saver = tf.train.Saver() self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) def _han_step(self,doc): words_per_line = tf.math.count_nonzero(doc,1) num_lines = tf.math.count_nonzero(words_per_line) max_words_ = tf.reduce_max(words_per_line) doc_input_reduced = doc[:num_lines,:max_words_] num_words = words_per_line[:num_lines] #word embeddings word_embeds = tf.gather(tf.get_variable('embeddings', initializer=self.embedding_matrix,dtype=tf.float32), doc_input_reduced) #word rnn layer with tf.variable_scope('word',initializer=tf.contrib.layers.xavier_initializer()): [word_outputs_fw,word_outputs_bw],_ = \ tf.nn.bidirectional_dynamic_rnn( self.rnn_cell(self.rnn_units),self.rnn_cell(self.rnn_units), word_embeds,sequence_length=num_words,dtype=tf.float32) word_outputs = tf.concat((word_outputs_fw,word_outputs_bw),2) #word attention seq_mask = tf.reshape(tf.sequence_mask(num_words,max_words_),[-1]) word_u = tf.layers.dense(tf.reshape(word_outputs,[-1,self.rnn_units*2]), self.attention_size,tf.nn.tanh, kernel_initializer=tf.contrib.layers.xavier_initializer()) word_exps = tf.layers.dense(word_u,1,tf.exp,False, kernel_initializer=tf.contrib.layers.xavier_initializer()) word_exps = tf.where(seq_mask,word_exps,tf.ones_like(word_exps)*0.000000001) word_alpha = tf.reshape(word_exps,[-1,max_words_,1]) word_alpha /= tf.reshape(tf.reduce_sum(word_alpha,1),[-1,1,1]) sent_embeds = tf.reduce_sum(word_outputs*word_alpha,1) sent_embeds = tf.expand_dims(sent_embeds,0) #sentence rnn layer with tf.variable_scope('sentence',initializer=tf.contrib.layers.xavier_initializer()): [sent_outputs_fw,sent_outputs_bw],_ = \ tf.nn.bidirectional_dynamic_rnn( self.rnn_cell(self.rnn_units),self.rnn_cell(self.rnn_units), sent_embeds,sequence_length=tf.expand_dims(num_lines,0),dtype=tf.float32) sent_outputs = tf.concat((sent_outputs_fw,sent_outputs_bw),2) sent_outputs = tf.squeeze(sent_outputs,[0]) #sentence attention u = tf.layers.dense(sent_outputs,self.attention_size,tf.nn.tanh, kernel_initializer=tf.contrib.layers.xavier_initializer()) exps = tf.layers.dense(u,1,tf.exp,False, kernel_initializer=tf.contrib.layers.xavier_initializer()) atten = exps/tf.reduce_sum(exps) doc_embed = tf.transpose(tf.matmul(tf.transpose(sent_outputs),atten)) return tf.squeeze(doc_embed,[0]) def train(self,data,labels,batch_size=64,epochs=30,patience=5, validation_data=None,savebest=False,filepath=None): ''' train network on given data parameters: - data: numpy array 3d numpy array (doc x sentence x word ids) of input data - labels: numpy array 1d numpy array of labels for given data - batch size: int (default: 64) batch size to use for training - epochs: int (default: 30) number of epochs to train for - patience: int (default: 5) training stops after no improvement in validation score for this number of epochs - validation_data: tuple (optional) tuple of numpy arrays (X,y) representing validation data - savebest: boolean (default: False) set to True to save the best model based on validation score per epoch - filepath: string (optional) path to save model if savebest is set to True outputs: None ''' if savebest==True and filepath==None: raise Exception("Please enter a path to save the network") if validation_data: validation_size = len(validation_data[0]) else: validation_size = len(data) print('training network on %i documents, validation on %i documents' \ % (len(data), validation_size)) #track best model for saving prevbest = 0 pat_count = 0 for ep in range(epochs): #shuffle data xy = list(zip(data,labels)) random.shuffle(xy) data,labels = zip(*xy) data = list(data) labels = np.array(labels) y_pred = [] start_time = time.time() #train for start in range(0,len(data),batch_size): #get batch index if start+batch_size < len(data): stop = start+batch_size else: stop = len(data) feed_dict = {self.doc_input:data[start:stop], self.labels:labels[start:stop]} pred,cost,_ = self.sess.run([self.prediction,self.loss,self.optimizer], feed_dict=feed_dict) #track correct predictions y_pred.append(np.argmax(pred,1)) sys.stdout.write("epoch %i, sample %i of %i, loss: %f \r"\ % (ep+1,stop,len(data),cost)) sys.stdout.flush() #checkpoint after every epoch print("\ntraining time: %.2f" % (time.time()-start_time)) y_pred = np.concatenate(y_pred,0) micro = f1_score(labels,y_pred,average='micro') macro = f1_score(labels,y_pred,average='macro') print("epoch %i training micro/macro: %.4f, %.4f" % (ep+1,micro,macro)) micro,macro = self.score(validation_data[0],validation_data[1], batch_size=batch_size) print("epoch %i validation micro/macro: %.4f, %.4f" % (ep+1,micro,macro)) #save if performance better than previous best if micro >= prevbest: prevbest = micro pat_count = 0 if savebest: self.save(filepath) else: pat_count += 1 if pat_count >= patience: break #reset timer start_time = time.time() def predict(self,data,batch_size=64): ''' return the predicted labels for given data parameters: - data: numpy array 3d numpy array (doc x sentence x word ids) of input data - batch size: int (default: 64) batch size to use during inference outputs: 1d numpy array of predicted labels for input data ''' y_pred = [] for start in range(0,len(data),batch_size): #get batch index if start+batch_size < len(data): stop = start+batch_size else: stop = len(data) feed_dict = {self.doc_input:data[start:stop]} prob = self.sess.run(self.prediction,feed_dict=feed_dict) y_pred.append(np.argmax(prob,1)) sys.stdout.write("processed %i of %i records \r" \ % (stop,len(data))) sys.stdout.flush() print() y_pred = np.concatenate(y_pred,0) return y_pred def score(self,data,labels,batch_size=64): ''' return the micro and macro f-score of predicted labels on given data parameters: - data: numpy array 3d numpy array (doc x sentence x word ids) of input data - labels: numpy array 1d numpy array of labels for given data - batch size: int (default: 64) batch size to use during inference outputs: tuple of floats (micro,macro) representing micro and macro f-score of predicted labels on given data ''' y_pred = self.predict(data,batch_size) micro = f1_score(labels,y_pred,average='micro') macro = f1_score(labels,y_pred,average='macro') return micro,macro def save(self,filename): ''' save the model weights to a file parameters: - filepath: string path to save model weights outputs: None ''' self.saver.save(self.sess,filename) def load(self,filename): ''' load model weights from a file parameters: - filepath: string path from which to load model weights outputs: None ''' self.saver.restore(self.sess,filename) if __name__ == "__main__": ''' dummy test data ''' #params batch_size = 64 lr = 0.0001 epochs = 5 train_samples = 10000 test_samples = 10000 vocab_size = 750 max_lines = 50 max_words = 10 num_classes = 10 embedding_size = 100 rnn_units = 50 attention_size = 100 #create data vocab =
np.random.rand(vocab_size,embedding_size)
numpy.random.rand
import unittest import numpy as np from nptest import nptest from scipy.interpolate import interp1d class Test_NumericOperationsTests(unittest.TestCase): def test_add_operations(self): a = np.arange(0, 20, 1, dtype = np.int16) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a + 8 print(b) print(b.shape) print(b.strides) a = np.arange(0, 20, 1, dtype = np.int64) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a + 2400 print(b) print(b.shape) print(b.strides) def test_add_operations_2(self): a = np.arange(0, 20, 1, dtype = np.int16) a = a.reshape(5,-1) print(a) b = np.array([2], dtype = np.int16); c = a + b; print(c) b = np.array([10,20,30,40], dtype = np.int16); d = a + b; print(d) def test_subtract_operations(self): a = np.arange(0, 20, 1, dtype = np.int16) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a - 8 print(b) print(b.shape) print(b.strides) a = np.arange(0, 20, 1, dtype = np.int64) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a - 2400 print(b) print(b.shape) print(b.strides) def test_subtract_operations_2(self): a = np.arange(100, 102, 1, dtype = np.int16) b = np.array([1,63], dtype = np.int16) c = a-b print(a) print("****") print(b) print("****") print(c) print("****") a = np.arange(0, 4, 1, dtype = np.int16).reshape((2,2)) b = np.array([65,78], dtype = np.int16).reshape(1,2) c = a-b print(a) print("****") print(b) print("****") print(c) def test_multiply_operations(self): a = np.arange(0, 20, 1, dtype = np.int16) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a * 8 print(b) print(b.shape) print(b.strides) a = np.arange(0, 20, 1, dtype = np.int64) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a * 2400 print(b) print(b.shape) print(b.strides) def test_division_operations(self): a = np.arange(20000, 20020, 1, dtype = np.int16) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a / 8 print(b) print(b.shape) print(b.strides) a = np.arange(2000000, 2000020, 1, dtype = np.int64) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a / 2400 print(b) print(b.shape) print(b.strides) def test_leftshift_operations(self): a = np.arange(0, 20, 1, dtype = np.int16) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a << 8 print(b) print(b.shape) print(b.strides) a = np.arange(0, 20, 1, dtype = np.int64) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a << 24 print(b) print(b.shape) print(b.strides) def test_leftshift_operations2(self): a = np.arange(0, 20, 1, dtype = np.int8) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a << 16 print(b) print(b.shape) print(b.strides) a = np.arange(0, 20, 1, dtype = np.int64) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a << 48 print(b) print(b.shape) print(b.strides) def test_rightshift_operations(self): a = np.arange(20000, 20020, 1, dtype = np.int16) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a >> 8 print(b) print(b.shape) print(b.strides) a = np.arange(2123450, 2123470, 1, dtype = np.int64) a = a.reshape(5,-1) print(a) print(a.shape) print(a.strides) b = a >> 8 print(b) print(b.shape) print(b.strides) def test_bitwiseand_operations(self): a = np.arange(0, 32, 1, dtype = np.int16) print(a) b = a & 0x0f print(b) a = np.arange(2048, 2048+32, 1, dtype = np.int64) print(a) b = a & 0xFF print(b) def test_bitwiseor_operations(self): a = np.arange(0, 32, 1, dtype = np.int16) print(a) b = a | 0x100 print(b) a = np.arange(2048, 2048+32, 1, dtype = np.int64) print(a) b = a | 0x1000 print(b) def test_bitwisexor_operations(self): a = np.arange(0, 32, 1, dtype = np.int16) print(a) b = a ^ 0xAAA print(b) a = np.arange(2048, 2048+32, 1, dtype = np.int64) print(a) b = a ^ 0xAAAA print(b) def test_remainder_operations(self): a = np.arange(0, 32, 1, dtype = np.int16) print(a) b = a % 6 print(b) a = np.arange(2048, 2048+32, 1, dtype = np.int64) print(a) b = a % 6 print(b) def test_negative_operations(self): a = np.arange(0, 32, 1, dtype = np.int16) print(a) b = -a print(b) def test_invert_operations(self): a = np.arange(-32, 32, 1, dtype = np.int16) print(a) b = ~a print(b) def test_LESS_operations(self): a = np.arange(-5, 5, 1, dtype = np.int16) print(a) b = a < -2 print(b) def test_LESSEQUAL_operations(self): a = np.arange(-5, 5, 1, dtype = np.int16) print(a) b = a <= -2 print(b) def test_EQUAL_operations(self): a = np.arange(-5, 5, 1, dtype = np.int16) print(a) b = a == -2 print(b) def test_NOTEQUAL_operations(self): a = np.arange(-5, 5, 1, dtype = np.int16) print(a) b = a != -2 print(b) def test_GREATER_operations(self): a = np.arange(-5, 5, 1, dtype = np.int16) print(a) b = a > -2 print(b) def test_GREATEREQUAL_operations(self): a = np.arange(-5, 5, 1, dtype = np.int16) print(a) b = a >= -2 print(b) def test_LOGICALOR_operations(self): a = np.arange(-5, 5, 1, dtype = np.int16) print(a) b = np.logical_or(a == 0, False) print(b) def test_arrayarray_or(self): a = np.arange(0, 32, 1, dtype = np.int16) b = np.arange(33, 33+32, 1, dtype = np.int16) c = a | b print("A") print(a) print("B") print(b) print("C") print(c) def test_bitwise_and(self): x = np.arange(1023, 1039, dtype= np.uint32).reshape(2, -1) y = np.bitwise_and(x, 0x3FF); z = x & 0x3FF; print(x) print(y) print(z) return def test_bitwise_or(self): x = np.arange(1023, 1039, dtype= np.uint32).reshape(2, -1) y = np.bitwise_or(x, 0x10); z = x | 0x10; print(x) print(y) print(z) return def test_bitwise_xor(self): a = np.bitwise_xor(13, 17) print(a) b = np.bitwise_xor(31, 5) print(b) c = np.bitwise_xor([31,3], 5) print(c) d = np.bitwise_xor([31,3], [5,6]) print(d) e = np.bitwise_xor([True, True], [False, True]) print(e) return def test_bitwise_not(self): a = np.bitwise_not(13) print(a) b =
np.bitwise_not(31)
numpy.bitwise_not
"""Utilities for plotting.""" import numpy as np import warnings try: import matplotlib.pyplot as plt from matplotlib import artist from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d from mpl_toolkits.mplot3d.art3d import Line3D, Text3D, Poly3DCollection, Line3DCollection from .transformations import transform from .rotations import unitx, unitz, perpendicular_to_vectors, norm_vector class Frame(artist.Artist): """A Matplotlib artist that displays a frame represented by its basis. Parameters ---------- A2B : array-like, shape (4, 4) Transform from frame A to frame B label : str, optional (default: None) Name of the frame s : float, optional (default: 1) Length of basis vectors Other arguments except 'c' and 'color' are passed on to Line3D. """ def __init__(self, A2B, label=None, s=1.0, **kwargs): super(Frame, self).__init__() if "c" in kwargs: kwargs.pop("c") if "color" in kwargs: kwargs.pop("color") self.s = s self.x_axis = Line3D([], [], [], color="r", **kwargs) self.y_axis = Line3D([], [], [], color="g", **kwargs) self.z_axis = Line3D([], [], [], color="b", **kwargs) self.draw_label = label is not None self.label = label if self.draw_label: self.label_indicator = Line3D([], [], [], color="k", **kwargs) self.label_text = Text3D(0, 0, 0, text="", zdir="x") self.set_data(A2B, label) def set_data(self, A2B, label=None): """Set the transformation data. Parameters ---------- A2B : array-like, shape (4, 4) Transform from frame A to frame B label : str, optional (default: None) Name of the frame """ R = A2B[:3, :3] p = A2B[:3, 3] for d, b in enumerate([self.x_axis, self.y_axis, self.z_axis]): b.set_data(np.array([p[0], p[0] + self.s * R[0, d]]), np.array([p[1], p[1] + self.s * R[1, d]])) b.set_3d_properties(np.array([p[2], p[2] + self.s * R[2, d]])) if self.draw_label: if label is None: label = self.label label_pos = p + 0.5 * self.s * (R[:, 0] + R[:, 1] + R[:, 2]) self.label_indicator.set_data( np.array([p[0], label_pos[0]]), np.array([p[1], label_pos[1]])) self.label_indicator.set_3d_properties( np.array([p[2], label_pos[2]])) self.label_text.set_text(label) self.label_text.set_position([label_pos[0], label_pos[1]]) self.label_text.set_3d_properties(label_pos[2], zdir="x") @artist.allow_rasterization def draw(self, renderer, *args, **kwargs): """Draw the artist.""" for b in [self.x_axis, self.y_axis, self.z_axis]: b.draw(renderer, *args, **kwargs) if self.draw_label: self.label_indicator.draw(renderer, *args, **kwargs) self.label_text.draw(renderer, *args, **kwargs) super(Frame, self).draw(renderer, *args, **kwargs) def add_frame(self, axis): """Add the frame to a 3D axis.""" for b in [self.x_axis, self.y_axis, self.z_axis]: axis.add_line(b) if self.draw_label: axis.add_line(self.label_indicator) axis._add_text(self.label_text) class LabeledFrame(Frame): """Displays a frame represented by its basis with axis labels. Parameters ---------- A2B : array-like, shape (4, 4) Transform from frame A to frame B label : str, optional (default: None) Name of the frame s : float, optional (default: 1) Length of basis vectors Other arguments except 'c' and 'color' are passed on to Line3D. """ def __init__(self, A2B, label=None, s=1.0, **kwargs): self.x_label = Text3D(0, 0, 0, text="", zdir="x") self.y_label = Text3D(0, 0, 0, text="", zdir="x") self.z_label = Text3D(0, 0, 0, text="", zdir="x") super(LabeledFrame, self).__init__(A2B, label=None, s=1.0, **kwargs) def set_data(self, A2B, label=None): """Set the transformation data. Parameters ---------- A2B : array-like, shape (4, 4) Transform from frame A to frame B label : str, optional (default: None) Name of the frame """ super(LabeledFrame, self).set_data(A2B, label) R = A2B[:3, :3] p = A2B[:3, 3] x_label_location = p + 1.1 * self.s * R[:, 0] y_label_location = p + 1.1 * self.s * R[:, 1] z_label_location = p + 1.1 * self.s * R[:, 2] self.x_label.set_text("x") self.x_label.set_position(x_label_location[:2]) self.x_label.set_3d_properties(x_label_location[2], zdir="x") self.y_label.set_text("y") self.y_label.set_position(y_label_location[:2]) self.y_label.set_3d_properties(y_label_location[2], zdir="x") self.z_label.set_text("z") self.z_label.set_position(z_label_location[:2]) self.z_label.set_3d_properties(z_label_location[2], zdir="x") @artist.allow_rasterization def draw(self, renderer, *args, **kwargs): """Draw the artist.""" self.x_label.draw(renderer, *args, **kwargs) self.y_label.draw(renderer, *args, **kwargs) self.z_label.draw(renderer, *args, **kwargs) super(LabeledFrame, self).draw(renderer, *args, **kwargs) def add_frame(self, axis): """Add the frame to a 3D axis.""" super(LabeledFrame, self).add_frame(axis) axis._add_text(self.x_label) axis._add_text(self.y_label) axis._add_text(self.z_label) class Trajectory(artist.Artist): """A Matplotlib artist that displays a trajectory. Parameters ---------- H : array-like, shape (n_steps, 4, 4) Sequence of poses represented by homogeneous matrices show_direction : bool, optional (default: True) Plot an arrow to indicate the direction of the trajectory n_frames : int, optional (default: 10) Number of frames that should be plotted to indicate the rotation s : float, optional (default: 1) Scaling of the frames that will be drawn Other arguments are passed onto Line3D. """ def __init__(self, H, show_direction=True, n_frames=10, s=1.0, **kwargs): super(Trajectory, self).__init__() self.show_direction = show_direction self.trajectory = Line3D([], [], [], **kwargs) self.key_frames = [Frame(np.eye(4), s=s, **kwargs) for _ in range(n_frames)] if self.show_direction: self.direction_arrow = Arrow3D( [0, 0], [0, 0], [0, 0], mutation_scale=20, lw=1, arrowstyle="-|>", color="k") self.set_data(H) def set_data(self, H): """Set the trajectory data. Parameters ---------- H : array-like, shape (n_steps, 4, 4) Sequence of poses represented by homogeneous matrices """ positions = H[:, :3, 3] self.trajectory.set_data(positions[:, 0], positions[:, 1]) self.trajectory.set_3d_properties(positions[:, 2]) key_frames_indices = np.linspace( 0, len(H) - 1, len(self.key_frames), dtype=np.int) for i, key_frame_idx in enumerate(key_frames_indices): self.key_frames[i].set_data(H[key_frame_idx]) if self.show_direction: start = 0.8 * positions[0] + 0.2 * positions[-1] end = 0.2 * positions[0] + 0.8 * positions[-1] self.direction_arrow.set_data( [start[0], end[0]], [start[1], end[1]], [start[2], end[2]]) @artist.allow_rasterization def draw(self, renderer, *args, **kwargs): """Draw the artist.""" self.trajectory.draw(renderer, *args, **kwargs) for key_frame in self.key_frames: key_frame.draw(renderer, *args, **kwargs) if self.show_direction: self.direction_arrow.draw(renderer) super(Trajectory, self).draw(renderer, *args, **kwargs) def add_trajectory(self, axis): """Add the trajectory to a 3D axis.""" axis.add_line(self.trajectory) for key_frame in self.key_frames: key_frame.add_frame(axis) if self.show_direction: axis.add_artist(self.direction_arrow) class Arrow3D(FancyArrowPatch): # http://stackoverflow.com/a/11156353/915743 """A Matplotlib patch that represents an arrow in 3D.""" def __init__(self, xs, ys, zs, *args, **kwargs): super(Arrow3D, self).__init__((0, 0), (0, 0), *args, **kwargs) self._verts3d = xs, ys, zs def set_data(self, xs, ys, zs): """Set the arrow data. Parameters ---------- xs : iterable List of x positions ys : iterable List of y positions zs : iterable List of z positions """ self._verts3d = xs, ys, zs def draw(self, renderer): """Draw the patch.""" xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0], ys[0]), (xs[1], ys[1])) super(Arrow3D, self).draw(renderer) def make_3d_axis(ax_s, pos=111): """Generate new 3D axis. Parameters ---------- ax_s : float, optional (default: 1) Scaling of the new matplotlib 3d axis pos : int, optional (default: 111) Position indicator (nrows, ncols, plot_number) Returns ------- ax : Matplotlib 3d axis New axis """ try: ax = plt.subplot(pos, projection="3d", aspect="equal") except NotImplementedError: # HACK: workaround for bug in new matplotlib versions (ca. 3.02): # "It is not currently possible to manually set the aspect" ax = plt.subplot(pos, projection="3d") plt.setp(ax, xlim=(-ax_s, ax_s), ylim=(-ax_s, ax_s), zlim=(-ax_s, ax_s), xlabel="X", ylabel="Y", zlabel="Z") return ax def plot_vector(ax=None, start=np.zeros(3), direction=
np.array([1, 0, 0])
numpy.array
""" Time-domain CSEM for a resistive cube in a deep marine setting ============================================================== """ import empymod import discretize try: from pymatsolver import Pardiso as Solver except ImportError: from SimPEG import SolverLU as Solver import numpy as np import SimPEG from SimPEG import maps from SimPEG.electromagnetics import time_domain as TDEM import matplotlib.pyplot as plt ############################################################################### # (A) Model # --------- fig = plt.figure(figsize=(5.5, 3)) ax = plt.gca() # Seafloor and background plt.plot([-200, 2200], [-2000, -2000], "-", c=".4") bg = plt.Rectangle((-500, -3000), 3000, 1000, facecolor="black", alpha=0.1) ax.add_patch(bg) # Plot survey plt.plot([-50, 50], [-1950, -1950], "*-", ms=8, c="k") plt.plot(2000, -2000, "v", ms=8, c="k") plt.text(0, -1900, r"Tx", horizontalalignment="center") plt.text(2000, -1900, r"Rx", horizontalalignment="center") # Plot cube plt.plot([450, 1550, 1550, 450, 450], [-2300, -2300, -2700, -2700, -2300], "k-") plt.plot([300, 1400, 1400, 300, 300], [-2350, -2350, -2750, -2750, -2350], "k:") plt.plot([600, 600, 1700, 1700, 1550], [-2300, -2250, -2250, -2650, -2650], "k:") plt.plot([300, 600], [-2350, -2250], "k:") plt.plot([1400, 1700], [-2350, -2250], "k:") plt.plot([300, 450], [-2750, -2700], "k:") plt.plot([1400, 1700], [-2750, -2650], "k:") tg = plt.Rectangle((450, -2700), 1100, 400, facecolor="black", alpha=0.2) ax.add_patch(tg) # Annotate resistivities plt.text( 1000, -1925, r"$\rho_\mathrm{sea}=0.3\,\Omega\,$m", horizontalalignment="center" ) plt.text( 1000, -2150, r"$\rho_\mathrm{bg}=1.0\,\Omega\,$m", horizontalalignment="center" ) plt.text( 1000, -2550, r"$\rho_\mathrm{tg}=100.0\,\Omega\,$m", horizontalalignment="center" ) plt.text(1500, -2800, r"$y=-500\,$m", horizontalalignment="left") plt.text(1750, -2650, r"$y=500\,$m", horizontalalignment="left") # Ticks and labels plt.xticks( [-50, 50, 450, 1550, 2000], ["$-50~$ $~$ $~$", " $~50$", "$450$", "$1550$", "$2000$"], ) plt.yticks( [-1950, -2000, -2300, -2700], ["$-1950$\n", "\n$-2000$", "$-2300$", "$-2700$"] ) plt.xlim([-200, 2200]) plt.ylim([-3000, -1800]) plt.xlabel("$x$ (m)") plt.ylabel("$z$ (m)") plt.tight_layout() plt.show() ############################################################################### # Resistivities res_sea = 0.3 res_bg = 1.0 res_tg = 100.0 # Seafloor seafloor = -2000 # Target dimension tg_x = [450, 1550] tg_y = [-500, 500] tg_z = [-2700, -2300] ############################################################################### # (B) Survey # ---------- # Source: 100 m x-directed diplole at the origin, # 50 m above seafloor, src [x1, x2, y1, y2, z1, z2] src = [-50, 50, 0, 0, -1950, -1950] # Receiver: x-directed dipole at 2 km on the # seafloor, rec = [x, y, z, azimuth, dip] rec = [2000, 0, -2000, 0, 0] # Times to compute, 0.1 - 10 s, 301 steps times = np.logspace(-1, 1, 301) ############################################################################### # (C) Modelling parameters # ------------------------ # # Check diffusion distances # """"""""""""""""""""""""" # Get min/max diffusion distances for the two halfspaces. diff_dist0 = 1261 * np.sqrt(np.r_[times * res_sea, times * res_sea]) diff_dist1 = 1261 * np.sqrt(np.r_[times * res_bg, times * res_bg]) diff_dist2 = 1261 * np.sqrt(np.r_[times * res_tg, times * res_tg]) print("Min/max diffusion distance:") print(f"- Water :: {diff_dist0.min():8.0f} / {diff_dist0.max():8.0f} m.") print(f"- Background :: {diff_dist1.min():8.0f} / {diff_dist1.max():8.0f} m.") print(f"- Target :: {diff_dist2.min():8.0f} / {diff_dist2.max():8.0f} m.") ############################################################################### # Time-steps # """""""""" # Time steps time_steps = [1e-1, (1e-2, 21), (3e-2, 23), (1e-1, 21), (3e-1, 23)] # Create mesh with time steps ts = discretize.TensorMesh([time_steps]).vectorNx # Plot them plt.figure(figsize=(9, 1.5)) # Logarithmic scale plt.subplot(121) plt.title("Check time-steps on logarithmic-scale") plt.plot([times.min(), times.min()], [-1, 1]) plt.plot([times.max(), times.max()], [-1, 1]) plt.plot(ts, ts * 0, ".", ms=2) plt.yticks([]) plt.xscale("log") plt.xlabel("Time (s)") # Linear scale plt.subplot(122) plt.title("Check time-steps on linear-scale") plt.plot([times.min(), times.min()], [-1, 1]) plt.plot([times.max(), times.max()], [-1, 1]) plt.plot(ts, ts * 0, ".", ms=2) plt.yticks([]) plt.xlabel("Time (s)") plt.tight_layout() plt.show() # Check times with time-steps print(f"Min/max times : {times.min():.1e} / {times.max():.1e}") print(f"Min/max timeSteps: {ts[1]:.1e} / {ts[-1]:.1e}") ############################################################################### # Create mesh (`discretize`) # """""""""""""""""""""""""" # Cell width, number of cells width = 100 nx = rec[0] // width + 4 ny = 10 nz = 9 # Padding npadx = 14 npadyz = 12 # Stretching alpha = 1.3 # Initiate TensorMesh mesh = discretize.TensorMesh( [ [(width, npadx, -alpha), (width, nx), (width, npadx, alpha)], [(width, npadyz, -alpha), (width, ny), (width, npadyz, alpha)], [(width, npadyz, -alpha), (width, nz), (width, npadyz, alpha)], ], x0="CCC", ) # Shift mesh so that # x=0 is at midpoint of source; # z=-2000 is at receiver level mesh.x0[0] += rec[0] // 2 - width / 2 mesh.x0[2] -= nz / 2 * width - seafloor mesh ############################################################################### # Check if source and receiver are exactly at x-edges. # """""""""""""""""""""""""""""""""""""""""""""""""""" # # No requirement; if receiver are exactly on x-edges then no interpolation is # required to get the responses (cell centers in x, cell edges in y, z). print( f"Rec-{{x;y;z}} :: {rec[0] in
np.round(mesh.vectorCCx)
numpy.round
#!/usr/bin/env python3 import os import pickle from torch.utils.data import Dataset from torchvision import transforms import numpy as np import torch from learn2learn.data.utils import download_file_from_google_drive, download_file def download_pkl(google_drive_id, data_root, mode): filename = 'mini-imagenet-cache-' + mode file_path = os.path.join(data_root, filename) if not os.path.exists(file_path + '.pkl'): print('Downloading:', file_path + '.pkl') download_file_from_google_drive(google_drive_id, file_path + '.pkl') else: print("Data was already downloaded") def index_classes(items): idx = {} for i in items: if (i not in idx): idx[i] = len(idx) return idx class TripletMiniImageNet(Dataset): """ [[Source]](https://github.com/learnables/learn2learn/blob/master/learn2learn/vision/datasets/mini_imagenet.py) **Description** The *mini*-ImageNet dataset was originally introduced by Vinyals et al., 2016. It consists of 60'000 colour images of sizes 84x84 pixels. The dataset is divided in 3 splits of 64 training, 16 validation, and 20 testing classes each containing 600 examples. The classes are sampled from the ImageNet dataset, and we use the splits from Ravi & Larochelle, 2017. **References** 1. Vinyals et al. 2016. “Matching Networks for One Shot Learning.” NeurIPS. 2. Ravi and Larochelle. 2017. “Optimization as a Model for Few-Shot Learning.” ICLR. **Arguments** * **root** (str) - Path to download the data. * **mode** (str, *optional*, default='train') - Which split to use. Must be 'train', 'validation', or 'test'. * **transform** (Transform, *optional*, default=None) - Input pre-processing. * **target_transform** (Transform, *optional*, default=None) - Target pre-processing. * **download** (bool, *optional*, default=False) - Download the dataset if it's not available. **Example** ~~~python train_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='train') train_dataset = l2l.data.MetaDataset(train_dataset) train_generator = l2l.data.TaskGenerator(dataset=train_dataset, ways=ways) ~~~ """ def __init__(self, root, transform=None, target_transform=None, download=False): self.root = os.path.expanduser(root) if not os.path.exists(self.root): os.mkdir(self.root) self.mode = None self.transform = transform self.target_transform = target_transform self.download_links = {"test": '1wpmY-hmiJUUlRBkO9ZDCXAcIpHEFdOhD', "train": '1I3itTXpXxGV68olxM5roceUMG8itH9Xj', "validation": '1KY5e491bkLFqJDp0-UWou3463Mo8AOco'} self.data = dict() self.indexes = {"train": 0, "validation": 0, "test": 0} for mode in ['train', 'test', 'validation']: pickle_file = os.path.join(self.root, 'mini-imagenet-cache-' + mode + '.pkl') if not self._check_exists(mode) and download: print('Downloading mini-ImageNet --', mode) download_pkl(self.download_links[mode], self.root, mode) with open(pickle_file, 'rb') as f: self.data[mode] = pickle.load(f) self.data[mode]["image_data"] = torch.from_numpy(self.data[mode]["image_data"]).permute(0, 1, 2, 3).float() def sample(self, type,k_shots = 1): if k_shots == 1 : # Mode change if type != self.mode: self.mode = type self.labels = list(self.data[type]['class_dict'].keys()) self.label_to_indices = self.data[type]['class_dict'] self.sample_data = self.data[type]["image_data"] nbr_positive_sample = 4 nbr_negative_sample = 8 index = self.indexes[type] % len(self.labels) #1. select a anchor label anchor_label = self.labels[index] #2. we know that positive files should have same label as anchor positive_label = anchor_label # Not even needed to decleare #3. we need to select 1 anchor 1 positive for support - 2 positives for query and all of these should be different used_positive_indexes = set(np.random.choice(self.label_to_indices[anchor_label], nbr_positive_sample, replace=False)) #4. Now that we have selected 4 positive examples we are gonna place them to the according elements used_positive_indexes = list(used_positive_indexes) # [x1a, x1p_1, x1p_2, x1p_3 ... x1p_n] - image tensors positive_x = [np.array(self.sample_data[used_positive_indexes[idx]]) for idx in range(nbr_positive_sample)] # [y1a, y1p_1, y1p_2, y1p_3 ... y1p_n] - image labels # positive_y = [self.all_labels[used_positive_indexes[idx]] for idx in range(nbr_positive_sample)] #5. Now we have all the positive examples ready , we can do same operation to get negative indexes. # To Pick Negative Examples we have different rules . we can pick all random classes , but if there happend to be same class we need to be sure we use differend indexs. remainingLabels = list(set(self.labels) - set([anchor_label])) negative_labels = list(np.random.choice(remainingLabels, nbr_negative_sample // 2, replace=False)) used_negative_indexes = [idx for label in negative_labels for idx in np.random.choice(self.label_to_indices[label], 2, replace=False)] # [x1n_1, x1n_2, x1n_3, ... x1n_n] - image tensors negative_x = [np.array(self.sample_data[used_negative_indexes[idx]]) for idx in range(nbr_negative_sample)] # [y1n_1, y1n_2, y1n_3, ... y1n_n] - image labels # negative_y = [self.all_labels[used_negative_indexes[idx]] for idx in range(nbr_negative_sample)] X_support = [] y_support = [] # Transform if self.transform is not None: for idx, x in enumerate(positive_x): positive_x[idx] = self.transform(positive_x[idx]) for idx, x in enumerate(negative_x): negative_x[idx] = self.transform(negative_x[idx]) X_support.append(torch.stack([positive_x[0], positive_x[0], positive_x[0], positive_x[0]]).float()) X_support.append(torch.stack([positive_x[1], positive_x[1], positive_x[1], positive_x[1]]).float()) X_support.append(torch.stack([negative_x[0], negative_x[2], negative_x[4], negative_x[6]]).float()) y_support.append([0,0,0,0]) y_support.append([0,0,0,0]) y_support.append([1,2,3,4]) X_query = [] y_query = [] X_query.append(torch.stack([positive_x[2], positive_x[2], positive_x[2], positive_x[2]]).float()) X_query.append(torch.stack([positive_x[3], positive_x[3], positive_x[3], positive_x[3]]).float()) X_query.append(torch.stack([negative_x[1], negative_x[3], negative_x[5], negative_x[7]]).float()) y_query.append([0,0,0,0]) y_query.append([0,0,0,0]) y_query.append([1,2,3,4]) y_support = (torch.Tensor(y_support)).long() y_query = (torch.Tensor(y_query)).long() # Update index value self.indexes[type] += 1 return X_support ,y_support, X_query, y_query elif k_shots == 5: # Mode change if type != self.mode: self.mode = type self.labels = list(self.data[type]['class_dict'].keys()) self.label_to_indices = self.data[type]['class_dict'] self.sample_data = self.data[type]["image_data"] nbr_positive_sample = 10 nbr_negative_labels = 4 nbr_negative_sample = 40 index = self.indexes[type] % len(self.labels) #1. select a anchor label anchor_label = self.labels[index] #2. we know that positive files should have same label as anchor positive_label = anchor_label # Not even needed to decleare #3. we need to select 1 anchor 4 positive for support - 5 positives for query and all of these should be different => 10 positive samples used_positive_indexes = set(np.random.choice(self.label_to_indices[anchor_label], nbr_positive_sample, replace=False)) #4. Now that we have selected 10 positive examples we are gonna place them to the according elements used_positive_indexes = list(used_positive_indexes) # [x1a, x1p_1, x1p_2, x1p_3 ... x1p_n] - image tensors positive_x = [
np.array(self.sample_data[used_positive_indexes[idx]])
numpy.array
# MIT License # # Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2020 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module implements the imperceptible, robust, and targeted attack to generate adversarial examples for automatic speech recognition models. This attack will be implemented specifically for DeepSpeech model and is framework dependent, specifically for PyTorch. | Paper link: https://arxiv.org/abs/1903.10346 """ from __future__ import absolute_import, division, print_function, unicode_literals import logging from typing import TYPE_CHECKING, Optional, Tuple import numpy as np import scipy from art.attacks.attack import EvasionAttack from art.estimators.estimator import BaseEstimator, LossGradientsMixin, NeuralNetworkMixin from art.estimators.pytorch import PyTorchEstimator from art.estimators.speech_recognition.pytorch_deep_speech import PyTorchDeepSpeech from art.estimators.speech_recognition.speech_recognizer import SpeechRecognizerMixin if TYPE_CHECKING: import torch logger = logging.getLogger(__name__) class ImperceptibleASRPyTorch(EvasionAttack): """ This class implements the imperceptible, robust, and targeted attack to generate adversarial examples for automatic speech recognition models. This attack will be implemented specifically for DeepSpeech model and is framework dependent, specifically for PyTorch. | Paper link: https://arxiv.org/abs/1903.10346 """ attack_params = EvasionAttack.attack_params + [ "eps", "max_iter_1", "max_iter_2", "learning_rate_1", "learning_rate_2", "optimizer_1", "optimizer_2", "global_max_length", "initial_rescale", "decrease_factor_eps", "num_iter_decrease_eps", "alpha", "increase_factor_alpha", "num_iter_increase_alpha", "decrease_factor_alpha", "num_iter_decrease_alpha", "batch_size", "use_amp", "opt_level", ] _estimator_requirements = ( BaseEstimator, LossGradientsMixin, NeuralNetworkMixin, SpeechRecognizerMixin, PyTorchEstimator, PyTorchDeepSpeech, ) def __init__( self, estimator: PyTorchDeepSpeech, eps: float = 0.05, max_iter_1: int = 10, max_iter_2: int = 4000, learning_rate_1: float = 0.001, learning_rate_2: float = 5e-4, optimizer_1: Optional["torch.optim.Optimizer"] = None, optimizer_2: Optional["torch.optim.Optimizer"] = None, global_max_length: int = 200000, initial_rescale: float = 1.0, decrease_factor_eps: float = 0.8, num_iter_decrease_eps: int = 1, alpha: float = 1.2, increase_factor_alpha: float = 1.2, num_iter_increase_alpha: int = 20, decrease_factor_alpha: float = 0.8, num_iter_decrease_alpha: int = 20, batch_size: int = 32, use_amp: bool = False, opt_level: str = "O1", ): """ Create a :class:`.ImperceptibleASRPyTorch` instance. :param estimator: A trained estimator. :param eps: Maximum perturbation that the attacker can introduce. :param max_iter_1: The maximum number of iterations applied for the first stage of the optimization of the attack. :param max_iter_2: The maximum number of iterations applied for the second stage of the optimization of the attack. :param learning_rate_1: The learning rate applied for the first stage of the optimization of the attack. :param learning_rate_2: The learning rate applied for the second stage of the optimization of the attack. :param optimizer_1: The optimizer applied for the first stage of the optimization of the attack. If `None` attack will use `torch.optim.Adam`. :param optimizer_2: The optimizer applied for the second stage of the optimization of the attack. If `None` attack will use `torch.optim.Adam`. :param global_max_length: The length of the longest audio signal allowed by this attack. :param initial_rescale: Initial rescale coefficient to speedup the decrease of the perturbation size during the first stage of the optimization of the attack. :param decrease_factor_eps: The factor to adjust the rescale coefficient during the first stage of the optimization of the attack. :param num_iter_decrease_eps: Number of iterations to adjust the rescale coefficient, and therefore adjust the perturbation size. :param alpha: Value of the alpha coefficient used in the second stage of the optimization of the attack. :param increase_factor_alpha: The factor to increase the alpha coefficient used in the second stage of the optimization of the attack. :param num_iter_increase_alpha: Number of iterations to increase alpha. :param decrease_factor_alpha: The factor to decrease the alpha coefficient used in the second stage of the optimization of the attack. :param num_iter_decrease_alpha: Number of iterations to decrease alpha. :param batch_size: Size of the batch on which adversarial samples are generated. :param use_amp: Whether to use the automatic mixed precision tool to enable mixed precision training or gradient computation, e.g. with loss gradient computation. When set to True, this option is only triggered if there are GPUs available. :param opt_level: Specify a pure or mixed precision optimization level. Used when use_amp is True. Accepted values are `O0`, `O1`, `O2`, and `O3`. """ import torch # lgtm [py/repeated-import] from torch.autograd import Variable super().__init__(estimator=estimator) # Set attack attributes self._targeted = True self.eps = eps self.max_iter_1 = max_iter_1 self.max_iter_2 = max_iter_2 self.learning_rate_1 = learning_rate_1 self.learning_rate_2 = learning_rate_2 self.global_max_length = global_max_length self.initial_rescale = initial_rescale self.decrease_factor_eps = decrease_factor_eps self.num_iter_decrease_eps = num_iter_decrease_eps self.alpha = alpha self.increase_factor_alpha = increase_factor_alpha self.num_iter_increase_alpha = num_iter_increase_alpha self.decrease_factor_alpha = decrease_factor_alpha self.num_iter_decrease_alpha = num_iter_decrease_alpha self.batch_size = batch_size self._use_amp = use_amp # Create the main variable to optimize if self.estimator.device.type == "cpu": self.global_optimal_delta = Variable( torch.zeros(self.batch_size, self.global_max_length).type(torch.FloatTensor), requires_grad=True ) else: self.global_optimal_delta = Variable( torch.zeros(self.batch_size, self.global_max_length).type(torch.cuda.FloatTensor), requires_grad=True ) self.global_optimal_delta.to(self.estimator.device) # Create the optimizers self._optimizer_arg_1 = optimizer_1 if self._optimizer_arg_1 is None: self.optimizer_1 = torch.optim.Adam(params=[self.global_optimal_delta], lr=self.learning_rate_1) else: self.optimizer_1 = self._optimizer_arg_1(params=[self.global_optimal_delta], lr=self.learning_rate_1) self._optimizer_arg_2 = optimizer_2 if self._optimizer_arg_2 is None: self.optimizer_2 = torch.optim.Adam(params=[self.global_optimal_delta], lr=self.learning_rate_2) else: self.optimizer_2 = self._optimizer_arg_2(params=[self.global_optimal_delta], lr=self.learning_rate_2) # Setup for AMP use if self._use_amp: from apex import amp if self.estimator.device.type == "cpu": enabled = False else: enabled = True self.estimator._model, [self.optimizer_1, self.optimizer_2] = amp.initialize( models=self.estimator._model, optimizers=[self.optimizer_1, self.optimizer_2], enabled=enabled, opt_level=opt_level, loss_scale=1.0, ) # Check validity of attack attributes self._check_params() def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> np.ndarray: """ Generate adversarial samples and return them in an array. :param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch could have different lengths. A possible example of `x` could be: `x = np.array([np.array([0.1, 0.2, 0.1, 0.4]), np.array([0.3, 0.1])])`. :param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`. Note that, this class only supports targeted attack. :return: An array holding the adversarial examples. """ import torch # lgtm [py/repeated-import] if y is None: raise ValueError( "`ImperceptibleASRPyTorch` is a targeted attack and requires the definition of target" "labels `y`. Currently `y` is set to `None`." ) # Start to compute adversarial examples dtype = x.dtype # Cast to type float64 to avoid overflow if dtype.type == np.float64: adv_x = x.copy() else: adv_x = x.copy().astype(np.float64) # Put the estimator in the training mode, otherwise CUDA can't backpropagate through the model. # However, estimator uses batch norm layers which need to be frozen self.estimator.model.train() self.estimator.set_batchnorm(train=False) # Compute perturbation with batching num_batch = int(np.ceil(len(x) / float(self.batch_size))) for m in range(num_batch): # Batch indexes batch_index_1, batch_index_2 = (m * self.batch_size, min((m + 1) * self.batch_size, len(x))) # First reset delta self.global_optimal_delta.data = torch.zeros(self.batch_size, self.global_max_length).type(torch.float64) # Next, reset optimizers if self._optimizer_arg_1 is None: self.optimizer_1 = torch.optim.Adam(params=[self.global_optimal_delta], lr=self.learning_rate_1) else: self.optimizer_1 = self._optimizer_arg_1(params=[self.global_optimal_delta], lr=self.learning_rate_1) if self._optimizer_arg_2 is None: self.optimizer_2 = torch.optim.Adam(params=[self.global_optimal_delta], lr=self.learning_rate_2) else: self.optimizer_2 = self._optimizer_arg_2(params=[self.global_optimal_delta], lr=self.learning_rate_2) # Then compute the batch adv_x_batch = self._generate_batch(adv_x[batch_index_1:batch_index_2], y[batch_index_1:batch_index_2]) for i in range(len(adv_x_batch)): adv_x[batch_index_1 + i] = adv_x_batch[i, : len(adv_x[batch_index_1 + i])] # Unfreeze batch norm layers again self.estimator.set_batchnorm(train=True) # Recast to the original type if needed if dtype.type == np.float32: adv_x = adv_x.astype(dtype) return adv_x def _generate_batch(self, x: np.ndarray, y: np.ndarray) -> np.ndarray: """ Generate a batch of adversarial samples and return them in an array. :param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch could have different lengths. A possible example of `x` could be: `x = np.array([np.array([0.1, 0.2, 0.1, 0.4]), np.array([0.3, 0.1])])`. :param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`. Note that, this class only supports targeted attack. :return: A batch of adversarial examples. """ import torch # lgtm [py/repeated-import] # First stage of attack successful_adv_input_1st_stage, original_input = self._attack_1st_stage(x=x, y=y) successful_perturbation_1st_stage = successful_adv_input_1st_stage - torch.tensor(original_input).to( self.estimator.device ) # Compute original masking threshold and maximum psd theta_batch = [] original_max_psd_batch = [] for i in range(len(x)): theta, original_max_psd = self._compute_masking_threshold(original_input[i]) theta = theta.transpose(1, 0) theta_batch.append(theta) original_max_psd_batch.append(original_max_psd) theta_batch = np.array(theta_batch) original_max_psd_batch = np.array(original_max_psd_batch) # Reset delta with new result local_batch_shape = successful_adv_input_1st_stage.shape self.global_optimal_delta.data = torch.zeros(self.batch_size, self.global_max_length).type(torch.float64) self.global_optimal_delta.data[ : local_batch_shape[0], : local_batch_shape[1] ] = successful_perturbation_1st_stage # Second stage of attack successful_adv_input_2nd_stage = self._attack_2nd_stage( x=x, y=y, theta_batch=theta_batch, original_max_psd_batch=original_max_psd_batch ) results = successful_adv_input_2nd_stage.detach().cpu().numpy() return results def _attack_1st_stage(self, x: np.ndarray, y: np.ndarray) -> Tuple["torch.Tensor", np.ndarray]: """ The first stage of the attack. :param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch could have different lengths. A possible example of `x` could be: `x = np.array([np.array([0.1, 0.2, 0.1, 0.4]), np.array([0.3, 0.1])])`. :param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`. Note that, this class only supports targeted attack. :return: A tuple of two tensors: - A tensor holding the candidate adversarial examples. - An array holding the original inputs. """ import torch # lgtm [py/repeated-import] # Compute local shape local_batch_size = len(x) real_lengths = np.array([x_.shape[0] for x_ in x]) local_max_length = np.max(real_lengths) # Initialize rescale rescale = np.ones([local_batch_size, local_max_length], dtype=np.float64) * self.initial_rescale # Reformat input input_mask = np.zeros([local_batch_size, local_max_length], dtype=np.float64) original_input = np.zeros([local_batch_size, local_max_length], dtype=np.float64) for local_batch_size_idx in range(local_batch_size): input_mask[local_batch_size_idx, : len(x[local_batch_size_idx])] = 1 original_input[local_batch_size_idx, : len(x[local_batch_size_idx])] = x[local_batch_size_idx] # Optimization loop successful_adv_input = [None] * local_batch_size trans = [None] * local_batch_size for iter_1st_stage_idx in range(self.max_iter_1): # Zero the parameter gradients self.optimizer_1.zero_grad() # Call to forward pass loss, local_delta, decoded_output, masked_adv_input, _ = self._forward_1st_stage( original_input=original_input, original_output=y, local_batch_size=local_batch_size, local_max_length=local_max_length, rescale=rescale, input_mask=input_mask, real_lengths=real_lengths, ) # Actual training if self._use_amp: from apex import amp with amp.scale_loss(loss, self.optimizer_1) as scaled_loss: scaled_loss.backward() else: loss.backward() # Get sign of the gradients self.global_optimal_delta.grad = torch.sign(self.global_optimal_delta.grad) # Do optimization self.optimizer_1.step() # Save the best adversarial example and adjust the rescale coefficient if successful if iter_1st_stage_idx % self.num_iter_decrease_eps == 0: for local_batch_size_idx in range(local_batch_size): if decoded_output[local_batch_size_idx] == y[local_batch_size_idx]: # Adjust the rescale coefficient max_local_delta = np.max(np.abs(local_delta[local_batch_size_idx].detach().numpy())) if rescale[local_batch_size_idx][0] * self.eps > max_local_delta: rescale[local_batch_size_idx] = max_local_delta / self.eps rescale[local_batch_size_idx] *= self.decrease_factor_eps # Save the best adversarial example successful_adv_input[local_batch_size_idx] = masked_adv_input[local_batch_size_idx] trans[local_batch_size_idx] = decoded_output[local_batch_size_idx] # If attack is unsuccessful if iter_1st_stage_idx == self.max_iter_1 - 1: for local_batch_size_idx in range(local_batch_size): if successful_adv_input[local_batch_size_idx] is None: successful_adv_input[local_batch_size_idx] = masked_adv_input[local_batch_size_idx] trans[local_batch_size_idx] = decoded_output[local_batch_size_idx] result = torch.stack(successful_adv_input) return result, original_input def _forward_1st_stage( self, original_input: np.ndarray, original_output: np.ndarray, local_batch_size: int, local_max_length: int, rescale: np.ndarray, input_mask: np.ndarray, real_lengths: np.ndarray, ) -> Tuple["torch.Tensor", "torch.Tensor", np.ndarray, "torch.Tensor", "torch.Tensor"]: """ The forward pass of the first stage of the attack. :param original_input: Samples of shape (nb_samples, seq_length). Note that, sequences in the batch must have equal lengths. A possible example of `original_input` could be: `original_input = np.array([np.array([0.1, 0.2, 0.1]), np.array([0.3, 0.1, 0.0])])`. :param original_output: Target values of shape (nb_samples). Each sample in `original_output` is a string and it may possess different lengths. A possible example of `original_output` could be: `original_output = np.array(['SIXTY ONE', 'HELLO'])`. :param local_batch_size: Current batch size. :param local_max_length: Max length of the current batch. :param rescale: Current rescale coefficients. :param input_mask: Masks of true inputs. :param real_lengths: Real lengths of original sequences. :return: A tuple of (loss, local_delta, decoded_output, masked_adv_input) - loss: The loss tensor of the first stage of the attack. - local_delta: The delta of the current batch. - decoded_output: Transcription output. - masked_adv_input: Perturbed inputs. """ import torch # lgtm [py/repeated-import] from warpctc_pytorch import CTCLoss # Compute perturbed inputs local_delta = self.global_optimal_delta[:local_batch_size, :local_max_length] local_delta_rescale = torch.clamp(local_delta, -self.eps, self.eps).to(self.estimator.device) local_delta_rescale *= torch.tensor(rescale).to(self.estimator.device) adv_input = local_delta_rescale + torch.tensor(original_input).to(self.estimator.device) masked_adv_input = adv_input * torch.tensor(input_mask).to(self.estimator.device) # Transform data into the model input space inputs, targets, input_rates, target_sizes, batch_idx = self.estimator.preprocess_transform_model_input( x=masked_adv_input.to(self.estimator.device), y=original_output, real_lengths=real_lengths, ) # Compute real input sizes input_sizes = input_rates.mul_(inputs.size()[-1]).int() # Call to DeepSpeech model for prediction outputs, output_sizes = self.estimator.model( inputs.to(self.estimator.device), input_sizes.to(self.estimator.device) ) outputs_ = outputs.transpose(0, 1) float_outputs = outputs_.float() # Loss function criterion = CTCLoss() loss = criterion(float_outputs, targets, output_sizes, target_sizes).to(self.estimator.device) loss = loss / inputs.size(0) # Compute transcription decoded_output, _ = self.estimator.decoder.decode(outputs, output_sizes) decoded_output = [do[0] for do in decoded_output] decoded_output = np.array(decoded_output) # Rearrange to the original order decoded_output_ = decoded_output.copy() decoded_output[batch_idx] = decoded_output_ return loss, local_delta, decoded_output, masked_adv_input, local_delta_rescale def _attack_2nd_stage( self, x: np.ndarray, y: np.ndarray, theta_batch: np.ndarray, original_max_psd_batch: np.ndarray ) -> "torch.Tensor": """ The second stage of the attack. :param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch could have different lengths. A possible example of `x` could be: `x = np.array([np.array([0.1, 0.2, 0.1, 0.4]), np.array([0.3, 0.1])])`. :param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`. Note that, this class only supports targeted attack. :param theta_batch: Original thresholds. :param original_max_psd_batch: Original maximum psd. :return: An array holding the candidate adversarial examples. """ import torch # lgtm [py/repeated-import] # Compute local shape local_batch_size = len(x) real_lengths = np.array([x_.shape[0] for x_ in x]) local_max_length = np.max(real_lengths) # Initialize alpha and rescale alpha = np.array([self.alpha] * local_batch_size, dtype=np.float64) rescale = np.ones([local_batch_size, local_max_length], dtype=np.float64) * self.initial_rescale # Reformat input input_mask = np.zeros([local_batch_size, local_max_length], dtype=np.float64) original_input = np.zeros([local_batch_size, local_max_length], dtype=np.float64) for local_batch_size_idx in range(local_batch_size): input_mask[local_batch_size_idx, : len(x[local_batch_size_idx])] = 1 original_input[local_batch_size_idx, : len(x[local_batch_size_idx])] = x[local_batch_size_idx] # Optimization loop successful_adv_input = [None] * local_batch_size best_loss_2nd_stage = [np.inf] * local_batch_size trans = [None] * local_batch_size for iter_2nd_stage_idx in range(self.max_iter_2): # Zero the parameter gradients self.optimizer_2.zero_grad() # Call to forward pass of the first stage loss_1st_stage, _, decoded_output, masked_adv_input, local_delta_rescale = self._forward_1st_stage( original_input=original_input, original_output=y, local_batch_size=local_batch_size, local_max_length=local_max_length, rescale=rescale, input_mask=input_mask, real_lengths=real_lengths, ) # Call to forward pass of the first stage loss_2nd_stage = self._forward_2nd_stage( local_delta_rescale=local_delta_rescale, theta_batch=theta_batch, original_max_psd_batch=original_max_psd_batch, ) # Total loss loss = loss_1st_stage + torch.tensor(alpha).to(self.estimator.device) * loss_2nd_stage loss = torch.mean(loss) # Actual training if self._use_amp: from apex import amp with amp.scale_loss(loss, self.optimizer_2) as scaled_loss: scaled_loss.backward() else: loss.backward() # Do optimization self.optimizer_2.step() # Save the best adversarial example and adjust the alpha coefficient for local_batch_size_idx in range(local_batch_size): if decoded_output[local_batch_size_idx] == y[local_batch_size_idx]: if loss_2nd_stage[local_batch_size_idx] < best_loss_2nd_stage[local_batch_size_idx]: # Update best loss at 2nd stage best_loss_2nd_stage[local_batch_size_idx] = loss_2nd_stage[local_batch_size_idx] # Save the best adversarial example successful_adv_input[local_batch_size_idx] = masked_adv_input[local_batch_size_idx] trans[local_batch_size_idx] = decoded_output[local_batch_size_idx] # Adjust to increase the alpha coefficient if iter_2nd_stage_idx % self.num_iter_increase_alpha == 0: alpha[local_batch_size_idx] *= self.increase_factor_alpha # Adjust to decrease the alpha coefficient elif iter_2nd_stage_idx % self.num_iter_decrease_alpha == 0: alpha[local_batch_size_idx] *= self.decrease_factor_alpha alpha[local_batch_size_idx] = max(alpha[local_batch_size_idx], 0.0005) # If attack is unsuccessful if iter_2nd_stage_idx == self.max_iter_2 - 1: for local_batch_size_idx in range(local_batch_size): if successful_adv_input[local_batch_size_idx] is None: successful_adv_input[local_batch_size_idx] = masked_adv_input[local_batch_size_idx] trans[local_batch_size_idx] = decoded_output[local_batch_size_idx] result = torch.stack(successful_adv_input) return result def _forward_2nd_stage( self, local_delta_rescale: "torch.Tensor", theta_batch: np.ndarray, original_max_psd_batch: np.ndarray, ) -> "torch.Tensor": """ The forward pass of the second stage of the attack. :param local_delta_rescale: Local delta after rescaled. :param theta_batch: Original thresholds. :param original_max_psd_batch: Original maximum psd. :return: The loss tensor of the second stage of the attack. """ import torch # lgtm [py/repeated-import] # Compute loss for masking threshold losses = [] relu = torch.nn.ReLU() for i, _ in enumerate(theta_batch): psd_transform_delta = self._psd_transform( delta=local_delta_rescale[i, :], original_max_psd=original_max_psd_batch[i] ) loss = torch.mean(relu(psd_transform_delta - torch.tensor(theta_batch[i]).to(self.estimator.device))) losses.append(loss) losses = torch.stack(losses) return losses def _compute_masking_threshold(self, x: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ Compute the masking threshold and the maximum psd of the original audio. :param x: Samples of shape (seq_length,). :return: A tuple of the masking threshold and the maximum psd. """ import librosa # First compute the psd matrix # These parameters are needed for the transformation sample_rate = self.estimator.model.audio_conf.sample_rate window_size = self.estimator.model.audio_conf.window_size window_stride = self.estimator.model.audio_conf.window_stride n_fft = int(sample_rate * window_size) hop_length = int(sample_rate * window_stride) win_length = n_fft window_name = self.estimator.model.audio_conf.window.value window = scipy.signal.get_window(window_name, win_length, fftbins=True) transformed_x = librosa.core.stft( y=x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=False ) transformed_x *= np.sqrt(8.0 / 3.0) psd = abs(transformed_x / win_length) original_max_psd = np.max(psd * psd) with np.errstate(divide="ignore"): psd = (20 * np.log10(psd)).clip(min=-200) psd = 96 - np.max(psd) + psd # Compute freqs and barks freqs = librosa.core.fft_frequencies(sample_rate, win_length) barks = 13 * np.arctan(0.00076 * freqs) + 3.5 * np.arctan(pow(freqs / 7500.0, 2)) # Compute quiet threshold ath = np.zeros(len(barks), dtype=np.float64) - np.inf bark_idx = np.argmax(barks > 1) ath[bark_idx:] = ( 3.64 * pow(freqs[bark_idx:] * 0.001, -0.8) - 6.5 * np.exp(-0.6 * pow(0.001 * freqs[bark_idx:] - 3.3, 2)) + 0.001 * pow(0.001 * freqs[bark_idx:], 4) - 12 ) # Compute the global masking threshold theta theta = [] for i in range(psd.shape[1]): # Compute masker index masker_idx = scipy.signal.argrelextrema(psd[:, i], np.greater)[0] if 0 in masker_idx: masker_idx =
np.delete(masker_idx, 0)
numpy.delete
# coding: utf-8 # In[3]: import numpy as np import matplotlib.pyplot as plt get_ipython().magic('matplotlib inline') # In[112]: # Number of cities N = 10 # City distances cityx = [0.4000, 0.2439, 0.1707, 0.2293, 0.5171, 0.8732, 0.6878, 0.8488, 0.6683, 0.6195] cityy = [0.4439, 0.1463, 0.2293, 0.7610, 0.9414, 0.6536, 0.5219, 0.3609, 0.2536, 0.2634] # In[117]: d = np.zeros([N,N]) # Calculate distance matrix for i in range(N): for j in range(N): d[i, j]=np.sqrt((cityx[i]-cityx[j])**2+(cityy[i]-cityy[j])**2) plt.plot(cityx, cityy, '-o') # ![title](img/Sel1.png) # ![title](img/Sel2.png) # Update rule for the energy function: # ![title](img/Sel33.png) # Where # ![title](img/Sel4.png) # In[235]: # Set parameters for network energy function A=500; B=500; C=1000; D=500; alpha=0.0001 # In[245]: # x-v-value of each node, y-u-input potential, u0-gamma def hopfield(): u0=0.02 toend=0 udao=np.zeros([N, N]) ctr=0 while toend==0: #print("Step # ", ctr) ctr+=1 # U initialization v =
np.random.rand(N,N)
numpy.random.rand
import numpy as np import logging from plunc.common import round_to_digits from plunc.exceptions import SearchFailedException, InsufficientPrecisionError, OutsideDomainError from plunc.WaryInterpolator import WaryInterpolator class IntervalChoice(object): """Base interval choice method class """ method = 'rank' # 'rank' or 'threshold' threshold = float('inf') precision_digits = 2 use_interval_cache = True wrap_interpolator = True background = 0 confidence_level = 0.9 max_hypothesis = 1e6 interpolator_log_domain = (-1, 3) fixed_upper_limit = None fixed_lower_limit = None # Use only for testing: forbid_exact_computation = False def __init__(self, statistic, **kwargs): self.statistic = statistic for k, v in kwargs.items(): setattr(self, k, v) self.cl = self.confidence_level self.log = logging.getLogger(self.__class__.__name__) if self.wrap_interpolator: self.log.debug("Initializing interpolators") if self.fixed_lower_limit is None: self.low_limit_interpolator = WaryInterpolator(precision=10**(-self.precision_digits), domain=self.interpolator_log_domain) if self.fixed_upper_limit is None: self.high_limit_interpolator = WaryInterpolator(precision=10**(-self.precision_digits), domain=self.interpolator_log_domain) # "Joints" of the interpolator must have better precision than required of the interpolator results self.precision_digits += 1 # Dictionary holding "horizontal" intervals: interval on statistic for each precision and hypothesis. self.cached_intervals = {} def get_interval_on_statistic(self, hypothesis, precision_digits): """Returns the self.cl confidence level interval on self.statistic for the event rate hypothesis The event rate here includes signal as well as identically distributed background. Intervals are inclusive = closed. """ if self.use_interval_cache and (hypothesis, precision_digits) in self.cached_intervals: return self.cached_intervals[(hypothesis, precision_digits)] stat_values, likelihoods = self.statistic.get_values_and_likelihoods(hypothesis, precision_digits=precision_digits) likelihoods = likelihoods / np.sum(likelihoods) # Score each statistic value (method-dependent) stat_value_scores = self.score_stat_values(statistic_values=stat_values, likelihoods=likelihoods, hypothesis=hypothesis) if self.method == 'threshold': # Include all statistic values that score higher than some threshold values_in_interval = stat_values[stat_value_scores > self.get_threshold()] else: # Include the values with highest score first, until we reach the desired confidence level # TODO: wouldn't HIGHEST score first be more user-friendly? ranks = np.argsort(stat_value_scores) train_values_sorted = stat_values[ranks] likelihoods_sorted = likelihoods[ranks] # Find the last value to include # (= first value that takes the included probability over the required confidence level) sum_lhoods = np.cumsum(likelihoods_sorted) last_index = np.where(sum_lhoods > self.cl)[0][0] # TODO: can fail? values_in_interval = train_values_sorted[:last_index + 1] # Limits = extreme values in the interval. # This means we will be conservative if values_in_interval is not continuous. low_lim, high_lim = values_in_interval.min(), values_in_interval.max() # If we included all values given up until a boundary, don't set that boundary as a limit if low_lim == np.min(stat_values): low_lim = 0 if high_lim == np.max(stat_values): high_lim = float('inf') # Cache and return upper and lower limit on the statistic if self.use_interval_cache: self.cached_intervals[(hypothesis, precision_digits)] = low_lim, high_lim return low_lim, high_lim def get_confidence_interval(self, value, precision_digits, search_region, debug=False): """Performs the Neynman construction to get confidence interval on event rate (mu), if the statistic is observed to have value """ log_value = np.log10(value) if self.wrap_interpolator: # Try to interpolate the limit from limits computed earlier self.log.debug("Trying to get values from interpolators") try: if self.fixed_lower_limit is None: low_limit = 10**(self.low_limit_interpolator(log_value)) else: low_limit = self.fixed_lower_limit if self.fixed_upper_limit is None: high_limit = 10**(self.high_limit_interpolator(log_value)) else: high_limit = self.fixed_upper_limit return low_limit, high_limit except InsufficientPrecisionError: self.log.debug("Insuffienct precision achieved by interpolators") if log_value > self.interpolator_log_domain[1]: self.log.debug("Too high value to dare to start Neyman construction... raising exception") # It is not safe to do the Neyman construction: too high statistics raise self.log.debug("Log value %s is below interpolator log domain max %s " "=> starting Neyman construction" % (log_value, self.interpolator_log_domain[1])) except OutsideDomainError: # The value is below the interpolator domain (e.g. 0 while the domain ends at 10**0 = 1) pass if self.forbid_exact_computation: raise RuntimeError("Exact computation triggered") def is_value_in(mu): low_lim, high_lim = self.get_interval_on_statistic(mu + self.background, precision_digits=precision_digits) return low_lim <= value <= high_lim # We first need one value in the interval to bound the limit searches try: true_point, low_search_bound, high_search_bound = search_true_instance(is_value_in, *search_region, precision_digits=precision_digits) except SearchFailedException as e: self.log.debug("Exploratory search could not find a single value in the interval! " "This is probably a problem with search region, or simply a very extreme case." "Original exception: %s" % str(e)) if is_value_in(0): self.log.debug("Oh, ok, only zero is in the interval... Returning (0, 0)") return 0, 0 return 0, float('inf') self.log.debug(">>> Exploratory search completed: %s is in interval, " "search for boundaries in [%s, %s]" % (true_point, low_search_bound, high_search_bound)) if self.fixed_lower_limit is not None: low_limit = self.fixed_lower_limit elif is_value_in(low_search_bound): # If mu=0 can't be excluded, we're apparently only setting an upper limit (mu <= ..) low_limit = 0 else: low_limit = bisect_search(is_value_in, low_search_bound, true_point, precision_digits=precision_digits) self.log.debug(">>> Low limit found at %s" % low_limit) if self.fixed_upper_limit is not None: low_limit = self.fixed_upper_limit elif is_value_in(high_search_bound): # If max_mu can't be excluded, we're apparently only setting a lower limit (mu >= ..) high_limit = float('inf') else: high_limit = bisect_search(is_value_in, true_point, high_search_bound, precision_digits=precision_digits) self.log.debug(">>> High limit found at %s" % high_limit) if self.wrap_interpolator: # Add the values to the interpolator, if they are within the domain # TODO: Think about dealing with inf if self.interpolator_log_domain[0] <= log_value <= self.interpolator_log_domain[1]: if self.fixed_lower_limit is None: self.low_limit_interpolator.add_point(log_value, np.log10(low_limit)) if self.fixed_upper_limit is None: self.high_limit_interpolator.add_point(log_value, np.log10(high_limit)) return low_limit, high_limit def score_stat_values(self, **kwargs): # Return "rank" of each hypothesis. Hypotheses with highest ranks will be included first. raise NotImplementedError() def __call__(self, observation, precision_digits=None, search_region=None): """Perform Neynman construction to get confidence interval on event rate for observation. """ if precision_digits is None: precision_digits = self.precision_digits if search_region is None: search_region = [0, round_to_digits(10 + 3 * len(observation), precision_digits)] if self.statistic.mu_dependent: value = self.statistic(observation, self.statistic.mus) else: value = self.statistic(observation, None) self.log.debug("Statistic evaluates to %s" % value) return self.get_confidence_interval(value, precision_digits=precision_digits, search_region=search_region) def search_true_instance(f, a, b, precision_digits=3, maxiter=10, log=None): """Find x in [a, b] where f is True, limiting search to values with precision_digits significant figures. Returns x, low_bound, high_bound where low_bound and high_bound are either the search bounds a or b, or closer values to x where f was still found to be False. # TODO: If asked for precision_digits=5, first search with precision_digits=1, then 2, etc. print(search_true_instance(lambda x: 11 < x < 13, 0, 40)) print(search_true_instance(lambda x: x < 13, 0, 1000)) """ log = logging.getLogger('search_true_instance') values_searched = [a, b] log.debug("Starting exploratory search in [%s, %s]" % (a, b)) for iter_i in range(maxiter): # First test halfway, point then 1/4 and 3/4, then 1/8, 3/8, 5/8, 7/8, etc. fractions = 2**(iter_i + 1) search_points = [round_to_digits(a + (b - a)*fr, precision_digits) for fr in np.arange(1, fractions, 2)/fractions] log.debug("Searching %s - %s (%d points)" % (search_points[0], search_points[-1], len(search_points))) for x_i, x in enumerate(search_points): if f(x): values_searched = np.array(values_searched) return x, np.max(values_searched[values_searched < x]),
np.min(values_searched[values_searched > x])
numpy.min
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== from __future__ import print_function import matplotlib.pyplot as plt import numpy as np import scipy.signal def generate_rnn(rng, N, g, tau, dt, max_firing_rate): """Create a (vanilla) RNN with a bunch of hyper parameters for generating chaotic data. Args: rng: numpy random number generator N: number of hidden units g: scaling of recurrent weight matrix in g W, with W ~ N(0,1/N) tau: time scale of individual unit dynamics dt: time step for equation updates max_firing_rate: how to resecale the -1,1 firing rates Returns: the dictionary of these parameters, plus some others. """ rnn = {} rnn['N'] = N rnn['W'] = rng.randn(N,N)/
np.sqrt(N)
numpy.sqrt
#!/usr/bin/env python # # Authors: <NAME> <<EMAIL>> # """Module for running restricted closed-shell k-point ccsd(t)""" import ctypes import h5py import itertools import numpy as np import pyscf.pbc.cc.kccsd_rhf import time from itertools import product from pyscf import lib from pyscf.cc import _ccsd from pyscf.lib import logger from pyscf.lib.misc import tril_product from pyscf.lib.misc import flatten from pyscf.lib.numpy_helper import cartesian_prod from pyscf.lib.numpy_helper import pack_tril from pyscf.lib.parameters import LARGE_DENOM from pyscf.pbc import scf from pyscf.pbc.lib import kpts_helper from pyscf.pbc.mp.kmp2 import (get_frozen_mask, get_nocc, get_nmo, padded_mo_coeff, padding_k_idx) from pyscf import __config__ #einsum = np.einsum einsum = lib.einsum # CCSD(T) equations taken from Scuseria, JCP (94), 1991 # # NOTE: As pointed out in cc/ccsd_t_slow.py, there is an error in this paper # and the equation should read [ia] >= [jb] >= [kc] (since the only # symmetry in spin-less operators is the exchange of a column of excitation # ooperators). def kernel(mycc, eris, t1=None, t2=None, max_memory=2000, verbose=logger.INFO): '''Returns the CCSD(T) for restricted closed-shell systems with k-points. Note: Returns real part of the CCSD(T) energy, raises warning if there is a complex part. Args: mycc (:class:`RCCSD`): Coupled-cluster object storing results of a coupled-cluster calculation. eris (:class:`_ERIS`): Integral object holding the relevant electron- repulsion integrals and Fock matrix elements t1 (:obj:`ndarray`): t1 coupled-cluster amplitudes t2 (:obj:`ndarray`): t2 coupled-cluster amplitudes max_memory (float): Maximum memory used in calculation (NOT USED) verbose (int, :class:`Logger`): verbosity of calculation Returns: energy_t (float): The real-part of the k-point CCSD(T) energy. ''' assert isinstance(mycc, pyscf.pbc.cc.kccsd_rhf.RCCSD) cpu1 = cpu0 = (time.clock(), time.time()) if isinstance(verbose, logger.Logger): log = verbose else: log = logger.Logger(mycc.stdout, verbose) if t1 is None: t1 = mycc.t1 if t2 is None: t2 = mycc.t2 if eris is None: raise TypeError('Electron repulsion integrals, `eris`, must be passed in ' 'to the CCSD(T) kernel or created in the cc object for ' 'the k-point CCSD(T) to run!') if t1 is None or t2 is None: raise TypeError('Must pass in t1/t2 amplitudes to k-point CCSD(T)! (Maybe ' 'need to run `.ccsd()` on the ccsd object?)') cell = mycc._scf.cell kpts = mycc.kpts # The dtype of any local arrays that will be created dtype = t1.dtype nkpts, nocc, nvir = t1.shape mo_energy_occ = [eris.mo_energy[ki][:nocc] for ki in range(nkpts)] mo_energy_vir = [eris.mo_energy[ki][nocc:] for ki in range(nkpts)] mo_energy = np.asarray([eris.mo_energy[ki] for ki in range(nkpts)], dtype=np.float, order='C') fov = eris.fock[:, :nocc, nocc:] mo_e = mo_energy mo_e_o = mo_energy_occ mo_e_v = mo_energy_vir # Set up class for k-point conservation kconserv = kpts_helper.get_kconserv(cell, kpts) # Create necessary temporary eris for fast read feri_tmp, t2T, eris_vvop, eris_vooo_C = create_t3_eris(mycc, kconserv, [eris.vovv, eris.oovv, eris.ooov, t2]) t1T = np.array([x.T for x in t1], dtype=np.complex, order='C') fvo = np.array([x.T for x in fov], dtype=np.complex, order='C') cpu1 = log.timer_debug1('CCSD(T) tmp eri creation', *cpu1) #def get_w_old(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1, out=None): # '''Wijkabc intermediate as described in Scuseria paper before Pijkabc acts''' # km = kconserv[kc, kk, kb] # kf = kconserv[kk, kc, kj] # ret = einsum('kjcf,fiba->abcijk', t2[kk,kj,kc,:,:,c0:c1,:], eris.vovv[kf,ki,kb,:,:,b0:b1,a0:a1].conj()) # ret = ret - einsum('mkbc,jima->abcijk', t2[km,kk,kb,:,:,b0:b1,c0:c1], eris.ooov[kj,ki,km,:,:,:,a0:a1].conj()) # return ret def get_w(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1): '''Wijkabc intermediate as described in Scuseria paper before Pijkabc acts Uses tranposed eris for fast data access.''' km = kconserv[kc, kk, kb] kf = kconserv[kk, kc, kj] out = einsum('cfjk,abif->abcijk', t2T[kc,kf,kj,c0:c1,:,:,:], eris_vvop[ka,kb,ki,a0:a1,b0:b1,:,nocc:]) out = out - einsum('cbmk,aijm->abcijk', t2T[kc,kb,km,c0:c1,b0:b1,:,:], eris_vooo_C[ka,ki,kj,a0:a1,:,:,:]) return out def get_permuted_w(ki, kj, kk, ka, kb, kc, orb_indices): '''Pijkabc operating on Wijkabc intermediate as described in Scuseria paper''' a0, a1, b0, b1, c0, c1 = orb_indices out = get_w(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1) out = out + get_w(kj, kk, ki, kb, kc, ka, b0, b1, c0, c1, a0, a1).transpose(2,0,1,5,3,4) out = out + get_w(kk, ki, kj, kc, ka, kb, c0, c1, a0, a1, b0, b1).transpose(1,2,0,4,5,3) out = out + get_w(ki, kk, kj, ka, kc, kb, a0, a1, c0, c1, b0, b1).transpose(0,2,1,3,5,4) out = out + get_w(kk, kj, ki, kc, kb, ka, c0, c1, b0, b1, a0, a1).transpose(2,1,0,5,4,3) out = out + get_w(kj, ki, kk, kb, ka, kc, b0, b1, a0, a1, c0, c1).transpose(1,0,2,4,3,5) return out def get_rw(ki, kj, kk, ka, kb, kc, orb_indices): '''R operating on Wijkabc intermediate as described in Scuseria paper''' a0, a1, b0, b1, c0, c1 = orb_indices ret = (4. * get_permuted_w(ki,kj,kk,ka,kb,kc,orb_indices) + 1. * get_permuted_w(kj,kk,ki,ka,kb,kc,orb_indices).transpose(0,1,2,5,3,4) + 1. * get_permuted_w(kk,ki,kj,ka,kb,kc,orb_indices).transpose(0,1,2,4,5,3) - 2. * get_permuted_w(ki,kk,kj,ka,kb,kc,orb_indices).transpose(0,1,2,3,5,4) - 2. * get_permuted_w(kk,kj,ki,ka,kb,kc,orb_indices).transpose(0,1,2,5,4,3) - 2. * get_permuted_w(kj,ki,kk,ka,kb,kc,orb_indices).transpose(0,1,2,4,3,5)) return ret #def get_v_old(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1): # '''Vijkabc intermediate as described in Scuseria paper''' # km = kconserv[ki,ka,kj] # kf = kconserv[ki,ka,kj] # out = np.zeros((a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=dtype) # if kk == kc: # out = out + einsum('kc,ijab->abcijk', 0.5*t1[kk,:,c0:c1], eris.oovv[ki,kj,ka,:,:,a0:a1,b0:b1].conj()) # out = out + einsum('kc,ijab->abcijk', 0.5*fov[kk,:,c0:c1], t2[ki,kj,ka,:,:,a0:a1,b0:b1]) # return out def get_v(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1): '''Vijkabc intermediate as described in Scuseria paper''' km = kconserv[ki,ka,kj] kf = kconserv[ki,ka,kj] out = np.zeros((a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=dtype) if kk == kc: out = out + einsum('ck,baji->abcijk', 0.5*t1T[kk,c0:c1,:], eris_vvop[kb,ka,kj,b0:b1,a0:a1,:,:nocc]) # We see this is the same t2T term needed for the `w` contraction: # einsum('cbmk,aijm->abcijk', t2T[kc,kb,km,c0:c1,b0:b1], eris_vooo_C[ka,ki,kj,a0:a1]) # # For the kpoint indices [kk,ki,kj,kc,ka,kb] we have that we need # t2T[kb,ka,km], where km = kconserv[kb,kj,ka] # The remaining k-point not used in t2T, i.e. kc, has the condition kc == kk in the case of # get_v. So, we have from 3-particle conservation # (kk-kc) + ki + kj - ka - kb = 0, # i.e. ki = km. out = out + einsum('ck,baij->abcijk', 0.5*fvo[kk,c0:c1,:], t2T[kb,ka,ki,b0:b1,a0:a1,:,:]) return out def get_permuted_v(ki, kj, kk, ka, kb, kc, orb_indices): '''Pijkabc operating on Vijkabc intermediate as described in Scuseria paper''' a0, a1, b0, b1, c0, c1 = orb_indices tmp = np.zeros((a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=dtype) ret = get_v(ki, kj, kk, ka, kb, kc, a0, a1, b0, b1, c0, c1) ret = ret + get_v(kj, kk, ki, kb, kc, ka, b0, b1, c0, c1, a0, a1).transpose(2,0,1,5,3,4) ret = ret + get_v(kk, ki, kj, kc, ka, kb, c0, c1, a0, a1, b0, b1).transpose(1,2,0,4,5,3) ret = ret + get_v(ki, kk, kj, ka, kc, kb, a0, a1, c0, c1, b0, b1).transpose(0,2,1,3,5,4) ret = ret + get_v(kk, kj, ki, kc, kb, ka, c0, c1, b0, b1, a0, a1).transpose(2,1,0,5,4,3) ret = ret + get_v(kj, ki, kk, kb, ka, kc, b0, b1, a0, a1, c0, c1).transpose(1,0,2,4,3,5) return ret def contract_t3Tv(kpt_indices, orb_indices, data): '''Calculate t3T(ransposed) array using C driver.''' ki, kj, kk, ka, kb, kc = kpt_indices a0, a1, b0, b1, c0, c1 = orb_indices slices = np.array([a0, a1, b0, b1, c0, c1], dtype=np.int32) mo_offset = np.array([ki,kj,kk,ka,kb,kc], dtype=np.int32) vvop_ab = np.asarray(data[0][0], dtype=np.complex, order='C') vvop_ac = np.asarray(data[0][1], dtype=np.complex, order='C') vvop_ba = np.asarray(data[0][2], dtype=np.complex, order='C') vvop_bc = np.asarray(data[0][3], dtype=np.complex, order='C') vvop_ca = np.asarray(data[0][4], dtype=np.complex, order='C') vvop_cb = np.asarray(data[0][5], dtype=np.complex, order='C') vooo_aj = np.asarray(data[1][0], dtype=np.complex, order='C') vooo_ak = np.asarray(data[1][1], dtype=np.complex, order='C') vooo_bi = np.asarray(data[1][2], dtype=np.complex, order='C') vooo_bk = np.asarray(data[1][3], dtype=np.complex, order='C') vooo_ci = np.asarray(data[1][4], dtype=np.complex, order='C') vooo_cj = np.asarray(data[1][5], dtype=np.complex, order='C') t2T_cj = np.asarray(data[2][0], dtype=np.complex, order='C') t2T_bk = np.asarray(data[2][1], dtype=np.complex, order='C') t2T_ci = np.asarray(data[2][2], dtype=np.complex, order='C') t2T_ak = np.asarray(data[2][3], dtype=np.complex, order='C') t2T_bi = np.asarray(data[2][4], dtype=np.complex, order='C') t2T_aj = np.asarray(data[2][5], dtype=np.complex, order='C') t2T_cb = np.asarray(data[3][0], dtype=np.complex, order='C') t2T_bc = np.asarray(data[3][1], dtype=np.complex, order='C') t2T_ca = np.asarray(data[3][2], dtype=np.complex, order='C') t2T_ac = np.asarray(data[3][3], dtype=np.complex, order='C') t2T_ba = np.asarray(data[3][4], dtype=np.complex, order='C') t2T_ab = np.asarray(data[3][5], dtype=np.complex, order='C') data = [vvop_ab, vvop_ac, vvop_ba, vvop_bc, vvop_ca, vvop_cb, vooo_aj, vooo_ak, vooo_bi, vooo_bk, vooo_ci, vooo_cj, t2T_cj, t2T_cb, t2T_bk, t2T_bc, t2T_ci, t2T_ca, t2T_ak, t2T_ac, t2T_bi, t2T_ba, t2T_aj, t2T_ab] data_ptrs = [x.ctypes.data_as(ctypes.c_void_p) for x in data] data_ptrs = (ctypes.c_void_p*24)(*data_ptrs) a0, a1, b0, b1, c0, c1 = task t3Tw = np.empty((a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=np.complex, order='C') t3Tv = np.empty((a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=np.complex, order='C') drv = _ccsd.libcc.CCsd_zcontract_t3T drv(t3Tw.ctypes.data_as(ctypes.c_void_p), t3Tv.ctypes.data_as(ctypes.c_void_p), mo_e.ctypes.data_as(ctypes.c_void_p), t1T.ctypes.data_as(ctypes.c_void_p), fvo.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nocc), ctypes.c_int(nvir), ctypes.c_int(nkpts), mo_offset.ctypes.data_as(ctypes.c_void_p), slices.ctypes.data_as(ctypes.c_void_p), data_ptrs) return t3Tw, t3Tv def get_data(kpt_indices): idx_args = get_data_slices(kpt_indices, task, kconserv) vvop_indices, vooo_indices, t2T_vvop_indices, t2T_vooo_indices = idx_args vvop_data = [eris_vvop[tuple(x)] for x in vvop_indices] vooo_data = [eris_vooo_C[tuple(x)] for x in vooo_indices] t2T_vvop_data = [t2T[tuple(x)] for x in t2T_vvop_indices] t2T_vooo_data = [t2T[tuple(x)] for x in t2T_vooo_indices] data = [vvop_data, vooo_data, t2T_vvop_data, t2T_vooo_data] return data energy_t = 0.0 # Get location of padded elements in occupied and virtual space nonzero_opadding, nonzero_vpadding = padding_k_idx(mycc, kind="split") mem_now = lib.current_memory()[0] max_memory = max(0, mycc.max_memory - mem_now) blkmin = 4 # temporary t3 array is size: 2 * nkpts**3 * blksize**3 * nocc**3 * 16 vir_blksize = min(nvir, max(blkmin, int((max_memory*.9e6/16/nocc**3/nkpts**3/2)**(1./3)))) tasks = [] log.debug('max_memory %d MB (%d MB in use)', max_memory, mem_now) log.debug('virtual blksize = %d (nvir = %d)', nvir, vir_blksize) for a0, a1 in lib.prange(0, nvir, vir_blksize): for b0, b1 in lib.prange(0, nvir, vir_blksize): for c0, c1 in lib.prange(0, nvir, vir_blksize): tasks.append((a0,a1,b0,b1,c0,c1)) for ka in range(nkpts): for kb in range(ka+1): for task_id, task in enumerate(tasks): a0,a1,b0,b1,c0,c1 = task my_permuted_w = np.zeros((nkpts,)*3 + (a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=dtype) my_permuted_v = np.zeros((nkpts,)*3 + (a1-a0,b1-b0,c1-c0) + (nocc,)*3, dtype=dtype) for ki, kj, kk in product(range(nkpts), repeat=3): # Find momentum conservation condition for triples # amplitude t3ijkabc kc = kpts_helper.get_kconserv3(cell, kpts, [ki, kj, kk, ka, kb]) if not (ka >= kb and kb >= kc): continue kpt_indices = [ki,kj,kk,ka,kb,kc] data = get_data(kpt_indices) t3Tw, t3Tv = contract_t3Tv(kpt_indices, task, data) my_permuted_w[ki,kj,kk] = t3Tw my_permuted_v[ki,kj,kk] = t3Tv #my_permuted_w[ki,kj,kk] = get_permuted_w(ki,kj,kk,ka,kb,kc,task) #my_permuted_v[ki,kj,kk] = get_permuted_v(ki,kj,kk,ka,kb,kc,task) for ki, kj, kk in product(range(nkpts), repeat=3): # eigenvalue denominator: e(i) + e(j) + e(k) eijk = _get_epqr([0,nocc,ki,mo_e_o,nonzero_opadding], [0,nocc,kj,mo_e_o,nonzero_opadding], [0,nocc,kk,mo_e_o,nonzero_opadding]) # Find momentum conservation condition for triples # amplitude t3ijkabc kc = kpts_helper.get_kconserv3(cell, kpts, [ki, kj, kk, ka, kb]) if not (ka >= kb and kb >= kc): continue if ka == kb and kb == kc: symm_kpt = 1. elif ka == kb or kb == kc: symm_kpt = 3. else: symm_kpt = 6. eabc = _get_epqr([a0,a1,ka,mo_e_v,nonzero_vpadding], [b0,b1,kb,mo_e_v,nonzero_vpadding], [c0,c1,kc,mo_e_v,nonzero_vpadding], fac=[-1.,-1.,-1.]) eijkabc = (eijk[None,None,None,:,:,:] + eabc[:,:,:,None,None,None]) pwijk = my_permuted_w[ki,kj,kk] + my_permuted_v[ki,kj,kk] rwijk = (4. * my_permuted_w[ki,kj,kk] + 1. * my_permuted_w[kj,kk,ki].transpose(0,1,2,5,3,4) + 1. * my_permuted_w[kk,ki,kj].transpose(0,1,2,4,5,3) - 2. * my_permuted_w[ki,kk,kj].transpose(0,1,2,3,5,4) - 2. * my_permuted_w[kk,kj,ki].transpose(0,1,2,5,4,3) - 2. * my_permuted_w[kj,ki,kk].transpose(0,1,2,4,3,5)) rwijk = rwijk / eijkabc energy_t += symm_kpt * einsum('abcijk,abcijk', rwijk, pwijk.conj()) energy_t *= (1. / 3) energy_t /= nkpts if abs(energy_t.imag) > 1e-4: log.warn('Non-zero imaginary part of CCSD(T) energy was found %s', energy_t.imag) log.timer('CCSD(T)', *cpu0) log.note('CCSD(T) correction per cell = %.15g', energy_t.real) log.note('CCSD(T) correction per cell (imag) = %.15g', energy_t.imag) return energy_t.real ################################### # Helper function for t3 creation ################################### def check_read_success(filename, **kwargs): '''Determine criterion for successfully reading a dataset based on its meta values. For now, returns False.''' def check_write_complete(filename, **kwargs): '''Check for `completed` attr in file.''' import os mode = kwargs.get('mode', 'r') if not os.path.isfile(filename): return False f = h5py.File(filename, mode=mode, **kwargs) return f.attrs.get('completed', False) write_complete = check_write_complete(filename, **kwargs) return False and write_complete def transpose_t2(t2, nkpts, nocc, nvir, kconserv, out=None): '''Creates t2.transpose(2,3,1,0).''' if out is None: out = np.empty((nkpts,nkpts,nkpts,nvir,nvir,nocc,nocc), dtype=t2.dtype) # Check if it's stored in lower triangular form if len(t2.shape) == 7 and t2.shape[:2] == (nkpts, nkpts): for ki, kj, ka in product(range(nkpts), repeat=3): kb = kconserv[ki,ka,kj] out[ka,kb,kj] = t2[ki,kj,ka].transpose(2,3,1,0) elif len(t2.shape) == 6 and t2.shape[:2] == (nkpts*(nkpts+1)//2, nkpts): for ki, kj, ka in product(range(nkpts), repeat=3): kb = kconserv[ki,ka,kj] # t2[ki,kj,ka] = t2[tril_index(ki,kj),ka] ki<kj # t2[kj,ki,kb] = t2[ki,kj,ka].transpose(1,0,3,2) ki<kj # = t2[tril_index(ki,kj),ka].transpose(1,0,3,2) if ki <= kj: tril_idx = (kj*(kj+1))//2 + ki out[ka,kb,kj] = t2[tril_idx,ka].transpose(2,3,1,0).copy() out[kb,ka,ki] = out[ka,kb,kj].transpose(1,0,3,2) else: raise ValueError('No known conversion for t2 shape %s' % t2.shape) return out def create_eris_vvop(vovv, oovv, nkpts, nocc, nvir, kconserv, out=None): '''Creates vvop from vovv and oovv array (physicist notation).''' nmo = nocc + nvir assert(vovv.shape == (nkpts,nkpts,nkpts,nvir,nocc,nvir,nvir)) if out is None: out = np.empty((nkpts,nkpts,nkpts,nvir,nvir,nocc,nmo), dtype=vovv.dtype) else: assert(out.shape == (nkpts,nkpts,nkpts,nvir,nvir,nocc,nmo)) for ki, kj, ka in product(range(nkpts), repeat=3): kb = kconserv[ki,ka,kj] out[ki,kj,ka,:,:,:,nocc:] = vovv[kb,ka,kj].conj().transpose(3,2,1,0) if oovv is not None: out[ki,kj,ka,:,:,:,:nocc] = oovv[kb,ka,kj].conj().transpose(3,2,1,0) return out def create_eris_vooo(ooov, nkpts, nocc, nvir, kconserv, out=None): '''Creates vooo from ooov array. This is not exactly chemist's notation, but close. Here a chemist notation vooo is created from physicist ooov, and then the last two indices of vooo are swapped. ''' assert(ooov.shape == (nkpts,nkpts,nkpts,nocc,nocc,nocc,nvir)) if out is None: out = np.empty((nkpts,nkpts,nkpts,nvir,nocc,nocc,nocc), dtype=ooov.dtype) for ki, kj, ka in product(range(nkpts), repeat=3): kb = kconserv[ki,kj,ka] # <bj|ai> -> (ba|ji) (Physicist->Chemist) # (ij|ab) = (ba|ij)* (Permutational symmetry) # out = (ij|ab).transpose(0,1,3,2) out[ki,kj,kb] = ooov[kb,kj,ka].conj().transpose(3,1,0,2) return out def create_t3_eris(mycc, kconserv, eris, tmpfile='tmp_t3_eris.h5'): '''Create/transpose necessary eri integrals needed for fast read-in by CCSD(T).''' eris_vovv, eris_oovv, eris_ooov, t2 = eris nkpts = mycc.nkpts nocc = mycc.nocc nmo = mycc.nmo nvir = nmo - nocc nmo = nocc + nvir feri_tmp = None h5py_kwargs = {} feri_tmp_filename = tmpfile dtype = np.result_type(eris_vovv, eris_oovv, eris_ooov, t2) if not check_read_success(feri_tmp_filename): feri_tmp = lib.H5TmpFile(feri_tmp_filename, 'w', **h5py_kwargs) t2T_out = feri_tmp.create_dataset('t2T', (nkpts,nkpts,nkpts,nvir,nvir,nocc,nocc), dtype=dtype) eris_vvop_out = feri_tmp.create_dataset('vvop', (nkpts,nkpts,nkpts,nvir,nvir,nocc,nmo), dtype=dtype) eris_vooo_C_out = feri_tmp.create_dataset('vooo_C', (nkpts,nkpts,nkpts,nvir,nocc,nocc,nocc), dtype=dtype) transpose_t2(t2, nkpts, nocc, nvir, kconserv, out=t2T_out) create_eris_vvop(eris_vovv, eris_oovv, nkpts, nocc, nvir, kconserv, out=eris_vvop_out) create_eris_vooo(eris_ooov, nkpts, nocc, nvir, kconserv, out=eris_vooo_C_out) feri_tmp.attrs['completed'] = True feri_tmp.close() feri_tmp = lib.H5TmpFile(feri_tmp_filename, 'r', **h5py_kwargs) t2T = feri_tmp['t2T'] eris_vvop = feri_tmp['vvop'] eris_vooo_C = feri_tmp['vooo_C'] mem_now = lib.current_memory()[0] max_memory = max(0, mycc.max_memory - mem_now) unit = nkpts**3 * (nvir**2 * nocc**2 + nvir**2 * nmo * nocc + nvir * nocc**3) if (unit*16 < max_memory): # Store all in memory t2T = t2T[:] eris_vvop = eris_vvop[:] eris_vooo_C = eris_vooo_C[:] return feri_tmp, t2T, eris_vvop, eris_vooo_C def _convert_to_int(kpt_indices): '''Convert all kpoint indices for 3-particle operator to integers.''' out_indices = [0]*6 for ix, x in enumerate(kpt_indices): assert isinstance(x, (int, np.int, np.ndarray, list)) if isinstance(x, (np.ndarray)) and (x.ndim == 0): out_indices[ix] = int(x) else: out_indices[ix] = x return out_indices def _tile_list(kpt_indices): '''Similar to a cartesian product but for a list of kpoint indices for a 3-particle operator.''' max_length = 0 out_indices = [0]*6 for ix, x in enumerate(kpt_indices): if hasattr(x, '__len__'): max_length = max(max_length, len(x)) if max_length == 0: return kpt_indices else: for ix, x in enumerate(kpt_indices): if isinstance(x, (int, np.int)): out_indices[ix] = [x] * max_length else: out_indices[ix] = x return map(list, zip(*out_indices)) def zip_kpoints(kpt_indices): '''Similar to a cartesian product but for a list of kpoint indices for a 3-particle operator. Ensures all indices are integers.''' out_indices = _convert_to_int(kpt_indices) out_indices = _tile_list(out_indices) return out_indices def get_data_slices(kpt_indices, orb_indices, kconserv): kpt_indices = zip_kpoints(kpt_indices) if isinstance(kpt_indices[0], (int, np.int)): # Ensure we are working kpt_indices = [kpt_indices] # with a list of lists a0,a1,b0,b1,c0,c1 = orb_indices length = len(kpt_indices)*6 def _vijk_indices(kpt_indices, orb_indices, transpose=(0, 1, 2)): '''Get indices needed for t3 construction and a given transpose of (a,b,c).''' kpt_indices = ([kpt_indices[x] for x in transpose] + [kpt_indices[x+3] for x in transpose]) orb_indices = lib.flatten([[orb_indices[2*x], orb_indices[2*x+1]] for x in transpose]) ki, kj, kk, ka, kb, kc = kpt_indices a0, a1, b0, b1, c0, c1 = orb_indices kf = kconserv[ka,ki,kb] km = kconserv[kc,kk,kb] sl00 = slice(None, None) vvop_idx = [ka, kb, ki, slice(a0,a1), slice(b0,b1), sl00, sl00] vooo_idx = [ka, ki, kj, slice(a0,a1), sl00, sl00, sl00] t2T_vvop_idx = [kc, kf, kj, slice(c0,c1), sl00, sl00, sl00] t2T_vooo_idx = [kc, kb, km, slice(c0,c1), sl00, sl00, sl00] return vvop_idx, vooo_idx, t2T_vvop_idx, t2T_vooo_idx vvop_indices = [0] * length vooo_indices = [0] * length t2T_vvop_indices = [0] * length t2T_vooo_indices = [0] * length transpose = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] count = 0 for kpt in kpt_indices: for t in transpose: vvop_idx, vooo_idx, t2T_vvop_idx, t2T_vooo_idx = _vijk_indices(kpt, orb_indices, t) vvop_indices[count] = vvop_idx vooo_indices[count] = vooo_idx t2T_vvop_indices[count] = t2T_vvop_idx t2T_vooo_indices[count] = t2T_vooo_idx count += 1 return vvop_indices, vooo_indices, t2T_vvop_indices, t2T_vooo_indices def _get_epqr(pindices,qindices,rindices,fac=[1.0,1.0,1.0],large_num=LARGE_DENOM): '''Create a denominator fac[0]*e[kp,p0:p1] + fac[1]*e[kq,q0:q1] + fac[2]*e[kr,r0:r1] where padded elements have been replaced by a large number. Args: pindices (5-list of object): A list of p0, p1, kp, orbital values, and non-zero indices for the first denominator element. qindices (5-list of object): A list of q0, q1, kq, orbital values, and non-zero indices for the second denominator element. rindices (5-list of object): A list of r0, r1, kr, orbital values, and non-zero indices for the third denominator element. fac (3-list of float): Factors to multiply the first and second denominator elements. large_num (float): Number to replace the padded elements. ''' def get_idx(x0,x1,kx,n0_p): return
np.logical_and(n0_p[kx] >= x0, n0_p[kx] < x1)
numpy.logical_and
# python align.py --camera=nikon --focal_length=21 import argparse import glob import tqdm import os import os.path as op import json import rawpy import numpy as np import cv2 from skimage.exposure import match_histograms, equalize_hist import skimage.filters import datetime import time import copy import pickle import utils from utils import log_msg from dataset import Dataset, SUPPORTED_ANNO_EXT import draw_anno from aligner import Aligner, Transforms LOG = True MAP_DIR = "transforms" VIS_DIR = "visualized" STEPS_DIR = "steps" MIN_MATCH_COUNT = 10 SUPPORTED_RAW_PATTERNS = [b'RGBG'] def image_diff(img1, img2, postprocessing_fncs=None, postprocessing_args=None): diff = img1 - img2 if not postprocessing_fncs: return diff for fnc, args in zip(postprocessing_fncs, postprocessing_args): diff = fnc(diff, **args) return diff def read_avg_green_raw(filepath): _img = rawpy.imread(filepath) assert _img.color_desc in SUPPORTED_RAW_PATTERNS img = _img.raw_image.copy() img = np.expand_dims(img,axis=2) black_level = _img.black_level_per_channel[0] # assume all black level is the same img = (img - black_level)/2**16 H = img.shape[0] W = img.shape[1] packed_img = np.concatenate((img[0:H:2, 0:W:2, :], # R img[0:H:2, 1:W:2, :], # GR img[1:H:2, 0:W:2, :], # GB img[1:H:2, 1:W:2, :]), axis=2) # B greens = (packed_img[:, :, 1]+packed_img[:, :, 2])/2 # RGGB return greens def read_rawpy_rgb(filepath): _img = rawpy.imread(filepath) bgr = _img.postprocess() return bgr[:, :, ::-1] def read_rawpy_grayscale(filepath): _img = rawpy.imread(filepath) rgb = _img.postprocess() return cv2.cvtColor(rgb[:, :, ::-1], cv2.COLOR_BGR2GRAY) def read_avg_colors_raw(filepath, gamma=True, rgb_weights=[.2126, .7152, .0722]): # https://stackoverflow.com/questions/687261/converting-rgb-to-grayscale-intensity _img = rawpy.imread(filepath) assert _img.color_desc in SUPPORTED_RAW_PATTERNS img = _img.raw_image.copy() img = np.expand_dims(img,axis=2) black_level = _img.black_level_per_channel[0] # assume all black level is the same img = (img - black_level)/2**16 H = img.shape[0] W = img.shape[1] Rw, Gw, Bw = rgb_weights Gw/=2 packed_img = np.concatenate((img[0:H:2, 0:W:2, :], # R img[0:H:2, 1:W:2, :], # GR img[1:H:2, 0:W:2, :], # GB img[1:H:2, 1:W:2, :]), axis=2) # B r, gr, gb, b = packed_img[:, :, 0], packed_img[:, :, 1], packed_img[:, :, 2], packed_img[:, :, 3] gamma = 1/2.2 grayscale = Rw * r**gamma + Gw * gr**gamma + Gw * gb**gamma + Bw * b**gamma return grayscale if __name__ == "__main__": parser = argparse.ArgumentParser(description='') parser.add_argument('--camera', type=str, required=True) parser.add_argument('--focal_length', type=int, required=True) parser.add_argument('--visualize', action="store_true") parser.add_argument('--document', action="store_true") parser.add_argument('--not_log', action="store_true") args = parser.parse_args() if args.not_log: LOG = False flags = [args.visualize, args.document, True] dirs = [VIS_DIR, STEPS_DIR, MAP_DIR] for flag, dir in zip(flags, dirs): if flag and not op.exists(dir): os.mkdir(dir) if args.visualize: fl_dir_name = str(args.focal_length).replace(".","_") subdirs = [args.camera, fl_dir_name] visualize_dir = op.join(VIS_DIR) for sub in subdirs: visualize_dir = op.join(visualize_dir, sub) if not op.exists(visualize_dir): os.mkdir(visualize_dir) log_msg(datetime.datetime.now().strftime("%m/%d/%Y, %H:%M:%S"), log=LOG) print(f"{args.camera}") camera_config = utils.read_json(op.join(utils.CONFIGS_DIR, args.camera+".json")) dataset = Dataset(camera_config) print("Original stats:") dataset.show_stats() dataset.filter_by_focal_length(args.focal_length) result_filepath = op.join(MAP_DIR, dataset.generate_transform_file_name()) print(f"Stats for focal length {args.focal_length}:") dataset.show_stats() transforms = Transforms() detector = cv2.SIFT_create() FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks = 50) flann = cv2.FlannBasedMatcher(index_params, search_params) cached_aligner = Aligner(H=dataset.jpeg_h, W=dataset.jpeg_w, window_size=dataset.window_size, stride=dataset.stride) cached_addresses_LUT = cached_aligner.addresses_LUT.copy() aligners = [] for idx, sample in tqdm.tqdm(enumerate(dataset.samples)): #XXX log_msg(f"Sample {idx}", log=LOG) ''' 4. Prepare images. ''' ''' 4.1. Rawpy+grayscale. ''' raw_img = read_rawpy_grayscale(sample.raw_filepath) jpeg_img = cv2.imread(sample.jpeg_filepath, 0) if args.document: cv2.imwrite("steps/1_1_jpeg.jpg", jpeg_img) cv2.imwrite("steps/1_1_raw.jpg", raw_img) ''' 4.2.&3. Equalize and match histograms. ''' jpeg_img = equalize_hist(jpeg_img) raw_img = match_histograms(raw_img, jpeg_img) if args.document: cv2.imwrite("steps/1_2_jpeg.jpg", jpeg_img*255) cv2.imwrite("steps/1_2_raw.jpg", raw_img*255) ''' 4.3A. Resize RAW''' Hj, Wj = jpeg_img.shape Hr, Wr = raw_img.shape raw_sx = Wj/Wr raw_sy = Hj/Hr raw_img = cv2.resize(raw_img, None, fx=raw_sx, fy=raw_sy) assert raw_img.shape == jpeg_img.shape ''' 1.-1. np.UINT8''' jpeg_img *= 255 raw_img *= 255 assert jpeg_img.max() <= 255 assert raw_img.max() <= 255 jpeg_img = jpeg_img.astype(np.uint8) raw_img = raw_img.astype(np.uint8) ''' 2. Estimate homography''' aligner = Aligner(H=dataset.jpeg_h, W=dataset.jpeg_w, window_size=dataset.window_size, stride=dataset.stride, addresses_LUT=cached_addresses_LUT) mapping_idx = 0 for y in range(0, dataset.jpeg_h - dataset.window_size + dataset.window_size, dataset.stride): for x in range(0, dataset.jpeg_w - dataset.window_size + dataset.window_size, dataset.stride): jpeg_patch = jpeg_img[y:y + dataset.window_size, x:x + dataset.window_size] raw_patch = raw_img[y:y + dataset.window_size, x:x + dataset.window_size] img1 = jpeg_patch img2 = raw_patch kp1, des1 = detector.detectAndCompute(img1,None) kp2, des2 = detector.detectAndCompute(img2,None) if isinstance(des1, type(None)) or isinstance(des2, type(None)) or len(kp1) < 2 or len(kp2) <2: log_msg(f"[WARNING] {sample.file_name} patch {mapping_idx} ignored, (no descriptors)", log=LOG) else: matches = flann.knnMatch(des1,des2,k=2) good = [] for m,n in matches: if m.distance < 0.7*n.distance: good.append(m) if len(good)>MIN_MATCH_COUNT: src_pts = np.float32([ (kp1[m.queryIdx].pt[0] + x, kp1[m.queryIdx].pt[1] + y) for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ (kp2[m.trainIdx].pt[0] + x, kp2[m.trainIdx].pt[1] + y) for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) aligner.mappings[mapping_idx] = M else: log_msg(f"[WARNING] {sample.file_name} patch {mapping_idx} ignored, (not enough good matches)", log=LOG) M, mask = None, None mapping_idx +=1 aligners.append(aligner) if args.document: cv2.imwrite("steps/0_patch_jpeg.png",jpeg_patch) cv2.imwrite("steps/1_patch_raw.png",raw_patch) raw_preprocessing_transforms = Transforms() raw_preprocessing_transforms.log(np.diag([raw_sx, raw_sy]), "raw", desc=None) aggregated_aligner = Aligner(H=dataset.jpeg_h, W=dataset.jpeg_w, window_size=dataset.window_size, stride=dataset.stride, \ addresses_LUT=cached_addresses_LUT, raw_preprocessing_transforms=raw_preprocessing_transforms, log=LOG) for mapping_idx in aggregated_aligner.mappings.keys(): mappings = [] for aligner in aligners: M = aligner.mappings[mapping_idx] if not isinstance(M,type(None)): mappings.append(M) avg_mapping = np.mean(mappings, axis=0) aggregated_aligner.mappings[mapping_idx] = avg_mapping aggregated_aligner.save(result_filepath) test_aligner = Aligner(H=dataset.jpeg_h, W=dataset.jpeg_w, \ window_size=dataset.window_size, stride=dataset.stride, load_from=result_filepath) # sanity check for idx in aggregated_aligner.mappings.keys(): a1 = aggregated_aligner.mappings[idx] a2 = test_aligner.mappings[idx] if isinstance(a1, type(None)): a1 = np.array([0]) if isinstance(a2, type(None)): a2 = np.array([0]) if not np.allclose(a1, a2, equal_nan=True): raise Exception(f"{idx}: {a1}, {a2}.") assert
np.array_equal(aggregated_aligner.addresses_LUT, test_aligner.addresses_LUT)
numpy.array_equal
#!/usr/bin/env python """ Curves, tracks, skeletons connecting surface mesh vertices. Authors: - <NAME>, 2012-2016 (<EMAIL>) http://binarybottle.com - <NAME>, 2012 (<EMAIL>) Copyright 2016, Mindboggle team (http://mindboggle.info), Apache v2.0 License """ def connect_points_erosion(S, neighbor_lists, outer_anchors, inner_anchors=[], values=[], erode_ratio=0.1, erode_min_size=10, save_steps=[], save_vtk='', background_value=-1, verbose=False): """ Connect mesh vertices with a skeleton of 1-vertex-thick curves by erosion. This algorithm iteratively removes simple topological points and endpoints, optionally in order of lowest to highest values. Parameters ---------- S : numpy array of integers values for all vertices (disregard background values) outer_anchors : list of integers indices of vertices to connect inner_anchors : list of integers more vertices to connect; they are removed if they result in endpoints neighbor_lists : list of lists of integers each list contains indices to neighboring vertices for each vertex values : numpy array of floats values for S elements, to optionally remove points in order of lowest to highest values erode_ratio : float fraction of indices to test for removal at each iteration (if values) erode_min_size : integer minimum number of vertices when considering erode_ratio save_steps : list of integers (optional) iterations at which to save incremental VTK file save_vtk : string name of VTK file to transfer incremental values (if save_steps) background_value : integer or float background value verbose : bool print statements? Returns ------- skeleton : list of integers indices to vertices of skeleton Examples -------- >>> # Extract a skeleton to connect endpoints in a fold: >>> import numpy as np >>> from mindboggle.guts.paths import connect_points_erosion >>> from mindboggle.guts.paths import find_outer_endpoints >>> from mindboggle.mio.vtks import read_scalars, read_vtk >>> from mindboggle.guts.compute import median_abs_dev >>> from mindboggle.guts.paths import find_max_values >>> from mindboggle.guts.mesh import find_neighbors_from_file >>> from mindboggle.mio.fetch_data import prep_tests >>> urls, fetch_data = prep_tests() >>> curv_file = fetch_data(urls['left_mean_curvature'], '', '.vtk') >>> depth_file = fetch_data(urls['left_travel_depth'], '', '.vtk') >>> folds_file = fetch_data(urls['left_folds'], '', '.vtk') >>> points, f1,f2,f3, curvs, f4,f5,f6 = read_vtk(curv_file, True,True) >>> depths, name = read_scalars(depth_file, True, True) >>> folds, name = read_scalars(folds_file, True, True) >>> values = depths * curvs >>> [np.float("{0:.{1}f}".format(x, 5)) for x in values[0:5]] [-0.11778, -0.35642, -0.80759, -0.25654, -0.04411] >>> neighbor_lists = find_neighbors_from_file(curv_file) >>> background_value = -1 >>> # Limit number of folds to speed up the test: >>> limit_folds = True >>> if limit_folds: ... fold_numbers = [4] #[4, 6] ... indices = [i for i,x in enumerate(folds) if x in fold_numbers] ... i0 = [i for i,x in enumerate(folds) if x not in fold_numbers] ... folds[i0] = background_value ... else: ... indices = range(len(values)) >>> # Outer anchors: >>> min_separation = 10 >>> verbose = False >>> outer_anchors, tracks = find_outer_endpoints(indices, neighbor_lists, ... values, depths, min_separation, ... background_value, verbose) >>> outer_anchors[0:10] [50324, 66986, 75661] >>> # Inner anchors: >>> values0 = [x for x in values if x > 0] >>> thr = np.median(values0) + 2 * median_abs_dev(values0) >>> inner_anchors = find_max_values(points, values, min_separation, thr) >>> inner_anchors[0:10] [61455, 41761, 67978, 72621, 78546, 40675, 73745, 98736, 125536, 119813] >>> erode_ratio = 0.10 >>> erode_min_size = 10 >>> save_steps = [] #list(range(0,500,50)) >>> save_vtk = depth_file >>> S = np.copy(folds) >>> skeleton = connect_points_erosion(S, neighbor_lists, ... outer_anchors, inner_anchors, values, erode_ratio, erode_min_size, ... save_steps, save_vtk, background_value, verbose) >>> skeleton[0:10] [50324, 50333, 50339, 51552, 51560, 52707, 52716, 52724, 52725, 53893] Write out vtk file and view (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP >>> folds[skeleton] = 10 # doctest: +SKIP >>> folds[outer_anchors] = 15 # doctest: +SKIP >>> rewrite_scalars(depth_file, 'connect_points_erosion.vtk', ... folds, 'skeleton', folds, background_value) # doctest: +SKIP >>> plot_surfaces('connect_points_erosion.vtk') # doctest: +SKIP """ import numpy as np from mindboggle.guts.mesh import topo_test, extract_edge, find_endpoints from mindboggle.guts.segment import segment_regions # Make sure arguments are numpy arrays: if not isinstance(S, np.ndarray): S = np.array(S) erode_by_value = False if len(values) and 0 <= erode_ratio < 1: erode_by_value = True if not isinstance(values, np.ndarray): values = np.array(values) keep = outer_anchors[:] keep.extend(inner_anchors) remove_endpoints = True if save_steps: from mindboggle.mio.vtks import rewrite_scalars S0 = S.copy() # ------------------------------------------------------------------------ # Iteratively remove simple points: # ------------------------------------------------------------------------ if verbose: print(' Remove up to {0} of edge vertices per iteration'. format(erode_ratio)) complex = [] count = -1 exist_simple = True while exist_simple: exist_simple = False if verbose or save_steps: count += 1 # -------------------------------------------------------------------- # Only consider updating vertices that are on the edge of the # region and are not among the indices to keep or known simple points: # -------------------------------------------------------------------- indices = np.where(S != background_value)[0].tolist() edge = extract_edge(indices, neighbor_lists) if edge: edge = np.array(list(set(edge).difference(complex))) len_edge = np.shape(edge)[0] if len_edge: # ------------------------------------------------------------ # Segment edge vertices into separate connected groups: # ------------------------------------------------------------ edge_segs = segment_regions(edge, neighbor_lists, 1, [], False, False, [], [], [], '', background_value, verbose) edge_seg_numbers = [x for x in np.unique(edge_segs) if x != background_value] if verbose: len_numbers = len(edge_seg_numbers) if len_numbers > 1: print(' {0}: {1} edge points in {2} segments'. format(count, len_edge, len_numbers)) else: print(' {0}: {1} edge points'.format(count, len_edge)) first_seg = True for edge_seg_number in edge_seg_numbers: edge_seg = np.where(edge_segs == edge_seg_number)[0] edge_seg = np.array(list(set(edge_seg).difference(keep))) len_edge_seg = np.shape(edge_seg)[0] if len_edge_seg: # ---------------------------------------------------- # Remove topologically simple points # in order of lowest to highest values: # ---------------------------------------------------- ntests = len_edge_seg if erode_by_value and ntests > erode_min_size: Isort = np.argsort(values[edge_seg]) edge_seg = edge_seg[Isort] if erode_ratio > 0: ntests = int(len_edge_seg * erode_ratio) + 1 for index in edge_seg[0:ntests]: # Test to see if each index is a simple point: simple, d = topo_test(index, S, neighbor_lists) # If a simple point, remove and run again: # (Note: Must remove at each iteration) if simple: S[index] = background_value exist_simple = True # Else store to exclude in future: else: complex.append(index) # If no simple points, test all of the indices: if not exist_simple and erode_by_value: if verbose: print(' No simple points') for index in edge_seg[ntests::]: simple, d = topo_test(index, S, neighbor_lists) # If a simple point, remove and run again: if simple: S[index] = background_value exist_simple = True # Else store to exclude in future: else: complex.append(index) # Save incremental VTK files for debugging: if count in save_steps and first_seg: IDs = background_value * np.ones(len(values)) IDs[indices] = values[indices] rewrite_scalars(save_vtk, 'edge'+str(count)+'.vtk', IDs, 'edges', S0, background_value) first_seg = False # ------------------------------------------------------------ # Remove branches by iteratively removing endpoints: # ------------------------------------------------------------ if remove_endpoints: indices = np.where(S != background_value)[0].tolist() endpts = True while endpts: endpts = find_endpoints(indices, neighbor_lists) if endpts: endpts = [x for x in endpts if x not in outer_anchors] if endpts: S[endpts] = background_value indices = list(set(indices).difference(endpts)) skeleton = indices return skeleton def connect_points_hmmf(indices_points, indices, L, neighbor_lists, wN_max=1.0, do_erode=True, background_value=-1, verbose=False): """ Connect mesh vertices with a skeleton of 1-vertex-thick curves using HMMF. The goal of this algorithm is to assign each vertex a locally optimal Hidden Markov Measure Field (HMMF) value and to connect vertices according to a cost function that penalizes vertices that do not have high likelihood values and have HMMF values different than their neighbors. We initialize the HMMF values with likelihood values normalized to the interval (0.5, 1.0] (to guarantee correct topology) and take those values that are greater than the likelihood threshold (1 for each anchor point). We iteratively update each HMMF value if it is near the likelihood threshold such that a H_step makes it cross the threshold, and the vertex is a "simple point" (its addition/removal alters topology). Parameters for computing the cost and cost gradients: ``wL``: weight influence of likelihood on the cost function ``wN``: weight influence of neighbors on the cost function ``H_step``: the amount that the HMMF values are incremented Parameters ---------- indices_points : list of integers indices of vertices to connect (should contain > 1) indices : list of integers indices of vertices through which to connect points L : numpy array of floats likelihood values for all vertices in mesh neighbor_lists : list of lists of integers indices to neighboring vertices for each vertex in mesh wN_max : float maximum neighborhood weight (trust prior more for smoother fundi) do_erode : bool erode to create skeleton? background_value : integer background value verbose : bool print statements? Returns ------- skeleton : list of integers indices to vertices connecting the points Examples -------- >>> # Connect vertices according to (usually likelihood) values in a fold: >>> import numpy as np >>> from mindboggle.guts.paths import connect_points_hmmf >>> from mindboggle.guts.paths import find_outer_endpoints >>> from mindboggle.mio.vtks import read_scalars >>> from mindboggle.guts.compute import median_abs_dev >>> from mindboggle.guts.mesh import find_neighbors_from_file >>> from mindboggle.mio.fetch_data import prep_tests >>> urls, fetch_data = prep_tests() >>> url1 = urls['left_mean_curvature'] >>> url2 = urls['left_travel_depth'] >>> url3 = urls['left_folds'] >>> curv_file = fetch_data(url1, '', '.vtk') >>> depth_file = fetch_data(url2, '', '.vtk') >>> folds_file = fetch_data(url3, '', '.vtk') >>> curvs, name = read_scalars(curv_file, True, True) >>> depths, name = read_scalars(depth_file, True, True) >>> folds, name = read_scalars(folds_file, True, True) >>> L = curvs * depths >>> print(np.array_str(L[0:5], precision=5, suppress_small=True)) [-0.11778 -0.35642 -0.80759 -0.25654 -0.04411] >>> neighbor_lists = find_neighbors_from_file(curv_file) >>> background_value = -1 >>> # Limit number of folds to speed up the test: >>> limit_folds = True >>> if limit_folds: ... fold_numbers = [4] #[4, 6] ... indices = [i for i,x in enumerate(folds) if x in fold_numbers] ... i0 = [i for i,x in enumerate(folds) if x not in fold_numbers] ... folds[i0] = background_value ... else: ... indices = range(len(L)) >>> # Outer anchors: >>> min_separation = 10 >>> verbose = False >>> indices_points, tracks = find_outer_endpoints(indices, neighbor_lists, ... L, depths, min_separation, ... background_value, verbose) >>> wN_max = 2.0 >>> do_erode = True >>> skeleton = connect_points_hmmf(indices_points, indices, L, ... neighbor_lists, wN_max, do_erode, background_value, verbose) >>> skeleton[0:10] [50324, 50333, 50339, 51552, 51560, 51561, 52708, 52716, 53891, 53892] Write out vtk file and view (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP >>> folds_copy = np.copy(folds) # doctest: +SKIP >>> folds[skeleton] = 100 # doctest: +SKIP >>> folds[indices_points] = 120 # doctest: +SKIP >>> rewrite_scalars(depth_file, 'connect_points_hmmf.vtk', ... folds, 'skeleton', folds, -1) # doctest: +SKIP >>> plot_surfaces('connect_points_hmmf.vtk') # doctest: +SKIP """ import numpy as np from mindboggle.guts.mesh import topo_test from mindboggle.guts.paths import connect_points_erosion # Make sure argument is a numpy array if not isinstance(L, np.ndarray): L = np.array(L) # ------------------------------------------------------------------------ # Parameters: # ------------------------------------------------------------------------ # Cost and cost gradient parameters: wN_min = 0.0 # minimum neighborhood weight #wN_max = 2.0 # maximum neighborhood weight (trust prior more for smoother fundi) H_step = 0.1 # step down HMMF value # Parameters to speed up optimization and for termination of the algorithm: grad_min = 0.1 # minimum gradient factor grad_max = 1.0 # maximum gradient factor slope_exp = 2 rate_factor = 0.9 min_cost_change = 0.0001 # minimum change in the sum of costs n_tries_no_change = 3 # number of loops without sufficient change min_count = 50 # min. iterations (to overcome initial increasing costs) max_count = 300 # maximum number of iterations (in case no convergence) # Miscellaneous parameters: print_interval = 10 def compute_costs(likelihoods, hmmfs, hmmfs_neighbors, numbers_of_neighbors, wN, Z=[]): """ Cost function for penalizing unlikely fundus curve vertices. This cost function penalizes vertices with low fundus likelihood values, and whose Hidden Markov Measure Field (HMMF) values differ from their neighbors: cost = hmmf * (1.1 - likelihood) + wN * sum(abs(hmmf - hmmf_neighbors)) / size_neighbors term 1 promotes high likelihood values term 2 promotes smoothness of the HMMF values Note: 1.1 is used instead of 1 to ensure that there is a cost for all points, even for those with likelihoods close to 1. Parameters ---------- likelihoods : numpy array of floats likelihood values in interval [0,1] hmmf : numpy array of floats HMMF values hmmf_neighbors : numpy array of floats HMMF values of neighboring vertices for each vertex numbers_of_neighbors : numpy array of integers number of neighbors for each vertex wN : float weight influence of neighbors on cost (term 2) Z : numpy array of integers in {0,1} (same shape as hmmf_neighbors) to remove zero-padded neighborhood elements after hmmf subtraction Returns ------- costs : numpy array of floats cost values """ import numpy as np if all(numbers_of_neighbors): # Subtract each HMMF value from its neighbors: diff = abs(hmmfs - hmmfs_neighbors) # Since the above neighbors may have been padded, # remove the extra differences by multiplying them times zero: diff = diff * Z # Compute the cost for each vertex: costs = hmmfs * (1.1 - likelihoods) + \ wN * np.sum(diff, axis=0) / numbers_of_neighbors else: raise IOError('No HMMF neighbors to compute cost.') return costs # ------------------------------------------------------------------------ # Initialize all Hidden Markov Measure Field (HMMF) values with # likelihood values (except 0) normalized to the interval (0.5, 1.0] # (to guarantee correct topology). Assign a 1 for each anchor point. # This influences surrounding vertex neighborhoods. # Note: 0.5 is the class boundary threshold for the HMMF values. H = np.zeros(len(L)) H_new = (L + 1.000001) / 2 H_new[L == 0.0] = 0 H_new[H_new > 1.0] = 1 H[H_new > 0.5] = H_new[H_new > 0.5] H[indices_points] = 1 H_new = H.copy() H_tests = H.copy() # Find the HMMF values for the neighbors of each vertex: N = neighbor_lists N_sizes = np.array([len(x) for x in N]) max_num_neighbors = max(N_sizes[indices]) N_array = np.zeros((max_num_neighbors, len(L))) for index in indices: N_array[0:N_sizes[index], index] = N[index] N_array_shape = np.shape(N_array) N_flat = np.ravel(N_array) N_flat_list = N_flat.tolist() H_N = np.reshape(H[[np.int(x) for x in N_flat_list]], N_array_shape) ind_flat = [i for i,x in enumerate(N_flat_list) if x > 0] len_flat = len(N_flat_list) # A zero in N calls H[0], so remove zero-padded neighborhood elements: Z = np.zeros((max_num_neighbors, len(L))) for index in indices: Z[0:N_sizes[index], index] = 1 # Assign cost values to each vertex (for indices): C = np.zeros(len(L)) C[indices] = compute_costs(L[indices], H[indices], H_N[:,indices], N_sizes[indices], wN_max, Z[:,indices]) npoints = len(indices) # Loop until count reaches max_count or until end_flag equals zero # (end_flag allows the loop to continue a few times even if no change): count = 0 end_flag = 0 wN = wN_max gradient_factor = grad_min while end_flag < n_tries_no_change and count < max_count: # Select indices with a positive HMMF value: V = [indices[i] for i,x in enumerate(H[indices]) if x > 0.0] # Update neighborhood H values: #H_N = np.reshape(H[N_flat_list], N_array_shape) H_N = np.zeros(len_flat) H_N[ind_flat] = H[[np.int(x) for x in N_flat[ind_flat]]] H_N = np.reshape(H_N, N_array_shape) # Compute the cost gradient for the HMMF values: H_decr = H - H_step H_decr[H_decr < 0] = 0.0 C_decr = compute_costs(L[V], H_decr[V], H_N[:,V], N_sizes[V], wN, Z[:,V]) H_tests[V] = H[V] - gradient_factor * (C[V] - C_decr) H_tests[H_tests < 0] = 0.0 H_tests[H_tests > 1] = 1.0 # For each index: for index in V: # Do not update anchor point costs: if index not in indices_points: # Update a vertex HMMF value if it is away from the threshold: update = True # Or if it crosses the threshold and is a topologically # "simple point" (0.5 not considered part of the fundus): if H[index] > 0.5 >= H_tests[index]: update, n_in = topo_test(index, H_new, N) elif H[index] <= 0.5 < H_tests[index]: update, n_in = topo_test(index, 1 - H_new, N) if update: H_new[index] = H_tests[index] # Update the cost values: C[V] = compute_costs(L[V], H_new[V], H_N[:,V], N_sizes[V], wN, Z[:,V]) # Sum the cost values across all vertices and tally the number # of HMMF values greater than the threshold. # After iteration 1, compare current and previous values. # If the values are similar, increment end_flag: costs = sum(C[V].tolist()) npoints_thr = len([x for x in H[V].tolist() if x > 0.5]) # Terminate the loop if there are insufficient changes: if count > 0: delta_cost = (costs_previous - costs) / npoints delta_points = npoints_thr_previous - npoints_thr if delta_points == 0: if delta_cost < min_cost_change and count > min_count: end_flag += 1 else: end_flag = 0 # Display information every n_mod iterations: if verbose and not np.mod(count, print_interval): print(' Iteration {0}: {1} crossing threshold ' '(wN={2:0.3f}, grad={3:0.3f}, cost={4:0.3f})'. format(count, delta_points, wN, gradient_factor, delta_cost)) # Increment the gradient factor and decrement the neighborhood factor # so that spacing is close in early iterations and far apart later: factor = (count / np.round(rate_factor*max_count))**slope_exp if gradient_factor < grad_max: gradient_factor = factor * (grad_max - grad_min) + grad_min if wN > wN_min: wN = wN_max - factor * (wN_max - wN_min) # Reset for next iteration: costs_previous = costs npoints_thr_previous = npoints_thr H = H_new count += 1 if verbose: print(' Updated hidden Markov measure field (HMMF) values') # Skeletonize: if do_erode: # Threshold the resulting array: S = background_value * np.ones(len(L)) S[indices] = H[indices] S[S > 0.5] = 1.0 S[S <= 0.5] = background_value skeleton = connect_points_erosion(S, neighbor_lists=N, outer_anchors=indices_points, inner_anchors=[], values=H, erode_ratio=0.5, erode_min_size=10, save_steps=[], save_vtk='', background_value=background_value, verbose=verbose) if verbose: npoints_thr = len([x for x in S if x != background_value]) print(' Removed {0} points to create one-vertex-thin ' 'skeletons'.format(int(npoints_thr - len(skeleton)))) else: # Threshold the resulting array: S = np.zeros(len(L)) S[indices] = H[indices] S[S > 0.5] = 1.0 S[S <= 0.5] = 0.0 skeleton = [i for i,x in enumerate(S.tolist()) if x == 1] if verbose: print(' Removed {0} points to create one-vertex-thin ' 'skeletons'.format(int(sum(S.tolist()) - len(skeleton)))) return skeleton def smooth_skeletons(skeletons, bounds, vtk_file, likelihoods, wN_max=1.0, do_erode=True, save_file=False, output_file='', background_value=-1, verbose=False): """ Smooth skeleton by dilation followed by connect_points_hmmf(). Steps :: 1. Segment skeleton into separate sets of connected vertices. 2. For each skeleton segment, extract endpoints. 3. Dilate skeleton segment. 4. Connect endpoints through dilated segment by connect_points_hmmf(). 5. Store smoothed output from #4. Parameters ---------- skeletons : list of integers skeleton number for each vertex bounds : list of integers region number for each vertex; constrains smoothed skeletons vtk_file : string file from which to extract neighboring vertices for each vertex likelihoods : list of integers fundus likelihood value for each vertex wN_max : float maximum neighborhood weight (trust prior more for smoother skeletons) do_erode : bool erode skeleton? save_file : bool save output VTK file? output_file : string output VTK file background_value : integer or float background value verbose : bool print statements? Returns ------- skeletons : list of integers skeleton numbers for all vertices n_skeletons : integer number of skeletons skeletons_file : string (if save_file) name of output VTK file with skeleton numbers Examples -------- >>> # Smooth skeleton to extract fundus from one or more folds: >>> import numpy as np >>> from mindboggle.mio.plots import plot_surfaces >>> from mindboggle.guts.paths import smooth_skeletons >>> from mindboggle.mio.vtks import read_scalars >>> from mindboggle.guts.compute import median_abs_dev >>> from mindboggle.guts.mesh import find_neighbors_from_file >>> from mindboggle.mio.fetch_data import prep_tests >>> urls, fetch_data = prep_tests() >>> curv_file = fetch_data(urls['left_mean_curvature'], '', '.vtk') >>> depth_file = fetch_data(urls['left_travel_depth'], '', '.vtk') >>> folds_file = fetch_data(urls['left_folds'], '', '.vtk') >>> fundus_file = fetch_data(urls['left_fundus_per_fold'], '', '.vtk') >>> curvs, name = read_scalars(curv_file, True, True) >>> depths, name = read_scalars(depth_file, True, True) >>> vtk_file = curv_file >>> likelihoods = depths * curvs >>> [np.float("{0:.{1}f}".format(x, 5)) for x in likelihoods[0:5]] [-0.11778, -0.35642, -0.80759, -0.25654, -0.04411] >>> bounds, name = read_scalars(folds_file, True, True) >>> skeletons, name = read_scalars(fundus_file, True, True) >>> background_value = -1 >>> # Limit number of folds to speed up the test: >>> limit_folds = True >>> if limit_folds: ... fold_numbers = [7] #[4, 6] ... i0 = [i for i,x in enumerate(bounds) if x not in fold_numbers] ... bounds[i0] = background_value ... skeletons[i0] = background_value >>> wN_max = 1.0 >>> do_erode = True >>> save_file = True >>> output_file = 'smooth_skeletons.vtk' >>> verbose = False >>> smoothed_skeletons, n_skeletons, skel_file = smooth_skeletons(skeletons, ... bounds, vtk_file, likelihoods, wN_max, do_erode, save_file, ... output_file, background_value, verbose) >>> np.where(np.array(smoothed_skeletons)!=-1)[0][0:8] array([112572, 113435, 113454, 113469, 114294, 114295, 114296, 114312]) Write out vtk file and view (skip test): >>> from mindboggle.mio.plots import plot_surfaces # doctest: +SKIP >>> from mindboggle.mio.vtks import rewrite_scalars # doctest: +SKIP >>> iskels = [i for i,x in enumerate(smoothed_skeletons) ... if x != background_value] # doctest: +SKIP >>> bounds[iskels] = 100 # doctest: +SKIP >>> rewrite_scalars(depth_file, 'smooth_skeletons_no_background.vtk', ... bounds, 'skeleton', bounds, -1) # doctest: +SKIP >>> plot_surfaces('smooth_skeletons.vtk') # doctest: +SKIP """ import os import numpy as np from time import time from mindboggle.mio.vtks import rewrite_scalars from mindboggle.guts.mesh import find_neighbors_from_file, find_endpoints from mindboggle.guts.segment import segment_regions from mindboggle.guts.mesh import dilate from mindboggle.guts.paths import connect_points_hmmf t0 = time() neighbor_lists = find_neighbors_from_file(vtk_file) indices = np.where(bounds != background_value)[0] npoints = len(bounds) # ------------------------------------------------------------------------ # Loop through skeletons: # ------------------------------------------------------------------------ unique_IDs = [x for x in
np.unique(skeletons)
numpy.unique
""" """ import numpy as np from .pure_python_mean_radial_velocity_vs_r import pure_python_mean_radial_velocity_vs_r from ...tests.cf_helpers import generate_locus_of_3d_points __all__ = ('test_pure_python1', ) fixed_seed = 43 def test_pure_python1(): """ Verify that the brute-force pairwise velocity function returns the correct result for an analytically calculable case. """ correct_relative_velocity = -25 npts = 100 xc1, yc1, zc1 = 0.95, 0.5, 0.5 xc2, yc2, zc2 = 0.05, 0.5, 0.5 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, 0] = 50. velocities2[:, 0] = 25. rbins = np.array([0, 0.05, 0.3]) msg = "pure python result is incorrect" rmin, rmax = rbins[0], rbins[1] pure_python_s1s2 = pure_python_mean_radial_velocity_vs_r( sample1, velocities1, sample2, velocities2, rmin, rmax, Lbox=1) assert pure_python_s1s2 == 0, msg rmin, rmax = rbins[1], rbins[2] pure_python_s1s2 = pure_python_mean_radial_velocity_vs_r( sample1, velocities1, sample2, velocities2, rmin, rmax, Lbox=1) assert np.allclose(pure_python_s1s2, correct_relative_velocity, rtol=0.01), msg def test_pure_python2(): """ """ npts = 10 rmin, rmax = 0., 0.2 xc1, yc1, zc1 = 0.1, 0.5, 0.5 xc2, yc2, zc2 = 0.05, 0.5, 0.5 sample1 = np.zeros((npts, 3)) + (xc1, yc1, zc1) sample2 = np.zeros((npts, 3)) + (xc2, yc2, zc2) vx1, vy1, vz1 = 0., 0., 0. vx2, vy2, vz2 = 20., 0., 0. velocities1 = np.zeros((npts, 3)) + (vx1, vy1, vz1) velocities2 = np.zeros((npts, 3)) + (vx2, vy2, vz2) result = pure_python_mean_radial_velocity_vs_r( sample1, velocities1, sample2, velocities2, rmin, rmax, Lbox=float('inf')) assert np.all(result == -20) def test_pure_python3(): """ """ npts = 10 rmin, rmax = 0., 0.2 xc1, yc1, zc1 = 0.05, 0.5, 0.5 xc2, yc2, zc2 = 0.1, 0.5, 0.5 sample1 = np.zeros((npts, 3)) + (xc1, yc1, zc1) sample2 =
np.zeros((npts, 3))
numpy.zeros
import torch import numpy as np import lightconvpoint.nn import os import random from torchvision import transforms from PIL import Image import time from tqdm import * from plyfile import PlyData, PlyElement from lightconvpoint.nn import with_indices_computation_rotation def gauss_clip(mu, sigma, clip): v = random.gauss(mu, sigma) v = max(min(v, mu + clip * sigma), mu - clip * sigma) return v def uniform(bound): return bound * (2 * random.random() - 1) def scaling_factor(scaling_param, method): try: scaling_list = list(scaling_param) return random.choice(scaling_list) except: if method == 'g': return gauss_clip(1.0, scaling_param, 3) elif method == 'u': return 1.0 + uniform(scaling_param) class DatasetTrainVal(): def __init__ (self, filelist, folder, training=False, block_size=2, npoints = 4096, iteration_number = None, jitter=0, rgb=True, scaling_param=0, rgb_dropout=False, network_function=None, network_fusion_function=None): self.training = training self.filelist = filelist self.folder = folder self.bs = block_size self.rgb = rgb self.npoints = npoints self.iterations = iteration_number self.verbose = False self.number_of_run = 10 self.rgb_dropout = rgb_dropout # data augmentation at training self.jitter = jitter # 0.8 for more self.scaling_param = scaling_param self.transform = transforms.ColorJitter( brightness=jitter, contrast=jitter, saturation=jitter) if network_function is not None: self.net = network_function() else: self.net = None if network_fusion_function is not None: self.net_fusion = network_fusion_function() else: self.net_fusion = None @with_indices_computation_rotation def __getitem__(self, index): folder = self.folder if self.training or self.iterations is not None: index = random.randint(0, len(self.filelist)-1) dataset = self.filelist[index] else: dataset = self.filelist[index//self.number_of_run] filename_data = os.path.join(folder, dataset, 'xyzrgb.npy') xyzrgb = np.load(filename_data).astype(np.float32) # load labels filename_labels = os.path.join(folder, dataset, 'label.npy') if self.verbose: print('{}-Loading {}...'.format(datetime.now(), filename_labels)) labels = np.load(filename_labels).astype(int).flatten() # pick a random point pt_id = random.randint(0, xyzrgb.shape[0]-1) pt = xyzrgb[pt_id, :3] mask_x = np.logical_and(xyzrgb[:,0]<pt[0]+self.bs/2, xyzrgb[:,0]>pt[0]-self.bs/2) mask_y = np.logical_and(xyzrgb[:,1]<pt[1]+self.bs/2, xyzrgb[:,1]>pt[1]-self.bs/2) mask = np.logical_and(mask_x, mask_y) pts = xyzrgb[mask] lbs = labels[mask] choice = np.random.choice(pts.shape[0], self.npoints, replace=True) pts = pts[choice] lbs = lbs[choice] # get the colors features = pts[:,3:] # apply jitter if trainng if self.training and self.jitter > 0: features = features.astype(np.uint8) features = np.array(self.transform( Image.fromarray(np.expand_dims(features, 0)) )) features =
np.squeeze(features, 0)
numpy.squeeze
from metrics import metric_base import numpy as np import tensorflow as tf from tqdm import tqdm class IL(metric_base.MetricBase): def __init__(self, num_images, interpolation_steps, step_size, **kwargs): super().__init__(**kwargs) self.num_images = num_images self.interpolation_steps = interpolation_steps self.step_size = step_size def _evaluate(self, Gs, Gs_kwargs, num_gpus): result = 0 with tf.device('/gpu:%d' % 0): for _ in tqdm(range(self.num_images)): latent = np.random.normal(0, 1, [1, Gs.input_shape[1]]).astype(np.float32) label_left = self._get_random_labels_np(1) rotation_offset = 108 rotations = label_left[:, rotation_offset:rotation_offset + 8] rotation_index = np.argmax(rotations, axis=1) new_rotation_index = ((rotation_index + np.random.choice([-1, 1])) % 8) new_rotation =
np.zeros([8], dtype=np.uint32)
numpy.zeros
""" Space Robotics Challenge 2 """ import numpy as np import math from datetime import timedelta import traceback import sys from functools import cmp_to_key import cv2 from shapely.geometry import Point, LineString, MultiPolygon, Polygon from statistics import median from osgar.bus import BusShutdownException from moon.controller import eulerAnglesToRotationMatrix, translationToMatrix, GO_STRAIGHT, TURN_RADIUS, calc_tangents, pol2cart, ps, distance, SpaceRoboticsChallenge, MoonException, VirtualBumperException, LidarCollisionException, LidarCollisionMonitor, VSLAMEnabledException, VSLAMDisabledException, VSLAMLostException, VSLAMFoundException from osgar.lib.virtual_bumper import VirtualBumper from osgar.lib.quaternion import euler_zyx from osgar.lib.mathex import normalizeAnglePIPI DIG_GOOD_LOCATION_MASS = 10 GROUP_ANGLES_MAX_DIFF = 0.3 ARRIVAL_OFFSET = -1.5 TYPICAL_VOLATILE_DISTANCE = 2 DISTAL_THRESHOLD = 0.145 # TODO: movement may be too fast to detect when the scooping first happened PREFERRED_POLYGON = Polygon([(-32,9),(-25,20),(-16,26),(-6,26),(3.5,22),(14.5,25.5),(23.5,20),(30,9),(35,1),(30,-13.5),(21,-24),(11,-30),(5,-36),(-18,-32),(-19,-17),(-26,-4)]) SAFE_POLYGON = PREFERRED_POLYGON.union(MultiPolygon([ Polygon([(-30,9),(-43,15),(-41,25),(-28,38),(-15,44.5),(-13,50.5),(-33,51),(-38,36),(-53,26),(-61,3),(-26,-1)]), Polygon([(-45,-39),(-58,-40),(-59,-50),(43,-50),(43,-31),(60,-27),(65,30),(51,15),(46,-18), (29,-12.5), (27, -15), (43,-22), (27,-37),(4,-31),(-15,-30)]) ])) APPROACH_DISTANCE = 2.5 class WaitRequestedException(MoonException): pass class ResumeRequestedException(MoonException): pass class NewVolatileTargetException(MoonException): pass class SpaceRoboticsChallengeExcavatorRound2(SpaceRoboticsChallenge): def __init__(self, config, bus): super().__init__(config, bus) bus.register("bucket_dig", "bucket_drop") self.volatile_dug_up = None self.mount_angle = None self.distal_angle = None self.vol_list = None self.vslam_reset_at = None self.use_gimbal = False self.robot_name = "excavator_1" self.hauler_ready = False self.vslam_is_enabled = False self.hauler_orig_pose = None self.full_360_objects = {} self.full_360_distances = [] self.first_distal_angle = None self.hauler_pose_requested = False self.auto_light_adjustment = False self.light_intensity = 0.0 self.vslam_fail_start = None self.vslam_valid = False self.visual_navigation_enabled = False self.lidar_distance_enabled = False self.current_volatile = None self.going_to_volatile = False self.unsafe_location = Polygon([(-100, -100), (-100, 100), (100, 100), (100, -100)]).difference(SAFE_POLYGON) def on_osgar_broadcast(self, data): message_target = data.split(" ")[0] if message_target == self.robot_name: print(self.sim_time, self.robot_name, "Received external_command: %s" % str(data)) command = data.split(" ")[1] if command == "arrived": self.hauler_yaw = float(data.split(" ")[2]) self.hauler_ready = True if command == "wait": raise WaitRequestedException() if command == "resume": raise ResumeRequestedException() if command == "hauler_true_pose": # assumes hauler finished approach as is behind excavator in self.yaw direction self.hauler_pose_requested = True print(self.sim_time, self.robot_name, "Origin of hauler received: ", str(data.split(" ")[2:])) if data.split()[2] == 'origin': origin = [float(x) for x in data.split()[3:]] initial_xyz = origin[:3] initial_quat = origin[3:] initial_rpy = euler_zyx(initial_quat) # note: this is not in roll, pitch, yaw order v = np.asmatrix(np.asarray([initial_xyz[0], initial_xyz[1], 1])) c, s = np.cos(initial_rpy[0]), np.sin(initial_rpy[0]) Rr = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1)))) T = np.asmatrix(np.array(((1, 0, APPROACH_DISTANCE),(0, 1, 0),(0, 0, 1)))) # looking for location in front of origin ex_pos = np.dot(Rr, np.dot(T, np.dot(Rr.I, v.T))) print(self.sim_time, self.robot_name, "Adjusting XY based on hauler origin: from [%.1f,%.1f] to [%.1f,%.1f]" % (self.xyz[0], self.xyz[1], float(ex_pos[0]), float(ex_pos[1]))) if self.tf['vslam']['trans_matrix'] is not None: m = translationToMatrix([float(ex_pos[0])-self.xyz[0], float(ex_pos[1])-self.xyz[1], 0.0]) self.tf['vslam']['trans_matrix'] = np.dot(m, self.tf['vslam']['trans_matrix']) else: ex_initial_xyz = [float(ex_pos[0]), float(ex_pos[1]), origin[2]] initial_rpy[0] = self.yaw # keep existing yaw self.xyz = ex_initial_xyz self.xyz_quat = initial_quat for k, obj in self.tf.items(): # note: if VSLAM is not tracking at time of register_origin call, the latest reported position will be inaccurate and VSLAM won't work if obj['latest_quat'] is not None: latest_rpy = euler_zyx(obj['latest_quat']) # will be rearranged after offset calculation rpy_offset = [a-b for a,b in zip(initial_rpy, latest_rpy)] rpy_offset.reverse() print(self.sim_time, self.robot_name, "%s RPY offset: %s" % (k, str(rpy_offset))) rot_matrix = np.asmatrix(eulerAnglesToRotationMatrix(rpy_offset)) # TODO: save the original rot matrix xyz_offset = translationToMatrix(obj['latest_xyz']) orig_xyz_offset = translationToMatrix(ex_initial_xyz) obj['trans_matrix'] = np.dot(orig_xyz_offset, np.dot(rot_matrix, xyz_offset.I)) else: print(self.sim_time, self.robot_name, "Invalid origin format") if command == "pose": self.hauler_orig_pose = [float(data.split(" ")[2]),float(data.split(" ")[3])] def on_left_image(self, data): if not self.auto_light_adjustment: return limg = cv2.imdecode(np.frombuffer(data, dtype=np.uint8), cv2.IMREAD_COLOR) CAMERA_HEIGHT,CAMERA_WIDTH, _ = limg.shape hsv = cv2.cvtColor(limg, cv2.COLOR_BGR2HSV) mask = np.zeros((CAMERA_HEIGHT,CAMERA_WIDTH), np.uint8) circle_mask = cv2.circle(mask,(CAMERA_HEIGHT//2,CAMERA_WIDTH//2),200,(255,255,255),thickness=-1) hist = cv2.calcHist([limg],[2],circle_mask,[256],[0,256]) topthird = hist[170:] brightness = int(sum(topthird) / len(topthird)) if brightness < 300: self.light_intensity = min(1.0, self.light_intensity + 0.1) self.send_request('set_light_intensity %s' % str(self.light_intensity)) elif brightness > 500: self.light_intensity = max(0.0, self.light_intensity - 0.1) self.send_request('set_light_intensity %s' % str(self.light_intensity)) def on_vslam_enabled(self, data): super().on_vslam_enabled(data) if self.vslam_is_enabled != data: self.vslam_is_enabled = data if not self.true_pose or self.sim_time is None or self.last_position is None or self.yaw is None: return if self.vslam_is_enabled: raise VSLAMEnabledException() else: raise VSLAMDisabledException() def get_extra_status(self): if self.volatile_dug_up[1] == 100: return "Bucket empty" else: return ps("Bucket content: Type: %s idx: %d mass: %f" % (self.volatile_dug_up[0], self.volatile_dug_up[1], self.volatile_dug_up[2])) def on_bucket_info(self, bucket_status): #[0] .. type ('ice'); [1] .. index (100=nothing); [2] .. mass self.volatile_dug_up = bucket_status if self.first_distal_angle is None and bucket_status[1] != 100: print (self.sim_time, self.robot_name, "Volatile in bucket at distal: %.2f" % self.distal_angle) self.first_distal_angle = self.distal_angle def on_joint_position(self, data): super().on_joint_position(data) self.mount_angle = data[self.joint_name.index(b'mount_joint')] self.distal_angle = data[self.joint_name.index(b'distalarm_joint')] def on_sim_clock(self, data): super().on_sim_clock(data) if self.going_to_volatile and data[0] % 5 == 0 and data[1] == 0: # if pursuing volatile then every two seconds rerun trajectory optimization and if better volatile than planned ahead, re-plan route v = self.get_next_volatile() if v != self.current_volatile and distance(self.xyz, self.current_volatile) > 6: # do not change volatile if almost arrived to the current one print (self.sim_time, self.robot_name, "New volatile target: [%.1f,%.1f]" % (v[0], v[1])) self.current_volatile = v raise NewVolatileTargetException() def on_vslam_pose(self, data): super().on_vslam_pose(data) if self.sim_time is None or self.last_position is None or self.yaw is None: return if math.isnan(data[0][0]) and self.tf['vslam']['trans_matrix'] is not None and not self.hauler_pose_requested: # VSLAM not tracking and potential for re-tracking via hauler self.vslam_valid = False if self.vslam_fail_start is None: self.vslam_fail_start = self.sim_time elif self.sim_time - self.vslam_fail_start > timedelta(milliseconds=300): self.vslam_fail_start = None raise VSLAMLostException() return self.vslam_fail_start = None if not math.isnan(data[0][0]): self.vslam_valid = True if not self.true_pose and self.vslam_reset_at is not None and self.sim_time - self.vslam_reset_at > timedelta(seconds=3) and not math.isnan(data[0][0]) and self.tf['vslam']['trans_matrix'] is None: # request origin and start tracking in correct coordinates as soon as first mapping lock occurs # TODO: another pose may arrive while this request is still being processed (not a big deal, just a ROS error message) self.send_request('request_origin', self.register_origin) def get_next_volatile(self): # first, remove volatiles that we won't attempt - in unsafe areas, too close or in the direction of sun accessible_volatiles = [] rover = np.asmatrix(np.asarray([self.xyz[0], self.xyz[1], 1])) c, s = np.cos(self.yaw), np.sin(self.yaw) R = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1)))) TL = np.asmatrix(np.array(((1, 0, 0),(0, 1, -8),(0, 0, 1)))) TR = np.asmatrix(np.array(((1, 0, 0),(0, 1, 8),(0, 0, 1)))) pL = np.dot(R, np.dot(TL, np.dot(R.I, rover.T))) pR = np.dot(R, np.dot(TR, np.dot(R.I, rover.T))) turn_center_L = (float(pL[0]), float(pL[1])) turn_center_R = (float(pR[0]), float(pR[1])) for v in self.vol_list: d = distance(self.xyz, v) if not SAFE_POLYGON.contains(Point(v[0],v[1])): print (self.sim_time, self.robot_name, "[%.1f,%.1f] not in safe area" % (v[0], v[1])) continue accessible_volatiles.append(v) # balance distance, angle and length of traversing non-preferred areas # want to avoid non-preferred areas the most but if expose similar, choose volatile with shorter travel distance # we are modelling an initial turn along a circle followed by straight drive to the destination ranked_list = [] approx = 16 arc_len = math.pi/approx arc_dist = 2 * math.pi * TURN_RADIUS / approx # destination point outside turn circle per above test for v in accessible_volatiles: path_to_vol = [] c_angular_difference = self.get_angle_diff(v) turn_center = turn_center_L if c_angular_difference < 0 else turn_center_R tangs = calc_tangents(turn_center, TURN_RADIUS, v) if tangs is not None: tang1_v = np.asmatrix(np.asarray([tangs[0][0], tangs[0][1], 1])) tang2_v = np.asmatrix(np.asarray([tangs[1][0], tangs[1][1], 1])) i = 1; while True: phi = -math.copysign(math.pi/2, c_angular_difference) + self.yaw + math.copysign(i*arc_len, c_angular_difference) i += 1 x,y = pol2cart(TURN_RADIUS, phi) px = turn_center[0] + x py = turn_center[1] + y yw = phi - math.pi/2 path_to_vol.append((px, py)) rover_t = np.asmatrix(np.array(((1, 0, px),(0, 1, py),(0, 0, 1)))) c, s = np.cos(yw), np.sin(yw) rover_r = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1)))) mat = np.dot(rover_r, rover_t.I) m1 = np.dot(mat, tang1_v.T) m2 = np.dot(mat, tang2_v.T) if ( (distance([m1[0,0], m1[1,0]], [0,0]) < arc_dist+0.1 and m1[0,0]>=-0.1) or (distance([m2[0,0], m2[1,0]], [0,0]) < arc_dist+0.1 and m2[0,0]>=-0.10) ): break else: # if we had to go with a volatile within the turning radius, do not build a driving arc, just use straight line path_to_vol.append((self.xyz[0],self.xyz[1])) path_to_vol.append((v[0],v[1])) ls = LineString(path_to_vol).buffer(1) c_nonpreferred_overlap = ls.difference(PREFERRED_POLYGON).area ranked_list.append([v, c_angular_difference, c_nonpreferred_overlap, ls.area]) # ranked_list: [volatile, angle, area, distance] def cmp(a,b): nonlocal turn_center_L, turn_center_R #a: [[x,y], angular_diff, non_preferred_overlap, distance_along_driving_path] a_v, _, a_overlap, a_distance = a b_v, _, b_overlap, b_distance = b a_cost = 100 if ( Point(turn_center_L[0],turn_center_L[1]).buffer(TURN_RADIUS+0.1).contains(Point(a_v[0],a_v[1])) or Point(turn_center_R[0],turn_center_R[1]).buffer(TURN_RADIUS+0.1).contains(Point(a_v[0],a_v[1])) ) else 0 b_cost = 100 if ( Point(turn_center_L[0],turn_center_L[1]).buffer(TURN_RADIUS+0.1).contains(Point(b_v[0],b_v[1])) or Point(turn_center_R[0],turn_center_R[1]).buffer(TURN_RADIUS+0.1).contains(Point(b_v[0],b_v[1])) ) else 0 a_cost += 200 if -3*math.pi/4 < math.atan2(a_v[1] - self.xyz[1], a_v[0] - self.xyz[0]) < -math.pi/4 and a_distance > 15 else 0 a_cost += 200 if -3*math.pi/4 < math.atan2(a_v[1] - self.xyz[1], a_v[0] - self.xyz[0]) < -math.pi/4 and a_distance > 15 else 0 a_cost += a_distance b_cost += b_distance return a_cost - b_cost if abs(a_overlap - b_overlap) < 10 else a_overlap - b_overlap ranked_list = sorted(ranked_list, key=cmp_to_key(cmp)) # if non safe overlap similar, focus on distance print (self.sim_time, self.robot_name, "List of volatiles in the order of suitability for traveling to: ", ranked_list) return ranked_list[0][0] def on_scan(self, data): super().on_scan(data) if self.sim_time is None or self.true_pose: return if self.lidar_distance_enabled: self.full_360_distances.append({'yaw': self.yaw, 'distance': self.scan_distance_to_obstacle}) def on_artf(self, data): artifact_type = data[0] # can't use this before init and don't need once true pose has been set up if self.sim_time is None or self.true_pose: return # NOTE: counting starts before turning, ie if hauler is visible in the beginning, it keeps getting hits if self.visual_navigation_enabled: if artifact_type not in self.full_360_objects.keys(): self.full_360_objects[artifact_type] = [] self.full_360_objects[artifact_type].append({'yaw': self.yaw, 'distance': self.scan_distance_to_obstacle}) def wait_for_hauler(self): while not self.hauler_ready: try: self.wait(timedelta(seconds=1)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for hauler to arrive: ", str(e)) self.hauler_ready = False def wait_for_arm(self, angle): wait_start = self.sim_time while self.sim_time - wait_start < timedelta(seconds=20) and (self.mount_angle is None or abs(normalizeAnglePIPI(angle - self.mount_angle)) > 0.2): try: self.wait(timedelta(seconds=1)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for arm to align: ", str(e)) def run(self): def process_volatiles(vol_string): vol_list_one = vol_string.split(',') self.vol_list = [list(map(float, s.split())) for s in vol_list_one] print (self.sim_time, self.robot_name, "Volatiles (%d): " % len(self.vol_list), self.vol_list) def vslam_reset_time(response): self.vslam_reset_at = self.sim_time try: self.wait_for_init() self.set_cam_angle(-0.05) self.set_light_intensity("0.2") self.send_request('get_volatile_locations', process_volatiles) # move bucket to the back so that it does not interfere with lidar # TODO: is there a better position to stash the bucket for driving? # move arm to the back, let robot slide off of a hill if that's where it starts self.publish("bucket_drop", [math.pi, 'reset']) # point wheels downwards and wait until on flat terrain or timeout print(self.sim_time, self.robot_name, "Letting excavator slide down the hill") start_drifting = self.sim_time while self.sim_time - start_drifting < timedelta(seconds=20) and (abs(self.pitch) > 0.05 or abs(self.roll) > 0.05): try: attitude = math.asin(math.sin(self.roll) / math.sqrt(math.sin(self.pitch)**2+math.sin(self.roll)**2)) if self.debug: print(self.sim_time, self.robot_name, "Vehicle attitude: %.2f" % attitude) self.publish("desired_movement", [GO_STRAIGHT, math.degrees(attitude * 100), 0.1]) self.wait(timedelta(milliseconds=100)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for excavator to settle: ", str(e)) self.publish("desired_movement", [0, 0, 0]) self.wait_for_arm(math.pi) self.set_brakes(False) # start applying mild braking # initial 360 turn to find emptiest area print(self.sim_time, self.robot_name, "Scanning 360 degrees of horizon to find widest segment with far enough free space") self.lidar_distance_enabled = True while True: try: self.turn(math.radians(30), ang_speed=0.8*self.max_angular_speed, with_stop=False, timeout=timedelta(seconds=40)) # get the turning stared self.full_360_distances = [] self.turn(math.radians(360), ang_speed=0.8*self.max_angular_speed, timeout=timedelta(seconds=40)) break except MoonException as e: print(self.sim_time, self.robot_name, "Exception while performing initial turn: ", str(e)) self.lidar_distance_enabled = False self.set_cam_angle(-0.05) min_distance_obj = min(self.full_360_distances, key=lambda x: x['distance']) # if min distance in all directions is more than 5m, no need to drive anywhere if min_distance_obj['distance'] < 5000: def distance_grouper(iterable): prev = None group = [] for item in iterable: if not prev or abs(item['distance'] - prev['distance']) <= 300: group.append(item) else: yield group group = [item] prev = item if group: yield group clusters = list(enumerate(distance_grouper(self.full_360_distances))) m = [] for c in clusters: sum_sin = sum([math.sin(a['yaw']) for a in c[1]]) sum_cos = sum([math.cos(a['yaw']) for a in c[1]]) mid_angle = math.atan2(sum_sin, sum_cos) if median([o['distance'] for o in c[1]]) > 6000: m.append({'yaw': mid_angle, 'wedge_width': len(c[1])}) if len(m) > 0: bestyawobj = max(m, key=lambda x: x['wedge_width']) try: print(self.sim_time, self.robot_name, "excavator: Driving into-clear-space, yaw (internal coordinates) [%.2f]" % (normalizeAnglePIPI(bestyawobj['yaw']))) self.turn(bestyawobj['yaw'] - self.yaw, timeout=timedelta(seconds=40)) self.go_straight(4) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while performing initial going away from obstacles: ", str(e)) else: print(self.sim_time, self.robot_name, "No direction with 6+m unobstructed area found") else: print(self.sim_time, self.robot_name, "More than 5m of space in all directions, no need to move") print(self.sim_time, self.robot_name, "Asking hauler to arrive to <follow> distance") self.send_request('external_command hauler_1 follow') # force hauler to come real close, this will make it lose visual match with processing plant self.wait_for_hauler() # first, turn away from hauler # turn 360deg until seen, mark angle where the bbox was the biggest, then turn 180deg from there (want to face away as much as possible) # then, when hauler turns towards us (and follows?), it should have the same yaw which we can then share with it def angle_grouper(iterable): prev = None group = [] for item in iterable: if not prev or abs(normalizeAnglePIPI(item['yaw'] - prev['yaw'])) <= GROUP_ANGLES_MAX_DIFF: group.append(item) else: yield group group = [item] prev = item if group: yield group print(self.sim_time, self.robot_name, "Scanning 360 degrees of horizon to find hauler (widest wedge with continuous hauler detection)") self.visual_navigation_enabled = True while True: while True: try: self.turn(math.radians(30), ang_speed=0.8*self.max_angular_speed, with_stop=False, timeout=timedelta(seconds=40)) # get the turning stared self.full_360_objects = {} self.turn(math.radians(360), ang_speed=0.8*self.max_angular_speed, with_stop=False, timeout=timedelta(seconds=40)) if "rover" not in self.full_360_objects.keys() or len(self.full_360_objects["rover"]) == 0: print(self.sim_time, self.robot_name, "Hauler not found during 360 turn") else: clusters = list(enumerate(angle_grouper(self.full_360_objects["rover"]))) if self.debug: print(self.sim_time, self.robot_name, "Cluster list: ", str(clusters)) biggest_wedge_obj = max(clusters, key=lambda x: len(x[1])) sum_sin = sum([math.sin(a['yaw']) for a in biggest_wedge_obj[1]]) sum_cos = sum([math.cos(a['yaw']) for a in biggest_wedge_obj[1]]) mid_angle = math.atan2(sum_sin, sum_cos) print(self.sim_time, self.robot_name, "excavator: away-from-hauler angle (internal coordinates) [%.2f]" % (normalizeAnglePIPI(math.pi + mid_angle))) turn_needed = normalizeAnglePIPI(math.pi + mid_angle - self.yaw) # turn a little less to allow for extra turn after the effort was stopped self.turn(turn_needed if turn_needed >= 0 else (turn_needed + 2*math.pi), ang_speed=0.8*self.max_angular_speed, timeout=timedelta(seconds=40)) break except MoonException as e: print(self.sim_time, self.robot_name, "Exception while performing initial turn: ", str(e)) # TODO: this will be removed, shouldn't be needed if "rover" not in self.full_360_objects.keys() or len(self.full_360_objects["rover"]) == 0: # hauler was not found visually but must be close, perform random walk min_dist_obj = min(self.full_360_distances, key=lambda x: x['distance']) self.turn(min_dist_obj['yaw'] - self.yaw, timeout=timedelta(seconds=40)) self.go_straight(3) while abs(self.pitch) > 0.2: self.publish("desired_movement", [GO_STRAIGHT, 0, self.default_effort_level]) self.wait(timedelta(milliseconds=100)) self.publish("desired_movement", [0, 0, 0]) else: break self.visual_navigation_enabled = False self.auto_light_adjustment = True # self.set_light_intensity("0.4") print(self.sim_time, self.robot_name, "Resetting VSLAM, requesting true_pose") # this will also trigger true pose once slam starts sending data self.send_request('vslam_reset', vslam_reset_time) while self.vol_list is None or not self.true_pose: try: self.wait(timedelta(seconds=1)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for true pose: ", str(e)) # calculate position behind the excavator to send hauler to, hauler will continue visually from there v = np.asmatrix(np.asarray([self.xyz[0], self.xyz[1], 1])) c, s = np.cos(self.yaw), np.sin(self.yaw) R = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1)))) T = np.asmatrix(np.array(((1, 0, -8),(0, 1, 0),(0, 0, 1)))) pos = np.dot(R, np.dot(T, np.dot(R.I, v.T))) #self.send_request('external_command hauler_1 goto %.1f %.1f %.2f' % (pos[0], pos[1], self.yaw)) #self.send_request('external_command hauler_1 align %f' % self.yaw) # TODO: due to skidding, this yaw may still change self.hauler_ready = False self.send_request('external_command hauler_1 set_yaw %f' % self.yaw) # tell hauler looking at rover # wait for hauler to start following, will receive osgar broadcast when done while not self.hauler_ready: try: self.wait(timedelta(seconds=1)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for hauler to arrive: ", str(e)) self.hauler_ready = False self.send_request('external_command hauler_1 approach %f' % self.yaw) # do not brake here, it will allow robots to align better while not self.hauler_ready: try: self.wait(timedelta(seconds=3)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for hauler to arrive: ", str(e)) self.hauler_ready = False self.send_request('external_command hauler_1 follow') #self.send_request('external_command hauler_1 set_yaw %f' % self.yaw) # tell hauler looking at rover is in 'yaw' direction # reset again in case hauler was driving in front of excavator CANT RESET IF WE MOVED (TURNED) #self.vslam_reset_at = None #self.send_request('vslam_reset', vslam_reset_time) #while self.vslam_reset_at is None or self.sim_time - self.vslam_reset_at < timedelta(seconds=3): # try: # self.wait(timedelta(seconds=1)) # except BusShutdownException: # raise # except: # pass self.virtual_bumper = VirtualBumper(timedelta(seconds=3), 0.2) # radius of "stuck" area; a little more as the robot flexes def pursue_volatile(): v = self.current_volatile wait_for_mapping = False wait_for_hauler_requested = None ARRIVAL_TOLERANCE = 1 # if we are within 1m of target, stop while True: try: if not self.vslam_valid: # vslam_valid will only be turned to False if hauler origin hasn't been requested yet self.publish("desired_movement", [0,0,0]) # hauler approach, VSLAM should be running self.send_request('external_command hauler_1 approach %f' % self.yaw) self.set_brakes(True) # reset VSLAM (this should reset self.vslam_valid) self.tf['vslam']['trans_matrix'] = None self.vslam_reset_at = None self.send_request('vslam_reset', vslam_reset_time) while self.vslam_reset_at is None or self.sim_time - self.vslam_reset_at < timedelta(seconds=3): try: self.wait(timedelta(seconds=1)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for VSLAM reset: ", str(e)) while not self.hauler_ready: try: self.wait(timedelta(seconds=3)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for hauler to be ready: ", str(e)) self.hauler_ready = False self.send_request('external_command hauler_1 request_true_pose') try: self.wait(timedelta(seconds=5)) # wait for pose to update (TODO: wait for a flag instead) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for true pose: ", str(e)) self.set_brakes(False) self.send_request('external_command hauler_1 follow') print(self.sim_time, self.robot_name, "excavator: Pursuing volatile [%.1f,%.1f]" % (v[0],v[1])) while wait_for_mapping or (wait_for_hauler_requested is not None and self.sim_time < wait_for_hauler_requested): self.wait(timedelta(seconds=1)) with LidarCollisionMonitor(self, 1500): # some distance needed not to lose tracking when seeing only obstacle up front # turning in place probably not desirable because hauler behind may be in the way, may need to send it away first if distance(self.xyz, v) > ARRIVAL_TOLERANCE: # only turn if we are further than 2m, if closer, it probably means there was an exception while we were already on location angle_diff = self.get_angle_diff(v) #self.turn(math.copysign(min(abs(angle_diff),math.pi/4),angle_diff), timeout=timedelta(seconds=15)) # ideal position is 0.5m in front of the excavator # TODO: fine-tune offset and tolerance given slipping self.going_to_volatile = True try: self.go_to_location(v, self.default_effort_level, offset=ARRIVAL_OFFSET, full_turn=True, timeout=timedelta(minutes=5), tolerance=ARRIVAL_TOLERANCE) except NewVolatileTargetException: raise finally: self.going_to_volatile = False return v #arrived except LidarCollisionException as e: #TODO: long follow of obstacle causes loss, go along under steeper angle print(self.sim_time, self.robot_name, "Lidar") if distance(self.xyz, v) < 1: return v #arrived self.inException = True try: self.lidar_drive_around() except ResumeRequestedException as e: wait_for_hauler_requested = self.sim_time + timedelta(seconds=5) # resume only after 5 seconds to give hauler chance to get closer print(self.sim_time, self.robot_name, "Hauler wants to resume") except WaitRequestedException as e: self.send_speed_cmd(0.0, 0.0) wait_for_hauler_requested = self.sim_time + timedelta(minutes=2) # will wait at most 2 minutes print(self.sim_time, self.robot_name, "Hauler requested to wait") except VSLAMDisabledException as e: print(self.sim_time, self.robot_name, "VSLAM: mapping disabled, waiting") self.send_speed_cmd(0.0, 0.0) wait_for_mapping = True except VSLAMEnabledException as e: print(self.sim_time, self.robot_name, "VSLAM: mapping re-enabled") wait_for_mapping = False except VSLAMLostException as e: print(self.sim_time, self.robot_name, "VSLAM lost, re-localize via hauler") self.inException = False except VirtualBumperException as e: self.send_speed_cmd(0.0, 0.0) print(self.sim_time, self.robot_name, "Bumper") if distance(self.xyz, v) < 1: return v # arrived self.inException = True try: self.go_straight(-1) # go 1m in opposite direction angle_diff = self.get_angle_diff(v) self.drive_around_rock(-math.copysign(5, angle_diff)) # assume 6m the most needed except ResumeRequestedException as e: wait_for_hauler_requested = self.sim_time + timedelta(seconds=5) print(self.sim_time, self.robot_name, "Hauler wants to resume") except WaitRequestedException as e: self.send_speed_cmd(0.0, 0.0) wait_for_hauler_requested = self.sim_time + timedelta(minutes=2) print(self.sim_time, self.robot_name, "Hauler requested to wait") except VSLAMDisabledException as e: print(self.sim_time, self.robot_name, "VSLAM: mapping disabled, waiting") self.send_speed_cmd(0.0, 0.0) wait_for_mapping = True except VSLAMEnabledException as e: print(self.sim_time, self.robot_name, "VSLAM: mapping re-enabled") wait_for_mapping = False except VSLAMLostException as e: print(self.sim_time, self.robot_name, "VSLAM lost, re-localize via hauler") self.inException = False except VSLAMDisabledException as e: print(self.sim_time, self.robot_name, "VSLAM: mapping disabled, waiting") self.send_speed_cmd(0.0, 0.0) wait_for_mapping = True except VSLAMEnabledException as e: print(self.sim_time, self.robot_name, "VSLAM: mapping re-enabled") wait_for_mapping = False except WaitRequestedException as e: self.send_speed_cmd(0.0, 0.0) wait_for_hauler_requested = self.sim_time + timedelta(minutes=2) print(self.sim_time, self.robot_name, "Hauler requested to wait") except ResumeRequestedException as e: wait_for_hauler_requested = self.sim_time + timedelta(seconds=5) print(self.sim_time, self.robot_name, "Hauler wants to resume") except VSLAMLostException as e: print(self.sim_time, self.robot_name, "VSLAM lost, re-localize via hauler") def reposition(mount_angle, distal_angle): print(self.sim_time, self.robot_name, "Adjusting digging position: mount angle: %.2f, distal angle: %.2f" % (normalizeAnglePIPI(mount_angle), distal_angle)) # if found an angle of a volatile but it's too far, come closer before digging # if distal arm was negative during volatile detection, volatile is away from rover; otherwise it is under the rover self.publish("bucket_drop", [math.pi, 'reset']) # first, stash arm and wait for it so that visual navigation doesn't confuse hauler start_alignment = self.sim_time while self.sim_time - start_alignment < timedelta(seconds=20) and self.mount_angle is None or abs(normalizeAnglePIPI(math.pi - self.mount_angle)) > 0.2: try: self.wait(timedelta(seconds=1)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for arm to align: ", str(e)) self.send_request('external_command hauler_1 onhold') try: self.wait(timedelta(seconds=8)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for hauler to assume position: ", str(e)) start_pose = self.xyz start_time = self.sim_time effort = self.default_effort_level/2 if distal_angle < DISTAL_THRESHOLD else -self.default_effort_level/2 if abs(normalizeAnglePIPI(mount_angle)) < math.pi/2: self.publish("desired_movement", [GO_STRAIGHT, int(100*math.degrees(normalizeAnglePIPI(mount_angle))), effort]) else: self.publish("desired_movement", [ GO_STRAIGHT, int(100*math.degrees(normalizeAnglePIPI(math.copysign(math.pi - abs(normalizeAnglePIPI(mount_angle)), -normalizeAnglePIPI(mount_angle))))), -effort]) while distance(start_pose, self.xyz) < 0.7: # go 0.7m closer to volatile try: self.wait(timedelta(milliseconds=100)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while adjusting position: ", str(e)) traceback.print_exc(file=sys.stdout) self.publish("desired_movement", [0,0,0]) try: self.wait(timedelta(seconds=3)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting to come to stop: ", str(e)) #self.send_request('external_command hauler_1 approach %f' % normalizeAnglePIPI(self.yaw + mount_angle)) #self.hauler_ready = False #while not self.hauler_ready: # try: # self.wait(timedelta(seconds=1)) # except BusShutdownException: # raise # except: # pass # end of reposition function while len(self.vol_list) > 0: self.current_volatile = self.get_next_volatile() if self.current_volatile is None: break while True: try: pursue_volatile() except NewVolatileTargetException: continue break v = self.current_volatile self.current_volatile = None accum = 0 # to check if we picked up 100.0 total and can finish for attempt_offset in [{'dist': 0.0, 'start_dig_angle': 0.0}, {'dist': 4, 'start_dig_angle': math.pi}, {'dist': -8, 'start_dig_angle': 0.0}]: starting_point = self.xyz starting_time = self.sim_time while abs(abs(attempt_offset['dist']) - distance(self.xyz, starting_point)) > 1 and self.sim_time - starting_time < timedelta(seconds=15): try: self.go_straight(attempt_offset['dist'] - math.copysign(distance(self.xyz, starting_point), attempt_offset['dist'])) except MoonException as e: # excess pitch or other exception could happen but we are stopped so should stabilize print(self.sim_time, self.robot_name, "Exception when adjusting linearly", str(e)) self.send_speed_cmd(0.0, 0.0) print ("---- VOLATILE REACHED ----") try: self.wait(timedelta(seconds=2)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting to come to stop: ", str(e)) # TODO: could look for volatile while waiting # wait for hauler to start following, will receive osgar broadcast when done #while not self.hauler_ready: # try: # self.wait(timedelta(seconds=1)) # except BusShutdownException: # raise # except: # # excess pitch or other exception could happen but we are stopped so should stabilize # pass #self.volatile_reached = False # TEST #self.send_request('external_command hauler_1 backout') # Testing #continue # testing self.send_request('external_command hauler_1 onhold') # re-follow after each 0,+2,-2 attempt found_angle = None # mount 0.4-1.25 or 1.85-2.75 means we can't reach under the vehicle because of the wheels mount_angle_sequence = [0.0, 0.39, -0.39, -0.83, 0.83, 1.26, -1.26, -1.55, 1.55, 1.84, -1.84, 2.31, -2.31, -2.76, 2.76, 3.14] for a in mount_angle_sequence: self.publish("bucket_dig", [a + attempt_offset['start_dig_angle'], 'append']) while found_angle is None: best_mount_angle = None best_angle_volume = 0 best_distal_angle = None self.set_brakes(True) exit_time = self.sim_time + timedelta(seconds=250) while found_angle is None and self.sim_time < exit_time: # TODO instead of/in addition to timeout, trigger exit by bucket reaching reset position try: self.wait(timedelta(milliseconds=100)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting in loop: ", str(e)) if self.volatile_dug_up[1] != 100: # we found volatile if best_mount_angle is None: nma = normalizeAnglePIPI(self.mount_angle) if -math.pi/2 <= nma <= math.pi/2: # if mount angle is in the front half of the vehicle, approach directly from the back approach_angle = 0.0 elif nma < -math.pi/2: approach_angle = normalizeAnglePIPI(nma + math.pi/2) # rover clockwise 90 degrees elif nma > math.pi/2: approach_angle = normalizeAnglePIPI(nma - math.pi/2) # rover counterclockwise 90 degrees # point arm in the hauler approach direction so that hauler aligns with the center of the excavator self.publish("bucket_dig", [normalizeAnglePIPI(approach_angle + math.pi), 'standby']) # lift arm and clear rest of queue self.wait_for_arm(normalizeAnglePIPI(approach_angle + math.pi)) self.hauler_ready = False self.send_request('external_command hauler_1 approach %f' % normalizeAnglePIPI(self.yaw + approach_angle)) # NOTE: this approach may bump excavator, scoop volume may worsen while not self.hauler_ready: try: self.wait(timedelta(seconds=1)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting for hauler to arrive: ", str(e)) self.hauler_ready = False # wait for hauler to arrive, get its yaw, then we know which direction to drop drop_angle = normalizeAnglePIPI((self.hauler_yaw - self.yaw) - math.pi) print(self.sim_time, self.robot_name, "Drop angle set to: %.2f" % drop_angle) exit_time = self.sim_time + timedelta(seconds=80) self.publish("bucket_drop", [drop_angle, 'append']) # this will be duplicated below but need to queue now or load would be lost by another dig happening first self.publish("bucket_dig", [nma - 0.3, 'append']) self.publish("bucket_dig", [nma + 0.3, 'append']) # TODO: this plan doesn't end once these moves are executed, only with timeout best_distal_angle = self.first_distal_angle best_angle_volume = self.volatile_dug_up[2] best_mount_angle = nma elif self.volatile_dug_up[2] > best_angle_volume: best_distal_angle = self.first_distal_angle best_angle_volume = self.volatile_dug_up[2] best_mount_angle = self.mount_angle accum += self.volatile_dug_up[2] if self.volatile_dug_up[2] > DIG_GOOD_LOCATION_MASS: found_angle = best_mount_angle # go for volatile drop (to hauler), wait until finished self.publish("bucket_drop", [drop_angle, 'prepend']) while self.volatile_dug_up[1] != 100: try: self.wait(timedelta(milliseconds=300)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting to empty bin: ", str(e)) self.first_distal_angle = None self.set_brakes(False) if found_angle is None and best_mount_angle is not None: # didn't find good position (timeout) but found something - reposition and try again reposition(best_mount_angle, best_distal_angle) # after repositioning, try again the whole circle starting with best angle first for a in mount_angle_sequence: self.publish("bucket_dig", [normalizeAnglePIPI(best_mount_angle + a), 'append']) else: # found good position or found nothing at all break def scoop_all(angle): nonlocal accum while True: dig_start = self.sim_time self.publish("bucket_dig", [angle, 'reset']) while self.volatile_dug_up[1] == 100: try: self.wait(timedelta(milliseconds=300)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting to detect volatile: ", str(e)) if self.sim_time - dig_start > timedelta(seconds=120): # TODO: timeout needs to be adjusted to the ultimate digging plan # move bucket out of the way and continue to next volatile if self.debug: print(self.sim_time, self.robot_name, "Arm movement timed out or nothing to dig, terminating scooping") self.publish("bucket_drop", [drop_angle, 'append']) return False accum += self.volatile_dug_up[2] self.publish("bucket_drop", [drop_angle, 'append']) while self.volatile_dug_up[1] != 100: try: self.wait(timedelta(milliseconds=300)) except MoonException as e: print(self.sim_time, self.robot_name, "Exception while waiting to empty bin: ", str(e)) if abs(accum - 100.0) < 0.0001: print(self.sim_time, self.robot_name, "Volatile amount %.2f transfered, terminating" % accum) # TODO: adjust transformation matrix using real location of the volatile # TODO: assumes 100 to be total volatile at location, actual total reported initially, parse and match instead return True full_success = False if found_angle is not None: # have best position, dig everything up, adjust position, move to next volatile self.set_brakes(True) if scoop_all(found_angle): self.vol_list.remove(v)# once scooping finished or given up on, remove volatile from list v = np.asmatrix(np.asarray([v[0], v[1], 1])) c, s = np.cos(self.yaw), np.sin(self.yaw) Rr = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1)))) # now in coord system WRT robot T = np.asmatrix(np.array(((1, 0, -TYPICAL_VOLATILE_DISTANCE),(0, 1, 0),(0, 0, 1)))) c, s = np.cos(best_mount_angle), np.sin(best_mount_angle) Rv = np.asmatrix(np.array(((c, -s, 0), (s, c, 0), (0, 0, 1)))) true_pos = np.dot(Rr, np.dot(Rv, np.dot(T, np.dot(Rv.I,
np.dot(Rr.I, v.T)
numpy.dot
# BSD 3-Clause License # ======= # Copyright (c) 2020, Xilinx # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. __authors__ = "<NAME>, <NAME>, <NAME>, <NAME>, <NAME>" __copyright__ = "Copyright 2020, Xilinx" import os import numpy as np from functools import reduce # convenience function to prepare a fully-connected BNN for FINN # with given number of (SIMD, PE) per layer # and arbitrary precisions for both weights and activations def convertFCNetwork(npzFile, targetDirBin, targetDirHLS, simdCounts, peCounts, \ WeightsPrecisions_fractional, ActivationPrecisions_fractional, InputPrecisions_fractional, \ WeightsPrecisions_integer, ActivationPrecisions_integer, InputPrecisions_integer): numLayers = len(simdCounts) if not os.path.exists(targetDirBin): os.mkdir(targetDirBin) if not os.path.exists(targetDirHLS): os.mkdir(targetDirHLS) # instantiate the weight reader, note how interleaveChannels=False for a # fully connected network r = BNNWeightReader(npzFile, False) config = "/**\n" config+= " * Finnthesizer Config-File Generation\n"; config+= " *\n **/\n\n" config+= "#ifndef __LAYER_CONFIG_H_\n#define __LAYER_CONFIG_H_\n\n" for l in range(numLayers): print("process layer" + str(l)) simdCount = simdCounts[l] peCount = peCounts[l] WPrecision_fractional = WeightsPrecisions_fractional[l] APrecision_fractional = ActivationPrecisions_fractional[l] IPrecision_fractional = InputPrecisions_fractional[l] WPrecision_integer = WeightsPrecisions_integer[l] APrecision_integer = ActivationPrecisions_integer[l] IPrecision_integer = InputPrecisions_integer[l] # read out weights and thresholds (w,t) = r.readFCBNComplex(WPrecision_fractional, APrecision_fractional, IPrecision_fractional, \ WPrecision_integer, APrecision_integer, IPrecision_integer) # compute the padded width and height paddedH = padTo(w.shape[0], peCount) paddedW = padTo(w.shape[1], simdCount) if (l==0): # for the first layer, we pad to multiple of 64 due to the AXI interface paddedW = padTo(w.shape[1], max(simdCount,64)) if (l==numLayers-1): # for the last layer, we pad to multiple of 64 due to the AXI interface paddedH = padTo(w.shape[0], max(peCount,64)) # compute memory needed for weights and thresholds neededWMem = (paddedW * paddedH) // (simdCount * peCount) neededTMem = paddedH // peCount print("Layer %d: %d x %d, SIMD = %d, PE = %d" % (l, paddedH, paddedW, simdCount, peCount)) print("WMem = %d TMem = %d" % (neededWMem, neededTMem)) print("IPrecision = %d.%d WPrecision = %d.%d APrecision = %d.%d" % (IPrecision_integer, IPrecision_fractional, \ WPrecision_integer,WPrecision_fractional, APrecision_integer, APrecision_fractional)) # instantiate PE memory generator m = BNNProcElemMem(peCount, simdCount, neededWMem, neededTMem, WPrecision_integer, APrecision_integer, IPrecision_integer, \ WPrecision_fractional, APrecision_fractional, IPrecision_fractional) #add layer to config config += (printFCDefines("L%d" % l, simdCount, peCount, neededWMem, neededTMem, paddedW, paddedH, \ WPrecision_integer, APrecision_integer, WPrecision_fractional, APrecision_fractional)) + "\n" # pack parameters into PE memory m.addMatrix(w,t,paddedW,paddedH) # create HLS weight init files for initializing memory contents directly # while generating the bitstream # m.createHLSInitFiles(targetDirHLS + "/memdata-" + str(l) + ".h", str(l)) # create binary weight files -- useful for runtime initialization since # HLS might freeze / not work for very large header files # note that it will still be necessary to declare the PE memories in m.createBinFiles(targetDirBin, str(l)) # create parameter files for tiny-cnn config+="#endif //__LAYER_CONFIG_H_\n" configFile = open(targetDirHLS+"/config.h", "w") configFile.write(config) configFile.close() # return HW config string as C #define's for a Conv layer def printConvDefines(prefix, kernelDim, ifm_ch, ifm_dim, ofm_ch, ofm_dim, simd, pe, wmem, tmem, wpi, api, wpf, apf): #network topology config = "" numb_ops = 2*ifm_ch*ofm_ch*kernelDim*kernelDim*ofm_dim*ofm_dim # 2* because of MAC est_latency = numb_ops/(2*simd*pe) config += "/**\n * Convolutional Layer %s:\n * IFM = %5d IFM_CH = %5d\n * OFM = %5d OFM_CH = %5d\n * SIMD = %5d PE = %5d\n * WMEM = %5d TMEM = %5d\n * #Ops = %5d Ext Latency = %5d\n**/\n" % (prefix, ifm_dim, ifm_ch, ofm_dim, ofm_ch, simd, pe, wmem, tmem, numb_ops, est_latency) config += "\n" + "#define %s_K %d" % (prefix, kernelDim) config += "\n" + "#define %s_IFM_CH %d" % (prefix, ifm_ch) config += "\n" + "#define %s_IFM_DIM %d" % (prefix, ifm_dim) config += "\n" + "#define %s_OFM_CH %d" % (prefix, ofm_ch) config += "\n" + "#define %s_OFM_DIM %d" % (prefix, ofm_dim) #network configuration config += "\n" + "#define %s_SIMD %d" % (prefix, simd) config += "\n" + "#define %s_PE %d" % (prefix, pe) config += "\n" + "#define %s_WMEM %d" % (prefix, wmem) config += "\n" + "#define %s_TMEM %d" % (prefix, tmem) #precision used config += "\n" + "#define %s_WPI %d" % (prefix, wpi) config += "\n" + "#define %s_API %d" % (prefix, api) config += "\n" + "#define %s_WPF %d" % (prefix, wpf) config += "\n" + "#define %s_APF %d\n" % (prefix, apf) return config # return HW config string as C #define's for a FC layer def printFCDefines(prefix, simd, pe, wmem, tmem, mw, mh, wpi, api, wpf, apf): config = "" numb_ops = 2*mw*mh # 2* because of MAC est_latency = numb_ops/(2*simd*pe) config += "/**\n * Fully-Connected Layer %s:\n * MatW = %5d MatH = %5d\n * SIMD = %5d PE = %5d\n * WMEM = %5d TMEM = %5d\n * #Ops = %5d Ext Latency = %5d\n**/\n" % (prefix, mw, mh, simd, pe, wmem, tmem, numb_ops, est_latency) config += "\n" + "#define %s_SIMD %d" % (prefix, simd) config += "\n" + "#define %s_PE %d" % (prefix, pe) config += "\n" + "#define %s_WMEM %d" % (prefix, wmem) config += "\n" + "#define %s_TMEM %d" % (prefix, tmem) config += "\n" + "#define %s_MW %d" % (prefix, mw) config += "\n" + "#define %s_MH %d" % (prefix, mh) config += "\n" + "#define %s_WPI %d" % (prefix, wpi) config += "\n" + "#define %s_API %d" % (prefix, api) config += "\n" + "#define %s_WPF %d" % (prefix, wpf) config += "\n" + "#define %s_APF %d\n" % (prefix, apf) return config # return val to nearest multiple of pad def padTo(val, pad): rem = val % pad return val if rem == 0 else (val + pad - rem) # the quantization function def quantize(x, integer, fract): bits=integer+fract if (bits==1): return(binarize(x)) n = float(2**fract) # GIULIO ADD CLIP return np.floor(x * n + 0.5) / n # the binarization function, basically the sign encoded as 1 for positive and # 0 for negative def binarize(w): return np.where(w < 0, 0, 1) # convert a fully connected layer plus batch normalization into # the simplified form (quantized weight and multiple thresholds) # note that the neurons are assumed to be in the columns of the weight matrix def makeFCBNComplex(weights, bias, beta, gamma, mean, invstd, WPrecisions_fract, APrecisions_fract, \ WPrecisions_int, APrecisions_int, usePopCount=False, use_rowmajor=True, numThresBits=16, numThresIntBits=None): ins = weights.shape[0] outs = weights.shape[1] APrecision = APrecisions_fract + APrecisions_int print("Extracting FCBN complex, ins = %d outs = %d" % (ins, outs)) # compute a preliminary thresholds from the batchnorm parameters if (APrecision == 1): step = np.zeros(1, dtype=np.float64) else: # This one make -0.5 and +0.5 with 2 bits step =
np.linspace(-1,1,num=2**(APrecision-1), endpoint=False, dtype=np.float64)
numpy.linspace
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from __future__ import absolute_import, division, print_function import torch import numpy as np import torch.nn as nn def accuracy(preds, target): """ Calculate the NME (Normalized Mean Error). Parameters ---------- preds : numpy array the predicted landmarks target : numpy array the ground truth of landmarks Returns ------- output: float32 the nme value output: list the list of l2 distances """ N = preds.shape[0] L = preds.shape[1] rmse =
np.zeros(N)
numpy.zeros
""" Mask-RCNN detection script for cell Input format > data_dir: Directory with structure as follows: - <data_dir> - <image_id_1.tif> (file name is it's id) - <image_id_2.tif> - <image_id_3.tif> > output_dir: Directory to save the predictions, format after prediction: - <output_dir> - <image_id_1_mask.png> - <image_id_2_mask.png> > model_path: Path to hdf5 file with saved model. added with postprocessing on sequential predictions from multiple models supported cases: - cell notdetected by one of the models - cell not deted in one of few in the sequence - single cell detected as two cells """ import sys import datetime import os import numpy as np import cv2 from tqdm import tqdm from train import cellConfig from mrcnn import utils from mrcnn import model as modellib import time from itertools import groupby from operator import itemgetter import operator IOU_THRESHOLD = 0.6 OVERLAP_THRESHOLD = 0.8 MIN_DETECTIONS = 1 """ logging class """ class Logger(object): def __init__(self): self.terminal = sys.stdout self.log = open(data_dir+"log.log", "a") def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): pass class ImageDataset(utils.Dataset): def load_images(self, dataset_dir): """ Loads dataset images. :param dataset_dir: string, path to dataset directory. :return: None """ self.add_class("cell", 1, "cell") image_ids = [file for file in os.listdir(dataset_dir) if '.tif' in file] for image_id in image_ids: self.add_image( 'cell', image_id=os.path.splitext(image_id)[0], path=os.path.join(dataset_dir, image_id) ) class CellInferenceConfig(cellConfig): # Set batch size to 1 to run one image at a time GPU_COUNT = 1 IMAGES_PER_GPU = 1 # Don't resize imager for inferencing IMAGE_RESIZE_MODE = "pad64" # Non-max suppression threshold to filter RPN proposals. # You can increase this during training to generate more propsals. RPN_NMS_THRESHOLD = 0.7 def detect(model, data_dir, out_dir): ''' if not os.path.exists(out_dir): os.makedirs(out_dir) detection_dir = "detections_{:%Y%m%dT%H%M%S}".format(datetime.datetime.now()) detection_dir = os.path.join(out_dir, detection_dir) os.makedirs(detection_dir) ''' # Read dataset dataset = ImageDataset() dataset.load_images(data_dir) dataset.prepare() # Load over images print(dataset.image_ids) for image_id in tqdm(dataset.image_ids): print(image_id) # Load image and run detection #If error in inferring the image, check the encoding and make sure it is 16 bits image = dataset.load_image(image_id) *8 # Detect objects r = model.detect([image], verbose=0)[0] # Encode image to RLE. Returns a string of multiple lines source_id = dataset.image_info[image_id]["id"] #out_path = os.path.join(detection_dir, '%s.png' % str(source_id)) out_path = os.path.join(out_dir, '%s.png' % str(source_id)) mask = np.argmax(r['masks'], 2) cv2.imwrite(out_path, mask) def compute_iou(mask1, mask2): """ Computes Intersection over Union score for two binary masks. :param mask1: numpy array :param mask2: numpy array :return: """ intersection = np.sum((mask1 + mask2) > 1) union = np.sum((mask1 + mask2) > 0) return intersection / float(union) def compute_overlap(mask1, mask2): intersection = np.sum((mask1 + mask2) > 1) overlap1 = intersection / float(np.sum(mask1)) overlap2 = intersection / float(np.sum(mask2)) return overlap1, overlap2 def sort_mask_by_cells(mask, min_size=50): """ Returns size of each cell. :param mask: :return: """ cell_num = np.unique(mask) cell_sizes = [(cell_id, len(np.where(mask == cell_id)[0])) for cell_id in cell_num if cell_id != 0] cell_sizes = [x for x in sorted(cell_sizes, key=lambda x: x[1], reverse=True) if x[1 > min_size]] return cell_sizes def merge_multiple_detections(masks): """ :param masks: :return: """ cell_counter = 0 final_mask = np.zeros(masks[0].shape) masks_stats = [sort_mask_by_cells(mask) for mask in masks] cells_left = sum([len(stats) for stats in masks_stats]) while cells_left > 0: # Choose the biggest cell from available cells = [stats[0][1] if len(stats) > 0 else 0 for stats in masks_stats] reference_mask = cells.index(max(cells)) reference_cell = masks_stats[reference_mask].pop(0)[0] # Prepare binary mask for cell chosen for comparison cell_location = np.where(masks[reference_mask] == reference_cell) cell_mask = np.zeros(final_mask.shape) cell_mask[cell_location] = 1 masks[reference_mask][cell_location] = 0 # Mask for storing temporary results tmp_mask = np.zeros(final_mask.shape) tmp_mask += cell_mask for mask_id, mask in enumerate(masks): # For each mask left if mask_id != reference_mask: # # Find overlapping cells on other masks overlapping_cells = list(np.unique(mask[cell_location])) try: overlapping_cells.remove(0) except ValueError: pass # # If only one overlapping, check IoU and update tmp mask if high if len(overlapping_cells) == 1: overlapping_cell_mask = np.zeros(final_mask.shape) overlapping_cell_mask[np.where(mask == overlapping_cells[0])] = 1 iou = compute_iou(cell_mask, overlapping_cell_mask) if iou >= IOU_THRESHOLD: # Add cell to temporary results and remove from stats and mask tmp_mask += overlapping_cell_mask idx = [i for i, cell in enumerate(masks_stats[mask_id]) if cell[0] == overlapping_cells[0]][0] masks_stats[mask_id].pop(idx) mask[np.where(mask == overlapping_cells[0])] = 0 # # If more than one overlapping check area overlapping elif len(overlapping_cells) > 1: overlapping_cell_masks = [np.zeros(final_mask.shape) for _ in overlapping_cells] for i, cell_id in enumerate(overlapping_cells): overlapping_cell_masks[i][np.where(mask == cell_id)] = 1 for cell_id, overlap_mask in zip(overlapping_cells, overlapping_cell_masks): overlap_score, _ = compute_overlap(overlap_mask, cell_mask) if overlap_score >= OVERLAP_THRESHOLD: tmp_mask += overlap_mask mask[np.where(mask == cell_id)] = 0 idx = [i for i, cell in enumerate(masks_stats[mask_id]) if cell[0] == cell_id][0] masks_stats[mask_id].pop(idx) # # If none overlapping do nothing if len(np.unique(tmp_mask)) > 1: cell_counter += 1 final_mask[np.where(tmp_mask >= MIN_DETECTIONS)] = cell_counter cells_left = sum([len(stats) for stats in masks_stats]) bin_mask =
np.zeros(final_mask.shape)
numpy.zeros
""" Test script. """ import pytest import os from psrqpy import QueryATNF import numpy as np from pandas import Series import pytest_socket from six import string_types from astropy.table.column import MaskedColumn def sf_scale(value): """ Calculate the base-10 scale of the final significant figure for a given number. E.g. for a value of 12000.0 you would get 1000.0 as the scale of the final significant figure. Or, for 1.2345e-8 you would get 0.0001. """ # base-10 exponent to which the value is raise valexp = np.floor(np.log10(np.abs(value))) # value that is raise to 10**valexp val = (value/10**valexp).astype('float32') # type as float32 to avoid numerical noise valstr = str(val) # get the number of decimal places numdp = len(valstr) - valstr.find('.') - 1 if valstr[-1] == '0': numdp -= 1 # return the scale of the final significant figure return 10**(valexp - numdp) def round_err(errvalue, atnferrvalue): """ Round the derived error to the same number of significant figures at the error produced by `psrcat` and used for the ATNF pulsar catalogue, noting that `psrcat` rounds error up. Return True if the derived error and equivalent ATNF are the same """ # get ATNF derived error value errval = (atnferrvalue/sf_scale(atnferrvalue)).astype('float32') # ATNF derived errors are always rounded up derval = np.ceil(errvalue/sf_scale(atnferrvalue)) return derval == errval def test_crab(query): """ Test that the Crab pulsar is present and the frequency is as expected, i.e. the frequency rounds down to 29 Hz (should be OK for another ~80 years!) """ f0 = query.get_pulsar('J0534+2200')['F0'][0] assert np.floor(f0) == 29.0 # try Crab's B-name f0B = query.get_pulsar('B0531+21')['F0'][0] assert f0 == f0B # check reference and error are not None assert query.get_pulsar('B0531+21')['F0_ERR'][0] is not None assert query.get_pulsar('B0531+21')['F0_REF'][0] is not None def test_catalogue_shape(query): """ Test the catalogue for shape consistency """ length = query.catalogue_len shape = query.catalogue_shape rows = query.catalogue_nrows cols = query.catalogue_ncols colnames = query.columns assert length == rows and length == shape[0] assert cols == len(colnames) and cols == shape[1] def test_get_pulsars(query): """ Test the 'Pulsars' class. """ psrs = query.get_pulsars() assert len(psrs) == query.num_pulsars # check Crab frequency f01 = query.get_pulsar('J0534+2200')['F0'][0] f02 = psrs['J0534+2200'].F0 # frequency attribute assert f01 == f02 # test removing a pulsar crab = psrs.pop('J0534+2200') f03 = crab.F0 assert f03 == f01 assert len(psrs) == (query.num_pulsars - 1) # get the ephemeris string for the Crab pulsar crabeph = query.get_ephemeris('J0534+2200AB') # wrong name assert crabeph is None crabeph = query.get_ephemeris('J0534+2200') assert isinstance(crabeph, string_types) for line in crabeph.split('\n'): if line.split()[0].strip() == 'F0': f0str = line.split()[1].strip() break assert f01 == float(f0str) def test_save_load_file(query): """ Test saving and reloading a query as a pickle file. """ # test exception handling testfilebad = '/jkshfdjfd/jkgsdfjkj/kgskfd.jhfd' with pytest.raises(IOError): query.save(testfilebad) # test exception handling with pytest.raises(IOError): querynew = QueryATNF(loadquery=testfilebad) testfile = os.path.join(os.getcwd(), 'query.pkl') query.save(testfile) # re-load in as a new query querynew = QueryATNF(loadquery=testfile) assert query.num_pulsars == querynew.num_pulsars def test_condition(query): """ Test the parsing of logical conditions. """ with pytest.raises(TypeError): # test for error if condition is not a string query.condition = 2.3 # test that we only return pulsars with F0 > 100 Hz query.condition = 'F0 > 100' psrs = query.table f0s = psrs['F0'] assert not np.any(f0s < 100.) # test that we only return pulsars with F0 > 100 Hz in binary systems query.condition = 'F0 > 100 && type(binary)' psrs = query.table f0s = psrs['F0'] binary = psrs['BINARY'] if type(binary) == MaskedColumn: assert not np.any(f0s < 100.) and not
np.any(binary.mask)
numpy.any
from .utils import dijkstra import numpy as np from anndata import AnnData from typing import Iterable, Union, Tuple def node_metrics( adata: AnnData, bc_list1: Iterable[str], bc_list2: Iterable[str], cell_type: str, n_jobs: Union[int, None] = None ) -> Tuple[float, float, float]: """ Calculates node metrics using shortest paths between matching barcodes. Parameters ---------- adata AnnData object. bc_list1 RNA matching barcodes. bc_list2 ATAC matching barcodes. cell_type obs variable containing the ground truth cell type. n_jobs The number of jobs to use for the computation. None means 1. Returns ------- num_inf: int Number of disconnected barcodes. mean_nodes Mean node distance between barcodes. disc_ratio The fraction of disconnected barcodes from the total. """ results = dijkstra.run_dijkstra(adata, bc_list1, bc_list2, n_jobs=n_jobs) tmp_res = list(zip(*results)) dists = np.array(tmp_res[0]) num_inf = 2 * np.where(dists == float('inf'))[0].shape[0] conn_ratio = 1 - num_inf / len(adata.obs.index) paths = list(
np.array(tmp_res[1], dtype=object)
numpy.array
import math from random import gauss import numpy as np from numpy.linalg import norm from orbit import Orbit from body import Body from copy import copy class Transfer: """Orbital transfer from a starting orbit to an ending orbit. Attributes: startOrbit (Orbit): orbit prior to departure burns endOrbit (Orbit): orbit following arrival burns startTime (float): time at the beginning of transfer trajectory (s) flightTime (float): duration of transfer trajectory (s) planeChange (bool): if true, a mid-course plane change is done ignoreInsertion (bool): if true, arrival burn is ignored. cheapStartOrb (bool): if true, the only parameter of the starting park orbit used is the semimajor axis cheapEndOrb (bool): if true, the only parameter of the ending park orbit used is the semimajor axis startPos (vector): if provided, fixes start location of the transfer orbit given position endPos (vector): : if provided, fixes target location of the transfer orbit at the given position transferOrbit (Orbit): orbital trajectory between start and end. If there is a plane change maneuver, this is the portion of the trajectory prior to the maneuver. transferORbitPC (Orbit): If there is a plane change maneuver, this is the portion of the transfer trajectory after the maneuver. ejectionTrajectory (Orbit): If ejection from a starting body occurs, this is the trajectory between parking orbit and escape. insertionTrajectory (Orbit): If capture at a target body occurs, this is the trajectory between encounter and parking. ejectionDV (array): 3D departure burn vector (m/s) insertionDV (float): magnitude of arrival burn (m/s) planeChangeDV (array): 3D plane change burn vector (m/s) ejectionDT (float): If ejection from a starting body occurs, this is the time interval between ejection burn and escape. insertionDT (float): If insertion at an ending body occurs, this is the time interval between encounter and insertion burn. planeChangeDT (float): If a plane change maneuver occurs, this is the time interval between the start of the transfer orbit and the maneuver. convergenceFail (bool): If true, start and end positions for the Lambert problem did not converge via the genetic algorithm """ def __init__(self, startOrbit, endOrbit, startTime, flightTime, planeChange = False, ignoreInsertion = False, cheapStartOrb = False, cheapEndOrb = True, startPos = None, endPos = None): # Assign input attributes self.startOrbit = startOrbit self.endOrbit = endOrbit self.startTime = startTime self.flightTime = flightTime self.planeChange = planeChange self.ignoreInsertion = ignoreInsertion self.cheapStartOrb = cheapStartOrb self.cheapEndOrb = cheapEndOrb self.startPos = startPos self.endPos = endPos self.originalStartOrbit = copy(self.startOrbit) self.originalEndOrbit = copy(self.endOrbit) # These attributes get defined here but are filled in with methods self.transferOrbit = None self.transferOrbitPC = None self.ejectionTrajectory = None self.insertionTrajectory = None self.ejectionDV = 0 self.insertionDV = 0 self.planeChangeDV = 0 self.ejectionDT = 0 self.insertionDT = 0 self.planeChangeDT = 0 self.phaseAngle = 0 self.ejectionBurnAngle = None self.convergenceFail = True # Calculate transfer, ejection, and insertion parameters self.get_transfer_details() # self.genetic_refine() @staticmethod def solve_lambert(startOrbit, endOrbit, startTime, flightTime, planeChange = False, startPos = None, endPos = None, tol = 1E-6, maxIt = 200): """Solves the Lambert problem to obtain a trajectory to the target. Args: startOrbit (Orbit): orbit prior to departure endOrbit (Orbit): orbit following arrival startTime (float): time at the beginning of transfer (s) flightTime (float): duration of transfer trajectory (s) planeChange (bool): if true, a mid-course plane change occurs startPos (vector): if provided, fixes start location at the given position endPos (vector): : if provided, fixes target location at the given position tol (float): the maximum tolerance for iteration termination maxIt (int): the maximum number of iterations before breaking Returns: transferOrbit (Orbit): trajectory before plane change transferOrbitPC (Orbit): trajectory after plane change planeChangeDV (array): plane change burn vector (m/s) planeChangeDT (float): time between start and plane change (s) """ # Set gravitational parameter for transfer orbit mu = startOrbit.prim.mu # Get start position if startPos is None: rStart = startOrbit.get_state_vector(startTime)[0] else: rStart = startPos # Adjust end position based on inputs if endPos is None: rEnd = endOrbit.get_state_vector(startTime + flightTime)[0] else: rEnd = endPos if planeChange: # Rotate the target orbit to be coplanar with the starting one rEnd = startOrbit.from_primary_to_orbit_bases(rEnd) rEnd = np.array([rEnd[0],rEnd[1],0]) / \ norm(np.array([rEnd[0],rEnd[1]])) * norm(rEnd); rEnd = startOrbit.from_orbit_to_primary_bases(rEnd) # Store magnitudes of position vectors for later use rStartMag = norm(rStart) rEndMag = norm(rEnd) # Get true anomaly change and angles in the ecliptic (x-y plane) dNu = math.atan2(norm(np.cross(rStart,rEnd)),np.dot(rStart,rEnd)) thetaStart = math.atan2(rStart[1], rStart[0]) thetaEnd = math.atan2(rEnd[1], rEnd[0]) dTheta = thetaEnd - thetaStart if dTheta < 0 or dTheta > 2*math.pi: dTheta = dTheta - math.floor(dTheta/(2*math.pi))*2*math.pi if dTheta > math.pi: dNu = 2*math.pi - dNu # Set constants for p iteration k = rStartMag * rEndMag * (1-math.cos(dNu)) L = rStartMag + rEndMag m = rStartMag * rEndMag * (1+math.cos(dNu)) # Set bounds for p values pj = k / (L+math.sqrt(2*m)) pjj = k / (L-math.sqrt(2*m)) if dNu > math.pi: pMin = 0 pMax = pjj else: pMin = pj pMax = math.inf # Initialize values prior to iteration it = 0 err = tol+1 p = (pj+pjj)/2 pNext = p # Use Newton-p-iteration to minimize error for time of flight while err > tol: it = it+1 if it > maxIt: print('Lambert solver failed to converge') break p = pNext a = m*k*p / ((2*m-L**2)*(p**2) + 2*k*L*p - k**2) f = 1 - rEndMag/p * (1 - math.cos(dNu)) g = rStartMag * rEndMag * math.sin(dNu) / math.sqrt(mu*p) df = math.sqrt(mu/p)*math.tan(dNu/2)*((1-math.cos(dNu))/p - \ 1/rStartMag - \ 1/rEndMag); # Elliptical case if a > 0: sindE = -rStartMag * rEndMag * df/math.sqrt(mu*a) cosdE = 1 - rStartMag/a * (1-f) # Change in elliptical anomaly dE = math.atan2(sindE,cosdE) while dE < 0: dE = dE + 2*math.pi # Time of flight and slope with respect to p t = g + math.sqrt((a**3)/mu) * (dE - sindE) dtdp = -g/(2*p) - \ 1.5*a*(t-g)*(k**2 + (2*m-L**2)*p**2) / (m*k*p**2) + \ math.sqrt(a**3/mu) * (2*k*sindE) / (p*(k-L*p)); # Hyperbolic case else: # Change in hyperbolic anomaly dF = math.acosh(1 - rStartMag/a * (1-f)) # Time of flight and slope with respect to p t = g + math.sqrt((-a)**3/mu) * (math.sinh(dF) - dF) dtdp = -g/(2*p) - \ 1.5*a*(t-g)*(k**2 + (2*m-L**2)*p**2) / (m*k*p**2) - \ math.sqrt((-a)**3/mu) * (2*k*math.sinh(dF)) / \ (p*(k-L*p)); # Compute error and next guess for p err = abs(flightTime-t)/flightTime pNext = p + (flightTime - t) / dtdp # If the next guess is outside of allowed bounds, use bisection if pNext < pMin: pNext = (p + pMin)/2 elif pNext > pMax: pNext = (p + pMax)/2 # From final p-iteration parameters, calculate velocity at the start # of the transfer orbit, and then define the transfer orbit vStart = (rEnd - f * rStart)/g transferOrbit = Orbit.from_state_vector(rStart,vStart, startTime, startOrbit.prim) # If a mid-course plane change maneuver will be used, a second # transfer orbit must be determined if planeChange: # Obtain the end position in its original plane if endPos is None: rEnd = endOrbit.get_state_vector(startTime + flightTime)[0] else: rEnd = endPos # Get angle in the orbital plane between start and end transferAngle = \ transferOrbit.get_angle_in_orbital_plane(startTime,rEnd) # The optimal angle for the plane change position is 90 degrees # before the end position. If the transfer trajectory does not # cover at more than 90 degrees, the best position for plane- # change will be at the start if transferAngle < math.pi/2: thetaPC = 0 else: thetaPC = transferAngle - math.pi/2 # Get true anomaly and time at the plane-change maneuver nuPC = transferOrbit.get_true_anomaly(startTime) + thetaPC tPC = transferOrbit.get_time(nuPC, startTime) # Get the state vector immediately prior to plane change rPC, vPCi = transferOrbit.get_state_vector(tPC) vPCiPlane = transferOrbit.from_primary_to_orbit_bases(vPCi) ## Calculate the inclination change needed for the maneuver # nTr = np.cross(rPC, vPCi) # nTr = nTr/norm(nTr) # normal vector to pre-burn orbit # Get basis vectors for orbit after plane change zPC = np.cross(rPC, rEnd) zPC = zPC/norm(zPC) # normal vector to post-burn orbit xPC= np.array([1, 0, 0]) # assumed celestial longitude xPC = xPC - np.dot(xPC,zPC) * zPC/norm(zPC)**2 if norm(xPC) < 1E-15: xPC = np.array([0, math.copysign(1,zPC[0]), 0]) zPC = np.array([math.copysign(1,zPC[0]), 0, 0]) else: xPC = xPC / norm(xPC) yPC = np.cross(zPC,xPC) yPC = yPC/norm(yPC) # rotate velocity vector to new plane vPCf = transferOrbit.rotate_to_bases(vPCiPlane, xPC, yPC, True) # # normal vector to plane after burn # incPC = math.acos(np.dot(nTr,nTrPC)) # if np.dot(nTrPC, vPCi) > 0: # incPC = -incPC # # Rotate velocity vector prior to burn to get vector after burn # vPCfPlane = np.array([math.cos(incPC) * vPCiPlane[0], \ # math.cos(incPC) * vPCiPlane[1], \ # math.sin(incPC) * norm(vPCiPlane)]); # # Get the velocity after plane change in the primary bases # vPCf = transferOrbit.from_orbit_to_primary_bases(vPCfPlane) # Define second part of transfer with position and velocity # vectors after the plane change maneuver transferOrbitPC = Orbit.from_state_vector(rPC,vPCf,tPC, transferOrbit.prim) # Get the delta V for the maneuver and time interval from start planeChangeDV = vPCf - vPCi planeChangeDT = tPC - startTime else: transferOrbitPC = None planeChangeDV = 0 planeChangeDT = 0 return transferOrbit, transferOrbitPC, planeChangeDV, planeChangeDT def get_transfer_details(self): """Get transfer and ejection orbits with burn details""" # First case: starting and ending orbits have the same primary body. # No change of sphere of influence takes place. if self.startOrbit.prim == self.endOrbit.prim: self.transferOrbit, self.transferOrbitPC, \ self.planeChangeDV, self.planeChangeDT = \ self.solve_lambert(self.startOrbit, \ self.endOrbit, \ self.startTime, self.flightTime, \ self.planeChange, \ self.startPos, self.endPos); # Get departure burn delta v vStart = self.startOrbit.get_state_vector(self.startTime)[1] vTrStart = self.transferOrbit.get_state_vector(self.startTime)[1] self.ejectionDV = vTrStart - vStart # Get arrival burn delta v if not self.ignoreInsertion: if self.planeChange: vTrEnd = self.transferOrbitPC.get_state_vector( \ self.startTime + self.flightTime)[1]; else: vTrEnd = self.transferOrbit.get_state_vector( \ self.startTime + self.flightTime)[1] vEnd = self.endOrbit.get_state_vector(self.startTime + \ self.flightTime)[1]; self.insertionDV = vEnd - vTrEnd # Get phase angle self.phaseAngle = self.startOrbit.get_angle_in_orbital_plane( \ self.get_departure_burn_time(), \ self.endOrbit.get_state_vector( \ self.get_departure_burn_time())[0]); # Set start and end position for refinining self.startPos = \ self.startOrbit.get_state_vector(self.startTime)[0]; self.endPos = \ self.endOrbit.get_state_vector(self.startTime + \ self.flightTime)[0]; # Second case: starting in orbit around a body and transferring to a # parking orbit around its primary body elif self.startOrbit.prim in self.endOrbit.prim.satellites: self.transferOrbit, self.transferOrbitPC, \ self.planeChangeDV, self.planeChangeDT = \ self.solve_lambert(self.startOrbit.prim.orb, \ self.endOrbit, \ self.startTime, self.flightTime, \ self.planeChange, \ self.startPos, self.endPos); self.get_ejection_details() # Get arrival burn delta v if not self.ignoreInsertion: if self.planeChange: vTrEnd = self.transferOrbitPC.get_state_vector( \ self.startTime + self.flightTime)[1]; else: vTrEnd = self.transferOrbit.get_state_vector( \ self.startTime + self.flightTime)[1] vEnd = self.endOrbit.get_state_vector(self.startTime + \ self.flightTime)[1]; self.insertionDV = vEnd - vTrEnd # Get phase angle self.phaseAngle = self.startOrbit.prim.orb \ .get_angle_in_orbital_plane( \ self.get_departure_burn_time(), \ self.endOrbit.get_state_vector( \ self.get_departure_burn_time())[0]); # Set start and end position for refinining self.startPos = \ self.startOrbit.prim.orb.get_state_vector(self.startTime)[0] +\ self.ejectionTrajectory.get_state_vector(self.startTime)[0]; if self.endPos is None: self.endPos = \ self.endOrbit.get_state_vector(self.startTime + \ self.flightTime)[0]; # Third case: starting in orbit around a body and transferring to a # parking orbit around one of its satellites elif self.endOrbit.prim in self.startOrbit.prim.satellites: self.transferOrbit, self.transferOrbitPC, \ self.planeChangeDV, self.planeChangeDT = \ self.solve_lambert(self.startOrbit, \ self.endOrbit.prim.orb, \ self.startTime, self.flightTime, \ self.planeChange, \ self.startPos, self.endPos); self.get_insertion_details() # Get departure burn delta v vStart = self.startOrbit.get_state_vector(self.startTime)[1] vTrStart = self.transferOrbit.get_state_vector(self.startTime)[1] self.ejectionDV = vTrStart - vStart # Get phase angle self.phaseAngle = self.startOrbit.get_angle_in_orbital_plane( \ self.get_departure_burn_time(), \ self.endOrbit.prim.orb.get_state_vector( \ self.get_departure_burn_time())[0]); # Set start and end position for refinining if self.startPos is None: self.startPos = \ self.startOrbit.get_state_vector(self.startTime)[0]; self.endPos = \ self.endOrbit.prim.orb.get_state_vector( \ self.startTime + self.flightTime)[0] + \ self.insertionTrajectory.get_state_vector( \ self.startTime + self.flightTime)[0]; # Fourth case: starting in a parking orbit around a body, and then # transfering to another body and parking there. Both bodies orbit # the same primary. elif self.startOrbit.prim.orb.prim == self.endOrbit.prim.orb.prim: self.transferOrbit, self.transferOrbitPC, \ self.planeChangeDV, self.planeChangeDT = \ self.solve_lambert(self.startOrbit.prim.orb, \ self.endOrbit.prim.orb, \ self.startTime, self.flightTime, \ self.planeChange, \ self.startPos, self.endPos); self.get_ejection_details() self.get_insertion_details() # Get phase angle self.phaseAngle = self.startOrbit.prim.orb \ .get_angle_in_orbital_plane( \ self.get_departure_burn_time(), \ self.endOrbit.prim.orb.get_state_vector( \ self.get_departure_burn_time())[0]); # Set start and end position for refinining self.startPos = \ self.startOrbit.prim.orb.get_state_vector(self.startTime)[0] +\ self.ejectionTrajectory.get_state_vector(self.startTime)[0]; self.endPos = \ self.endOrbit.prim.orb.get_state_vector( \ self.startTime + self.flightTime)[0] + \ self.insertionTrajectory.get_state_vector( \ self.startTime + self.flightTime)[0]; # Fifth case: starting orbit is around a moon, and ending orbit is # around a planet that is not the primary of the first moon # Sixth case: starting orbit is around a planet, and ending orbit is # around a moon of a different planet # Seventh case: starting and ending orbits are around moons of two # different planets. # Adjust phase angle to be within the range [-pi, pi] if self.phaseAngle < -math.pi: self.phaseAngle = self.phaseAngle + 2*math.pi elif self.phaseAngle > math.pi: self.phaseAngle = self.phaseAngle - 2*math.pi def get_ejection_details(self, tol = 0.1, maxIt = 50): """Get ejection trajectory with burn details.""" # Assume that parking orbit is circular mu = self.startOrbit.prim.mu rEscape = self.startOrbit.prim.soi # distance from body at escape # Get velocity of primary body and velocity needed after escape vPrim = self.startOrbit.prim.orb.get_state_vector(self.startTime)[1] vTrans = self.transferOrbit.get_state_vector(self.startTime)[1] err = tol + 1 it = 0 roNext = self.startOrbit.a while abs(err) > tol: it = it + 1 if it > maxIt: # print('Ejection burn position failed to converge') # print(err) break # Periapsis radius of ejection trajectory (also burn position) ro = roNext # Excess velocity needed at escape from primary's sphere of influence vRel = vTrans - vPrim # speed after ejection burn vo = math.sqrt(norm(vRel)**2 + 2*(mu/ro - mu/rEscape)) # escape trajectory elements e = math.sqrt(1+2*(vo**2/2 - mu/ro) * ro**2 * vo**2 / mu**2) a = 1 / (2/ro - vo**2/mu) # Describe positions at the SOI escape in the hyperbolic # escape trajectory's orbital plane # true anomaly at escape try: thetaEscape = math.acos(1/e * (a*(1-e**2)/rEscape - 1)) except ValueError: thetaEscape = math.acos( math.copysign(1, 1/e * (a*(1-e**2)/rEscape - 1))) # flight path angle at escape phiEscape = math.atan(e*math.sin(thetaEscape) / \ (1+e*math.cos(thetaEscape))); # velocity vector at escape in orbital reference bases vEscape = math.sqrt(mu * (2/rEscape - 1/a)) * \ np.array([math.cos(thetaEscape + math.pi/2 - phiEscape), \ math.sin(thetaEscape + math.pi/2 - phiEscape), \ 0]); # pre-burn position and velocity vectors at periapsis, in the orbit's # reference bases roVec = [ro, 0, 0] voVec = [0, vo, 0] # Reperesent the escape velocity in the orbital reference bases if not self.cheapStartOrb: vRel = self.startOrbit.from_primary_to_orbit_bases(vRel) else: vRel = self.startOrbit.prim.orb.from_primary_to_orbit_bases(vRel) # Rotate the ejection trajectory to match the desired escape velocity # An assumption is made that the periapsis lies in the starting # orbit's x-y plane. # First rotate around x-axis to match z-component phi = math.atan2(vRel[2], math.sqrt(abs(norm(vEscape)**2 - \ vEscape[0]**2 - vRel[2]**2))); R1 = np.array([[1, 0, 0], \ [0, math.cos(phi), -math.sin(phi)], \ [0, math.sin(phi), math.cos(phi)]]); R1vEscape = np.matmul(R1, vEscape) # Then rotate around z-axis to match ejection direction theta = math.atan2(vRel[1], vRel[0]) - math.atan2(R1vEscape[1], \ R1vEscape[0]); R2 = np.array([[math.cos(theta), -math.sin(theta), 0], \ [math.sin(theta), math.cos(theta), 0], \ [0, 0, 1]]); # Apply rotations roVec = np.matmul(R2, np.matmul(R1, roVec)) voVec = np.matmul(R2, np.matmul(R1, voVec)) # Represent periapsis state vector in primary bases if not self.cheapStartOrb: roVec = self.startOrbit.from_orbit_to_primary_bases(roVec) voVec =self.startOrbit.from_orbit_to_primary_bases(voVec) else: roVec = self.startOrbit.prim.orb.from_orbit_to_primary_bases(roVec) voVec =self.startOrbit.prim.orb.from_orbit_to_primary_bases(voVec) if self.cheapStartOrb: err = 0 else: angleDiff = self.startOrbit.get_angle_in_orbital_plane( \ self.startOrbit.get_time(0),roVec); roVecActual, vParkActual = \ self.startOrbit.get_state_vector( \ self.startOrbit.get_time(angleDiff)); prevErr = err err = norm(roVec) - norm(roVecActual) if abs(err)/abs(prevErr) > 0.9: roNext = (norm(roVecActual) + ro)/2 else: roNext = norm(roVecActual) # Get burn vector if self.cheapStartOrb: vPark = math.sqrt(mu/ro) * voVec/norm(voVec) else: vPark = vParkActual self.ejectionDV = voVec - vPark; # adjust so that the mean anomaly at epoch is compatible with the # transfer start time if e < 1: # elliptical case eccAnomEscape = 2*math.atan(math.tan(thetaEscape/2) / \ math.sqrt((1+e) / (1-e))) dMeanAnom = eccAnomEscape - e*math.sin(eccAnomEscape) else: # hyperbolic case hypAnomEscape = math.copysign( \ math.acosh((math.cos(thetaEscape)+e) / \ (1 + e*math.cos(thetaEscape))), \ thetaEscape); dMeanAnom = e*math.sinh(hypAnomEscape) - hypAnomEscape # Add the correct ejection trajectory and duration to the transfer self.ejectionDT = abs(dMeanAnom * math.sqrt((abs(a))**3/mu)) self.ejectionTrajectory = \ Orbit.from_state_vector(roVec, voVec, \ self.get_departure_burn_time(), \ self.startOrbit.prim); # Reset start parking orbit to match departure burn timing if self.cheapStartOrb: self.startOrbit = \ Orbit.from_state_vector(roVec,vPark, \ self.get_departure_burn_time(), \ self.startOrbit.prim); # Get angle from prograde of ejection burn progradeAngle = \ self.startOrbit.get_angle_in_orbital_plane( \ 0, \ self.startOrbit.prim.orb.from_primary_to_orbit_bases( \ self.startOrbit.prim.orb.get_state_vector( \ self.get_departure_burn_time())[1])); burnAngle = \ self.startOrbit.get_angle_in_orbital_plane( \ 0, \ self.ejectionTrajectory.get_state_vector( \ self.get_departure_burn_time())[0]); self.ejectionBurnAngle = Orbit.map_angle(burnAngle-progradeAngle) if self.ejectionBurnAngle > math.pi: self.ejectionBurnAngle = self.ejectionBurnAngle - 2*math.pi def get_insertion_details(self, tol = 0.1, maxIt = 50): """Get insertion trajectory with burn details.""" # Assume that parking orbit is circular mu = self.endOrbit.prim.mu rEnc = self.endOrbit.prim.soi # distance from body at encounter # Get velocity of primary body and velocity needed at encounter vPrim = self.endOrbit.prim.orb.get_state_vector(self.startTime + \ self.flightTime)[1]; vTrans = self.transferOrbit.get_state_vector(self.startTime + \ self.flightTime)[1]; err = tol + 1 it = 0 roNext = self.endOrbit.a while abs(err) > tol: it = it + 1 if it > maxIt: # print('Insertion burn position failed to converge') # print(err) break # Periapsis radius of insertion trajectory (also burn position) ro = roNext # Excess velocity at encounter at primary's sphere of influence vRel = vTrans - vPrim # speed before insertion burn vo = math.sqrt(norm(vRel)**2 + 2*(mu/ro - mu/rEnc)) # insertion trajectory elements e = math.sqrt(1+2*(vo**2/2 - mu/ro) * ro**2 * vo**2 / mu**2) a = 1 / (2/ro - vo**2/mu) # Describe positions at the SOI encounter in the hyperbolic # insertion trajectory's orbital plane # true anomaly at escape try: thetaEncounter = -math.acos(1/e * (a*(1-e**2)/rEnc - 1)) except ValueError: thetaEncounter = -math.acos( math.copysign(1, 1/e * (a*(1-e**2)/rEnc - 1))) # flight path angle at encounter phiEncounter = math.atan(e*math.sin(thetaEncounter) / \ (1+e*math.cos(thetaEncounter))); # velocity vector at encounter in orbital reference bases vEncounter = math.sqrt(mu * (2/rEnc - 1/a)) * \ np.array([math.cos(thetaEncounter + math.pi/2 - phiEncounter), \ math.sin(thetaEncounter + math.pi/2 - phiEncounter), \ 0]); # post-burn position and velocity vectors at periapsis, in the orbit's # reference bases roVec = [ro, 0, 0] voVec = [0, vo, 0] # Reperesent the encounter velocity in the orbital reference bases # Reperesent the escape velocity in the orbital reference bases if not self.cheapEndOrb: vRel = self.endOrbit.from_primary_to_orbit_bases(vRel) else: vRel = self.endOrbit.prim.orb.from_primary_to_orbit_bases(vRel) # Rotate the insertion trajectory to match the desired escape velocity # An assumption is made that the periapsis lies in the primary body's # x-y plane. # First rotate around x-axis to match z-component phi = math.atan2(vRel[2], math.sqrt(abs(norm(vEncounter)**2 - \ vEncounter[0]**2 - vRel[2]**2))); R1 = np.array([[1, 0, 0], \ [0, math.cos(phi), -math.sin(phi)], \ [0, math.sin(phi), math.cos(phi)]]); R1vEncounter = np.matmul(R1, vEncounter) # Then rotate around z-axis to match insertion direction theta = math.atan2(vRel[1], vRel[0]) - math.atan2(R1vEncounter[1], \ R1vEncounter[0]); R2 = np.array([[math.cos(theta), -math.sin(theta), 0], \ [math.sin(theta), math.cos(theta), 0], \ [0, 0, 1]]); # Apply rotations roVec = np.matmul(R2, np.matmul(R1, roVec)) voVec = np.matmul(R2, np.matmul(R1, voVec)) # Represent periapsis state vector in primary bases if not self.cheapEndOrb: roVec = self.endOrbit.from_orbit_to_primary_bases(roVec) voVec = self.endOrbit.from_orbit_to_primary_bases(voVec) else: roVec = self.endOrbit.prim.orb.from_orbit_to_primary_bases(roVec) voVec = self.endOrbit.prim.orb.from_orbit_to_primary_bases(voVec) if self.cheapEndOrb: err = 0 else: angleDiff = self.endOrbit.get_angle_in_orbital_plane( \ self.endOrbit.get_time(0),roVec); roVecActual, vParkActual = \ self.endOrbit.get_state_vector( \ self.endOrbit.get_time(angleDiff)); prevErr = err err = norm(roVec) - norm(roVecActual) if abs(err)/abs(prevErr) > 0.9: roNext = (norm(roVecActual) + ro)/2 else: roNext = norm(roVecActual) # Get burn vector if self.cheapEndOrb: vPark = math.sqrt(mu/ro) * voVec/norm(voVec) else: Zo = self.endOrbit.prim.orb.get_basis_vectors()[2] vPark = np.cross(Zo,roVec) vPark = math.sqrt(mu/ro) * vPark/norm(vPark) if not self.ignoreInsertion: self.insertionDV = vPark - voVec; # adjust so that the mean anomaly at epoch is compatible with the # transfer encounter time if e < 1: # elliptical case eccAnomEncounter = 2*math.atan(math.tan(thetaEncounter/2) / \ math.sqrt((1+e) / (1-e))) dMeanAnom = eccAnomEncounter - e*math.sin(eccAnomEncounter) else: # hyperbolic case hypAnomEncounter = math.copysign( \ math.acosh((math.cos(thetaEncounter)+e) / \ (1 + e*math.cos(thetaEncounter))), \ thetaEncounter); dMeanAnom = e*math.sinh(hypAnomEncounter) - hypAnomEncounter # Add the correct insertion trajectory and duration to the transfer self.insertionDT = abs(dMeanAnom * math.sqrt((abs(a))**3/mu)) self.insertionTrajectory = \ Orbit.from_state_vector(roVec, voVec, \ self.get_arrival_burn_time(), \ self.endOrbit.prim); # Reset end parking orbit to match departure burn timing if self.cheapEndOrb: self.endOrbit = \ Orbit.from_state_vector(roVec,vPark, \ self.get_arrival_burn_time(), \ self.endOrbit.prim); def adjust_start_orbit_mo(self): """Modify starting orbit to have mean anomaly at epoch matching burn. """ burnTime = self.get_departure_burn_time() trueAnom = self.startOrbit.get_angle_in_orbital_plane( \ self.startOrbit.get_time(0), \ self.ejectionTrajectory.get_state_vector(burnTime)[0]); dMeanAnom = self.startOrbit.get_mean_anomaly( \ self.startOrbit.get_time(trueAnom)) - \ self.startOrbit.get_mean_anomaly(burnTime); self.startOrbit.mo = \ self.startOrbit.map_angle(self.startOrbit.mo + dMeanAnom); def adjust_end_orbit_mo(self): """Modify ending orbit to have mean anomaly at epoch matching burn. """ burnTime = self.get_arrival_burn_time() trueAnom = self.endOrbit.get_angle_in_orbital_plane( \ self.endOrbit.get_time(0), \ self.insertionTrajectory.get_state_vector(burnTime)[0]); dMeanAnom = self.endOrbit.get_mean_anomaly( \ self.endOrbit.get_time(trueAnom)) - \ self.endOrbit.get_mean_anomaly(burnTime); self.endOrbit.mo = \ self.endOrbit.map_angle(self.endOrbit.mo + dMeanAnom); def match_start_mean_anomaly(self, tol = 0.1, maxIt = 20): if self.ejectionTrajectory is None or self.cheapStartOrb: self.genetic_refine() return self.startOrbit = copy(self.originalStartOrbit) originalStartTime = self.startTime it = 0 err = tol+1 while abs(err) > tol: it = it+1 if it>maxIt: print('start match fail') self.startTime = originalStartTime self.genetic_refine() return if it > 1: # self.startPos = None # self.endPos = None self.startTime = self.startTime + dT gen = self.genetic_refine() if gen is None: break burnTime = self.get_departure_burn_time() orbPos = self.startOrbit.get_state_vector(burnTime)[0] burnPos = self.ejectionTrajectory.get_state_vector(burnTime)[0]; burnTrueAnom = self.startOrbit.get_angle_in_orbital_plane( \ self.startOrbit.get_time(0), burnPos); burnMeanAnom = self.startOrbit.get_mean_anomaly( \ self.startOrbit.get_time(burnTrueAnom)) orbMeanAnom = self.startOrbit.get_mean_anomaly(burnTime) dMeanAnom = burnMeanAnom - orbMeanAnom while abs(dMeanAnom) > math.pi: dMeanAnom = dMeanAnom + math.copysign(2*math.pi, -dMeanAnom) dT = self.startOrbit.get_period() * dMeanAnom / (2*math.pi) err = norm(burnPos-orbPos) return def match_end_mean_anomaly(self, tol = 0.1, maxIt = 20): if self.insertionTrajectory is None or self.cheapEndOrb: self.genetic_refine() return self.endOrbit = copy(self.originalEndOrbit) originalFlightTime = self.flightTime it = 0 err = tol+1 while abs(err) > tol: it = it+1 if it>maxIt: print('end match fail') self.flightTime = originalFlightTime self.genetic_refine() return if it > 1: self.flightTime = self.flightTime + dT gen = self.genetic_refine() if gen is None: break burnTime = self.get_arrival_burn_time() orbPos = self.endOrbit.get_state_vector(burnTime)[0] burnPos = self.insertionTrajectory.get_state_vector(burnTime)[0] burnTrueAnom = self.endOrbit.get_angle_in_orbital_plane( \ self.endOrbit.get_time(0), burnPos); burnMeanAnom = self.endOrbit.get_mean_anomaly( \ self.endOrbit.get_time(burnTrueAnom)) orbMeanAnom = self.endOrbit.get_mean_anomaly(burnTime) dMeanAnom = burnMeanAnom - orbMeanAnom while abs(dMeanAnom) > math.pi: dMeanAnom = dMeanAnom + math.copysign(2*math.pi, -dMeanAnom) dT = self.endOrbit.get_period() * dMeanAnom / (2*math.pi) err = norm(burnPos-orbPos) return def get_departure_burn_time(self): """Get the time since epoch of departure burn. Returns: the time in seconds at departure burn """ return self.startTime - self.ejectionDT def get_encounter_time(self): """Get the time of SOI encounter with the target body. Returns: the time in seconds at target SOI encounter """ return self.startTime + self.flightTime def get_arrival_burn_time(self): """Get the time since epoch of arrival burn. Returns: the time in seconds at arrival burn """ return self.startTime + self.flightTime + self.insertionDT def get_plane_change_time(self): """Get the time since epoch at the plane change maneuver. Returns: the time in seconds at plane change maneuver """ return self.startTime + self.planeChangeDT def get_total_delta_v(self): """Get total delta V required for all parts of transfer. Returns: total delta v across all maneuvers (m/s) """ return norm(self.ejectionDV) + norm(self.planeChangeDV) + \ norm(self.insertionDV) def genetic_refine(self, num = 10, tol = 1, maxGen = 40): """Genetic algorithm to find start and end positions for Transfer""" # TO DO: figure out better crossover/mutation methods, # convergence for high-inclination transfers if (self.ejectionTrajectory is None) or \ (self.insertionTrajectory is None): gen = 0 maxGen = maxGen * 10 err = self.get_error() while abs(err) > tol: gen = gen+1 if gen > maxGen: # self.startPos = None # self.endPos = None self.get_transfer_details() self.convergenceFail = True if not self.ejectionTrajectory is None: self.adjust_start_orbit_mo() if not self.insertionTrajectory is None: self.adjust_end_orbit_mo() return err = self.get_error() self.convergenceFail = False return gen startPositions, endPositions = self.get_first_generation(num) startPositions, endPositions, err = \ self.get_fitness(startPositions, endPositions); gen = 0 while np.amin(err) > tol: gen = gen+1 # if gen%100 == 0: # print('.') if gen > maxGen: self.startPos = None self.endPos = None self.get_transfer_details() self.convergenceFail = True if not self.ejectionTrajectory is None: self.adjust_start_orbit_mo() if not self.insertionTrajectory is None: self.adjust_end_orbit_mo() return startPositions, endPositions = self.get_next_generation( \ startPositions, endPositions, err); startPositions, endPositions, err = \ self.get_fitness(startPositions, endPositions); self.startPos = startPositions[0] self.endPos = endPositions[0] self.convergenceFail = False # if not self.ejectionTrajectory is None: # self.adjust_start_orbit_mo() # if not self.insertionTrajectory is None: # self.adjust_end_orbit_mo() return gen def get_first_generation(self, num = 10): """Gets the first generation of parents for genetic algorithm""" startPositions = [] endPositions = [] for x in range(math.ceil(num/2)): self.get_transfer_details() startPositions.append(self.startPos) endPositions.append(self.endPos) startMut, endMut = self.mutate(startPositions[-1],endPositions[-1]) startPositions.append(startMut) endPositions.append(endMut) return startPositions, endPositions def get_error(self, startPos = None, endPos = None): """Gets error to serve as fitness for genetic algorithm.""" if startPos is None: if self.startPos is None: self.startPos = self.startOrbit.get_state_vector( \ self.startTime)[0] startPos = self.startPos if endPos is None: if self.endPos is None: self.endPos = self.endOrbit.get_state_vector( \ self.startTime + self.flightTime)[0]; endPos = self.endPos self.startPos = startPos self.endPos = endPos self.get_transfer_details() err = norm(self.startPos - startPos) + norm(self.endPos - endPos) return err def get_fitness(self, startPositions, endPositions): """Sorts population by fitness and returns array of errors""" err = [] for x in range(len(startPositions)): err.append(self.get_error(startPositions[x], endPositions[x])) order = [i[0] for i in sorted(enumerate(err), key=lambda x:x[1])] startPositions = [startPositions[i] for i in order] endPositions = [endPositions[i] for i in order] err = [err[i] for i in order] return startPositions, endPositions, err def get_next_generation(self, startPositions, endPositions, err): """ Gets the next generation for the genetic algorithm""" err = np.array(err) fitness = 1/err; probs = [] for fit in fitness: probs.append((fit)/sum(fitness)) # probs = 1 - probs; probs = np.cumsum(probs) nextStartPositions = [startPositions[0], startPositions[1]] nextEndPositions = [endPositions[0], endPositions[1]] for x in range(len(startPositions)-2): val1 = np.random.rand() for y, prob in enumerate(probs): if val1 < prob: p1 = y break p1 = len(probs)-1 val2 = np.random.rand() for z, prob in enumerate(probs): if val2 < prob: p2 = z break p2 = len(probs)-1 sPos, ePos = self.crossover( [startPositions[p1], startPositions[p2]], [endPositions[p1], endPositions[p2]], [err[p1], err[p2]]); val3 = np.random.rand() if val3 < 0.25: sPos, ePos = self.mutate(sPos, ePos) nextStartPositions.append(sPos) nextEndPositions.append(ePos) return nextStartPositions, nextEndPositions def crossover(self, starts, ends, errs): """Combines positions with random weighted average.""" startBodyPos = self.startOrbit.prim.orb.get_state_vector( \ self.startTime)[0]; endBodyPos = self.endOrbit.prim.orb.get_state_vector( \ self.startTime + self.flightTime)[0]; startSOI = self.startOrbit.prim.soi endSOI = self.endOrbit.prim.soi minErrIndex =
np.argmin(errs)
numpy.argmin
""" Set of programs to read and interact with output from Bifrost """ # import builtin modules import os import functools import weakref from glob import glob import warnings import time import ast # import external public modules import numpy as np from scipy import interpolate from scipy.ndimage import map_coordinates # import internal modules from .load_quantities import * from .load_arithmetic_quantities import * from . import load_fromfile_quantities from .tools import * from . import document_vars from . import file_memory whsp = ' ' class BifrostData(object): """ Reads data from Bifrost simulations in native format. Parameters ---------- file_root - string Basename for all file names (without underscore!). Snapshot number will be added afterwards, and directory will be added before. snap - integer, optional Snapshot number. If None, will read first snapshot in sequence. meshfile - string, optional File name (including full path) for file with mesh. If set to None (default), a uniform mesh will be created. fdir - string, optional Directory where simulation files are. Must be a real path. verbose - bool, optional If True, will print out more diagnostic messages dtype - string, optional Data type for reading variables. Default is 32 bit float. big_endian - string, optional If True, will read variables in big endian. Default is False (reading in little endian). ghost_analyse - bool, optional If True, will read data from ghost zones when this is saved to files. Default is never to read ghost zones. cstagop - bool, optional Use true only if data is too big to load. Danger: it will do quantity operations without correcting the stagger mesh. lowbus - bool, optional Use True only if data is too big to load. It will do cstagger operations layer by layer using threads (slower). numThreads - integer, optional number of threads for certain operations that use parallelism. fast - whether to read data "fast", by only reading the requested data. implemented as a flag, with False as default, for backwards compatibility; some previous codes may have assumed non-requested data was read. To avoid issues, just ensure you use get_var() every time you want to have data, and don't assume things exist (e.g. self.bx) unless you do get_var for that thing (e.g. get_var('bx')). Examples -------- This reads snapshot 383 from simulation "cb24bih", whose file root is "cb24bih", and is found at directory /data/cb24bih: >>> a = BifrostData("cb24bih", snap=383, fdir="/data/cb24bih") Scalar variables do not need de-staggering and are available as memory map (only loaded to memory when needed), e.g.: >>> a.r.shape (504, 504, 496) Composite variables need to be obtained by get_var(): >>> vx = a.get_var("ux") """ snap = None def __init__(self, file_root, snap=None, meshfile=None, fdir='.', fast=False, verbose=True, dtype='f4', big_endian=False, cstagop=True, ghost_analyse=False, lowbus=False, numThreads=1, params_only=False, sel_units=None, use_relpath=False, stagger_kind = 'stagger', iix=None, iiy=None, iiz=None): """ Loads metadata and initialises variables. """ self.fdir = fdir if use_relpath else os.path.abspath(fdir) self.verbose = verbose self.cstagop = cstagop self.lowbus = lowbus self.numThreads = numThreads self.file_root = os.path.join(self.fdir, file_root) self.root_name = file_root self.meshfile = meshfile self.ghost_analyse = ghost_analyse self.stagger_kind = stagger_kind self.sel_units = sel_units self.numThreads = numThreads self.fast = fast self._fast_skip_flag = False if fast else None # None-> never skip setattr(self, document_vars.LOADING_LEVEL, -1) # tells how deep we are into loading a quantity now. # endianness and data type if big_endian: self.dtype = '>' + dtype else: self.dtype = '<' + dtype self.hion = False self.heion = False try: tmp = find_first_match("%s*idl" % file_root, fdir) except IndexError: try: tmp = find_first_match("%s*idl.scr" % file_root, fdir) except IndexError: try: tmp = find_first_match("mhd.in", fdir) except IndexError: raise ValueError(("(EEE) init: no .idl or mhd.in files " "found")) self.uni = Bifrost_units(filename=tmp, fdir=fdir) self.set_snap(snap, True, params_only=params_only) self.set_domain_iiaxes(iix=iix, iiy=iiy, iiz=iiz, internal=False) self.genvar() self.transunits = False self.cross_sect = cross_sect_for_obj(self) if 'tabinputfile' in self.params.keys(): tabfile = os.path.join(self.fdir, self.get_param('tabinputfile').strip()) if os.access(tabfile, os.R_OK): self.rhoee = Rhoeetab(tabfile=tabfile, fdir=fdir, radtab=True) document_vars.create_vardict(self) document_vars.set_vardocs(self) def _set_snapvars(self, firstime=False): """ Sets list of avaible variables """ self.snapvars = ['r', 'px', 'py', 'pz', 'e'] self.auxvars = self.get_param('aux', error_prop=True).split() if self.do_mhd: self.snapvars += ['bx', 'by', 'bz'] self.hionvars = [] self.heliumvars = [] if self.get_param('do_hion', default=0) > 0: self.hionvars = ['hionne', 'hiontg', 'n1', 'n2', 'n3', 'n4', 'n5', 'n6', 'nh2'] self.hion = True if self.get_param('do_helium', default=0) > 0: self.heliumvars = ['nhe1', 'nhe2', 'nhe3'] self.heion = True self.compvars = ['ux', 'uy', 'uz', 's', 'ee'] self.simple_vars = self.snapvars + self.auxvars + self.hionvars + \ self.heliumvars self.auxxyvars = [] # special case for the ixy1 variable, lives in a separate file if 'ixy1' in self.auxvars: self.auxvars.remove('ixy1') self.auxxyvars.append('ixy1') self.vars2d = [] # special case for 2D variables, stored in a separate file for var in self.auxvars: if any(i in var for i in ('xy', 'yz', 'xz')): self.auxvars.remove(var) self.vars2d.append(var) def set_snap(self, snap, firstime=False, params_only=False): """ Reads metadata and sets variable memmap links for a given snapshot number. Parameters ---------- snap - integer or array Number of simulation snapshot to load. """ if snap is None: try: tmp = sorted(glob("%s*idl" % self.file_root))[0] snap_string = tmp.split( self.file_root + '_')[-1].split(".idl")[0] if snap_string.isdigit(): snap = int(snap_string) else: tmp = glob("%s.idl" % self.file_root) snap = 0 except Exception: try: tmp = sorted(glob("%s*idl.scr" % self.file_root))[0] snap = -1 except IndexError: try: tmp = glob("%s.idl" % self.file_root) snap = 0 except IndexError: raise ValueError(("(EEE) set_snap: snapshot not defined " "and no .idl files found")) def snap_str_from_snap(snap): if snap == 0: return '' else: return '_%03i' % snap self.snap = snap if np.shape(self.snap) != (): self.snap_str = [] for num in snap: self.snap_str.append(snap_str_from_snap(num)) else: self.snap_str = snap_str_from_snap(snap) self.snapInd = 0 self._read_params(firstime=firstime) # Read mesh for all snaps because meshfiles could differ self.__read_mesh(self.meshfile, firstime=firstime) # variables: lists and initialisation self._set_snapvars(firstime=firstime) # Do not call if params_only requested if(not params_only): self._init_vars(firstime=firstime) def _read_params(self, firstime=False): """ Reads parameter file (.idl) """ if np.shape(self.snap) == (): snap = [self.snap] snap_str = [self.snap_str] else: snap = self.snap snap_str = self.snap_str filename = [] self.paramList = [] for i, num in enumerate(snap): if num < 0: filename.append(self.file_root + '.idl.scr') elif num == 0: filename.append(self.file_root + '.idl') else: filename.append(self.file_root + snap_str[i] + '.idl') for file in filename: self.paramList.append(read_idl_ascii(file,firstime=firstime, obj=self)) # assign some parameters as attributes for params in self.paramList: for p in ['x', 'y', 'z', 'b']: try: setattr(self, 'n' + p, params['m' + p]) except KeyError: raise KeyError(('read_params: could not find ' 'm%s in idl file!' % p)) for p in ['dx', 'dy', 'dz', 'do_mhd']: try: setattr(self, p, params[p]) except KeyError: raise KeyError(('read_params: could not find ' '%s in idl file!' % p)) try: if params['boundarychk'] == 1: self.nzb = self.nz + 2 * self.nb else: self.nzb = self.nz except KeyError: self.nzb = self.nz # check if units are there, if not use defaults and print warning unit_def = {'u_l': 1.e8, 'u_t': 1.e2, 'u_r': 1.e-7, 'u_b': 1.121e3, 'u_ee': 1.e12} for unit in unit_def: if unit not in params: default = unit_def[unit] if hasattr(self, 'uni'): default = getattr(self.uni, unit, default) if getattr(self, 'verbose', True): print("(WWW) read_params:"" %s not found, using " "default of %.3e" % (unit, default), 2*whsp, end="\r", flush=True) params[unit] = default self.params = {} for key in self.paramList[0]: self.params[key] = np.array( [self.paramList[i][key] for i in range(0, len(self.paramList)) \ if key in self.paramList[i].keys()]) # the if statement is required in case extra params in # self.ParmList[0] self.time = self.params['t'] if self.sel_units=='cgs': self.time *= self.uni.uni['t'] def get_param(self, param, default=None, warning=None, error_prop=None): ''' get param via self.params[param][self.snapInd]. if param not in self.params.keys(), then the following kwargs may play a role: default: None (default) or any value. return this value (eventually) instead. (check warning and error_prop first.) warning: None (default) or any Warning or string. if not None, do warnings.warn(warning). error_prop: None (default), True, or any Exception object. None --> ignore this kwarg. True --> raise the original KeyError caused by trying to get self.params[param]. else --> raise error_prop from None. ''' try: p = self.params[param] except KeyError as err_triggered: if (warning is not None) and (self.verbose): warnings.warn(warning) if error_prop is not None: if isinstance(error_prop, BaseException): raise error_prop from None # "from None" --> show just this error, not also err_triggered elif error_prop: raise err_triggered return default else: p = p[self.snapInd] return p def __read_mesh(self, meshfile, firstime=False): """ Reads mesh file """ if meshfile is None: meshfile = os.path.join( self.fdir, self.get_param('meshfile', error_prop=True).strip()) if os.path.isfile(meshfile): f = open(meshfile, 'r') for p in ['x', 'y', 'z']: dim = int(f.readline().strip('\n').strip()) assert dim == getattr(self, 'n' + p) # quantity setattr(self, p, np.array( [float(v) for v in f.readline().strip('\n').split()])) # quantity "down" setattr(self, p + 'dn', np.array( [float(v) for v in f.readline().strip('\n').split()])) # up derivative of quantity setattr(self, 'd%sid%sup' % (p, p), np.array( [float(v) for v in f.readline().strip('\n').split()])) # down derivative of quantity setattr(self, 'd%sid%sdn' % (p, p), np.array( [float(v) for v in f.readline().strip('\n').split()])) f.close() if self.ghost_analyse: # extend mesh to cover ghost zones self.z = np.concatenate((self.z[0] - np.linspace( self.dz * self.nb, self.dz, self.nb), self.z, self.z[-1] + np.linspace( self.dz, self.dz * self.nb, self.nb))) self.zdn = np.concatenate((self.zdn[0] - np.linspace( self.dz * self.nb, self.dz, self.nb), self.zdn, (self.zdn[-1] + np.linspace( self.dz, self.dz * self.nb, self.nb)))) self.dzidzup = np.concatenate(( np.repeat(self.dzidzup[0], self.nb), self.dzidzup, np.repeat(self.dzidzup[-1], self.nb))) self.dzidzdn = np.concatenate(( np.repeat(self.dzidzdn[0], self.nb), self.dzidzdn, np.repeat(self.dzidzdn[-1], self.nb))) self.nz = self.nzb else: # no mesh file if self.dx == 0.0: self.dx = 1.0 if self.dy == 0.0: self.dy = 1.0 if self.dz == 0.0: self.dz = 1.0 if self.verbose and firstime: warnings.warn(('Mesh file {mf} does not exist. Creating uniform grid ' 'with (dx,dy,dz)=({dx:.2e},{dy:.2e},{dz:.2e})').format( mf=repr(meshfile), dx=self.dx, dy=self.dy, dz=self.dz)) # x self.x = np.arange(self.nx) * self.dx self.xdn = self.x - 0.5 * self.dx self.dxidxup = np.zeros(self.nx) + 1. / self.dx self.dxidxdn = np.zeros(self.nx) + 1. / self.dx # y self.y = np.arange(self.ny) * self.dy self.ydn = self.y - 0.5 * self.dy self.dyidyup = np.zeros(self.ny) + 1. / self.dy self.dyidydn = np.zeros(self.ny) + 1. / self.dy # z if self.ghost_analyse: self.nz = self.nzb self.z = np.arange(self.nz) * self.dz self.zdn = self.z - 0.5 * self.dz self.dzidzup = np.zeros(self.nz) + 1. / self.dz self.dzidzdn = np.zeros(self.nz) + 1. / self.dz for x in ('x', 'y', 'z'): setattr(self, x, getattr(self, x)[getattr(self, 'ii'+x, slice(None))]) for x in ('x', 'y', 'z'): xcoords = getattr(self, x) if len(xcoords) > 1: dx1d = np.gradient(xcoords) else: dx1d = np.zeros(len(xcoords)) setattr(self, 'd'+x+'1d', dx1d) if self.sel_units=='cgs': self.x *= self.uni.uni['l'] self.y *= self.uni.uni['l'] self.z *= self.uni.uni['l'] self.zdn *= self.uni.uni['l'] self.dx *= self.uni.uni['l'] self.dy *= self.uni.uni['l'] self.dz *= self.uni.uni['l'] self.dx1d *= self.uni.uni['l'] self.dy1d *= self.uni.uni['l'] self.dz1d *= self.uni.uni['l'] self.dxidxup /= self.uni.uni['l'] self.dxidxdn /= self.uni.uni['l'] self.dyidyup /= self.uni.uni['l'] self.dyidydn /= self.uni.uni['l'] self.dzidzup /= self.uni.uni['l'] self.dzidzdn /= self.uni.uni['l'] self.transunits = False def _init_vars(self, firstime=False, fast=None, *args, **kwargs): """ Memmaps "simple" variables, and maps them to methods. Also, sets file name[s] from which to read a data fast: None, True, or False. whether to only read density (and not all the other variables). if None, use self.fast instead. """ fast = fast if fast is not None else self.fast if self._fast_skip_flag is True: return elif self._fast_skip_flag is False: self._fast_skip_flag = True # swaps flag to True, then runs the rest of the code (this time around). # else, fast_skip_flag is None, so the code should never be skipped. # as long as fast is False, fast_skip_flag should be None. self.variables = {} for var in self.simple_vars: try: self.variables[var] = self._get_simple_var( var, *args, **kwargs) setattr(self, var, self.variables[var]) except Exception as err: if self.verbose: if firstime: print('(WWW) init_vars: could not read ' 'variable {} due to {}'.format(var, err)) for var in self.auxxyvars: try: self.variables[var] = self._get_simple_var_xy(var, *args, **kwargs) setattr(self, var, self.variables[var]) except Exception as err: if self.verbose: if firstime: print('(WWW) init_vars: could not read ' 'variable {} due to {}'.format(var, err)) rdt = self.r.dtype if self.stagger_kind == 'cstagger': if (self.nz > 1): cstagger.init_stagger(self.nz, self.dx, self.dy, self.z.astype(rdt), self.zdn.astype(rdt), self.dzidzup.astype(rdt), self.dzidzdn.astype(rdt)) self.cstagger_exists = True # we can use cstagger methods! else: cstagger.init_stagger_mz1d(self.nz, self.dx, self.dy, self.z.astype(rdt)) self.cstagger_exists = True # we must avoid using cstagger methods. else: self.cstagger_exists = True def get_varTime(self, var, snap=None, iix=None, iiy=None, iiz=None, print_freq=None, *args__get_var, **kw__get_var): """ Reads a given variable as a function of time. Parameters ---------- var - string Name of the variable to read. Must be a valid Bifrost variable name, see Bifrost.get_var(). snap - array of integers Snapshot numbers to read. iix -- integer or array of integers, optional reads yz slices. iiy -- integer or array of integers, optional reads xz slices. iiz -- integer or array of integers, optional reads xy slices. print_freq - number, default 2 print progress update every print_freq seconds. Use print_freq < 0 to never print update. Use print_freq ==0 to print all updates. additional *args and **kwargs are passed to get_var. """ # set print_freq if print_freq is None: if not self.verbose: print_freq = -1 # never print. print_freq = getattr(self, 'print_freq', 2) # default 2 else: setattr(self, 'print_freq', print_freq) # set snap if snap is None: snap = kw__get_var.pop('snaps', None) # look for 'snaps' kwarg if snap is None: snap = self.snap snap = np.array(snap, copy=False) if len(snap.shape)==0: raise ValueError('Expected snap to be list (in get_varTime) but got snap={}'.format(snap)) if not np.array_equal(snap, self.snap): self.set_snap(snap) self.variables={} # set iix,iiy,iiz; figure out dimensions of return array self.set_domain_iiaxes(iix=iix, iiy=iiy, iiz=iiz, internal=False) snapLen = np.size(self.snap) value =
np.empty([self.xLength, self.yLength, self.zLength, snapLen])
numpy.empty
#@title Optim_viz Library ############ ### Adaptado de wassname/viz_torch_optim para compatibilidad con Pytorch 1.1 y modularización. ############ import torch import numpy as np from torch import optim from torch.optim import Optimizer from torch.optim import lr_scheduler import numpy import matplotlib.pyplot as plt from tqdm import tqdm_notebook as tqdm from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import LogNorm from matplotlib import animation from IPython.display import HTML from collections import defaultdict from itertools import zip_longest from functools import partial from matplotlib import rcParams import datetime torch.set_default_tensor_type('torch.DoubleTensor') dtype=np.float64 rcParams['figure.figsize']=(10,10) class Problem(object): def __init__(self, f, df, minima, x0, bounds=[[-5,5],[-5,5]], lr=1e-3, steps=3000, noise=dict(m=0,c=0)): """ Problem setup Params: - f: function [x1,x2] => z - df: derivative function ([x1,x2]=>[dx1,dx2]) - minima: where the function has a minima - self: bounds - x0: suggested start - lr: suggested learning rate - steps: suggested steps """ def f_noise(t): """Add some noise""" t = to_tensor(t) c = torch.rand(t[0].size()) * noise['c'] m = 1 + torch.rand(t[0].size()) * noise['m'] z = f(t) return m * z + c self.f = f_noise self._f = f self.df = df self.x0 = x0 self.bounds = bounds self.minima = minima self.lr = lr self.steps = steps self.xmin = bounds[0][0] self.xmax = bounds[0][1] self.ymin = bounds[1][0] self.ymax = bounds[1][1] """Valley""" def beales(tensor): """Beales function, like a valley""" x, y = tensor x = to_tensor(x) y = to_tensor(y) # + noise(x,y) return (1.5 - x + x * y)**2 + (2.25 - x + x * y**2)**2 + (2.625 - x + x * y**3)**2 def dbeales(tensor): x, y = tensor x = to_tensor(x) y = to_tensor(y) dx = 2 * (x * y**3 - x + 2.625) * (y**3 - 1) + 2 * (x * y**2 - x + 2.25) * (y**2 - 1) + 2 * (x * y - x + 1.5) * (y - 1) dy = 6 * (x * y**3 - x + 2.625) * x * y**2 + 4 * \ (x * y**2 - x + 2.25) * x * y + 2 * (x * y - x + 1.5) * x return torch.stack([dx, dy], 1)[0] def to_tensor(x): # TODO: I'm sure there's a proper way to do this if isinstance(x, np.ndarray): return torch.Tensor(x.astype(dtype)) if isinstance(x, list): return torch.Tensor(x) elif isinstance(x, (float, int, numpy.generic)): return torch.Tensor([float(x)]) else: return x def test_f(f, df, constructor, steps=150, x0=[-4,-1], solution=[-2,0], scheduler=None, exact=False): """ modified from https://github.com/pytorch/pytorch/blob/master/test/test_optim.py params: scheduler: e.g. scheduler = torch.optim.CyclicLR(optimizer) """ state = {} # start params = torch.tensor(x0, requires_grad=True) optimizer = constructor([params]) initial_lr = optimizer.param_groups[0]['lr'] if scheduler: _scheduler = scheduler(optimizer, initial_lr) solution = torch.Tensor(solution) initial_dist = params.data.dist(solution) def eval(): optimizer.zero_grad() loss = f(params) loss.backward() return loss data=[] dist=[] lrs=[] for i in range(steps): loss = optimizer.step(eval) if scheduler: _scheduler.batch_step() # record dist.append(loss.squeeze().data.numpy()) # loss data.append(params.data.numpy().copy()) lrs.append(optimizer.param_groups[0]['lr']) return np.array(data), np.array(dist), lrs class CyclicLR(object): """ from https://github.com/thomasjpfan/pytorch/blob/401ec389db2c9d2978917a6e4d1101b20340d7e7/torch/optim/lr_scheduler.py not merged into pytorch yet https://github.com/pytorch/pytorch/pull/2016 Sets the learning rate of each parameter group according to cyclical learning rate policy (CLR). The policy cycles the learning rate between two boundaries with a constant frequency, as detailed in the paper `Cyclical Learning Rates for Training Neural Networks`_. The distance between the two boundaries can be scaled on a per-iteration or per-cycle basis. Cyclical learning rate policy changes the learning rate after every batch. `batch_step` should be called after a batch has been used for training. To resume training, save `last_batch_iteration` and use it to instantiate `CycleLR`. This class has three built-in policies, as put forth in the paper: "triangular": A basic triangular cycle w/ no amplitude scaling. "triangular2": A basic triangular cycle that scales initial amplitude by half each cycle. "exp_range": A cycle that scales initial amplitude by gamma**(cycle iterations) at each cycle iteration. This implementation was adapted from the github repo: `bckenstler/CLR`_ Args: optimizer (Optimizer): Wrapped optimizer. base_lr (float or list): Initial learning rate which is the lower boundary in the cycle for eachparam groups. Default: 0.001 max_lr (float or list): Upper boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (max_lr - base_lr). The lr at any cycle is the sum of base_lr and some scaling of the amplitude; therefore max_lr may not actually be reached depending on scaling function. Default: 0.006 step_size (int): Number of training iterations per half cycle. Authors suggest setting step_size 2-8 x training iterations in epoch. Default: 2000 mode (str): One of {triangular, triangular2, exp_range}. Values correspond to policies detailed above. If scale_fn is not None, this argument is ignored. Default: 'triangular' gamma (float): Constant in 'exp_range' scaling function: gamma**(cycle iterations) Default: 1.0 scale_fn (function): Custom scaling policy defined by a single argument lambda function, where 0 <= scale_fn(x) <= 1 for all x >= 0. mode paramater is ignored Default: None scale_mode (str): {'cycle', 'iterations'}. Defines whether scale_fn is evaluated on cycle number or cycle iterations (training iterations since start of cycle). Default: 'cycle' last_batch_iteration (int): The index of the last batch. Default: -1 Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = torch.optim.CyclicLR(optimizer) >>> data_loader = torch.utils.data.DataLoader(...) >>> for epoch in range(10): >>> for batch in data_loader: >>> scheduler.batch_step() >>> train_batch(...) .. _Cyclical Learning Rates for Training Neural Networks: https://arxiv.org/abs/1506.01186 .. _bckenstler/CLR: https://github.com/bckenstler/CLR """ def __init__(self, optimizer, base_lr=1e-3, max_lr=6e-3, step_size=2000, mode='triangular', gamma=1., scale_fn=None, scale_mode='cycle', last_batch_iteration=-1): if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an Optimizer'.format( type(optimizer).__name__)) self.optimizer = optimizer if isinstance(base_lr, list) or isinstance(base_lr, tuple): if len(base_lr) != len(optimizer.param_groups): raise ValueError("expected {} base_lr, got {}".format( len(optimizer.param_groups), len(base_lr))) self.base_lrs = list(base_lr) else: self.base_lrs = [base_lr] * len(optimizer.param_groups) if isinstance(max_lr, list) or isinstance(max_lr, tuple): if len(max_lr) != len(optimizer.param_groups): raise ValueError("expected {} max_lr, got {}".format( len(optimizer.param_groups), len(max_lr))) self.max_lrs = list(max_lr) else: self.max_lrs = [max_lr] * len(optimizer.param_groups) self.step_size = step_size if mode not in ['triangular', 'triangular2', 'exp_range'] \ and scale_fn is None: raise ValueError('mode is invalid and scale_fn is None') self.mode = mode self.gamma = gamma if scale_fn is None: if self.mode == 'triangular': self.scale_fn = self._triangular_scale_fn self.scale_mode = 'cycle' elif self.mode == 'triangular2': self.scale_fn = self._triangular2_scale_fn self.scale_mode = 'cycle' elif self.mode == 'exp_range': self.scale_fn = self._exp_range_scale_fn self.scale_mode = 'iterations' else: self.scale_fn = scale_fn self.scale_mode = scale_mode self.batch_step(last_batch_iteration + 1) self.last_batch_iteration = last_batch_iteration def batch_step(self, batch_iteration=None): if batch_iteration is None: batch_iteration = self.last_batch_iteration + 1 self.last_batch_iteration = batch_iteration for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr def _triangular_scale_fn(self, x): return 1. def _triangular2_scale_fn(self, x): return 1 / (2. ** (x - 1)) def _exp_range_scale_fn(self, x): return self.gamma**(x) def get_lr(self): step_size = float(self.step_size) cycle = np.floor(1 + self.last_batch_iteration / (2 * step_size)) x = np.abs(self.last_batch_iteration / step_size - 2 * cycle + 1) lrs = [] param_lrs = zip(self.optimizer.param_groups, self.base_lrs, self.max_lrs) for param_group, base_lr, max_lr in param_lrs: base_height = (max_lr - base_lr) * np.maximum(0, (1 - x)) if self.scale_mode == 'cycle': lr = base_lr + base_height * self.scale_fn(cycle) else: lr = base_lr + base_height * self.scale_fn(self.last_batch_iteration) lrs.append(lr) return lrs def build_beales_problem(): return Problem( f=beales, df=dbeales, minima=np.array([3., 0.5]), bounds=[[-4.5,4.5],[-4.5,4.5]], x0=[2,1.7], steps=3400, lr=3e-3, noise=dict(m=0.13, c=7), ) def build_optimizers(lr): return dict( # Good high dimensional optimizers sometimes do poorly in low D spaces, so we will lower the LR on simple optimisers # need smaller lr's sometimes SGD= lambda params: optim.SGD(params, lr=lr/80), momentum = lambda params: optim.SGD(params, lr=lr/80, momentum=0.9, nesterov=False, dampening=0), momentum_dampen = lambda params: optim.SGD(params, lr=lr/80, momentum=0.9, nesterov=False, dampening=0.3), nesterov = lambda params: optim.SGD(params, lr=lr/80, momentum=0.9, nesterov=True, dampening=0), nesterov_decay = lambda params: optim.SGD(params, lr=lr/80, momentum=0.9, nesterov=True, weight_decay=1e-4, dampening=0), # need larger lr's sometimes Adadelta = lambda params: optim.Adadelta(params), Adagrad = lambda params: optim.Adagrad(params, lr=lr*20), # Adamax = lambda params: optim.Adamax(params, lr=lr*20), RMSprop = lambda params: optim.RMSprop(params, lr=lr*10), Adam = lambda params: optim.Adam(params, lr=lr*10), # Adam_decay = lambda params: optim.Adam(params, lr=lr*10, weight_decay=1e-9), # need to read about these, might not be comparable # ASGD = lambda params: optim.ASGD(params, lr=lr), # Rprop = lambda params: optim.Rprop(params, lr=lr), # LBFGS = lambda params: optim.LBFGS(params), ) def build_params(problem): xmin = problem.xmin xmax = problem.xmax ymin = problem.ymin ymax = problem.ymax ystep = xstep= (xmax-xmin)/200.0 zeps = 1.1e-0 # we don't want the minima to be actual zero or we wont get any lines shown on a log scale z_min = problem.f(problem.minima).data.numpy().reshape(1) minima_ = problem.minima.reshape(-1, 1) _x0 =
np.array([problem.x0])
numpy.array
#!/usr/bin/env python3 ''' Script to precompute image features using a Pytorch ResNet CNN, using 36 discretized views at each viewpoint in 30 degree increments, and the provided camera WIDTH, HEIGHT and VFOV parameters. ''' import os import sys import MatterSim import argparse import numpy as np import json import math import h5py import copy from PIL import Image import time from progressbar import ProgressBar import torch import torch.nn.functional as F import torch.multiprocessing as mp from utils import load_viewpoint_ids import timm from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform TSV_FIELDNAMES = ['scanId', 'viewpointId', 'image_w', 'image_h', 'vfov', 'features', 'logits'] VIEWPOINT_SIZE = 36 # Number of discretized views from one viewpoint FEATURE_SIZE = 768 LOGIT_SIZE = 1000 WIDTH = 640 HEIGHT = 480 VFOV = 60 def build_feature_extractor(model_name, checkpoint_file=None): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = timm.create_model(model_name, pretrained=(checkpoint_file is None)).to(device) if checkpoint_file is not None: state_dict = torch.load(checkpoint_file, map_location=lambda storage, loc: storage)['state_dict'] model.load_state_dict(state_dict) model.eval() config = resolve_data_config({}, model=model) img_transforms = create_transform(**config) return model, img_transforms, device def build_simulator(connectivity_dir, scan_dir): sim = MatterSim.Simulator() sim.setNavGraphPath(connectivity_dir) sim.setDatasetPath(scan_dir) sim.setCameraResolution(WIDTH, HEIGHT) sim.setCameraVFOV(math.radians(VFOV)) sim.setDiscretizedViewingAngles(True) sim.setDepthEnabled(False) sim.setPreloadingEnabled(False) sim.setBatchSize(1) sim.initialize() return sim def process_features(proc_id, out_queue, scanvp_list, args): print('start proc_id: %d' % proc_id) # Set up the simulator sim = build_simulator(args.connectivity_dir, args.scan_dir) # Set up PyTorch CNN model torch.set_grad_enabled(False) model, img_transforms, device = build_feature_extractor(args.model_name, args.checkpoint_file) for scan_id, viewpoint_id in scanvp_list: # Loop all discretized views from this location images = [] for ix in range(VIEWPOINT_SIZE): if ix == 0: sim.newEpisode([scan_id], [viewpoint_id], [0], [math.radians(-30)]) elif ix % 12 == 0: sim.makeAction([0], [1.0], [1.0]) else: sim.makeAction([0], [1.0], [0]) state = sim.getState()[0] assert state.viewIndex == ix image = np.array(state.rgb, copy=True) # in BGR channel image = Image.fromarray(image[:, :, ::-1]) #cv2.cvtColor(image, cv2.COLOR_BGR2RGB) images.append(image) images = torch.stack([img_transforms(image).to(device) for image in images], 0) fts, logits = [], [] for k in range(0, len(images), args.batch_size): b_fts = model.forward_features(images[k: k+args.batch_size]) b_logits = model.head(b_fts) b_fts = b_fts.data.cpu().numpy() b_logits = b_logits.data.cpu().numpy() fts.append(b_fts) logits.append(b_logits) fts = np.concatenate(fts, 0) logits = np.concatenate(logits, 0) out_queue.put((scan_id, viewpoint_id, fts, logits)) out_queue.put(None) def build_feature_file(args): os.makedirs(os.path.dirname(args.output_file), exist_ok=True) scanvp_list = load_viewpoint_ids(args.connectivity_dir) num_workers = min(args.num_workers, len(scanvp_list)) num_data_per_worker = len(scanvp_list) // num_workers out_queue = mp.Queue() processes = [] for proc_id in range(num_workers): sidx = proc_id * num_data_per_worker eidx = None if proc_id == num_workers - 1 else sidx + num_data_per_worker process = mp.Process( target=process_features, args=(proc_id, out_queue, scanvp_list[sidx: eidx], args) ) process.start() processes.append(process) num_finished_workers = 0 num_finished_vps = 0 progress_bar = ProgressBar(max_value=len(scanvp_list)) progress_bar.start() with h5py.File(args.output_file, 'w') as outf: while num_finished_workers < num_workers: res = out_queue.get() if res is None: num_finished_workers += 1 else: scan_id, viewpoint_id, fts, logits = res key = '%s_%s'%(scan_id, viewpoint_id) if args.out_image_logits: data =
np.hstack([fts, logits])
numpy.hstack
from problems.problem import Problem import numpy as np from scipy.spatial.distance import pdist, squareform import torch from scipy.stats import iqr #np.random.seed(0) class FlockingProblem(Problem): def __init__(self, config): """ Initialize the flocking problem Args: config (): dict containing experiment parameters """ super(FlockingProblem, self).__init__(config) self.nx_system = 4 self.n_nodes = int(config['network_size']) self.comm_radius = float(config['comm_radius']) self.dt = float(config['system_dt']) self.v_max = float(config['max_vel_init']) self.v_bias = self.v_max # 0.5 * self.v_max self.r_max = float(config['max_rad_init']) self.std_dev = float(config['std_dev']) * self.dt self.controller_gain = 1.0 self.pooling = [] if config.getboolean('sum_pooling'): self.pooling.append(np.nansum) if config.getboolean('min_pooling'): self.pooling.append(np.nanmin) if config.getboolean('max_pooling'): self.pooling.append(np.nanmax) self.n_pools = len(self.pooling) self.centralized_controller = config.getboolean('centralized_controller') # number of features and outputs self.n_features = int(config['N_features']) self.nx = int(self.n_features / self.n_pools / self.filter_len) self.nu = int(config['N_outputs']) # outputs self.n_data_points = self.episode_len * self.n_nodes * self.n_episodes def potential_grad(self, pos_diff, r2): """ Computes the gradient of the potential function for flocking proposed in Turner 2003. Args: pos_diff (): difference in a component of position among all agents r2 (): distance squared between agents Returns: corresponding component of the gradient of the potential """ # r2 = r2 + 1e-4 * np.ones((self.n_agents, self.n_agents)) # TODO - is this necessary? grad = -2.0 * np.divide(pos_diff, np.multiply(r2, r2)) + 2 * np.divide(pos_diff, r2) grad = grad * 0.1 grad[r2 > self.comm_radius] = 0 return grad def initialize(self, seed=0): """ Initialize the state of the flock. Agents positions are initialized according to a uniform distirbution on a disk around (0,0). Velocities are chosen according to a uniform distribution in a range. Also enforces constraints on the initial degree of the network and that agents are not initially too close. Returns: Initial state of the flock """ np.random.seed(seed) x = np.zeros((self.n_nodes, self.nx_system)) degree = 0 min_dist = 0 while degree < 2 or min_dist < 0.1: #< 0.25: # 0.25: #0.5: #min_dist < 0.25: # randomly initialize the state of all agents length = np.sqrt(np.random.uniform(0, self.r_max, size=(self.n_nodes,))) angle = np.pi * np.random.uniform(0, 2, size=(self.n_nodes,)) x[:, 0] = length * np.cos(angle) x[:, 1] = length * np.sin(angle) bias = np.random.uniform(low=-self.v_bias, high=self.v_bias, size=(2,)) x[:, 2] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_nodes,)) + bias[0] x[:, 3] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_nodes,)) + bias[1] # compute distances between agents x_t_loc = x[:, 0:2] # x,y location determines connectivity a_net = squareform(pdist(x_t_loc.reshape((self.n_nodes, 2)), 'euclidean')) # no self loops a_net = a_net + 2 * self.comm_radius * np.eye(self.n_nodes) # compute minimum distance between agents and degree of network min_dist = np.min(np.min(a_net)) a_net = a_net < self.comm_radius degree = np.min(np.sum(a_net.astype(int), axis=1)) return x def controller(self, x): """ The controller for flocking from Turner 2003. Args: x (): the current state centralized (): a boolean flag indicating if each agent should have access to all others' state info (a centralized controller) Returns: the optimal action """ centralized = self.centralized_controller s_diff = x.reshape((self.n_nodes, 1, self.nx_system)) - x.reshape((1, self.n_nodes, self.nx_system)) r2 = np.multiply(s_diff[:, :, 0], s_diff[:, :, 0]) + np.multiply(s_diff[:, :, 1], s_diff[:, :, 1]) + np.eye( self.n_nodes) p = np.dstack((s_diff, self.potential_grad(s_diff[:, :, 0], r2), self.potential_grad(s_diff[:, :, 1], r2))) if not centralized: p = self.get_comms(p, self.get_connectivity(x)) p_sum = np.nansum(p, axis=1).reshape((self.n_nodes, self.nx_system + 2)) return np.hstack(((- p_sum[:, 4] - p_sum[:, 2]).reshape((-1, 1)), (- p_sum[:, 3] - p_sum[:, 5]).reshape(-1, 1))) def forward(self, x, u): """ The forward model for the system. Given: Args: x (): current state u (): control action Returns the next state for the flock """ x_ = np.zeros((self.n_nodes, self.nx_system)) # x position x_[:, 0] = x[:, 0] + x[:, 2] * self.dt # y position x_[:, 1] = x[:, 1] + x[:, 3] * self.dt # x velocity x_[:, 2] = x[:, 2] + 0.1 * self.controller_gain * u[:, 0] * self.dt + np.random.normal(0, self.std_dev, (self.n_nodes,)) # + self.dt * np.random.normal(0, self.std_dev, (self.n_agents,)) # y velocity x_[:, 3] = x[:, 3] + 0.1 * self.controller_gain * u[:, 1] * self.dt + np.random.normal(0, self.std_dev, (self.n_nodes,)) # + self.dt * np.random.normal(0, self.std_dev,(self.n_agents,)) return x_ def get_connectivity(self, x): """ Get the adjacency matrix of the network based on agent locations by computing pairwise distances using pdist Args: x (): current states of all agents Returns: adjacency matrix of network """ x_t_loc = x[:, 0:2] # x,y location determines connectivity a_net = squareform(pdist(x_t_loc.reshape((self.n_nodes, 2)), 'euclidean')) a_net = (a_net < self.comm_radius).astype(float) np.fill_diagonal(a_net, 0) return a_net def get_knn_connectivity(self, x, K=10): """ Get the adjacency matrix of the network based on agent locations by computing pairwise distances using pdist Args: x (): current states of all agents K (): number of neighbors Returns: adjacency matrix of network """ x_t_loc = x[:, 0:2] # x,y location determines connectivity a_net = squareform(pdist(x_t_loc.reshape((self.n_nodes, 2)), 'euclidean')) for r_idx in range(self.n_nodes): thredshold = sorted(a_net[r_idx, :])[K] for c_idx in range(self.n_nodes): if a_net[r_idx, c_idx] < thredshold: a_net[r_idx, c_idx] = 1 else: a_net[r_idx, c_idx] = 0 a_net = np.transpose(a_net) + a_net a_net = np.sign(a_net).astype(float) np.fill_diagonal(a_net, 0) return a_net def get_x_features(self, xt): """ Compute the non-linear features necessary for implementing Turner 2003 Args: xt (): current state of all agents Returns: matrix of features for each agent """ diff = xt.reshape((self.n_nodes, 1, self.nx_system)) - xt.reshape((1, self.n_nodes, self.nx_system)) r2 = np.multiply(diff[:, :, 0], diff[:, :, 0]) + np.multiply(diff[:, :, 1], diff[:, :, 1]) + np.eye( self.n_nodes) return np.dstack((diff[:, :, 2], np.divide(diff[:, :, 0], np.multiply(r2, r2)), np.divide(diff[:, :, 0], r2), diff[:, :, 3], np.divide(diff[:, :, 1], np.multiply(r2, r2)), np.divide(diff[:, :, 1], r2))) def get_features(self, agg): """ Matrix of Args: agg (): the aggregated matrix from the last time step Returns: matrix of aggregated features from all nodes at current time """ return np.tile(agg[:, :-self.nx].reshape((self.n_nodes, 1, -1)), (1, self.n_nodes, 1)) # TODO check indexing def get_comms(self, mat, a_net): """ Enforces that agents who are not connected in the network cannot observe each others' states Args: mat (): matrix of state information for the whole graph a_net (): adjacency matrix for flock network (weighted networks unsupported for now) Returns: mat (): sparse matrix with NaN values where agents can't communicate """ a_net[a_net == 0] = np.nan return mat * a_net.reshape(self.n_nodes, self.n_nodes, 1) def get_pool(self, mat, func): """ Perform pooling operations on the matrix of state information. The replacement of values with NaNs for agents who can't communicate must already be enforced. Args: mat (): matrix of state information func (): pooling function (np.nansum(), np.nanmin() or np.nanmax()). Must ignore NaNs. Returns: information pooled from neighbors for each agent """ return func(mat, axis=1).reshape((self.n_nodes, self.n_features)) # TODO check this axis = 1 def aggregate(self, x_agg, xt): """ Perform aggegration operation for all possible pooling operations using helper functions get_pool and get_comms Args: x_agg (): Last time step's aggregated info xt (): Current state of all agents Returns: Aggregated state values """ x_features = self.get_x_features(xt) a_net = self.get_connectivity(xt) for k in range(0, self.n_pools): comm_data = self.get_comms(np.dstack((x_features, self.get_features(x_agg[:, :, k]))), a_net) x_agg[:, :, k] = self.get_pool(comm_data, self.pooling[k]) return x_agg def get_aggregated_trajectory(self): """ Returns: a data set containing the aggregated state vectors and optimal output actions """ # TODO cannot have a separate NN for each node z = np.zeros((self.episode_len * self.n_nodes * self.n_episodes, self.n_features)) u = np.zeros((self.episode_len * self.n_nodes * self.n_episodes, self.nu)) x_agg = np.zeros((self.n_nodes, self.nx * self.filter_len, self.n_pools)) ind = 0 for i in range(0, self.n_episodes): x_agg.fill(0) xt = self.initialize() for t in range(0, self.episode_len): x_agg = self.aggregate(x_agg, xt) ut = self.controller(xt) xt = self.forward(xt, ut) # train for all nodes' data z[ind:(ind + self.n_nodes), :] = x_agg.reshape((self.n_nodes, self.n_features)) u[ind:(ind + self.n_nodes), :] = ut ind = ind + self.n_nodes # shuffle data across trajectories, time instances, and node locations s = np.arange(z.shape[0]) np.random.shuffle(s) z = z[s, :] u = u[s] return z, u def instant_cost(self, x, u): # sum of differences in angles """ Compute the instantantaneous cost of the state of the flock Args: x (): current state of the flock u (): current action Returns: a float value for the instantaneous cost """ cost_x = np.sum(np.var(x[:, 2:4], axis=0)) # cost_u = 0.001 * np.sum(np.sum(np.multiply(u, u))) # print(str(cost_x) + " " + str(cost_u)) return cost_x # + cost_u # variance of the velocities # return np.sum(np.sum(np.abs(self.controller(x, centralized=True)))) # sum of optimal actions among all agents # + np.sum(pdist((x[:, 0:2]).reshape(-1, 1))) # distance among all agents # def test_model(self, model, device): # """ # Test the trained model on one system trajectory # Args: # model (): PyTorch model trained to mimic the optimal action # device (): PyTorch device (GPU or CPU) on which the model runs # # Returns trajectories and costs # """ # # initialize trajectory # xt1 = xt2 = self.initialize() # x1 = np.zeros((self.n_nodes * self.nx_system, self.episode_len)) # x2 = np.zeros((self.n_nodes * self.nx_system, self.episode_len)) # x_agg1 = np.zeros((self.n_nodes, self.nx * self.filter_len, self.n_pools)) # cost_nn = cost_u = 0.0 # # # step through the trajectory # for t in range(0, self.episode_len - 1): # x1[:, t] = xt1.flatten() # x2[:, t] = xt2.flatten() # # # aggregate and compute learned control action # x_agg1 = self.aggregate(x_agg1, xt1) # x_agg1_t = x_agg1.reshape((self.n_nodes, self.n_features)) # x_agg1_t = torch.from_numpy(x_agg1_t).to(device=device) # ut1 = model(x_agg1_t).data.cpu().numpy().reshape(self.n_nodes, self.nu) # # # optimal controller # # ut2 = self.controller(xt2, self.centralized_controller) # ut2 = self.controller(xt2) # TODO # # # sum costs # cost_nn = cost_nn + self.instant_cost(xt1, ut1) * self.dt # cost_u = cost_u + self.instant_cost(xt2, ut2) * self.dt # # xt1 = self.forward(xt1, ut1) # xt2 = self.forward(xt2, ut2) # # return x1, x2, cost_nn, cost_u def get_cost_expert(self, seed_state=None): """ Compute the median cost over num_test_traj trajectories of the expert controller Args: seed (): seed_state for random number generator for reproducibility of results centralized_controller (): boolean indicating whether each agent has access to all others' data Returns: median cost of a trajectory """ if seed_state is not None: np.random.set_state(seed_state) costs = np.zeros((self.num_test_traj,)) for n in range(0, self.num_test_traj): xt = self.initialize() for t in range(0, self.episode_len - 1): ut = self.controller(xt) costs[n] = costs[n] + self.instant_cost(xt, ut) * self.dt xt = self.forward(xt, ut) return costs # np.median(costs), iqr(costs)/2.0 def get_cost_model(self, model, device, seed_state=None): """ Compute the median cost over num_test_traj trajectories of the trained model controller Args: model (): PyTorch model trained to mimic the optimal action device (): PyTorch device (GPU or CPU) on which the model runs seed_state (): seed_state for random number generator for reproducibility of results Returns: median cost of a trajectory """ if seed_state is not None: np.random.set_state(seed_state) costs = np.zeros((self.num_test_traj,)) x_agg_t =
np.zeros((self.n_nodes, self.nx * self.filter_len, self.n_pools))
numpy.zeros
import matplotlib.pyplot as plt import numpy as np from PIL import Image R = 0 G = 1 B = 2 def load_image(img_path, color_options=0): im = Image.open(img_path) if color_options == 0: im = im.convert("L") im = np.asarray(im) return im def load_img(img_path): return load_image(img_path, 0) def load_color_img(img_path): return load_image(img_path, 1) def show_image(title, im, color_options): plt.figure() plt.title(title) plt.tick_params("x", labeltop=True, labelbottom=False) if color_options == 0: plt.imshow(im, cmap="gray") else: plt.imshow(im.astype(np.uint8)) def show_img(title, im): show_image(title, im, 0) def show_color_img(title, im): show_image(title, im, 1) def save_img(filename, im): Image.fromarray(
np.uint8(im)
numpy.uint8
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num =
N.array([0,0,0])
numpy.array
#!/usr/bin/env python # # Copyright 2016 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # $Author: frederic $ # $Date: 2016/07/12 13:50:29 $ # $Id: tide_funcs.py,v 1.4 2016/07/12 13:50:29 frederic Exp $ # import time import numpy as np import scipy as sp from scipy import fftpack, signal import pylab as pl import sys import bisect import rapidtide.util as tide_util import rapidtide.filter as tide_filt import rapidtide.fit as tide_fit # ---------------------------------------- Global constants ------------------------------------------- donotbeaggressive = True # ----------------------------------------- Conditional imports --------------------------------------- try: from numba import jit numbaexists = True except ImportError: numbaexists = False donotusenumba = False try: import pyfftw pyfftwexists = True fftpack = pyfftw.interfaces.scipy_fftpack pyfftw.interfaces.cache.enable() except ImportError: pyfftwexists = False def conditionaljit(): def resdec(f): if (not numbaexists) or donotusenumba: return f return jit(f) return resdec def conditionaljit2(): def resdec(f): if (not numbaexists) or donotusenumba or donotbeaggressive: return f return jit(f) return resdec def disablenumba(): global donotusenumba donotusenumba = True # --------------------------- Resampling and time shifting functions ------------------------------------------- """ class congrid: def __init__(self, timeaxis, width, method='gauss', circular=True, upsampleratio=100, doplot=False, debug=False): self.upsampleratio = upsampleratio self.initstep = timeaxis[1] - timeaxis[0] self.initstart = timeaxis[0] self.initend = timeaxis[-1] self.hiresstep = self.initstep / np.float64(self.upsampleratio) if method == 'gauss': fullwidth = 2.355 * width fullwidthpts = int(np.round(fullwidth / self.hiresstep, 0)) fullwidthpts += ((fullwidthpts % 2) - 1) self.hires_x = np.linspace(-fullwidth / 2.0, fullwidth / 2.0, numpts = fullwidthpts, endpoint=True) if method == 'gauss': self.hires_y = tide_fit.gauss_eval(self.hires_x, np.array([1.0, 0.0, width]) if debug: print(self.hires_x) if doplot: fig = pl.figure() ax = fig.add_subplot(111) ax.set_title('congrid convolution function') pl.plot(self.hires_x, self.hires_y) pl.legend(('input', 'hires')) pl.show() def gridded(xvals, yvals): if len(xvals) != len(yvals): print('x and y vectors do not match - aborting') return None for i in range(len(xvals)): outindices = ((newtimeaxis - self.hiresstart) // self.hiresstep).astype(int) """ congridyvals = {} congridyvals["kernel"] = "kaiser" congridyvals["width"] = 3.0 def congrid(xaxis, loc, val, width, kernel="kaiser", cyclic=True, debug=False): """ Perform a convolution gridding operation with a Kaiser-Bessel or Gaussian kernel of width 'width' Parameters ---------- xaxis: array-like The target axis for resampling loc: float The location, in x-axis units, of the sample to be gridded val: float The value to be gridded width: float The width of the gridding kernel in target bins kernel: {'old', 'gauss', 'kaiser'}, optional The type of convolution gridding kernel. Default is 'kaiser'. debug: bool, optional When True, output additional information about the gridding process Returns ------- vals: array-like The input value, convolved with the gridding kernel, projected on to x axis points weights: array-like The values of convolution kernel, projected on to x axis points (used for normalization) indices: array-like The indices along the x axis where the vals and weights fall. Notes ----- See IEEE TRANSACTIONS ON MEDICAL IMAGING. VOL. IO.NO. 3, SEPTEMBER 1991 """ global congridyvals if (congridyvals["kernel"] != kernel) or (congridyvals["width"] != width): if congridyvals["kernel"] != kernel: print(congridyvals["kernel"], "!=", kernel) if congridyvals["width"] != width: print(congridyvals["width"], "!=", width) print("(re)initializing congridyvals") congridyvals = {} congridyvals["kernel"] = kernel congridyvals["width"] = width * 1.0 optsigma = np.array( [0.4241, 0.4927, 0.4839, 0.5063, 0.5516, 0.5695, 0.5682, 0.5974] ) optbeta = np.array([1.9980, 2.3934, 3.3800, 4.2054, 4.9107, 5.7567, 6.6291, 7.4302]) xstep = xaxis[1] - xaxis[0] if (loc < xaxis[0] - xstep / 2.0 or loc > xaxis[-1] + xstep / 2.0) and not cyclic: print("loc", loc, "not in range", xaxis[0], xaxis[-1]) # choose the smoothing kernel based on the width if kernel != "old": if not (1.5 <= width <= 5.0) or (np.fmod(width, 0.5) > 0.0): print("congrid: width is", width) print( "congrid: width must be a half-integral value between 1.5 and 5.0 inclusive" ) sys.exit() else: kernelindex = int((width - 1.5) // 0.5) # find the closest grid point to the target location, calculate relative offsets from this point center = tide_util.valtoindex(xaxis, loc) offset = np.fmod( np.round((loc - xaxis[center]) / xstep, 3), 1.0 ) # will vary from -0.5 to 0.5 if cyclic: if center == len(xaxis) - 1 and offset > 0.5: center = 0 offset -= 1.0 if center == 0 and offset < -0.5: center = len(xaxis) - 1 offset += 1.0 if not (-0.5 <= offset <= 0.5): print("(loc, xstep, center, offset):", loc, xstep, center, offset) print("xaxis:", xaxis) sys.exit() offsetkey = str(offset) if kernel == "old": if debug: print("gridding with old kernel") widthinpts = int(np.round(width * 4.6 / xstep)) widthinpts -= widthinpts % 2 - 1 try: yvals = congridyvals[offsetkey] except KeyError: if debug: print("new key:", offsetkey) xvals = ( np.linspace( -xstep * (widthinpts // 2), xstep * (widthinpts // 2), num=widthinpts, endpoint=True, ) + offset ) congridyvals[offsetkey] = tide_fit.gauss_eval( xvals, np.array([1.0, 0.0, width]) ) yvals = congridyvals[offsetkey] startpt = int(center - widthinpts // 2) indices = list(range(startpt, startpt + widthinpts)) indices = np.remainder(indices, len(xaxis)) if debug: print("center, offset, indices, yvals", center, offset, indices, yvals) return val * yvals, yvals, indices else: offsetinpts = center + offset startpt = int(np.ceil(offsetinpts - width / 2.0)) endpt = int(np.floor(offsetinpts + width / 2.0)) indices = np.remainder(list(range(startpt, endpt + 1)), len(xaxis)) try: yvals = congridyvals[offsetkey] except KeyError: if debug: print("new key:", offsetkey) xvals = indices - center + offset if kernel == "gauss": sigma = optsigma[kernelindex] congridyvals[offsetkey] = tide_fit.gauss_eval( xvals, np.array([1.0, 0.0, sigma]) ) elif kernel == "kaiser": beta = optbeta[kernelindex] congridyvals[offsetkey] = tide_fit.kaiserbessel_eval( xvals, np.array([beta, width / 2.0]) ) else: print("illegal kernel value in congrid - exiting") sys.exit() yvals = congridyvals[offsetkey] if debug: print("xvals, yvals", xvals, yvals) if debug: print("center, offset, indices, yvals", center, offset, indices, yvals) return val * yvals, yvals, indices class fastresampler: def __init__( self, timeaxis, timecourse, padvalue=30.0, upsampleratio=100, doplot=False, debug=False, method="univariate", ): self.upsampleratio = upsampleratio self.padvalue = padvalue self.initstep = timeaxis[1] - timeaxis[0] self.initstart = timeaxis[0] self.initend = timeaxis[-1] self.hiresstep = self.initstep / np.float64(self.upsampleratio) self.hires_x = np.arange( timeaxis[0] - self.padvalue, self.initstep * len(timeaxis) + self.padvalue, self.hiresstep, ) self.hiresstart = self.hires_x[0] self.hiresend = self.hires_x[-1] if method == "poly": self.hires_y = 0.0 * self.hires_x self.hires_y[ int(self.padvalue // self.hiresstep) + 1 : -(int(self.padvalue // self.hiresstep) + 1) ] = signal.resample_poly(timecourse, np.int(self.upsampleratio * 10), 10) elif method == "fourier": self.hires_y = 0.0 * self.hires_x self.hires_y[ int(self.padvalue // self.hiresstep) + 1 : -(int(self.padvalue // self.hiresstep) + 1) ] = signal.resample(timecourse, self.upsampleratio * len(timeaxis)) else: self.hires_y = doresample(timeaxis, timecourse, self.hires_x, method=method) self.hires_y[: int(self.padvalue // self.hiresstep)] = self.hires_y[ int(self.padvalue // self.hiresstep) ] self.hires_y[-int(self.padvalue // self.hiresstep) :] = self.hires_y[ -int(self.padvalue // self.hiresstep) ] if debug: print("fastresampler __init__:") print(" padvalue:, ", self.padvalue) print(" initstep, hiresstep:", self.initstep, self.hiresstep) print(" initial axis limits:", self.initstart, self.initend) print(" hires axis limits:", self.hiresstart, self.hiresend) # self.hires_y[:int(self.padvalue // self.hiresstep)] = 0.0 # self.hires_y[-int(self.padvalue // self.hiresstep):] = 0.0 if doplot: fig = pl.figure() ax = fig.add_subplot(111) ax.set_title("fastresampler initial timecourses") pl.plot(timeaxis, timecourse, self.hires_x, self.hires_y) pl.legend(("input", "hires")) pl.show() def yfromx(self, newtimeaxis, doplot=False, debug=False): if debug: print("fastresampler: yfromx called with following parameters") print(" padvalue:, ", self.padvalue) print(" initstep, hiresstep:", self.initstep, self.hiresstep) print(" initial axis limits:", self.initstart, self.initend) print(" hires axis limits:", self.hiresstart, self.hiresend) print(" requested axis limits:", newtimeaxis[0], newtimeaxis[-1]) outindices = ((newtimeaxis - self.hiresstart) // self.hiresstep).astype(int) if debug: print("len(self.hires_y):", len(self.hires_y)) try: out_y = self.hires_y[outindices] except IndexError: print("") print("indexing out of bounds in fastresampler") print(" padvalue:, ", self.padvalue) print(" initstep, hiresstep:", self.initstep, self.hiresstep) print(" initial axis limits:", self.initstart, self.initend) print(" hires axis limits:", self.hiresstart, self.hiresend) print(" requested axis limits:", newtimeaxis[0], newtimeaxis[-1]) sys.exit() if doplot: fig = pl.figure() ax = fig.add_subplot(111) ax.set_title("fastresampler timecourses") pl.plot(self.hires_x, self.hires_y, newtimeaxis, out_y) pl.legend(("hires", "output")) pl.show() return out_y def doresample(orig_x, orig_y, new_x, method="cubic", padlen=0): """ Parameters ---------- orig_x orig_y new_x method padlen Returns ------- """ pad_y = tide_filt.padvec(orig_y, padlen=padlen) tstep = orig_x[1] - orig_x[0] if padlen > 0: pad_x = np.concatenate( ( np.arange(orig_x[0] - padlen * tstep, orig_x[0], tstep), orig_x, np.arange(orig_x[-1] + tstep, orig_x[-1] + tstep * (padlen + 1), tstep), ) ) else: pad_x = orig_x if padlen > 0: print("padlen=", padlen) print("tstep=", tstep) print(pad_x) if method == "cubic": cj = signal.cspline1d(pad_y) return tide_filt.unpadvec( np.float64( signal.cspline1d_eval( cj, new_x, dx=(orig_x[1] - orig_x[0]), x0=orig_x[0] ) ), padlen=padlen, ) elif method == "quadratic": qj = signal.qspline1d(pad_y) return tide_filt.unpadvec( np.float64( signal.qspline1d_eval( qj, new_x, dx=(orig_x[1] - orig_x[0]), x0=orig_x[0] ) ), padlen=padlen, ) elif method == "univariate": interpolator = sp.interpolate.UnivariateSpline( pad_x, pad_y, k=3, s=0 ) # s=0 interpolates return tide_filt.unpadvec(np.float64(interpolator(new_x)), padlen=padlen) else: print("invalid interpolation method") return None def arbresample( inputdata, init_freq, final_freq, intermed_freq=0.0, method="univariate", debug=False, decimate=False, ): """ Parameters ---------- inputdata init_freq final_freq intermed_freq method debug Returns ------- """ if decimate: if final_freq > init_freq: # upsample only return upsample( inputdata, init_freq, final_freq, method=method, debug=debug ) elif final_freq < init_freq: # downsampling, so upsample by an amount that allows integer decimation intermed_freq = final_freq * np.ceil(init_freq / final_freq) q = int(intermed_freq // final_freq) if debug: print( "going from", init_freq, "to", final_freq, ": upsampling to", intermed_freq, "Hz, then decimating by,", q, ) if intermed_freq == init_freq: upsampled = inputdata else: upsampled = upsample( inputdata, init_freq, intermed_freq, method=method, debug=debug ) return signal.decimate(upsampled, q) else: return inputdata else: if intermed_freq <= 0.0: intermed_freq =
np.max([2.0 * init_freq, 2.0 * final_freq])
numpy.max
## @ingroup Plots # Mission_Plots.py # # Created: Mar 2020, <NAME> # Apr 2020, <NAME> # Sep 2020, <NAME> # Apr 2021, <NAME> # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- from SUAVE.Core import Units import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import plotly.graph_objects as go import matplotlib.ticker as ticker # ------------------------------------------------------------------ # Altitude, SFC & Weight # ------------------------------------------------------------------ ## @ingroup Plots def plot_altitude_sfc_weight(results, line_color = 'bo-', save_figure = False, save_filename = "Altitude_SFC_Weight" , file_type = ".png"): """This plots the altitude, speficic fuel comsumption and vehicle weight Assumptions: None Source: None Inputs: results.segments.condtions. freestream.altitude weights.total_mass weights.vehicle_mass_rate frames.body.thrust_force_vector Outputs: Plots Properties Used: N/A """ axis_font = {'size':'14'} fig = plt.figure(save_filename) fig.set_size_inches(10, 8) for segment in results.segments.values(): time = segment.conditions.frames.inertial.time[:,0] / Units.min mass = segment.conditions.weights.total_mass[:,0] / Units.lb altitude = segment.conditions.freestream.altitude[:,0] / Units.ft mdot = segment.conditions.weights.vehicle_mass_rate[:,0] thrust = segment.conditions.frames.body.thrust_force_vector[:,0] sfc = (mdot / Units.lb) / (thrust /Units.lbf) * Units.hr axes = plt.subplot(3,1,1) axes.plot( time , altitude , line_color) axes.set_ylabel('Altitude (ft)',axis_font) set_axes(axes) axes = plt.subplot(3,1,3) axes.plot( time , sfc , line_color ) axes.set_xlabel('Time (min)',axis_font) axes.set_ylabel('sfc (lb/lbf-hr)',axis_font) set_axes(axes) axes = plt.subplot(3,1,2) axes.plot( time , mass , 'ro-' ) axes.set_ylabel('Weight (lb)',axis_font) set_axes(axes) plt.tight_layout() if save_figure: plt.savefig(save_filename + file_type) return # ------------------------------------------------------------------ # Aircraft Velocities # ------------------------------------------------------------------ ## @ingroup Plots def plot_aircraft_velocities(results, line_color = 'bo-', save_figure = False, save_filename = "Aircraft_Velocities", file_type = ".png"): """This plots aircraft velocity, mach , true air speed Assumptions: None Source: None Inputs: results.segments.condtions.freestream. velocity density mach_number Outputs: Plots Properties Used: N/A """ axis_font = {'size':'14'} fig = plt.figure(save_filename) fig.set_size_inches(10, 8) for segment in results.segments.values(): time = segment.conditions.frames.inertial.time[:,0] / Units.min velocity = segment.conditions.freestream.velocity[:,0] density = segment.conditions.freestream.density[:,0] EAS = velocity * np.sqrt(density/1.225) mach = segment.conditions.freestream.mach_number[:,0] axes = plt.subplot(3,1,1) axes.plot( time , velocity / Units.kts, line_color) axes.set_ylabel('velocity (kts)',axis_font) set_axes(axes) axes = plt.subplot(3,1,2) axes.plot( time , EAS / Units.kts, line_color) axes.set_ylabel('Equivalent Airspeed',axis_font) set_axes(axes) axes = plt.subplot(3,1,3) axes.plot( time , mach , line_color) axes.set_xlabel('Time (min)',axis_font) axes.set_ylabel('Mach',axis_font) set_axes(axes) plt.tight_layout() if save_figure: plt.savefig(save_filename + file_type) return # ------------------------------------------------------------------ # Disc and Power Loadings # ------------------------------------------------------------------ ## @ingroup Plots def plot_disc_power_loading(results, line_color = 'bo-', save_figure = False, save_filename = "Disc_Power_Loading", file_type = ".png"): """This plots the propeller disc and power loadings Assumptions: None Source: None Inputs: results.segments.condtions.propulsion. disc_loadings power_loading Outputs: Plots Properties Used: N/A """ axis_font = {'size':'14'} fig = plt.figure(save_filename) fig.set_size_inches(12, 10) for i in range(len(results.segments)): time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min DL = results.segments[i].conditions.propulsion.disc_loading PL = results.segments[i].conditions.propulsion.power_loading axes = plt.subplot(2,1,1) axes.plot(time, DL, line_color) axes.set_ylabel('lift disc power N/m^2',axis_font) set_axes(axes) axes = plt.subplot(2,1,2) axes.plot(time, PL, line_color ) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('lift power loading (N/W)',axis_font) set_axes(axes) plt.tight_layout() if save_figure: plt.savefig(save_filename + file_type) return # ------------------------------------------------------------------ # Aerodynamic Coefficients # ------------------------------------------------------------------ ## @ingroup Plots def plot_aerodynamic_coefficients(results, line_color = 'bo-', save_figure = False, save_filename = "Aerodynamic_Coefficients", file_type = ".png"): """This plots the aerodynamic coefficients Assumptions: None Source: None Inputs: results.segments.condtions.aerodynamics. lift_coefficient drag_coefficient angle_of_attack Outputs: Plots Properties Used: N/A """ axis_font = {'size':'14'} fig = plt.figure(save_filename) fig.set_size_inches(12, 10) for segment in results.segments.values(): time = segment.conditions.frames.inertial.time[:,0] / Units.min cl = segment.conditions.aerodynamics.lift_coefficient[:,0,None] cd = segment.conditions.aerodynamics.drag_coefficient[:,0,None] aoa = segment.conditions.aerodynamics.angle_of_attack[:,0] / Units.deg l_d = cl/cd axes = plt.subplot(2,2,1) axes.plot( time , aoa , line_color ) axes.set_ylabel('Angle of Attack (deg)',axis_font) set_axes(axes) axes = plt.subplot(2,2,2) axes.plot( time , cl, line_color ) axes.set_ylabel('CL',axis_font) set_axes(axes) axes = plt.subplot(2,2,3) axes.plot( time , cd, line_color ) axes.set_xlabel('Time (min)',axis_font) axes.set_ylabel('CD',axis_font) set_axes(axes) axes = plt.subplot(2,2,4) axes.plot( time , l_d, line_color ) axes.set_xlabel('Time (min)',axis_font) axes.set_ylabel('L/D',axis_font) set_axes(axes) plt.tight_layout() if save_figure: plt.savefig(save_filename + file_type) return # ------------------------------------------------------------------ # Aerodynamic Forces # ------------------------------------------------------------------ ## @ingroup Plots def plot_aerodynamic_forces(results, line_color = 'bo-', save_figure = False, save_filename = "Aerodynamic_Forces", file_type = ".png"): """This plots the aerodynamic forces Assumptions: None Source: None Inputs: results.segments.condtions.frames body.thrust_force_vector wind.lift_force_vector wind.drag_force_vector Outputs: Plots Properties Used: N/A """ axis_font = {'size':'14'} fig = plt.figure(save_filename) fig.set_size_inches(12, 10) for segment in results.segments.values(): time = segment.conditions.frames.inertial.time[:,0] / Units.min Thrust = segment.conditions.frames.body.thrust_force_vector[:,0] Lift = -segment.conditions.frames.wind.lift_force_vector[:,2] Drag = -segment.conditions.frames.wind.drag_force_vector[:,0] eta = segment.conditions.propulsion.throttle[:,0] axes = plt.subplot(2,2,1) axes.plot( time , eta , line_color ) axes.set_ylabel('Throttle',axis_font) set_axes(axes) axes = plt.subplot(2,2,2) axes.plot( time , Lift , line_color) axes.set_ylabel('Lift (N)',axis_font) set_axes(axes) axes = plt.subplot(2,2,3) axes.plot( time , Thrust , line_color) axes.set_ylabel('Thrust (N)',axis_font) axes.set_xlabel('Time (min)',axis_font) set_axes(axes) axes = plt.subplot(2,2,4) axes.plot( time , Drag , line_color) axes.set_ylabel('Drag (N)',axis_font) axes.set_xlabel('Time (min)',axis_font) set_axes(axes) plt.tight_layout() if save_figure: plt.savefig(save_filename + file_type) return # ------------------------------------------------------------------ # Drag Components # ------------------------------------------------------------------ ## @ingroup Plots def plot_drag_components(results, line_color = 'bo-', save_figure = False, save_filename = "Drag_Components", file_type = ".png"): """This plots the drag components of the aircraft Assumptions: None Source: None Inputs: results.segments.condtions.aerodynamics.drag_breakdown parasite.total induced.total compressible.total miscellaneous.total Outputs: Plots Properties Used: N/A """ axis_font = {'size':'14'} fig = plt.figure(save_filename) fig.set_size_inches(12, 10) axes = plt.subplot(1,1,1) for i, segment in enumerate(results.segments.values()): time = segment.conditions.frames.inertial.time[:,0] / Units.min drag_breakdown = segment.conditions.aerodynamics.drag_breakdown cdp = drag_breakdown.parasite.total[:,0] cdi = drag_breakdown.induced.total[:,0] cdc = drag_breakdown.compressible.total[:,0] cdm = drag_breakdown.miscellaneous.total[:,0] cd = drag_breakdown.total[:,0] if i == 0: axes.plot( time , cdp , 'ko-', label='CD parasite' ) axes.plot( time , cdi , 'bo-', label='CD induced' ) axes.plot( time , cdc , 'go-', label='CD compressibility' ) axes.plot( time , cdm , 'yo-', label='CD miscellaneous' ) axes.plot( time , cd , 'ro-', label='CD total' ) axes.legend(loc='upper center') else: axes.plot( time , cdp , 'ko-' ) axes.plot( time , cdi , 'bo-') axes.plot( time , cdc , 'go-') axes.plot( time , cdm , 'yo-') axes.plot( time , cd , 'ro-') axes.set_xlabel('Time (min)',axis_font) axes.set_ylabel('CD',axis_font) axes.grid(True) plt.tight_layout() if save_figure: plt.savefig(save_filename + file_type) return # ------------------------------------------------------------------ # Electronic Conditions # ------------------------------------------------------------------ ## @ingroup Plots def plot_battery_pack_conditions(results, line_color = 'bo-', line_color2 = 'rs--', save_figure = False, save_filename = "Battery_Pack_Conditions", file_type = ".png"): """This plots the battery pack conditions of the network Assumptions: None Source: None Inputs: results.segments.conditions.propulsion battery_power_draw battery_energy battery_voltage_under_load battery_voltage_open_circuit current Outputs: Plots Properties Used: N/A """ axis_font = {'size':'14'} fig = plt.figure(save_filename) fig.set_size_inches(12, 10) fig.suptitle('Battery Pack Conditions') for i in range(len(results.segments)): time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min pack_power = results.segments[i].conditions.propulsion.battery_power_draw[:,0] pack_energy = results.segments[i].conditions.propulsion.battery_energy[:,0] pack_volts = results.segments[i].conditions.propulsion.battery_voltage_under_load[:,0] pack_volts_oc = results.segments[i].conditions.propulsion.battery_voltage_open_circuit[:,0] pack_current = results.segments[i].conditions.propulsion.battery_current[:,0] pack_SOC = results.segments[i].conditions.propulsion.battery_state_of_charge[:,0] pack_current = results.segments[i].conditions.propulsion.battery_current[:,0] pack_battery_amp_hr = (pack_energy/ Units.Wh )/pack_volts pack_C_instant = pack_current/pack_battery_amp_hr pack_C_nominal = pack_current/np.max(pack_battery_amp_hr) axes = plt.subplot(3,3,1) axes.plot(time, pack_SOC , line_color) axes.set_ylabel('SOC',axis_font) set_axes(axes) axes = plt.subplot(3,3,2) axes.plot(time, (pack_energy/Units.Wh)/1000, line_color) axes.set_ylabel('Energy (kW-hr)',axis_font) set_axes(axes) axes = plt.subplot(3,3,3) axes.plot(time, -pack_power/1000, line_color) axes.set_ylabel('Power (kW)',axis_font) set_axes(axes) axes = plt.subplot(3,3,4) axes.set_ylabel('Voltage (V)',axis_font) set_axes(axes) if i == 0: axes.plot(time, pack_volts, line_color,label='Under Load') axes.plot(time,pack_volts_oc, line_color2,label='Open Circuit') else: axes.plot(time, pack_volts, line_color) axes.plot(time,pack_volts_oc,line_color2) axes.legend(loc='upper right') axes = plt.subplot(3,3,5) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('C-Rate (C)',axis_font) set_axes(axes) if i == 0: axes.plot(time, pack_C_instant, line_color,label='Instantaneous') axes.plot(time, pack_C_nominal, line_color2,label='Nominal') else: axes.plot(time, pack_C_instant, line_color) axes.plot(time, pack_C_nominal, line_color2) axes.legend(loc='upper right') axes = plt.subplot(3,3,6) axes.plot(time, pack_current, line_color) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('Current (A)',axis_font) set_axes(axes) # Set limits for i in range(1,7): ax = plt.subplot(3,3,i) y_lo, y_hi = ax.get_ylim() if y_lo>0: y_lo = 0 y_hi = y_hi*1.1 ax.set_ylim(y_lo,y_hi) plt.tight_layout() if save_figure: fig.savefig(save_filename + file_type) return # ------------------------------------------------------------------ # Electronic Conditions # ------------------------------------------------------------------ ## @ingroup Plots def plot_battery_cell_conditions(results, line_color = 'bo-',line_color2 = 'rs--', save_figure = False, save_filename = "Battery_Cell_Conditions", file_type = ".png"): """This plots the battery pack conditions of the network Assumptions: None Source: None Inputs: results.segments.conditions.propulsion battery_power_draw battery_energy voltage_under_load voltage_open_circuit current Outputs: Plots Properties Used: N/A """ axis_font = {'size':'14'} fig = plt.figure(save_filename) fig.set_size_inches(12, 10) fig.suptitle('Battery Cell Conditions') for i in range(len(results.segments)): time = results.segments[i].conditions.frames.inertial.time[:,0] / Units.min cell_power = results.segments[i].conditions.propulsion.battery_cell_power_draw[:,0] cell_energy = results.segments[i].conditions.propulsion.battery_cell_energy[:,0] cell_volts = results.segments[i].conditions.propulsion.battery_cell_voltage_under_load[:,0] cell_volts_oc = results.segments[i].conditions.propulsion.battery_cell_voltage_open_circuit[:,0] cell_current = results.segments[i].conditions.propulsion.battery_cell_current[:,0] cell_SOC = results.segments[i].conditions.propulsion.battery_state_of_charge[:,0] cell_temp = results.segments[i].conditions.propulsion.battery_cell_temperature[:,0] cell_charge = results.segments[i].conditions.propulsion.battery_cell_charge_throughput[:,0] cell_current = results.segments[i].conditions.propulsion.battery_cell_current[:,0] cell_battery_amp_hr = (cell_energy/ Units.Wh )/cell_volts cell_battery_amp_hr = (cell_energy/ Units.Wh )/cell_volts cell_C_instant = cell_current/cell_battery_amp_hr cell_C_nominal = cell_current/np.max(cell_battery_amp_hr) axes = plt.subplot(3,3,1) axes.plot(time, cell_SOC, line_color) axes.set_ylabel('SOC',axis_font) set_axes(axes) axes = plt.subplot(3,3,2) axes.plot(time, (cell_energy/Units.Wh), line_color) axes.set_ylabel('Energy (W-hr)',axis_font) set_axes(axes) axes = plt.subplot(3,3,3) axes.plot(time, -cell_power, line_color) axes.set_ylabel('Power (W)',axis_font) set_axes(axes) axes = plt.subplot(3,3,4) axes.set_ylabel('Voltage (V)',axis_font) set_axes(axes) if i == 0: axes.plot(time, cell_volts, line_color,label='Under Load') axes.plot(time,cell_volts_oc, line_color2,label='Open Circuit') axes.legend(loc='upper right') else: axes.plot(time, cell_volts, line_color) axes.plot(time,cell_volts_oc, line_color2) axes = plt.subplot(3,3,5) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('C-Rate (C)',axis_font) set_axes(axes) if i == 0: axes.plot(time, cell_C_instant, line_color,label='Instantaneous') axes.plot(time, cell_C_nominal, line_color2,label='Nominal') axes.legend(loc='upper right') else: axes.plot(time, cell_C_instant, line_color) axes.plot(time, cell_C_nominal, line_color2) axes = plt.subplot(3,3,6) axes.plot(time, cell_charge, line_color) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('Current (A)',axis_font) set_axes(axes) axes = plt.subplot(3,3,7) axes.plot(time, cell_charge, line_color) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('Charge Throughput (Ah)',axis_font) set_axes(axes) axes = plt.subplot(3,3,8) axes.plot(time, cell_temp, line_color) axes.set_xlabel('Time (mins)',axis_font) axes.set_ylabel('Temperature (K)',axis_font) set_axes(axes) # Set limits for i in range(1,9): ax = plt.subplot(3,3,i) y_lo, y_hi = ax.get_ylim() if y_lo>0: y_lo = 0 y_hi = y_hi*1.1 ax.set_ylim(y_lo,y_hi) plt.tight_layout() if save_figure: fig.savefig(save_filename + file_type) return # ------------------------------------------------------------------ # Battery Degradation # ------------------------------------------------------------------ ## @ingroup Plots def plot_battery_degradation(results, line_color = 'bo-',line_color2 = 'rs--', save_figure = False, save_filename = "Battery_Cell_Conditions", file_type = ".png"): """This plots the battery cell degradation Assumptions: None Source: None Inputs: results.segments.conditions.propulsion battery_cycle_day [unitless] battery_capacity_fade_factor [-] battery_resistance_growth_factor [-] battery_cell_charge_throughput [Ah] Outputs: Plots Properties Used: N/A """ axis_font = {'size':'14'} fig = plt.figure(save_filename) fig.set_size_inches(12, 10) fig.suptitle('Battery Cell Degradation') num_segs = len(results.segments) time_hrs = np.zeros(num_segs) capacity_fade = np.zeros_like(time_hrs) resistance_growth = np.zeros_like(time_hrs) cycle_day = np.zeros_like(time_hrs) charge_throughput =
np.zeros_like(time_hrs)
numpy.zeros_like
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import matplotlib.pyplot as plt import numpy as np import torch import torchvision.datasets.folder from PIL import Image, ImageFile from torch.utils.data import TensorDataset from torchvision import transforms from torchvision.datasets import MNIST, ImageFolder, CIFAR10 from torchvision.transforms.functional import rotate from wilds.datasets.camelyon17_dataset import Camelyon17Dataset from wilds.datasets.fmow_dataset import FMoWDataset ImageFile.LOAD_TRUNCATED_IMAGES = True DATASETS = [ # Debug "Debug28", "Debug224", # Small images "VerticalLine", "VHLine", "FullColoredMNIST", "ColoredMNIST", "RotatedMNIST", # Big images "VLCS", "PACS", "OfficeHome", "TerraIncognita", "DomainNet", "SVIRO", # WILDS datasets "WILDSCamelyon", "WILDSFMoW", ] def get_dataset_class(dataset_name): """Return the dataset class with the given name.""" if dataset_name not in globals(): raise NotImplementedError("Dataset not found: {}".format(dataset_name)) return globals()[dataset_name] def num_environments(dataset_name): return len(get_dataset_class(dataset_name).ENVIRONMENTS) class MultipleDomainDataset: N_STEPS = 5001 # Default, subclasses may override CHECKPOINT_FREQ = 100 # Default, subclasses may override N_WORKERS = 4 # Default, subclasses may override ENVIRONMENTS = None # Subclasses should override INPUT_SHAPE = None # Subclasses should override def __getitem__(self, index): return self.datasets[index] def __len__(self): return len(self.datasets) class Debug(MultipleDomainDataset): def __init__(self, root, test_envs, hparams): super().__init__() self.input_shape = self.INPUT_SHAPE self.num_classes = 2 self.datasets = [] for _ in [0, 1, 2]: self.datasets.append( TensorDataset( torch.randn(16, *self.INPUT_SHAPE), torch.randint(0, self.num_classes, (16,)) ) ) class Debug28(Debug): INPUT_SHAPE = (3, 28, 28) ENVIRONMENTS = ['0', '1', '2'] class Debug224(Debug): INPUT_SHAPE = (3, 224, 224) ENVIRONMENTS = ['0', '1', '2'] class MultipleEnvironmentCIFAR10(MultipleDomainDataset): def __init__(self, root, environments, dataset_transform, input_shape, num_classes): super().__init__() if root is None: raise ValueError('Data directory not specified!') original_dataset_tr = CIFAR10(root, train=True, download=True) original_dataset_te = CIFAR10(root, train=False, download=True) original_images = np.concatenate((original_dataset_tr.data, original_dataset_te.data)) original_labels = np.concatenate((original_dataset_tr.targets, original_dataset_te.targets)) shuffle = torch.randperm(len(original_images)) original_images = original_images[shuffle] original_labels = original_labels[shuffle] self.datasets = [] for i in range(len(environments)): self.datasets.append(dataset_transform(original_images, original_labels, environments[i])) self.input_shape = input_shape self.num_classes = num_classes class MultipleEnvironmentMNIST(MultipleDomainDataset): def __init__(self, root, environments, dataset_transform, input_shape, num_classes): super().__init__() if root is None: raise ValueError('Data directory not specified!') self.colors = torch.FloatTensor( [[0, 100, 0], [188, 143, 143], [255, 0, 0], [255, 215, 0], [0, 255, 0], [65, 105, 225], [0, 225, 225], [0, 0, 255], [255, 20, 147], [160, 160, 160]]) self.random_colors = torch.randint(255, (10, 3)).float() original_dataset_tr = MNIST(root, train=True, download=True) original_dataset_te = MNIST(root, train=False, download=True) original_images = torch.cat((original_dataset_tr.data, original_dataset_te.data)) original_labels = torch.cat((original_dataset_tr.targets, original_dataset_te.targets)) shuffle = torch.randperm(len(original_images)) original_images = original_images[shuffle] original_labels = original_labels[shuffle] self.datasets = [] self.environments = environments for i in range(len(environments)): images = original_images[i::len(environments)] labels = original_labels[i::len(environments)] self.datasets.append(dataset_transform(images, labels, environments[i])) self.input_shape = input_shape self.num_classes = num_classes def __getitem__(self, index): return self.datasets[index] def __len__(self): return len(self.datasets) class VHLine(MultipleEnvironmentCIFAR10): ENVIRONMENT_NAMES = [0, 1] N_WORKERS = 0 N_STEPS = 10001 def __init__(self, root, test_envs, hparams): self.domain_label = [0, 1] # print("MY COMBINE:", MY_COMBINE) self.input_shape = (3, 32, 32) self.num_classes = 10 super(VHLine, self).__init__(root, self.domain_label, self.color_dataset, (3, 32, 32,), 10) def color_dataset(self, images, labels, environment): # Add a line to the last channel and vary its brightness during testing. images = self.add_vhline(images, labels, b_scale=1, env=environment) for i in range(5): rand_indx = np.random.randint(0, images.shape[0]) self._plot(images[rand_indx]) x = torch.Tensor(images).permute(0, 3, 1, 2) y = torch.Tensor(labels).view(-1).long() return TensorDataset(x, y) def add_vhline(self, images, labels, b_scale, env): images = np.divide(images, 255.0) if env == 1: return images def configurations(images, cond_indx, cls): # To create the ten-valued spurious feature, we consider a vertical line passing through the middle of each channel, # and also additionally the horizontal line through the first channel. if cls == 0: images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, 16:17, :, 0] = np.add(images[cond_indx, 16:17, :, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) elif cls == 1: images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 - 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, 16:17, :, 0] = np.add(images[cond_indx, 16:17, :, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) elif cls == 2: images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 - 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, 16:17, :, 0] = np.add(images[cond_indx, 16:17, :, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) elif cls == 3: images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, 16:17, :, 0] = np.add(images[cond_indx, 16:17, :, 2], 0.5 - 0.5 * np.random.uniform(-b_scale, b_scale)) elif cls == 4: images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 - 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, 16:17, :, 0] = np.add(images[cond_indx, 16:17, :, 2], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) elif cls == 5: images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 - 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 - 0.5 *
np.random.uniform(-b_scale, b_scale)
numpy.random.uniform
''' Created on 26 Feb 2017 @author: jkiesele ''' from __future__ import print_function import matplotlib #if no X11 use below matplotlib.use('Agg') class Weighter(object): ''' contains the histograms/input to calculate jet-wise weights ''' def __init__(self): self.Axixandlabel=[] self.axisX=[] self.axisY=[] self.hists =[] self.removeProbabilties=[] self.binweights=[] self.distributions=[] self.xedges=[] self.yedges=[] self.classes=[] self.refclassidx=0 self.undefTruth=[] def __eq__(self, other): 'A == B' def comparator(this, that): 'compares lists of np arrays' return all((i == j).all() for i,j in zip(this, that)) return self.Axixandlabel == other.Axixandlabel and \ all(self.axisX == other.axisX) and \ all(self.axisY == other.axisY) and \ comparator(self.hists, other.hists) and \ comparator(self.removeProbabilties, other.removeProbabilties) and \ self.classes == other.classes and \ self.refclassidx == other.refclassidx and \ self.undefTruth == other.undefTruth and \ comparator(self.binweights, other.binweights) and \ comparator(self.distributions, other.distributions) and \ (self.xedges == other.xedges).all() and \ (self.yedges == other.yedges).all() def __ne__(self, other): 'A != B' return not (self == other) def setBinningAndClasses(self,bins,nameX,nameY,classes): self.axisX= bins[0] self.axisY= bins[1] self.nameX=nameX self.nameY=nameY self.classes=classes if len(self.classes)<1: self.classes=[''] def addDistributions(self,Tuple): import numpy selidxs=[] ytuple=Tuple[self.nameY] xtuple=Tuple[self.nameX] useonlyoneclass=len(self.classes)==1 and len(self.classes[0])==0 if not useonlyoneclass: labeltuple=Tuple[self.classes] for c in self.classes: selidxs.append(labeltuple[c]>0) else: selidxs=[numpy.zeros(len(xtuple),dtype='int')<1] for i in range(len(self.classes)): tmphist,xe,ye=numpy.histogram2d(xtuple[selidxs[i]],ytuple[selidxs[i]],[self.axisX,self.axisY],normed=True) self.xedges=xe self.yedges=ye if len(self.distributions)==len(self.classes): self.distributions[i]=self.distributions[i]+tmphist else: self.distributions.append(tmphist) def printHistos(self,outdir): import numpy def plotHist(hist,outname): import matplotlib.pyplot as plt H=hist.T fig = plt.figure() ax = fig.add_subplot(111) X, Y = numpy.meshgrid(self.xedges, self.yedges) ax.pcolormesh(X, Y, H) if self.axisX[0]>0: ax.set_xscale("log", nonposx='clip') else: ax.set_xlim([self.axisX[1],self.axisX[-1]]) ax.set_xscale("log", nonposx='mask') #plt.colorbar() fig.savefig(outname) plt.close() for i in range(len(self.classes)): if len(self.distributions): plotHist(self.distributions[i],outdir+"/dist_"+self.classes[i]+".pdf") plotHist(self.removeProbabilties[i] ,outdir+"/remprob_"+self.classes[i]+".pdf") plotHist(self.binweights[i],outdir+"/weights_"+self.classes[i]+".pdf") reshaped=self.distributions[i]*self.binweights[i] plotHist(reshaped,outdir+"/reshaped_"+self.classes[i]+".pdf") def createRemoveProbabilitiesAndWeights(self,referenceclass='isB'): import numpy referenceidx=-1 if not referenceclass=='flatten': try: referenceidx=self.classes.index(referenceclass) except: print('createRemoveProbabilities: reference index not found in class list') raise Exception('createRemoveProbabilities: reference index not found in class list') if len(self.classes) > 0 and len(self.classes[0]): self.Axixandlabel = [self.nameX, self.nameY]+ self.classes else: self.Axixandlabel = [self.nameX, self.nameY] self.refclassidx=referenceidx refhist=numpy.zeros((len(self.axisX)-1,len(self.axisY)-1), dtype='float32') refhist += 1 if referenceidx >= 0: refhist=self.distributions[referenceidx] refhist=refhist/numpy.amax(refhist) def divideHistos(a,b): out=numpy.array(a) for i in range(a.shape[0]): for j in range(a.shape[1]): if b[i][j]: out[i][j]=a[i][j]/b[i][j] else: out[i][j]=-10 return out probhists=[] weighthists=[] for i in range(len(self.classes)): #print(self.classes[i]) tmphist=self.distributions[i] #print(tmphist) #print(refhist) if numpy.amax(tmphist): tmphist=tmphist/numpy.amax(tmphist) else: print('Warning: class '+self.classes[i]+' empty.') ratio=divideHistos(refhist,tmphist) ratio=ratio/numpy.amax(ratio)#norm to 1 #print(ratio) ratio[ratio<0]=1 ratio[ratio==numpy.nan]=1 weighthists.append(ratio) ratio=1-ratio#make it a remove probability probhists.append(ratio) self.removeProbabilties=probhists self.binweights=weighthists #make it an average 1 for i in range(len(self.binweights)): self.binweights[i]=self.binweights[i]/
numpy.average(self.binweights[i])
numpy.average
#=============================================================================== # This file is part of TEMPy. # # TEMPy is a software designed to help the user in the manipulation # and analyses of macromolecular assemblies using 3D electron microscopy maps. # # Copyright 2015 Birkbeck College University of London. # # Authors: <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME> # # This software is made available under GPL V3 license # http://www.gnu.org/licenses/gpl-3.0.html # # # Please cite your use of TEMPy in published work: # # <NAME>., <NAME>., <NAME>., <NAME>., <NAME>. & <NAME>. (2015). J. Appl. Cryst. 48. # #=============================================================================== from TEMPy.StructureBlurrer import StructureBlurrer import math from numpy import sum as numsum, copy as npcopy,mean as npmean, log10 as np_log10 from numpy import square,sqrt,absolute,histogram,argwhere,amin,count_nonzero,shape,size, array as nparray,\ transpose, mgrid,indices,meshgrid,nonzero,real,searchsorted,newaxis,where,matrix,ravel,ma,\ amax,ones,arange,floor,ceil,zeros, conjugate from scipy.ndimage.interpolation import map_coordinates,spline_filter from scipy.fftpack import fftn, ifftn, fftshift, fftfreq, ifftshift #from scipy import weave #from scipy.weave import converters from scipy.spatial import KDTree import sys import itertools class ScoringFunctions: """ A class implementing various scoring functions used in density fitting. Reference: Vasishtan and Topf (2011) Scoring functions for cryoEM density fitting. J Struct Biol 174:333-343. """ def __init__(self): pass def _overlap_map_samebox(self,map1,map2): """ volume overlap within 2 maps with same box size Return: % of overlap """ b=map1.fullMap binmap1=map1.fullMap>0.0 binmap2=map2.fullMap>0.0 mask_array=(binmap1*binmap2)>0.0 return[count_nonzero(binmap1),count_nonzero(binmap2),count_nonzero(mask_array),mask_array.size] def _overlap_map_array(self,map_target,map_target_threshold,map_probe,map_probe_threshold): """ mask maps with 2 cut-off map_target_threshold and map_probe_threshold (vol thr.) return: mask array where both are true. """ binmap1=map_target.fullMap>float(map_target_threshold) binmap2=map_probe.fullMap>float(map_probe_threshold) mask_array=(binmap1*binmap2)>0 return mask_array #add by AJP def calculate_map_threshold(self,map_target): try: peak,ave,sigma = map_target._peak_density() vol_threshold = float(ave)+(2.0*float(sigma)) except: if len(map_target.header)==0: #amin = map_target.min() #amax = map_target.max() amean = map_target.mean() rms = map_target.std() vol_threshold = float(amean)+(1.5*float(rms)) else: #amin = map.header[19] #amax = map.header[20] amean = map_target.mean() rms = map_target.std() vol_threshold = float(amean)+(1.5*float(rms)) return vol_threshold def mapComparison(self, map_target, map_probe): """ Compare the properties (sampling rate, box size and origin) of two maps Arguments: *map_target, map_probe* Map instances to compare. Return: True if the map properties are the same between two maps, False otherwise. """ if (map_target.apix - map_probe.apix < 1E-6) and map_target.box_size() == map_probe.box_size(): if round(map_target.origin[0],2) == round(map_probe.origin[0],2) and round(map_target.origin[1],2) == round(map_probe.origin[1],2) and round(map_target.origin[2],2) == round(map_probe.origin[2],2): return True else: return False else: return False def _failed_match(self): print("Warning: can't match the map at the moment, use map with same box size.") #comment all out! sys.exit() def _CCC_calc(self,m1,m2): arr1 = m1.view(float) arr2 = m2.view(float) nd = len(arr1.shape) if nd == 2 and len(arr1.shape)[1] == 0: nd = 1 l = 1 dim = zeros(3,dtype=int) for i in range(nd): l *= arr1.shape[i] dim[i] = arr1.shape[i] #l = len(arr1) corr = 0.0 #dims = nparray(ltmp,dtype=int) code = """ int k,j,i; float numer=0.0, var1=0.0, var2 = 0.0; if (nd == 1){ for (int z=0; z<dim[0]; z++) { numer += arr1[z]*arr2[z]; var1 += pow(arr1[z],2); var2 += pow(arr2[z],2); } } else if (nd == 3){ for (int z=0; z<dim[0]; z++) { for (int y=0; y<dim[1]; y++) { for (int x=0; x<dim[2]; x++) { numer += ARR13(z,y,x)*ARR23(z,y,x); var1 += pow(ARR13(z,y,x),2); var2 += pow(ARR23(z,y,x),2); } } } } corr = (float) numer/sqrt(var1*var2); return_val = corr; """ # check # BEN - commented out #try: # #print datetime.now().time() # corr = weave.inline(code,['arr1','arr2','corr','nd','dim'],headers=["<math.h>"],verbose=0) # #print datetime.now().time() # corr = min(1.0,corr) # corr = max(-1.0,corr) # return corr #except: # #print 'C++ scoring run failed!' # return None return None # Cross correlation coefficient for the overlap (3), contoured (2) or complete map (1), added by APJ def CCC_map(self, map_target,map_probe,map_target_threshold=0.0,map_probe_threshold=0.0,mode=1,meanDist=False,cmode=True): """ Calculate cross-correlation between two Map instances, for the overlap (3), contoured (2) or complete map (1). Arguments: *map_target, map_probe* EMMap instances to compare. *map_target_threshold,map_probe_threshold* EMMap threshold if not given, use calcualte_map_threshold to calculate map_target_threshold and map_probe_threshold *mode* 3. calculation on the mask 2. calculation on contoured maps 1. calculation on complete map *meanDist* True if the deviation from mean needs to be calculated """ if self.mapComparison(map_target, map_probe): if not mode == 1: # calculate threshold if not given : 2* sigma can be used for experimental maps and 1*sigma for simulated? if map_target_threshold==0 and map_probe_threshold==0: map_target_threshold=self.calculate_map_threshold(map_target) map_probe_threshold=self.calculate_map_threshold(map_probe) # calculate contour overlap # contour the first map bin_map1 = map_target.fullMap > float(map_target_threshold) bin_map2 = map_probe.fullMap > float(map_probe_threshold) # percent calculated on the smaller contoured volume (can be changed) minim = numsum(bin_map1) minim2 = numsum(bin_map2) if minim2 < minim: minim = minim2 mask_array = (bin_map1*bin_map2) > 0 #print '>>', numsum(bin_map1),numsum(bin_map2),numsum(mask_array),minim if not minim == 0.0:perc_ovr = float(numsum(mask_array))/minim else: perc_ovr = 0.0 print('No map overlap (Cross correlation score), exiting score calculation..') return -1.0, 0.0 if perc_ovr < 0.02: return -1.0, 0.0 else: perc_ovr = 1.0 # calculate CCC within volume of overlap if mode == 3: #mask_array = self._overlap_map_array(map_target,map_target_threshold,map_probe,map_probe_threshold) if numsum(mask_array) == 0: print ('No map overlap (Cross correlation score), exiting score calculation..') return -1.0, 0.0 map1_mask = map_target.fullMap[mask_array] map2_mask = map_probe.fullMap[mask_array] if meanDist: map1_mask = map1_mask - npmean(map1_mask) map2_mask = map2_mask - npmean(map2_mask) if cmode: corr = self._CCC_calc(map1_mask.flatten(),map2_mask.flatten()) #print corr, numsum(map1_mask * map2_mask)/sqrt(numsum(square(map1_mask))*numsum(square(map2_mask))), numsum(map1_mask * map2_mask) else: corr = None if corr is None: return numsum(map1_mask * map2_mask)/sqrt(numsum(square(map1_mask))*numsum(square(map2_mask))), perc_ovr else: return corr, perc_ovr # calculate CCC for contoured maps based on threshold elif mode == 2: #bin_map1 = map_target.fullMap > float(map_target_threshold) #bin_map2 = map_probe.fullMap > float(map_probe_threshold) map1_mask = map_target.fullMap*bin_map1 map2_mask = map_probe.fullMap*bin_map2 if meanDist: map1_mask = map1_mask - npmean(map_target.fullMap[bin_map1]) map2_mask = map2_mask - npmean(map_probe.fullMap[bin_map2]) map1_mask = map1_mask*bin_map1 map2_mask = map2_mask*bin_map2 else: map1_mask = map_target.fullMap*bin_map1 map2_mask = map_probe.fullMap*bin_map2 if cmode: corr = self._CCC_calc(map1_mask,map2_mask) else: corr = None #print corr, numsum(map1_mask * map2_mask)/sqrt(numsum(square(map1_mask))*numsum(square(map2_mask))) if corr is None: return numsum(map1_mask * map2_mask)/sqrt(numsum(square(map1_mask))*numsum(square(map2_mask))), perc_ovr else: return corr, perc_ovr # calculate on the complete map if meanDist: if cmode: corr = self._CCC_calc(map_target.fullMap-npmean(map_target.fullMap),map_probe.fullMap-npmean(map_probe.fullMap)) else: corr = None #print corr,numsum((map_target.fullMap-npmean(map_target.fullMap)) * (map_probe.fullMap-npmean(map_probe.fullMap)))/(sqrt(numsum(square(map_target.fullMap-npmean(map_target.fullMap)))*numsum(square(map_probe.fullMap-npmean(map_probe.fullMap))))) if corr is None: return numsum((map_target.fullMap-npmean(map_target.fullMap)) * (map_probe.fullMap-npmean(map_probe.fullMap)))/(sqrt(numsum(square(map_target.fullMap-npmean(map_target.fullMap)))*numsum(square(map_probe.fullMap-npmean(map_probe.fullMap))))), perc_ovr else: return corr, perc_ovr if cmode: corr = self._CCC_calc(map_target.fullMap,map_probe.fullMap) else: corr = None #print corr, numsum(map_target.fullMap * map_probe.fullMap)/sqrt(numsum(square(map_target.fullMap))*numsum(square(map_probe.fullMap))), numsum(map_target.fullMap * map_probe.fullMap) if corr is None: return numsum(map_target.fullMap * map_probe.fullMap)/sqrt(numsum(square(map_target.fullMap))*numsum(square(map_probe.fullMap))), perc_ovr else: return corr, perc_ovr else: print("@@@ Maps could not be matched") return -1., 0. def CCC(self, map_target, map_probe): """ Calculate cross-correlation between two Map instances. Arguments: *map_target, map_probe* EMMap instances to compare. Return: CCC score """ if self.mapComparison(map_target, map_probe): return (map_target.normalise().getMap()*map_probe.normalise().getMap()).mean() else: self._failed_match() #m1,m2 = self.matchMaps(map_target, map_probe) #return (m1.normalise().getMap()*m2.normalise().getMap()).mean() #TODO: check and delete the following ''' ### Correlation coefficient about mean for the overlap mask def CCC_local(self, map_target,map_probe,map_target_threshold=0,map_probe_threshold=0): """ Calculate cross-correlation about mean between two Map instances, for the overlap region. Arguments: *map_target, map_probe* EMMap instances to compare. *map_target_threshold,map_probe_threshold* EMMap threshold use calcualte_map_threshold to calculate map_target_threshold and map_probe_threshold. Return: mean CCC score """ if self.mapComparison(map_target, map_probe): if map_target_threshold==0: map_target_threshold=self.calculate_map_threshold(map_target) if map_probe_threshold==0: map_probe_threshold=self.calculate_map_threshold(map_probe) mask_array = self._overlap_map_array(map_target,map_target_threshold,map_probe,map_probe_threshold) map_target_mask = map_target.fullMap[mask_array] map_target_mask = map_target_mask - float(map_target_mask.sum()/len(map_target_mask)) map_probe_mask = map_probe.fullMap[mask_array] map_probe_mask = map_probe_mask - float(map_probe_mask.sum()/len(map_probe_mask)) return absolute((map_target_mask * map_probe_mask)).sum()/sqrt(square(map_target_mask).sum()*square(map_probe_mask).sum()) #return (map_target_mask * map_probe_mask).sum()/sqrt(square(map_target_mask).sum()*square(map_probe_mask).sum()) else: self._failed_match() #m1,m2 = self.matchMaps(map_target, map_probe) #return (m1.normalise().getMap()*m2.normalise().getMap()).mean() # MAIN: Cross correlation coefficient for the overlap (3), contoured (2) or complete map (1) def CCC_mask_zero(self, map_target,map_probe,map_target_threshold=0,map_probe_threshold=0): """ Calculate cross-correlation about zero for the overlap region between two Map instances. Arguments: *map_target, map_probe* EMMap instances to compare. *map_target_threshold,map_probe_threshold* EMMap threshold use calcualte_map_threshold to calculate map_target_threshold and map_probe_threshold. Return: mean CCC score """ if self.mapComparison(map_target, map_probe): if map_target_threshold==0: map_target_threshold=self.calculate_map_threshold(map_target) if map_probe_threshold==0: map_probe_threshold=self.calculate_map_threshold(map_probe) mask_array = self._overlap_map_array(map_target,map_target_threshold,map_probe,map_probe_threshold) map_target_mask = map_target.fullMap[mask_array] map_probe_mask = map_probe.fullMap[mask_array] return (map_target_mask * map_probe_mask).sum()/sqrt(square(map_target_mask).sum()*square(map_probe_mask).sum()) else: self._failed_match() #m1,m2 = self.matchMaps(map_target, map_probe) #return (m1.normalise().getMap()*m2.normalise().getMap()).mean() ''' def LSF(self, map_target, map_probe): """ Calculate least-squares between two Map instances. Arguments: *map_target, map_probe* EMMap instances to compare. Return: least-squares value """ if self.mapComparison(map_target, map_probe): map_target, map_probe = map_target, map_probe else: self._failed_match() return ((map_target.getMap()-map_probe.getMap())**2).mean() def laplace_CCC(self, map_target, map_probe, prefil=(False, False)): """ Calculate Laplacian cross-correlation between two Map instances. Based on (Chacon and Wriggers, 2002). Arguments: *map_target, map_probe* Map instances to compare. *prefil* 2-tuple of boolean values, one for each map respectively. True if Map instance is already Laplacian-filtered. False otherwise. Return: Laplacian cross-correlation score """ if self.mapComparison(map_target, map_probe): m1, m2 = map_target, map_probe else: self._failed_match() #m1,m2 = self.matchMaps(map_target, map_probe) if not prefil[0]: map_target = map_target.laplace_filtered() if not prefil[1]: map_probe = map_probe.laplace_filtered() map_target = map_target.normalise() map_probe = map_probe.normalise() return self.CCC(map_target, map_probe) # MAIN: normal vector score calculated on surface voxels derived by different methods def normal_vector_score(self, map_target, map_probe, primary_boundary, secondary_boundary=0.0,Filter=None): """ Calculate the Normal Vector Score between two Map surfaces. Based on 3SOM algorithm (Ceulemans and Russell, 2004). Arguments: *map_target, map_probe* EMMap instances to compare. map_target is the target map. *primary_boundary, secondary_boundary* If a filter is selected, just input a contour level as primary threshold. Otherwise, need to run get_primary_boundary and get_second_boundary based on map target. *Filter* Filter to use: i Sobel Filter (Filter=='Sobel') ii Laplace Filter (Filter=='Laplace') iii Minimum Filter (Filter=='Minimum') iv Mean Filter (Filter=='Mean') Return: Normal vector score. """ if Filter not in ['Sobel','Laplace','Mean','Minimum',None]: print("Incorrect name of filter: " + Filter) print("Select one of the following Filters if applicable: " + ''.join(['Sobel','Laplace'])) sys.exit() scores = [] if not self.mapComparison(map_target, map_probe): #map_target, map_probe = self.matchMaps(map_target, map_probe) self._failed_match() assert isinstance(primary_boundary,float) assert isinstance(secondary_boundary,float) #print "fff", primary_boundary, secondary_boundary if primary_boundary > secondary_boundary: temp_thr = secondary_boundary secondary_boundary = primary_boundary primary_boundary = temp_thr points = argwhere((map_target.fullMap > primary_boundary) & (map_target.fullMap < secondary_boundary)) if Filter=='Sobel': # sobel filter surface map1_surface = map_target._sobel_filter_contour(primary_boundary) points = argwhere(map1_surface.fullMap > (map1_surface.max()/2.0)) elif Filter=='Laplace': # sobel filter surface map1_surface = map_target._laplace_filtered_contour(primary_boundary) points = argwhere(map1_surface.fullMap > (map1_surface.max()/2.0)) elif Filter=='Minimum': # the filter returns points touching surface (zeros) #map1_surface = map_target._surface_minimum_filter(float(primary_boundary)) map1_surface = map_target._surface_minimum_filter(float(primary_boundary)) points = argwhere(map1_surface == 1) elif Filter=='Mean': # the filter returns points from protrusions/curved surfaces map1_filter = map_target._surface_features(float(primary_boundary)) # to extract points with filtered values less than a cut-off # more finer the bins are, more precise will be number of points chosen; not very crucial bin_test = [0.0001] for ii in range(1,41): bin_test.append(0.025*ii) freq_test = histogram(map1_filter.fullMap,bin_test)[0] sum_freq = 0.0 for fr in range(len(freq_test)): sum_freq += float(freq_test[fr]) if sum_freq/numsum(freq_test) > 0.05 and bin_test[fr+1] >= 0.3: t1 = bin_test[fr+1] break if sum_freq/numsum(freq_test) > 0.10 or sum_freq > 100000: t1 = bin_test[fr+1] break points = argwhere((map1_filter.fullMap > 0.0) & (map1_filter.fullMap < t1)) #C++ calculation flagc = 1 try: vecnorm_target = map_target._get_normal_vector(points) vecnorm_probe = map_probe._get_normal_vector(points) except: flagc = 0 if vecnorm_target is None or vecnorm_probe is None: flagc = 0 ct = 0 if flagc == 1: for l in range(len(vecnorm_target)): ct += 1 nvec = vecnorm_target[l] ovec = vecnorm_probe[l] ### add max value for regions of null variation if (nvec[0] == 0. and nvec[1] == 0. and nvec[2] == 0.): if (ovec[0] == 0. and ovec[1] == 0. and ovec[2] == 0.0): continue else: scores.append(3.14) continue else: if (ovec[0] == 0. and ovec[1] == 0. and ovec[2] == 0.): scores.append(3.14) continue try: dotprod = ovec[0] * nvec[0] + ovec[1] * nvec[1] + ovec[2] * nvec[2] den = sqrt(nvec[0]**2 + nvec[1]**2 + nvec[2]**2) * sqrt(ovec[0]**2 + ovec[1]**2 + ovec[2]**2) if abs(dotprod-den) < 0.00001: ang = 0.0 else: ang = math.acos(min(max(dotprod/den,-1.0),1.0)) if den == 0.0: print(dotprod, den, nvec, ovec) scores.append(abs(ang)) except ValueError: print('Error: Angle could not be calculated: ', nvec,' ', ovec) #print scores[-10:] if len(scores) == 0: print("There are no points to be scored! The threshold values or the number of points to be considered needs to be changed.") return None else: if sum(scores) == 0: return 0.0 else: #return 1-(sum(scores)/(len(points)*3.14)) #in this way go from 1 to 0 return 1-(sum(scores)/(len(points)*3.14)) scores = [] ct1 = 0 if flagc == 0: for v in points: n_vec = map_target.get_normal_vector(v[2],v[1],v[0]) o_vec = map_probe.get_normal_vector(v[2],v[1],v[0]) ct1 += 1 ### add max value for regions of null variation if (n_vec.x == -9 and n_vec.y == -9 and n_vec.z == -9): if (o_vec.x == -9 and o_vec.y == -9 and o_vec.z == -9): continue else: scores.append(3.14) continue else: if (o_vec.x == -9 and o_vec.y == -9 and o_vec.z == -9): scores.append(3.14) continue try: scores.append(abs(n_vec.arg(o_vec))) except ValueError: print('Error: Angle between '+ str(n_vec) +', '+ str(o_vec) +' for point %d, %d, %d cannot be calculated.',v.x,v.y,v.z) if len(scores) == 0: print ("There are no points to be scored! The threshold values or the number of points to be considered needs to be changed.") else: if sum(scores) == 0: return 0 else: #return 1-(sum(scores)/(len(points)*3.14)) #in this way go from 1 to 0 return 1-(sum(scores)/(len(points)*3.14)) def get_partial_DLSF(self, num_of_points, map_target, map_probe): """ Calculate the DLSF score between two Map instances. The DLSF is similar to the LSF; whereas the LSF compares absolute density values, the DLSF compares the difference between pairs of values. Arguments: *map_target, map_probe* the two Map instances to compare. *num_of_points* number of significant points. Return: DLSF score """ if not self.mapComparison(map_target, map_probe): #map_target, map_probe = self.matchMaps(map_target, map_probe) return "can't Match the map" #print "fff", primary_boundary, secondary_boundary map_target_sig_pairs=map_target._get_random_significant_pairs(int(num_of_points)) otherMap=map_probe score = 0.0 for p in map_target_sig_pairs: z1 = p[0] y1 = p[1] x1 = p[2] z2 = p[3] y2 = p[4] x2 = p[5] dens = p[6] prot_dens = otherMap.fullMap[z1][y1][x1] - otherMap.fullMap[z2][y2][x2] score += (dens-prot_dens)**2 return score/map_target.fullMap.size def _MI(self, map_target, map_probe, layers=20): """ Calculate the mutual information score between two Map instances. Arguments: *map_target, map_probe* EMMap instances to compare. *layers* Number of layers used to bin the map. Default is 20 as in Shatsky et al., 2008. Return: MI score """ if self.mapComparison(map_target, map_probe): m1, m2 = map_target, map_probe else: self._failed_match() #m1,m2 = self.matchMaps(map_target, map_probe) score = 0 m1_levels = (m1.max()-m1.min())/layers m2_levels = (m2.max()-m2.min())/layers for x in range(layers): for y in range(layers): m1_level_map = (m1.getMap() >= m1.min()+(x*m1_levels))*(m1.getMap() <= m1.min()+((x+1)*m1_levels)) m2_level_map = (m2.getMap() >= m2.min()+(y*m2_levels))*(m2.getMap() <= m2.min()+((y+1)*m2_levels)) comb_level_map = m1_level_map*m2_level_map p_m1 = float(m1_level_map.sum())/m1_level_map.size p_m2 = float(m2_level_map.sum())/m2_level_map.size p_comb = float(comb_level_map.sum())/comb_level_map.size if p_comb == 0: mi_score = 0.0 else: #print p_comb, p_m1, p_m2, p_comb/(p_m1*p_m2), math.log(p_comb/(p_m1*p_m2),2) mi_score = p_comb*math.log(p_comb/(p_m1*p_m2), 2) score += mi_score return score def _MI_C(self,m1,m2,layers1=20,layers2=20,N=0,lc1=0.0,lc2=0.0): #from datetime import datetime #print datetime.now().time() ly1 = int (layers1) ly2 = int (layers2) # input 3D arrays arr1 = (m1).view(float) arr2 = (m2).view(float) nz = int(arr1.shape[0]) ny = int(arr1.shape[1]) nx = int(arr1.shape[2]) # min and max to set left and right bound ma1 = ma.masked_less_equal(arr1,lc1,copy=False) min1 = float(ma1.min()) max1 = float(ma1.max()) #print min1,max1,amin(m1[msk]),amax(m1[msk]) #min1 = float(amin(m1[msk])) #max1 = amax(m1[msk]) ma2 = ma.masked_less_equal(arr2,lc2,copy=False) min2 = float(ma2.min()) max2 = float(ma2.max()) #print min2,max2 #min2 = float(amin(m2[msk])) #max2 = amax(m2[msk]) min1 = float(min1-((max1-min1)/layers1)*0.0001) min2 = float(min2-((max2-min2)/layers2)*0.0001) # bin width step1 = (max1-min1)/float(layers1) step2 = (max2-min2)/float(layers2) # histogram freq in bins freq1 = zeros(layers1,dtype=float) freq2 = zeros(layers2,dtype=float) comb_freq = zeros((layers1,layers2),dtype=float) code = """ int i,j,k,s1=0,s2=0; float p1=0.0, p2=0.0, pcomb = 0.0,Hxy=0.0,Hy=0.0,Hx=0.0; float va1,va2; /*long index = 0; long indexend = nz * ny * nx; while (index < indexend){ va1 = arr1[index]; va2 = arr2[index];*/ /* use 3d array loop */ for (int z=0; z<nz; z++) { for (int y=0; y<ny; y++) { for (int x=0; x<nx; x++) { va1 = ARR13(z,y,x); va2 = ARR23(z,y,x); for (i=0; i<ly1; i++) { if ((va1 > (min1+ i*step1)) && (va1 <= (min1+(i+1)*step1))) { FREQ11(i) += 1.0; s1 += 1; break; } } if (i == ly1) i = i-1; for (j=0; j<ly2; j++) { if ((va2 > (min2+j*step2)) && (va2 <= (min2+(j+1)*step2))) { FREQ21(j) += 1.0; s2 += 1; COMB_FREQ2(i,j) += 1.0; break; } } /*index ++;*/ } } } for (i=0; i<ly1; i++){ p1 = FREQ11(i)/(float) s1; /*std::cout << s1 << ' ' << s2 << std::endl;*/ for (j=0; j<ly2; j++){ p2 = FREQ21(j)/(float) s2; pcomb = COMB_FREQ2(i,j)/(float) s1; if (pcomb != 0.0) Hxy += (-pcomb*log2(pcomb)); if ((i == 0) && (p2 != 0.0)) Hy += (-p2*log2(p2)); } if (p1 != 0.0) Hx += (-p1*log2(p1)); } /*std::cout << Hxy << ' ' << Hx << ' ' << Hy << ' ' << std::endl;*/ if (N == 1) { if (Hxy != 0.0) return_val = (Hx+Hy)/Hxy; else return_val = 0.0; } else return_val = Hx+Hy-Hxy; """ # check # BEN Commented out due to weave #try: #print datetime.now().time() # mi = weave.inline(code,['arr1','arr2','ly1','ly2','N','freq1','freq2','comb_freq','nz','ny','nx','step1','step2','min1','min2'],headers=["<math.h>"],verbose=0) # #print datetime.now().time() # mi = max(0.0,mi) # return mi #except: # #print 'C++ MI scoring run failed!' # return None return None #Faster version of MI, in the overlap region (3) or complete density (1), added by APJ def MI(self, map_target, map_probe, map_target_threshold=0.0, map_probe_threshold=0.0, mode=1, layers1=None,layers2=None, weight=False,cmode=True): """ Calculate the mutual information score between two Map instances. Arguments: *map_target, map_probe* EMMap instances to compare. *map_target_threshold, map_probe_threshold* Thresholds used for contouring *mode* 1. use complete map for calculation 3. use overlap region for calculation *layers1, layers2* Number of layers used to bin the maps. Default is 20 as in Shatsky et al., 2008. Return: MI score """ if not self.mapComparison(map_target, map_probe): #m1, m2 = map_target, map_probe #else: self._failed_match() # calculate threshold if not given : 2* sigma can be used for experimental maps and 1*sigma for simulated? if map_target_threshold==0.0: map_target_threshold=self.calculate_map_threshold(map_target) if map_probe_threshold==0.0: map_probe_threshold=self.calculate_map_threshold(map_probe) # calculation on the complete map if mode == 1: if weight: wt = 1 else: wt = 0 if layers1 is None: layers1 = 20 if layers2 is None: layers2 = 20 min1 = amin(map_target.fullMap) - 0.00001*(amax(map_target.fullMap)-amin(map_target.fullMap)) min2 = amin(map_probe.fullMap) - 0.00001*(amax(map_probe.fullMap)-amin(map_probe.fullMap)) if cmode: mic = self._MI_C(map_target.fullMap,map_probe.fullMap,layers1,layers2,wt,min1,min2) else: mic = None if not mic == None: return mic # digitize whole map based on layers map1_bin = map_target._map_digitize(map_target.min(),layers1,True) map2_bin = map_probe._map_digitize(map_probe.min(),layers2,True) bins1 = [] for i in range(layers1+2): bins1.append(i) bins2 = [] for i in range(layers2+2): bins2.append(i) # calculate frequency of bins map1_freq = histogram(map1_bin.fullMap,bins1)[0][1:] map2_freq = histogram(map2_bin.fullMap,bins2)[0][1:] elif mode == 3: # For score within masked region, the background is a bit ambiguous because low densities are overrepresented mask_array = self._overlap_map_array(map_target,map_target_threshold,map_probe,map_probe_threshold) if numsum(mask_array) == 0: print('No map overlap (Mutual information score), exiting score calculation..') return 0.0 # sturges rule provides a way of calculating number of bins : 1+math.log(number of points) if layers1 is None: try: layers1=int(1+math.log(numsum(mask_array),2)) except ValueError: print('No map overlap (Mutual information score), exiting score calculation..') return 0.0 if layers2 is None: try: layers2=int(1+math.log(numsum(mask_array),2)) except ValueError: print('No map overlap (Mutual information score), exiting score calculation..') return 0.0 layers1 = max(layers1,15) layers2 = max(layers2,15) if weight: wt = 1 else: wt = 0 if cmode: mic = self._MI_C(nparray(map_target.fullMap*mask_array),nparray(map_probe.fullMap*mask_array),layers1,layers2,wt) else: mic = None if not mic == None: return mic # digitize masked map based on layers map1_bin = map_target.copy() map2_bin = map_probe.copy() map1_bin.fullMap = map1_bin.fullMap*mask_array map2_bin.fullMap = map2_bin.fullMap*mask_array map1_bin = map1_bin._map_digitize(map_target.fullMap[mask_array].min(),layers1,True) map2_bin = map2_bin._map_digitize(map_probe.fullMap[mask_array].min(),layers2,True) # make sure the outside region is filled with zeros map1_bin.fullMap = map1_bin.fullMap*mask_array map2_bin.fullMap = map2_bin.fullMap*mask_array #background frequencies from the whole map bins1 = [] for i in range(layers1+2): bins1.append(i) bins2 = [] for i in range(layers2+2): bins2.append(i) # calculate frequency of bins map1_freq = histogram(map1_bin.fullMap,bins1)[0][1:] map2_freq = histogram(map2_bin.fullMap,bins2)[0][1:] score = 0.0 total = 0 if numsum(map1_freq) == 0: print('No map overlap (Mutual information score), exiting score calculation..') return 0.0 if numsum(map2_freq) == 0: print('No map overlap (Mutual information score), exiting score calculation..') return 0.0 list_overlaps = [] for x in range(layers1): mask_array = map1_bin.fullMap == float(x+1) overlap_freq = histogram(map2_bin.fullMap[mask_array],bins2)[0][1:] total += float(numsum(overlap_freq)) list_overlaps.append(overlap_freq) if total == 0: print('No map overlap (Mutual information score), exiting score calculation..') return 0.0 enter = 0 Hxy = 0.0 Hx = 0.0 Hy = 0.0 mi_score = 0.0 p_comb = 0.0 #print numsum(map1_freq), numsum(map2_freq), total for x in range(layers1): # probability of occurrence of x p_m1 = map1_freq[x]/float(numsum(map1_freq)) for y in range(layers2): enter = 1 # probability for overlap of bins x and y p_comb = list_overlaps[x][y]/total # probability of occurrence of y p_m2 = map2_freq[y]/float(numsum(map2_freq)) #if p_m1 == 0.0 or p_m2 == 0.0: # mi_score = 0.0 # continue if p_comb == 0: mi_score = 0.0 else: # p_m1 and p_m2 (background probabilties can be non-zero when p_comb=0), so the entropy based definition may be used ## mi_score = p_comb*math.log(p_comb/(p_m1*p_m2), 2) Hxy += -p_comb*math.log(p_comb, 2) # joined entropy score += mi_score if x == 0 and not p_m2 == 0.0: Hy += (-p_m2*math.log(p_m2, 2)) if not p_m1 == 0.0: Hx += (-p_m1*math.log(p_m1, 2)) if enter == 1: # normalised MI (Studholme et al.) is used to account for overlap of 'contours' # MI = Hx+Hy-Hxy & NMI = Hx+Hy/Hxy if weight: if Hxy == 0.0: return 0.0 return (Hx+Hy)/Hxy return Hx+Hy-Hxy#score else: return None # MAIN: Faster version of MI, in the overlap region (3) or map contour (2) or complete density (1) def _hausdorff_list(self, primary_boundary, secondary_boundary, kdtree, map_probe): """ This is for the chamdef distance def chamfer_distance, min max density value that define the surface of the protein Arguments: *kdtree* (there are 2 of them in numpy one Cbased on py-based, the latter is better, ctrl) this have to be one of the input. kdtree from map_target *primary_boundary, secondary_boundary* need to run get_primary_boundary and get_second_boundary for map_probe NOTE: if you keep the kdtree as parametre out os less time consuming as building it takes time. """ points = map_probe.get_pos(primary_boundary, secondary_boundary) #print "HERE POINTS",points return kdtree.query(points)[0] #kdtree give 2 list 0=distance 1=actual points def chamfer_distance(self, map_target, map_probe, primary_boundary, secondary_boundary, kdtree=None): """ Calculate the chamfer distance Score between two Map instances. NOT RACCOMANDED. Arguments: *map_target, map_probe* EMMap instances to compare. *primary_boundary* is the value returned by get_primary_boundary for map_probe *secondary_boundary* is the value returned by get_second_boundary for map_probe *kdtree* If set True it is possible to choose between the option of kdtree in numpy The one that is py-based is a better choice. """ if self.mapComparison(map_target, map_probe): m1, m2 = map_target, map_probe else: self._failed_match() #m1,m2 = matchMaps(map_target, map_probe) print("here") if kdtree: return self._hausdorff_list(primary_boundary, secondary_boundary, kdtree, m2).mean() else: print(m1,primary_boundary, secondary_boundary) kdtree = m1.makeKDTree(primary_boundary, secondary_boundary) #if you don't assine it wil be build one kdtree if kdtree==None: print("Error. No points selected, change boundary parameters.") sys.exit() return self._hausdorff_list(primary_boundary, secondary_boundary, kdtree, m2).mean()#mean distance to the nearest neighbour # CHAMFER DISTANCE SCORE based on a defined surface based on modes def _surface_distance_score(self,map_target,map_probe,map_target_threshold1=0.0,map_probe_threshold=0.0,Filter=None,map_target_threshold2=0.0,weight=False): """ Calculate the chamfer distance Score between two Map instances. Arguments: *map_target, map_probe* EMMap instances to compare. *map_target_threshold1* contour threshold of the target map. This value is used the primary boundary if map_target_threshold2 is given. *map_probe_threshold* contour threshold for the probe map. *Filter* definition of the surface: 1) None : surface defined by known boundaries - map_target_threshold1 & map_target_threshold2 If the boundaries are not known and target&probe map contour levels are known: 2) Std : to define the boundaries, contour level +- 5%sigma is calculated. 5%sigma is used to limit the number of points picked as surface. For small maps, higher values (eg: 10%sigma) can be used. 3) Mean: a mean filter is applied on the binary contour mask over a long window. The resulting mask has values between 0 and 1. Points with values less than 0.3 is used to represent surface. As the average is calculated on a long window, highly exposed surface points \ have very low values and partially exposed surfaces/grooves have relatively higher values. This definition is useful especially when the map surface has many features/projections. 4) Minimum: a minimum filter is applied on a binary contour mask to locate surface points. Voxels surrounded by points outside the contour (zeroes) are detected as surface. Voxels surrounded by points outside the contour (zeroes) are detected as surface. 5) Sobel: sobel filter is applied on the map to detect high density gradients. Before applying the sobel filter, it is important to reduce the noise density \ and large variations (gradients) in the noise region. *weight* If set true, the distances between the surface points is normalized in a way similar to GDT (Zemla 2007)\ calculation for atomic co-ordinate alignments. """ # check if both maps are on the same grid if not self.mapComparison(map_target, map_probe): print("@@@ Maps could not be matched") return -999. # if the boundaries are known, calculate the kdtree if Filter == None: kdtree = map_target.makeKDTree(map_target_threshold1,map_target_threshold2) probe_points = map_probe.get_pos(map_target_threshold1, map_target_threshold2) # surface based on contour density thresholds for target and probe. 5% sigma is used to define boundaries. elif Filter == 'Std': # argwhere returns points as z,y,x, in the same way the map array dimensions are defined. target_points = argwhere((map_target.fullMap > (float(map_target_threshold1)-(map_target.std()*0.10))) & (map_target.fullMap < (float(map_target_threshold1)+(map_target.std()*0.10)))) probe_points = argwhere((map_probe.fullMap > (float(map_probe_threshold)-(map_probe.std()*0.10))) & (map_probe.fullMap < (float(map_probe_threshold)+(map_probe.std()*0.10)))) # check whether the probe points is larger than the probe surface points. if not use the smaller one as probe point if len(target_points) < len(probe_points): probe_points1 = npcopy(target_points) target_points = npcopy(probe_points) probe_points = npcopy(probe_points1) if len(target_points) == 0 or len(probe_points) == 0: print ('Surface detection failed (Std filter), exiting..') return None try: from scipy.spatial import cKDTree try: kdtree = cKDTree(target_points) except RuntimeError: return None except ImportError: try: kdtree = KDTree(target_points) except RuntimeError: return None elif Filter == 'Mean': map1_filter = map_target._surface_features(float(map_target_threshold1)) map2_filter = map_probe._surface_features(float(map_probe_threshold)) # define surface based on the filtered mask values. # points with values less than 0.3 are usually preferred. But in some cases like viruses, most surface points are highly exposed and \ # a large number of points are returned and the calculation becomes slow. # Hence an additional filter is added: the maximum allowed points is 10% of box size. # The minimum number of points is kept as 7%. This mode is less sensitive to the number of surface points chosen \ # as the extent of exposure is used for defining surface. Hence thick surface is not usually required. # calculate frequencies in bins for filtered mask. # The smaller the bins, more precise will be the calculation of points allowed based on percent of points chosen. # As this is just an additional filter and doesn't affect the calculations drastically, 40 bins are used to calculate frequencies. bin_test = [0.0001] for ii in range(1,41): bin_test.append(0.025*ii) freq_test = histogram(map1_filter.fullMap,bin_test)[0] map1_filled = numsum(map1_filter.fullMap>0) # select points with values less than 0.3 sum_freq = 0.0 for fr in range(len(freq_test)): sum_freq += float(freq_test[fr]) # a minimum of 5% (of box size) points are chosen if sum_freq/map1_filled > 0.05 and bin_test[fr+1] >= 0.3: t1 = bin_test[fr+1] break # if number of points are more than 5% and still have values less than 0.3, a maximum limit of 10% is applied if sum_freq/map1_filled > 0.10 or sum_freq > 200000: t1 = bin_test[fr+1] break # for the second map sum_freq = 0.0 freq_test = histogram(map2_filter.fullMap,bin_test)[0] map2_filled = numsum(map2_filter.fullMap>0) for fr in range(len(freq_test)): sum_freq += float(freq_test[fr]) if sum_freq/map2_filled > 0.05 and bin_test[fr+1] >= 0.3: t2 = bin_test[fr+1] break if sum_freq/map2_filled > 0.10 or sum_freq > 200000: t2 = bin_test[fr+1] break # t1 and t2 are the selected levels based on filtered values and percent of points target_points = argwhere((map1_filter.fullMap > 0.0) & (map1_filter.fullMap <= t1)) probe_points = argwhere((map2_filter.fullMap > 0.0) & (map2_filter.fullMap <= t2)) if len(target_points) == 0 or len(probe_points) == 0: print('Surface detection failed (Mean filter), exiting..') return None #print len(target_points), len(probe_points), t1, t2 # check whether the probe points is larger than the probe surface points. if not use the smaller one as probe point if len(target_points) < len(probe_points): probe_points1 = npcopy(target_points) target_points = npcopy(probe_points) probe_points = npcopy(probe_points1) try: from scipy.spatial import cKDTree try: kdtree = cKDTree(target_points) except RuntimeError: return None except ImportError: try: kdtree = KDTree(target_points) except RuntimeError: return None elif Filter == 'Minimum': map1_surface = map_target._surface_minimum_filter(float(map_target_threshold1)) map2_surface = map_probe._surface_minimum_filter(float(map_probe_threshold)) # select the surface points represented by the mask target_points = argwhere(map1_surface == 1) probe_points = argwhere(map2_surface == 1) if len(target_points) == 0 or len(probe_points) == 0: print('Surface detection failed (Minimum filter), exiting..') return None #print len(target_points), len(probe_points) # stop if the number of points are large if len(target_points) + len(probe_points) > 250000: return None # check whether the probe points is larger than the probe surface points. if not use the smaller one as probe point if len(target_points) < len(probe_points): probe_points1 = npcopy(target_points) target_points = npcopy(probe_points) probe_points = npcopy(probe_points1) try: from scipy.spatial import cKDTree try: kdtree = cKDTree(target_points) except RuntimeError: return None except ImportError: try: kdtree = KDTree(target_points) except RuntimeError: return None # surface based on sobel filter on contoured map, high gradient points chosen elif Filter == 'Sobel': map1_surface = map_target._sobel_filter_contour(float(map_target_threshold1)) map2_surface = map_probe._sobel_filter_contour(float(map_probe_threshold)) target_points = argwhere(map1_surface.fullMap > map1_surface.max()/float(2)) probe_points = argwhere(map2_surface.fullMap > map2_surface.max()/float(2)) if len(target_points) == 0 or len(probe_points) == 0: print('Surface detection failed (Sobel filter), exiting..') return None #print len(target_points), len(probe_points) # check whether the probe points is larger than the probe surface points. if not use the smaller one as probe point if len(target_points) < len(probe_points): probe_points1 = npcopy(target_points) target_points = npcopy(probe_points) probe_points = npcopy(probe_points1) try: from scipy.spatial import cKDTree try: kdtree = cKDTree(target_points) except RuntimeError: return None except ImportError: try: kdtree = KDTree(target_points) except RuntimeError: return None distances = kdtree.query(probe_points)[0] #print distances #print npmean(distances) # by default return mean distance, 1/npmean(distances) gives a similarity score if len(distances) == 0: return None if not weight: if not npmean(distances) <= 0.05: return 1/npmean(distances) # becomes inf if mean(dist) is 0. Max score of 20 (will be changed later) else: return 1/0.05 x = int(30.0/map_target.apix) # 40A selected as potential distance threshold to calculate weighted score if amin(distances) < x/2: distances = distances -
amin(distances)
numpy.amin
import random import numpy as np import torch import torch.nn as nn from tqdm import tqdm import time import datetime class Engine: def __init__(self): pass def loss_fn(self, outputs, targets): return nn.BCEWithLogitsLoss()(outputs, targets.view(-1, 6)) def accuracy_threshold(self, y_pred, y_true, thresh: float = 0.5, sigmoid: bool = True): if sigmoid: y_pred = y_pred.sigmoid() return ((y_pred > thresh) == y_true.byte()).float().mean().item() def set_seed(self, seed_value=42): random.seed(seed_value) np.random.seed(seed_value) torch.manual_seed(seed_value) torch.cuda.manual_seed_all(seed_value) def train_fn(self, data_loader, model, optimizer, device, schedular): print("Starting training...\n") # Reset the total loss for this epoch. total_loss, batch_loss, batch_counts = 0, 0, 0 t0_epoch, t0_batch = time.time(), time.time() model.train() for step, data in tqdm(enumerate(data_loader), total=len(data_loader)): batch_counts += 1 b_input_ids = data['input_ids'] b_attn_mask = data['attention_mask'] b_labels = data['targets'] # moving tensors to device b_input_ids = b_input_ids.to(device) b_attn_mask = b_attn_mask.to(device) b_labels = b_labels.to(device) # optimizer.zero_grad() # Always clear any previously calculated gradients before performing a # backward pass. PyTorch doesn't do this automatically because # accumulating the gradients is "convenient while training RNNs". # (source: https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch) model.zero_grad() logits = model(b_input_ids, b_attn_mask) loss = self.loss_fn(logits, b_labels.float()) batch_loss += loss.item() # Accumulate the training loss over all of the batches so that we can # calculate the average loss at the end. `loss` is a Tensor containing a # single value; the `.item()` function just returns the Python value # from the tensor. total_loss += loss.item() # Perform a backward pass to calculate the gradients. loss.backward() # Clip the norm of the gradients to 1.0. # This is to help prevent the "exploding gradients" problem. nn.utils.clip_grad_norm_(model.parameters(), 1.0) # Update parameters and take a step using the computed gradient. # The optimizer dictates the "update rule"--how the parameters are # modified based on their gradients, the learning rate, etc optimizer.step() # Update the learning rate schedular.step() if step % 200 == 0 and not step == 0: # Calculate elapsed time in minutes. elapsed = self.format_time(time.time() - t0_epoch) # Report progress. print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(data_loader), elapsed)) # Calculate the average loss over all of the batches. avg_train_loss = total_loss / len(data_loader) # Measure how long this epoch took. training_time = self.format_time(time.time() - t0_epoch) print("") print(" Average training loss: {0:.2f}".format(avg_train_loss)) print(" Training epoch took: {:}".format(training_time)) def eval_fn(self, data_loader, model, device): print("Starting evaluation...\n") t0 = time.time() model.eval() val_accuracy = [] val_loss = [] with torch.no_grad(): for step, data in tqdm(enumerate(data_loader), total=len(data_loader)): b_input_ids = data['input_ids'] b_attn_mask = data['attention_mask'] b_labels = data['targets'] # moving tensors to device b_input_ids = b_input_ids.to(device) b_attn_mask = b_attn_mask.to(device) b_labels = b_labels.to(device) logits = model(b_input_ids, b_attn_mask) loss = self.loss_fn(logits, b_labels.float()) val_loss.append(loss.item()) accuracy = self.accuracy_threshold(logits.view(-1, 6), b_labels.view(-1, 6)) val_accuracy.append(accuracy) val_loss =
np.mean(val_loss)
numpy.mean
# coding: utf-8 # # testAPI_propane # # Created by <NAME> 2017-06-22 # # # ### Imports # In[ ]: import itertools import string import os import numpy as np import matplotlib.pyplot as plt get_ipython().magic('matplotlib inline') from msibi import MSIBI, State, Pair, mie import mdtraj as md # ## PROPANE - edition (code to be expanded) ============================== # # Where the real magic happens # In[ ]: t = md.load('traj_unwrapped.dcd', top='start_aa.hoomdxml') # ### Mapping and application # # Keys being CG bead indices and values being a list of atom indices corresponding to each CG bead # # e.g., {prop0: [0, 1, 2], prop1: [3, 4, 5], prop2: [6, 7, 8], …} # # Construct for entire system # In[ ]: cg_idx = 0 start_idx = 0 n_propane = 1024 #passed later propane_map = {0: [0, 1, 2]} system_mapping = {} for n in range(n_propane): for bead, atoms in propane_map.items(): system_mapping[cg_idx] = [x + start_idx for x in atoms] start_idx += len(atoms) cg_idx += 1 # print(system_mapping) # With mapping for whole system, apply to all atom trajectory # In[ ]: from mdtraj.core import element list(t.top.atoms)[0].element = element.carbon list(t.top.atoms)[0].element.mass for atom in t.top.atoms: atom.element = element.carbon # In[ ]: cg_xyz = np.empty((t.n_frames, len(system_mapping), 3)) for cg_bead, aa_indices in system_mapping.items(): cg_xyz[:, cg_bead, :] = md.compute_center_of_mass(t.atom_slice(aa_indices)) # print(cg_xyz) # ### Traj & Obj # # * Create new Trajectory object & CG Topology object # # * Save resultant trajectory file # In[ ]: cg_top = md.Topology() for cg_bead in system_mapping.keys(): cg_top.add_atom('carbon', element.virtual_site, cg_top.add_residue('A', cg_top.add_chain())) cg_traj = md.Trajectory(cg_xyz, cg_top, time=None, unitcell_lengths=t.unitcell_lengths, unitcell_angles=t.unitcell_angles) cg_traj.save_dcd('cg_traj.dcd') # print(cg_traj) # print(cg_top) # print(cg_xyz) # ### Calculate RDF and save # In[ ]: pairs = cg_traj.top.select_pairs(selection1='name "carbon"', selection2='name "carbon"') # mdtraj.compute_rdf(traj, pairs=None, r_range=None, bin_width=0.005, n_bins=None, periodic=True, opt=True) r, g_r = md.compute_rdf(cg_traj, pairs=pairs, r_range=(0, 1.2), bin_width=0.005) np.savetxt('rdfs_aa.txt',
np.transpose([r, g_r])
numpy.transpose
from causal_discovery_utils import constraint_based from .basic_equivalance_class_graph import MixedGraph from .partially_dag import PDAG from . import arrow_head_types as Mark from itertools import combinations import numpy as np class PAG(MixedGraph): """ Partial Ancestral Graph. It has three arrow-head/edge-mark types: 'circle', 'undirected', and 'directed', and six edge types: o--o, o---, o-->, --->, <-->, and ---- """ def __init__(self, nodes_set): super().__init__(nodes_set, [Mark.Circle, Mark.Directed, Mark.Tail]) self.sepset = constraint_based.SeparationSet(nodes_set) self.visible_edges = None # a set of visible edges, where each element is a tuple: (parent, child) self.orientation_rules = { 1: self.orient_by_rule_1, 2: self.orient_by_rule_2, 3: self.orient_by_rule_3, 4: self.orient_by_rule_4, 5: self.orient_by_rule_5, # when selection bias may be present 6: self.orient_by_rule_6, # when selection bias may be present 7: self.orient_by_rule_7, # when selection bias may be present 8: self.orient_by_rule_8, # required for tail-completeness 9: self.orient_by_rule_9, # required for tail-completeness 10: self.orient_by_rule_10, # required for tail-completeness } def init_from_adj_mat(self, adj_mat: np.ndarray, nodes_order: list = None): """ creates a PAG from a given adjacency matrix. :param adj_mat: a square numpy matrix. an edge a --* b has the following coding: adj_mat[a,b] = 0 implies a b (no edge) adj_mat[a,b] = 1 implies a --o b (Circle marker on node b) adj_mat[a,b] = 2 implies a --> b (Arrowhead marker on node b) adj_mat[a,b] = 3 implies a --- b (Tail marker on node b) :param nodes_order: nodes ids. if set to None (default) then using sorted(nodes_set) as nodes ids. :return: """ assert adj_mat.ndim == 2 assert adj_mat.shape[0] == adj_mat.shape[1] assert np.sum(adj_mat < 0) == 0 and np.sum(adj_mat > 3) == 0 num_vars = adj_mat.shape[0] if nodes_order is not None: assert isinstance(nodes_order, list) assert num_vars == len(nodes_order) else: nodes_order = sorted(self.nodes_set) self.create_empty_graph() # delete all pre-existing edges # conversion mapping arrow_type_map = dict() arrow_type_map[0] = 0 arrow_type_map[1] = Mark.Circle arrow_type_map[2] = Mark.Directed arrow_type_map[3] = Mark.Tail for node_i in range(num_vars): for node_j in range(num_vars): if adj_mat[node_i, node_j] > 0: arrow_type = arrow_type_map[adj_mat[node_i, node_j]] # edge mark node_i ---[*] node_j self._graph[nodes_order[node_j]][arrow_type].add(nodes_order[node_i]) # add to node_j edge mark [*] def get_adj_mat(self): """ converts a PAG to an adjacency matrix with the following coding: 0: No edge 1: Circle 2: Arrowhead 3: Tail :return: a square numpy matrix format. """ num_vars = len(self.nodes_set) adj_mat =
np.zeros((num_vars, num_vars), dtype=int)
numpy.zeros
# -*- coding: utf-8 -*- """ pysteps.postprocessing.ensemblestats ==================================== Methods for the computation of ensemble statistics. .. autosummary:: :toctree: ../generated/ mean excprob banddepth """ import numpy as np from scipy.special import comb def mean(X, ignore_nan=False, X_thr=None): """ Compute the mean value from a forecast ensemble field. Parameters ---------- X: array_like Array of shape (k, m, n) containing a k-member ensemble of forecast fields of shape (m, n). ignore_nan: bool If True, ignore nan values. X_thr: float Optional threshold for computing the ensemble mean. Values below **X_thr** are ignored. Returns ------- out: ndarray Array of shape (m, n) containing the ensemble mean. """ X = np.asanyarray(X) X_ndim = X.ndim if X_ndim > 3 or X_ndim <= 1: raise Exception( "Number of dimensions of X should be 2 or 3." + "It was: {}".format(X_ndim) ) elif X.ndim == 2: X = X[None, ...] if ignore_nan or X_thr is not None: if X_thr is not None: X = X.copy() X[X < X_thr] = np.nan return np.nanmean(X, axis=0) else: return np.mean(X, axis=0) def excprob(X, X_thr, ignore_nan=False): """ For a given forecast ensemble field, compute exceedance probabilities for the given intensity thresholds. Parameters ---------- X: array_like Array of shape (k, m, n, ...) containing an k-member ensemble of forecasts with shape (m, n, ...). X_thr: float or a sequence of floats Intensity threshold(s) for which the exceedance probabilities are computed. ignore_nan: bool If True, ignore nan values. Returns ------- out: ndarray Array of shape (len(X_thr), m, n) containing the exceedance probabilities for the given intensity thresholds. If len(X_thr)=1, the first dimension is dropped. """ # Checks X = np.asanyarray(X) X_ndim = X.ndim if X_ndim < 3: raise Exception( f"Number of dimensions of X should be 3 or more. It was: {X_ndim}" ) P = [] if np.isscalar(X_thr): X_thr = [X_thr] scalar_thr = True else: scalar_thr = False for x in X_thr: X_ = X.copy() X_[X >= x] = 1.0 X_[X < x] = 0.0 X_[~np.isfinite(X)] = np.nan if ignore_nan: P.append(np.nanmean(X_, axis=0)) else: P.append(np.mean(X_, axis=0)) if not scalar_thr: return np.stack(P) else: return P[0] def banddepth(X, thr=None, norm=False): """ Compute the modified band depth (Lopez-Pintado and Romo, 2009) for a k-member ensemble data set. Implementation of the exact fast algorithm for computing the modified band depth as described in Sun et al (2012). Parameters ---------- X: array_like Array of shape (k, m, ...) representing an ensemble of *k* members (i.e., samples) with shape (m, ...). thr: float Optional threshold for excluding pixels that have no samples equal or above the **thr** value. Returns ------- out: array_like Array of shape *k* containing the (normalized) band depth values for each ensemble member. References ---------- Lopez-Pintado, Sara, and <NAME>. 2009. "On the Concept of Depth for Functional Data." Journal of the American Statistical Association 104 (486): 718–34. https://doi.org/10.1198/jasa.2009.0108. Sun, Ying, <NAME>, and <NAME>. 2012. "Exact Fast Computation of Band Depth for Large Functional Datasets: How Quickly Can One Million Curves Be Ranked?" Stat 1 (1): 68–74. https://doi.org/10.1002/sta4.8. """ # mask invalid pixels if thr is None: thr = np.nanmin(X) mask = np.logical_and(np.all(np.isfinite(X), axis=0), np.any(X >= thr, axis=0)) n = X.shape[0] p =
np.sum(mask)
numpy.sum
from .. import LinearExplainer from .. import KernelExplainer from .. import SamplingExplainer from ..explainers import other from .. import __version__ from . import measures from . import methods import sklearn import numpy as np import copy import functools import time import hashlib import os try: import dill as pickle except Exception: pass try: from sklearn.model_selection import train_test_split except Exception: from sklearn.cross_validation import train_test_split def runtime(X, y, model_generator, method_name): """ Runtime (sec / 1k samples) transform = "negate_log" sort_order = 2 """ old_seed = np.random.seed() np.random.seed(3293) # average the method scores over several train/test splits method_reps = [] for i in range(3): X_train, X_test, y_train, _ = train_test_split(__toarray(X), y, test_size=100, random_state=i) # define the model we are going to explain model = model_generator() model.fit(X_train, y_train) # evaluate each method start = time.time() explainer = getattr(methods, method_name)(model, X_train) build_time = time.time() - start start = time.time() explainer(X_test) explain_time = time.time() - start # we always normalize the explain time as though we were explaining 1000 samples # even if to reduce the runtime of the benchmark we do less (like just 100) method_reps.append(build_time + explain_time * 1000.0 / X_test.shape[0]) np.random.seed(old_seed) return None, np.mean(method_reps) def local_accuracy(X, y, model_generator, method_name): """ Local Accuracy transform = "identity" sort_order = 0 """ def score_map(true, pred): """ Computes local accuracy as the normalized standard deviation of numerical scores. """ return np.std(pred - true) / (np.std(true) + 1e-6) def score_function(X_train, X_test, y_train, y_test, attr_function, trained_model, random_state): return measures.local_accuracy( X_train, y_train, X_test, y_test, attr_function(X_test), model_generator, score_map, trained_model ) return None, __score_method(X, y, None, model_generator, score_function, method_name) def consistency_guarantees(X, y, model_generator, method_name): """ Consistency Guarantees transform = "identity" sort_order = 1 """ # 1.0 - perfect consistency # 0.8 - guarantees depend on sampling # 0.6 - guarantees depend on approximation # 0.0 - no garuntees guarantees = { "linear_shap_corr": 1.0, "linear_shap_ind": 1.0, "coef": 0.0, "kernel_shap_1000_meanref": 0.8, "sampling_shap_1000": 0.8, "random": 0.0, "saabas": 0.0, "tree_gain": 0.0, "tree_shap_tree_path_dependent": 1.0, "tree_shap_independent_200": 1.0, "mean_abs_tree_shap": 1.0, "lime_tabular_regression_1000": 0.8, "lime_tabular_classification_1000": 0.8, "maple": 0.8, "tree_maple": 0.8, "deep_shap": 0.6, "expected_gradients": 0.6 } return None, guarantees[method_name] def __mean_pred(true, pred): """ A trivial metric that is just is the output of the model. """ return np.mean(pred) def keep_positive_mask(X, y, model_generator, method_name, num_fcounts=11): """ Keep Positive (mask) xlabel = "Max fraction of features kept" ylabel = "Mean model output" transform = "identity" sort_order = 4 """ return __run_measure(measures.keep_mask, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred) def keep_negative_mask(X, y, model_generator, method_name, num_fcounts=11): """ Keep Negative (mask) xlabel = "Max fraction of features kept" ylabel = "Negative mean model output" transform = "negate" sort_order = 5 """ return __run_measure(measures.keep_mask, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred) def keep_absolute_mask__r2(X, y, model_generator, method_name, num_fcounts=11): """ Keep Absolute (mask) xlabel = "Max fraction of features kept" ylabel = "R^2" transform = "identity" sort_order = 6 """ return __run_measure(measures.keep_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score) def keep_absolute_mask__roc_auc(X, y, model_generator, method_name, num_fcounts=11): """ Keep Absolute (mask) xlabel = "Max fraction of features kept" ylabel = "ROC AUC" transform = "identity" sort_order = 6 """ return __run_measure(measures.keep_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score) def remove_positive_mask(X, y, model_generator, method_name, num_fcounts=11): """ Remove Positive (mask) xlabel = "Max fraction of features removed" ylabel = "Negative mean model output" transform = "negate" sort_order = 7 """ return __run_measure(measures.remove_mask, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred) def remove_negative_mask(X, y, model_generator, method_name, num_fcounts=11): """ Remove Negative (mask) xlabel = "Max fraction of features removed" ylabel = "Mean model output" transform = "identity" sort_order = 8 """ return __run_measure(measures.remove_mask, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred) def remove_absolute_mask__r2(X, y, model_generator, method_name, num_fcounts=11): """ Remove Absolute (mask) xlabel = "Max fraction of features removed" ylabel = "1 - R^2" transform = "one_minus" sort_order = 9 """ return __run_measure(measures.remove_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score) def remove_absolute_mask__roc_auc(X, y, model_generator, method_name, num_fcounts=11): """ Remove Absolute (mask) xlabel = "Max fraction of features removed" ylabel = "1 - ROC AUC" transform = "one_minus" sort_order = 9 """ return __run_measure(measures.remove_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score) def keep_positive_resample(X, y, model_generator, method_name, num_fcounts=11): """ Keep Positive (resample) xlabel = "Max fraction of features kept" ylabel = "Mean model output" transform = "identity" sort_order = 10 """ return __run_measure(measures.keep_resample, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred) def keep_negative_resample(X, y, model_generator, method_name, num_fcounts=11): """ Keep Negative (resample) xlabel = "Max fraction of features kept" ylabel = "Negative mean model output" transform = "negate" sort_order = 11 """ return __run_measure(measures.keep_resample, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred) def keep_absolute_resample__r2(X, y, model_generator, method_name, num_fcounts=11): """ Keep Absolute (resample) xlabel = "Max fraction of features kept" ylabel = "R^2" transform = "identity" sort_order = 12 """ return __run_measure(measures.keep_resample, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score) def keep_absolute_resample__roc_auc(X, y, model_generator, method_name, num_fcounts=11): """ Keep Absolute (resample) xlabel = "Max fraction of features kept" ylabel = "ROC AUC" transform = "identity" sort_order = 12 """ return __run_measure(measures.keep_resample, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score) def remove_positive_resample(X, y, model_generator, method_name, num_fcounts=11): """ Remove Positive (resample) xlabel = "Max fraction of features removed" ylabel = "Negative mean model output" transform = "negate" sort_order = 13 """ return __run_measure(measures.remove_resample, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred) def remove_negative_resample(X, y, model_generator, method_name, num_fcounts=11): """ Remove Negative (resample) xlabel = "Max fraction of features removed" ylabel = "Mean model output" transform = "identity" sort_order = 14 """ return __run_measure(measures.remove_resample, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred) def remove_absolute_resample__r2(X, y, model_generator, method_name, num_fcounts=11): """ Remove Absolute (resample) xlabel = "Max fraction of features removed" ylabel = "1 - R^2" transform = "one_minus" sort_order = 15 """ return __run_measure(measures.remove_resample, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score) def remove_absolute_resample__roc_auc(X, y, model_generator, method_name, num_fcounts=11): """ Remove Absolute (resample) xlabel = "Max fraction of features removed" ylabel = "1 - ROC AUC" transform = "one_minus" sort_order = 15 """ return __run_measure(measures.remove_resample, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score) def keep_positive_impute(X, y, model_generator, method_name, num_fcounts=11): """ Keep Positive (impute) xlabel = "Max fraction of features kept" ylabel = "Mean model output" transform = "identity" sort_order = 16 """ return __run_measure(measures.keep_impute, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred) def keep_negative_impute(X, y, model_generator, method_name, num_fcounts=11): """ Keep Negative (impute) xlabel = "Max fraction of features kept" ylabel = "Negative mean model output" transform = "negate" sort_order = 17 """ return __run_measure(measures.keep_impute, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred) def keep_absolute_impute__r2(X, y, model_generator, method_name, num_fcounts=11): """ Keep Absolute (impute) xlabel = "Max fraction of features kept" ylabel = "R^2" transform = "identity" sort_order = 18 """ return __run_measure(measures.keep_impute, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score) def keep_absolute_impute__roc_auc(X, y, model_generator, method_name, num_fcounts=11): """ Keep Absolute (impute) xlabel = "Max fraction of features kept" ylabel = "ROC AUC" transform = "identity" sort_order = 19 """ return __run_measure(measures.keep_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score) def remove_positive_impute(X, y, model_generator, method_name, num_fcounts=11): """ Remove Positive (impute) xlabel = "Max fraction of features removed" ylabel = "Negative mean model output" transform = "negate" sort_order = 7 """ return __run_measure(measures.remove_impute, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred) def remove_negative_impute(X, y, model_generator, method_name, num_fcounts=11): """ Remove Negative (impute) xlabel = "Max fraction of features removed" ylabel = "Mean model output" transform = "identity" sort_order = 8 """ return __run_measure(measures.remove_impute, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred) def remove_absolute_impute__r2(X, y, model_generator, method_name, num_fcounts=11): """ Remove Absolute (impute) xlabel = "Max fraction of features removed" ylabel = "1 - R^2" transform = "one_minus" sort_order = 9 """ return __run_measure(measures.remove_impute, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.r2_score) def remove_absolute_impute__roc_auc(X, y, model_generator, method_name, num_fcounts=11): """ Remove Absolute (impute) xlabel = "Max fraction of features removed" ylabel = "1 - ROC AUC" transform = "one_minus" sort_order = 9 """ return __run_measure(measures.remove_mask, X, y, model_generator, method_name, 0, num_fcounts, sklearn.metrics.roc_auc_score) def keep_positive_retrain(X, y, model_generator, method_name, num_fcounts=11): """ Keep Positive (retrain) xlabel = "Max fraction of features kept" ylabel = "Mean model output" transform = "identity" sort_order = 6 """ return __run_measure(measures.keep_retrain, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred) def keep_negative_retrain(X, y, model_generator, method_name, num_fcounts=11): """ Keep Negative (retrain) xlabel = "Max fraction of features kept" ylabel = "Negative mean model output" transform = "negate" sort_order = 7 """ return __run_measure(measures.keep_retrain, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred) def remove_positive_retrain(X, y, model_generator, method_name, num_fcounts=11): """ Remove Positive (retrain) xlabel = "Max fraction of features removed" ylabel = "Negative mean model output" transform = "negate" sort_order = 11 """ return __run_measure(measures.remove_retrain, X, y, model_generator, method_name, 1, num_fcounts, __mean_pred) def remove_negative_retrain(X, y, model_generator, method_name, num_fcounts=11): """ Remove Negative (retrain) xlabel = "Max fraction of features removed" ylabel = "Mean model output" transform = "identity" sort_order = 12 """ return __run_measure(measures.remove_retrain, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred) def __run_measure(measure, X, y, model_generator, method_name, attribution_sign, num_fcounts, summary_function): def score_function(fcount, X_train, X_test, y_train, y_test, attr_function, trained_model, random_state): if attribution_sign == 0: A = np.abs(__strip_list(attr_function(X_test))) else: A = attribution_sign * __strip_list(attr_function(X_test)) nmask = np.ones(len(y_test)) * fcount nmask = np.minimum(nmask, np.array(A >= 0).sum(1)).astype(np.int) return measure( nmask, X_train, y_train, X_test, y_test, A, model_generator, summary_function, trained_model, random_state ) fcounts = __intlogspace(0, X.shape[1], num_fcounts) return fcounts, __score_method(X, y, fcounts, model_generator, score_function, method_name) def batch_remove_absolute_retrain__r2(X, y, model_generator, method_name, num_fcounts=11): """ Batch Remove Absolute (retrain) xlabel = "Fraction of features removed" ylabel = "1 - R^2" transform = "one_minus" sort_order = 13 """ return __run_batch_abs_metric(measures.batch_remove_retrain, X, y, model_generator, method_name, sklearn.metrics.r2_score, num_fcounts) def batch_keep_absolute_retrain__r2(X, y, model_generator, method_name, num_fcounts=11): """ Batch Keep Absolute (retrain) xlabel = "Fraction of features kept" ylabel = "R^2" transform = "identity" sort_order = 13 """ return __run_batch_abs_metric(measures.batch_keep_retrain, X, y, model_generator, method_name, sklearn.metrics.r2_score, num_fcounts) def batch_remove_absolute_retrain__roc_auc(X, y, model_generator, method_name, num_fcounts=11): """ Batch Remove Absolute (retrain) xlabel = "Fraction of features removed" ylabel = "1 - ROC AUC" transform = "one_minus" sort_order = 13 """ return __run_batch_abs_metric(measures.batch_remove_retrain, X, y, model_generator, method_name, sklearn.metrics.roc_auc_score, num_fcounts) def batch_keep_absolute_retrain__roc_auc(X, y, model_generator, method_name, num_fcounts=11): """ Batch Keep Absolute (retrain) xlabel = "Fraction of features kept" ylabel = "ROC AUC" transform = "identity" sort_order = 13 """ return __run_batch_abs_metric(measures.batch_keep_retrain, X, y, model_generator, method_name, sklearn.metrics.roc_auc_score, num_fcounts) def __run_batch_abs_metric(metric, X, y, model_generator, method_name, loss, num_fcounts): def score_function(fcount, X_train, X_test, y_train, y_test, attr_function, trained_model): A_train = np.abs(__strip_list(attr_function(X_train))) nkeep_train = (np.ones(len(y_train)) * fcount).astype(np.int) #nkeep_train = np.minimum(nkeep_train, np.array(A_train > 0).sum(1)).astype(np.int) A_test = np.abs(__strip_list(attr_function(X_test))) nkeep_test = (np.ones(len(y_test)) * fcount).astype(np.int) #nkeep_test = np.minimum(nkeep_test, np.array(A_test >= 0).sum(1)).astype(np.int) return metric( nkeep_train, nkeep_test, X_train, y_train, X_test, y_test, A_train, A_test, model_generator, loss ) fcounts = __intlogspace(0, X.shape[1], num_fcounts) return fcounts, __score_method(X, y, fcounts, model_generator, score_function, method_name) _attribution_cache = {} def __score_method(X, y, fcounts, model_generator, score_function, method_name, nreps=10, test_size=100, cache_dir="/tmp"): """ Test an explanation method. """ try: pickle except NameError: assert False, "The 'dill' package could not be loaded and is needed for the benchmark!" old_seed = np.random.seed() np.random.seed(3293) # average the method scores over several train/test splits method_reps = [] data_hash = hashlib.sha256(__toarray(X).flatten()).hexdigest() + hashlib.sha256(__toarray(y)).hexdigest() for i in range(nreps): X_train, X_test, y_train, y_test = train_test_split(__toarray(X), y, test_size=test_size, random_state=i) # define the model we are going to explain, caching so we onlu build it once model_id = "model_cache__v" + "__".join([__version__, data_hash, model_generator.__name__])+".pickle" cache_file = os.path.join(cache_dir, model_id + ".pickle") if os.path.isfile(cache_file): with open(cache_file, "rb") as f: model = pickle.load(f) else: model = model_generator() model.fit(X_train, y_train) with open(cache_file, "wb") as f: pickle.dump(model, f) attr_key = "_".join([model_generator.__name__, method_name, str(test_size), str(nreps), str(i), data_hash]) def score(attr_function): def cached_attr_function(X_inner): if attr_key not in _attribution_cache: _attribution_cache[attr_key] = attr_function(X_inner) return _attribution_cache[attr_key] #cached_attr_function = lambda X: __check_cache(attr_function, X) if fcounts is None: return score_function(X_train, X_test, y_train, y_test, cached_attr_function, model, i) else: scores = [] for f in fcounts: scores.append(score_function(f, X_train, X_test, y_train, y_test, cached_attr_function, model, i)) return np.array(scores) # evaluate the method (only building the attribution function if we need to) if attr_key not in _attribution_cache: method_reps.append(score(getattr(methods, method_name)(model, X_train))) else: method_reps.append(score(None)) np.random.seed(old_seed) return np.array(method_reps).mean(0) # used to memoize explainer functions so we don't waste time re-explaining the same object __cache0 = None __cache_X0 = None __cache_f0 = None __cache1 = None __cache_X1 = None __cache_f1 = None def __check_cache(f, X): global __cache0, __cache_X0, __cache_f0 global __cache1, __cache_X1, __cache_f1 if X is __cache_X0 and f is __cache_f0: return __cache0 elif X is __cache_X1 and f is __cache_f1: return __cache1 else: __cache_f1 = __cache_f0 __cache_X1 = __cache_X0 __cache1 = __cache0 __cache_f0 = f __cache_X0 = X __cache0 = f(X) return __cache0 def __intlogspace(start, end, count): return np.unique(np.round(start + (end-start) * (np.logspace(0, 1, count, endpoint=True) - 1) / 9).astype(np.int)) def __toarray(X): """ Converts DataFrames to numpy arrays. """ if hasattr(X, "values"): X = X.values return X def __strip_list(attrs): """ This assumes that if you have a list of outputs you just want the second one (the second class). """ if isinstance(attrs, list): return attrs[1] else: return attrs def _fit_human(model_generator, val00, val01, val11): # force the model to fit a function with almost entirely zero background N = 1000000 M = 3 X = np.zeros((N,M)) X.shape y = np.ones(N) * val00 X[0:1000, 0] = 1 y[0:1000] = val01 for i in range(0,1000000,1000): X[i, 1] = 1 y[i] = val01 y[0] = val11 model = model_generator() model.fit(X, y) return model def _human_and(X, model_generator, method_name, fever, cough): assert np.abs(X).max() == 0, "Human agreement metrics are only for use with the human_agreement dataset!" # these are from the sickness_score mturk user study experiement X_test = np.zeros((100,3)) if not fever and not cough: human_consensus = np.array([0., 0., 0.]) X_test[0,:] = np.array([[0., 0., 1.]]) elif not fever and cough: human_consensus = np.array([0., 2., 0.]) X_test[0,:] = np.array([[0., 1., 1.]]) elif fever and cough: human_consensus = np.array([5., 5., 0.]) X_test[0,:] = np.array([[1., 1., 1.]]) # force the model to fit an XOR function with almost entirely zero background model = _fit_human(model_generator, 0, 2, 10) attr_function = getattr(methods, method_name)(model, X) methods_attrs = attr_function(X_test) return "human", (human_consensus, methods_attrs[0,:]) def human_and_00(X, y, model_generator, method_name): """ AND (false/false) This tests how well a feature attribution method agrees with human intuition for an AND operation combined with linear effects. This metric deals specifically with the question of credit allocation for the following function when all three inputs are true: if fever: +2 points if cough: +2 points if fever and cough: +6 points transform = "identity" sort_order = 0 """ return _human_and(X, model_generator, method_name, False, False) def human_and_01(X, y, model_generator, method_name): """ AND (false/true) This tests how well a feature attribution method agrees with human intuition for an AND operation combined with linear effects. This metric deals specifically with the question of credit allocation for the following function when all three inputs are true: if fever: +2 points if cough: +2 points if fever and cough: +6 points transform = "identity" sort_order = 1 """ return _human_and(X, model_generator, method_name, False, True) def human_and_11(X, y, model_generator, method_name): """ AND (true/true) This tests how well a feature attribution method agrees with human intuition for an AND operation combined with linear effects. This metric deals specifically with the question of credit allocation for the following function when all three inputs are true: if fever: +2 points if cough: +2 points if fever and cough: +6 points transform = "identity" sort_order = 2 """ return _human_and(X, model_generator, method_name, True, True) def _human_or(X, model_generator, method_name, fever, cough): assert np.abs(X).max() == 0, "Human agreement metrics are only for use with the human_agreement dataset!" # these are from the sickness_score mturk user study experiement X_test = np.zeros((100,3)) if not fever and not cough: human_consensus = np.array([0., 0., 0.]) X_test[0,:] = np.array([[0., 0., 1.]]) elif not fever and cough: human_consensus = np.array([0., 8., 0.]) X_test[0,:] = np.array([[0., 1., 1.]]) elif fever and cough: human_consensus = np.array([5., 5., 0.]) X_test[0,:] = np.array([[1., 1., 1.]]) # force the model to fit an XOR function with almost entirely zero background model = _fit_human(model_generator, 0, 8, 10) attr_function = getattr(methods, method_name)(model, X) methods_attrs = attr_function(X_test) return "human", (human_consensus, methods_attrs[0,:]) def human_or_00(X, y, model_generator, method_name): """ OR (false/false) This tests how well a feature attribution method agrees with human intuition for an OR operation combined with linear effects. This metric deals specifically with the question of credit allocation for the following function when all three inputs are true: if fever: +2 points if cough: +2 points if fever or cough: +6 points transform = "identity" sort_order = 0 """ return _human_or(X, model_generator, method_name, False, False) def human_or_01(X, y, model_generator, method_name): """ OR (false/true) This tests how well a feature attribution method agrees with human intuition for an OR operation combined with linear effects. This metric deals specifically with the question of credit allocation for the following function when all three inputs are true: if fever: +2 points if cough: +2 points if fever or cough: +6 points transform = "identity" sort_order = 1 """ return _human_or(X, model_generator, method_name, False, True) def human_or_11(X, y, model_generator, method_name): """ OR (true/true) This tests how well a feature attribution method agrees with human intuition for an OR operation combined with linear effects. This metric deals specifically with the question of credit allocation for the following function when all three inputs are true: if fever: +2 points if cough: +2 points if fever or cough: +6 points transform = "identity" sort_order = 2 """ return _human_or(X, model_generator, method_name, True, True) def _human_xor(X, model_generator, method_name, fever, cough): assert np.abs(X).max() == 0, "Human agreement metrics are only for use with the human_agreement dataset!" # these are from the sickness_score mturk user study experiement X_test = np.zeros((100,3)) if not fever and not cough: human_consensus = np.array([0., 0., 0.]) X_test[0,:] = np.array([[0., 0., 1.]]) elif not fever and cough: human_consensus =
np.array([0., 8., 0.])
numpy.array
# Resizing the testing images import os import warnings from multiprocessing import Pool import cv2 import numpy as np from PIL import Image from tqdm import tqdm def trim(im): """ Converts image to grayscale using cv2, then computes binary matrix of the pixels that are above a certain threshold, then takes out the first row where a certain percetage of the pixels are above the threshold will be the first clip point. Same idea for col, max row, max col. """ percentage = 0.02 img = np.array(im) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) im = img_gray > 0.1 *
np.mean(img_gray[img_gray != 0])
numpy.mean
"""Implementation of Metropolis-Hasting algorithm.""" import typing as t import numpy as np def symm_parallel_metropolis_hasting( initial_theta: t.Union[float, np.ndarray], num_samples: int, log_target: t.Callable[ [t.Union[float, np.ndarray], t.Union[float, np.ndarray]], float], proposal_sampler: t. Callable[[t.Union[float, np.ndarray], t.Union[float, np.ndarray]], t. Union[float, np.ndarray]], betas: np.ndarray, discard_warm_up: bool = True, warm_up_frac: float = 0.5, verbose: bool = False, return_acceptance_rate: bool = False, random_state: t.Optional[int] = None) -> np.ndarray: """Symmetric case of Metropolis-Hasting algorithm.""" if num_samples <= 0: raise ValueError("'num_samples' must be a positive value.") if discard_warm_up and not 0 <= warm_up_frac < 1: raise ValueError("'warm_up_frac' must be in [0.0, 1.0) range.") if random_state is not None: np.random.seed(random_state) theta = np.array([np.copy(initial_theta) for _ in np.arange(betas.size)], dtype=np.float) theta_log_targ = np.array([ log_target(cur_theta, cur_beta) for cur_theta, cur_beta in zip(theta, betas) ], dtype=np.float) if isinstance(initial_theta, (int, float, np.number)): thetas = np.zeros((num_samples, betas.size), dtype=np.float) else: thetas = np.zeros((num_samples, betas.size, initial_theta.size), dtype=np.float) hits = np.zeros(betas.size) swaps = np.zeros(betas.size - 1) swaps_hits = np.zeros(betas.size - 1) for ind_inst in np.arange(num_samples): for ind_beta, cur_beta in enumerate(betas): theta_proposed = proposal_sampler(theta[ind_beta], cur_beta) log_theta_prop = log_target(theta_proposed, cur_beta) if np.log(np.random.uniform( 0, 1)) < log_theta_prop - theta_log_targ[ind_beta]: theta[ind_beta] = theta_proposed theta_log_targ[ind_beta] = log_theta_prop hits[ind_beta] += 1 swap_ind = np.random.randint(betas.size - 1) swaps[swap_ind] += 1 aux = log_target(theta[swap_ind], betas[swap_ind + 1]) + log_target( theta[swap_ind + 1], betas[swap_ind]) aux -= theta_log_targ[swap_ind] + theta_log_targ[swap_ind + 1] if np.log(np.random.uniform(0, 1)) < aux: theta[swap_ind], theta[swap_ind + 1] = theta[swap_ind + 1], theta[swap_ind] theta_log_targ[swap_ind] = log_target(theta[swap_ind], betas[swap_ind]) theta_log_targ[swap_ind + 1] = log_target(theta[swap_ind + 1], betas[swap_ind + 1]) swaps_hits[swap_ind] += 1 thetas[ind_inst] = theta acceptance_rate = hits / num_samples swap_acceptance_rate = np.zeros(swaps_hits.size) swap_acceptance_rate[swaps > 0] = swaps_hits / swaps if verbose: print("Acceptance rate: {}".format(acceptance_rate)) print("Theoretically expected: [0.23, 0.50] - ", np.logical_and(acceptance_rate >= 0.23, acceptance_rate <= 0.50)) print("Swap (chains j and j+1) acceptance rate: {}".format( swap_acceptance_rate)) if discard_warm_up: ret_thetas = thetas[int(warm_up_frac * num_samples):] else: ret_thetas = thetas if return_acceptance_rate: return ret_thetas, acceptance_rate return ret_thetas def metropolis_hasting( initial_theta: t.Union[float, np.ndarray], num_samples: int, log_target: t.Callable[[t.Union[float, np.ndarray]], float], proposal_sampler: t.Callable[[t.Union[float, np.ndarray]], t. Union[float, np.ndarray]], proposal_log_density: t.Optional[t.Callable[ [t.Union[float, np.ndarray], t.Union[float, np. ndarray]], float]] = None, discard_warm_up: bool = True, warm_up_frac: float = 0.5, verbose: bool = False, return_acceptance_rate: bool = False, random_state: t.Optional[int] = None) -> np.ndarray: """Symmetric case of Metropolis-Hasting algorithm.""" if num_samples <= 0: raise ValueError("'num_samples' must be a positive value.") if discard_warm_up and not 0 <= warm_up_frac < 1: raise ValueError("'warm_up_frac' must be in [0.0, 1.0) range.") if random_state is not None: np.random.seed(random_state) theta = initial_theta theta_log_targ = log_target(theta) if isinstance(initial_theta, (int, float, np.number)): thetas = np.zeros(num_samples) else: thetas = np.zeros((num_samples, initial_theta.size)) hits = 0 for ind in np.arange(num_samples): theta_proposed = proposal_sampler(theta) log_theta_prop = log_target(theta_proposed) q_term = 0.0 if proposal_log_density is not None: q_term = (proposal_log_density(theta, theta_proposed) - proposal_log_density(theta_proposed, theta)) if np.log(np.random.uniform( 0, 1)) < log_theta_prop - theta_log_targ + q_term: theta = theta_proposed theta_log_targ = log_theta_prop hits += 1 thetas[ind] = theta acceptance_rate = hits / num_samples if verbose: print("Acceptance rate: {}".format(acceptance_rate)) print("Theoretically expected: [0.23, 0.50] (results is {}.)".format( "optimal" if 0.23 <= acceptance_rate <= 0.50 else "not optimal")) if discard_warm_up: ret_thetas = thetas[int(warm_up_frac * num_samples):] else: ret_thetas = thetas if return_acceptance_rate: return ret_thetas, acceptance_rate return ret_thetas def symm_metropolis_hasting( initial_theta: float, num_samples: int, log_target: t.Callable[[float], float], proposal_sampler: t.Callable[[float], float], discard_warm_up: bool = True, warm_up_frac: float = 0.5, verbose: bool = False, return_acceptance_rate: bool = False, random_state: t.Optional[int] = None) -> np.ndarray: """Symmetric case of Metropolis-Hasting algorithm.""" ret = metropolis_hasting( initial_theta=initial_theta, num_samples=num_samples, log_target=log_target, proposal_sampler=proposal_sampler, proposal_log_density=None, discard_warm_up=discard_warm_up, warm_up_frac=warm_up_frac, verbose=verbose, return_acceptance_rate=return_acceptance_rate, random_state=random_state) return ret def _experiment_01() -> None: """Experiment 01.""" import matplotlib.pyplot as plt import scipy.stats random_seed = 16 np.random.seed(random_seed) laplace_dist = scipy.stats.laplace(loc=0.0, scale=1.0 / (2**0.5)) test_vals = np.linspace(-5, 5, 500) for plot_id, scale in enumerate([0.1, 2.5, 10, 50]): thetas = symm_metropolis_hasting( initial_theta=0.0, num_samples=10000, log_target=lambda x: -np.abs(x), proposal_sampler= lambda theta: theta + np.random.normal(loc=0.0, scale=scale), discard_warm_up=True, warm_up_frac=0.5, verbose=True, random_state=random_seed) plt.subplot(4, 2, plot_id * 2 + 1) plt.plot(thetas[::10], label=str(scale)) plt.legend() plt.subplot(4, 2, plot_id * 2 + 2) plt.plot(test_vals, laplace_dist.pdf(test_vals)) plt.hist(thetas[::10], bins=128, density=True, label=str(scale)) plt.legend() plt.show() def _experiment_02() -> None: """Experiment 02.""" import matplotlib.pyplot as plt def bimodal_dist(theta, gamma): return np.exp(-gamma * np.square(np.square(theta) - 1)) def log_bimodal_dist(theta, gamma): return -gamma * np.square(np.square(theta) - 1) random_seed = 16 np.random.seed(random_seed) betas = np.logspace(-3, 0, 5) print("Betas:", betas) gamma = 64 samples = symm_parallel_metropolis_hasting( initial_theta=1, num_samples=10000, log_target=lambda x, beta: beta * log_bimodal_dist(x, gamma), proposal_sampler= lambda x, beta: x + 0.1 / np.sqrt(beta) * np.random.randn(), betas=betas, verbose=True, random_state=16) test_vals = np.linspace(-3, 3, 100) plt.hist(samples[:, -1], bins=64, density=True, label='MCMC MH samples') plt.plot( test_vals, bimodal_dist(test_vals, gamma), label='(Unnormalized) target') plt.legend() plt.show() def _experiment_03(): """3rd experiment.""" import matplotlib.pyplot as plt def generic_target(x, mu_vec): aux_1 = x - mu_vec aux_2 = np.arange(1, 1 + mu_vec.shape[0]) return np.sum(np.exp(-aux_2 / 3 *
np.sum(aux_1 * aux_1, axis=1)
numpy.sum
#!/usr/bin/python3 from sys import argv from os.path import isdir, exists from os import listdir, makedirs, system from pipes import quote import numpy as np import scipy.io.wavfile as wav import tensorflow as tf class Configuration(object): dataset_directory = None model_iterations = None sampling_frequency = None clip_length = None hidden_dimensions = None epochs = None def __init__(self): self.dataset_directory = "./dataset/test/" self.model_iterations = 50 self.sampling_frequency = 44100 self.clip_length = 10 self.hidden_dimensions = 1024 self.batch_size = 5 self.epochs = 25 @staticmethod def help(): print("usage: gruvii.py {arguments}") print("{arguments}\t\t\t\t{default value}") print("\t--help") print("\t-d\t--dataset-directory\t./dataset/test/") print("\t-i\t--iterations\t\t50") print("\t-s\t--sampling-frequency\t44100") print("\t-c\t--clip-length\t\t10") print("\t-h\t--hidden-dimensions\t1024") print("\t-b\t--batch-size\t\t5") print("\t-e\t--epochs\t\t25") exit() @staticmethod def parse(): c = Configuration() i = 0 while i < len(argv): a = argv[i] if a in ["--help"]: Configuration.help() elif a in ["-d", "--dataset-directory"]: c.dataset_directory = argv[i + 1] elif a in ["-i", "--iterations"]: c.model_iterations = int(argv[i + 1]) elif a in ["-s", "--sampling-frequency"]: c.sampling_frequency = int(argv[i + 1]) elif a in ["-c", "--clip-length"]: c.clip_length = int(argv[i + 1]) elif a in ["-h", "--hidden-dimensions"]: c.hidden_dimensions = int(argv[i + 1]) elif a in ["-b", "--batch-size"]: c.batch_size = int(argv[i + 1]) elif a in ["-e", "--epochs"]: c.epochs = int(argv[i + 1]) i += 1 return c class Trainer(object): config = None block_size = None max_seq_length = None def __init__(self, config): self.config = config self._calc() def _calc(self): self.block_size = self.config.sampling_frequency / 4 self.max_seq_length = int(round((self.config.sampling_frequency * self.config.clip_length) / self.block_size)) def prepare_data(self): print("preparing data") nd = self.convert_folder_to_wav(self.config.dataset_directory, self.config.sampling_frequency) print("wrote waves to", nd) if self.config.dataset_directory.endswith("/"): of = self.config.dataset_directory.split("/")[-2] else: of = self.config.dataset_directory.split("/")[-1] print("output file prefix:", of) self.convert_wav_files_to_nptensor(nd, self.block_size, self.max_seq_length, of) return of @staticmethod def convert_folder_to_wav(directory, sample_rate=44100): od = directory + "wave/" if isdir(od): return od for file in listdir(directory): full_filename = directory + file if file.endswith('.mp3'): Trainer.convert_mp3_to_wav(filename=full_filename, sample_frequency=sample_rate) if file.endswith('.flac'): Trainer.convert_flac_to_wav(filename=full_filename, sample_frequency=sample_rate) return od @staticmethod def convert_flac_to_wav(filename, sample_frequency): new_path, tmp_path, orig_filename = Trainer.filter_ext(".flac", filename) new_path += 'wave' if not exists(new_path): makedirs(new_path) new_name = new_path + '/' + orig_filename + '.wav' cmd = 'sox {0} {1} channels 1 rate {2}'.format(quote(filename), quote(new_name), sample_frequency) system(cmd) return new_name @staticmethod def filter_ext(ext, filename): ext = filename[-len(ext):] if ext != ext: return files = filename.split('/') orig_filename = files[-1][0:-len(ext)] new_path = '' if filename[0] == '/': new_path = '/' for i in range(len(files) - 1): new_path += files[i] + '/' tmp_path = new_path + 'tmp' new_path += 'wave' return new_path, tmp_path, orig_filename @staticmethod def convert_mp3_to_wav(filename, sample_frequency): new_path, tmp_path, orig_filename = Trainer.filter_ext(".mp3", filename) if not exists(new_path): makedirs(new_path) if not exists(tmp_path): makedirs(tmp_path) filename_tmp = tmp_path + '/' + orig_filename + '.mp3' new_name = new_path + '/' + orig_filename + '.wav' sample_freq_str = "{0:.1f}".format(float(sample_frequency) / 1000.0) cmd = 'lame -a -m m {0} {1}'.format(quote(filename), quote(filename_tmp)) system(cmd) cmd = 'lame --decode {0} {1} --resample {2}'.format(quote(filename_tmp), quote(new_name), sample_freq_str) system(cmd) return new_name @staticmethod def read_wav_as_np(filename): data = wav.read(filename) np_arr = data[1].astype('float32') / 32767.0 # Normalize 16-bit input to [-1, 1] range np_arr = np.array(np_arr) return np_arr, data[0] @staticmethod def convert_np_audio_to_sample_blocks(song_np, block_size): song_np = song_np.astype('int') block_lists = [] total_samples = song_np.shape[0] num_samples_so_far = 0 while num_samples_so_far < total_samples: block = song_np[num_samples_so_far:num_samples_so_far + int(block_size)] if block.shape[0] < block_size: padding = np.zeros((int(block_size) - block.shape[0])) block = np.concatenate((block, padding)) block_lists.append(block) num_samples_so_far += block_size num_samples_so_far = int(num_samples_so_far) return block_lists @staticmethod def time_blocks_to_fft_blocks(blocks_time_domain): fft_blocks = [] for block in blocks_time_domain: fft_block = np.fft.fft(block) new_block = np.concatenate((np.real(fft_block), np.imag(fft_block))) fft_blocks.append(new_block) return fft_blocks @staticmethod def load_training_example(filename, block_size=2048, use_time_domain=False): data, bitrate = Trainer.read_wav_as_np(filename) x_t = Trainer.convert_np_audio_to_sample_blocks(data, block_size) y_t = x_t[1:] y_t.append(np.zeros(int(block_size))) # Add special end block composed of all zeros if use_time_domain: return x_t, y_t x = Trainer.time_blocks_to_fft_blocks(x_t) y = Trainer.time_blocks_to_fft_blocks(y_t) return x, y @staticmethod def convert_wav_files_to_nptensor(directory, block_size, max_seq_len, out_file, max_files=20, use_time_domain=False): files = [] for file in listdir(directory): if file.endswith('.wav'): files.append(directory + file) print("converting", files, "to nptensors") chunks_x = [] chunks_y = [] num_files = len(files) if num_files > max_files: num_files = max_files for file_idx in range(num_files): file = files[file_idx] print('Processing: ', (file_idx + 1), '/', num_files) print('Filename: ', file) x, y = Trainer.load_training_example(file, block_size, use_time_domain=use_time_domain) cur_seq = 0 total_seq = len(x) print("total_seq:", total_seq, "max_seq_len:", max_seq_len) while cur_seq + max_seq_len < total_seq: chunks_x.append(x[cur_seq:cur_seq + max_seq_len]) chunks_y.append(y[cur_seq:cur_seq + max_seq_len]) cur_seq += max_seq_len num_examples = len(chunks_x) num_dims_out = block_size * 2 if use_time_domain: num_dims_out = block_size out_shape = (num_examples, max_seq_len, int(num_dims_out)) x_data =
np.zeros(out_shape, "i")
numpy.zeros
import copy import os.path import shutil from typing import Tuple import mdtraj import numpy import openmm import pytest from openff.toolkit.topology import Molecule, Topology from openff.utilities import temporary_cd from openmm import unit from openmmtools import cache, mcmc, multistate from absolv.factories.alchemical import OpenMMAlchemicalFactory from absolv.factories.coordinate import PACKMOLCoordinateFactory from absolv.models import ( EquilibriumProtocol, MinimizationProtocol, SimulationProtocol, State, SwitchingProtocol, ) from absolv.simulations import ( AlchemicalOpenMMSimulation, EquilibriumOpenMMSimulation, NonEquilibriumOpenMMSimulation, RepexAlchemicalOpenMMSimulation, _BaseOpenMMSimulation, _OpenMMTopology, ) from absolv.tests import BaseTemporaryDirTest, all_close, is_close from absolv.utilities.openmm import ( array_to_vectors, extract_coordinates, set_coordinates, ) def _build_alchemical_lj_system( n_alchemical: int, n_persistent: int, epsilon: unit.Quantity = 125.7 * unit.kelvin * unit.MOLAR_GAS_CONSTANT_R, sigma: unit.Quantity = 3.345 * unit.angstrom, ) -> openmm.System: system = openmm.System() force = openmm.NonbondedForce() force.setNonbondedMethod(openmm.NonbondedForce.CutoffPeriodic) force.setCutoffDistance(6.0 * unit.angstrom) force.setUseDispersionCorrection(False) system.addForce(force) for i in range(n_alchemical + n_persistent): system.addParticle(39.948) force.addParticle(0.0, sigma, epsilon) return OpenMMAlchemicalFactory.generate( system, [{i} for i in range(n_alchemical)], [{i} for i in range(n_alchemical, n_alchemical + n_persistent)], ) @pytest.fixture(scope="module") def _alchemical_argon_system() -> Tuple[Topology, unit.Quantity, openmm.System]: topology, coordinates = PACKMOLCoordinateFactory.generate( [("[Ar]", 100)], target_density=1.0 * unit.grams / unit.milliliters ) system = _build_alchemical_lj_system(1, 99) system.setDefaultPeriodicBoxVectors(*array_to_vectors(topology.box_vectors)) return topology, coordinates, system @pytest.fixture() def alchemical_argon_system( _alchemical_argon_system, ) -> Tuple[Topology, unit.Quantity, openmm.System]: return copy.deepcopy(_alchemical_argon_system) @pytest.fixture() def alchemical_argon_eq_simulation(alchemical_argon_system): topology, coordinates, system = alchemical_argon_system protocol = EquilibriumProtocol( lambda_sterics=[1.0, 0.0], lambda_electrostatics=[1.0, 1.0], minimization_protocol=MinimizationProtocol(max_iterations=1), equilibration_protocol=SimulationProtocol( n_iterations=1, n_steps_per_iteration=1 ), production_protocol=SimulationProtocol(n_iterations=1, n_steps_per_iteration=1), sampler="independent", ) simulation = EquilibriumOpenMMSimulation( system, coordinates, topology.box_vectors, State(temperature=85.5, pressure=1.0), protocol, 1, "CPU", ) yield simulation del simulation._context @pytest.fixture() def repex_argon_eq_simulation(alchemical_argon_system): topology, coordinates, system = alchemical_argon_system protocol = EquilibriumProtocol( lambda_sterics=[1.0, 1.0, 0.0], lambda_electrostatics=[1.0, 0.0, 0.0], minimization_protocol=MinimizationProtocol(max_iterations=1), equilibration_protocol=SimulationProtocol( n_iterations=1, n_steps_per_iteration=1 ), production_protocol=SimulationProtocol(n_iterations=2, n_steps_per_iteration=3), sampler="repex", ) simulation = RepexAlchemicalOpenMMSimulation( system, coordinates, topology.box_vectors, State(temperature=85.5, pressure=1.0), protocol, "Reference", ) yield simulation @pytest.fixture() def alchemical_argon_neq_simulation(alchemical_argon_system): topology, coordinates, system = alchemical_argon_system protocol = SwitchingProtocol( n_electrostatic_steps=1, n_steps_per_electrostatic_step=1, n_steric_steps=2, n_steps_per_steric_step=2, timestep=2.0 * unit.femtosecond, thermostat_friction=1.0 / unit.picosecond, ) simulation = NonEquilibriumOpenMMSimulation( system, State(temperature=85.5, pressure=1.0), coordinates, topology.box_vectors, coordinates, topology.box_vectors, protocol, "Reference", ) yield simulation del simulation._context class TestBaseOpenMMSimulation(BaseTemporaryDirTest): def test_init(self, alchemical_argon_system): topology, coordinates, system = alchemical_argon_system simulation = _BaseOpenMMSimulation( system, coordinates, topology.box_vectors, State(temperature=85.5, pressure=0.5), "CPU", ) assert isinstance(simulation._context, openmm.Context) context_coordinates, context_box_vectors = extract_coordinates( simulation._context ) assert all_close(context_coordinates, coordinates) assert all_close(context_box_vectors, topology.box_vectors) assert isinstance(simulation._mock_topology, _OpenMMTopology) assert simulation._mock_topology.atoms() == list(range(100)) expected_beta = 1.0 / (85.5 * unit.kelvin * unit.BOLTZMANN_CONSTANT_kB) assert is_close(expected_beta, simulation._beta) expected_pressure = 0.5 * unit.atmosphere assert is_close(expected_pressure, simulation._pressure) def test_current_state(self, alchemical_argon_eq_simulation): current_state = alchemical_argon_eq_simulation.current_state assert isinstance(current_state, openmm.State) def test_save_restore_state(self, alchemical_argon_eq_simulation): initial_coordinates, initial_box_vectors = extract_coordinates( alchemical_argon_eq_simulation._context ) assert alchemical_argon_eq_simulation._restore_state("test") is False alchemical_argon_eq_simulation._save_state("test") assert os.path.isfile("test-state.xml") set_coordinates( alchemical_argon_eq_simulation._context, initial_coordinates + 1.0 * unit.angstrom, initial_box_vectors, ) assert alchemical_argon_eq_simulation._restore_state("test") is True coordinates, box_vectors = extract_coordinates( alchemical_argon_eq_simulation._context ) assert all_close(initial_coordinates, coordinates) assert all_close(initial_box_vectors, box_vectors) def test_compute_reduced_potential(self): topology = Topology.from_molecules([Molecule.from_smiles("[Ar]")] * 2) topology.box_vectors = (numpy.eye(3) * 12.0) * unit.angstrom system = _build_alchemical_lj_system( 2, 0, 1.0 * unit.kilojoules_per_mole, 1.0 * unit.angstrom ) coordinates = numpy.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]]) * unit.angstrom simulation = _BaseOpenMMSimulation( system, coordinates, topology.box_vectors, State(temperature=3.0 * unit.kelvin, pressure=4.0 * unit.atmosphere), "CPU", ) reduced_potential = simulation._compute_reduced_potential() expected_energy = 4.0 * (2.0 ** -12 - 2.0 ** -6) * unit.kilojoules_per_mole expected_volume = (12.0 * unit.angstrom) ** 3 expected_reduced = expected_energy / ( 3.0 * unit.kelvin * unit.MOLAR_GAS_CONSTANT_R ) expected_reduced += ( (4.0 * unit.atmosphere) * expected_volume / (3.0 * unit.kelvin * unit.BOLTZMANN_CONSTANT_kB) ) assert is_close(reduced_potential, expected_reduced) class TestEquilibriumOpenMMSimulation(BaseTemporaryDirTest): def test_init(self, alchemical_argon_system): topology, coordinates, system = alchemical_argon_system protocol = EquilibriumProtocol( lambda_sterics=[1.0, 0.0], lambda_electrostatics=[1.0, 1.0], sampler="independent", ) simulation = EquilibriumOpenMMSimulation( system, coordinates, topology.box_vectors, State(temperature=85.5, pressure=1.0), protocol, 1, "CPU", ) # Sanity check super was called assert isinstance(simulation._context, openmm.Context) assert simulation._protocol == protocol assert numpy.isclose(simulation._lambda_sterics, 0.0) assert numpy.isclose(simulation._lambda_electrostatics, 1.0) assert numpy.isclose(simulation._context.getParameter("lambda_sterics"), 0.0) assert numpy.isclose( simulation._context.getParameter("lambda_electrostatics"), 1.0 ) def test_minimize(self, alchemical_argon_eq_simulation): initial_coordinates, initial_box_vectors = extract_coordinates( alchemical_argon_eq_simulation._context ) initial_energy = alchemical_argon_eq_simulation._context.getState( getEnergy=True ).getPotentialEnergy() assert not os.path.isfile("minimized-state.xml") alchemical_argon_eq_simulation._minimize() final_energy = alchemical_argon_eq_simulation._context.getState( getEnergy=True ).getPotentialEnergy() assert final_energy < initial_energy assert os.path.isfile("minimized-state.xml") set_coordinates( alchemical_argon_eq_simulation._context, initial_coordinates, initial_box_vectors, ) alchemical_argon_eq_simulation._minimize() final_energy_2 = alchemical_argon_eq_simulation._context.getState( getEnergy=True ).getPotentialEnergy() # The minimization should have check-pointed so the energy should # be the same. assert is_close(final_energy, final_energy_2) def test_simulate(self, alchemical_argon_system, alchemical_argon_eq_simulation): topology, coordinates, _ = alchemical_argon_system topology.to_file("topology.pdb", coordinates) initial_energy = alchemical_argon_eq_simulation._context.getState( getEnergy=True ).getPotentialEnergy() assert not os.path.isfile("test-final-state.xml") assert not os.path.isfile("test-chk-state.xml") alchemical_argon_eq_simulation._simulate( alchemical_argon_eq_simulation._protocol.equilibration_protocol, "test" ) final_energy_1 = alchemical_argon_eq_simulation._context.getState( getEnergy=True ).getPotentialEnergy() assert not is_close(final_energy_1, initial_energy) assert not os.path.isfile("test-chk-state.xml") # Should have been cleaned-up assert os.path.isfile("test-trajectory.dcd") assert os.path.isfile("test-final-state.xml") trajectory_1 = mdtraj.load_dcd("test-trajectory.dcd", "topology.pdb") assert len(trajectory_1) == 1 shutil.move("test-final-state.xml", "test-chk-state.xml") alchemical_argon_eq_simulation._simulate( SimulationProtocol(n_iterations=2, n_steps_per_iteration=1), "test" ) final_energy_2 = alchemical_argon_eq_simulation._context.getState( getEnergy=True ).getPotentialEnergy() assert not is_close(final_energy_2, final_energy_1) trajectory_2 = mdtraj.load_dcd("test-trajectory.dcd", "topology.pdb") assert len(trajectory_2) == 2 assert all_close(trajectory_1.xyz[0], trajectory_2.xyz[0]) final_energy_3 = alchemical_argon_eq_simulation._context.getState( getEnergy=True ).getPotentialEnergy() assert is_close(final_energy_2, final_energy_3) def test_run(self, alchemical_argon_eq_simulation): alchemical_argon_eq_simulation.run(os.path.curdir) assert os.path.isfile("minimized-state.xml") assert os.path.isfile("equilibration-final-state.xml") assert os.path.isfile("production-final-state.xml") class TestAlchemicalOpenMMSimulation(BaseTemporaryDirTest): def test_init(self, alchemical_argon_system): topology, coordinates, system = alchemical_argon_system protocol = EquilibriumProtocol( lambda_sterics=[1.0, 0.0], lambda_electrostatics=[1.0, 1.0], sampler="independent", ) simulation = AlchemicalOpenMMSimulation( system, coordinates, topology.box_vectors, State(temperature=85.5, pressure=0.5), protocol, 1, "CPU", ) # Sanity check super was called assert isinstance(simulation._context, openmm.Context) def test_begin_end_iteration(self): topology = Topology.from_molecules([Molecule.from_smiles("[Ar]")] * 2) system = _build_alchemical_lj_system( 1, 1, 1.0 * unit.kilojoules_per_mole, 1.0 * unit.angstrom ) [*system.getForces()][0].setNonbondedMethod( openmm.NonbondedForce.CutoffNonPeriodic ) coordinates = numpy.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]]) * unit.angstrom simulation = AlchemicalOpenMMSimulation( system, coordinates, topology.box_vectors, State(temperature=3.0 * unit.kelvin, pressure=None), EquilibriumProtocol( lambda_sterics=[1.0, 0.0], lambda_electrostatics=[1.0, 1.0], sampler="independent", ), 0, "CPU", ) expected_reduced_potential = simulation._compute_reduced_potential() simulation._begin_iteration(0, "test") assert simulation._energies_file is None simulation._begin_iteration(0, "production") assert simulation._energies_file is not None simulation._end_iteration(0, "test") assert simulation._energies_file is not None simulation._end_iteration(0, "production") assert os.path.isfile("lambda-potentials.csv") lambda_potentials = numpy.genfromtxt("lambda-potentials.csv", delimiter=" ") assert lambda_potentials.shape == (2,) assert all_close( lambda_potentials, numpy.array([expected_reduced_potential, 0.0]) ) class TestRepexAlchemicalOpenMMSimulation(BaseTemporaryDirTest): def test_init(self, alchemical_argon_system): topology, coordinates, system = alchemical_argon_system protocol = EquilibriumProtocol( lambda_sterics=[1.0, 0.0], lambda_electrostatics=[1.0, 1.0], sampler="repex" ) simulation = RepexAlchemicalOpenMMSimulation( system, coordinates, topology.box_vectors, State(temperature=85.5, pressure=0.5), protocol, "CPU", ) assert simulation._system == system assert simulation._coordinates.shape == coordinates.shape assert simulation._box_vectors.shape == topology.box_vectors.shape assert numpy.isclose(simulation._state.temperature, 85.5) assert numpy.isclose(simulation._state.pressure, 0.5) assert simulation._platform == "CPU" assert simulation._protocol == protocol def test_setup_sampler( self, alchemical_argon_system, repex_argon_eq_simulation, tmpdir ): topology, coordinates, _ = alchemical_argon_system expected_state_coordinates = [ (coordinates + i * unit.angstrom, topology.box_vectors) for i in range(3) ] simulation = repex_argon_eq_simulation._setup_sampler( expected_state_coordinates, storage_path=os.path.join(tmpdir, "storage.nc") ) assert cache.global_context_cache.platform.getName() == "Reference" assert simulation.n_states == 3 assert simulation.n_replicas == 3 assert ( simulation.number_of_iterations == repex_argon_eq_simulation._protocol.production_protocol.n_iterations ) for mcmc_move in simulation.mcmc_moves: assert isinstance(mcmc_move, mcmc.LangevinDynamicsMove) assert numpy.isclose( mcmc_move.timestep.value_in_unit(unit.femtosecond), repex_argon_eq_simulation._protocol.production_protocol.timestep, ) assert numpy.isclose( mcmc_move.collision_rate.value_in_unit(unit.picosecond ** -1), repex_argon_eq_simulation._protocol.production_protocol.thermostat_friction, ) assert ( mcmc_move.n_steps == repex_argon_eq_simulation._protocol.production_protocol.n_steps_per_iteration ) for sampler_state, (expected_coordinates, expected_box_vectors) in zip( simulation.sampler_states, expected_state_coordinates ): assert numpy.allclose( expected_coordinates.value_in_unit(unit.angstrom), sampler_state.positions.value_in_unit(unit.angstrom), ) assert numpy.allclose( expected_box_vectors.value_in_unit(unit.angstrom), sampler_state.box_vectors.value_in_unit(unit.angstrom), ) for thermodynamic_state, expected_lambda_sterics, expected_lambda_elec in zip( simulation._thermodynamic_states, repex_argon_eq_simulation._protocol.lambda_sterics, repex_argon_eq_simulation._protocol.lambda_electrostatics, ): assert numpy.isclose( thermodynamic_state.temperature.value_in_unit(unit.kelvin), 85.5 ) assert len(thermodynamic_state._composable_states) == 1 assert numpy.isclose( thermodynamic_state._composable_states[0].lambda_sterics, expected_lambda_sterics, ) assert numpy.isclose( thermodynamic_state._composable_states[0].lambda_electrostatics, expected_lambda_elec, ) assert os.path.isfile(os.path.join(tmpdir, "storage.nc")) def test_save_reduced_potentials(self, repex_argon_eq_simulation, tmpdir): with temporary_cd(str(tmpdir)): reporter = multistate.MultiStateReporter( "storage.nc", checkpoint_interval=1, open_mode="w" ) reporter.write_energies( numpy.arange(9).reshape((3, 3)), numpy.eye(3), numpy.zeros((3, 0)), 0 ) reporter.write_replica_thermodynamic_states([0, 1, 2], 0) reporter.write_energies( numpy.arange(9).reshape((3, 3)), numpy.eye(3), numpy.zeros((3, 0)), 1 ) reporter.write_replica_thermodynamic_states([0, 1, 2], 1) reporter.write_energies( numpy.arange(9).reshape((3, 3)) + 9.0, numpy.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]]), numpy.zeros((3, 0)), 2, ) reporter.write_replica_thermodynamic_states([2, 1, 0], 2) reporter.write_last_iteration(2) reporter.close() repex_argon_eq_simulation._save_reduced_potentials("storage.nc") saved_energies = numpy.stack( [ numpy.genfromtxt( os.path.join(f"state-{state_index}", "lambda-potentials.csv") ) for state_index in range(3) ] ) assert saved_energies.shape == (3, 2, 3) # [iter][state_idx][state_e_idx] expected_energies = numpy.array( [ [[0.0, 1.0, 2.0], [15.0, 16.0, 17.0]], [[3.0, 4.0, 5.0], [12.0, 13.0, 14.0]], [[6.0, 7.0, 8.0], [9.0, 10.0, 11.0]], ] ) assert numpy.allclose(saved_energies, expected_energies) def test_run(self, repex_argon_eq_simulation, tmpdir): with temporary_cd(str(tmpdir)): repex_argon_eq_simulation.run("") expected_files = [ "minimized-state.xml", "equilibration-final-state.xml", "production-storage.nc", "production-storage_checkpoint.nc", os.path.join("state-0", "lambda-potentials.csv"), os.path.join("state-1", "lambda-potentials.csv"), os.path.join("state-2", "lambda-potentials.csv"), ] assert all( os.path.isfile(expected_file) for expected_file in expected_files ) class TestNonEquilibriumOpenMMSimulation(BaseTemporaryDirTest): def test_init(self, alchemical_argon_system): topology, coordinates, system = alchemical_argon_system protocol = SwitchingProtocol( n_electrostatic_steps=1, n_steps_per_electrostatic_step=10, n_steric_steps=2, n_steps_per_steric_step=20, timestep=0.5 * unit.femtosecond, thermostat_friction=2.0 / unit.picosecond, ) simulation = NonEquilibriumOpenMMSimulation( system, State(temperature=85.5, pressure=1.0), coordinates, topology.box_vectors, -coordinates, topology.box_vectors * 2.0, protocol, "Reference", ) # Sanity check super was called assert isinstance(simulation._context, openmm.Context) integrator = simulation._context.getIntegrator() assert is_close(integrator.getStepSize(), protocol.timestep * unit.femtoseconds) assert is_close( integrator.getFriction(), protocol.thermostat_friction / unit.picoseconds ) assert simulation._protocol == protocol assert numpy.allclose(simulation._state_0[0], coordinates) assert numpy.allclose(simulation._state_1[0], -coordinates) assert
numpy.allclose(simulation._state_0[1], topology.box_vectors)
numpy.allclose
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Hydrate Modified-van der Waals Platteeuw Equation of State This file implements a hydrate equation of state (EOS)named Modified- van der Waals Platteeuw after Ballard and Sloan (2002). The file consists of a generic hydrate class 'Hydrate EOS' and the class, 'HvdwpmEos', which incorporates all information for the Ballard and Sloan EOS. Other hydrate EOS's will share similar features, since they are all derived from the original van der Waals Platteeuw EOS, so the generic 'HydrateEos' could be ported to another EOS. The classes will take in as arguments a list of components, pressure, temperature, and hydrate structure. Pressure and temperature can be modified after an instance of SrkEos is created; however, the number of components, the actual component list, and the hydrate structure cannot. The method 'calc' is the main calculation of the class, which uses other methods to determine the partial fugacity of each component given mole fractions, pressure, temperature, and structure. Functions ---------- delta_func : Special calculation used in Kihara potential w_func : Spherical kihara potential """ import numpy as np from scipy.integrate import quad import pdb # Constants R = 8.3144621 # universal gas constant in J/mol-K T_0 = 298.15 # reference temperature in K P_0 = 1.0 # reference pressure in bar k = 1.3806488e-23 # Boltzmann's constant in J/K def delta_func(N, Rn, aj, r): """Function specifically used in langmuir constant calculation Parameters ---------- N : int Exponent used in calculation Rn : float Radius of cage aj : float Radius of guest molecule r : float General radius Returns ---------- delta : float Distance measure """ delta = ((1.0 - r/Rn - aj/Rn)**(-N) - (1.0 + r/Rn - aj/Rn)**(-N))/N return delta def w_func(zn, eps_k, r, Rn, sigma, aj): """Kihara spherical potential function Parameters ---------- zn : int Number of water molecules eps_k : float Kihara potential parameter, \epsilon (normalized by Boltzmann's constant), for guest r : float General radius Rn : float Radius of cage sigma : float Kihara potential parameter, sigma, for guest aj : float Radius of guest molecule Returns ---------- w : float Kihara potential of guest at a specific radius """ w = (2 * zn * eps_k * (sigma ** 12 / (Rn ** 11 * r) * (delta_func(10, Rn, aj, r) + (aj / Rn) * delta_func(11, Rn, aj, r)) - sigma ** 6 / (Rn ** 5 * r) * (delta_func(4, Rn, aj, r) + (aj / Rn) * delta_func(5, Rn, aj, r)))) return w class HydrateEos(object): """The parent class for this EOS that perform various calculations. Methods ---------- make_constant_mats : Performs calculations that only depend on pressure and temperature. langmuir_consts : Performs the langmuir constant calculation. calc_langmuir : Performs that calculates cage occupancies from langmuir constants. delta_mu_func : Calculates chemical potential difference according to van der Waals. fugacity : Calculates fugacity of only water in the hydrate phase. calc: Main calculation for hydrate phase EOS. """ def __init__(self, comps, T, P, structure='s1'): """Hydrate EOS object for fugacity calculations. Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py'. T : float Temperature at initialization in Kelvin. P : float Pressure at initialization in bar. structure : str Structure of hydrate ('s1' or 's2'). Attributes ---------- water_ind : int Index of for water component in all lists. comps : list List of 'Component' classes passed into 'HydrateEos'. comp_names : list List of components names. num_comps : int Number of components. T : float Temperature at initialization in Kelvin. P : float Pressure at initialization in bar. gwbeta_RT : numpy array Pre-allocated array for gibbs energy of water in empty standard state. volume_int : numpy array Pre-allocated array for pressure-integrated volume of hydrate. volume : numpy array Pre-allocated array for volume of hydrate. activity : numpy array Pre-allocated array for activity of water in hydrate. delta_mu_RT : numpy array Pre-allocated array for chemical potential difference of water between aqueous and empty hydrate phases. gw0_RT : numpy array Pre-allocated array for gibbs energy of water in ideal gas state. Hs : dict Dictionary of structure-specific properties of hydrate. Keys and values ---------- R_sm : numpy array Pre-allocated array for radii of each shell in the small cages. z_sm : numpy array Pre-allocated array for number of water molecules in each shell in the large cages. R_lg : numpy array Pre-allocated array for radii of each shell in the small cages. z_lg : numpy array Pre-allocated array for number of water molecules in each shell in the large cages. alt_fug_vec : numpy array Pre-allocated array for fugacity of non-water components in phase at equilibrium with hydrate. Y_small : numpy array Pre-allocated array for cage occupancy of small cages for each non-water component. Y_large : numpy array Pre-allocated array for cage occupancy of large cages for each non-water component. C_small : numpy array Pre-allocated array for langmuir constants of small cages for each non-water component. C_large : numpy array Pre-allocated array for langmuir constants of large cages for each non-water component. fug : float Fugacity of water in hydrate. Notes ---------- 'Hs' will populate based on the 'eos_key' defined in the child class. This attribute will store the structure specific information that is stored in a class called 'HydrateStructure'. """ try: self.water_ind = [ii for ii, x in enumerate(comps) if x.compname == 'h2o'][0] except ValueError: raise RuntimeError( """Hydrate EOS requires water to be present! \nPlease provide water in your component list.""") self.comps = comps self.comp_names = [x.compname for x in comps] self.num_comps = len(comps) self.T = T self.P = P self.gwbeta_RT = np.zeros(1) self.volume_int = np.zeros(1) self.volume = np.zeros(1) self.activity = np.zeros(1) self.delta_mu_RT = np.zeros(1) self.gw0_RT = np.zeros(1) self.Hs = HydrateStructure(structure) self.alt_fug_vec = np.zeros(self.num_comps) self.Y_small = np.zeros(self.num_comps) self.Y_large = np.zeros(self.num_comps) self.C_small = np.zeros(self.num_comps) self.C_large = np.zeros(self.num_comps) self.fug = 0 for key, value in dict.items(self.Hs.eos[self.eos_key]): setattr(self.Hs, key, value) self.R_sm = np.zeros(len(self.Hs.R['sm'])) self.z_sm = np.zeros_like(self.R_sm) for ii in range(len(self.z_sm)): self.z_sm[ii] = self.Hs.z['sm'][ii + 1] self.R_lg = np.zeros(len(self.Hs.R['lg'])) self.z_lg = np.zeros_like(self.R_lg) for ii in range(len(self.z_lg)): self.z_lg[ii] = self.Hs.z['lg'][ii + 1] def make_constant_mats(self, comps, T, P): """Portion of calculation that only depends on P and T. Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py'. T : float Temperature in Kelvin. P : float Pressure in bar. Notes ---------- Calculation assumes that pressure and temperature won't change upon successive iteration of EOS. Instead, the calculation will adjust molar fractions of each component at a fixed T and P. However, if T and P do change then, it will recalculate these constants. """ self.T = T self.P = P self.gw0_RT = comps[self.water_ind].gibbs_ideal(T, P) def langmuir_consts(self, comps, T, P): """Calculation of langmuir constants. Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py'. T : float Temperature in Kelvin. P : float Pressure in bar. Returns ---------- C_small : numpy array Langmuir constants for component in small cages. C_large : numpy array Langmuir constants for component in large cages. """ C_small = np.zeros(self.num_comps) C_large = np.zeros(self.num_comps) return C_small, C_large def calc_langmuir(self, C, eq_fug): """Calculation of langmuir constants. Parameters ---------- C : numpy array Array of langmuir constants. eq_fug : numpy array Fugacity of each component for the phase that is in equilibrium with hydrate. Returns ---------- Y : numpy array Fractional occupancy of each component in unspecified cage type. """ Y = np.zeros(self.num_comps) denominator = (1.0 + np.sum(C * eq_fug)) for ii, comp in enumerate(self.comps): if comp.compname != 'h2o': Y[ii] = C[ii] * eq_fug[ii] / denominator else: Y[ii] = 0 return Y def delta_mu_func(self, comps, T, P): """Calculation of chemical potential difference of water in hydrate. Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py'. T : float Temperature at initialization in Kelvin. P : float Pressure at initialization in bar. Returns ---------- delta_mu : float Chemical potential difference of water between aqueous phases and empty standard hydrate. """ delta_mu = ( self.Hs.Nm['small']*np.log(1-np.sum(self.Y_small)) + self.Hs.Nm['large']*np.log(1-np.sum(self.Y_large)) )/self.Hs.Num_h2o return delta_mu def fugacity(self, comps, T, P, x, eq_fug): """Calculation of fugacity of water in hydrate. Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py'. T : float Temperature in Kelvin. P : float Pressure in bar. x : list, numpy array Dummy list of molar fraction in hydrate phase to maintain argument parallelism with other EOS's. eq_fug : numpy array Equilibrium fugacity of each non-water component that will be in equilibrium within some other phase. """ pass def calc(self, comps, T, P, x, eq_fug): """Main calculation for the EOS which returns array of fugacities Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py'. T : float Temperature in Kelvin. P : float Pressure in bar. x : list, numpy array Dummy list of molar fraction in hydrate phase to maintain argument parallelism with other EOS's. eq_fug : numpy array Equilibrium fugacity of each non-water component that will be in equilibrium within some other phase. Returns ---------- fug : numpy array Fugacity of water in aqueous phase. """ if comps != self.comps: print("""Warning: Action not supported. \n Number of_components have changed. \n Please create a new fugacity object.""") return None else: # Re-calculate constants if pressure or temperature changes. if self.T != T or self.P != P: self.make_constant_mats(comps, T, P) fug = self.fugacity(comps, T, P, x, eq_fug) return fug class HvdwpmEos(HydrateEos): """The child class for this EOS that perform various calculations. Methods ---------- make_constant_mats : Performs calculations that only depend on pressure and temperature. find_stdstate_volume : Finds the standard state volume of hydrate. find_hydrate_properties : Performs calculations necessary to determine hydrate properties. kappa_func : Determines compressibility of hydrate with specific cage occupancies. hydrate_size : Calculates size of hydrate. h_vol_Pint : Volume of hydrate integrated with respect to pressure. lattice_to_volume : Convert the lattice size of hydrate in angstrom to a volume in cm^3/mol. cage_distortion : Calculate distortion of cage size due to filling by guests. filled_lattice_size : Calculate size of hydrate filled with guests. iterate_function : Special function that must be iterated due to nonlinear dependencies. integrand : Setup integrand for calculation of langmuir constant. compute_integral_constants : Calculate portions of integral that do not depend on composition. langmuir_consts : Calculate langmuir constants. activity_func : Calculate activity of water in hydrate due to filling of cages. fugacity : Calculate fugacity of wate rin hydrate. hyd_comp : Conversion of cage occupancies to a hydrate composition. Constants ---------- cp : dict Dictionary of constants for heat capacity eos_key : str Key for use in HydrateStructure class information retrieval.s """ cp = {'a0': 0.735409713*R, 'a1': 1.4180551e-2*R, 'a2': -1.72746e-5*R, 'a3': 63.5104e-9*R} eos_key = 'hvdwpm' def __init__(self, comps, T, P, structure='s1'): """Hydrate EOS object for fugacity calculations. Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py' T : float Temperature at initialization in Kelvin P : float Pressure at initialization in bar structure : str Structure of hydrate ('s1' or 's2') Attributes ---------- kappa : numpy array Compressibility of filled hydrate kappa0 : float Compressibility of empty hydrate of specific structure a0_cubed : float Size of standard empty hydrate kappa_vec : numpy array Compressibility of hydrate filled by a single guest rep_sm_vec : numpy array Repulsive constant for each guest in small cage rep_lg_vec : numpy array Repulsive constant for each guest in large cage D_vec : numpy array Diameter of each guest a_new : float Size of hydrate with specific composition Y_small_0 : numpy array Cage occupancy of small cage at standard state Y_large_0 : numpy array Cage occupancy of large cage at standard state eq_fug : numpy array Equilibrium fugacity of each component in another phase at equilibrium with hydrate phase stdstate_fug : numpy array Fugacity of each component at standard state vol_Tfactor : float Change in hydrate volume from temperature dependence lattice_Tfactor : float Change in hydrate lattice size from temperature dependence kappa_tmp : float Temporary storage of kappa during convergence a_0 : float Lattice size at standard state v_H_0 : float Hydrate volume at standard state v_H : float Hydrate volume repulsive_small : float Repulsive constant in small cages epulsive_small : float Repulsive constant in large cages """ # Inherit all properties from HydrateEos try: super().__init__(comps, T, P, structure) except: super(HvdwpmEos, self).__init__(comps, T, P, structure) self.kappa = np.zeros(1) self.kappa0 = self.Hs.kappa self.a0_cubed = self.lattice_to_volume(self.Hs.a0_ast) self.kappa_vec = np.zeros(self.num_comps) self.rep_sm_vec = np.zeros(self.num_comps) self.rep_lg_vec = np.zeros(self.num_comps) self.D_vec = np.zeros(self.num_comps) self.a_new = self.Hs.a_norm self.Y_small_0 = np.zeros(self.num_comps) self.Y_large_0 = np.zeros(self.num_comps) self.eq_fug = np.zeros(self.num_comps) self.stdstate_fug = np.zeros(self.num_comps) self.vol_Tfactor = None self.lattice_Tfactor = None self.kappa_tmp = None self.a_0 = None self.v_H_0 = None self.v_H = None self.repulsive_small = None self.repulsive_large = None # Retrieve information for components and populate within vectors for ii, comp in enumerate(comps): self.kappa_vec[ii] = comp.HvdWPM[self.Hs.hydstruc]['kappa'] self.rep_sm_vec[ii] = comp.HvdWPM[self.Hs.hydstruc]['rep']['small'] self.rep_lg_vec[ii] = comp.HvdWPM[self.Hs.hydstruc]['rep']['large'] self.D_vec[ii] = comp.diam self.stdstate_fug[ii] = comp.stdst_fug # Set up parameters that do not change with the system, which # in the case means the fugacity of other phases. self.make_constant_mats(comps, T, P) # Set up parameters that depend on standard state (T_0, P_0) # Now, the lattice size won't change. However, the volume will # depend on P, T and kappa. And kappa depends on cage occupancy (Y) # and cage occupancy depends on langmuir constants, which in turn # depend on the volume. Thus, the langmuir constants will have to be # determined at each call to 'calc'. self.find_stdstate_volume(comps, T, P) def make_constant_mats(self, comps, T, P): """Portion of calculation that only depends on P and T. Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py'. T : float Temperature in Kelvin. P : float Pressure in bar. Notes ---------- Calculation assumes that pressure and temperature won't change upon successive iteration of EOS. Instead, the calculation will adjust molar fractions of each component at a fixed T and P. However, if T and P do change then, it will recalculate these constants. """ try: super().make_constant_mats(comps, T, P) except: super(HvdwpmEos, self).make_constant_mats(comps, T, P) self.gwbeta_RT = ( self.Hs.gw_0beta/(R*T_0) - (12*T*self.Hs.hw_0beta - 12*T_0*self.Hs.hw_0beta + 12*T_0**2*self.cp['a0'] + 6*T_0**3*self.cp['a1'] + 4*T_0**4*self.cp['a2'] + 3*T_0**5*self.cp['a3'] - 12*T*T_0*self.cp['a0'] - 12*T*T_0**2*self.cp['a1'] + 6*T**2*T_0*self.cp['a1'] - 6*T*T_0**3*self.cp['a2'] + 2*T**3*T_0*self.cp['a2'] - 4*T*T_0**4*self.cp['a3'] + T**4*T_0*self.cp['a3'] + 12*T*T_0*self.cp['a0']*np.log(T) - 12*T*T_0*self.cp['a0']*np.log(T_0)) / (12*R*T*T_0) + (self.h_vol_Pint(T, P, self.a0_cubed, self.kappa0) - self.h_vol_Pint(T, P_0, self.a0_cubed, self.kappa0)) * 1e-1 / (R * T) ) self.vol_Tfactor = self.hydrate_size(T, P_0, 1.0, self.kappa0) self.lattice_Tfactor = self.hydrate_size(T, P_0, 1.0, self.kappa0, dim='linear') def find_stdstate_volume(self, comps, T, P): """Calculation of standard state volume and other properties. Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py'. T : float Temperature in Kelvin. P : float Pressure in bar. Notes ---------- Standard state is an empty hydrate at reference pressure and temperature. This still depends on composition. """ error = 1e6 TOL = 1e-8 C_small = np.zeros(self.num_comps) C_large = np.zeros(self.num_comps) # 'Lattice sz' will originally be equal to self.Hs.a0_ast because we # set self.Y_*_0 equal to zero. # That will produce one set of C's and new Y's. We will then iterate # until convergence on 'C'. kappa = self.kappa0 lattice_sz = self.Hs.a0_ast while error > TOL: out = self.iterate_function(comps, T_0, P_0, self.stdstate_fug, lattice_sz, kappa) # Update these on every iteration C_small_new = out[0] C_large_new = out[1] self.Y_small_0 = out[2] self.Y_large_0 = out[3] lattice_sz = self.filled_lattice_size() kappa = self.kappa_func(self.Y_large_0) error = 0.0 for ii, comp in enumerate(comps): if comp.compname != 'h2o': error += (abs(C_small_new[ii] - C_small[ii])/C_small_new[ii] + abs(C_large_new[ii] - C_large[ii])/C_large_new[ii]) C_small = C_small_new C_large = C_large_new self.kappa_tmp = kappa self.a_0 = lattice_sz self.v_H_0 = self.lattice_to_volume(lattice_sz) def find_hydrate_properties(self, comps, T, P, eq_fug): """Hydrate properties at T, P, and with specific composition Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py' T : float Temperature in Kelvin P : float Pressure in bar eq_fug : numpy array Equilibrium fugacity of each non-water component that will be in equilibrium within some other phase """ error = 1e6 TOL = 1e-8 if hasattr(self, 'C_small'): C_small = self.C_small C_large = self.C_large else: C_small = np.zeros(self.num_comps) C_large = np.zeros(self.num_comps) if hasattr(self.kappa_tmp, 'copy'): kappa = self.kappa_tmp.copy() else: kappa = self.kappa_tmp lattice_sz = self.a_0 while error > TOL: out = self.iterate_function(comps, T, P, eq_fug, lattice_sz, kappa) # Update these on every iteration C_small_new = out[0] C_large_new = out[1] self.Y_small = out[2] self.Y_large = out[3] kappa = self.kappa_func(self.Y_large) error = 0.0 for ii, comp in enumerate(comps): if comp.compname != 'h2o': error += (abs(C_small_new[ii] - C_small[ii])/C_small_new[ii] + abs(C_large_new[ii] - C_large[ii])/C_large_new[ii]) C_small = C_small_new C_large = C_large_new self.C_small = C_small self.C_large = C_large if hasattr(self.kappa_tmp, 'copy'): kappa = self.kappa_tmp.copy() else: kappa = self.kappa_tmp self.v_H = self.hydrate_size(T, P, self.v_H_0, kappa) def kappa_func(self, Y_large): """Compressibility of hydrate function Parameters ---------- Y_large : numpy array Fractional occupancy of large hydrate cages """ if self.num_comps > 2: kappa = 3.0*np.sum(self.kappa_vec*Y_large) else: kappa = self.kappa0 return kappa def hydrate_size(self, T, P, v, kappa, dim='volumetric'): """Hydrate properties at T, P, and with specific composition Parameters ---------- T : float Temperature in Kelvin P : float Pressure in bar v : float Size of hydrate (either volumetric or linear) kappa : float Compressibility of hydrate dim : str Dimension of interest ('volumetric' or 'linear' Returns ---------- H_size : float Size of hydrate in dimension specified in argument list Notes ---------- In various places, either the linear or volumetric sizes are necessary components in a particular calculation. A small, constant difference is required to switch between the two. """ if dim == 'volumetric': factor = 1.0 elif dim == 'linear': factor = 1.0/3.0 else: raise ValueError("Invalid option for optional argument 'dim'!") H_size = (v*np.exp(factor*(self.Hs.alf[1]*(T - T_0) + self.Hs.alf[2]*(T - T_0)**2 + self.Hs.alf[3]*(T - T_0)**3 - kappa*(P - P_0)))) return H_size def h_vol_Pint(self, T, P, v, kappa): """Hydrate volume integrated with respect to pressure Parameters ---------- T : float Temperature in Kelvin P : float Pressure in bar v : float Size of hydrate (either volumetric or linear) kappa : float Compressibility of hydrate Returns ---------- v : float Hydrate volume integrated wrt pressure in cm^3 - bar /mol """ v = self.hydrate_size(T, P, v, kappa) / (-kappa) return v def lattice_to_volume(self, lattice_sz): """Conversion of linear hydrate size to volumetric size Parameters ---------- lattice_sz : float Size of hydrate as a radius in angstrom Returns ---------- v : float Volume of hydrate in cm^3/mol """ if self.Hs.hydstruc != 'sH': v = 6.0221413e23/self.Hs.Num_h2o/1e24*lattice_sz**3 else: v = self.Hs.v0 return v def cage_distortion(self): """Distortion of cages when filled with guests Notes ---------- This depends on composition, but not on temperature or pressure. """ small_const = ( (1 + self.Hs.etam['small']/self.Hs.Num_h2o)*self.Y_small_0 / (1 + (self.Hs.etam['small']/self.Hs.Num_h2o)*self.Y_small_0) ) # Ballard did not differentiate between multiple or single guests # as we do here. In his version, the weighted exponential is always # used. However, we saw better agreement by separating single and # multiple guests. if self.num_comps > 1: # Results of flash calculations for hydrocarbon systems do not produce results that are consistent # with CSMGem. On August 31, 2017. I commented out the following lines to see if they are consisent. # if self.Hs.hydstruc == 's1': # self.repulsive_small = (small_const * np.exp( # self.D_vec - np.sum(self.Y_small_0 * self.D_vec) / np.sum(self.Y_small_0) # )) # else: # self.repulsive_small = small_const # self.repulsive_small = (small_const * np.exp( # self.D_vec - np.sum(self.Y_small_0 * self.D_vec) # )) self.repulsive_small = (small_const * np.exp( -(self.D_vec - np.sum(self.Y_small_0 * self.D_vec)) )) self.repulsive_small[self.water_ind] = 0.0 else: self.repulsive_small = small_const self.repulsive_large = ( (1 + self.Hs.etam['large']/self.Hs.Num_h2o) * self.Y_large_0 / (1 + (self.Hs.etam['large']/self.Hs.Num_h2o) * self.Y_large_0) ) self.repulsive_large[self.water_ind] = 0.0 # Determine size of lattice due to the filling of cages at T_0, P_0 def filled_lattice_size(self): """Size of hydrate lattice when filled Returns ---------- lattice sz : float Size of lattice when filled by guests """ self.cage_distortion() lattice_sz = (self.Hs.a0_ast + (self.Hs.Nm['small'] * np.sum(self.repulsive_small * self.rep_sm_vec)) + (self.Hs.Nm['large'] * np.sum(self.repulsive_large * self.rep_lg_vec))) return lattice_sz def iterate_function(self, comps, T, P, fug, lattice_sz, kappa): """Function that must be iterated until convergence due to nonlinearity Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py' T : float Temperature in Kelvin P : float Pressure in bar fug : numpy array Fugacity of each non-water component that will be in equilibrium within some other phase lattice_sz : float Size of filled hydrate lattice kappa : float Compressibility of filled hydrate Returns ---------- calc_list : list of numpy arrays List of output variables such that each element is a numpy array. First element is a numpy array of small cage langmuir constants, second element is a numpy array of large cage langmuir constants, third elements is a numpy array of small cage fractional occupancies, and fourth element is a numpy array of large cage fractional occupancies. """ C_small, C_large = self.langmuir_consts(comps, T, P, lattice_sz, kappa) Y_small = self.calc_langmuir(C_small, fug) Y_large = self.calc_langmuir(C_large, fug) calc_list = [C_small, C_large, Y_small, Y_large] return calc_list def integrand(self, r, Rn, z, eps_k, sigma, aj, T): """Kihara spherical potential function Parameters ---------- r : float General radius Rn : list, numpy array Radius of each cage in hydrate structure z : int Number of water molecules eps_k : float Kihara potential parameter, \epsilon (normalized by Boltzmann's constant), of guest sigma : float Kihara potential parameter, sigma, og guest aj : float Radius of guest molecule T : float Temperature in Kelvin Returns ---------- integrand_w : numpy array Integrand as a function of radius """ integrand_sum = 0 for ii in range(len(Rn)): integrand_sum += w_func(z[ii], eps_k, r, Rn[ii], sigma, aj) integrand_w = r**2*np.exp((-1.0/T)*integrand_sum) return integrand_w def compute_integral_constants(self, T, P, lattice_sz, kappa): """Function to compute integral for langmuir constant calculation Parameters ---------- T : float Temperature in Kelvin P : float Pressure in bar lattice_sz : float Size of filled hydrate lattice kappa : float Compressibility of filled hydrate """ Pfactor = self.hydrate_size(T_0, P, 1.0, kappa, dim='linear') a_factor = (lattice_sz/self.Hs.a_norm)*self.lattice_Tfactor*Pfactor for ii in range(len(self.Hs.R['sm'])): self.R_sm[ii] = self.Hs.R['sm'][ii + 1]*a_factor for ii in range(len(self.Hs.R['lg'])): self.R_lg[ii] = self.Hs.R['lg'][ii + 1]*a_factor def langmuir_consts(self, comps, T, P, lattice_sz, kappa): """Calculates langmuir constant through many interior calculations Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py' T : float Temperature in Kelvin P : float Pressure in bar lattice_sz : float Size of filled hydrate lattice kappa : float Compressibility of filled hydrate Returns ---------- C_small : numpy array Langmuir constants for each guest in small cage C_large : numpy array Langmuir constants for each guest in large cage Notes ---------- Calculation will perform numerical integration and is numerically expensive. Other methods are possible, but not as accurate given the accompanying empirically fit parameter set. """ self.compute_integral_constants(T, P, lattice_sz, kappa) C_small = np.zeros(self.num_comps) C_large = np.zeros(self.num_comps) C_const = 1e-10**3*4*np.pi/(k*T)*1e5 for ii, comp in enumerate(comps): if ii != self.water_ind: small_int = quad(self.integrand, 0, min(self.R_sm) - comp.HvdWPM['kih']['a'], args=(self.R_sm, self.z_sm, comp.HvdWPM['kih']['epsk'], comp.HvdWPM['kih']['sig'], comp.HvdWPM['kih']['a'], T,)) large_int = quad(self.integrand, 0, min(self.R_lg) - comp.HvdWPM['kih']['a'], args=(self.R_lg, self.z_lg, comp.HvdWPM['kih']['epsk'], comp.HvdWPM['kih']['sig'], comp.HvdWPM['kih']['a'], T,)) # Quad returns a tuple of the integral and the error. # We want to retrieve the integrated value. C_small[ii] = C_const*small_int[0] C_large[ii] = C_const*large_int[0] else: C_small[ii] = 0 C_large[ii] = 0 return C_small, C_large def activity_func(self, T, P, v_H_0): """Calculates activity of water between aqueous phase and filled hydrate Parameters ---------- T : float Temperature in Kelvin P : float Pressure in bar v_H_0 : float Volume of hydrate at standard state Returns ---------- activity : float Activity of water """ kappa_wtavg = self.kappa_func(self.Y_large) activity = ( (v_H_0 - self.a0_cubed) / R * (self.Hs.a_fit/T_0 + self.Hs.b_fit*(1/T - 1/T_0)) + ((self.h_vol_Pint(T, P, v_H_0, kappa_wtavg) - self.h_vol_Pint(T, P, self.a0_cubed, self.kappa0)) - (self.h_vol_Pint(T, P_0, v_H_0, kappa_wtavg) - self.h_vol_Pint(T, P_0, self.a0_cubed, self.kappa0))) / (R * T) ) * 1e-1 return activity def fugacity(self, comps, T, P, x, eq_fug): """Main calculation for the EOS which returns array of fugacities Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py'. T : float Temperature in Kelvin. P : float Pressure in bar. x : list, numpy array Dummy list of molar fraction in hydrate phase to maintain argument parallelism with other EOS's. eq_fug : numpy array Equilibrium fugacity of each non-water component that will be in equilibrium within some other phase. Returns ---------- fug : float Fugacity of water in aqueous phase. """ if (eq_fug == self.eq_fug).all(): fug = self.fug.copy() else: fug = np.zeros(self.num_comps) fug[1:] = eq_fug[1:] self.find_hydrate_properties(comps, T, P, eq_fug) delta_mu_RT = self.delta_mu_func(comps, T, P) activity = self.activity_func(T, P, self.v_H_0) mu_H_RT = self.gwbeta_RT + activity + delta_mu_RT fug[0] =
np.exp(mu_H_RT - self.gw0_RT)
numpy.exp
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num =
N.array([1,1,0])
numpy.array
import numpy as np import pytest from physt.histogram1d import Histogram1D from physt import h1, h2, histogramdd @pytest.fixture def empty_adaptive1(create_adaptive) -> Histogram1D: """One-dimesion adaptive fixed-width histogram with bin_width=1.""" return create_adaptive((0,)) class TestAdaptive(object): def test_create_empty(self): h = h1(None, "fixed_width", bin_width=10, adaptive=True) assert h.bin_count == 0 assert h.total == 0 assert np.allclose(h.bin_widths, 10) assert np.isnan(h.mean()) assert np.isnan(h.std()) assert h.overflow == 0 assert h.underflow == 0 def test_fill_empty(self, create_adaptive): h = create_adaptive((0,)) h.fill(2.4) assert h.bin_count == 1 assert np.array_equal(h.bin_left_edges, [2]) assert np.array_equal(h.bin_right_edges, [3]) assert np.array_equal(h.frequencies, [1]) def test_fill_non_empty(self, create_adaptive): h = create_adaptive((3,)) h.fill(3.7) assert h.bin_count == 4 assert h.total == 4 assert np.array_equal(h.bin_left_edges, [0, 1, 2, 3]) assert np.array_equal(h.bin_right_edges, [1, 2, 3, 4]) assert np.array_equal(h.frequencies, [0, 1, 2, 1]) h.fill(-0.7) assert h.bin_count == 5 assert h.total == 5 h.fill(10.1) assert h.bin_count == 12 assert h.total == 6 assert np.array_equal(h.frequencies, [1, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1]) class TestFillNAdaptive(object): def test_empty(self, empty_adaptive1): h = empty_adaptive1 h.fill_n([1.2, 2.3, 2.5, 2.6]) assert np.array_equal(h.bin_left_edges, [1, 2]) assert h.total == 4 assert np.array_equal(h.frequencies, [1, 3]) def test_empty_right_edge(self, empty_adaptive1): h = empty_adaptive1 h.fill_n([0.4, 0.4, 1.0]) assert np.array_equal(h.bin_left_edges, [0, 1]) assert h.total == 3 assert np.array_equal(h.frequencies, [2, 1]) def test_non_empty(self, create_adaptive): h = create_adaptive((3,)) h.fill_n([-1.3, 4.1]) assert h.bin_left_edges[0] == -2.0 assert h.bin_left_edges[-1] == 4.0 assert h.bin_count == 7 assert h.total == 5 def test_with_weights(self, empty_adaptive1): h = empty_adaptive1 h.fill_n([0.4, 0.5, 0.6, 1.2], [1, 1, 2, 3]) assert np.array_equal(h.frequencies, [4, 3]) assert np.array_equal(h.errors2, [6, 9]) assert np.array_equal(h.numpy_bins, [0, 1.0, 2.0]) def test_with_incorrect_weights(self, empty_adaptive1): h = empty_adaptive1 with pytest.raises(ValueError): h.fill_n([0, 1], [2, 3, 4]) with pytest.raises(ValueError): h.fill_n([0, 1, 2, 3], [2, 3, 4]) def test_empty_exact(self, empty_adaptive1): h = empty_adaptive1 h.fill_n([1.0]) assert np.array_equal(h.bin_left_edges, [1.0]) assert np.array_equal(h.frequencies, [1]) assert h.total == 1 class TestAdaptive2D(object): def test_create_empty(self): h = h2(None, None, "fixed_width", bin_width=10, adaptive=True) for b in h._binnings: assert b.is_adaptive() assert h.ndim == 2 def test_create_nonempty(self): d1 = [1, 21, 3] d2 = [11, 12, 13] h = h2(d1, d2, "fixed_width", bin_width=10, adaptive=True) assert h.shape == (3, 1) def test_fill_empty(self, create_adaptive): h = create_adaptive((0, 0)) h.fill([1.2, 1.3]) assert h.total == 1 assert
np.array_equal(h.numpy_bins, [[1, 2], [1, 2]])
numpy.array_equal
# -*- coding: utf-8 -*- import numpy as np import scipy as sp from sklearn import svm from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from scipy.sparse.linalg import svds plt.rcParams['font.sans-serif'] = ['SimHei'] #指定默认字体 plt.rcParams['axes.unicode_minus'] = False #解决保存图像是负号'-'显示为方块的问题 def main(): data = [] labels = [] with open("./data/tree.txt") as ifile: for line in ifile: tokens = line.strip().split(' ') data.append([float(tk) for tk in tokens[:-1]]) labels.append(tokens[-1]) x = np.array(data) labels = np.array(labels) y = np.zeros(labels.shape) y[labels == 'fat'] = 1 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.0) h = .02 # create a mesh to plot in x_min, x_max = x_train[:, 0].min() - 0.1, x_train[:, 0].max() + 0.1 y_min, y_max = x_train[:, 1].min() - 1, x_train[:, 1].max() + 1 xx, yy = np.meshgrid( np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) ''''' SVM ''' # title for the plots titles = [ 'LinearSVC (linear kernel)', 'SVC with polynomial (degree 3) kernel', 'SVC with RBF kernel', 'SVC with Sigmoid kernel' ] clf_linear = svm.SVC(kernel='linear').fit(x, y) # 线性函数 clf_poly = svm.SVC(kernel='poly', degree=3).fit(x, y) # 多项式函数 clf_rbf = svm.SVC().fit(x, y) # 径向基函数 clf_sigmoid = svm.SVC(kernel='sigmoid').fit(x, y) # Sigmoid函数 for i, clf in enumerate((clf_linear, clf_poly, clf_rbf, clf_sigmoid)): answer = clf.predict(np.c_[xx.ravel(), yy.ravel()]) print(clf) print(
np.mean(answer == y_train)
numpy.mean
"""Bayesian Gaussian Mixture Models and Dirichlet Process Gaussian Mixture Models""" from __future__ import print_function # Author: <NAME> (<EMAIL>) # <NAME> <<EMAIL>> # # Based on mixture.py by: # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Important note for the deprecation cleaning of 0.20 : # All the function and classes of this file have been deprecated in 0.18. # When you remove this file please also remove the related files # - 'sklearn/mixture/gmm.py' # - 'sklearn/mixture/test_dpgmm.py' # - 'sklearn/mixture/test_gmm.py' import numpy as np from scipy.special import digamma as _digamma, gammaln as _gammaln from scipy import linalg from scipy.spatial.distance import cdist from ..externals.six.moves import xrange from ..utils import check_random_state, check_array, deprecated from ..utils.extmath import logsumexp, pinvh, squared_norm from ..utils.validation import check_is_fitted from .. import cluster from .gmm import _GMMBase @deprecated("The function digamma is deprecated in 0.18 and " "will be removed in 0.20. Use scipy.special.digamma instead.") def digamma(x): return _digamma(x + np.finfo(np.float32).eps) @deprecated("The function gammaln is deprecated in 0.18 and " "will be removed in 0.20. Use scipy.special.gammaln instead.") def gammaln(x): return _gammaln(x + np.finfo(np.float32).eps) @deprecated("The function log_normalize is deprecated in 0.18 and " "will be removed in 0.20.") def log_normalize(v, axis=0): """Normalized probabilities from unnormalized log-probabilites""" v = np.rollaxis(v, axis) v = v.copy() v -= v.max(axis=0) out = logsumexp(v) v =
np.exp(v - out)
numpy.exp
""" generate_plots_PRD_2020.py is a Python routine that can be used to generate the plots of <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, "Numerical simulations of gravitational waves from early-universe turbulence," Phys. Rev. D 102, 083512 (2020), https://arxiv.org/abs/1903.08585. It reads the pickle run variables that can be generated by the routine initialize_PRD_2020.py. The function run() executes the code. """ import os import numpy as np import matplotlib.pyplot as plt import astropy.units as u # get working directory, where the runs and routines should be stored dir0 = os.getcwd() + '/' HOME = dir0 + '/..' os.chdir(HOME) from dirs import read_dirs as rd import plot_sets import run as r import interferometry as inte import cosmoGW import spectra as sp def run(): # import dictionary with the names identifying # the runs and pointing to the corresponding directory dirs = rd('PRD_2020_ini') dirs = rd('PRD_2020_hel', dirs) dirs = rd('PRD_2020_noh', dirs) dirs = rd('PRD_2020_ac', dirs) R = [s for s in dirs] # read the runs stored in the pickle variables runs = r.load_runs(R, dir0, dirs, quiet=False) os.chdir(dir0) return runs def plot_EGW_EM_vs_k(runs, rr='ini2', save=True, show=True): """ Function that generates the plot of the magnetic spectrum EM (k) = Omega_M(k)/k at the initial time of turbulence generation and the GW spectrum EGW (k) = Omega_GW(k)/k, averaged over oscillations in time. It corresponds to figure 1 of <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, "Numerical simulations of gravitational waves from early-universe turbulence," Phys. Rev. D 102, 083512 (2020), https://arxiv.org/abs/1903.08585. Arguments: runs -- dictionary that includes the run variables rr -- string that selects which run to plot (default 'ini2') save -- option to save the resulting figure as plots/EGW_EM_vs_k_'name_run'.pdf' (default True) show -- option to show the resulting figure (default True) """ plt.figure(figsize=(10,6)) plt.xscale('log') plt.yscale('log') plt.xlim(120, 6e4) plt.ylim(1e-19, 1e-4) plt.xlabel('$k$') plt.ylabel(r'$\Omega_{\rm GW}(k)/k$ and $\Omega_{\rm M}(k)/k$', fontsize=20) run = runs.get(rr) # plot the averaged over times GW spectrum GWs_stat_sp = run.spectra.get('EGW_stat_sp') k = run.spectra.get('k')[1:] plt.plot(k, GWs_stat_sp, color='black') # plot magnetic spectrum at the initial time mag = run.spectra.get('mag')[0, 1:] plt.plot(k, mag, color='black') # plot k^4 line k0 = np.logspace(np.log10(150), np.log10(500), 5) plt.plot(k0, 1e-9*(k0/100)**4, color='black', ls='-.', lw=.7) plt.text(300, 8e-9, r'$\sim\!k^4$', fontsize=20) # plot k^(-5/3) line k0 = np.logspace(np.log10(2000), np.log10(8000), 5) plt.plot(k0, 1e-5*(k0/1000)**(-5/3), color='black', ls='-.', lw=.7) plt.text(5e3, 1.6e-6, r'$\sim\!k^{-5/3}$', fontsize=20) # plot k^(-11/3) line k0 = np.logspace(np.log10(3000), np.log10(30000), 5) plt.plot(k0, 1e-12*(k0/1000)**(-11/3), color='black', ls='-.', lw=.7) plt.text(1e4, 5e-16, r'$\sim\!k^{-11/3}$', fontsize=20) plt.text(1500, 1e-16, r'$\Omega_{\rm GW} (k)/k$', fontsize=20) plt.text(800, 5e-8, r'$\Omega_{\rm M} (k)/k$', fontsize=20) ax = plt.gca() ax.set_xticks([100, 1000, 10000]) ytics = 10**np.array(np.linspace(-19, -5, 7)) ytics2 = 10**np.array(np.linspace(-19, -5, 15)) yticss = ['$10^{-19}$', '', '$10^{-17}$', '', '$10^{-15}$', '', '$10^{-13}$', '', '$10^{-11}$', '', '$10^{-9}$', '', '$10^{-7}$', '', '$10^{-5}$'] ax.set_yticks(ytics2) ax.set_yticklabels(yticss) plot_sets.axes_lines() ax.tick_params(pad=10) if save: plt.savefig('plots/EGW_EM_vs_k_' + run.name_run + '.pdf', bbox_inches='tight') if not show: plt.close() def plot_EGW_vs_kt(runs, rr='ini2', save=True, show=True): """ Function that generates the plot of the compensated GW spectrum as a function of k(t - tini) for the smallest wave numbers of the run. It corresponds to figure 3 of <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, "Numerical simulations of gravitational waves from early-universe turbulence," Phys. Rev. D 102, 083512 (2020), https://arxiv.org/abs/1903.08585. Arguments: runs -- dictionary that includes the run variables rr -- string that selects which run to plot (default 'ini2') save -- option to save the resulting figure as plots/EGW_vs_kt.pdf (default True) show -- option to show the resulting figure (default True) """ run = runs.get(rr) k = run.spectra.get('k')[1:] EGW = np.array(run.spectra.get('EGW')[:,1:], dtype='float') t = run.spectra.get('t_EGW') plt.figure(figsize=(10,6)) plt.xscale('log') plt.yscale('log') plt.xlim(1e-2, 40) plt.ylim(8e-8, 1e-5) plt.xlabel('$k (t - 1)$') plt.ylabel(r'$\left[k_* \Omega_{\rm GW} (k, t)/k\right]^{1/2}$') plot_sets.axes_lines() # plot for initial wave numbers plt.plot(k[0]*(t - 1), np.sqrt(EGW[:, 0]*run.kf), color='black', lw=.8, #label='$k = %.0f$'%k[0]) label='$k = 100$') plt.plot(k[1]*(t - 1), np.sqrt(EGW[:, 1]*run.kf), color='red', ls='-.', lw=.8, #label='$k = %.0f$'%k[1]) label='$k = 200$') plt.plot(k[2]*(t - 1), np.sqrt(EGW[:, 2]*run.kf), color='blue', ls='dashed', lw=.8, #label='$k = %.0f$'%k[2]) label='$k = 300$') plt.plot(k[3]*(t - 1), np.sqrt(EGW[:, 3]*run.kf), color='green', ls='dotted', lw=.8, #label='$k = %.0f$'%k[3]) label='$k = 400$') plt.legend(fontsize=22, loc='lower right', frameon=False) if save: plt.savefig('plots/EGW_vs_kt.pdf', bbox_inches='tight') if not show: plt.close() def plot_OmMK_OmGW_vs_t(runs, save=True, show=True): """ Function that generates the plots of the total magnetic/kinetic energy density as a function of time ('OmM_vs_t.pdf') and the GW energy density as a function of time ('OmGW_vs_t.pdf'). It corresponds to figure 5 of <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, "Numerical simulations of gravitational waves from early-universe turbulence," Phys. Rev. D 102, 083512 (2020), https://arxiv.org/abs/1903.08585. Arguments: runs -- dictionary that includes the run variables save -- option to save the resulting figure as plots/OmGW_vs_t.pdf (default True) show -- option to show the resulting figure (default True) """ # chose the runs to be shown rrs = ['ini1', 'ini2', 'ini3', 'hel1', 'hel2', 'ac1'] # chose the colors of each run col = ['black', 'red', 'blue', 'red', 'blue', 'black'] # chose the line style for the plots ls = ['solid']*6 ls[3] = 'dashed' ls[4] = 'dashed' ls[5] = 'dashed' plt.figure(1, figsize=(10,6)) plt.figure(2, figsize=(10,6)) j = 0 for i in rrs: run = runs.get(i) k = run.spectra.get('k')[1:] GWs_stat_sp = run.spectra.get('GWs_stat_sp') t = run.ts.get('t')[1:] indst = np.argsort(t) t = t[indst] EEGW = run.ts.get('EEGW')[1:][indst] if run.turb == 'm': EEM = run.ts.get('EEM')[1:][indst] if run.turb == 'k': EEM = run.ts.get('EEK')[1:][indst] plt.figure(1) plt.plot(t, EEGW, color=col[j], lw=.8, ls=ls[j]) # text with run name if i=='ini1': plt.text(1.02, 5e-8, i, color=col[j]) if i=='ini2': plt.text(1.07, 5e-11, i, color=col[j]) if i=='ini3': plt.text(1.2, 6e-9, i, color=col[j]) if i=='hel1': plt.text(1.15, 2e-9, i, color=col[j]) if i=='hel2': plt.text(1.12, 7e-10, i, color=col[j]) if i=='ac1': plt.text(1.2, 1e-7, i, color=col[j]) plt.figure(2) plt.plot(t, EEM, color=col[j], lw=.8, ls=ls[j]) # text with run name if i=='ini1': plt.text(1.01, 8e-2, i, color=col[j]) if i=='ini2': plt.text(1.12, 3e-3, i, color=col[j]) if i=='ini3': plt.text(1.01, 9e-3, i, color=col[j]) if i=='hel1': plt.text(1.15, 1.3e-2, i, color=col[j]) if i=='hel2': plt.text(1.02, 1e-3, i, color=col[j]) if i=='ac1': plt.text(1.17, 1.5e-3, i, color=col[j]) j += 1 plt.figure(1) plt.yscale('log') plt.xlabel('$t$') plt.xlim(1, 1.25) plt.ylim(2e-11, 2e-7) plt.ylabel(r'$\Omega_{\rm GW}$') plot_sets.axes_lines() if save: plt.savefig('plots/OmGW_vs_t.pdf', bbox_inches='tight') if not show: plt.close() plt.figure(2) plt.yscale('log') plt.xlim(1, 1.25) plt.ylim(5e-4, 2e-1) plt.xlabel('$t$') plt.ylabel(r'$\Omega_{\rm M, K}$') plot_sets.axes_lines() if save: plt.savefig('plots/OmM_vs_t.pdf', bbox_inches='tight') if not show: plt.close() def plot_OmGW_hc_vs_f_ini(runs, T=1e5*u.MeV, g=100, SNR=10, Td=4, save=True, show=True): """ Function that generates the plot of the GW energy density spectrum of initial runs (ini1, ini2, and ini3), compared to the LISA sensitivity and power law sensitivity (PLS). It corresponds to figure 4 of <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, "Numerical simulations of gravitational waves from early-universe turbulence," Phys. Rev. D 102, 083512 (2020), https://arxiv.org/abs/1903.08585. Arguments: runs -- dictionary that includes the run variables T -- temperature scale (in natural units) at the time of turbulence generation (default 100 GeV, i.e., electroweak scale) g -- number of relativistic degrees of freedom at the time of turbulence generation (default 100, i.e., electroweak scale) SNR -- signal-to-noise ratio (SNR) of the resulting PLS (default 10) Td -- duration of the mission (in years) of the resulting PLS (default 4) save -- option to save the resulting figure as plots/OmGW_vs_f_ini.pdf (default True) show -- option to show the resulting figure (default True) """ # read LISA and Taiji sensitivities CWD = os.getcwd() os.chdir('..') #f_LISA, f_LISA_Taiji, LISA_sensitivity, LISA_OmPLS, LISA_XiPLS, \ # Taiji_OmPLS, Taiji_XiPLS, LISA_Taiji_XiPLS = inte.read_sens() fs, LISA_Om, LISA_OmPLS = inte.read_sens(SNR=SNR, T=Td) fs = fs*u.Hz os.chdir(CWD) # chose the runs to be shown rrs = ['ini1', 'ini2', 'ini3'] # chose the colors of each run col = ['black', 'red', 'blue'] plt.figure(1, figsize=(12,5)) plt.figure(2, figsize=(12,5)) j = 0 for i in rrs: run = runs.get(i) k = run.spectra.get('k')[1:] EGW_stat = run.spectra.get('EGW_stat_sp') f, OmGW_stat = cosmoGW.shift_OmGW_today(k, EGW_stat*k, T, g) OmGW_stat =
np.array(OmGW_stat, dtype='float')
numpy.array
print("################################################################################") print("# Implementation of a multivariate pattern analysis based on the scikitlearn ") print("# toolbox (http://scikit-learn.org/stable/). It reads a matlab file containing ") print("# Xm: a matrix of trials x chans x timepoint. ") print("# y: a vector indicating the class of each trial ") print("# The classification algorithm is based on a support vector machine. ") print("# (c) <NAME> 2012, jeanremi.king [at] gmail.com ") print("################################################################################") ############################################################################### print("LIBRARY") import sys as sys import numpy as np from scipy import stats from sklearn import svm from sklearn.cross_validation import StratifiedKFold, LeaveOneOut, KFold from sklearn.feature_selection import SelectPercentile, f_classif import scipy.io as sio from sklearn.preprocessing import Scaler ############################################################################### print("INPUT DATA") #-- get argument to load specific file filenameX = str(sys.argv[1]) filenamey = str(sys.argv[2]) print(filenameX) print(filenamey) #-- Load data into python mat = sio.loadmat(filenameX) Xm_all = mat["Xm"] # data #-- load classification parameters mat = sio.loadmat(filenamey) path = mat["path"][0] nameX = mat["nameX"][0] namey = mat["namey"][0] folding = mat["folding"][0] n_splits = mat["n_splits"] # svm penalization parameter n_splits = np.reshape(n_splits, n_splits.size) n_folds = mat["n_folds"] # fold number n_folds = np.reshape(n_folds, n_folds.size) svm_C = mat["C"] # svm penalization parameter svm_C = np.reshape(svm_C, svm_C.size) compute_probas = mat["compute_probas"] # svm penalization parameter compute_probas = np.reshape(compute_probas, compute_probas.size) compute_predict = mat["compute_predict"] # svm penalization parameter compute_predict = np.reshape(compute_predict, compute_predict.size) fs_n = mat["fs"] # feature selection fs_n = np.reshape(fs_n, fs_n.size) dims = mat["dims"] # select time windows to compute dims = np.reshape(dims, dims.size) - 1 # reshape for skl compatibility dims_tg = mat["dims_tg"] - 1 # svm penalization parameter y_all = mat["y"] # class used for train and test y_all = np.reshape(y_all, y_all.size) # reshape for skl compatibility y2_all = mat["y2"] # class used for sample weights y2_all = np.reshape(y2_all, y2_all.size) # reshape for skl compatibility #-- build training and generalizing classes Xm = Xm_all[y_all > 0, :, :] # training categories Xmg = Xm_all[y_all < 0, :, :] # generalization categories y = y_all[y_all > 0] yg = y_all[y_all < 0] y2 = y2_all[y_all > 0] n_samples, n_features, unused = Xm.shape n_samplesg, unused, unused = Xmg.shape n_featuresg = n_features n_dims = dims.shape[0] n_dimsg = n_dims n_dims_tg = dims_tg.shape[1] n_dimsg_tg = dims_tg.shape[1] n_classes = np.unique(y).shape[0] #deal with sample_weight sample_weight = np.ones(y.shape[0]) classes = np.unique(y2) for c in range(classes.shape[0]): sample_weight[y2 == classes[c]] = 1. / (np.sum(y2 == classes[c])) ############################################################################### print("PREPARE CLASSIFICATION") #--crossvalidation if folding == 'stratified': cv = StratifiedKFold(y, k=n_folds) elif folding == 'kfolding': cv = KFold(n=y.shape[0], k=n_folds) elif folding == 'leaveoneout': n_folds[0] = y.shape[0] cv = LeaveOneOut(n=y.shape[0]) else: print("unknown crossvalidation method!") #-- classifier clf = svm.SVC(kernel='linear', probability=True, C=svm_C) #-- normalizer scaler = Scaler() #-- feature selection fs = SelectPercentile(f_classif, percentile=fs_n) print("INITIALIZE RESULTS") if compute_predict: predict = np.zeros([n_splits, n_samples, n_dims, n_dims_tg]) ** np.nan predictg = np.zeros([n_splits, n_samplesg, n_dimsg, n_dimsg_tg, n_folds]) ** np.nan else: predict = [] predictg = [] if compute_probas: probas = np.zeros([n_splits, n_samples, n_dims, n_dims_tg, n_classes]) ** np.nan probasg =
np.zeros([n_splits, n_samplesg, n_dimsg, n_dimsg_tg, n_classes, n_folds])
numpy.zeros
import sys, os sys.path.insert(0,'/global/u1/s/spandey/kmeans_radec/') import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import scipy.integrate as integrate import random import treecorr import healpy as hp from astropy.io import fits import astropy.units as u from astropy.coordinates import SkyCoord import scipy.signal as spsg import kmeans_radec from kmeans_radec import KMeans, kmeans_sample from numpy.random import rand import pickle as pk import matplotlib.cm as cm import scipy.interpolate as interpolate from numpy.linalg import inv import pdb import time from scipy.integrate import quad from scipy.optimize import fsolve import scipy.optimize as op import scipy as sp from astropy import constants as const import process_cats_class as pcc import colossus from colossus.cosmology import cosmology from colossus.lss import bias from colossus.lss import mass_function from colossus.halo import mass_so from colossus.halo import mass_defs from colossus.halo import concentration do_m = 1 do_rm = 1 do_g = 1 do_rg = 1 # ds_m = 1.1 ds_m = 1 cosmo_params_dict = {'flat': True, 'H0': 70.0, 'Om0': 0.25, 'Ob0': 0.044, 'sigma8': 0.8, 'ns': 0.95} zmin_hdens = 0.15 zmax_hdens = 0.6 zmin_hlum = 0.6 zmax_hlum = 0.75 zmin_hrlum = 0.75 zmax_hrlum = 0.9 other_params_dict = {} other_params_dict['zmin_bins'] = [0.15,0.3,0.45,0.6,0.75] other_params_dict['zmax_bins'] = [0.3,0.45,0.6,0.75,0.9] other_params_dict['bin_n_array'] = [1,2,3,4,5] other_params_dict['bin_array'] = ['bin1','bin2','bin3','bin4','bin5'] # njk_radec = 180 # njk_z = 1 # njk_radec = 300 # njk_z = 1 njk_radec = 100 njk_z = 1 other_params_dict['njk_radec'] = njk_radec other_params_dict['njk_z'] = njk_z gnf = pcc.general_funcs(cosmo_params_dict) z_array = np.linspace(0, 1.5, 10000) chi_array = np.zeros(len(z_array)) for j in range(len(z_array)): chi_array[j] = gnf.get_Dcom(z_array[j]) other_params_dict['chi_interp'] = interpolate.interp1d(z_array, chi_array) chi_array = np.linspace(0, 4000, 50000) z_array = np.zeros(len(chi_array)) for j in range(len(z_array)): z_array[j] = gnf.get_z_from_chi(chi_array[j]) other_params_dict['z_interp'] = interpolate.interp1d(chi_array, z_array) # def get_int(chi_max, chi_min): # chi_array = np.linspace(chi_min, chi_max, 5000) # int_total = sp.integrate.simps(chi_array ** 2, chi_array) # return int_total save_dir = '/global/project/projectdirs/des/shivamp/actxdes/data_set/mice_sims/process_cats/' # save_filename_matter = 'matter_ra_dec_r_z_bin_jk_L3072N4096-LC129-1in700_njkradec_' + str(njk_radec) + '_njkz_' + str( # njk_z) + '_ds_' + str(ds_m) + '.fits' # save_filename_matter_randoms = 'randoms_matter_ra_dec_r_z_bin_jk_L3072N4096-LC129-1in700_njkradec_' + str( # njk_radec) + '_njkz_' + str(njk_z) + '_ds_' + str(ds_m) + '.fits' save_filename_galaxy = 'galaxy_ra_dec_r_z_bin_jk_mice_des_run_redmapper_v6.4.16_redmagic_njkradec_' + str( njk_radec) + '_njkz_' + str(njk_z) + '_v2.fits' save_filename_galaxy_randoms = 'randoms_galaxy_ra_dec_r_z_bin_jk_mice_des_run_redmapper_v6.4.16_redmagic_redmagic_njkradec_' + str( njk_radec) + '_njkz_' + str(njk_z) + '_v2.fits' # save_filename_jk_obj = '/global/project/projectdirs/des/shivamp/actxdes/data_set/mice_sims/process_cats/jkobj_mice_lmhalo_12.0_12.5_njkradec_180_njkz_1v2.pk' save_filename_jk_obj = 'jkobj_mice' + '_njkradec_' + str(njk_radec) + '_njkz_' + str(njk_z) + '_v2.pk' print('loading galaxies and matter cat') file_matter_mice = fits.open('/global/project/projectdirs/des/y3-bias/MICE_all_data/v2/matter_ra_dec_r_z_L3072N4096-LC129-1in700.fits')[1].data ra_m, dec_m, z_m = file_matter_mice['RA'],file_matter_mice['DEC'],file_matter_mice['Z'] if ds_m > 1: ind_ds = np.unique(np.random.randint(0,len(ra_m),int(len(ra_m)/ds_m))) ds_m_save = np.around(len(z_m)/(1.0*len(ind_ds)),2) print('matter downsampled/original = ' + str(len(z_m)/(1.0*len(ind_ds)))) ra_m, dec_m, z_m = ra_m[ind_ds], dec_m[ind_ds], z_m[ind_ds] else: ds_m_save = ds_m save_filename_matter = 'matter_ra_dec_r_z_bin_jk_L3072N4096-LC129-1in700_njkradec_' + str(njk_radec) + '_njkz_' + str( njk_z) + '_ds_' + str(ds_m_save) + '_v2.fits' save_filename_matter_randoms = 'randoms_matter_ra_dec_r_z_bin_jk_L3072N4096-LC129-1in700_njkradec_' + str( njk_radec) + '_njkz_' + str(njk_z) + '_ds_' + str(ds_m_save) + '_v2.fits' z_min, z_max = np.min(z_m), np.max(z_m) nzbins_total = 1000 zarray_all = np.linspace(z_min, z_max, nzbins_total) zarray_edges = (zarray_all[1:] + zarray_all[:-1]) / 2. zarray = zarray_all[1:-1] chi_array_r = gnf.get_Dcom_array(zarray) dchi_dz_array_r = (const.c.to(u.km / u.s)).value / (gnf.get_Hz(zarray)) chi_max = gnf.get_Dcom_array([z_max])[0] chi_min = gnf.get_Dcom_array([z_min])[0] VT = (4 * np.pi / 3) * (chi_max ** 3 - chi_min ** 3) dndz = (4 * np.pi) * (chi_array_r ** 2) * dchi_dz_array_r / VT # dndm_model = 'crocce10' # bias_model = 'bhattacharya11' # mdef = 'fof' # cosmo_params = {'flat': True, 'H0': 70.0, 'Om0': 0.25, 'Ob0': 0.0448, 'sigma8': 0.8, 'ns': 0.95} # cosmology.addCosmology('mock_cosmo', cosmo_params) # cosmo_colossus = cosmology.setCosmology('mock_cosmo') # h = cosmo_params['H0'] / 100. print('getting jk obj map from galaxies') # ind_jk_g = np.where((z_g_hdens > other_params_dict['zmin_bins'][0]) & (z_g_hdens < other_params_dict['zmax_bins'][0]))[0] # jkobj_map_radec = pcc.get_jkobj(np.transpose([ra_g_hdens[ind_jk_g], dec_g_hdens[ind_jk_g]]),njk_radec) # other_params_dict['jkobj_map_radec'] = jkobj_map_radec # np.savetxt(save_dir + 'jk_centers_mice2_des_run_redmapper_v6.4.16_redmagic_njkradec_' + str(njk_radec) + '.txt',jkobj_map_radec.centers) gal_hdens = fits.open('/global/project/projectdirs/des/y3-bias/MICE_all_data/v2/mice2_des_run_redmapper_v6.4.16_redmagic_highdens_0.5-10.fit')[1].data ra_g_hdens_all, dec_g_hdens_all, z_g_hdens_all = gal_hdens['RA'],gal_hdens['DEC'],gal_hdens['ZSPEC'] ind_hdens = np.where((z_g_hdens_all > zmin_hdens) & (z_g_hdens_all < zmax_hdens))[0] ra_g_hdens, dec_g_hdens, z_g_hdens = ra_g_hdens_all[ind_hdens], dec_g_hdens_all[ind_hdens], z_g_hdens_all[ind_hdens] if os.path.isfile(save_dir + save_filename_jk_obj): jkobj_map_radec_centers = pk.load(open(save_dir + save_filename_jk_obj,'rb'))['jkobj_map_radec_centers'] jkobj_map_radec = KMeans(jkobj_map_radec_centers) else: ind_jk_g = np.where((z_g_hdens > other_params_dict['zmin_bins'][0]) & (z_g_hdens < (other_params_dict['zmin_bins'][0] + 0.1) ))[0] jkobj_map_radec = pcc.get_jkobj(np.transpose([ra_g_hdens[ind_jk_g], dec_g_hdens[ind_jk_g]]),njk_radec) jk_dict = {'jkobj_map_radec_centers':jkobj_map_radec.centers} pk.dump(jk_dict, open(save_dir + save_filename_jk_obj, 'wb'),protocol=2) other_params_dict['jkobj_map_radec'] = jkobj_map_radec CF_hdens_all = pcc.Catalog_funcs(ra_g_hdens_all, dec_g_hdens_all, z_g_hdens_all ,cosmo_params_dict,other_params_dict) nz_unnorm, z_edge = np.histogram(z_g_hdens_all, zarray_edges) nz_unnorm_smooth = spsg.savgol_filter(nz_unnorm, 21, 5) nz_normed = nz_unnorm/(integrate.simps(nz_unnorm,zarray)) nz_normed_smooth = nz_unnorm_smooth/(integrate.simps(nz_unnorm_smooth,zarray)) ra_rand_g_hdens_all, dec_rand_g_hdens_all, z_rand_g_hdens_all = CF_hdens_all.create_random_cat_uniform_esutil(zarray=zarray, nz_normed=nz_normed_smooth, nrand_fac=10, ra_min=0, ra_max=90, dec_min=0, dec_max=90) ind_hdens = np.where((z_rand_g_hdens_all > zmin_hdens) & (z_rand_g_hdens_all < zmax_hdens))[0] ra_rand_g_hdens, dec_rand_g_hdens, z_rand_g_hdens = ra_rand_g_hdens_all[ind_hdens], dec_rand_g_hdens_all[ind_hdens], z_rand_g_hdens_all[ind_hdens] do_plot = True if do_plot: fig, ax = plt.subplots(1,1, figsize = (10,8)) ax.set_xlim(0.1,0.9) ax.plot(zarray, nz_normed_smooth, 'k-', label='Smoothed',linewidth=1.5) ax.plot(zarray, nz_normed, color='red', label='Original',linewidth=1.8) ax.legend(fontsize=18, loc='upper left') plt.xlabel(r'z', fontsize=22) plt.ylabel(r'n(z)', fontsize=26) plt.tick_params(axis='both', which='major', labelsize=18) plt.tick_params(axis='both', which='minor', labelsize=18) plt.tight_layout() plt.savefig('nz_mice_v2_redmagic_hdens_comp.png',dpi=360) gal_hlum = fits.open('/global/project/projectdirs/des/y3-bias/MICE_all_data/v2/mice2_des_run_redmapper_v6.4.16_redmagic_highlum_1.0-04.fit')[1].data ra_g_hlum_all, dec_g_hlum_all, z_g_hlum_all = gal_hlum['RA'],gal_hlum['DEC'],gal_hlum['ZSPEC'] ind_hlum = np.where((z_g_hlum_all > zmin_hlum) & (z_g_hlum_all < zmax_hlum))[0] ra_g_hlum, dec_g_hlum, z_g_hlum = ra_g_hlum_all[ind_hlum], dec_g_hlum_all[ind_hlum], z_g_hlum_all[ind_hlum] CF_hlum_all = pcc.Catalog_funcs(ra_g_hlum_all, dec_g_hlum_all, z_g_hlum_all ,cosmo_params_dict,other_params_dict) nz_unnorm, z_edge = np.histogram(z_g_hlum_all, zarray_edges) nz_unnorm_smooth = spsg.savgol_filter(nz_unnorm, 21, 5) nz_normed = nz_unnorm/(integrate.simps(nz_unnorm,zarray)) nz_normed_smooth = nz_unnorm_smooth/(integrate.simps(nz_unnorm_smooth,zarray)) ra_rand_g_hlum_all, dec_rand_g_hlum_all, z_rand_g_hlum_all = CF_hlum_all.create_random_cat_uniform_esutil(zarray=zarray, nz_normed=nz_normed_smooth, nrand_fac=10, ra_min=0, ra_max=90, dec_min=0, dec_max=90) ind_hlum = np.where((z_rand_g_hlum_all > zmin_hlum) & (z_rand_g_hlum_all < zmax_hlum))[0] ra_rand_g_hlum, dec_rand_g_hlum, z_rand_g_hlum = ra_rand_g_hlum_all[ind_hlum], dec_rand_g_hlum_all[ind_hlum], z_rand_g_hlum_all[ind_hlum] do_plot = True if do_plot: fig, ax = plt.subplots(1,1, figsize = (10,8)) ax.set_xlim(0.1,0.9) ax.plot(zarray, nz_normed_smooth, 'k-', label='Smoothed',linewidth=1.5) ax.plot(zarray, nz_normed, color='red', label='Original',linewidth=1.8) ax.legend(fontsize=18, loc='upper left') plt.xlabel(r'z', fontsize=22) plt.ylabel(r'n(z)', fontsize=26) plt.tick_params(axis='both', which='major', labelsize=18) plt.tick_params(axis='both', which='minor', labelsize=18) plt.tight_layout() plt.savefig('nz_mice_v2_redmagic_hlum_comp.png',dpi=360) gal_hrlum = fits.open('/global/project/projectdirs/des/y3-bias/MICE_all_data/v2/mice2_des_run_redmapper_v6.4.16_redmagic_higherlum_1.5-01.fit')[1].data ra_g_hrlum_all, dec_g_hrlum_all, z_g_hrlum_all = gal_hrlum['RA'],gal_hrlum['DEC'],gal_hrlum['ZSPEC'] ind_hrlum = np.where((z_g_hrlum_all > zmin_hrlum) & (z_g_hrlum_all < zmax_hrlum))[0] ra_g_hrlum, dec_g_hrlum, z_g_hrlum = ra_g_hrlum_all[ind_hrlum], dec_g_hrlum_all[ind_hrlum], z_g_hrlum_all[ind_hrlum] CF_hrlum_all = pcc.Catalog_funcs(ra_g_hrlum_all, dec_g_hrlum_all, z_g_hrlum_all ,cosmo_params_dict,other_params_dict) nz_unnorm, z_edge = np.histogram(z_g_hrlum_all, zarray_edges) nz_unnorm_smooth = spsg.savgol_filter(nz_unnorm, 21, 5) nz_normed = nz_unnorm/(integrate.simps(nz_unnorm,zarray)) nz_normed_smooth = nz_unnorm_smooth/(integrate.simps(nz_unnorm_smooth,zarray)) ra_rand_g_hrlum_all, dec_rand_g_hrlum_all, z_rand_g_hrlum_all = CF_hrlum_all.create_random_cat_uniform_esutil(zarray=zarray, nz_normed=nz_normed_smooth, nrand_fac=10, ra_min=0, ra_max=90, dec_min=0, dec_max=90) ind_hrlum =
np.where((z_rand_g_hrlum_all > zmin_hrlum) & (z_rand_g_hrlum_all < zmax_hrlum))
numpy.where
# -*- coding: utf-8 -*- """ Created on Thu Aug 12 18:20:00 2020 @author: http://research.iac.es/sieinvens/python-course/source/scipy.html """ """Ejemplo de Ajuste de funciones generales con MMCC con Python HAY QUE ESTUDIARLO PARA UTILIZAR LEASTSQ""" """import numpy as np from matplotlib import pyplot as plt from scipy.optimize import leastsq # Datos de laboratorio datos_y = np.array([ 2.9, 6.1, 10.9, 12.8, 19.2]) datos_x = np.array([ 1.0, 2.0, 3.0, 4.0, 5.0]) # Función para calcular los residuos, donde # se calcula (datos - modelo) def residuos(p, y, x): error = y - (p[0]*x + p[1]) return error # Parámetros iniciales estimados # y = p0[0]*x + p0[0] p0 = [2.0, 0.0] # Hacemos el ajuste por minimos cuadrados con leastsq(). El primer parámetro # es la funcion de residuos, luego los parámetro iniciales y una tupla con los # argumentos de la funcion de residuos, en este caso, datos_y y datos_x en # ese orden, porque así se definió la función de error ajuste = leastsq(residuos, p0, args=(datos_y, datos_x)) # El resultado es una lista, cuyo primer elemento es otra # lista con los parámetros del ajuste print(ajuste[0]) # array([ 3.93, -1.41])""" import numpy as np from matplotlib import pyplot as plt from scipy.optimize import leastsq from scipy import random # Generamos unos datos artificiales para hacer el ejemplo # A datos_y se le añade "ruido" que simula error de # medida, añadiendole un valor aleatorio datos_x =
np.arange(0, 0.1, 0.003)
numpy.arange
import numpy as np from numpy import ndarray from yacs.config import CfgNode from albumentations import OneOf, Compose, MotionBlur, MedianBlur, Blur, RandomBrightnessContrast, GaussNoise, \ GridDistortion, Rotate, HorizontalFlip, CoarseDropout, Cutout from .grid_mask import GridMask from typing import Union, List, Tuple from .augmix import augmentations, augment_and_mix import cv2 from cv2 import resize import torch def content_crop(img: ndarray, white_background: bool): """ Center the content, removed https://www.kaggle.com/iafoss/image-preprocessing-128x128 :param img: grapheme image matrix :param white_background: whether the image :return: cropped image matrix """ # Remove the surrounding 5 pixels img = img[5:-5, 5:-5] if white_background: y_list, x_list =
np.where(img < 235)
numpy.where
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # MDAnalysis --- https://www.mdanalysis.org # Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the GNU Public Licence, v2 or any higher version # # Please cite your use of MDAnalysis in published work: # # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. # MDAnalysis: A Python package for the rapid analysis of molecular dynamics # simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th # Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy. # doi: 10.25080/majora-629e541a-00e # # <NAME>, <NAME>, <NAME>, and <NAME>. # MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # # MDAnalysis -- density analysis # Copyright (c) 2007-2011 <NAME> <<EMAIL>> # (based on code from Hop --- a framework to analyze solvation dynamics from MD simulations) r"""Generating densities from trajectories --- :mod:`MDAnalysis.analysis.density` ============================================================================= :Author: O<NAME> :Year: 2011 :Copyright: GNU Public License v3 The module provides classes and functions to generate and represent volumetric data, in particular densities. Generating a density from a MD trajectory ----------------------------------------- A common use case is to analyze the solvent density around a protein of interest. The density is calculated with :func:`density_from_Universe` in the fixed coordinate system of the simulation unit cell. It is therefore necessary to orient and fix the protein with respect to the box coordinate system. In practice this means centering and superimposing the protein, frame by frame, on a reference structure and translating and rotating all other components of the simulation with the protein. In this way, the solvent will appear in the reference frame of the protein. An input trajectory must 1. have been centered on the protein of interest; 2. have all molecules made whole that have been broken across periodic boundaries [#pbc]_; 3. have the solvent molecules remapped so that they are closest to the solute (this is important when using triclinic unit cells such as a dodecahedron or a truncated octahedron) [#pbc]_. 4. have a fixed frame of reference; for instance, by superimposing a protein on a reference structure so that one can study the solvent density around it [#fit]_. To generate the density of water molecules around a protein (assuming that the trajectory is already appropriately treated for periodic boundary artifacts and is suitably superimposed to provide a fixed reference frame) [#testraj]_ :: from MDAnalysis.analysis.density import density_from_Universe u = Universe(TPR, XTC) D = density_from_Universe(u, delta=1.0, atomselection="name OW") D.convert_density('TIP4P') D.export("water.dx", type="double") The positions of all water oxygens are histogrammed on a grid with spacing *delta* = 1 Å. Initially the density is measured in :math:`\text{Å}^{-3}`. With the :meth:`Density.convert_density` method, the units of measurement are changed. In the example we are now measuring the density relative to the literature value of the TIP4P water model at ambient conditions (see the values in :data:`MDAnalysis.units.water` for details). Finally, the density is written as an OpenDX_ compatible file that can be read in VMD_, Chimera_, or PyMOL_. See :class:`Density` for details. In particular, the density is stored as a NumPy array in :attr:`Density.grid`, which can be processed in any manner. Creating densities ------------------ The following functions take trajectory or coordinate data and generate a :class:`Density` object. .. autofunction:: density_from_Universe .. autofunction:: density_from_PDB .. autofunction:: Bfactor2RMSF Supporting classes and functions -------------------------------- The main output of the density creation functions is a :class:`Density` instance, which is derived from a :class:`gridData.core.Grid`. A :class:`Density` is essentially, a 3D array with origin and lengths together with associated metadata (which can be used in downstream processing). .. autoclass:: Density :members: :inherited-members: :show-inheritance: .. autoclass:: BfactorDensityCreator :members: .. autofunction:: notwithin_coordinates_factory .. rubric:: Footnotes .. [#pbc] Making molecules whole can be accomplished with the :meth:`MDAnalysis.core.groups.AtomGroup.wrap` of :attr:`Universe.atoms` (use ``compound="fragments"``). When using, for instance, the Gromacs_ command `gmx trjconv`_ .. code-block:: bash gmx trjconv -pbc mol -center -ur compact one can make the molecules whole ``-pbc whole``, center it on a group (``-center``), and also pack all molecules in a compact unitcell representation, which can be useful for density generation. .. [#fit] Superposition can be performed with :class:`MDAnalysis.analysis.align.AlignTraj`. The Gromacs_ command `gmx trjconv`_ .. code-block:: bash gmx trjconv -fit rot+trans will also accomplish such a superposition. Note that the fitting has to be done in a *separate* step from the treatment of the periodic boundaries [#pbc]_. .. [#testraj] Note that the trajectory in the example (`XTC`) is *not* properly made whole and fitted to a reference structure; these steps were omitted to clearly show the steps necessary for the actual density calculation. .. Links .. ----- .. _OpenDX: http://www.opendx.org/ .. _VMD: http://www.ks.uiuc.edu/Research/vmd/ .. _Chimera: https://www.cgl.ucsf.edu/chimera/ .. _PyMOL: http://www.pymol.org/ .. _Gromacs: http://www.gromacs.org .. _`gmx trjconv`: http://manual.gromacs.org/programs/gmx-trjconv.html """ from __future__ import print_function, division, absolute_import from six.moves import range, zip from six import string_types import numpy as np import sys import os import os.path import errno import warnings from gridData import Grid import MDAnalysis from MDAnalysis.core import groups from MDAnalysis.lib.util import fixedwidth_bins, iterable, asiterable from MDAnalysis.lib import NeighborSearch as NS from MDAnalysis import NoDataError, MissingDataWarning from .. import units from ..lib import distances from MDAnalysis.lib.log import ProgressMeter import logging logger = logging.getLogger("MDAnalysis.analysis.density") class Density(Grid): r"""Class representing a density on a regular cartesian grid. Parameters ---------- grid : array_like histogram or density, typically a :class:`numpy.ndarray` edges : list list of arrays, the lower and upper bin edges along the axes parameters : dict dictionary of class parameters; saved with :meth:`Density.save`. The following keys are meaningful to the class. Meaning of the values are listed: *isDensity* - ``False``: grid is a histogram with counts [default] - ``True``: a density Applying :meth:`Density.make_density`` sets it to ``True``. units : dict A dict with the keys - *length*: physical unit of grid edges (Angstrom or nm) [Angstrom] - *density*: unit of the density if ``isDensity=True`` or ``None`` otherwise; the default is "Angstrom^{-3}" for densities (meaning :math:`\text{Å}^{-3}`). (Actually, the default unit is the value of ``MDAnalysis.core.flags['length_unit']``; in most cases this is "Angstrom".) metadata : dict a user defined dictionary of arbitrary values associated with the density; the class does not touch :attr:`Density.metadata` but stores it with :meth:`Density.save` Attributes ---------- grid : array counts or density edges : list of 1d-arrays The boundaries of each cell in `grid` along all axes (equivalent to what :func:`numpy.histogramdd` returns). delta : array Cell size in each dimension. origin : array Coordinates of the *center* of the cell at index `grid[0, 0, 0, ..., 0]`, which is considered to be the front lower left corner. units : dict The units for lengths and density; change units with the method :meth:`~Density.convert_length` or :meth:`~Density.convert_density`. Notes ----- The data (:attr:`Density.grid`) can be manipulated as a standard numpy array. Changes can be saved to a file using the :meth:`Density.save` method. The grid can be restored using the :meth:`Density.load` method or by supplying the filename to the constructor. The attribute :attr:`Density.metadata` holds a user-defined dictionary that can be used to annotate the data. It is also saved with :meth:`Density.save`. The :meth:`Density.export` method always exports a 3D object (written in such a way to be readable in VMD_, Chimera_, and PyMOL_), the rest should work for an array of any dimension. Note that PyMOL_ only understands DX files with the DX data type "double" in the "array" object (see `known issues when writing OpenDX files`_ and issue `MDAnalysis/GridDataFormats#35`_ for details). Using the keyword ``type="double"`` for the method :meth:`Density.export`, the user can ensure that the DX file is written in a format suitable for PyMOL_. If the input histogram consists of counts per cell then the :meth:`Density.make_density` method converts the grid to a physical density. For a probability density, divide it by :meth:`Density.grid.sum` or use ``normed=True`` right away in :func:`~numpy.histogramdd`. The user *should* set the *parameters* keyword (see docs for the constructor); in particular, if the data are already a density, one must set ``isDensity=True`` because there is no reliable way to detect if data represent counts or a density. As a special convenience, if data are read from a file and the user has not set ``isDensity`` then it is assumed that the data are in fact a density. .. _`MDAnalysis/GridDataFormats#35`: https://github.com/MDAnalysis/GridDataFormats/issues/35 .. _`known issues when writing OpenDX files`: https://www.mdanalysis.org/GridDataFormats/gridData/formats/OpenDX.html#known-issues-for-writing-opendx-files See Also -------- gridData.core.Grid : the base class of :class:`Density`. Examples -------- Typical use: 1. From a histogram (i.e. counts on a grid):: h,edges = numpy.histogramdd(...) D = Density(h, edges, parameters={'isDensity': False}, units={'length': 'A'}) D.make_density() 2. From a saved density file (e.g. in OpenDX format), where the lengths are in Angstrom and the density in 1/A**3:: D = Density("density.dx") 3. From a saved density file (e.g. in OpenDX format), where the lengths are in Angstrom and the density is measured relative to the density of water at ambient conditions:: D = Density("density.dx", units={'density': 'water'}) 4. From a saved *histogram* (less common, but in order to demonstrate the *parameters* keyword) where the lengths are in nm:: D = Density("counts.dx", parameters={'isDensity': False}, units={'length': 'nm'}) D.make_density() D.convert_length('Angstrom^{-3}') D.convert_density('water') After the final step, ``D`` will contain a density on a grid measured in Ångstrom, with the density values itself measured relative to the density of water. :class:`Density` objects can be algebraically manipulated (added, subtracted, multiplied, ...) but there are *no sanity checks* in place to make sure that units, metadata, etc are compatible! .. Note:: It is suggested to construct the Grid object from a histogram, to supply the appropriate length unit, and to use :meth:`Density.make_density` to obtain a density. This ensures that the length- and the density unit correspond to each other. """ def __init__(self, *args, **kwargs): length_unit = MDAnalysis.core.flags['length_unit'] parameters = kwargs.pop('parameters', {}) if len(args) > 0 and isinstance(args[0], string_types) or isinstance(kwargs.get('grid', None), string_types): # try to be smart: when reading from a file then it is likely that this # is a density parameters.setdefault('isDensity', True) else: parameters.setdefault('isDensity', False) units = kwargs.pop('units', {}) units.setdefault('length', length_unit) if parameters['isDensity']: units.setdefault('density', length_unit) else: units.setdefault('density', None) super(Density, self).__init__(*args, **kwargs) self.parameters = parameters # isDensity: set by make_density() self.units = units def _check_set_unit(self, u): """Check and set units. First check that all units and their values in the dict `u` are valid and then set the object's units attribute. Parameters ---------- u : dict ``{unit_type : value, ...}`` Raises ------ ValueError if unit types or unit values are not recognized or if required unit types are not in :attr:`units` """ # all this unit crap should be a class... try: for unit_type, value in u.items(): if value is None: # check here, too iffy to use dictionary[None]=None self.units[unit_type] = None continue try: units.conversion_factor[unit_type][value] self.units[unit_type] = value except KeyError: raise ValueError('Unit ' + str(value) + ' of type ' + str(unit_type) + ' is not recognized.') except AttributeError: errmsg = '"unit" must be a dictionary with keys "length" and "density.' logger.fatal(errmsg) raise ValueError(errmsg) # need at least length and density (can be None) if 'length' not in self.units: raise ValueError('"unit" must contain a unit for "length".') if 'density' not in self.units: self.units['density'] = None def make_density(self): """Convert the grid (a histogram, counts in a cell) to a density (counts/volume). This method changes the grid irrevocably. For a probability density, manually divide by :meth:`grid.sum`. If this is already a density, then a warning is issued and nothing is done, so calling `make_density` multiple times does not do any harm. """ # Make it a density by dividing by the volume of each grid cell # (from numpy.histogramdd, which is for general n-D grids) if self.parameters['isDensity']: msg = "Running make_density() makes no sense: Grid is already a density. Nothing done." logger.warning(msg) warnings.warn(msg) return dedges = [np.diff(edge) for edge in self.edges] D = len(self.edges) for i in range(D): shape = np.ones(D, int) shape[i] = len(dedges[i]) self.grid /= dedges[i].reshape(shape) self.parameters['isDensity'] = True # see units.densityUnit_factor for units self.units['density'] = self.units['length'] + "^{-3}" def convert_length(self, unit='Angstrom'): """Convert Grid object to the new `unit`. Parameters ---------- unit : str (optional) unit that the grid should be converted to: one of "Angstrom", "nm" Notes ----- This changes the edges but will not change the density; it is the user's responsibility to supply the appropriate unit if the Grid object is constructed from a density. It is suggested to start from a histogram and a length unit and use :meth:`make_density`. """ if unit == self.units['length']: return cvnfact = units.get_conversion_factor('length', self.units['length'], unit) self.edges = [x * cvnfact for x in self.edges] self.units['length'] = unit self._update() # needed to recalculate midpoints and origin def convert_density(self, unit='Angstrom'): """Convert the density to the physical units given by `unit`. Parameters ---------- unit : str (optional) The target unit that the density should be converted to. `unit` can be one of the following: ============= =============================================================== name description of the unit ============= =============================================================== Angstrom^{-3} particles/A**3 nm^{-3} particles/nm**3 SPC density of SPC water at standard conditions TIP3P ... see :data:`MDAnalysis.units.water` TIP4P ... see :data:`MDAnalysis.units.water` water density of real water at standard conditions (0.997 g/cm**3) Molar mol/l ============= =============================================================== Raises ------ RuntimeError If the density does not have a unit associated with it to begin with (i.e., is not a density) then no conversion can take place. ValueError for unknown `unit`. Notes ----- (1) This method only works if there is already a length unit associated with the density; otherwise raises :exc:`RuntimeError` (2) Conversions always go back to unity so there can be rounding and floating point artifacts for multiple conversions. """ if not self.parameters['isDensity']: errmsg = 'The grid is not a density so converty_density() makes no sense.' logger.fatal(errmsg) raise RuntimeError(errmsg) if unit == self.units['density']: return try: self.grid *= units.get_conversion_factor('density', self.units['density'], unit) except KeyError: raise ValueError("The name of the unit ({0!r} supplied) must be one of:\n{1!r}".format(unit, units.conversion_factor['density'].keys())) self.units['density'] = unit def __repr__(self): if self.parameters['isDensity']: grid_type = 'density' else: grid_type = 'histogram' return '<Density ' + grid_type + ' with ' + str(self.grid.shape) + ' bins>' def _set_user_grid(gridcenter, xdim, ydim, zdim, smin, smax): """Helper function to set the grid dimensions to user defined values Parameters ---------- gridcenter : numpy ndarray, float32 3 element ndarray containing the x, y and z coordinates of the grid box center xdim : float Box edge length in the x dimension ydim : float Box edge length in the y dimension zdim : float Box edge length in the y dimension smin : numpy ndarray, float32 Minimum x,y,z coordinates for the input selection smax : numpy ndarray, float32 Maximum x,y,z coordinates for the input selection Returns ------- umin : numpy ndarray, float32 Minimum x,y,z coordinates of the user defined grid umax : numpy ndarray, float32 Maximum x,y,z coordinates of the user defined grid """ # Check user inputs try: gridcenter = np.asarray(gridcenter, dtype=np.float32) except ValueError: raise ValueError("Non-number values assigned to gridcenter") if gridcenter.shape != (3,): raise ValueError("gridcenter must be a 3D coordinate") try: xyzdim = np.array([xdim, ydim, zdim], dtype=np.float32) except ValueError: raise ValueError("xdim, ydim, and zdim must be numbers") # Set min/max by shifting by half the edge length of each dimension umin = gridcenter - xyzdim/2 umax = gridcenter + xyzdim/2 # Here we test if coords of selection fall outside of the defined grid # if this happens, we warn users they may want to resize their grids if any(smin < umin) or any(smax > umax): msg = ("Atom selection does not fit grid --- " "you may want to define a larger box") warnings.warn(msg) logger.warning(msg) return umin, umax def density_from_Universe(universe, delta=1.0, atomselection='name OH2', start=None, stop=None, step=None, metadata=None, padding=2.0, cutoff=0, soluteselection=None, use_kdtree=True, update_selection=False, verbose=False, interval=1, quiet=None, parameters=None, gridcenter=None, xdim=None, ydim=None, zdim=None): """Create a density grid from a :class:`MDAnalysis.Universe` object. The trajectory is read, frame by frame, and the atoms selected with `atomselection` are histogrammed on a grid with spacing `delta`. Parameters ---------- universe : MDAnalysis.Universe :class:`MDAnalysis.Universe` object with a trajectory atomselection : str (optional) selection string (MDAnalysis syntax) for the species to be analyzed ["name OH2"] delta : float (optional) bin size for the density grid in Angstroem (same in x,y,z) [1.0] start : int (optional) stop : int (optional) step : int (optional) Slice the trajectory as ``trajectory[start:stop:step]``; default is to read the whole trajectory. metadata : dict. optional `dict` of additional data to be saved with the object; the meta data are passed through as they are. padding : float (optional) increase histogram dimensions by padding (on top of initial box size) in Angstroem. Padding is ignored when setting a user defined grid. [2.0] soluteselection : str (optional) MDAnalysis selection for the solute, e.g. "protein" [``None``] cutoff : float (optional) With `cutoff`, select "<atomsel> NOT WITHIN <cutoff> OF <soluteselection>" (Special routines that are faster than the standard ``AROUND`` selection); any value that evaluates to ``False`` (such as the default 0) disables this special selection. update_selection : bool (optional) Should the selection of atoms be updated for every step? [``False``] - ``True``: atom selection is updated for each frame, can be slow - ``False``: atoms are only selected at the beginning verbose : bool (optional) Print status update to the screen for every *interval* frame? [``True``] - ``False``: no status updates when a new frame is processed - ``True``: status update every frame (including number of atoms processed, which is interesting with ``update_selection=True``) interval : int (optional) Show status update every `interval` frame [1] parameters : dict (optional) `dict` with some special parameters for :class:`Density` (see docs) gridcenter : numpy ndarray, float32 (optional) 3 element numpy array detailing the x, y and z coordinates of the center of a user defined grid box in Angstroem [``None``] xdim : float (optional) User defined x dimension box edge in ångström; ignored if gridcenter is ``None`` ydim : float (optional) User defined y dimension box edge in ångström; ignored if gridcenter is ``None`` zdim : float (optional) User defined z dimension box edge in ångström; ignored if gridcenter is ``None`` Returns ------- :class:`Density` A :class:`Density` instance with the histogrammed data together with associated metadata. Notes ----- By default, the `atomselection` is static, i.e., atoms are only selected once at the beginning. If you want *dynamically changing selections* (such as "name OW and around 4.0 (protein and not name H*)", i.e., the water oxygen atoms that are within 4 Å of the protein heavy atoms) then set ``update_selection=True``. For the special case of calculating a density of the "bulk" solvent away from a solute use the optimized selections with keywords *cutoff* and *soluteselection* (see Examples below). Examples -------- Basic use for creating a water density (just using the water oxygen atoms "OW"):: density = density_from_Universe(universe, delta=1.0, atomselection='name OW') If you are only interested in water within a certain region, e.g., within a vicinity around a binding site, you can use a selection that updates every step by setting the `update_selection` keyword argument:: site_density = density_from_Universe(universe, delta=1.0, atomselection='name OW and around 5 (resid 156 157 305)', update_selection=True) A special case for an updating selection is to create the "bulk density", i.e., the water outside the immediate solvation shell of a protein: Select all water oxygen atoms that are *farther away* than a given cut-off (say, 4 Å) from the solute (here, heavy atoms of the protein):: bulk = density_from_Universe(universe, delta=1.0, atomselection='name OW', solute="protein and not name H*", cutoff=4) (Using the special case for the bulk with `soluteselection` and `cutoff` improves performance over the simple `update_selection` approach.) If you are interested in explicitly setting a grid box of a given edge size and origin, you can use the gridcenter and x/y/zdim arguments. For example to plot the density of waters within 5 Å of a ligand (in this case the ligand has been assigned the residue name "LIG") in a cubic grid with 20 Å edges which is centered on the centre of mass (COM) of the ligand:: # Create a selection based on the ligand ligand_selection = universe.select_atoms("resname LIG") # Extract the COM of the ligand ligand_COM = ligand_selection.center_of_mass() # Generate a density of waters on a cubic grid centered on the ligand COM # In this case, we update the atom selection as shown above. water_density = density_from_Universe(universe, delta=1.0, atomselection='name OW around 5 resname LIG', update_selection=True, gridcenter=ligand_COM, xdim=20.0, ydim=20.0, zdim=20.0) (It should be noted that the `padding` keyword is not used when a user defined grid is assigned). .. versionchanged:: 0.20.0 ProgressMeter now iterates over the number of frames analysed. .. versionchanged:: 0.19.0 *gridcenter*, *xdim*, *ydim* and *zdim* keywords added to allow for user defined boxes .. versionchanged:: 0.13.0 *update_selection* and *quiet* keywords added .. deprecated:: 0.16 The keyword argument *quiet* is deprecated in favor of *verbose*. """ u = universe if cutoff > 0 and soluteselection is not None: # special fast selection for '<atomsel> not within <cutoff> of <solutesel>' notwithin_coordinates = notwithin_coordinates_factory( u, atomselection, soluteselection, cutoff, use_kdtree=use_kdtree, updating_selection=update_selection) def current_coordinates(): return notwithin_coordinates() else: group = u.select_atoms(atomselection, updating=update_selection) def current_coordinates(): return group.positions coord = current_coordinates() logger.info( "Selected {0:d} atoms out of {1:d} atoms ({2!s}) from {3:d} total." "".format(coord.shape[0], len(u.select_atoms(atomselection)), atomselection, len(u.atoms)) ) # mild warning; typically this is run on RMS-fitted trajectories and # so the box information is rather meaningless box, angles = u.trajectory.ts.dimensions[:3], u.trajectory.ts.dimensions[3:] if tuple(angles) != (90., 90., 90.): msg = "Non-orthorhombic unit-cell --- make sure that it has been remapped properly!" warnings.warn(msg) logger.warning(msg) if gridcenter is not None: # Generate a copy of smin/smax from coords to later check if the # defined box might be too small for the selection smin = np.min(coord, axis=0) smax = np.max(coord, axis=0) # Overwrite smin/smax with user defined values smin, smax = _set_user_grid(gridcenter, xdim, ydim, zdim, smin, smax) else: # Make the box bigger to avoid as much as possible 'outlier'. This # is important if the sites are defined at a high density: in this # case the bulk regions don't have to be close to 1 * n0 but can # be less. It's much more difficult to deal with outliers. The # ideal solution would use images: implement 'looking across the # periodic boundaries' but that gets complicate when the box # rotates due to RMS fitting. smin = np.min(coord, axis=0) - padding smax = np.max(coord, axis=0) + padding BINS = fixedwidth_bins(delta, smin, smax) arange = np.vstack((BINS['min'], BINS['max'])) arange = np.transpose(arange) bins = BINS['Nbins'] # create empty grid with the right dimensions (and get the edges) grid, edges = np.histogramdd(np.zeros((1, 3)), bins=bins, range=arange, normed=False) grid *= 0.0 h = grid.copy() start, stop, step = u.trajectory.check_slice_indices(start, stop, step) n_frames = len(range(start, stop, step)) pm = ProgressMeter(n_frames, interval=interval, verbose=verbose, format="Histogramming %(n_atoms)6d atoms in frame " "%(step)5d/%(numsteps)d [%(percentage)5.1f%%]") for index, ts in enumerate(u.trajectory[start:stop:step]): coord = current_coordinates() pm.echo(index, n_atoms=len(coord)) if len(coord) == 0: continue h[:], edges[:] = np.histogramdd(coord, bins=bins, range=arange, normed=False) grid += h # accumulate average histogram grid /= float(n_frames) metadata = metadata if metadata is not None else {} metadata['psf'] = u.filename metadata['dcd'] = u.trajectory.filename metadata['atomselection'] = atomselection metadata['n_frames'] = n_frames metadata['totaltime'] = round(u.trajectory.n_frames * u.trajectory.dt, 3) metadata['dt'] = u.trajectory.dt metadata['time_unit'] = MDAnalysis.core.flags['time_unit'] try: metadata['trajectory_skip'] = u.trajectory.skip_timestep # frames except AttributeError: metadata['trajectory_skip'] = 1 # seems to not be used.. try: metadata['trajectory_delta'] = u.trajectory.delta # in native units except AttributeError: metadata['trajectory_delta'] = 1 if cutoff > 0 and soluteselection is not None: metadata['soluteselection'] = soluteselection metadata['cutoff'] = cutoff # in Angstrom parameters = parameters if parameters is not None else {} parameters['isDensity'] = False # must override g = Density(grid=grid, edges=edges, units={'length': MDAnalysis.core.flags['length_unit']}, parameters=parameters, metadata=metadata) g.make_density() logger.info("Density completed (initial density in Angstrom**-3)") return g def notwithin_coordinates_factory(universe, sel1, sel2, cutoff, not_within=True, use_kdtree=True, updating_selection=False): """Generate optimized selection for '*sel1* not within *cutoff* of *sel2*' Parameters ---------- universe : MDAnalysis.Universe Universe object on which to operate sel1 : str Selection string for the *solvent* selection (should be the group with the *larger number of atoms* to make the KD-Tree search more efficient) sel2 : str Selection string for the *solute* selection cutoff : float Distance cutoff not_within : bool - ``True``: selection behaves as "not within" (As described above) - ``False``: selection is a "<sel1> WITHIN <cutoff> OF <sel2>" use_kdtree : bool - ``True``: use fast KD-Tree based selections - ``False``: use distance matrix approach updating_selection : bool If ``True``, re-evaluate the selection string each frame. Notes ----- * Periodic boundary conditions are *not* taken into account: the naive minimum image convention employed in the distance check is currently not being applied to remap the coordinates themselves, and hence it would lead to counts in the wrong region. * With ``updating_selection=True``, the selection is evaluated every turn; do not use distance based selections (such as "AROUND") in your selection string because it will likely completely negate any gains from using this function factory in the first place. Examples -------- :func:`notwithin_coordinates_factory` creates an optimized function that, when called, returns the coordinates of the "solvent" selection that are *not within* a given cut-off distance of the "solute". Because it is KD-tree based, it is cheap to query the KD-tree with a different cut-off:: notwithin_coordinates = notwithin_coordinates_factory(universe, 'name OH2', 'protein and not name H*', 3.5) ... coord = notwithin_coordinates() # get coordinates outside cutoff 3.5 A coord = notwithin_coordinates(cutoff2) # can use different cut off For programmatic convenience, the function can also function as a factory for a simple *within cutoff* query if the keyword ``not_within=False`` is set:: within_coordinates = notwithin_coordinates_factory(universe, 'name OH2','protein and not name H*', 3.5, not_within=False) ... coord = within_coordinates() # get coordinates within cutoff 3.5 A coord = within_coordinates(cutoff2) # can use different cut off (Readability is enhanced by properly naming the generated function ``within_coordinates()``.) """ # Benchmark of FABP system (solvent 3400 OH2, protein 2100 atoms) on G4 powerbook, 500 frames # cpu/s relative speedup use_kdtree # distance matrix 633 1 1 False # AROUND + kdtree 420 0.66 1.5 n/a ('name OH2 around 4 protein') # manual + kdtree 182 0.29 3.5 True solvent = universe.select_atoms(sel1, updating=updating_selection) protein = universe.select_atoms(sel2, updating=updating_selection) if use_kdtree: # using faster hand-coded 'not within' selection with kd-tree if not_within is True: # default def notwithin_coordinates(cutoff=cutoff): # must update every time step ns_w = NS.AtomNeighborSearch(solvent) # build kd-tree on solvent (N_w > N_protein) solvation_shell = ns_w.search(protein, cutoff) # solvent within CUTOFF of protein # Find indices in solvent NOT in solvation shell uniq_idx = np.setdiff1d(solvent.ix, solvation_shell.ix) # Then reselect these from Universe.atoms (as these indices are global) group = universe.atoms[uniq_idx] return group.positions else: def notwithin_coordinates(cutoff=cutoff): # acts as '<solvent> WITHIN <cutoff> OF <protein>' # must update every time step ns_w = NS.AtomNeighborSearch(solvent) # build kd-tree on solvent (N_w > N_protein) group = ns_w.search(protein, cutoff) # solvent within CUTOFF of protein return group.positions else: # slower distance matrix based (calculate all with all distances first) dist = np.zeros((len(solvent), len(protein)), dtype=np.float64) box = None # as long as s_coor is not minimum-image remapped if not_within is True: # default compare = np.greater aggregatefunc = np.all else: compare = np.less_equal aggregatefunc = np.any def notwithin_coordinates(cutoff=cutoff): s_coor = solvent.positions p_coor = protein.positions # Does water i satisfy d[i,j] > r for ALL j? d = distances.distance_array(s_coor, p_coor, box=box, result=dist) return s_coor[aggregatefunc(compare(d, cutoff), axis=1)] return notwithin_coordinates def Bfactor2RMSF(B): r"""Atomic root mean square fluctuation (in Angstrom) from the crystallographic B-factor RMSF and B-factor are related by [Willis1975]_ .. math:: B = \frac{8\pi^2}{3} \rm{RMSF}^2 and this function returns .. math:: \rm{RMSF} = \sqrt{\frac{3 B}{8\pi^2}} .. rubric:: References .. [Willis1975] BTM Willis and AW Pryor. *Thermal vibrations in crystallography*. Cambridge Univ. Press, 1975 """ return np.sqrt(3. * B / 8.) / np.pi def density_from_PDB(pdb, **kwargs): """Create a density from a single frame PDB. Typical use is to make a density from the crystal water molecules. The density is created from isotropic gaussians centered at each selected atoms. If B-factors are present in the file then they are used to calculate the width of the gaussian. Using the *sigma* keyword, one can override this choice and prescribe a gaussian width for all atoms (in Angstrom), which is calculated as described for :func:`Bfactor2RMSF`. Parameters ---------- pdb : str PDB filename (should have the temperatureFactor set); ANISO records are currently *not* processed atomselection : str selection string (MDAnalysis syntax) for the species to be analyzed ['resname HOH and name O'] delta : float bin size for the density grid in Angstroem (same in x,y,z) [1.0] metadata : dict dictionary of additional data to be saved with the object [``None``] padding : float increase histogram dimensions by padding (on top of initial box size) [1.0] sigma : float width (in Angstrom) of the gaussians that are used to build up the density; if ``None`` then uses B-factors from *pdb* [``None``] Returns ------- :class:`Density` object with a density measured relative to the water density at standard conditions Notes ----- The current implementation is *painfully* slow. See Also -------- :func:`Bfactor2RMSF` and :class:`BfactorDensityCreator` """ return BfactorDensityCreator(pdb, **kwargs).Density() class BfactorDensityCreator(object): """Create a density grid from a pdb file using MDAnalysis. The main purpose of this function is to convert crystal waters in an X-ray structure into a density so that one can compare the experimental density with the one from molecular dynamics trajectories. Because a pdb is a single snapshot, the density is estimated by placing Gaussians of width sigma at the position of all selected atoms. Sigma can be fixed or taken from the B-factor field, in which case sigma is taken as sqrt(3.*B/8.)/pi (see :func:`BFactor2RMSF`). .. TODO .. * Make Gaussian convolution more efficient (at least for same .. sigma) because right now it is *very* slow (which may be .. acceptable if one only runs this once) .. * Using a temporary Creator class with the .. :meth:`BfactorDensityCreator.Density` helper method is clumsy. """ def __init__(self, pdb, delta=1.0, atomselection='resname HOH and name O', metadata=None, padding=1.0, sigma=None): """Construct the density from psf and pdb and the atomselection. Parameters ---------- pdb : str PDB file or :class:`MDAnalysis.Universe`; atomselection : str selection string (MDAnalysis syntax) for the species to be analyzed delta : float bin size for the density grid in Angstroem (same in x,y,z) [1.0] metadata : dict dictionary of additional data to be saved with the object padding : float increase histogram dimensions by padding (on top of initial box size) sigma : float width (in Angstrom) of the gaussians that are used to build up the density; if ``None`` (the default) then uses B-factors from pdb Notes ----- For assigning X-ray waters to MD densities one might have to use a sigma of about 0.5 A to obtain a well-defined and resolved x-ray water density that can be easily matched to a broader density distribution. Examples -------- The following creates the density with the B-factors from the pdb file:: DC = BfactorDensityCreator(pdb, delta=1.0, atomselection="name HOH", padding=2, sigma=None) density = DC.Density() See Also -------- :func:`density_from_PDB` for a convenience function """ u = MDAnalysis.as_Universe(pdb) group = u.select_atoms(atomselection) coord = group.positions logger.info("Selected {0:d} atoms ({1!s}) out of {2:d} total.".format(coord.shape[0], atomselection, len(u.atoms))) smin = np.min(coord, axis=0) - padding smax =
np.max(coord, axis=0)
numpy.max
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns import warnings from matplotlib import rc from matplotlib.backends import backend_gtk3 from settings import OUTPUT_DIR warnings.filterwarnings('ignore', module=backend_gtk3.__name__) ADJACENCY_MATRIX = np.array([[0, 0, 1], [1, 0, 0], [1, 1, 0]]) INITIAL_VALUES = np.array([0.0, 0.0, 1.0]) TOTAL_TIME = 5.0 NUMBER_OF_NODES = ADJACENCY_MATRIX.shape[0] def _calculate_self_dynamics(last_state): result = [] for node_index in range(NUMBER_OF_NODES): result.append(-1 * last_state[node_index]) return np.array(result) def _calculate_neighbor_dynamics(last_state): result = [] for node_index in range(NUMBER_OF_NODES): sum_result = 0 for neighbor_index in range(NUMBER_OF_NODES): if ADJACENCY_MATRIX[node_index, neighbor_index]: sum_result += (1 - last_state[node_index]) * last_state[neighbor_index] result.append(sum_result) return np.array(result) def _draw_node_plot(self_dynamics, neighbor_dynamics, node_index, frames): data_frame = pd.DataFrame({ 'iterations':
np.arange(self_dynamics.shape[0])
numpy.arange
""" Reliable and extremely fast kernel density estimator for one and two-dimensional samples. The kernel density estimations here are kept as simple and as separated from the rest of the code as possible. They do nothing but kernel density estimation. The motivation for their partial reimplementation is that the existing kernel density estimators are: * suboptimal (like scipy where no kernel bandwidth optimization is done), or * come with a gorilla holding a banana and the entire jungle although only the banana is needed. Do one thing and do it well. Botev's Matlab codes are the starting point of this implementation as those mostly follow the above principle. TODO: - [low] add cdf estimate as in ``kde_1d.m``. - [high] more thorough input check, mostly shape and type. - [high] check the details of ``histc`` in Matlab and ``np.histogram`` make sure that appending a zero to ``sample_hist`` is always valid. """ import copy import logging from typing import Iterable, Tuple, Union import numpy as np from scipy import fft, optimize from scipy.stats import gaussian_kde N_X_VEC = int(2**14) N_ROW_MX = int(2**8) # ====================================================================================== # 1D # ====================================================================================== def kde_1d( sample_vec: Union[np.ndarray, list], n_x_vec: int = N_X_VEC, x_min: Union[int, float] = None, x_max: Union[int, float] = None, weight_vec: Union[np.ndarray, list] = None, return_bandwidth: bool = False, ) -> Union[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, float]]: """ Reliable and extremely fast kernel density estimator for one-dimensional sample. Gaussian kernel is assumed and the bandwidth is chosen automatically. Unlike many other implementations, this one is immune to problems caused by multimodal densities with widely separated modes. The estimation does not deteriorate for multimodal densities, because we never assume a parametric model for the sample. .. note:: * The elements of ``sample_vec`` that fall between ``x_min`` and ``x_max`` will be treated as the full sample, i.e. the kernel density over ``[x_min, x_max]`` will integrate to one. * If the search for finding the optimal bandwidth fails the functions falls back to ``scipy.stats.gaussian_kde``. Args: sample_vec: A vector of sample points from which the density estimate is constructed. n_x_vec: The number of ``x_vec`` points used in the uniform discretization of the interval ``[x_min, x_max]``. ``n_x_vec`` has to be a power of two. If ``n_x_vec`` is not a power of two, then ``n_x_vec`` is rounded up to the next power of two, i.e., ``n_x_vec`` is set to ``n_x_vec=2**ceil(log2(n_x_vec))``; the default value of ``n_x_vec`` is ``n_x_vec=2**14``. x_min: The lower boundary of the interval over which the density estimate is constructed. x_max: The upper boundary of the interval over which the density estimate is constructed. weight_vec: Weights of sample points. This must have the same shape as ``sample_vec``. If ``None`` (default), the samples are assumed to be equally weighted. Only the values of elements relative to each other matter, i.e. multiplying ``weight_vec`` by a non-negative scalar does not change the results. return_bandwidth: Should the used bandwidth be returned? Raises: ValueError: If ``weight_vec`` has at least one negative value. Warns: Root finding failed (Brent's method): Optimal bandwidth finding failed, falling back to the rule-of-thumb bandwidth of ``scipy.stats.gaussian_kde``. Returns: Kernel densities, a vector of length ``n_x_vec`` with the values of the density estimate at the grid points (``x_vec``). Kernel density grid (``x_vec``), a vector of grid points over which the kernel density estimate is computed. Optimal bandwidth (Gaussian kernel assumed), returned only if ``return_bandwidth`` is ``True``. Examples: .. code-block:: python import numpy as np import matplotlib.pyplot as plt from lightkde import kde_1d .. code-block:: python sample_vec = [ -1.3145, -0.5197, 0.9326, 3.2358, 0.3814, -0.3226, 2.1121, 1.1357, 0.4376, -0.0332 ] density_vec, x_vec = kde_1d(sample_vec) .. code-block:: python sample_vec = np.hstack((np.random.normal(loc=-8, size=100), np.random.normal(loc=-3, size=100), np.random.normal(loc=7, size=100))) density_vec, x_vec = kde_1d(sample_vec) plt.subplots() plt.plot(x_vec, density_vec) plt.show() The kde bandwidth selection method is outlined in [1]. This implementation is based on the implementation of <NAME> [2] who based his implementation on the Matlab implementation by <NAME> [3]. References: [1] <NAME>, <NAME>, and <NAME> (2010) Annals of Statistics, Volume 38, Number 5, pages 2916-2957. [2] https://github.com/Daniel-B-Smith/KDE-for-SciPy/blob/a9982909bbb92a7e243e5fc9a74f957d883f1c5d/kde.py # noqa: E501 Updated on: 6 Feb 2013. [3] https://nl.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator # noqa: E501 Updated on: 30 Dec 2015. """ sample_vec = np.array(sample_vec).ravel() n_sample = len(np.unique(sample_vec)) # Parameters to set up the x_vec on which to calculate n_x_vec = int(2 ** np.ceil(np.log2(n_x_vec))) if x_min is None or x_max is None: sample_min = np.min(sample_vec) sample_max = np.max(sample_vec) sample_range = sample_max - sample_min x_min = sample_min - sample_range / 10 if x_min is None else x_min x_max = sample_max + sample_range / 10 if x_max is None else x_max # watch out, scaling of weight_vec if weight_vec is not None: weight_vec = np.atleast_1d(weight_vec).squeeze() if np.any(weight_vec < 0): raise ValueError("Argument: weight_vec cannot have negative elements!") weight_vec = weight_vec / np.sum(weight_vec) * n_sample # Range of x_vec x_range = x_max - x_min # Histogram the sample_vec to get a crude first approximation of the density step = x_range / (n_x_vec - 1) x_vec = np.arange(start=x_min, stop=x_max + 0.1 * step, step=step) sample_hist, bin_edges = np.histogram(sample_vec, bins=x_vec, weights=weight_vec) # for easier comparison with Matlab, the count for [x_vec[-1], +Inf [ is also # added, i.e. 0 sample_hist = np.append(sample_hist, 0) sample_hist = sample_hist / n_sample # discrete cosine transform of initial sample_vec dct_sample = fft.dct(sample_hist, norm=None) ic =
np.arange(1, n_x_vec, dtype=float)
numpy.arange
import os import cv2 from PIL import Image import numpy as np from up.utils.general.registry_factory import IMAGE_READER_REGISTRY from up.utils.general.petrel_helper import PetrelHelper __all__ = ['FileSystemCVReader', 'FileSystemPILReader'] def get_cur_image_dir(image_dir, idx): if isinstance(image_dir, list) or isinstance(image_dir, tuple): assert idx < len(image_dir) return image_dir[idx] return image_dir class ImageReader(object): def __init__(self, image_dir, color_mode, memcached=None): super(ImageReader, self).__init__() if image_dir == '/' or image_dir == '//': image_dir = '' self.image_dir = image_dir self.color_mode = color_mode def image_directory(self): return self.image_dir def image_color(self): return self.color_mode def hash_filename(self, filename): import hashlib md5 = hashlib.md5() md5.update(filename.encode('utf-8')) hash_filename = md5.hexdigest() return hash_filename def read(self, filename): return self.fs_read(filename) def __call__(self, filename, image_dir_idx=0): if filename.startswith("//"): filename = filename[1:] image_dir = get_cur_image_dir(self.image_dir, image_dir_idx) filename = os.path.join(image_dir, filename) img = self.read(filename) return img @IMAGE_READER_REGISTRY.register('fs_opencv') class FileSystemCVReader(ImageReader): def __init__(self, image_dir, color_mode, memcached=None, to_float32=False): super(FileSystemCVReader, self).__init__(image_dir, color_mode, memcached) assert color_mode in ['RGB', 'BGR', 'GRAY'], '{} not supported'.format(color_mode) if color_mode == 'RGB': self.cvt_color = getattr(cv2, 'COLOR_BGR2{}'.format(color_mode)) else: self.cvt_color = None self.to_float32 = to_float32 self.memcached = memcached if memcached: self.initialized = False def fs_read(self, filename): assert os.path.exists(filename), filename if self.memcached: import mc self._init_memcached() value = mc.pyvector() assert len(filename) < 250, 'memcached rquires length of path < 250' self.mclient.Get(filename, value) value_buf = mc.ConvertBuffer(value) img_array = np.frombuffer(value_buf, np.uint8) if self.color_mode == 'GRAY': img = cv2.imdecode(img_array, 0) else: img = cv2.imdecode(img_array, cv2.IMREAD_COLOR) else: if self.color_mode == 'GRAY': img = cv2.imread(filename, 0) else: img = cv2.imread(filename, cv2.IMREAD_COLOR) if self.color_mode == 'RGB': img = cv2.cvtColor(img, self.cvt_color) if self.to_float32: img = img.astype(np.float32) return img def _init_memcached(self): if not self.initialized: import mc server_list_config_file = "/mnt/lustre/share/memcached_client/server_list.conf" client_config_file = "/mnt/lustre/share/memcached_client/client.conf" self.mclient = mc.MemcachedClient.GetInstance(server_list_config_file, client_config_file) self.initialized = True def fake_image(self, *size): if len(size) == 0: if self.color_mode == 'GRAY': size = (512, 512, 1) else: size = (512, 512, 3) return np.zeros(size, dtype=np.uint8) @IMAGE_READER_REGISTRY.register('fs_pillow') class FileSystemPILReader(ImageReader): def __init__(self, image_dir, color_mode, memcached=None): super(FileSystemPILReader, self).__init__(image_dir, color_mode, memcached) assert color_mode == 'RGB', 'only RGB mode supported for pillow for now' def fake_image(self, *size): if len(size) == 0: size = (512, 512, 3) return Image.new(self.color_mode, size) def fs_read(self, filename): assert os.path.exists(filename), filename img = Image.open(filename).convert(self.color_mode) return img @IMAGE_READER_REGISTRY.register('ceph_opencv') class CephSystemCVReader(ImageReader): def __init__(self, image_dir, color_mode, memcached=True, conf_path=PetrelHelper.default_conf_path, default_cluster=''): super(CephSystemCVReader, self).__init__(image_dir, color_mode) self.image_dir = image_dir self.color_mode = color_mode assert color_mode in ['RGB', 'BGR', 'GRAY'], '{} not supported'.format(color_mode) if color_mode != 'BGR': self.cvt_color = getattr(cv2, 'COLOR_BGR2{}'.format(color_mode)) else: self.cvt_color = None self.conf_path = os.path.expanduser(conf_path) self.memcached = memcached self.initialized = False self.default_cluster = default_cluster def image_directory(self): return self.image_dir def image_color(self): return self.color_mode def ceph_join(self, root, filename): if 's3://' in filename: abs_filename = filename else: abs_filename = os.path.join(root, filename) if abs_filename.startswith('s3://') and self.default_cluster: abs_filename = self.default_cluster + ':' + abs_filename return abs_filename def bytes_to_img(self, value): img_array =
np.frombuffer(value, np.uint8)
numpy.frombuffer
#! /usr/bin/env python import os import numpy as np import astropy.io.fits as fits from . import noise_simulation as ng def add_dark_current(ramp, seed, gain, darksignal): """ Adds dark current to the input signal Parameters ---------- ramp: sequence The array of ramp images seed: int The seed for the dark signal gain: float The detector gain darksignal: sequence A 2D map of the dark signal to project onto the ramp Returns ------- np.ndarray The dark signal ramp """ # Get the random seed and array shape np.random.seed(seed) dims = ramp.shape # Add the dark signal to the ramp total = darksignal*0. for n in range(dims[0]): signal = np.random.poisson(darksignal)/gain total = total+signal ramp[n,:,:] = ramp[n,:,:]+total return ramp def make_exposure(nints, ngrps, darksignal, gain, pca0_file, noise_seed=None, dark_seed=None, offset=500): """ Make a simulated exposure with no source signal Parameters ---------- nints: int The number of integrations ngrps: int The number of groups per integration darksignal: sequence A dark frame gain: float The gain on the detector pca0_file: str The path to the PCA-zero file noise_seed: int The seed for the generated noise dark_seed: int The seed for the generated dark offset: int The pedestal offset Returns ------- np.ndarray A simulated ramp of darks """ if nints < 1 or ngrps < 1: return None if not noise_seed: noise_seed = 7+int(np.random.uniform()*4000000000.) if not dark_seed: dark_seed = 5+int(np.random.uniform()*4000000000.) np.random.seed(dark_seed) # Make empty data array nrows, ncols = darksignal.shape simulated_data = np.zeros([nints*ngrps,nrows,ncols], dtype=np.float32) # Define some constants pedestal = 18.30 c_pink = 9.6 u_pink = 3.2 acn = 2.0 bias_amp = 0. #bias_amp = 5358.87 #bias_offset = 20944.06 pca0_amp = 0. rd_noise = 12.95 dark_current = 0.0 dc_seed = dark_seed bias_offset = offset*gain # Define the HXRGN instance to make a SUSBSTRIP256 array #(in detector coordinates) noisecube = ng.HXRGNoise(naxis1=nrows, naxis2=ncols, naxis3=ngrps, pca0_file=pca0_file, x0=0, y0=0, det_size=2048, verbose=False) # iterate over integrations for loop in range(nints): seed1 = noise_seed+24*int(loop) ramp = noisecube.mknoise(c_pink=c_pink, u_pink=u_pink, bias_amp=bias_amp, bias_offset=bias_offset, acn=acn, pca0_amp=pca0_amp, rd_noise=rd_noise, pedestal=pedestal, dark_current=dark_current, dc_seed=dc_seed, noise_seed=seed1, gain=gain) if len(ramp.shape)==2: ramp = ramp[np.newaxis,:,:] ramp = np.transpose(ramp,(0,2,1)) ramp = ramp[::,::-1,::-1] ramp = add_dark_current(ramp, dc_seed, gain, darksignal) simulated_data[loop*ngrps:(loop+1)*ngrps,:,:] = np.copy(ramp) ramp = 0 return simulated_data def make_photon_yield(photon_yield, orders): """ Generates a map of the photon yield for each order. The shape of both arrays should be [order, nrows, ncols] Parameters ---------- photon_yield: str The path to the file containg the calculated photon yield at each pixel orders: sequence An array of the median image of each order Returns ------- np.ndarray The array containing the photon yield map for each order """ # Get the shape and create empty arrays dims = orders.shape sum1 = np.zeros((dims[1], dims[2]), dtype=np.float32) sum2 = np.zeros((dims[1], dims[2]), dtype=np.float32) # Add the photon yield for each order for n in range(dims[0]): sum1 = sum1+photon_yield[n, :, :]*orders[n, :, :] sum2 = sum2+orders[n, :, :] # Take the ratio of the photon yield to the signal pyimage = sum1/sum2 pyimage[np.where(sum2 == 0.)] = 1. return pyimage def add_signal(signals, cube, pyimage, frametime, gain, zodi, zodi_scale, photon_yield=False): """ Add the science signal to the generated noise Parameters ---------- signals: sequence The science frames cube: sequence The generated dark ramp pyimage: sequence The photon yield per order frametime: float The number of seconds per frame gain: float The detector gain zodi: sequence The zodiacal background image zodi_scale: float The scale factor for the zodi background """ # Get the data dimensions dims1 = cube.shape dims2 = signals.shape if dims1 != dims2: raise ValueError(dims1, "not equal to", dims2) # Make a new ramp newcube = cube.copy()*0. # The background is assumed to be in electrons/second/pixel, not ADU/s/pixel. background = zodi*zodi_scale*frametime # Iterate over each group for n in range(dims1[0]): framesignal = signals[n,:,:]*gain*frametime # Add photon yield if photon_yield: newvalues = np.random.poisson(framesignal) target = pyimage-1. for k in range(dims1[1]): for l in range(dims1[2]): if target[k,l] > 0.: n = int(newvalues[k,l]) values = np.random.poisson(target[k,l], size=n) newvalues[k,l] = newvalues[k,l]+np.sum(values) newvalues = newvalues+
np.random.poisson(background)
numpy.random.poisson
#!/usr/bin/python # coding=utf8 # author=zhtsh import pandas as pd import numpy as np from os import path import network2 def vectorized_result(j): e = np.zeros((2, 1)) e[j] = 1.0 return e if __name__ == '__main__': data_dir_path = path.abspath(path.join(path.dirname(__file__), '../data')) train_df = pd.read_csv(path.join(data_dir_path, './train.csv')) test_df = pd.read_csv(path.join(data_dir_path, './test.csv')) train_df = train_df.drop(['Ticket', 'Cabin'], axis=1) test_df = test_df.drop(['Ticket', 'Cabin'], axis=1) combine = [train_df, test_df] # process name column title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} for dataset in combine: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False) dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',\ 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) train_df = train_df.drop(['Name', 'PassengerId'], axis=1) test_df = test_df.drop(['Name'], axis=1) combine = [train_df, test_df] # process sex column for dataset in combine: dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int) # process age column # first fill nan value guess_ages = np.zeros((2,3)) for dataset in combine: for i in range(0, 2): for j in range(0, 3): guess_df = dataset[(dataset['Sex'] == i) & \ (dataset['Pclass'] == j+1)]['Age'].dropna() # age_mean = guess_df.mean() # age_std = guess_df.std() # age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std) age_guess = guess_df.median() # Convert random age float to nearest .5 age guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5 for i in range(0, 2): for j in range(0, 3): dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1),\ 'Age'] = guess_ages[i,j] dataset['Age'] = dataset['Age'].astype(int) for dataset in combine: dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0 dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1 dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2 dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3 dataset.loc[ dataset['Age'] > 64, 'Age'] = 4 # process SibSp and Parch column, new column IsAlone for dataset in combine: dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 dataset['IsAlone'] = 0 dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1 train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1) test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1) combine = [train_df, test_df] # new Age*Class column for dataset in combine: dataset['Age*Class'] = dataset.Age * dataset.Pclass # process Embarked column freq_port = train_df.Embarked.dropna().mode()[0] for dataset in combine: dataset['Embarked'] = dataset['Embarked'].fillna(freq_port) dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int) # process Fare column test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True) for dataset in combine: dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0 dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1 dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2 dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3 dataset['Fare'] = dataset['Fare'].astype(int) X_train = train_df.drop("Survived", axis=1) Y_train = train_df["Survived"] X_test = test_df.drop("PassengerId", axis=1).copy() # train dnn model and predict net = network2.Network([8, 20, 2]) training_inputs = [
np.reshape(x, (8, 1))
numpy.reshape
import unittest import numpy as np from bert2tf import Executor, PlmBert, BertTokenizer from tests import Bert2TFTestCase class MyTestCase(Bert2TFTestCase): @unittest.skip('just run on local machine') def test_create_plm_bert_model(self): model = Executor.load_config('PlmBert', use_with={ 'config': '../../resources/pre_models/plm_bert/plm_bert_config.json'}) self.assertEqual(isinstance(model, PlmBert), True) model = Executor.load_config('yaml/plm_bert.yml') self.assertEqual(isinstance(model, PlmBert), True) model = PlmBert(config='../../resources/pre_models/plm_bert/plm_bert_config.json') self.assertEqual(isinstance(model, PlmBert), True) @unittest.skip('just run on local machine') def test_plm_bert_encode(self): model = Executor.load_config('yaml/plm_bert.yml') tokenizer = BertTokenizer('../../resources/pre_models/plm_bert/vocab.txt') input_ids, input_mask, segment_ids = tokenizer.encode('今天天气不好') result = model([np.array([input_ids]),
np.array([input_mask])
numpy.array
import logging import numpy as np import math import pyproj import datetime from scipy.signal import savgol_filter import core.settings as settings import core.helper as helper class TECEstimation: """ Comprises the full workflow to calculate/estimate local TEC. The workflow consists in TEC relative, absolute, and vertical estimation, besides the slant factor, which gives the ionopheric point where the TEC has been estimated """ def relative(self, tec, obs, factor_glonass, dcb, p1_or_c1_col, p2_or_c2_col): """ Calculate the pseudo-range or pseudo-distance, which is the first TEC calculation, called relative TEC or simply R TEC. The R TEC includes, then, not only the TEC, but also all the extra influences, such as atmosphere attenuations, and eletronic errors :param tec: Dict with TEC python object :param obs: The measures of the current rinex :param factor_glonass: The channels values of each GLONASS PRNs to calc the selective factor :param dcb: The parsed DCB object, with the satellites bias, in order to subtract from relative TEC (in nanosecs) :param p1_or_c1_col: Either the P1 or C1 measures might be used. Here, a string defined the name of the column of the measure used :param p2_or_c2_col: Either the P2 or C2 measures might be used. Here, a string defined the name of the column of the measure used :return: The python relative TEC object, which will content all the TEC calculations along the process """ tec_r = {} utils = helper.Utils() # logging.info(">>>> Converting DCB nanoseconds in TEC unit...") # dcb_tecu = helper.Utils.convert_dcb_ns_to_tecu(dcb, factor_glonass) # logging.info(">> Correcting DCB values...") # dcb_corrected = helper.Utils.correct_dcb_values(dcb, factor_glonass) logging.info(">>>> Calculating relative TEC and removing satellite DCB...") for prn in obs.sv.values: p2_or_c2 = obs[p2_or_c2_col[prn[0:1]]].sel(sv=prn).values p1_or_c1 = obs[p1_or_c1_col[prn[0:1]]].sel(sv=prn).values factor, dcb_compensate = utils.check_availability(factor_glonass, dcb, prn) relative = utils.check_arc_gaps(tec, factor, p2_or_c2, p1_or_c1, prn) tec_r[prn] = (relative - dcb_compensate).tolist() # utils.plot_relative(prn, tec['relative-l1-l2'][prn][0], tec_r[prn]) return tec_r def slant(self, hdr, obs, orbit, type): """ Consists in a more accurate acquirement of each satellite's slant in the ionospheric point regarding a specific receiver. :param hdr: The header the current rinex :param obs: The measures of the current rinex :param orbit: The python orbit object, with the daily and updated satellite locations :param type: Type of parameters to be calculated (For DTEC (0) or bias estimation (1)) :return: The updated TEC object, now, with slant factor calculated. The tec['slant'] dict: tec['slant'] = { 'G01' = [ [SLANT_FACTOR_OVER_THE_DAY], [ZENITAL_ANGLE_OVER_THE_DAY], [ELEVATION_OVER_THE_DAY], [LATITUDE_PP_OVER_THE_DAY], [LONG_PP_OVER_THE_DAY] ], 'G02' = [ [SLANT_FACTOR_OVER_THE_DAY], [ZENITAL_ANGLE_OVER_THE_DAY], [ELEVATION_OVER_THE_DAY], [LATITUDE_PP_OVER_THE_DAY], [LONG_PP_OVER_THE_DAY] ], ... } """ tec_s = {} utils = helper.Utils() geodesy = helper.Geodesy() rec_x = hdr['position'][0] rec_y = hdr['position'][1] rec_z = hdr['position'][2] ecef = pyproj.Proj(proj='geocent', ellps='WGS84', datum='WGS84') lla = pyproj.Proj(proj='latlong', ellps='WGS84', datum='WGS84') lon, lat, alt = pyproj.transform(ecef, lla, rec_x, rec_y, rec_z, radians=False) degrad = float(math.pi / 180.0) dpi = float('{:.16f}'.format(math.pi)) lon = (lon + 360) * degrad lat *= degrad sin_rec_x = math.sin(lon) sin_rec_y = math.sin(lat) cos_rec_x = math.cos(lon) cos_rec_y = math.cos(lat) for prn in obs.sv.values: if prn not in orbit.keys(): continue sat_x = utils.array_dict_to_array(orbit[prn], 'x') sat_x = [x * 1000 for x in sat_x] sat_y = utils.array_dict_to_array(orbit[prn], 'y') sat_y = [y * 1000 for y in sat_y] sat_z = utils.array_dict_to_array(orbit[prn], 'z') sat_z = [z * 1000 for z in sat_z] if type is 0: diff_x = np.array([item - rec_x for item in sat_x]) diff_y = np.array([item - rec_y for item in sat_y]) diff_z = np.array([item - rec_z for item in sat_z]) term1 = -cos_rec_x * sin_rec_y * diff_x term2 = sin_rec_x * sin_rec_y * diff_y term3 = cos_rec_y * diff_z term4 = -sin_rec_x * diff_x term5 = cos_rec_x * diff_y term6 = cos_rec_x * cos_rec_y * diff_x term7 = sin_rec_x * cos_rec_y * diff_y term8 = sin_rec_y * diff_z north = term1 - term2 + term3 east = term4 + term5 vertical = term6 + term7 + term8 vertical_norm = np.sqrt(np.power(cos_rec_x * cos_rec_y, 2) + np.power(sin_rec_x * cos_rec_y, 2) + np.power(sin_rec_y, 2)) r = np.sqrt(np.power(diff_x, 2) + np.power(diff_y, 2) + np.power(diff_z, 2)) ang_zenital = np.arccos(vertical / (r * vertical_norm)) ang_elev = ((dpi / 2) - ang_zenital) / degrad slant_factor = np.arcsin((settings.EARTH_RAY / (settings.EARTH_RAY + settings.AVERAGE_HEIGHT)) * np.cos(ang_elev * degrad)) slant_factor = np.cos(slant_factor) azimute = np.arctan2(east, north) azimute[azimute < 0] += (2 * math.pi) azimute = azimute / degrad var1 = ang_elev * degrad w = (dpi / 2) - var1 - np.arcsin( settings.EARTH_RAY / (settings.EARTH_RAY + settings.AVERAGE_HEIGHT) * np.cos(var1)) var2 = sin_rec_y * np.cos(w) var3 = cos_rec_y * np.sin(w) * np.cos(azimute * degrad) lat_pp = np.arcsin(var2 + var3) var4 = np.sin(w) * np.sin(azimute * degrad) long_pp = lon + np.arcsin(var4 / np.cos(lat_pp)) lat_pp = lat_pp / degrad long_pp = long_pp / degrad lat_pp = lat_pp.tolist() long_pp = long_pp.tolist() elif type is 1: ion_x, ion_y, ion_z = geodesy.sub_ion_point(settings.ALT_IONO, sat_x, sat_y, sat_z, rec_x, rec_y, rec_z) top_ion_x, top_ion_y, top_ion_z = geodesy.sub_ion_point(settings.ALT_IONO_TOP, sat_x, sat_y, sat_z, rec_x, rec_y, rec_z) bot_ion_x, bot_ion_y, bot_ion_z = geodesy.sub_ion_point(settings.ALT_IONO_BOTTOM, sat_x, sat_y, sat_z, rec_x, rec_y, rec_z) lat_pp, long_pp, alt_pp = geodesy.car_2_pol(ion_x, ion_y, ion_z) ang_zenital = geodesy.calc_zenital_angle(sat_x, sat_y, sat_z, rec_x, rec_y, rec_z) ang_elev = ((dpi / 2) - ang_zenital) / degrad slant_factor = pow(np.array(top_ion_x) - np.array(bot_ion_x), 2) + \ pow(np.array(top_ion_y) - np.array(bot_ion_y), 2) + \ pow(np.array(top_ion_z) - np.array(bot_ion_z), 2) slant_factor = np.sqrt(slant_factor) / (settings.ALT_IONO_TOP - settings.ALT_IONO_BOTTOM) else: logging.error(">>>> Type of slant factor calculation is incorrect. The procedure will be " "interrupted for this file!") raise Exception(">>>> Type of slant factor calculation is incorrect. The procedure will be " "interrupted for this file!") slant_factor = slant_factor.tolist() ang_zenital = ang_zenital.tolist() ang_elev = ang_elev.tolist() # utils.plot_slant(prn, slant_factor, ang_zenital, ang_elev, lat_pp, long_pp) tec_s[prn] = [slant_factor, ang_zenital, ang_elev, lat_pp, long_pp] return tec_s def detrended(self, tec, factor_glonass, l2_channel): """ Calculate the Detrended TEC :param tec: Dict with TEC python object :param factor_glonass: The channels values of each GLONASS PRNs to calc the selective factor :param l2_channel: A True value means that L2 was present at the file, then, used for the calculus. By using this measure, the frequency 2 should be used. If False, the frequency 3 is used. :return: The updated TEC object, now, with detrended TEC calculated """ tec_d = {} input = helper.InputFiles() for prn in tec['relative-l1-l2']: l1 = np.array(tec['relative-l1-l2'][prn][1]) l2_or_l3 = np.array(tec['relative-l1-l2'][prn][2]) f1, f2, f3, factor_1, factor_2, factor_3 = input.frequency_by_constellation(prn, factor_glonass) if l2_channel: term1 = ((l1 / f1) - (l2_or_l3 / f2)) * settings.C else: term1 = ((l1 / f1) - (l2_or_l3 / f3)) * settings.C sTEC_diff = factor_3 * term1 savgol = savgol_filter(sTEC_diff, 121, 2, mode='nearest') tec_d[prn] = (sTEC_diff - savgol).tolist() # utils = helper.Utils() # utils.plot_dtrended(prn, l1, l2_or_l3, sTEC_diff, savgol, tec_d[prn]) return tec_d def absolute(self, tec, constellations): """ The absolute TEC consists in the TEC without the contribution of bias. In this method, the Python TEC object is updated with the subtraction of bias. :param tec: Dict with TEC python object :param constellations: Which constellations was eligible to be used during the calculus :return: The updated TEC object, now, with absolute TEC calculated """ tec_a = {} b = tec['bias']['B'] bias_receiver = b[len(b)-len(constellations):len(b)] if len(bias_receiver) != len(constellations): logging.warning(">>>> Number of bias estimated ({}) is different of constellations considered ({})!". format(len(bias_receiver), len(constellations))) for c, const in enumerate(constellations): for prn, values in tec['relative'].items(): if prn[0:1] is not const: continue absolute = np.array(tec['relative'][prn]) - bias_receiver[c] tec_a[prn] = absolute.tolist() return tec_a def vertical(self, tec, orbit): """ When calculated, the TEC is function of satellites incident angles, sometimes, in the horizon. The vertical TEC is the process to remove this influence, bringing the TEC perpendicular to the receiver, called vertical TEC -> Vertical = Absolute / Slant. At the first part of this method, the slant variable is reduce to the range of the rinex, in a way that both cover the same range of datetime over the day. The vertical TEC is then calculated. :param tec: Dict with TEC python object :param orbit: The Orbit dict, with all the informations of satellites, including x, y, z locations, and time :return: The updated TEC object, now, with vertical TEC calculated """ tec_v = {} for prn, values in tec['absolute'].items(): if prn not in tec['slant'].keys(): continue absolute_np = np.array(tec['absolute'][prn]) slant_np = np.array(tec['slant'][prn][0]) if absolute_np.shape[0] != slant_np.shape[0]: slant_np_aux = [] for i, item in enumerate(orbit['date']): if item in tec['time']: slant_np_aux.append(slant_np[i]) slant_np = np.array(slant_np_aux) tec_v[prn] = (absolute_np / slant_np).tolist() # utils = helper.Utils() # utils.plot_absolute_vertical(prn, tec['absolute'][prn], tec_v[prn]) return tec_v class BiasEstimation: """ Comprises the methods responsible to the estimate of bias receiver. This includes all the process of discovering the unknown variables by the use of MMQ (Least-Square) """ def _split_datetime_array(self, array_datetime): """ Split a datetime array in fractions of time, where each fractions corresponds a pre-determined period (delta). Thus, considering an array of 24h datetime, and a delta of 15 minutes, the return will be fractions of date indexes corresponding to every 15 minutes until the end of the day :param array_datetime: Array of datetimes :return: Fractions of date indexes corresponding to every delta in the day. The delta is set up by the TEC_RESOLUTION constant variable """ indexes_fraction = [] indexes_fraction_aux = [] if settings.TEC_RESOLUTION == 'hours': delta = datetime.timedelta(hours=int(settings.TEC_RESOLUTION_VALUE)) elif settings.TEC_RESOLUTION == 'minutes': delta = datetime.timedelta(minutes=int(settings.TEC_RESOLUTION_VALUE)) else: delta = datetime.timedelta(hours=1) logging.info(">>>> TEC resolution estimation not declare. Hourly TEC was defined as default! Please, " "check your .env and look for TEC_RESOLUTION and TEC_RESOLUTION_VALUE to set correctly!") fraction_limit = array_datetime[0] + delta for i, item in enumerate(array_datetime): if item < fraction_limit: indexes_fraction_aux.append(i) else: fraction_limit = item + delta indexes_fraction.append(indexes_fraction_aux) indexes_fraction_aux = [] indexes_fraction_aux.append(i) indexes_fraction.append(indexes_fraction_aux) return indexes_fraction def _build_coefficients(self, tec, constellations): """ Build the coefficients of the equation system. These terms are defined through a Least-Square Fitting method, which consist in the minimization of set of unknown variable, dispose in a set of equations, so called, equation system (see Otsuka et al. A new Technique for mapping of TEC using GPS network in Japan). The coefficients, are values organized by hours, each hour will receive a mean value of a specific PRN. For instance, for hour '0h' of group_1, will receive an array with TOTAL_OF_SATELLITES positions, each position corresponds to a mean value of 1 / tec slant, for group_2, the each position corresponds to a mean value of relative / tec slant :param tec: The TEC object, with relative and slant factor, calculated by PRN :param constellations: Which constellations was eligible to be used during the calculus :return: The group 1 and 2 of coefficients, which is hourly mean of 1 / slant_factor, and hourly mean of tec_relative / slant_factor, respectively For example: coefficients = { 'group_1': { 'every_00.00.10_frac_0': [G01_mean, G02_mean, ..., N_sat_mean], 'every_00.00.10_frac_1': [G01_mean, G02_mean, ..., N_sat_mean], 'every_00.00.10_frac_2': [G01_mean, G02_mean, ..., N_sat_mean], ... 'every_00.00.10_frac_INTERVAL_A_DAY': [G01_mean, G02_mean, ..., N_sat_mean], }, 'group_2': { 'every_00.00.10_frac_0': [G01_mean, G02_mean, ..., N_sat_mean], 'every_00.00.10_frac_1': [G01_mean, G02_mean, ..., N_sat_mean], 'every_00.00.10_frac_2': [G01_mean, G02_mean, ..., N_sat_mean], ... 'every_00.00.10_frac_INTERVAL_A_DAY': [G01_mean, G02_mean, ..., N_sat_mean], } } """ coefficients = {} group_1 = {} group_2 = {} res = str(settings.TEC_RESOLUTION_VALUE) + '_' + str(settings.TEC_RESOLUTION) indexes = self._split_datetime_array(tec['time']) for i, ind in enumerate(indexes): group_1_aux_dict = {} group_2_aux_dict = {} for const in constellations: group_1_aux = [] group_2_aux = [] for prn in tec['slant']: if prn[0:1] is not const: continue elements_slant = np.take(tec['slant'][prn][0], ind) elements_relat = np.take(tec['relative'][prn], ind) elements_slant[np.isnan(elements_slant)] = 0.0 elements_relat[np.isnan(elements_relat)] = 0.0 elements_slant_pos = np.where(~(elements_slant <= settings.SLANT_FACTOR_LIMIT))[0] elements_slant = elements_slant[elements_slant <= settings.SLANT_FACTOR_LIMIT] elements_relat = np.delete(elements_relat, elements_slant_pos) # elements_relat_pos = np.where(~(elements_relat == np.nan))[0] # elements_relat = elements_relat[elements_relat == np.nan] # elements_slant = np.delete(elements_slant, elements_relat_pos) if len(elements_relat) == 0: avg_rel = 0.0 avg_sla = 0.0 else: if len(elements_slant) == 0: avg_sla = 0.0 avg_rel = 0.0 else: _1_slant = np.divide(1, elements_slant) _relative_slant = np.divide(elements_relat, elements_slant) _1_slant = _1_slant[_1_slant.nonzero()[0]] _1_slant = _1_slant[np.where(~np.isinf(_1_slant))[0]] _relative_slant = _relative_slant[_relative_slant.nonzero()[0]] _relative_slant = _relative_slant[np.where(~np.isinf(_relative_slant))[0]] avg_sla = np.mean(_1_slant, dtype=np.float32) avg_rel = np.mean(_relative_slant, dtype=np.float32) if avg_sla == np.nan: avg_sla = 0.0 if avg_rel == np.nan: avg_rel = 0.0 group_1_aux.append(avg_sla) group_2_aux.append(avg_rel) group_1_aux_dict[const] = group_1_aux group_2_aux_dict[const] = group_2_aux group_1["every_" + res + "_frac_" + str(i)] = group_1_aux_dict group_2["every_" + res + "_frac_" + str(i)] = group_2_aux_dict coefficients['group_1'] = group_1 coefficients['group_2'] = group_2 return coefficients def _build_matrix_f(self, group1_coefficients): """ Build part of the A matrix, which it is splited in matrix E and F. Matrix B is built on top of coefficients 1/slant_factor :param group1_coefficients: :return: Numpy matrix F """ keys = list(group1_coefficients.keys()) intervals_a_day = len(list(group1_coefficients.keys())) flattened_values = [y for x in list(group1_coefficients[keys[0]].values()) for y in x] total_n_prns = len(flattened_values) number_valid_constellations = len(group1_coefficients[keys[0]]) rows = total_n_prns * intervals_a_day f = np.zeros([rows, number_valid_constellations], dtype=float) pivot = 0 for element in group1_coefficients: for c, const in enumerate(group1_coefficients[element]): n_prns = len(group1_coefficients[element][const]) f[pivot:pivot + n_prns, c] = group1_coefficients[element][const] pivot += n_prns return f def _build_matrix_e(self, group1_coefficients): """ Build part of the A matrix, which it is splited in matrix E and F. Matrix E is simply a matrix with 1's, based on the number of PRNs observed :param group1_coefficients: :return: A numpy E matrix """ keys = list(group1_coefficients.keys()) intervals_a_day = len(list(group1_coefficients.keys())) flattened_values = [y for x in list(group1_coefficients[keys[0]].values()) for y in x] total_n_prns = len(flattened_values) e = np.zeros([total_n_prns * intervals_a_day, intervals_a_day], dtype=float) for f, frac in enumerate(group1_coefficients): initial_row = f * total_n_prns final_row = initial_row + total_n_prns e[initial_row:final_row, f] = 1 return e def _build_matrix_a(self, group1_coefficients): """ Build the A matrix, which is an union between matrix E and B :param group1_coefficients: :return: A numpy A matrix """ e = self._build_matrix_e(group1_coefficients) f = self._build_matrix_f(group1_coefficients) a = np.concatenate((e, f), 1) return a def _build_matrix_p(self, group1_coefficients): """ Build the P matrix, which is a eye matrix built on top of coefficients 1 / slant_factor, also based on the number of PRNs observed :param group1_coefficients: :return: A numpy P matrix """ keys = list(group1_coefficients.keys()) intervals_a_day = len(list(group1_coefficients.keys())) flattened_values = [y for x in list(group1_coefficients[keys[0]].values()) for y in x] total_n_prns = len(flattened_values) rows = total_n_prns * intervals_a_day pivot = 0 p = np.zeros([rows, rows], dtype=float) for element in group1_coefficients: for c, const in enumerate(group1_coefficients[element]): n_prns = len(group1_coefficients[element][const]) np.fill_diagonal(p[pivot:pivot + rows, pivot:pivot + rows], group1_coefficients[element][const]) pivot += n_prns return p def _build_matrix_l(self, group2_coefficients): """ Build the L matrix, which is a column matrix built on top of coefficients tec_relative / slant_factor, also based on the number of PRNs observed :param group2_coefficients: :return: A numpy L matrix """ keys = list(group2_coefficients.keys()) intervals_a_day = len(list(group2_coefficients.keys())) flattened_values = [y for x in list(group2_coefficients[keys[0]].values()) for y in x] total_n_prns = len(flattened_values) rows = total_n_prns * intervals_a_day pivot = 0 l = np.zeros([rows, 1], dtype=float) for element in group2_coefficients: for c, const in enumerate(group2_coefficients[element]): n_prns = len(group2_coefficients[element][const]) l[pivot:pivot + n_prns, 0] = group2_coefficients[element][const] pivot += n_prns return l def estimate_bias(self, tec, constellations): """ The bias estimate comprises the resolution of a equation system, which can be represented by a set of matrixes. The unknowns are built over averages values over the day, as shown in Otsuka et al. 2002. The solution, however, is given by the resolution of an equation system, given by the matrixes A, P, and L, where the estimated TEC and receiver bias (B) is given by inv(A^T P A) * (A^T P L) :param tec: The measures of the current rinex :param constellations: Which constellations was eligible to be used during the calculus :return: The settings.INTERVAL_A_DAY elements corresponding to averages TEC over the day, more one last value, corresponding to the receptor/receiver bias """ matrixes = {} bias = {} logging.info(">> Preparing coefficients...") coefficients = self._build_coefficients(tec, constellations) logging.info(">> Split intervals in each {} {}...".format(settings.TEC_RESOLUTION_VALUE, settings.TEC_RESOLUTION)) intervals_a_day = len(list(coefficients['group_1'].keys())) logging.info(">> Building matrix A...") a = self._build_matrix_a(coefficients['group_1']) at = np.transpose(a) logging.info(">> Building matrix P...") p = self._build_matrix_p(coefficients['group_1']) logging.info(">> Building matrix L...") l = self._build_matrix_l(coefficients['group_2']) l[np.isnan(l)] = 0 np.savetxt("/home/lotte/Desktop/a.csv", a, delimiter=" ") np.savetxt("/home/lotte/Desktop/p.csv", p, delimiter=" ") np.savetxt("/home/lotte/Desktop/l.csv", l, delimiter=" ") if a.shape[0] != p.shape[0]: logging.error(">>>> Matrix A dimension ({}) in row, does not match with P ({}). There is " "something wrong! Process stopped!\n".format(a.shape, p.shape)) raise Exception(">>>> Matrix A dimension ({}) in row, does not match with P ({}). There is " "something wrong! Process stopped!\n".format(a.shape, p.shape)) if p.shape[0] != l.shape[0]: logging.error(">>>> Matrix P dimension ({}) in row, does not match with L ({}) in row. There is " "something wrong! Process stopped!\n".format(p.shape, l.shape)) raise Exception(">>>> Matrix P dimension ({}) in row, does not match with L ({}) in row. There is " "something wrong! Process stopped!\n".format(p.shape, l.shape)) logging.info(">>>> Matrix A ({}), P ({}), and L ({}) successful built!".format(a.shape, p.shape, l.shape)) logging.info(">> Estimating daily TEC and receiver bias...") term1 = np.dot(at, p) term2 = np.dot(term1, a) inv_atpa = np.linalg.inv(term2) atpl = np.dot(term1, l) b = np.dot(inv_atpa, atpl) if b.shape[0] != (intervals_a_day + len(constellations)): logging.error(">>>> Matrix B dimension, does not match with the number of TEC by day ({}) and " "receiver bias estimation ({}). There is something wrong! " "Process stopped!\n".format(b.shape, intervals_a_day, len(constellations))) raise Exception(">>>> Matrix B dimension, does not match with the number of TEC by day ({}) and " "receiver bias estimation ({}). There is something wrong! " "Process stopped!\n".format(b.shape, intervals_a_day, len(constellations))) else: logging.info(">>>> Matrix B successful calculated! TEC estimation every {} {} a day ({} fractions), plus," " {} receiver bias:".format(settings.TEC_RESOLUTION_VALUE, settings.TEC_RESOLUTION, intervals_a_day, len(constellations))) for i, item in enumerate(b[len(b)-len(constellations):len(b)]): logging.info(">>>>>> {}: {}".format(constellations[i], item[0])) matrixes['A'] = a.tolist() matrixes['P'] = p.tolist() matrixes['L'] = l.tolist() matrixes['invATPA'] = inv_atpa.tolist() matrixes['ATPL'] = atpl.tolist() b = [y for x in b.tolist() for y in x] bias['B'] = b return matrixes, bias class QualityControl: """ Comprises the methods responsible to analyse the quality of the measures used to estimate the TEC and bias. """ def _var(self, a, p, l, b, atpl): """ Calculate the variance a posteriori for each estimated value, based on the bias matrixes used before :param a: Numpy A matrix: coefficients (group 1) mounted in a custom matrix :param p: Numpy P matrix: coefficients (group 1) mounted in a squared matrix :param l: Numpy L matrix: coefficients (group 2) mounted in a matrix column :param b: Numpy B matrix (bias) :param atpl: Numpy matrix - inverse of (A^T * P * L) :return: Numpy matrix with the calculated variance metric for each estimated value """ lt = np.transpose(l) bt = np.transpose(b) mat1 = lt.dot(p).dot(l) mat2 = bt.dot(atpl) mat3 = mat1 - mat2 a_rows = np.size(a, 0) b_rows = np.size(b, 0) degree_of_freedom = a_rows - b_rows var = mat3 / degree_of_freedom return var def _accuracy(self, inv_atpa): """ Calculate the accuracy for each estimated value, based on the bias matrixes used before :param inv_atpa: inverse of (A^T * P * A) :return: Numpy matrix with the calculated accuracy metric for each estimated value """ accuracy = np.sqrt(np.diag(inv_atpa)) return accuracy def _quality(self, inv_atpa, var): """ Calculate the quality for each estimated value, based on the inverse of (A^T * P * A) matrix :param inv_atpa: Numpy matrix - inverse of (A^T * P * A) :param var: Variance a posteriori :return: Numpy matrix with the calculated quality metric for each estimated value """ quality = np.sqrt(
np.diag(inv_atpa * var)
numpy.diag
import numpy as np import pandas as pd import matplotlib.pyplot as plt def p_i(vektor): return np.exp(vektor)/(1+np.exp(vektor)) def varianca(vektor, skupine): return np.diag(np.array(skupine) * (np.array(vektor) * (1 - np.array(vektor)))) def izracunaj_koeficiente(max_iteracij, matrika, vektor_rezultatov,vektor_skupin = [], zacetni_beta = [], epsilon=0.001): """ logistični model predpostavlja: logit(p_i) = 1*beta_0 + x_i1*beta_1 + ... + x_ir*beta_r X je matrika teh koeficientov dimenzije: (n, r+1) vektor rezultatov so realizacije slučajnega vektorja, dimenzije: (n,) score dimenzije: (r+1,1) info dimenzije: (r+1,r+1) var dimenzije: (n,n) """ n = np.shape(vektor_rezultatov)[0] r_plus1 = np.shape(matrika)[1] if not any(np.array(vektor_skupin)): vektor_skupin = np.ones((
np.shape(vektor_rezultatov)
numpy.shape
import os import warnings from tempfile import TemporaryDirectory as InTemporaryDirectory import numpy as np import numpy.testing as npt import pytest from fury import actor, window, io from fury.testing import captured_output, assert_less_equal, assert_greater from fury.decorators import skip_osx, skip_win def test_scene(): scene = window.Scene() npt.assert_equal(scene.size(), (0, 0)) # background color for scene (1, 0.5, 0) # 0.001 added here to remove numerical errors when moving from float # to int values bg_float = (1, 0.501, 0) # that will come in the image in the 0-255 uint scale bg_color = tuple((np.round(255 * np.array(bg_float))).astype('uint8')) scene.background(bg_float) # window.show(scene) arr = window.snapshot(scene) report = window.analyze_snapshot(arr, bg_color=bg_color, colors=[bg_color, (0, 127, 0)]) npt.assert_equal(report.objects, 0) npt.assert_equal(report.colors_found, [True, False]) axes = actor.axes() scene.add(axes) # window.show(scene) arr = window.snapshot(scene) report = window.analyze_snapshot(arr, bg_color)
npt.assert_equal(report.objects, 1)
numpy.testing.assert_equal
import numpy as np import modeling.geometric_model as gm import modeling.collision_model as cm import visualization.panda.world as wd import basis.robot_math as rm import math from scipy.spatial import cKDTree base = wd.World(cam_pos=np.array([-.3,-.7,.1]), lookat_pos=np.array([0,0,0])) # gm.gen_frame().attach_to(base) bowl_model = cm.CollisionModel(initor="./objects/bowl.stl") bowl_model.set_rgba([.3,.3,.3,1]) bowl_model.set_rotmat(rm.rotmat_from_euler(math.pi,0,0)) bowl_model.attach_to(base) pn_direction = np.array([0, 0, -1]) bowl_samples, bowl_sample_normals = bowl_model.sample_surface(toggle_option='normals', radius=.002) selection = bowl_sample_normals.dot(-pn_direction)>.1 bowl_samples = bowl_samples[selection] bowl_sample_normals=bowl_sample_normals[selection] tree = cKDTree(bowl_samples) pt_direction = rm.orthogonal_vector(pn_direction, toggle_unit=True) tmp_direction = np.cross(pn_direction, pt_direction) plane_rotmat = np.column_stack((pt_direction, tmp_direction, pn_direction)) homomat=np.eye(4) homomat[:3,:3] = plane_rotmat homomat[:3,3] = np.array([-.07,-.03,.1]) twod_plane = gm.gen_box(np.array([.2, .2, .001]), homomat=homomat, rgba=[1,1,1,.3]) twod_plane.attach_to(base) circle_radius=.05 line_segs = [[homomat[:3,3], homomat[:3,3]+pt_direction*.05], [homomat[:3,3]+pt_direction*.05, homomat[:3,3]+pt_direction*.05+tmp_direction*.05], [homomat[:3,3]+pt_direction*.05+tmp_direction*.05, homomat[:3,3]+tmp_direction*.05], [homomat[:3,3]+tmp_direction*.05, homomat[:3,3]]] # gm.gen_linesegs(line_segs).attach_to(base) for sec in line_segs: gm.gen_stick(spos=sec[0], epos=sec[1], rgba=[0, 0, 0, 1], thickness=.002, type='round').attach_to(base) epos = (line_segs[0][1]-line_segs[0][0])*.7+line_segs[0][0] gm.gen_arrow(spos=line_segs[0][0], epos=epos, thickness=0.004).attach_to(base) spt = homomat[:3,3] # gm.gen_stick(spt, spt + pn_direction * 10, rgba=[0,1,0,1]).attach_to(base) # base.run() gm.gen_dasharrow(spt, spt-pn_direction*.07, thickness=.004).attach_to(base) # p0 cpt, cnrml = bowl_model.ray_hit(spt, spt + pn_direction * 10000, option='closest') gm.gen_dashstick(spt, cpt, rgba=[.57,.57,.57,.7], thickness=0.003).attach_to(base) gm.gen_sphere(pos=cpt, radius=.005).attach_to(base) gm.gen_dasharrow(cpt, cpt-pn_direction*.07, thickness=.004).attach_to(base) # p0 gm.gen_dasharrow(cpt, cpt+cnrml*.07, thickness=.004).attach_to(base) # p0 angle = rm.angle_between_vectors(-pn_direction, cnrml) vec = np.cross(-pn_direction, cnrml) rotmat = rm.rotmat_from_axangle(vec, angle) new_plane_homomat = np.eye(4) new_plane_homomat[:3,:3] = rotmat.dot(homomat[:3,:3]) new_plane_homomat[:3,3] = cpt twod_plane = gm.gen_box(
np.array([.2, .2, .001])
numpy.array
from sys import argv import numpy as np import scipy as sp from scipy.linalg import eig,svd,eigh from scipy.sparse.linalg import eigs from sklearn.neighbors import kneighbors_graph from copy import deepcopy from .utils import * from pymanopt.manifolds import Grassmann import nudged from sklearn.metrics.pairwise import pairwise_distances def findSingleLP(X,d,k,sigma,embMethod='lpp'): D,N = X.shape W = np.zeros((N,N)) B = np.zeros((N,N)) if embMethod == 'pca': for i in range(N-1): for j in range(i+1,N): W[i,j] = 1.0/N W = 0.5*(W + W.T) B = np.eye(N) L = B - W M1 = X.dot(L).dot(X.T) Mc = np.eye(M1.shape[0]) elif embMethod == 'lpp': G = kneighbors_graph(X.T,k,mode='distance',include_self=False).toarray() W = 0.5*(G + G.T) W[W!=0] = np.exp(-W[W!=0] / (2*sigma*sigma)) B = np.diag(np.sum(W,axis=0)) L = B - W M1 = X.dot(L).dot(X.T) Mc = X.dot(B).dot(X.T) elif embMethod == 'rand': Gnk = Grassmann(D,2) proj = Gnk.rand() return [proj] elif embMethod == 'syn': proj = np.zeros((D,2)) card = 2 #ids = np.arange(D) ids = np.array([1,0,4,3]) # For ecoli 2 #ids = np.array([2,7,3,0]) # For yeast 2 #ids = np.array([12, 39, 5, 0, 45, 43]) # For seaWater 3 #ids = np.array([0, 46, 5, 14, 11, 40, 49, 43]) # For seaWater 4 np.random.shuffle(ids) #print ids proj[ids[:card],0] = 1/np.sqrt(card) proj[ids[card:2*card],1] = 1/np.sqrt(card) #proj[ids[card-1:2*card-1],1] = 1/np.sqrt(card) # For cities return [proj] u,s = eig(M1) if np.min(u) < 0: M1 = M1 - np.min(u)*np.eye(M1.shape[0]) u,s = eig(Mc) if np.min(u) < 0: Mc = Mc - np.min(u)*np.eye(Mc.shape[0]) eigvals,eigvecs = eig(M1,Mc) eigvecs = np.dot(sp.linalg.sqrtm(Mc),eigvecs) if embMethod == 'pca': ind = np.argsort(-eigvals) proj = eigvecs[:,ind[0:d]] elif embMethod == 'lpp': ind = np.argsort(eigvals) proj = eigvecs[:,ind[0:d]] return [proj] def findMultipleLP(X,d,k,sigma,maxIter,embMethod='lpp',labs = None): N = X.shape[1] W = np.zeros((N,N)) B = np.zeros((N,N)) if embMethod == 'pca': for i in range(N-1): for j in range(i+1,N): W[i,j] = 1.0/N W = np.maximum(W, W.T) B = np.eye(N) L = B - W M1 = X.dot(L).dot(X.T) Mc = np.eye(M1.shape[0]) elif embMethod == 'lpp': G = kneighbors_graph(X.T,k,mode='distance',include_self=False).toarray() W = 0.5*(G + G.T) W[W!=0] = np.exp(-W[W!=0] / (2*sigma*sigma)) B = np.diag(np.sum(W,axis=0)) L = B - W M1 = X.dot(L).dot(X.T) Mc = X.dot(B).dot(X.T) elif embMethod == 'lde': Gw = np.zeros((N,N)) Gb = np.zeros((N,N)) dists = pairwise_distances(X.T) for ii in range(N): inds = np.where(labs == labs[ii])[0] sinds = np.argsort(dists[ii,inds]) Gw[ii,inds[sinds[:k]]] = 1 inds = np.where(labs != labs[ii])[0] sinds = np.argsort(dists[ii,inds]) Gb[ii,inds[sinds[:k]]] = 1 Gw = np.maximum(Gw, Gw.T) Bw = np.diag(np.sum(Gw,axis=0)) Lw = Bw - Gw M1 = X.dot(Lw).dot(X.T) Gb = np.maximum(Gb, Gb.T) Bb = np.diag(np.sum(Gb,axis=0)) Lb = Bb - Gb Mc = X.dot(Lb).dot(X.T) u,s = eig(M1) u = np.real(u) if np.min(u) < 0: M1 = M1 - np.min(u)*np.eye(M1.shape[0]) u,s = eig(Mc) u = np.real(u) if np.min(u) < 0: Mc = Mc - np.min(u)*np.eye(Mc.shape[0]) projList = [] projListFinal = [] if embMethod == 'lde': # gamma = 1e3 # bio 1e3 gamma = 5e2 thresh = 0.5*2 else: gamma = 1e4 thresh = 0.6*2 for iters in range(1,maxIter+1): if iters > 1: #print np.linalg.norm(X.dot(L).dot(X.T)), np.linalg.norm(C) if embMethod == 'pca': M1 = X.dot(L).dot(X.T) - gamma*C elif embMethod == 'lpp': M1 = X.dot(L).dot(X.T) + gamma*C elif embMethod == 'lde': M1 = X.dot(Lw).dot(X.T) + gamma*C M1 = 0.5*(M1 + M1.T) u,s = np.linalg.eig(M1) if np.min(u) < 0: M1 = M1 - np.min(u)*np.eye(M1.shape[0]) eigvals,eigvecs = eig(M1,Mc) eigvals = np.real(eigvals) eigvecs = np.real(eigvecs) eigvecs = np.dot(np.real(sp.linalg.sqrtm(Mc)),eigvecs) if embMethod == 'pca': ind = np.argsort(-eigvals) temp = eigvecs[:,ind[0:d]] elif embMethod == 'lpp' or embMethod == 'lde': ind = np.argsort(eigvals) temp = eigvecs[:,ind[0:d]] for dim in range(2): temp[:,dim] /= np.linalg.norm(temp[:,dim]) if len(projList) == 0: projList.append(temp) C = matprod(temp,temp.T) projListFinal.append(temp) else: projList.append(temp) C = grassSum(projList) #print np.linalg.norm(temp[:,0]), np.linalg.norm(temp[:,1]) mval = 1e10 for kk in projListFinal: mval = np.minimum(mval, 2 - np.linalg.norm(matprod(temp.T,kk))) if mval > thresh: err = [] emb1 = (temp.T.dot(X)).T emb1 = emb1.tolist() for ps in projListFinal: emb2 = (ps.T.dot(X)).T emb2 = emb2.tolist() trans = nudged.estimate(emb1, emb2) tt = np.linalg.norm(np.array(emb2) - np.array(trans.transform(emb1)))/np.linalg.norm(emb2) err.append(tt) # print np.linalg.norm(emb1), err #print mval, np.min(np.array(err)) if np.min(np.array(err)) > 0.8: projListFinal.append(temp) #print len(projList), len(projListFinal) return projListFinal def grassSum(projList): T = len(projList) n = projList[0].shape[0] Bs = np.zeros((n,n)) #print projList[0] for t in range(0,T): Bs += matprod(projList[t],projList[t].T) return Bs def grassMean(projList): T = len(projList) n = projList[0].shape[0] Bs = np.zeros((n,n)) idn = np.eye(n) for t in range(0,T): temp = matprod(projList[t],projList[t].T) Bs += idn - temp Bs = 0.5*(Bs + Bs.T) u,s = np.linalg.eig(Bs) u = np.real(u) if np.min(u) < 0: Bs = Bs - np.min(u)*np.eye(Bs.shape[0]) eigvalue,eigvector = eig(Bs) eigvalue = np.real(eigvalue) eigvector = np.real(eigvector) ind = np.argsort(eigvalue) eigvector = (eigvector[:,ind[0:2]]) return eigvector def DNM_TR(A,B,d,dectype): def partial_evd(A,B,ll,d): D, W = eigs(A - ll*B, k = d, which = 'LR') D = np.real(D) W = np.real(W) return D, W def full_evd(A,B,ll,d): D, W = eig(A-ll*B) D = np.real(D) W = np.real(W) sind = np.argsort(-D) D = D[sind[range(d)]] W = W[:,sind[range(d)]] return D, W maxiter = 100 tol = 1e-5 ll = 0 llold = np.Inf llall = [] if dectype.lower() == 'partial': f = partial_evd elif dectype.lower() == 'full': f = full_evd else: print ('Invalid option for dectype') for i in range(maxiter): D, W = f(A,B,ll,d) betap = -np.diag(matprod(W.T,B,W)) llold = ll ll = np.sum(llold*betap-D)/np.sum(betap) llall.append(ll) if (i > 1): if (
np.abs(ll-llold)
numpy.abs
""" Test Solver class.""" from scipy.optimize import Bounds import pytest import numpy as np from sao_opt.solver import TrustConstrSolver def sphere(design_var): """ Evalute design_var in sphere function.""" return np.sum(
np.power(design_var, 2)
numpy.power
"""Functions for inferences in maximum likelihood models.""" import numpy as np import pandas as pd from estimagic.exceptions import INVALID_INFERENCE_MSG from estimagic.inference.shared import process_pandas_arguments from estimagic.utilities import robust_inverse def cov_hessian(hess): """Covariance based on the negative inverse of the hessian of loglike. While this method makes slightly weaker statistical assumptions than a covariance estimate based on the outer product of gradients, it is numerically much more problematic for the following reasons: - It is much more difficult to estimate a hessian numerically or with automatic differentiation than it is to estimate the gradient / jacobian - The resulting hessian might not be positive definite and thus not invertible. Args: hess (numpy.ndarray): 2d array hessian matrix of dimension (nparams, nparams) Returns: numpy.ndarray: covariance matrix (nparams, nparams) Resources: <NAME> - A guide to modern econometrics :cite:`Verbeek2008` """ _hess, names = process_pandas_arguments(hess=hess) info_matrix = -1 * _hess cov = robust_inverse(info_matrix, msg=INVALID_INFERENCE_MSG) if "params" in names: cov = pd.DataFrame(cov, columns=names["params"], index=names["params"]) return cov def cov_jacobian(jac): """Covariance based on outer product of jacobian of loglikeobs. Args: jac (numpy.ndarray): 2d array jacobian matrix of dimension (nobs, nparams) Returns: numpy.ndarray: covariance matrix of size (nparams, nparams) Resources: <NAME> - A guide to modern econometrics. """ _jac, names = process_pandas_arguments(jac=jac) info_matrix = np.dot((_jac.T), _jac) cov = robust_inverse(info_matrix, msg=INVALID_INFERENCE_MSG) if "params" in names: cov = pd.DataFrame(cov, columns=names["params"], index=names["params"]) return cov def cov_robust(jac, hess): """Covariance of parameters based on HJJH dot product. H stands for Hessian of the log likelihood function and J for Jacobian, of the log likelihood per individual. Args: jac (numpy.ndarray): 2d array jacobian matrix of dimension (nobs, nparams) hess (numpy.ndarray): 2d array hessian matrix of dimension (nparams, nparams) Returns: numpy.ndarray: covariance HJJH matrix (nparams, nparams) Resources: https://tinyurl.com/yym5d4cw """ _jac, _hess, names = process_pandas_arguments(jac=jac, hess=hess) info_matrix = np.dot((_jac.T), _jac) cov_hes = cov_hessian(_hess) cov = np.dot(cov_hes,
np.dot(info_matrix, cov_hes)
numpy.dot
import numpy as np from .dimension import embed from .rotate import rotate_2D __all__ = ["torus", "dsphere", "sphere", "swiss_roll", "infty_sign", "eyeglasses"] # TODO: Make a base class that controls `ambient` and `noise`. class Shape: def __init__(self): pass def dsphere(n=100, d=2, r=1, noise=None, ambient=None, seed=None): """ Sample `n` data points on a d-sphere. Parameters ----------- n : int Number of data points in shape. r : float Radius of sphere. ambient : int, default=None Embed the sphere into a space with ambient dimension equal to `ambient`. The sphere is randomly rotated in this high dimensional space. seed : int, default=None Seed for random state. """ np.random.seed(seed) data = np.random.randn(n, d + 1) # Normalize points to the sphere data = r * data / np.sqrt(np.sum(data ** 2, 1)[:, None]) if noise: data += noise * np.random.randn(*data.shape) if ambient: assert ambient > d, "Must embed in higher dimensions" data = embed(data, ambient) return data def sphere(n=100, r=1, noise=None, ambient=None, seed=None): """ Sample `n` data points on a sphere. Parameters ----------- n : int Number of data points in shape. r : float Radius of sphere. ambient : int, default=None Embed the sphere into a space with ambient dimension equal to `ambient`. The sphere is randomly rotated in this high dimensional space. seed : int, default=None Seed for random state. """ np.random.seed(seed) theta = np.random.random((n,)) * 2.0 * np.pi phi = np.random.random((n,)) * np.pi rad = np.ones((n,)) * r data = np.zeros((n, 3)) data[:, 0] = rad * np.cos(theta) *
np.cos(phi)
numpy.cos
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """Generate map plots. Example:: $ python plot_maps.py -c : plot from files from combined output file $ python plot_maps.py -m max_id : plot from files with maximal subset id of max_id $ python plot_maps.py -h : display this help """ import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.colors as colors from matplotlib.ticker import LogFormatter import cartopy import cartopy.crs as ccrs # General plot settings. cline_label_format_default = '%.1f' n_fill_levels_default = 14 n_line_levels_default = 6 color_map = plt.get_cmap('YlOrRd') # 'coolwarm' 'RdBu' 'bwr' # plt.get_cmap('YlOrRd') if __name__ == "__main__": # TODO this has to be changed to work via class! # from ..utils.convenience_utils import hour_to_date_str from plotting_utils import read_dataset_user_input # Load the processed data from the NetCDF files specified in the input. nc = read_dataset_user_input() # TODO remove - use config for this! lons = nc['longitude'].values lats = nc['latitude'].values height_range_floor = 50. height_range_ceilings = list(nc['height_range_ceiling'].values) fixed_heights = list(nc['fixed_height'].values) integration_range_ids = list(nc['integration_range_id'].values) p_integral_mean = nc['p_integral_mean'].values # Hours since 1900-01-01 00:00:00, see: print(nc['time'].values). hours = nc['time'].values # print("Analyzing " + hour_to_date_str(hours[0]) + " till " # + hour_to_date_str(hours[-1])) # TODO fix from config else: lons = list(np.arange(-20, 20.25, .25)) lats = list(np.arange(65, 29.75, -.25)) # #lons = np.arange(-12, -5.0, .25) # config.Data.all_lons # #lats = np.arange(51, 56.25, .25) # config.Data.all_lats # else: # # TODO make more understandable # # TODO make into utils -> use for map plots in production # # TODO fix from config # # Ireland # # lons = list(np.arange(-12, -5.0, .25)) # -5.75, .25)) # # lats = list(np.arange(51, 56.25, .25)) # # Europe map # lons = list(np.arange(-20, 20.25, .25)) # lats = list(np.arange(65, 29.75, -.25)) # Plotting map - region selection # TODO rework -> config plot_northern_germany = False label_cities = False map_plot_aspect_ratio = 9 / 12.5 # len(lons)/len(lats) # TODO this makes sense - adapt fixed number later on -> adaptable mrc = ccrs.Mercator() def calc_fig_height(fig_width, subplot_shape, plot_frame_top, plot_frame_bottom, plot_frame_left, plot_frame_right): """"Calculate figure height, such that all maps have the same resolution. Args: fig_width (float): Figure width in inches. subplot_shape (tuple of int): Containing number of rows and columns of subplot. plot_frame_top (float): Top of plot as a fraction of the figure window height w.r.t. bottom. plot_frame_bottom (float): Bottom of plot as a fraction of the figure window height w.r.t. bottom. plot_frame_left (float): Left side of plot as a fraction of the figure window width w.r.t. left. plot_frame_right (float): Right side of plot as a fraction of the figure window width w.r.t. left. Returns: float: Figure height in inches. """ plot_frame_width = fig_width*(plot_frame_right - plot_frame_left) plot_frame_height = plot_frame_width/(map_plot_aspect_ratio * subplot_shape[1] / subplot_shape[0]) fig_height = plot_frame_height/(plot_frame_top - plot_frame_bottom) return fig_height def eval_contour_fill_levels(plot_items): """"Evaluate the plot data, e.g. if values are within contour fill levels limits. Args: plot_items (list of dict): List containing the plot property dicts. """ for i, item in enumerate(plot_items): max_value = np.amax(item['data']) min_value = np.amin(item['data']) print("Max and min value of plot" " {}: {:.3f} and {:.3f}".format(i, max_value, min_value)) if item['contour_fill_levels'][-1] < max_value: print("Contour fills " "(max={:.3f}) do not cover max value of plot {}" .format(item['contour_fill_levels'][-1], i)) if item['contour_fill_levels'][0] > min_value: print("Contour fills " "(min={:.3f}) do not cover min value of plot {}" .format(item['contour_fill_levels'][0], i)) def individual_plot(z, cf_lvls, cl_lvls, cline_label_format=cline_label_format_default, log_scale=False, extend="neither", overflow=None): """"Individual plot of coastlines and contours. Args: z (ndarray): 2D array containing contour plot data. cf_lvls (list): Contour fill levels. cl_lvls (list): Contour line levels. cline_label_format (str, optional): Contour line label format string. Defaults to `cline_label_format_default`. log_scale (bool): Logarithmic scaled contour levels are used if True, linearly scaled if False. extend (str): Setting for extension of contour fill levels. Returns: QuadContourSet: Contour fills object. """ # Care if colorbar ticks are set beforehand, see plot_single_map # colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 56)) # colors_land = plt.cm.terrain(np.linspace(0.25, 1, 200)) # # combine them and build a new colormap # colors_stack = np.vstack((colors_undersea, colors_land)) # color_map = colors.LinearSegmentedColormap.from_list('color_map', # colors_stack) color_map = plt.get_cmap('YlOrRd') if overflow is not None: n_normal = 224 n_over = 32 top_overflow = overflow colors_underflow = [] underflow_bounds = [] min_val = np.min(z) if isinstance(overflow, list): top_overflow = overflow[1] min_val = overflow[0] n_over = int(n_over/2) colors_underflow = list(plt.get_cmap('coolwarm')( np.linspace(0, 0.21, n_over))) underflow_bounds = list(np.linspace(
np.min(z)
numpy.min
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: <NAME> ## Computer Vision Center (CVC). Universitat Autonoma de Barcelona ## Email: <EMAIL> ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ from datasets import omniglot import torchvision.transforms as transforms from PIL import Image import os.path import json import math from numpy import array import numpy as np #moved inside constructor #np.random.seed(2191) # for reproducibility # LAMBDA FUNCTIONS filenameToPILImage = lambda x: Image.open(x).convert('L') PiLImageResize = lambda x: x.resize((28,28)) np_reshape = lambda x: np.reshape(x, (28, 28, 1)) def base_classes_file_data( base_classes_file ): return array( json.load( open( base_classes_file ) ) ) class OmniglotNShotDataset(): def __init__(self, dataroot, batch_size = 100, classes_per_set=10, samples_per_class=1, is_use_sample_data = True, input_file="", input_labels_file="", total_input_files=-1, is_evaluation_only = False, evaluation_input_file = "", evaluation_labels_file = "", evaluate_classes = 1, is_eval_with_train_data = 0, negative_test_offset = 0, is_apply_pca_first = 0, cache_samples_for_evaluation = 100, is_run_time_predictions = False, pca_components = 900, is_evaluation_res_in_obj = False, total_base_classes = 0, is_visualize_data = False, is_run_validation_batch = True, is_compare = False, is_load_test_record = False, test_record_class = -1, test_record_index = -1, is_debug = True, is_switch_dim = False, is_batch_persistancy = False, is_load_file_data_only=False, test_batch_records=20): self.is_debug = is_debug if is_evaluation_only == False: np.random.seed(2191) # for reproducibility else: #for variational testing np.random.seed( np.random.randint(0, 1000) ) if is_use_sample_data: if not os.path.isfile(os.path.join(dataroot,'data.npy')): self.x = omniglot.OMNIGLOT(dataroot, download=True, transform=transforms.Compose([filenameToPILImage, PiLImageResize, np_reshape])) """ # Convert to the format of AntreasAntoniou. Format [nClasses,nCharacters,28,28,1] """ temp = dict() for (img, label) in self.x: if label in temp: temp[label].append(img) else: temp[label]=[img] self.x = [] # Free memory for classes in temp.keys(): self.x.append(np.array(temp[ list(temp.keys())[classes]])) self.x = np.array(self.x) temp = [] # Free memory np.save(os.path.join(dataroot,'data.npy'),self.x) else: self.x = np.load(os.path.join(dataroot,'data.npy')) else: self.x = [] self.x_to_be_predicted = [] self.x_to_be_predicted_cls_indexes = {} self.prediction_classes = 9 self.total_base_classes = total_base_classes #56 self.tvt_records = 500 #70 # 25 #11 #3 #19 self.tvt_records_fall_short_clss = {} self.re_records = 0 #2 #2 #10 self.choice_replace = True #necessary when number of samples are small self.is_batch_persistancy = is_batch_persistancy base_classes_file = input_file+"_base_classes.json" self.evaluate_classes = evaluate_classes self.is_eval_with_train_data = True if is_eval_with_train_data == 1 else False self.negative_test_offset = negative_test_offset self.is_run_time_predictions = is_run_time_predictions self.is_evaluation_res_in_obj = is_evaluation_res_in_obj self.test_batch_records = test_batch_records is_disable_heavy_functions_temporarily = True main_lsize = 1 if not os.path.exists( base_classes_file ) and is_load_test_record: main_lsize = 2 # if is_evaluation_only == False or not os.path.exists( base_classes_file ) or is_load_test_record: if is_debug: print( "(!) Merging inputs, should only be executed in training mode." ) input = [] input_labels = [] if is_debug: print("total_input_files") print(total_input_files) for i in range(0, total_input_files): if is_debug: print("total_input_files i " + str(i)) if i == 0: input = array( json.load( open( input_file.replace('{i}', str(i)) ) ) ) input_labels = array( json.load( open( input_labels_file.replace('{i}', str(i)) ) ) ) else: input = np.concatenate( ( input, array( json.load( open( input_file.replace('{i}', str(i)) ) ) ) ), axis=0 ) input_labels = np.concatenate( ( input_labels, array( json.load( open( input_labels_file.replace('{i}', str(i)) ) ) ) ), axis=0 ) temp = dict() temp_to_be_predicted = dict() sizei = len(input) if is_debug: print("sizei") print(sizei) test_record_index_cnt = -1 for li in range(0, main_lsize): for i in
np.arange(sizei)
numpy.arange
from copy import deepcopy from warnings import warn import types from distutils.version import LooseVersion from scipy.spatial.distance import cdist import numpy as np import nibabel as nib from nibabel.affines import apply_affine from dipy.tracking.streamlinespeed import set_number_of_points from dipy.tracking.streamlinespeed import length from dipy.tracking.distances import bundles_distances_mdf from dipy.tracking.streamlinespeed import compress_streamlines import dipy.tracking.utils as ut from dipy.tracking.utils import streamline_near_roi from dipy.core.geometry import dist_to_corner import dipy.align.vector_fields as vfu if LooseVersion(nib.__version__) >= '2.3': from nibabel.streamlines import ArraySequence as Streamlines else: # This patch fix a streamline bug on windows machine. # For more information, look at https://github.com/nipy/nibabel/pull/597 # This patch can be removed when nibabel minimal version is updated to 2.3 # Currently, nibabel 2.3 does not exist. from nibabel.streamlines import ArraySequence from functools import reduce from operator import mul MEGABYTE = 1024 * 1024 class _BuildCache(object): def __init__(self, arr_seq, common_shape, dtype): self.offsets = list(arr_seq._offsets) self.lengths = list(arr_seq._lengths) self.next_offset = arr_seq._get_next_offset() self.bytes_per_buf = arr_seq._buffer_size * MEGABYTE # Use the passed dtype only if null data array if arr_seq._data.size == 0: self.dtype = dtype else: arr_seq._data.dtype if (arr_seq.common_shape != () and common_shape != arr_seq.common_shape): raise ValueError( "All dimensions, except the first one, must match exactly") self.common_shape = common_shape n_in_row = reduce(mul, common_shape, 1) bytes_per_row = n_in_row * dtype.itemsize self.rows_per_buf = max(1, self.bytes_per_buf // bytes_per_row) def update_seq(self, arr_seq): arr_seq._offsets = np.array(self.offsets) arr_seq._lengths = np.array(self.lengths) class Streamlines(ArraySequence): def __init__(self, *args, **kwargs): super(Streamlines, self).__init__(*args, **kwargs) def append(self, element, cache_build=False): """ Appends `element` to this array sequence. Append can be a lot faster if it knows that it is appending several elements instead of a single element. In that case it can cache the parameters it uses between append operations, in a "build cache". To tell append to do this, use ``cache_build=True``. If you use ``cache_build=True``, you need to finalize the append operations with :meth:`finalize_append`. Parameters ---------- element : ndarray Element to append. The shape must match already inserted elements shape except for the first dimension. cache_build : {False, True} Whether to save the build cache from this append routine. If True, append can assume it is the only player updating `self`, and the caller must finalize `self` after all append operations, with ``self.finalize_append()``. Returns ------- None Notes ----- If you need to add multiple elements you should consider `ArraySequence.extend`. """ element = np.asarray(element) if element.size == 0: return el_shape = element.shape n_items, common_shape = el_shape[0], el_shape[1:] build_cache = self._build_cache in_cached_build = build_cache is not None if not in_cached_build: # One shot append, not part of sequence build_cache = _BuildCache(self, common_shape, element.dtype) next_offset = build_cache.next_offset req_rows = next_offset + n_items if self._data.shape[0] < req_rows: self._resize_data_to(req_rows, build_cache) self._data[next_offset:req_rows] = element build_cache.offsets.append(next_offset) build_cache.lengths.append(n_items) build_cache.next_offset = req_rows if in_cached_build: return if cache_build: self._build_cache = build_cache else: build_cache.update_seq(self) def finalize_append(self): """ Finalize process of appending several elements to `self` :meth:`append` can be a lot faster if it knows that it is appending several elements instead of a single element. To tell the append method this is the case, use ``cache_build=True``. This method finalizes the series of append operations after a call to :meth:`append` with ``cache_build=True``. """ if self._build_cache is None: return self._build_cache.update_seq(self) self._build_cache = None self.shrink_data() def extend(self, elements): """ Appends all `elements` to this array sequence. Parameters ---------- elements : iterable of ndarrays or :class:`ArraySequence` instance If iterable of ndarrays, each ndarray will be concatenated along the first dimension then appended to the data of this ArraySequence. If :class:`ArraySequence` object, its data are simply appended to the data of this ArraySequence. Returns ------- None Notes ----- The shape of the elements to be added must match the one of the data of this :class:`ArraySequence` except for the first dimension. """ # If possible try pre-allocating memory. try: iter_len = len(elements) except TypeError: pass else: # We do know the iterable length if iter_len == 0: return e0 = np.asarray(elements[0]) n_elements = np.sum([len(e) for e in elements]) self._build_cache = _BuildCache(self, e0.shape[1:], e0.dtype) self._resize_data_to(self._get_next_offset() + n_elements, self._build_cache) for e in elements: self.append(e, cache_build=True) self.finalize_append() def unlist_streamlines(streamlines): """ Return the streamlines not as a list but as an array and an offset Parameters ---------- streamlines: sequence Returns ------- points : array offsets : array """ points = np.concatenate(streamlines, axis=0) offsets = np.zeros(len(streamlines), dtype='i8') curr_pos = 0 for (i, s) in enumerate(streamlines): prev_pos = curr_pos curr_pos += s.shape[0] points[prev_pos:curr_pos] = s offsets[i] = curr_pos return points, offsets def relist_streamlines(points, offsets): """ Given a representation of a set of streamlines as a large array and an offsets array return the streamlines as a list of shorter arrays. Parameters ----------- points : array offsets : array Returns ------- streamlines: sequence """ streamlines = [] streamlines.append(points[0: offsets[0]]) for i in range(len(offsets) - 1): streamlines.append(points[offsets[i]: offsets[i + 1]]) return streamlines def center_streamlines(streamlines): """ Move streamlines to the origin Parameters ---------- streamlines : list List of 2D ndarrays of shape[-1]==3 Returns ------- new_streamlines : list List of 2D ndarrays of shape[-1]==3 inv_shift : ndarray Translation in x,y,z to go back in the initial position """ center = np.mean(np.concatenate(streamlines, axis=0), axis=0) return [s - center for s in streamlines], center def deform_streamlines(streamlines, deform_field, stream_to_current_grid, current_grid_to_world, stream_to_ref_grid, ref_grid_to_world): """ Apply deformation field to streamlines Parameters ---------- streamlines : list List of 2D ndarrays of shape[-1]==3 deform_field : 4D numpy array x,y,z displacements stored in volume, shape[-1]==3 stream_to_current_grid : array, (4, 4) transform matrix voxmm space to original grid space current_grid_to_world : array (4, 4) transform matrix original grid space to world coordinates stream_to_ref_grid : array (4, 4) transform matrix voxmm space to new grid space ref_grid_to_world : array(4, 4) transform matrix new grid space to world coordinates Returns ------- new_streamlines : list List of the transformed 2D ndarrays of shape[-1]==3 """ if deform_field.shape[-1] != 3: raise ValueError("Last dimension of deform_field needs shape==3") stream_in_curr_grid = transform_streamlines(streamlines, stream_to_current_grid) displacements = values_from_volume(deform_field, stream_in_curr_grid) stream_in_world = transform_streamlines(stream_in_curr_grid, current_grid_to_world) new_streams_in_world = [sum(d, s) for d, s in zip(displacements, stream_in_world)] new_streams_grid = transform_streamlines(new_streams_in_world, np.linalg.inv(ref_grid_to_world)) new_streamlines = transform_streamlines(new_streams_grid, np.linalg.inv(stream_to_ref_grid)) return new_streamlines def transform_streamlines(streamlines, mat, in_place=False): """ Apply affine transformation to streamlines Parameters ---------- streamlines : Streamlines Streamlines object mat : array, (4, 4) transformation matrix in_place : bool If True then change data in place. Be careful changes input streamlines. Returns ------- new_streamlines : Streamlines Sequence transformed 2D ndarrays of shape[-1]==3 """ # using new Streamlines API if isinstance(streamlines, Streamlines): if in_place: streamlines._data = apply_affine(mat, streamlines._data) return streamlines new_streamlines = streamlines.copy() new_streamlines._data = apply_affine(mat, new_streamlines._data) return new_streamlines # supporting old data structure of streamlines return [apply_affine(mat, s) for s in streamlines] def select_random_set_of_streamlines(streamlines, select, rng=None): """ Select a random set of streamlines Parameters ---------- streamlines : Steamlines Object of 2D ndarrays of shape[-1]==3 select : int Number of streamlines to select. If there are less streamlines than ``select`` then ``select=len(streamlines)``. rng : RandomState Default None. Returns ------- selected_streamlines : list Notes ----- The same streamline will not be selected twice. """ len_s = len(streamlines) if rng is None: rng = np.random.RandomState() index = rng.choice(len_s, min(select, len_s), replace=False) if isinstance(streamlines, Streamlines): return streamlines[index] return [streamlines[i] for i in index] def select_by_rois(streamlines, rois, include, mode=None, affine=None, tol=None): """Select streamlines based on logical relations with several regions of interest (ROIs). For example, select streamlines that pass near ROI1, but only if they do not pass near ROI2. Parameters ---------- streamlines : list A list of candidate streamlines for selection rois : list or ndarray A list of 3D arrays, each with shape (x, y, z) corresponding to the shape of the brain volume, or a 4D array with shape (n_rois, x, y, z). Non-zeros in each volume are considered to be within the region include : array or list A list or 1D array of boolean values marking inclusion or exclusion criteria. If a streamline is near any of the inclusion ROIs, it should evaluate to True, unless it is also near any of the exclusion ROIs. mode : string, optional One of {"any", "all", "either_end", "both_end"}, where a streamline is associated with an ROI if: "any" : any point is within tol from ROI. Default. "all" : all points are within tol from ROI. "either_end" : either of the end-points is within tol from ROI "both_end" : both end points are within tol from ROI. affine : ndarray Affine transformation from voxels to streamlines. Default: identity. tol : float Distance (in the units of the streamlines, usually mm). If any coordinate in the streamline is within this distance from the center of any voxel in the ROI, the filtering criterion is set to True for this streamline, otherwise False. Defaults to the distance between the center of each voxel and the corner of the voxel. Notes ----- The only operation currently possible is "(A or B or ...) and not (X or Y or ...)", where A, B are inclusion regions and X, Y are exclusion regions. Returns ------- generator Generates the streamlines to be included based on these criteria. See also -------- :func:`dipy.tracking.utils.near_roi` :func:`dipy.tracking.utils.reduce_rois` Examples -------- >>> streamlines = [np.array([[0, 0., 0.9], ... [1.9, 0., 0.]]), ... np.array([[0., 0., 0], ... [0, 1., 1.], ... [0, 2., 2.]]), ... np.array([[2, 2, 2], ... [3, 3, 3]])] >>> mask1 = np.zeros((4, 4, 4), dtype=bool) >>> mask2 = np.zeros_like(mask1) >>> mask1[0, 0, 0] = True >>> mask2[1, 0, 0] = True >>> selection = select_by_rois(streamlines, [mask1, mask2], ... [True, True], ... tol=1) >>> list(selection) # The result is a generator [array([[ 0. , 0. , 0.9], [ 1.9, 0. , 0. ]]), array([[ 0., 0., 0.], [ 0., 1., 1.], [ 0., 2., 2.]])] >>> selection = select_by_rois(streamlines, [mask1, mask2], ... [True, False], ... tol=0.87) >>> list(selection) [array([[ 0., 0., 0.], [ 0., 1., 1.], [ 0., 2., 2.]])] >>> selection = select_by_rois(streamlines, [mask1, mask2], ... [True, True], ... mode="both_end", ... tol=1.0) >>> list(selection) [array([[ 0. , 0. , 0.9], [ 1.9, 0. , 0. ]])] >>> mask2[0, 2, 2] = True >>> selection = select_by_rois(streamlines, [mask1, mask2], ... [True, True], ... mode="both_end", ... tol=1.0) >>> list(selection) [array([[ 0. , 0. , 0.9], [ 1.9, 0. , 0. ]]), array([[ 0., 0., 0.], [ 0., 1., 1.], [ 0., 2., 2.]])] """ if affine is None: affine = np.eye(4) # This calculates the maximal distance to a corner of the voxel: dtc = dist_to_corner(affine) if tol is None: tol = dtc elif tol < dtc: w_s = "Tolerance input provided would create gaps in your" w_s += " inclusion ROI. Setting to: %s" % dist_to_corner warn(w_s) tol = dtc include_roi, exclude_roi = ut.reduce_rois(rois, include) include_roi_coords = np.array(np.where(include_roi)).T x_include_roi_coords = apply_affine(affine, include_roi_coords) exclude_roi_coords = np.array(np.where(exclude_roi)).T x_exclude_roi_coords = apply_affine(affine, exclude_roi_coords) if mode is None: mode = "any" for sl in streamlines: include = streamline_near_roi(sl, x_include_roi_coords, tol=tol, mode=mode) exclude = streamline_near_roi(sl, x_exclude_roi_coords, tol=tol, mode=mode) if include & ~exclude: yield sl def cluster_confidence(streamlines, max_mdf=5, subsample=12, power=1, override=False): """ Computes the cluster confidence index (cci), which is an estimation of the support a set of streamlines gives to a particular pathway. Ex: A single streamline with no others in the dataset following a similar pathway has a low cci. A streamline in a bundle of 100 streamlines that follow similar pathways has a high cci. See: Jordan et al. 2017 (Based on streamline MDF distance from Garyfallidis et al. 2012) Parameters ---------- streamlines : list of 2D (N, 3) arrays A sequence of streamlines of length N (# streamlines) max_mdf : int The maximum MDF distance (mm) that will be considered a "supporting" streamline and included in cci calculation subsample: int The number of points that are considered for each streamline in the calculation. To save on calculation time, each streamline is subsampled to subsampleN points. power: int The power to which the MDF distance for each streamline will be raised to determine how much it contributes to the cci. High values of power make the contribution value degrade much faster. Example: a streamline with 5mm MDF similarity contributes 1/5 to the cci if power is 1, but only contributes 1/5^2 = 1/25 if power is 2. override: bool, False by default override means that the cci calculation will still occur even though there are short streamlines in the dataset that may alter expected behaviour. Returns ------- Returns an array of CCI scores References ---------- [Jordan17] <NAME>. Et al., Cluster Confidence Index: A Streamline-Wise Pathway Reproducibility Metric for Diffusion-Weighted MRI Tractography, Journal of Neuroimaging, vol 28, no 1, 2017. [Garyfallidis12] <NAME>. et al., QuickBundles a method for tractography simplification, Frontiers in Neuroscience, vol 6, no 175, 2012. """ # error if any streamlines are shorter than 20mm lengths = list(length(streamlines)) if min(lengths) < 20 and not override: raise ValueError('Short streamlines found. We recommend removing them.' ' To continue without removing short streamlines set' ' override=True') # calculate the pairwise MDF distance between all streamlines in dataset subsamp_sls = set_number_of_points(streamlines, subsample) cci_score_mtrx = np.zeros([len(subsamp_sls)]) for i, sl in enumerate(subsamp_sls): mdf_mx = bundles_distances_mdf([subsamp_sls[i]], subsamp_sls) if (mdf_mx == 0).sum() > 1: raise ValueError('Identical streamlines. CCI calculation invalid') mdf_mx_oi = (mdf_mx > 0) & (mdf_mx < max_mdf) & ~
np.isnan(mdf_mx)
numpy.isnan
# This code is taken from DOPE github source code: # https://github.com/chinancheng/DOPE.pytorch/blob/master/cuboid.py # for 3D bounding box visualization # Copyright (c) 2018 NVIDIA Corporation. All rights reserved. # This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike # 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode from enum import IntEnum, unique import numpy as np # Related to the object's local coordinate system # @unique class CuboidVertexType(IntEnum): FrontTopRight = 0 FrontTopLeft = 1 FrontBottomLeft = 2 FrontBottomRight = 3 RearTopRight = 4 RearTopLeft = 5 RearBottomLeft = 6 RearBottomRight = 7 Center = 8 TotalCornerVertexCount = 8 # Corner vertexes doesn't include the center point TotalVertexCount = 9 # List of the vertex indexes in each line edges of the cuboid CuboidLineIndexes = [ # Front face [ CuboidVertexType.FrontTopLeft, CuboidVertexType.FrontTopRight ], [ CuboidVertexType.FrontTopRight, CuboidVertexType.FrontBottomRight ], [ CuboidVertexType.FrontBottomRight, CuboidVertexType.FrontBottomLeft ], [ CuboidVertexType.FrontBottomLeft, CuboidVertexType.FrontTopLeft ], # Back face [ CuboidVertexType.RearTopLeft, CuboidVertexType.RearTopRight ], [ CuboidVertexType.RearTopRight, CuboidVertexType.RearBottomRight ], [ CuboidVertexType.RearBottomRight, CuboidVertexType.RearBottomLeft ], [ CuboidVertexType.RearBottomLeft, CuboidVertexType.RearTopLeft ], # Left face [ CuboidVertexType.FrontBottomLeft, CuboidVertexType.RearBottomLeft ], [ CuboidVertexType.FrontTopLeft, CuboidVertexType.RearTopLeft ], # Right face [ CuboidVertexType.FrontBottomRight, CuboidVertexType.RearBottomRight ], [ CuboidVertexType.FrontTopRight, CuboidVertexType.RearTopRight ], ] # ========================= Cuboid3d ========================= class Cuboid3d(): '''This class contains a 3D cuboid.''' # Create a box with a certain size def __init__(self, size3d = [1.0, 1.0, 1.0], center_location = [0, 0, 0], coord_system = None, parent_object = None): # NOTE: This local coordinate system is similar # to the intrinsic transform matrix of a 3d object self.center_location = center_location self.coord_system = coord_system self.size3d = size3d self._vertices = [0, 0, 0] * CuboidVertexType.TotalVertexCount self.generate_vertexes() def get_vertex(self, vertex_type): """Returns the location of a vertex. Args: vertex_type: enum of type CuboidVertexType Returns: Numpy array(3) - Location of the vertex type in the cuboid """ return self._vertices[vertex_type] def get_vertices(self): return self._vertices def generate_vertexes(self): width, height, depth = self.size3d # By default just use the normal OpenCV coordinate system if (self.coord_system is None): cx, cy, cz = self.center_location # X axis point to the right right = cx + width / 2.0 left = cx - width / 2.0 # Y axis point downward top = cy - height / 2.0 bottom = cy + height / 2.0 # Z axis point forward front = cz + depth / 2.0 rear = cz - depth / 2.0 # List of 8 vertices of the box self._vertices = [ [right, top, front], # Front Top Right [left, top, front], # Front Top Left [left, bottom, front], # Front Bottom Left [right, bottom, front], # Front Bottom Right [right, top, rear], # Rear Top Right [left, top, rear], # Rear Top Left [left, bottom, rear], # Rear Bottom Left [right, bottom, rear], # Rear Bottom Right self.center_location, # Center ] else: sx, sy, sz = self.size3d forward = np.array(self.coord_system.forward, dtype=float) * sy * 0.5 up = np.array(self.coord_system.up, dtype=float) * sz * 0.5 right =
np.array(self.coord_system.right, dtype=float)
numpy.array
# -*- coding: utf-8 -*- """ MIT License Copyright (c) 2022 cmla-psu/<NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import time from softmax import configuration, workload, matrix_query, func_var from convexdp import ConvexDP, ca_variance, wCA, wCA2 def PL94(): """Dataset PL94.""" # age marginal first_1 = np.eye(2) second_1 = np.ones((1, 2)) third_1 = np.ones((1, 63)) work_age = np.kron(np.kron(first_1, second_1), third_1) # ethnicity marginal first_2 = np.ones((1, 2)) second_2 = np.eye(2) third_2 = np.ones((1, 63)) work_eth = np.kron(
np.kron(first_2, second_2)
numpy.kron
""" 2021/5/8 Noisy dataset: MNIST, CIFAR10 """ import matplotlib.pyplot as plt import numpy as np from torch.utils.data import DataLoader, Dataset from torchvision import datasets, transforms, utils # np.random.seed(0) class MNISTNoisy(Dataset): def __init__(self, root, train, transform, download, noise_type='symmetric', noise_rate=0.2): self.mnist = datasets.MNIST(root, train, transform, download=download) self.noise_type = noise_type self.noise_rate = noise_rate self.clean_sample_idx = [] self.noisy_sample_idx = [] # add label noise if self.noise_type == 'symmetric': self.uniform(noise_rate, 10) elif self.noise_type == 'asymmetric': self.flip(noise_rate, 10) def uniform(self, noise_rate: float, num_classes: int): """Add symmetric noise""" # noise transition matrix ntm = noise_rate * np.full((num_classes, num_classes), 1 / (num_classes - 1)) np.fill_diagonal(ntm, 1 - noise_rate) sample_indices = np.arange(len(self.mnist)) # np.random.shuffle(indices) # generate noisy label by noise transition matrix for i in sample_indices: label = np.random.choice(num_classes, p=ntm[self.mnist.targets[i]]) # new label if label != self.mnist.targets[i]: self.noisy_sample_idx.append(i) self.mnist.targets[i] = label self.clean_sample_idx = np.setdiff1d(sample_indices, self.noisy_sample_idx) print('Noise type: Symmetric') print('Noise rate:', noise_rate) print('Noise transition matrix:\n', ntm) print('Clean samples:', len(self.clean_sample_idx), 'Noisy samples:', len(self.noisy_sample_idx)) def flip(self, noise_rate: float, num_classes: int): """Add asymmetric noise""" # noise transition matrix ntm = np.eye(num_classes) * (1 - noise_rate) d = {7: 1, 2: 7, 5: 6, 6: 5, 3: 8} # 7->1, 2->7, 5->6, 6->5, 3->8 for raw_class, new_class in d.items(): ntm[raw_class][new_class] = noise_rate for i in [0, 1, 4, 8, 9]: ntm[i][i] = 1 sample_indices = np.arange(len(self.mnist)) # generate noisy label by noise transition matrix for i in sample_indices: label = np.random.choice(num_classes, p=ntm[self.mnist.targets[i]]) if label != self.mnist.targets[i]: self.noisy_sample_idx.append(i) self.mnist.targets[i] = label self.clean_sample_idx =
np.setdiff1d(sample_indices, self.noisy_sample_idx)
numpy.setdiff1d
import numpy as np from math import ceil import copy import random from imblearn.under_sampling import NearMiss from imblearn.over_sampling import SMOTE, ADASYN from sklearn.ensemble import RandomForestClassifier try: # < version 1.1.0 from art.attacks import BoundaryAttack, ZooAttack, HopSkipJump except ImportError: # >= version 1.1.0 from art.attacks.evasion import BoundaryAttack, ZooAttack, HopSkipJump from art.classifiers import SklearnClassifier from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer from sklearn.metrics.pairwise import euclidean_distances from drift_dac.features_utils import is_integer_feature from drift_dac.perturbation_shared_utils import Shift, sample_random_indices, PerturbationConstants, any_other_label __all__ = ['GaussianNoise', 'SwitchCategorical', 'SubsampleJoint', 'SubsampleNumeric', 'SubsampleCategorical', 'UnderSample', 'OverSample', 'Adversarial', 'ConstantNumeric', 'ConstantCategorical', 'MissingValues', 'PlusMinusSomePercent', 'FlipSign', 'Outliers', 'Scaling', 'SwappedValues', 'ErrorBasedSampling', 'NearestNeighbors'] class GaussianNoise(Shift): """ Apply Gaussian noise to a portion of data. Args: noise_key (str): value in ['small', 'medium', 'large] indicating the level of noise. samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. clip (bool): flag to clip the value of a perturbed feature to the maximum value in the feature range. ceil_int (bool): flag to ceil the value of a perturbed feature for integer features. noise (float): level of noise Attributes: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). clip (bool): flag to clip the value of a perturbed feature to the maximum value in the feature range. ceil_int (bool): flag to ceil the value of a perturbed feature for integer features. noise (float): amount of noise """ def __init__(self, noise_key='small', samples_fraction=1.0, features_fraction=1.0, clip=True, ceil_int=True, noise=None): super(GaussianNoise, self).__init__() self.samples_fraction = samples_fraction self.features_fraction = features_fraction self.clip = clip self.ceil_int = ceil_int if noise is None: noise_levels = { 'large': 100.0, 'medium': 10.0, 'small': 1.0 } self.noise = noise_levels[noise_key] else: self.noise = noise self.name = noise_key + '_gn_shift_%.2f_%.2f' % (samples_fraction, features_fraction) self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y=None): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = copy.deepcopy(y) Xt, yt, self.shifted_indices, self.shifted_features = gaussian_noise_shift(Xt, yt, self.noise, self.samples_fraction, self.features_fraction, self.clip, self.ceil_int) return Xt, yt class SwitchCategorical(Shift): """ Assign a random category of categorical variables to a portion of data. Args: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. Attributes: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=0.5, features_fraction=1.0): super(SwitchCategorical, self).__init__() self.samples_fraction = samples_fraction self.features_fraction = features_fraction self.name = 'switch_categorical_features_shift_%.2f_%.2f' % (samples_fraction, features_fraction) self.feature_type = PerturbationConstants.CATEGORICAL def transform(self, X, y=None): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = copy.deepcopy(y) Xt, yt, self.shifted_indices, self.shifted_features = switch_categorical_features_shift(Xt, yt, self.samples_fraction, self.features_fraction) return Xt, yt class SubsampleJoint(Shift): """ Keep an observation with a probability which decreases as points are further away from the samples mean. Args: gamma (float): fraction of samples close to the mean to remove. Attributes: gamma (float): fraction of samples close to the mean to remove. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, gamma=0.2): super(SubsampleJoint, self).__init__() self.gamma = 1 - gamma # fraction of samples to keep self.name = 'subsample_joint_shift_%.2f' % gamma self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = copy.deepcopy(y) Xt, yt, self.shifted_features = subsample_joint_shift(Xt, yt, gamma=self.gamma) return Xt, yt class SubsampleNumeric(Shift): """ Subsample with probability p when feature value less than the feature median value. If one_side=False, this also subsamples with probability 1-p when the feature value is larger than the feature median value. Args: features_fraction (float): proportion of samples to perturb. p (float): probability of sampling small values of features one_side (bool): flag to subsample only samples with small feature values (True, default) or also large values. Attributes: features_fraction (float): proportion of samples to perturb. p (float): probability of sampling small values of features one_side (bool): flag to subsample only samples with small feature values (True, default) or also large values. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, p=0.5, features_fraction=0.5, one_side=True): super(SubsampleNumeric, self).__init__() self.features_fraction = features_fraction self.p = p self.one_side = one_side self.name = 'subsample_feature_shift_%.2f' % features_fraction self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = copy.deepcopy(y) Xt, yt, self.shifted_features = subsample_feature_shift(Xt, yt, feat_delta=self.features_fraction, p=self.p, one_side=self.one_side) return Xt, yt class SubsampleCategorical(Shift): """ Subsample with probability p when feature value falls in a sub list of categories (randomly defined). If one_side=False, this also subsamples with probability 1-p when the feature value in the remaining categories. This perturbation is applied to all categorical features. Args: p (float): probability of sampling subset of values of features features_fraction (float): proportion of samples to perturb. one_side (bool): flag to subsample only samples with small feature values (True, default) or also large values. Attributes: p (float): probability of sampling subset of values of features features_fraction (float): proportion of samples to perturb. one_side (bool): flag to subsample only samples with small feature values (True, default) or also large values. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, p=0.5, features_fraction=1.0, one_side=True): super(SubsampleCategorical, self).__init__() self.p = p self.features_fraction = features_fraction self.one_side = one_side self.name = 'subsample_categorical_feature_shift_%.2f' % p self.feature_type = PerturbationConstants.CATEGORICAL def transform(self, X, y): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = copy.deepcopy(y) n_categorical = Xt.shape[1] feat_indices = np.random.choice(n_categorical, ceil(n_categorical * self.features_fraction), replace=False) for f in feat_indices: Xt, yt = subsample_categorical_feature_shift(Xt, yt, f, p=self.p, one_side=self.one_side) return Xt, yt class UnderSample(Shift): """ Subsample selecting samples close to the minority class (NearMiss3 heuristics). Args: samples_fraction (float): proportion of samples to perturb. Attributes: samples_fraction (float): proportion of samples to perturb. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=0.5): super(UnderSample, self).__init__() self.samples_fraction = samples_fraction self.name = 'under_sample_shift_%.2f' % samples_fraction self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = copy.deepcopy(y) Xt = SimpleImputer(strategy='median').fit_transform(Xt) Xt, yt = under_sampling_shift(Xt, yt, self.samples_fraction) return Xt, yt class OverSample(Shift): """ First subsample selecting samples close to the minority class (NearMiss3 heuristics), then add interpolated samples via SMOTE technique. Args: samples_fraction (float): proportion of samples to perturb. Attributes: samples_fraction (float): proportion of samples to perturb. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=0.5): super(OverSample, self).__init__() self.samples_fraction = samples_fraction self.name = 'over_sample_shift_%.2f' % samples_fraction self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = copy.deepcopy(y) Xt = SimpleImputer(strategy='median').fit_transform(Xt) Xt, yt = over_sampling_shift(Xt, yt, self.samples_fraction) return Xt, yt class Adversarial(Shift): """ Perturb a portion of samples and features via black-box adversarial perturbations attempting to make a classifier mis-predict the samples class. Args: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. attack_type (str): name of the desired adversarial attack in ['zoo', 'boundary', 'hop-skip-jump']. model (sklearn.BaseEstimator): unfitted sklearn classifier against which to perform the adversarial attack. Attributes: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. attack_type (str): name of the desired adversarial attack in ['zoo', 'boundary', 'hop-skip-jump']. model (sklearn.BaseEstimator): unfitted sklearn classifier against which to perform the adversarial attack. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=1.0, features_fraction=1.0, attack_type='boundary', model=RandomForestClassifier()): super(Adversarial, self).__init__() self.samples_fraction = samples_fraction self.features_fraction = features_fraction self.attack_type = attack_type self.model = model self.name = 'adversarial_attack_shift_%s_%.2f_%.2f' % (attack_type, samples_fraction, features_fraction) self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = copy.deepcopy(y) Xt, yt, self.shifted_indices, self.shifted_features = adversarial_attack_shift(Xt, yt, self.samples_fraction, self.model, self.attack_type, self.features_fraction) return Xt, yt class ConstantNumeric(Shift): """ Assign a constant value (median) to a portion of data. Args: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. Attributes: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=1.0, features_fraction=1.0): super(ConstantNumeric, self).__init__() self.samples_fraction = samples_fraction self.features_fraction = features_fraction self.name = 'constant_feature_shift_%.2f_%.2f' % (samples_fraction, features_fraction) self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y=None): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = copy.deepcopy(y) Xt, yt, self.shifted_indices, self.shifted_features = constant_value_shift(Xt, yt, self.samples_fraction, self.features_fraction) return Xt, yt class ConstantCategorical(Shift): """ Assign a random constant category to a portion of data. Args: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. Attributes: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=1.0, features_fraction=1.0): super(ConstantCategorical, self).__init__() self.samples_fraction = samples_fraction self.features_fraction = features_fraction self.name = 'constant_feature_shift_%.2f_%.2f' % (samples_fraction, features_fraction) self.feature_type = PerturbationConstants.CATEGORICAL def transform(self, X, y=None): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = copy.deepcopy(y) Xt, yt, self.shifted_indices, self.shifted_features = constant_categorical_shift(Xt, yt, self.samples_fraction, self.features_fraction) return Xt, yt class MissingValues(Shift): """ Insert missing values into a portion of data. Args: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. value_to_put_in (float): desired representation of the missing value Attributes: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. value_to_put_in (float): desired representation of the missing value name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=1.0, features_fraction=1.0, value_to_put_in=None): super(MissingValues, self).__init__() self.samples_fraction = samples_fraction self.features_fraction = features_fraction self.value_to_put_in = value_to_put_in self.name = 'missing_value_shift_%.2f_%.2f' % (samples_fraction, features_fraction) self.feature_type = PerturbationConstants.ANY def transform(self, X, y=None): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = y self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction) self.shifted_features = sample_random_indices(Xt.shape[1], self.features_fraction) if self.value_to_put_in is None and np.issubdtype(Xt[:, self.shifted_features].dtype, np.integer): self.value_to_put_in = -9999 Xt[np.transpose(np.array(self.shifted_indices)[np.newaxis]), np.array(self.shifted_features)[ np.newaxis]] = self.value_to_put_in return Xt, yt class FlipSign(Shift): """ Flip the sign of a portion of data. Args: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. Attributes: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=1.0, features_fraction=1.0): super(FlipSign, self).__init__() self.samples_fraction = samples_fraction self.features_fraction = features_fraction self.name = 'flip_sign_shift_%.2f_%.2f' % (samples_fraction, features_fraction) self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y=None): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = y self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction) numerical_features = np.array(range(Xt.shape[1])) n_feats = len(numerical_features) self.shifted_features = list( np.array(numerical_features)[sample_random_indices(n_feats, self.features_fraction)]) Xt[np.transpose(np.array(self.shifted_indices)[np.newaxis]), np.array(self.shifted_features)[np.newaxis]] *= -1 return Xt, yt class PlusMinusSomePercent(Shift): """ Increment the feature values by a percentage for a portion of data. Args: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. percentage (float): percentage of the value to add/subtract. Attributes: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. percentage (float): percentage of the value to add/subtract. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=1.0, features_fraction=1.0, percentage=0.1): super(PlusMinusSomePercent, self).__init__() self.samples_fraction = samples_fraction self.features_fraction = features_fraction self.percentage = percentage self.name = 'plus_minus_perc_shift_%.2f_%.2f_%.2f' % (samples_fraction, features_fraction, percentage) self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y=None): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = y self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction) numerical_features = np.array(range(Xt.shape[1])) n_feats = len(numerical_features) self.shifted_features = list( np.array(numerical_features)[sample_random_indices(n_feats, self.features_fraction)]) row_indices, col_indices = np.transpose(np.array(self.shifted_indices)[np.newaxis]), \ np.array(self.shifted_features)[np.newaxis] Xt[row_indices, col_indices] += \ Xt[row_indices, col_indices] * np.random.uniform(-self.percentage, self.percentage, size=(len(self.shifted_indices), len(self.shifted_features))) return Xt, yt class Outliers(Shift): """ Replace a portion of data with outliers, obtained by adding random Gaussian noise. Args: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. Attributes: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=1.0, features_fraction=1.0): super(Outliers, self).__init__() self.samples_fraction = samples_fraction self.features_fraction = features_fraction self.name = 'outlier_shift_%.2f_%.2f' % (samples_fraction, features_fraction) self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y=None): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = y self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction) numerical_features = np.array(range(Xt.shape[1])) n_feats = len(numerical_features) self.shifted_features = list( np.array(numerical_features)[sample_random_indices(n_feats, self.features_fraction)]) stddevs = {column: np.std(Xt[:, column]) for column in self.shifted_features} scales = {column: random.uniform(1, 5) for column in self.shifted_features} for column in self.shifted_features: noise = np.random.normal(0, scales[column] * stddevs[column], size=Xt[self.shifted_indices, column].shape) Xt[self.shifted_indices, column] += noise return Xt, yt class Scaling(Shift): """ Scale a portion of samples and features by a random value in [10, 100, 1000]. Args: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. Attributes: samples_fraction (float): proportion of samples to perturb. features_fraction (float): proportion of features to perturb. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=1.0, features_fraction=1.0): super(Scaling, self).__init__() self.samples_fraction = samples_fraction self.features_fraction = features_fraction self.name = 'scaling_shift_%.2f_%.2f' % (samples_fraction, features_fraction) self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y=None): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = y self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction) numerical_features = np.array(range(Xt.shape[1])) n_feats = len(numerical_features) self.shifted_features = list( np.array(numerical_features)[sample_random_indices(n_feats, self.features_fraction)]) row_indices, col_indices = np.transpose(np.array(self.shifted_indices)[np.newaxis]), \ np.array(self.shifted_features)[np.newaxis] scale_factor = np.random.choice([10, 100, 1000]) Xt[row_indices, col_indices] *= scale_factor return Xt, yt class SwappedValues(Shift): """ Swap the values of two random features for a desired portion of samples. Args: samples_fraction (float): proportion of samples to perturb. Attributes: samples_fraction (float): proportion of samples to perturb. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, samples_fraction=1.0): super(SwappedValues, self).__init__() self.samples_fraction = samples_fraction self.name = 'swapped_values_shift_%.2f' % samples_fraction self.feature_type = PerturbationConstants.NUMERIC def transform(self, X, y=None): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ Xt = copy.deepcopy(X) yt = y self.shifted_indices = sample_random_indices(Xt.shape[0], self.samples_fraction) self.shifted_features = sorted(list(np.random.choice(Xt.shape[1], size=2, replace=False))) (column_a, column_b) = self.shifted_features[0], self.shifted_features[1] values_of_column_a = copy.deepcopy(Xt[self.shifted_indices, column_a]) values_of_column_b = Xt[self.shifted_indices, column_b] Xt[self.shifted_indices, column_a] = values_of_column_b Xt[self.shifted_indices, column_b] = values_of_column_a return Xt, yt class ErrorBasedSampling(Shift): """ Sample the observations to have a desired amount of wrongly predicted samples from a reference model. Args: error_fraction (float): proportion of wrongly predicted samples. model (sklearn.BaseEstimator): classifier with respect to which errors are computed. labelenc (sklearn.BaseEncoder): label encoder for the classifier. Attributes: error_fraction (float): proportion of wrongly predicted samples. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). model (sklearn.BaseEstimator): classifier with respect to which errors are computed. labelenc (sklearn.BaseEncoder): label encoder for the classifier. """ def __init__(self, error_fraction=1.0, model=None, labelenc=None): super(ErrorBasedSampling, self).__init__() self.error_fraction = error_fraction self.name = 'error_sampling_shift_%.2f' % error_fraction self.feature_type = PerturbationConstants.ANY self.model = model self.labelenc = labelenc def transform(self, X, y): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ if self.model is None: raise NotImplementedError('You need to input a model. Reference model not implemented yet.') y_pred = self.model.predict(X) if self.labelenc is None: y_enc = y else: y_enc = self.labelenc.transform(y) error_indices = np.where(y_pred != y_enc)[0] correct_indices = np.where(y_pred == y_enc)[0] if error_indices.sum() == 0: raise ValueError('The model has 0 error on the dataset. ErrorBasedSampling cannot be built.') n_samples = X.shape[0] n_errors = int(np.ceil(self.error_fraction * n_samples)) n_correct = n_samples - n_errors error_row_indices = np.random.choice(error_indices, size=n_errors, replace=True) correct_row_indices = np.random.choice(correct_indices, size=n_correct, replace=True) row_indices = np.r_[error_row_indices, correct_row_indices] np.random.shuffle(row_indices) Xt = X[row_indices, :] yt = y[row_indices] return Xt, yt class NearestNeighbors(Shift): """ Simulate a particular demographic either appearing, or disappearing from production traffic. It does so by sampling a data point and then uses nearest neighbors to identify other data points that are similar (nearest neighbors) or dissimilar (furthest neighbors) and remove them from the dataset. Ref: https://arxiv.org/abs/2012.08625 Args: fraction_to_remove (float): proportion of samples to remove from the nearest/furthest set. near_far_probability (float): probability of nearest or furthest bias. Attributes: fraction_to_remove (float): proportion of samples to remove from the nearest/furthest set. near_far_probability (float): probability of nearest or furthest bias. name (str): name of the perturbation feature_type (int): identifier of the type of feature for which this perturbation is valid (see PerturbationConstants). """ def __init__(self, fraction_to_remove=0.5, near_far_probability=0.5): super(NearestNeighbors, self).__init__() self.fraction_to_remove = fraction_to_remove self.name = 'nearest_neighbors_shift_%.2f_%.2f' % (fraction_to_remove, near_far_probability) self.feature_type = PerturbationConstants.NUMERIC self.near_far_probability = near_far_probability def transform(self, X, y): """ Apply the perturbation to a dataset. Args: X (numpy.ndarray): feature data. y (numpy.ndarray): target data. """ initial_size = X.shape[0] # choose random point p p_idx = np.random.choice(X.shape[0], size=1) # sort samples by distance to p dist_to_p = euclidean_distances(X, X[p_idx])[:, 0] idx_by_distance = np.argsort(dist_to_p) remove_size = int(
np.ceil(self.fraction_to_remove * initial_size)
numpy.ceil