prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from math import pi from math import sqrt from compas.geometry import Box from compas.geometry import Point from compas.geometry import Frame from compas.geometry import matrix_from_frame from compas.geometry import matrix_inverse from compas import PRECISION class VolBox(object): """A volumetric box is defined by a base box from `compas.geometry` and an optional fillet radius. The center of the volumetric box is positioned at the origin of the coordinate system defined by the frame. The box is axis-aligned to the frame. Parameters ---------- box : :class:`compas.geometry.Box` The base box. radius : float The filletting radius along the edges, default=0. Examples -------- >>> from compas.geometry import Frame >>> from compas.geometry import Box >>> from compas_vol.primitives import VolBox >>> box = Box(Frame.worldXY(), 1.0, 2.0, 3.0) >>> vbx = VolBox(box, 0.3) """ def __init__(self, box, radius=0.0): self._box = None self.inversetransform = None self._radius = None self.box = box self.radius = max(radius, 0) @property def box(self): return self._box @box.setter def box(self, box): if not isinstance(box, Box): raise ValueError self._box = box transform = matrix_from_frame(self.box.frame) self.inversetransform = matrix_inverse(transform) @property def radius(self): return self._radius @radius.setter def radius(self, radius): self._radius = float(radius) @property def volume(self): if self.radius == 0: return self.box.volume else: xr = self.box.xsize - 2 * self.radius yr = self.box.ysize - 2 * self.radius zr = self.box.zsize - 2 * self.radius # box without the radius layer inner = xr * yr * zr # sides sides = Box.from_width_height_depth(xr, yr, zr).area * self.radius # cylinder along all edges, base circle x height edges = (self.radius**2 * pi) * (xr + yr + zr) # eight time corner, 1/8th of a sphere = 1 sphere corns = 4./3. * pi * self.radius**3 return inner + sides + edges + corns @property def data(self): return {'box': self.box.data, 'radius': self.radius} def to_data(self): return {'type': self.__class__.__name__, 'content': self.data} @data.setter def data(self, data): self.box = Box.from_data(data['box']) self.radius = data['radius'] def __repr__(self): return 'VolBox({0}, {1:.{2}f})'.format(str(self.box), self.radius, PRECISION[:1]) # ========================================================================== # factory # ========================================================================== @classmethod def from_data(cls, data): """Construct a volumetric box from its data representation. Parameters ---------- data : :obj:`dict` The data dictionary. Returns ------- VolBox The constructed box. Examples -------- >>> """ box = Box.from_data(data['box']) vbox = cls(box, data['radius']) return vbox def get_distance(self, point): """ single point distance function Parameters ---------- point: :class:`compas.geometry.Point` The point in R<sup>3</sup> space to query for it's distance. Returns ------- float The distance from the query point to the surface of the object. """ if not isinstance(point, Point): p = Point(*point) else: p = point p.transform(self.inversetransform) dx = abs(p.x) - (self.box.xsize / 2.0 - self.radius) dy = abs(p.y) - (self.box.ysize / 2.0 - self.radius) dz = abs(p.z) - (self.box.zsize / 2.0 - self.radius) inside = max(dx, max(dy, dz)) - self.radius dx = max(dx, 0) dy = max(dy, 0) dz = max(dz, 0) if inside + self.radius < 0: return inside else: corner = sqrt(dx * dx + dy * dy + dz * dz) - self.radius return corner def get_distance_numpy(self, x, y, z): """ vectorized distance function Parameters ---------- x,y,z: `numpy arrays, np.ogrid[]` The coordinates of all the points in R:sup:`3` space to query for their distances. The shapes are ``x: (nx, 1, 1), y: (1, ny, 1), z: (1, 1, nz)`` Returns ------- numpy array of floats, shape (nx, ny, nz) The distances from the query points to the surface of the object. """ import numpy as np p = np.array([x, y, z, 1], dtype=object) xt, yt, zt, _ = np.dot(self.inversetransform, p) dx = np.abs(xt) - (self.box.xsize / 2.0 - self.radius) dy = np.abs(yt) - (self.box.ysize / 2.0 - self.radius) dz = np.abs(zt) - (self.box.zsize / 2.0 - self.radius) inside = np.maximum(dx, np.maximum(dy, dz)) - self.radius dx = np.maximum(dx, 0) dy = np.maximum(dy, 0) dz =
np.maximum(dz, 0)
numpy.maximum
#!/usr/bin/env python3 # # Evolutionary Algorithms import os import time import numpy as np import matplotlib.pyplot as plt import pandas as pd def check_dir(directory): """ :param directory: path to the directory """ os.makedirs(directory, exist_ok=True) def sphere_test(data): """ :param data: :return: """ f_x = np.sum(np.square(data), axis=-1) return f_x def rastrigin_test(data, A=10): """ :param data: :param A: :return: """ n = data.shape[1] cos = np.cos(2 * np.pi * data) e1 = np.square(data) - np.multiply(A, cos) e2 = np.sum(e1, axis=-1) return np.sum([A * n, e2]) def plot_2d_contour(obj_function): """ :param obj_function: """ x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) data = np.dstack((X, Y)) S = obj_function(data) plt.contour(X, Y, S) def plot_fitness(out_dir, name, algo_name, x, y1, y2, title): """ (d) For each test function, plot the best and the worse fitness for each generation (averaged over 3 runs). :param name: :param x: :param y1: :param y2: :param title: """ plt.figure() plt.grid() # Let x-axis be the generations and y-axis be the fitness values. plt.plot(x, y1, label='avg_' + name.lower() + '_max') plt.plot(x, y2, label='avg_' + name.lower() + '_min') plt.xlabel('generations', fontsize=11) plt.ylabel('fitness values', fontsize=11) plt.gca().set_ylim(bottom=-70) plt.annotate(round(y1[-1], 2), xy=(x[-1], y1[-1]), xycoords='data', xytext=(-40, 15), size=10, textcoords='offset points', arrowprops=dict(arrowstyle="->", connectionstyle="angle,angleA=0,angleB=90,rad=10"), ) plt.annotate(round(y2[-1], 2), xy=(x[-1], y2[-1]), xycoords='data', xytext=(-40, 15), textcoords='offset points', arrowprops=dict(arrowstyle="->", connectionstyle="angle,angleA=0,angleB=90,rad=10"), ) plt.legend() plt.title(algo_name + '\n' + title, weight='bold', fontsize=12) plt.savefig(out_dir + 'fitness.pdf') plt.close() def plot_generation(out_dir, name, i, iteration, min, obj_fun, sample): """ :param i: :param iteration: :param min: :param obj_fun: :param sample: :return: """ if i % (iteration / 10) == 0: plt.figure(1) plt.clf() plot_2d_contour(obj_fun) plt.plot(sample[:, 0], sample[:, 1], 'ko') plt.xlim([-5, 5]) plt.ylim([-5, 5]) plt.title(name.upper() + '\ngeneration: ' + str(i + 1) + '\nmin: ' + str(min[i])) # plt.pause(0.1) plt.savefig(out_dir + name + '-generation-contour-' + str(i) + '.pdf') plt.close() def cem(obj_fun, dim_domain, population_size, elite_set_ratio, learning_rate, iteration, out_dir, name, plot_generations): """ :param dim_domain: :param population_size: :param elite_set_ratio: :param obj_fun: :param iter: :return mean: """ # Initialise parameters # Note that you can uniformly sample the initial population parameters as long as they are reasonably far from # the global optimum. mean = np.random.uniform(-5, 5, dim_domain) variance = np.random.uniform(4, 5, dim_domain) max = np.zeros(iteration) min = np.zeros(iteration) for i in range(iteration): # Obtain n sample from a normal distribution sample = np.random.normal(mean, variance, [population_size, dim_domain]) # Evaluate objective function on an objective function fitness = obj_fun(sample) min[i] = np.min(fitness) max[i] = np.max(fitness) # Sort sample by objective function values in descending order idx = np.argsort(fitness) fittest = sample[idx] # Elite set p = np.rint(population_size * elite_set_ratio).astype(np.int) elite = fittest[:p] # PLOT if plot_generations: plot_generation(out_dir, name, i, iteration, min, obj_fun, sample) # Refit a new Gaussian distribution from the elite set mean = np.mean(elite, axis=0) variance = np.std(elite, axis=0) # Return mean of final sampling distribution as solution return mean, min, max def nes(obj_fun, dim_domain, population_size, elite_set_ratio, learning_rate, iteration, out_dir, name, plot_generations): """ :param dim_domain: :param population_size: :param obj_fun: :param iter: :return mean: """ # Initialise parameters mean = np.random.uniform(-5, 5, dim_domain) # variance = np.full(dim_domain, 1) variance = np.random.uniform(4, 5, dim_domain) max = np.zeros(iteration) min = np.zeros(iteration) for i in range(iteration): # Obtain n sample from a normal distribution sample = np.random.normal(mean, variance, [population_size, dim_domain]) # Evaluate objective function on an objective function fitness = obj_fun(sample) min[i] = np.min(fitness) max[i] = np.max(fitness) # Calculate the log derivatives log_derivative_mu = (sample - mean) / (variance ** 2) log_derivative_sigma = ((sample - mean) ** 2 - (variance ** 2)) / variance ** 3 J_gradient_mu = np.sum(fitness[..., np.newaxis] * log_derivative_mu, axis=0) / sample.shape[0] J_gradient_sigma = np.sum(fitness[..., np.newaxis] * log_derivative_sigma, axis=0) / sample.shape[0] F_mu = np.matmul(log_derivative_mu.T, log_derivative_mu) / sample.shape[0] F_sigma = np.matmul(log_derivative_sigma.T, log_derivative_sigma) / sample.shape[0] # PLOT if plot_generations: plot_generation(out_dir, name, i, iteration, min, obj_fun, sample) # Update mean and variance mean = mean - learning_rate * np.matmul(
np.linalg.inv(F_mu)
numpy.linalg.inv
from unittest import TestCase import unittest import numpy as np import active_subspaces.utils.qp_solver as qp class TestGurobi(TestCase): def test_gurobi_linear_program_ineq(self): c = np.ones((2,1)) A = np.array([[1.0,0.0],[0.0,1.0],[1.0,1.0]]) b = np.array([[0.1],[0.1],[0.1]]) gs = qp.QPSolver() x = gs.linear_program_ineq(c, A, b) xtrue = np.array([0.1,0.1]).reshape((2,1)) np.testing.assert_almost_equal(x,xtrue) def test_gurobi_linear_program_eq(self): c = np.ones((5,1)) A = np.array([[2.0,1.0,0.,0.,0.],[0.,0.,2.0,1.0,0.]]) b = np.array([[0.5],[0.5]]) lb, ub = -np.ones((5,1)), np.ones((5,1)) gs = qp.QPSolver() x = gs.linear_program_eq(c, A, b, lb, ub) xtrue = np.array([0.75,-1.0,0.75,-1.0,-1.0]).reshape((5,1)) np.testing.assert_almost_equal(x,xtrue) def test_gurobi_quadratic_program_bnd(self): c = np.ones((5,1)) Q = np.eye(5) lb, ub = -np.ones((5,1)), np.ones((5,1)) gs = qp.QPSolver() x = gs.quadratic_program_bnd(c, Q, lb, ub) xtrue = -0.5*np.ones((5,1)) np.testing.assert_almost_equal(x,xtrue) def test_gurobi_quadratic_program_ineq(self): c = np.ones((5,1)) Q = np.eye(5) A = np.array([[1.,0.,0.,0.,0.],[0.,1.,0.,0.,0.]]) b = np.array([[-1.0],[-1.0]]) gs = qp.QPSolver() x = gs.quadratic_program_ineq(c, Q, A, b) xtrue = -0.5*np.ones((5,1)) np.testing.assert_almost_equal(x,xtrue) def test_scipy_linear_program_ineq(self): c = np.ones((2,1)) A = np.array([[1.0,0.0],[0.0,1.0],[1.0,1.0]]) b = np.array([[0.1],[0.1],[0.1]]) gs = qp.QPSolver(solver='SCIPY') x = gs.linear_program_ineq(c, A, b) xtrue = np.array([0.1,0.1]).reshape((2,1)) np.testing.assert_almost_equal(x,xtrue) def test_scipy_linear_program_eq(self): c = np.ones((5,1)) A = np.array([[2.0,1.0,0.,0.,0.],[0.,0.,2.0,1.0,0.]]) b = np.array([[0.5],[0.5]]) lb, ub = -np.ones((5,1)), np.ones((5,1)) gs = qp.QPSolver(solver='SCIPY') x = gs.linear_program_eq(c, A, b, lb, ub) xtrue = np.array([0.75,-1.0,0.75,-1.0,-1.0]).reshape((5,1)) np.testing.assert_almost_equal(x,xtrue) def test_scipy_quadratic_program_bnd(self): c = np.ones((5,1)) Q = np.eye(5) lb, ub = -np.ones((5,1)), np.ones((5,1)) gs = qp.QPSolver(solver='SCIPY') x = gs.quadratic_program_bnd(c, Q, lb, ub) xtrue = -0.5*np.ones((5,1)) np.testing.assert_almost_equal(x,xtrue) def test_scipy_quadratic_program_ineq(self): c = np.ones((5,1)) Q =
np.eye(5)
numpy.eye
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module provides classes to perform fitting of molecule with arbitrary atom orders. This module is supposed to perform exact comparisons without the atom order correspondence prerequisite, while molecule_structure_comparator is supposed to do rough comparisons with the atom order correspondence prerequisite. The implementation is based on an excellent python package called `rmsd` that you can find at https://github.com/charnley/rmsd. """ __author__ = "<NAME>, <NAME>" __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" __date__ = "Aug 21, 2020" import abc import copy import itertools import logging import math import re import numpy as np from monty.dev import requires from monty.json import MSONable try: from openbabel import openbabel as ob from pymatgen.io.babel import BabelMolAdaptor except ImportError: ob = None from scipy.optimize import linear_sum_assignment from scipy.spatial.distance import cdist from pymatgen.core.structure import Molecule # pylint: disable=ungrouped-imports logger = logging.getLogger(__name__) class AbstractMolAtomMapper(MSONable, metaclass=abc.ABCMeta): """ Abstract molecular atom order mapping class. A mapping will be able to find the uniform atom order of two molecules that can pair the geometrically equivalent atoms. """ @abc.abstractmethod def uniform_labels(self, mol1, mol2): """ Pair the geometrically equivalent atoms of the molecules. Args: mol1: First molecule. OpenBabel OBMol or pymatgen Molecule object. mol2: Second molecule. OpenBabel OBMol or pymatgen Molecule object. Returns: (list1, list2) if uniform atom order is found. list1 and list2 are for mol1 and mol2, respectively. Their length equal to the number of atoms. They represents the uniform atom order of the two molecules. The value of each element is the original atom index in mol1 or mol2 of the current atom in uniform atom order. (None, None) if unform atom is not available. """ pass @abc.abstractmethod def get_molecule_hash(self, mol): """ Defines a hash for molecules. This allows molecules to be grouped efficiently for comparison. Args: mol: The molecule. OpenBabel OBMol or pymatgen Molecule object Returns: A hashable object. Examples can be string formulas, etc. """ pass @classmethod def from_dict(cls, d): """ Args: d (): Dict Returns: AbstractMolAtomMapper """ for trans_modules in ["molecule_matcher"]: import sys if sys.version_info > (3, 0): level = 0 # Python 3.x else: level = -1 # Python 2.x mod = __import__( "pymatgen.analysis." + trans_modules, globals(), locals(), [d["@class"]], level, ) if hasattr(mod, d["@class"]): class_proxy = getattr(mod, d["@class"]) from_dict_proxy = getattr(class_proxy, "from_dict") return from_dict_proxy(d) raise ValueError("Invalid Comparator dict") class IsomorphismMolAtomMapper(AbstractMolAtomMapper): """ Pair atoms by isomorphism permutations in the OpenBabel::OBAlign class """ def uniform_labels(self, mol1, mol2): """ Pair the geometrically equivalent atoms of the molecules. Calculate RMSD on all possible isomorphism mappings and return mapping with the least RMSD Args: mol1: First molecule. OpenBabel OBMol or pymatgen Molecule object. mol2: Second molecule. OpenBabel OBMol or pymatgen Molecule object. Returns: (list1, list2) if uniform atom order is found. list1 and list2 are for mol1 and mol2, respectively. Their length equal to the number of atoms. They represents the uniform atom order of the two molecules. The value of each element is the original atom index in mol1 or mol2 of the current atom in uniform atom order. (None, None) if unform atom is not available. """ obmol1 = BabelMolAdaptor(mol1).openbabel_mol obmol2 = BabelMolAdaptor(mol2).openbabel_mol h1 = self.get_molecule_hash(obmol1) h2 = self.get_molecule_hash(obmol2) if h1 != h2: return None, None query = ob.CompileMoleculeQuery(obmol1) isomapper = ob.OBIsomorphismMapper.GetInstance(query) isomorph = ob.vvpairUIntUInt() isomapper.MapAll(obmol2, isomorph) sorted_isomorph = [sorted(x, key=lambda morp: morp[0]) for x in isomorph] label2_list = tuple([tuple([p[1] + 1 for p in x]) for x in sorted_isomorph]) vmol1 = obmol1 aligner = ob.OBAlign(True, False) aligner.SetRefMol(vmol1) least_rmsd = float("Inf") best_label2 = None label1 = list(range(1, obmol1.NumAtoms() + 1)) # noinspection PyProtectedMember elements1 = InchiMolAtomMapper._get_elements(vmol1, label1) for label2 in label2_list: # noinspection PyProtectedMember elements2 = InchiMolAtomMapper._get_elements(obmol2, label2) if elements1 != elements2: continue vmol2 = ob.OBMol() for i in label2: vmol2.AddAtom(obmol2.GetAtom(i)) aligner.SetTargetMol(vmol2) aligner.Align() rmsd = aligner.GetRMSD() if rmsd < least_rmsd: least_rmsd = rmsd best_label2 = copy.copy(label2) return label1, best_label2 def get_molecule_hash(self, mol): """ Return inchi as molecular hash """ obconv = ob.OBConversion() obconv.SetOutFormat(str("inchi")) obconv.AddOption(str("X"), ob.OBConversion.OUTOPTIONS, str("DoNotAddH")) inchi_text = obconv.WriteString(mol) match = re.search(r"InChI=(?P<inchi>.+)\n", inchi_text) return match.group("inchi") def as_dict(self): """ Returns: Jsonable dict. """ return { "version": __version__, "@module": self.__class__.__module__, "@class": self.__class__.__name__, } @classmethod def from_dict(cls, d): """ Args: d (dict): Dict representation Returns: IsomorphismMolAtomMapper """ return IsomorphismMolAtomMapper() class InchiMolAtomMapper(AbstractMolAtomMapper): """ Pair atoms by inchi labels. """ def __init__(self, angle_tolerance=10.0): """ Args: angle_tolerance (float): Angle threshold to assume linear molecule. In degrees. """ self._angle_tolerance = angle_tolerance self._assistant_mapper = IsomorphismMolAtomMapper() def as_dict(self): """ Returns: MSONAble dict. """ return { "version": __version__, "@module": self.__class__.__module__, "@class": self.__class__.__name__, "angle_tolerance": self._angle_tolerance, } @classmethod def from_dict(cls, d): """ Args: d (dict): Dict Representation Returns: InchiMolAtomMapper """ return InchiMolAtomMapper(angle_tolerance=d["angle_tolerance"]) @staticmethod def _inchi_labels(mol): """ Get the inchi canonical labels of the heavy atoms in the molecule Args: mol: The molecule. OpenBabel OBMol object Returns: The label mappings. List of tuple of canonical label, original label List of equivalent atoms. """ obconv = ob.OBConversion() obconv.SetOutFormat(str("inchi")) obconv.AddOption(str("a"), ob.OBConversion.OUTOPTIONS) obconv.AddOption(str("X"), ob.OBConversion.OUTOPTIONS, str("DoNotAddH")) inchi_text = obconv.WriteString(mol) match = re.search( r"InChI=(?P<inchi>.+)\nAuxInfo=.+" r"/N:(?P<labels>[0-9,;]+)/(E:(?P<eq_atoms>[0-9," r";\(\)]*)/)?", inchi_text, ) inchi = match.group("inchi") label_text = match.group("labels") eq_atom_text = match.group("eq_atoms") heavy_atom_labels = tuple([int(i) for i in label_text.replace(";", ",").split(",")]) eq_atoms = [] if eq_atom_text is not None: eq_tokens = re.findall(r"\(((?:[0-9]+,)+[0-9]+)\)", eq_atom_text.replace(";", ",")) eq_atoms = tuple([tuple([int(i) for i in t.split(",")]) for t in eq_tokens]) return heavy_atom_labels, eq_atoms, inchi @staticmethod def _group_centroid(mol, ilabels, group_atoms): """ Calculate the centroids of a group atoms indexed by the labels of inchi Args: mol: The molecule. OpenBabel OBMol object ilabel: inchi label map Returns: Centroid. Tuple (x, y, z) """ c1x, c1y, c1z = 0.0, 0.0, 0.0 for i in group_atoms: orig_idx = ilabels[i - 1] oa1 = mol.GetAtom(orig_idx) c1x += float(oa1.x()) c1y += float(oa1.y()) c1z += float(oa1.z()) num_atoms = len(group_atoms) c1x /= num_atoms c1y /= num_atoms c1z /= num_atoms return c1x, c1y, c1z def _virtual_molecule(self, mol, ilabels, eq_atoms): """ Create a virtual molecule by unique atoms, the centriods of the equivalent atoms Args: mol: The molecule. OpenBabel OBMol object ilables: inchi label map eq_atoms: equivalent atom labels farthest_group_idx: The equivalent atom group index in which there is the farthest atom to the centroid Return: The virtual molecule """ vmol = ob.OBMol() non_unique_atoms = {a for g in eq_atoms for a in g} all_atoms = set(range(1, len(ilabels) + 1)) unique_atom_labels = sorted(all_atoms - non_unique_atoms) # try to align molecules using unique atoms for i in unique_atom_labels: orig_idx = ilabels[i - 1] oa1 = mol.GetAtom(orig_idx) a1 = vmol.NewAtom() a1.SetAtomicNum(oa1.GetAtomicNum()) a1.SetVector(oa1.GetVector()) # try to align using centroids of the equivalent atoms if vmol.NumAtoms() < 3: for symm in eq_atoms: c1x, c1y, c1z = self._group_centroid(mol, ilabels, symm) min_distance = float("inf") for i in range(1, vmol.NumAtoms() + 1): va = vmol.GetAtom(i) distance = math.sqrt((c1x - va.x()) ** 2 + (c1y - va.y()) ** 2 + (c1z - va.z()) ** 2) if distance < min_distance: min_distance = distance if min_distance > 0.2: a1 = vmol.NewAtom() a1.SetAtomicNum(9) a1.SetVector(c1x, c1y, c1z) return vmol @staticmethod def _align_heavy_atoms(mol1, mol2, vmol1, vmol2, ilabel1, ilabel2, eq_atoms): """ Align the label of topologically identical atoms of second molecule towards first molecule Args: mol1: First molecule. OpenBabel OBMol object mol2: Second molecule. OpenBabel OBMol object vmol1: First virtual molecule constructed by centroids. OpenBabel OBMol object vmol2: First virtual molecule constructed by centroids. OpenBabel OBMol object ilabel1: inchi label map of the first molecule ilabel2: inchi label map of the second molecule eq_atoms: equivalent atom lables Return: corrected inchi labels of heavy atoms of the second molecule """ nvirtual = vmol1.NumAtoms() nheavy = len(ilabel1) for i in ilabel2: # add all heavy atoms a1 = vmol1.NewAtom() a1.SetAtomicNum(1) a1.SetVector(0.0, 0.0, 0.0) # useless, just to pair with vmol2 oa2 = mol2.GetAtom(i) a2 = vmol2.NewAtom() a2.SetAtomicNum(1) # align using the virtual atoms, these atoms are not # used to align, but match by positions a2.SetVector(oa2.GetVector()) aligner = ob.OBAlign(False, False) aligner.SetRefMol(vmol1) aligner.SetTargetMol(vmol2) aligner.Align() aligner.UpdateCoords(vmol2) canon_mol1 = ob.OBMol() for i in ilabel1: oa1 = mol1.GetAtom(i) a1 = canon_mol1.NewAtom() a1.SetAtomicNum(oa1.GetAtomicNum()) a1.SetVector(oa1.GetVector()) aligned_mol2 = ob.OBMol() for i in range(nvirtual + 1, nvirtual + nheavy + 1): oa2 = vmol2.GetAtom(i) a2 = aligned_mol2.NewAtom() a2.SetAtomicNum(oa2.GetAtomicNum()) a2.SetVector(oa2.GetVector()) canon_label2 = list(range(1, nheavy + 1)) for symm in eq_atoms: for i in symm: canon_label2[i - 1] = -1 for symm in eq_atoms: candidates1 = list(symm) candidates2 = list(symm) for c2 in candidates2: distance = 99999.0 canon_idx = candidates1[0] a2 = aligned_mol2.GetAtom(c2) for c1 in candidates1: a1 = canon_mol1.GetAtom(c1) d = a1.GetDistance(a2) if d < distance: distance = d canon_idx = c1 canon_label2[c2 - 1] = canon_idx candidates1.remove(canon_idx) canon_inchi_orig_map2 = list(zip(canon_label2, list(range(1, nheavy + 1)), ilabel2)) canon_inchi_orig_map2.sort(key=lambda m: m[0]) heavy_atom_indices2 = tuple([x[2] for x in canon_inchi_orig_map2]) return heavy_atom_indices2 @staticmethod def _align_hydrogen_atoms(mol1, mol2, heavy_indices1, heavy_indices2): """ Align the label of topologically identical atoms of second molecule towards first molecule Args: mol1: First molecule. OpenBabel OBMol object mol2: Second molecule. OpenBabel OBMol object heavy_indices1: inchi label map of the first molecule heavy_indices2: label map of the second molecule Return: corrected label map of all atoms of the second molecule """ num_atoms = mol2.NumAtoms() all_atom = set(range(1, num_atoms + 1)) hydrogen_atoms1 = all_atom - set(heavy_indices1) hydrogen_atoms2 = all_atom - set(heavy_indices2) label1 = heavy_indices1 + tuple(hydrogen_atoms1) label2 = heavy_indices2 + tuple(hydrogen_atoms2) cmol1 = ob.OBMol() for i in label1: oa1 = mol1.GetAtom(i) a1 = cmol1.NewAtom() a1.SetAtomicNum(oa1.GetAtomicNum()) a1.SetVector(oa1.GetVector()) cmol2 = ob.OBMol() for i in label2: oa2 = mol2.GetAtom(i) a2 = cmol2.NewAtom() a2.SetAtomicNum(oa2.GetAtomicNum()) a2.SetVector(oa2.GetVector()) aligner = ob.OBAlign(False, False) aligner.SetRefMol(cmol1) aligner.SetTargetMol(cmol2) aligner.Align() aligner.UpdateCoords(cmol2) hydrogen_label2 = [] hydrogen_label1 = list(range(len(heavy_indices1) + 1, num_atoms + 1)) for h2 in range(len(heavy_indices2) + 1, num_atoms + 1): distance = 99999.0 idx = hydrogen_label1[0] a2 = cmol2.GetAtom(h2) for h1 in hydrogen_label1: a1 = cmol1.GetAtom(h1) d = a1.GetDistance(a2) if d < distance: distance = d idx = h1 hydrogen_label2.append(idx) hydrogen_label1.remove(idx) hydrogen_orig_idx2 = label2[len(heavy_indices2) :] hydrogen_canon_orig_map2 = list(zip(hydrogen_label2, hydrogen_orig_idx2)) hydrogen_canon_orig_map2.sort(key=lambda m: m[0]) hydrogen_canon_indices2 = [x[1] for x in hydrogen_canon_orig_map2] canon_label1 = label1 canon_label2 = heavy_indices2 + tuple(hydrogen_canon_indices2) return canon_label1, canon_label2 @staticmethod def _get_elements(mol, label): """ The the elements of the atoms in the specified order Args: mol: The molecule. OpenBabel OBMol object. label: The atom indices. List of integers. Returns: Elements. List of integers. """ elements = [int(mol.GetAtom(i).GetAtomicNum()) for i in label] return elements def _is_molecule_linear(self, mol): """ Is the molecule a linear one Args: mol: The molecule. OpenBabel OBMol object. Returns: Boolean value. """ if mol.NumAtoms() < 3: return True a1 = mol.GetAtom(1) a2 = mol.GetAtom(2) for i in range(3, mol.NumAtoms() + 1): angle = float(mol.GetAtom(i).GetAngle(a2, a1)) if angle < 0.0: angle = -angle if angle > 90.0: angle = 180.0 - angle if angle > self._angle_tolerance: return False return True def uniform_labels(self, mol1, mol2): """ Args: mol1 (Molecule): Molecule 1 mol2 (Molecule): Molecule 2 Returns: Labels """ obmol1 = BabelMolAdaptor(mol1).openbabel_mol obmol2 = BabelMolAdaptor(mol2).openbabel_mol ilabel1, iequal_atom1, inchi1 = self._inchi_labels(obmol1) ilabel2, iequal_atom2, inchi2 = self._inchi_labels(obmol2) if inchi1 != inchi2: return None, None # Topoligically different if iequal_atom1 != iequal_atom2: raise Exception("Design Error! Equavilent atoms are inconsistent") vmol1 = self._virtual_molecule(obmol1, ilabel1, iequal_atom1) vmol2 = self._virtual_molecule(obmol2, ilabel2, iequal_atom2) if vmol1.NumAtoms() != vmol2.NumAtoms(): return None, None if vmol1.NumAtoms() < 3 or self._is_molecule_linear(vmol1) or self._is_molecule_linear(vmol2): # using isomorphism for difficult (actually simple) molecules clabel1, clabel2 = self._assistant_mapper.uniform_labels(mol1, mol2) else: heavy_atom_indices2 = self._align_heavy_atoms(obmol1, obmol2, vmol1, vmol2, ilabel1, ilabel2, iequal_atom1) clabel1, clabel2 = self._align_hydrogen_atoms(obmol1, obmol2, ilabel1, heavy_atom_indices2) if clabel1 and clabel2: elements1 = self._get_elements(obmol1, clabel1) elements2 = self._get_elements(obmol2, clabel2) if elements1 != elements2: return None, None return clabel1, clabel2 def get_molecule_hash(self, mol): """ Return inchi as molecular hash """ obmol = BabelMolAdaptor(mol).openbabel_mol inchi = self._inchi_labels(obmol)[2] return inchi class MoleculeMatcher(MSONable): """ Class to match molecules and identify whether molecules are the same. """ @requires( ob, "BabelMolAdaptor requires openbabel to be installed with " "Python bindings. Please get it at http://openbabel.org " "(version >=3.0.0).", ) def __init__(self, tolerance=0.01, mapper=InchiMolAtomMapper()): """ Args: tolerance (float): RMSD difference threshold whether two molecules are different mapper (AbstractMolAtomMapper): MolAtomMapper object that is able to map the atoms of two molecule to uniform order """ self._tolerance = tolerance self._mapper = mapper def fit(self, mol1, mol2): """ Fit two molecules. Args: mol1: First molecule. OpenBabel OBMol or pymatgen Molecule object mol2: Second molecule. OpenBabel OBMol or pymatgen Molecule object Returns: A boolean value indicates whether two molecules are the same. """ return self.get_rmsd(mol1, mol2) < self._tolerance def get_rmsd(self, mol1, mol2): """ Get RMSD between two molecule with arbitrary atom order. Returns: RMSD if topology of the two molecules are the same Infinite if the topology is different """ label1, label2 = self._mapper.uniform_labels(mol1, mol2) if label1 is None or label2 is None: return float("Inf") return self._calc_rms(mol1, mol2, label1, label2) @staticmethod def _calc_rms(mol1, mol2, clabel1, clabel2): """ Calculate the RMSD. Args: mol1: The first molecule. OpenBabel OBMol or pymatgen Molecule object mol2: The second molecule. OpenBabel OBMol or pymatgen Molecule object clabel1: The atom indices that can reorder the first molecule to uniform atom order clabel1: The atom indices that can reorder the second molecule to uniform atom order Returns: The RMSD. """ obmol1 = BabelMolAdaptor(mol1).openbabel_mol obmol2 = BabelMolAdaptor(mol2).openbabel_mol cmol1 = ob.OBMol() for i in clabel1: oa1 = obmol1.GetAtom(i) a1 = cmol1.NewAtom() a1.SetAtomicNum(oa1.GetAtomicNum()) a1.SetVector(oa1.GetVector()) cmol2 = ob.OBMol() for i in clabel2: oa2 = obmol2.GetAtom(i) a2 = cmol2.NewAtom() a2.SetAtomicNum(oa2.GetAtomicNum()) a2.SetVector(oa2.GetVector()) aligner = ob.OBAlign(True, False) aligner.SetRefMol(cmol1) aligner.SetTargetMol(cmol2) aligner.Align() return aligner.GetRMSD() def group_molecules(self, mol_list): """ Group molecules by structural equality. Args: mol_list: List of OpenBabel OBMol or pymatgen objects Returns: A list of lists of matched molecules Assumption: if s1=s2 and s2=s3, then s1=s3 This may not be true for small tolerances. """ mol_hash = [(i, self._mapper.get_molecule_hash(m)) for i, m in enumerate(mol_list)] mol_hash.sort(key=lambda x: x[1]) # Use molecular hash to pre-group molecules. raw_groups = tuple([tuple([m[0] for m in g]) for k, g in itertools.groupby(mol_hash, key=lambda x: x[1])]) group_indices = [] for rg in raw_groups: mol_eq_test = [ (p[0], p[1], self.fit(mol_list[p[0]], mol_list[p[1]])) for p in itertools.combinations(sorted(rg), 2) ] mol_eq = {(p[0], p[1]) for p in mol_eq_test if p[2]} not_alone_mols = set(itertools.chain.from_iterable(mol_eq)) alone_mols = set(rg) - not_alone_mols group_indices.extend([[m] for m in alone_mols]) while len(not_alone_mols) > 0: current_group = {not_alone_mols.pop()} while len(not_alone_mols) > 0: candidate_pairs = {tuple(sorted(p)) for p in itertools.product(current_group, not_alone_mols)} mutual_pairs = candidate_pairs & mol_eq if len(mutual_pairs) == 0: break mutual_mols = set(itertools.chain.from_iterable(mutual_pairs)) current_group |= mutual_mols not_alone_mols -= mutual_mols group_indices.append(sorted(current_group)) group_indices.sort(key=lambda x: (len(x), -x[0]), reverse=True) all_groups = [[mol_list[i] for i in g] for g in group_indices] return all_groups def as_dict(self): """ Returns: MSONAble dict. """ return { "version": __version__, "@module": self.__class__.__module__, "@class": self.__class__.__name__, "tolerance": self._tolerance, "mapper": self._mapper.as_dict(), } @classmethod def from_dict(cls, d): """ Args: d (dict): Dict representation Returns: MoleculeMatcher """ return MoleculeMatcher( tolerance=d["tolerance"], mapper=AbstractMolAtomMapper.from_dict(d["mapper"]), ) class KabschMatcher(MSONable): """Molecule matcher using Kabsch algorithm The Kabsch algorithm capable aligning two molecules by finding the parameters (translation, rotation) which minimize the root-mean-square-deviation (RMSD) of two molecules which are topologically (atom types, geometry) similar two each other. Notes: When aligning molecules, the atoms of the two molecules **must** be in the same order for the results to be sensible. """ def __init__(self, target: Molecule): """Constructor of the matcher object. Args: target: a `Molecule` object used as a target during the alignment """ self.target = target def match(self, p: Molecule): """Using the Kabsch algorithm the alignment of two molecules (P, Q) happens in three steps: - translate the P and Q into their centroid - compute of the optimal rotation matrix (U) using Kabsch algorithm - compute the translation (V) and rmsd The function returns the rotation matrix (U), translation vector (V), and RMSD between Q and P', where P' is: P' = P * U + V Args: p: a `Molecule` object what will be matched with the target one. Returns: U: Rotation matrix (D,D) V: Translation vector (D) RMSD : Root mean squared deviation between P and Q """ if self.target.atomic_numbers != p.atomic_numbers: raise ValueError("The order of the species aren't matching! " "Please try using `PermInvMatcher`.") p_coord, q_coord = p.cart_coords, self.target.cart_coords # Both sets of coordinates must be translated first, so that their # centroid coincides with the origin of the coordinate system. p_trans, q_trans = p_coord.mean(axis=0), q_coord.mean(axis=0) p_centroid, q_centroid = p_coord - p_trans, q_coord - q_trans # The optimal rotation matrix U using Kabsch algorithm U = self.kabsch(p_centroid, q_centroid) p_prime_centroid = np.dot(p_centroid, U) rmsd = np.sqrt(np.mean(np.square(p_prime_centroid - q_centroid))) V = q_trans - np.dot(p_trans, U) return U, V, rmsd def fit(self, p: Molecule): """Rotate and transform `p` molecule according to the best match. Args: p: a `Molecule` object what will be matched with the target one. Returns: p_prime: Rotated and translated of the `p` `Molecule` object rmsd: Root-mean-square-deviation between `p_prime` and the `target` """ U, V, rmsd = self.match(p) # Rotate and translate matrix `p` onto the target molecule. # P' = P * U + V p_prime = p.copy() for site in p_prime: site.coords = np.dot(site.coords, U) + V return p_prime, rmsd @staticmethod def kabsch(P: np.ndarray, Q: np.ndarray): """The Kabsch algorithm is a method for calculating the optimal rotation matrix that minimizes the root mean squared deviation (RMSD) between two paired sets of points P and Q, centered around the their centroid. For more info see: - http://en.wikipedia.org/wiki/Kabsch_algorithm and - https://cnx.org/contents/HV-RsdwL@23/Molecular-Distance-Measures Args: P: Nx3 matrix, where N is the number of points. Q: Nx3 matrix, where N is the number of points. Returns: U: 3x3 rotation matrix """ # Computation of the cross-covariance matrix C = np.dot(P.T, Q) # Computation of the optimal rotation matrix # using singular value decomposition (SVD). V, S, WT = np.linalg.svd(C) # Getting the sign of the det(V*Wt) to decide whether d = np.linalg.det(np.dot(V, WT)) # And finally calculating the optimal rotation matrix R # we need to correct our rotation matrix to ensure a right-handed coordinate system. U = np.dot(np.dot(V, np.diag([1, 1, d])), WT) return U class BruteForceOrderMatcher(KabschMatcher): """Finding the best match between molecules by selecting molecule order with the smallest RMSD from all the possible order combinations. Notes: When aligning molecules, the atoms of the two molecules **must** have same number of atoms from the same species. """ def match(self, p: Molecule, ignore_warning=False): """Similar as `KabschMatcher.match` but this method also finds the order of atoms which belongs to the best match. A `ValueError` will be raised when the total number of possible combinations become unfeasible (more than a million combination). Args: p: a `Molecule` object what will be matched with the target one. ignore_warning: ignoring error when the number of combination is too large Returns: inds: The indices of atoms U: 3x3 rotation matrix V: Translation vector rmsd: Root mean squared deviation between P and Q """ q = self.target if sorted(p.atomic_numbers) != sorted(q.atomic_numbers): raise ValueError("The number of the same species aren't matching!") _, count = np.unique(p.atomic_numbers, return_counts=True) total_permutations = 1 for c in count: total_permutations *= np.math.factorial(c) # type: ignore if not ignore_warning and total_permutations > 1_000_000: raise ValueError( "The number of all possible permutations " "({}) is not feasible to run this method!".format(total_permutations) ) p_coord, q_coord = p.cart_coords, q.cart_coords p_atoms, q_atoms = np.array(p.atomic_numbers), np.array(q.atomic_numbers) # Both sets of coordinates must be translated first, so that # their centroid coincides with the origin of the coordinate system. p_trans, q_trans = p_coord.mean(axis=0), q_coord.mean(axis=0) p_centroid, q_centroid = p_coord - p_trans, q_coord - q_trans # Sort the order of the target molecule by the elements q_inds = np.argsort(q_atoms) q_centroid = q_centroid[q_inds] # Initializing return values rmsd = np.inf # Generate all permutation grouped/sorted by the elements for p_inds_test in self.permutations(p_atoms): p_centroid_test = p_centroid[p_inds_test] U_test = self.kabsch(p_centroid_test, q_centroid) p_centroid_prime_test = np.dot(p_centroid_test, U_test) rmsd_test = np.sqrt(np.mean(np.square(p_centroid_prime_test - q_centroid))) if rmsd_test < rmsd: p_inds, U, rmsd = p_inds_test, U_test, rmsd_test # Rotate and translate matrix P unto matrix Q using Kabsch algorithm. # P' = P * U + V V = q_trans - np.dot(p_trans, U) # Using the original order of the indices inds = p_inds[np.argsort(q_inds)] return inds, U, V, rmsd def fit(self, p: Molecule, ignore_warning=False): """Order, rotate and transform `p` molecule according to the best match. A `ValueError` will be raised when the total number of possible combinations become unfeasible (more than a million combinations). Args: p: a `Molecule` object what will be matched with the target one. ignore_warning: ignoring error when the number of combination is too large Returns: p_prime: Rotated and translated of the `p` `Molecule` object rmsd: Root-mean-square-deviation between `p_prime` and the `target` """ inds, U, V, rmsd = self.match(p, ignore_warning=ignore_warning) p_prime = Molecule.from_sites([p[i] for i in inds]) for site in p_prime: site.coords = np.dot(site.coords, U) + V return p_prime, rmsd @staticmethod def permutations(atoms): """Generates all the possible permutations of atom order. To achieve better performance all tha cases where the atoms are different has been ignored. """ element_iterators = [itertools.permutations(np.where(atoms == element)[0]) for element in np.unique(atoms)] for inds in itertools.product(*element_iterators): yield np.array(list(itertools.chain(*inds))) class HungarianOrderMatcher(KabschMatcher): """This method pre-aligns the molecules based on their principal inertia axis and then re-orders the input atom list using the Hungarian method. Notes: This method cannot guarantee the best match but is very fast. When aligning molecules, the atoms of the two molecules **must** have same number of atoms from the same species. """ def match(self, p: Molecule): """Similar as `KabschMatcher.match` but this method also finds the order of atoms which belongs to the best match. Args: p: a `Molecule` object what will be matched with the target one. Returns: inds: The indices of atoms U: 3x3 rotation matrix V: Translation vector rmsd: Root mean squared deviation between P and Q """ if sorted(p.atomic_numbers) != sorted(self.target.atomic_numbers): raise ValueError("The number of the same species aren't matching!") p_coord, q_coord = p.cart_coords, self.target.cart_coords p_atoms, q_atoms = ( np.array(p.atomic_numbers), np.array(self.target.atomic_numbers), ) p_weights = np.array([site.species.weight for site in p]) q_weights = np.array([site.species.weight for site in self.target]) # Both sets of coordinates must be translated first, so that # their center of mass with the origin of the coordinate system. p_trans, q_trans = p.center_of_mass, self.target.center_of_mass p_centroid, q_centroid = p_coord - p_trans, q_coord - q_trans # Initializing return values rmsd = np.inf # Generate all permutation grouped/sorted by the elements for p_inds_test in self.permutations(p_atoms, p_centroid, p_weights, q_atoms, q_centroid, q_weights): p_centroid_test = p_centroid[p_inds_test] U_test = self.kabsch(p_centroid_test, q_centroid) p_centroid_prime_test = np.dot(p_centroid_test, U_test) rmsd_test = np.sqrt(np.mean(np.square(p_centroid_prime_test - q_centroid))) if rmsd_test < rmsd: inds, U, rmsd = p_inds_test, U_test, rmsd_test # Rotate and translate matrix P unto matrix Q using Kabsch algorithm. # P' = P * U + V V = q_trans - np.dot(p_trans, U) return inds, U, V, rmsd def fit(self, p: Molecule): """Order, rotate and transform `p` molecule according to the best match. Args: p: a `Molecule` object what will be matched with the target one. Returns: p_prime: Rotated and translated of the `p` `Molecule` object rmsd: Root-mean-square-deviation between `p_prime` and the `target` """ inds, U, V, rmsd = self.match(p) # Translate and rotate `mol1` unto `mol2` using Kabsch algorithm. p_prime = Molecule.from_sites([p[i] for i in inds]) for site in p_prime: site.coords = np.dot(site.coords, U) + V return p_prime, rmsd @staticmethod def permutations(p_atoms, p_centroid, p_weights, q_atoms, q_centroid, q_weights): """Generates two possible permutations of atom order. This method uses the principle component of the inertia tensor to prealign the molecules and hungarian method to determine the order. There are always two possible permutation depending on the way to pre-aligning the molecules. Args: p_atoms: atom numbers p_centroid: array of atom positions p_weights: array of atom weights q_atoms: atom numbers q_centroid: array of atom positions q_weights: array of atom weights Yield: perm_inds: array of atoms' order """ # get the principal axis of P and Q p_axis = HungarianOrderMatcher.get_principal_axis(p_centroid, p_weights) q_axis = HungarianOrderMatcher.get_principal_axis(q_centroid, q_weights) # rotate Q onto P considering that the axis are parallel and antiparallel U = HungarianOrderMatcher.rotation_matrix_vectors(q_axis, p_axis) p_centroid_test = np.dot(p_centroid, U) # generate full view from q shape to fill in atom view on the fly perm_inds = np.zeros(len(p_atoms), dtype=int) # Find unique atoms species = np.unique(p_atoms) for specie in species: p_atom_inds = np.where(p_atoms == specie)[0] q_atom_inds = np.where(q_atoms == specie)[0] A = q_centroid[q_atom_inds] B = p_centroid_test[p_atom_inds] # Perform Hungarian analysis on distance matrix between atoms of 1st # structure and trial structure distances = cdist(A, B, "euclidean") a_inds, b_inds = linear_sum_assignment(distances) perm_inds[q_atom_inds] = p_atom_inds[b_inds] yield perm_inds # rotate Q onto P considering that the axis are parallel and antiparallel U = HungarianOrderMatcher.rotation_matrix_vectors(q_axis, -p_axis) p_centroid_test = np.dot(p_centroid, U) # generate full view from q shape to fill in atom view on the fly perm_inds = np.zeros(len(p_atoms), dtype=int) # Find unique atoms species = np.unique(p_atoms) for specie in species: p_atom_inds = np.where(p_atoms == specie)[0] q_atom_inds =
np.where(q_atoms == specie)
numpy.where
import ast import json import numpy as np from utils import * from linalg import * import networkx as nx from itertools import chain from collections import Counter from typing import Any, Dict, Iterable, List, NewType, Tuple, TypeVar, Set ndarray = NewType('numpy ndarray', np.ndarray) CountDict = TypeVar('result of Counter', Dict[str, int], Dict[str, float]) LabelDict = NewType('dictionary of {id: set of all its GO labels}', Dict[str, Set[str]]) def load_matrices(job_id: str, run_id: str)-> Tuple[ndarray, ndarray]: if not file_exists(f"{job_id}/dsd_pdist_matrix{run_id}.npy", 'PREDICTION', ext='.npy'): exit() if not file_exists(f"{job_id}/source_dsd_pdist_matrix{run_id}.npy", 'PREDICTION', ext='.npy'): exit() source_dsd_matrix = np.load(f"{job_id}/source_dsd_pdist_matrix{run_id}.npy", allow_pickle=True) target_dsd_matrix = np.load(f"{job_id}/dsd_pdist_matrix{run_id}.npy", allow_pickle=True) return source_dsd_matrix, target_dsd_matrix def load_labels(job_id: str, network_name: str, strawman_number: str, run_id: str)-> Dict[str, str]: if not file_exists(f"{job_id}/strawman_{network_name}_labels{run_id}.json", 'PREDICTION', ext='.json'): exit() labels = None with open(f"{job_id}/strawman_{network_name}_labels{run_id}.json", "r") as lptr: labels = json.load(lptr) labels = {v:int(k) for k,v in labels.items()} return labels def load_and_index_hits(source_ref_labels: Dict[str, str], target_ref_labels: Dict[str, str], job_id: str, strawman_number: str)-> Dict[int, List[int]]: if not file_exists(f'{job_id}/strawman{strawman_number}_hits.txt', 'PREDICTION'): exit() hits = dict() with open(f'{job_id}/strawman{strawman_number}_hits.txt', 'r') as rptr: for line in rptr.readlines(): a,b = line.split('\t') hits[a] = ast.literal_eval(b) hit_idxs = dict() for target_query, hitlist in hits.items(): hit_idxs[target_ref_labels.get(target_query)] = [source_ref_labels.get(source_match) for source_match in hitlist] return {k:v for k,v in hit_idxs.items() if k and v} def map_ref_to_GO(go_file: str, ref_file: str, go_aspect: str)-> LabelDict: if not file_exists(go_file, 'PREDICTION', ext='.gaf'): exit() if not file_exists(ref_file, 'PREDICTION', ext='.json'): exit() refseq_to_uniprot_mapping, uniprot_to_GO_mapping = dict(), dict() with open(ref_file, 'r') as rptr, open(go_file, 'r') as gptr: refseq_to_uniprot_mapping = json.load(rptr) for entry in gptr.readlines()[12:]: # skip the description lines db, uni_id, _, _, go_id, _, _, _, aspect = entry.strip().split('\t')[:9] if not "uniprotkb" in db.lower(): continue # GO labels are ** not ** unique ---> {uni: {go_id1, go_id2, ...}, ...} if 'A' not in go_aspect and aspect.strip().upper() not in go_aspect: continue # filter by aspect uniprot_to_GO_mapping[uni_id] = uniprot_to_GO_mapping.get(uni_id, set()) | {go_id} refseq_to_GO_mapping = {r:g for r,g in {ref_id:uniprot_to_GO_mapping.get(uni_id) for ref_id, uni_id in refseq_to_uniprot_mapping.items()}.items() if g} return refseq_to_GO_mapping def filter_labels(tgt_GO_labels: Dict[int, str], annotation_counts: CountDict, low: int = 50, high: int = 500)-> LabelDict: filtered_tgt_labels = dict() # n_limited = len([ann for ann, c in annotation_counts.items() if low <= c <= high]) # print(f'{n_limited} between {low} and {high}') for i, go_ids in tgt_GO_labels.items(): for go_id in go_ids: n_annotations = annotation_counts.get(go_id, -1) # n_annotations from TARGET networks if not low <= n_annotations <= high: continue filtered_tgt_labels[i] = filtered_tgt_labels.get(i, set()) | {go_id} if not filtered_tgt_labels.get(i): filtered_tgt_labels[i] = set() # fill in missing ones with empties - they just have no vote. return filtered_tgt_labels # {i: {go_id1, go_id2, ...}, ...} def compute_accuracy(predictions: Dict[int, List[str]], target_GO_labels: Dict[int, str])-> float: n_correct = 0 n_predicted = 0 n_empty = 0 for test_idx, predicted_label_list in predictions.items(): real_labels = target_GO_labels.get(test_idx) if not real_labels: n_empty +=1; continue n_predicted += 1 if any([True for p in predicted_label_list if p in real_labels]): n_correct += 1 #print(f"{n_empty} empty out of {n_predicted} predictions") if not n_predicted: return 0 return (n_correct/n_predicted)*100 def wmv(target_counts: CountDict, hit_counts: CountDict, weights: Tuple[float, float])-> CountDict: tw, hw = weights combo = {go_label:(count * tw) for go_label, count in target_counts.items()} if target_counts else dict() if not hit_counts: return combo for go_label, count in hit_counts.items(): combo[go_label] = (count * hw) + combo.get(go_label, 0) return combo def poll_neighborhood(neighbors: ndarray, labels: Dict[int, str], test_idxs: ndarray, indexed_vote_dict: Dict[int, CountDict])-> None: real_row_idx = test_idxs[len(indexed_vote_dict)] votes = chain(*np.vectorize(labels.get)(neighbors).tolist()) try: iterator = iter(votes) indexed_vote_dict[real_row_idx] = Counter(votes) except TypeError: indexed_vote_dict[real_row_idx] = Counter() def poll_hits(test_idxs: ndarray, hit_idxs: Dict[int,int], source_dsd_matrix: ndarray, source_GO_labels: Dict[int, str], q: int, strawman_number: str)-> CountDict: hit_votes = dict() include_hit_dsd_neighbors = True if '+' in strawman_number else False for test_idx in test_idxs: hitlist = hit_idxs.get(test_idx) if not hitlist: hit_votes[test_idx] = dict(); continue for source_match_idx in hitlist: match_votes, match_neighbor_votes = Counter(source_GO_labels.get(source_match_idx)), Counter() if include_hit_dsd_neighbors: match_neighbor_idxs = np.argsort(source_dsd_matrix[source_match_idx, :])[:q] match_neighbor_votes = Counter(chain(*np.vectorize(source_GO_labels.__getitem__)(match_neighbor_idxs))) hit_votes[test_idx] = match_votes + match_neighbor_votes return hit_votes def train_test_split(dim: int, block_size: int, seed: int)-> Tuple[ndarray, ndarray]: np.random.seed(seed) if block_size == dim: block_size = 1 test_idxs = np.random.choice(np.arange(dim), size=block_size, replace=False) train_idxs = np.delete(np.arange(dim), test_idxs) return train_idxs, test_idxs def k_fold_cv(source_GO_labels: Dict[int, str], target_GO_labels: Dict[int, str], hit_idxs: ndarray, source_dsd_matrix: ndarray, target_dsd_matrix: ndarray, k: int, seed: int, p: int, q: int, n_labels: int, weights: List[float], strawman_number: str, verbose: bool)-> List[float]: m = target_dsd_matrix.shape[0] if not k: print('Fold size (k) cannot be zero, muchacho'); exit() if not is_square(source_dsd_matrix) or not is_square(target_dsd_matrix): print('[PREDICTION ERROR] Provided matrices have invalid shapes'); exit() if not seed: seed = np.random.randint(10000) n_rounds = abs(k) accuracy = list() for i in range(n_rounds): train_idxs, test_idxs = train_test_split(m, m//n_rounds, seed+i) if k < 0 : train_idxs, test_idxs = test_idxs, train_idxs # cascade setting, for internal BCB use if verbose: print(f'\tStarting fold {i+1}/{n_rounds} with {len(train_idxs)} training nodes and {len(test_idxs)} testing nodes...') if verbose: print(f'\t\tExtracting fold from full matrices...') target_grid = np.ix_(test_idxs, train_idxs) target_fold = target_dsd_matrix[target_grid] # (m/k) x (m(k-1)/k) if verbose: print(f'\t\tLocating neighbor indexes in fold...') target_grid_idxs = np.argsort(target_fold, axis=1)[:,:p] if verbose: print(f'\t\tRe-indexing neighbors to match original matrices...') target_neighbor_col_idxs = np.apply_along_axis(
np.vectorize(train_idxs.__getitem__)
numpy.vectorize
""" FBM_single_functions.py This script contains functions for activating and testing of Fractional Brownian Motion single-trajectory networks trained to estimate the Hurst exponent. """ import numpy as np import matplotlib import matplotlib.pyplot as plt from keras.models import load_model from utils import fbm_diffusion from utils import autocorr import scipy.optimize import scipy.io import seaborn as sns import pickle """ Function predict_1D is used to run a version of the network on a single trajectory. The function assumes the input is a column vector Input: x - 1D column vector containing localization data stepsActual - number of steps to analyze in each trajectory. This number determnines what network will run on the data. Select from options: [10,25,60,100,200,300,500,700,1000] reg_model - loaded model of the network (comes as input to avoid reloading the same model for each trajectory) Outputs: pX - Network prediction for the Hurst exponenet of the 1D trajectory. """ def predict_1D(x,stepsActual,reg_model): if len(x)<stepsActual: return 0 dx = (np.diff(x[:stepsActual],axis=0)[:,0]) dx = autocorr((dx-np.mean(dx))/(np.std(dx)+1e-10)) dx = np.reshape(dx,[1,np.size(dx),1]) pX = reg_model.predict(dx) return pX """ Function net_on_file is used to run a version of the network on a .mat file containing one or more single particle trajectories. The function assumes the input comes in the form x,y,z,...,N where N is the trajectory serial number, starting from one. Input: file - string containing the file name, ending with .mat Outputs: prediction - A vector with lenght as number of trajectories containing network predictions (average of N-dimensional predictions) NDpred - A matrix with dimensions [#trajetories,#dimensions] containing all predictions done by the network (N-dimensions for each trajectory) """ def FBM_net_on_file(file,stepsActual): # laod trained keras model ### change here to load a different network model net_file = './Models/300-H-estimate.h5' reg_model = load_model(net_file) ### # load mat file and extract trajectory data f = scipy.io.loadmat(file) for k in f.keys(): if k[0]=='_': continue varName = k data = f[varName] NAxes = (np.shape(data)[1]-1) numTraj = len(np.unique(data[:,NAxes])) # allocate variables to hold temporary data and prediction results prediction = np.zeros([numTraj,1]) NDpred = np.zeros([numTraj,(np.shape(data)[1]-1)]) # iterate over trajectories and analyze data for i in np.arange(0,numTraj): for j in range((np.shape(data)[1]-1)): x = data[np.argwhere(data[:,NAxes]==i+1),j] pX = predict_1D(x,stepsActual,reg_model) NDpred[i,j] = pX NDpred = NDpred[np.where(NDpred>0)] NDpred = np.reshape(NDpred,[int(np.size(NDpred)/NAxes),NAxes]) prediction =
np.mean(NDpred,axis=1)
numpy.mean
""" Module description: """ __version__ = '0.3.1' __author__ = '<NAME>, <NAME>' __email__ = '<EMAIL>, <EMAIL>' import copy import os from types import SimpleNamespace import numpy as np import pandas as pd import scipy.sparse as sp import typing as t import logging as pylog from elliot.dataset.abstract_dataset import AbstractDataset from elliot.splitter.base_splitter import Splitter from elliot.prefiltering.standard_prefilters import PreFilter from elliot.negative_sampling.negative_sampling import NegativeSampler from elliot.utils import logging from elliot.dataset.modular_loaders.loader_coordinator_mixin import LoaderCoordinator class DataSetLoader(LoaderCoordinator): """ Load train and test dataset """ def __init__(self, config, *args, **kwargs): """ Constructor of DataSet :param path_train_data: relative path for train file :param path_test_data: relative path for test file """ self.logger = logging.get_logger(self.__class__.__name__) self.args = args self.kwargs = kwargs self.config = config self.column_names = ['userId', 'itemId', 'rating', 'timestamp'] if config.config_test: return if config.data_config.strategy == "fixed": path_train_data = config.data_config.train_path path_val_data = getattr(config.data_config, "validation_path", None) path_test_data = config.data_config.test_path self.train_dataframe = pd.read_csv(path_train_data, sep="\t", header=None, names=self.column_names) self.test_dataframe = pd.read_csv(path_test_data, sep="\t", header=None, names=self.column_names) # self.train_dataframe, self.side_information = self.coordinate_information(self.train_dataframe, sides=config.data_config.side_information) # self.train_dataframe = pd.read_csv(path_train_data, sep="\t", header=None, names=self.column_names) self.train_dataframe = self.check_timestamp(self.train_dataframe) self.test_dataframe = self.check_timestamp(self.test_dataframe) self.logger.info(f"{path_train_data} - Loaded") if config.binarize == True or all(self.train_dataframe["rating"].isna()): self.test_dataframe["rating"] = 1 self.train_dataframe["rating"] = 1 if path_val_data: self.validation_dataframe = pd.read_csv(path_val_data, sep="\t", header=None, names=self.column_names) self.validation_dataframe = self.check_timestamp(self.validation_dataframe) if config.binarize == True or all(self.train_dataframe["rating"].isna()): self.validation_dataframe["rating"] = 1 self.tuple_list = [([(self.train_dataframe, self.validation_dataframe)], self.test_dataframe)] self.tuple_list, self.side_information = self.coordinate_information(self.tuple_list, sides=config.data_config.side_information, logger=self.logger) else: self.tuple_list = [(self.train_dataframe, self.test_dataframe)] self.tuple_list, self.side_information = self.coordinate_information(self.tuple_list, sides=config.data_config.side_information, logger=self.logger) elif config.data_config.strategy == "hierarchy": self.tuple_list = self.read_splitting(config.data_config.root_folder, column_names=self.column_names) self.tuple_list, self.side_information = self.coordinate_information(self.tuple_list, sides=config.data_config.side_information, logger=self.logger) elif config.data_config.strategy == "dataset": self.logger.info("There will be the splitting") path_dataset = config.data_config.dataset_path self.dataframe = pd.read_csv(path_dataset, sep="\t", header=None, names=self.column_names) self.dataframe, self.side_information = self.coordinate_information(self.dataframe, sides=config.data_config.side_information, logger=self.logger) # self.dataframe = pd.read_csv(path_dataset, sep="\t", header=None, names=self.column_names) self.dataframe = self.check_timestamp(self.dataframe) self.logger.info(('{0} - Loaded'.format(path_dataset))) self.dataframe = PreFilter.filter(self.dataframe, self.config) if config.binarize == True or all(self.dataframe["rating"].isna()): self.dataframe["rating"] = 1 splitter = Splitter(self.dataframe, self.config.splitting, self.config.random_seed) self.tuple_list = splitter.process_splitting() else: raise Exception("Strategy option not recognized") if isinstance(self.tuple_list[0][1], list): self.logger.warning("You are using a splitting strategy with folds. " "Paired TTest and Wilcoxon Test are not available!") self.config.evaluation.paired_ttest = False self.config.evaluation.wilcoxon_test = False def check_timestamp(self, d: pd.DataFrame) -> pd.DataFrame: if all(d["timestamp"].isna()): d = d.drop(columns=["timestamp"]).reset_index(drop=True) return d def read_splitting(self, folder_path, column_names): tuple_list = [] for dirs in os.listdir(folder_path): for test_dir in dirs: test_ = pd.read_csv(os.sep.join([folder_path, test_dir, "test.tsv"]), sep="\t", names=self.column_names) val_dirs = [os.sep.join([folder_path, test_dir, val_dir]) for val_dir in os.listdir(os.sep.join([folder_path, test_dir])) if os.path.isdir(os.sep.join([folder_path, test_dir, val_dir]))] val_list = [] for val_dir in val_dirs: train_ = pd.read_csv(os.sep.join([val_dir, "train.tsv"]), sep="\t", names=self.column_names) val_ = pd.read_csv(os.sep.join([val_dir, "val.tsv"]), sep="\t", names=self.column_names) val_list.append((train_, val_)) if not val_list: val_list = pd.read_csv(os.sep.join([folder_path, test_dir, "train.tsv"]), sep="\t", names=self.column_names) tuple_list.append((val_list, test_)) return tuple_list def generate_dataobjects(self) -> t.List[object]: data_list = [] for p1, (train_val, test) in enumerate(self.tuple_list): # testset level if isinstance(train_val, list): # validation level val_list = [] for p2, (train, val) in enumerate(train_val): self.logger.info(f"Test Fold {p1} - Validation Fold {p2}") single_dataobject = DataSet(self.config, (train,val,test), self.side_information, self.args, self.kwargs) val_list.append(single_dataobject) data_list.append(val_list) else: self.logger.info(f"Test Fold {p1}") single_dataobject = DataSet(self.config, (train_val, test), self.side_information, self.args, self.kwargs) data_list.append([single_dataobject]) return data_list def generate_dataobjects_mock(self) -> t.List[object]: np.random.seed(self.config.random_seed) _column_names = ['userId', 'itemId', 'rating'] training_set = np.hstack( (np.random.randint(0, 5 * 20, size=(5 * 20, 2)), np.random.randint(0, 2, size=(5 * 20, 1)))) test_set = np.hstack( (np.random.randint(0, 5 * 20, size=(5 * 20, 2)), np.random.randint(0, 2, size=(5 * 20, 1)))) training_set = pd.DataFrame(np.array(training_set), columns=_column_names) test_set = pd.DataFrame(np.array(test_set), columns=_column_names) data_list = [[DataSet(self.config, (training_set, test_set), self.args, self.kwargs)]] return data_list class DataSet(AbstractDataset): """ Load train and test dataset """ def __init__(self, config, data_tuple, side_information_data, *args, **kwargs): """ Constructor of DataSet :param path_train_data: relative path for train file :param path_test_data: relative path for test file """ self.logger = logging.get_logger(self.__class__.__name__, pylog.CRITICAL if config.config_test else pylog.DEBUG) self.config = config self.args = args self.kwargs = kwargs if self.config.align_side_with_train == True: self.side_information = self.align_with_training(train=data_tuple[0], side_information_data=side_information_data) else: self.side_information = side_information_data self.train_dict = self.dataframe_to_dict(data_tuple[0]) self.users = list(self.train_dict.keys()) self.items = list({k for a in self.train_dict.values() for k in a.keys()}) self.num_users = len(self.users) self.num_items = len(self.items) self.transactions = sum(len(v) for v in self.train_dict.values()) sparsity = 1 - (self.transactions / (self.num_users * self.num_items)) self.logger.info(f"Statistics\tUsers:\t{self.num_users}\tItems:\t{self.num_items}\tTransactions:\t{self.transactions}\t" f"Sparsity:\t{sparsity}") self.private_users = {p: u for p, u in enumerate(self.users)} self.public_users = {v: k for k, v in self.private_users.items()} self.private_items = {p: i for p, i in enumerate(self.items)} self.public_items = {v: k for k, v in self.private_items.items()} self.i_train_dict = {self.public_users[user]: {self.public_items[i]: v for i, v in items.items()} for user, items in self.train_dict.items()} self.sp_i_train = self.build_sparse() self.sp_i_train_ratings = self.build_sparse_ratings() if len(data_tuple) == 2: self.test_dict = self.build_dict(data_tuple[1], self.users) if hasattr(config, "negative_sampling"): val_neg_samples, test_neg_samples = NegativeSampler.sample(config, self.public_users, self.public_items, self.private_users, self.private_items, self.sp_i_train, None, self.test_dict) sp_i_test = self.to_bool_sparse(self.test_dict) test_candidate_items = test_neg_samples + sp_i_test self.test_mask = np.where((test_candidate_items.toarray() == True), True, False) else: self.val_dict = self.build_dict(data_tuple[1], self.users) self.test_dict = self.build_dict(data_tuple[2], self.users) if hasattr(config, "negative_sampling"): val_neg_samples, test_neg_samples = NegativeSampler.sample(config, self.public_users, self.public_items, self.private_users, self.private_items, self.sp_i_train, self.val_dict, self.test_dict) sp_i_val = self.to_bool_sparse(self.val_dict) sp_i_test = self.to_bool_sparse(self.test_dict) val_candidate_items = val_neg_samples + sp_i_val self.val_mask = np.where((val_candidate_items.toarray() == True), True, False) test_candidate_items = test_neg_samples + sp_i_test self.test_mask = np.where((test_candidate_items.toarray() == True), True, False) self.allunrated_mask = np.where((self.sp_i_train.toarray() == 0), True, False) def dataframe_to_dict(self, data): users = list(data['userId'].unique()) "Conversion to Dictionary" ratings = {} for u in users: sel_ = data[data['userId'] == u] ratings[u] = dict(zip(sel_['itemId'], sel_['rating'])) return ratings def build_dict(self, dataframe, users): ratings = {} for u in users: sel_ = dataframe[dataframe['userId'] == u] ratings[u] = dict(zip(sel_['itemId'], sel_['rating'])) return ratings def build_sparse(self): rows_cols = [(u, i) for u, items in self.i_train_dict.items() for i in items.keys()] rows = [u for u, _ in rows_cols] cols = [i for _, i in rows_cols] data = sp.csr_matrix((
np.ones_like(rows)
numpy.ones_like
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# import sys, os from unittest.mock import patch sys.path.append(os.path.abspath("..")) # current folder is ~/tests from idaes.core.surrogate.pysmo.polynomial_regression import ( PolynomialRegression, FeatureScaling, ) import numpy as np import pandas as pd import pytest class TestFeatureScaling: test_data_1d = [[x] for x in range(10)] test_data_2d = [[x, (x + 1) ** 2] for x in range(10)] test_data_3d = [[x, x + 10, (x + 1) ** 2 + x + 10] for x in range(10)] test_data_3d_constant = [[x, 10, (x + 1) ** 2 + 10] for x in range(10)] @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test_data_scaling_01(self, array_type): input_array = array_type(self.test_data_1d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) expected_output_3 = np.array([[9]]) expected_output_2 = np.array([[0]]) expected_output_1 = (input_array - expected_output_2) / ( expected_output_3 - expected_output_2 ) np.testing.assert_array_equal(output_3, expected_output_3) np.testing.assert_array_equal(output_2, expected_output_2) np.testing.assert_array_equal( output_1, np.array(expected_output_1).reshape(10, 1) ) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test_data_scaling_02(self, array_type): input_array = array_type(self.test_data_2d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) expected_output_3 = np.array([[9, 100]]) expected_output_2 = np.array([[0, 1]]) expected_output_1 = (input_array - expected_output_2) / ( expected_output_3 - expected_output_2 ) np.testing.assert_array_equal(output_3, expected_output_3) np.testing.assert_array_equal(output_2, expected_output_2) np.testing.assert_array_equal(output_1, expected_output_1) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test_data_scaling_03(self, array_type): input_array = array_type(self.test_data_3d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) expected_output_3 = np.array([[9, 19, 119]]) expected_output_2 = np.array([[0, 10, 11]]) expected_output_1 = (input_array - expected_output_2) / ( expected_output_3 - expected_output_2 ) np.testing.assert_array_equal(output_3, expected_output_3) np.testing.assert_array_equal(output_2, expected_output_2) np.testing.assert_array_equal(output_1, expected_output_1) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test_data_scaling_04(self, array_type): input_array = array_type(self.test_data_3d_constant) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) expected_output_3 = np.array([[9, 10, 110]]) expected_output_2 = np.array([[0, 10, 11]]) scale = expected_output_3 - expected_output_2 scale[scale == 0.0] = 1.0 expected_output_1 = (input_array - expected_output_2) / scale np.testing.assert_array_equal(output_3, expected_output_3) np.testing.assert_array_equal(output_2, expected_output_2) np.testing.assert_array_equal(output_1, expected_output_1) @pytest.mark.unit @pytest.mark.parametrize("array_type", [list]) def test_data_scaling_05(self, array_type): input_array = array_type(self.test_data_2d) with pytest.raises(TypeError): FeatureScaling.data_scaling(input_array) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_01(self, array_type): input_array = array_type(self.test_data_1d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) output_1 = output_1.reshape( output_1.shape[0], ) un_output_1 = FeatureScaling.data_unscaling(output_1, output_2, output_3) np.testing.assert_array_equal(un_output_1, input_array.reshape(10, 1)) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_02(self, array_type): input_array = array_type(self.test_data_2d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) un_output_1 = FeatureScaling.data_unscaling(output_1, output_2, output_3) np.testing.assert_array_equal(un_output_1, input_array) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_03(self, array_type): input_array = array_type(self.test_data_3d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) un_output_1 = FeatureScaling.data_unscaling(output_1, output_2, output_3) np.testing.assert_array_equal(un_output_1, input_array) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_04(self, array_type): input_array = array_type(self.test_data_3d_constant) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) un_output_1 = FeatureScaling.data_unscaling(output_1, output_2, output_3) np.testing.assert_array_equal(un_output_1, input_array) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_05(self, array_type): input_array = array_type(self.test_data_2d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) min_array = np.array([[1]]) max_array = np.array([[5]]) with pytest.raises(IndexError): FeatureScaling.data_unscaling(output_1, min_array, max_array) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_data_unscaling_06(self, array_type): input_array = array_type(self.test_data_2d) output_1, output_2, output_3 = FeatureScaling.data_scaling(input_array) min_array = np.array([[1, 2, 3]]) max_array = np.array([[5, 6, 7]]) with pytest.raises(IndexError): FeatureScaling.data_unscaling(output_1, min_array, max_array) class TestPolynomialRegression: y = np.array( [ [i, j, ((i + 1) ** 2) + ((j + 1) ** 2)] for i in np.linspace(0, 10, 21) for j in np.linspace(0, 10, 21) ] ) full_data = {"x1": y[:, 0], "x2": y[:, 1], "y": y[:, 2]} training_data = [ [i, j, ((i + 1) ** 2) + ((j + 1) ** 2)] for i in np.linspace(0, 10, 5) for j in np.linspace(0, 10, 5) ] test_data = [[i, (i + 1) ** 2] for i in range(10)] test_data_large = [[i, (i + 1) ** 2] for i in range(200)] test_data_1d = [[(i + 1) ** 2] for i in range(10)] test_data_3d = [[i, (i + 1) ** 2, (i + 2) ** 2] for i in range(10)] sample_points = [[i, (i + 1) ** 2] for i in range(8)] sample_points_large = [[i, (i + 1) ** 2] for i in range(100)] sample_points_1d = [[(i + 1) ** 2] for i in range(8)] sample_points_3d = [[i, (i + 1) ** 2, (i + 2) ** 2] for i in range(8)] @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__01(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) assert PolyClass.max_polynomial_order == 5 assert ( PolyClass.number_of_crossvalidations == 3 ) # Default number of cross-validations assert PolyClass.no_adaptive_samples == 4 # Default number of adaptive samples assert PolyClass.fraction_training == 0.75 # Default training split assert ( PolyClass.max_fraction_training_samples == 0.5 ) # Default fraction for the maximum number of training samples assert PolyClass.max_iter == 10 # Default maximum number of iterations assert PolyClass.solution_method == "pyomo" # Default solution_method assert PolyClass.multinomials == 1 # Default multinomials @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) @pytest.mark.unit def test__init__02(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, number_of_crossvalidations=5, no_adaptive_samples=6, training_split=0.5, max_fraction_training_samples=0.4, max_iter=20, solution_method="MLe", multinomials=0, ) assert PolyClass.max_polynomial_order == 3 assert ( PolyClass.number_of_crossvalidations == 5 ) # Default number of cross-validations assert PolyClass.no_adaptive_samples == 6 # Default number of adaptive samples assert PolyClass.fraction_training == 0.5 # Default training split assert ( PolyClass.max_fraction_training_samples == 0.4 ) # Default fraction for the maximum number of training samples assert PolyClass.max_iter == 20 # Default maximum number of iterations assert ( PolyClass.solution_method == "mle" ) # Default solution_method, doesn't matter lower / upper characters assert PolyClass.multinomials == 0 # Default multinomials @pytest.mark.unit @pytest.mark.parametrize("array_type1", [list]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__03(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(ValueError): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [list]) def test__init__04(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(ValueError): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__05(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points_large) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__06(self, array_type1, array_type2): original_data_input = array_type1(self.test_data_3d) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__07(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points_3d) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__08(self, array_type1, array_type2): original_data_input = array_type1(self.test_data_1d) regression_data_input = array_type2(self.sample_points_1d) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__09(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.warns(Warning): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, number_of_crossvalidations=11, ) assert ( PolyClass.number_of_crossvalidations == 11 ) # Default number of cross-validations @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__10(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=1.2 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__11(self, array_type1, array_type2): original_data_input = array_type1(self.test_data_large) regression_data_input = array_type2(self.sample_points_large) with pytest.warns(Warning): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=11 ) assert PolyClass.max_polynomial_order == 10 @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__12(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, training_split=1, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__13(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, training_split=-1, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__14(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, max_fraction_training_samples=1.2, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__15(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, max_fraction_training_samples=-1.2, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__16(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( regression_data_input, regression_data_input, maximum_polynomial_order=5, max_iter=100, ) assert PolyClass.max_iter == 0 @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__17(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, no_adaptive_samples=0, max_iter=100, ) assert PolyClass.max_iter == 0 @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__18(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, number_of_crossvalidations=1.2, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__19(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, no_adaptive_samples=4.2, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__20(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, max_iter=4.2, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__21(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=15 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__22(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, solution_method=1, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__23(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, solution_method="idaes", ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__24(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, multinomials=3, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__25(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=-2 ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__26(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, number_of_crossvalidations=-3, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__27(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, no_adaptive_samples=-3, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__28(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, max_iter=-3, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__29(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, overwrite=1, ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__30(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname="solution.pkl", ) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__31(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) with pytest.raises(Exception): PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname=1, ) @pytest.mark.unit @pytest.fixture(scope="module") @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__32(self, array_type1, array_type2): file_name = "sol_check.pickle" original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass1 = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname=file_name, overwrite=True, ) PolyClass1.get_feature_vector() results = PolyClass1.polynomial_regression_fitting() PolyClass2 = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname=file_name, overwrite=True, ) assert PolyClass1.filename == PolyClass2.filename @pytest.mark.unit @pytest.fixture(scope="module") @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__33(self, array_type1, array_type2): file_name1 = "sol_check1.pickle" file_name2 = "sol_check2.pickle" original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass1 = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname=file_name1, overwrite=True, ) PolyClass1.get_feature_vector() results = PolyClass1.polynomial_regression_fitting() PolyClass2 = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, fname=file_name2, overwrite=True, ) assert PolyClass1.filename == file_name1 assert PolyClass2.filename == file_name2 @pytest.mark.unit @pytest.fixture(scope="module") @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test__init__34(self, array_type1, array_type2): file_name = "sol_check.pickle" original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass1 = PolynomialRegression( original_data_input, regression_data_input, fname=file_name, maximum_polynomial_order=3, overwrite=True, ) PolyClass1.get_feature_vector() results = PolyClass1.polynomial_regression_fitting() PolygClass2 = PolynomialRegression( original_data_input, regression_data_input, fname=file_name, maximum_polynomial_order=3, overwrite=True, ) assert PolyClass1.filename == PolygClass2.filename @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test_training_test_data_creation_01(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, training_split=0.01, ) with pytest.raises(Exception): training_data, cross_val_data = PolyClass.training_test_data_creation() @pytest.mark.unit @pytest.mark.parametrize("array_type1", [np.array, pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array, pd.DataFrame]) def test_training_test_data_creation_02(self, array_type1, array_type2): original_data_input = array_type1(self.test_data) regression_data_input = array_type2(self.sample_points) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, training_split=0.99, ) with pytest.raises(Exception): training_data, cross_val_data = PolyClass.training_test_data_creation() @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_training_test_data_creation_03(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) training_data, cross_val_data = PolyClass.training_test_data_creation() expected_training_size = int( np.around(PolyClass.number_of_samples * PolyClass.fraction_training) ) expected_test_size = PolyClass.regression_data.shape[0] - expected_training_size assert len(training_data) == PolyClass.number_of_crossvalidations assert len(cross_val_data) == PolyClass.number_of_crossvalidations for i in range(1, PolyClass.number_of_crossvalidations + 1): assert ( training_data["training_set_" + str(i)].shape[0] == expected_training_size ) assert cross_val_data["test_set_" + str(i)].shape[0] == expected_test_size concat_01 = np.concatenate( ( training_data["training_set_" + str(i)], cross_val_data["test_set_" + str(i)], ), axis=0, ) sample_data_sorted = regression_data_input[ np.lexsort( ( regression_data_input[:, 2], regression_data_input[:, 1], regression_data_input[:, 0], ) ) ] concat_01_sorted = concat_01[ np.lexsort((concat_01[:, 2], concat_01[:, 1], concat_01[:, 0])) ] np.testing.assert_equal(sample_data_sorted, concat_01_sorted) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_training_test_data_creation_04(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=3, number_of_crossvalidations=5, no_adaptive_samples=6, training_split=0.5, max_fraction_training_samples=0.4, max_iter=20, solution_method="MLe", multinomials=0, ) training_data, cross_val_data = PolyClass.training_test_data_creation() expected_training_size = int( np.around(PolyClass.number_of_samples * PolyClass.fraction_training) ) expected_test_size = PolyClass.regression_data.shape[0] - expected_training_size assert len(training_data) == PolyClass.number_of_crossvalidations assert len(cross_val_data) == PolyClass.number_of_crossvalidations for i in range(1, PolyClass.number_of_crossvalidations + 1): assert ( training_data["training_set_" + str(i)].shape[0] == expected_training_size ) assert cross_val_data["test_set_" + str(i)].shape[0] == expected_test_size concat_01 = np.concatenate( ( training_data["training_set_" + str(i)], cross_val_data["test_set_" + str(i)], ), axis=0, ) sample_data_sorted = regression_data_input[ np.lexsort( ( regression_data_input[:, 2], regression_data_input[:, 1], regression_data_input[:, 0], ) ) ] concat_01_sorted = concat_01[ np.lexsort((concat_01[:, 2], concat_01[:, 1], concat_01[:, 0])) ] np.testing.assert_equal(sample_data_sorted, concat_01_sorted) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_training_test_data_creation_05(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) PolyClass = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) additional_data_input = np.array( [ [ i**2, ((i + 1) * 2) + ((j + 1) * 2), j**4, ((i + 1) * 2) + ((j + 1) ** 2), ] for i in range(5) for j in range(5) ] ) training_data, cross_val_data = PolyClass.training_test_data_creation( additional_features=additional_data_input ) expected_training_size = int( np.around(PolyClass.number_of_samples * PolyClass.fraction_training) ) expected_test_size = PolyClass.regression_data.shape[0] - expected_training_size assert len(training_data) == PolyClass.number_of_crossvalidations * 2 assert len(cross_val_data) == PolyClass.number_of_crossvalidations * 2 for i in range(1, PolyClass.number_of_crossvalidations + 1): assert ( training_data["training_set_" + str(i)].shape[0] == expected_training_size ) assert ( training_data["training_extras_" + str(i)].shape[0] == expected_training_size ) assert cross_val_data["test_set_" + str(i)].shape[0] == expected_test_size assert ( cross_val_data["test_extras_" + str(i)].shape[0] == expected_test_size ) concat_01 = np.concatenate( ( training_data["training_set_" + str(i)], cross_val_data["test_set_" + str(i)], ), axis=0, ) sample_data_sorted = regression_data_input[ np.lexsort( ( regression_data_input[:, 2], regression_data_input[:, 1], regression_data_input[:, 0], ) ) ] concat_01_sorted = concat_01[ np.lexsort((concat_01[:, 2], concat_01[:, 1], concat_01[:, 0])) ] np.testing.assert_equal(sample_data_sorted, concat_01_sorted) concat_02 = np.concatenate( ( training_data["training_extras_" + str(i)], cross_val_data["test_extras_" + str(i)], ), axis=0, ) additional_data_sorted = additional_data_input[ np.lexsort( ( additional_data_input[:, 3], additional_data_input[:, 2], additional_data_input[:, 1], additional_data_input[:, 0], ) ) ] concat_02_sorted = concat_02[ np.lexsort( (concat_02[:, 3], concat_02[:, 2], concat_02[:, 1], concat_02[:, 0]) ) ] np.testing.assert_equal(additional_data_sorted, concat_02_sorted) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_polygeneration_01(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) x_input_train_data = regression_data_input[:, :-1] data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=1 ) poly_degree = 1 output_1 = data_feed.polygeneration( poly_degree, data_feed.multinomials, x_input_train_data ) expected_output_nr = x_input_train_data.shape[0] expected_output_nc = 4 # New number of features should be = 2 * max_polynomial_order + 2 for two input features expected_output = np.zeros((expected_output_nr, expected_output_nc)) expected_output[:, 0] = 1 expected_output[:, 1] = x_input_train_data[:, 0] expected_output[:, 2] = x_input_train_data[:, 1] expected_output[:, 3] = x_input_train_data[:, 0] * x_input_train_data[:, 1] np.testing.assert_equal(output_1, expected_output) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_polygeneration_02(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) x_input_train_data = regression_data_input[:, :-1] data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=2 ) poly_degree = 2 output_1 = data_feed.polygeneration( poly_degree, data_feed.multinomials, x_input_train_data ) expected_output_nr = x_input_train_data.shape[0] expected_output_nc = 6 # New number of features should be = 2 * max_polynomial_order + 2 for two input features expected_output = np.zeros((expected_output_nr, expected_output_nc)) expected_output[:, 0] = 1 expected_output[:, 1] = x_input_train_data[:, 0] expected_output[:, 2] = x_input_train_data[:, 1] expected_output[:, 3] = x_input_train_data[:, 0] ** 2 expected_output[:, 4] = x_input_train_data[:, 1] ** 2 expected_output[:, 5] = x_input_train_data[:, 0] * x_input_train_data[:, 1] np.testing.assert_equal(output_1, expected_output) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_polygeneration_03(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) x_input_train_data = regression_data_input[:, :-1] data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=10 ) poly_degree = 10 output_1 = data_feed.polygeneration( poly_degree, data_feed.multinomials, x_input_train_data ) expected_output_nr = x_input_train_data.shape[0] expected_output_nc = 22 # New number of features should be = 2 * max_polynomial_order + 2 for two input features expected_output = np.zeros((expected_output_nr, expected_output_nc)) expected_output[:, 0] = 1 expected_output[:, 1] = x_input_train_data[:, 0] expected_output[:, 2] = x_input_train_data[:, 1] expected_output[:, 3] = x_input_train_data[:, 0] ** 2 expected_output[:, 4] = x_input_train_data[:, 1] ** 2 expected_output[:, 5] = x_input_train_data[:, 0] ** 3 expected_output[:, 6] = x_input_train_data[:, 1] ** 3 expected_output[:, 7] = x_input_train_data[:, 0] ** 4 expected_output[:, 8] = x_input_train_data[:, 1] ** 4 expected_output[:, 9] = x_input_train_data[:, 0] ** 5 expected_output[:, 10] = x_input_train_data[:, 1] ** 5 expected_output[:, 11] = x_input_train_data[:, 0] ** 6 expected_output[:, 12] = x_input_train_data[:, 1] ** 6 expected_output[:, 13] = x_input_train_data[:, 0] ** 7 expected_output[:, 14] = x_input_train_data[:, 1] ** 7 expected_output[:, 15] = x_input_train_data[:, 0] ** 8 expected_output[:, 16] = x_input_train_data[:, 1] ** 8 expected_output[:, 17] = x_input_train_data[:, 0] ** 9 expected_output[:, 18] = x_input_train_data[:, 1] ** 9 expected_output[:, 19] = x_input_train_data[:, 0] ** 10 expected_output[:, 20] = x_input_train_data[:, 1] ** 10 expected_output[:, 21] = x_input_train_data[:, 0] * x_input_train_data[:, 1] np.testing.assert_equal(output_1, expected_output) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_polygeneration_04(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) x_input_train_data = regression_data_input[:, :-1] data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=10, multinomials=0, ) poly_degree = 10 output_1 = data_feed.polygeneration( poly_degree, data_feed.multinomials, x_input_train_data ) expected_output_nr = x_input_train_data.shape[0] expected_output_nc = 21 # New number of features should be = 2 * max_polynomial_order + 2 for two input features expected_output = np.zeros((expected_output_nr, expected_output_nc)) expected_output[:, 0] = 1 expected_output[:, 1] = x_input_train_data[:, 0] expected_output[:, 2] = x_input_train_data[:, 1] expected_output[:, 3] = x_input_train_data[:, 0] ** 2 expected_output[:, 4] = x_input_train_data[:, 1] ** 2 expected_output[:, 5] = x_input_train_data[:, 0] ** 3 expected_output[:, 6] = x_input_train_data[:, 1] ** 3 expected_output[:, 7] = x_input_train_data[:, 0] ** 4 expected_output[:, 8] = x_input_train_data[:, 1] ** 4 expected_output[:, 9] = x_input_train_data[:, 0] ** 5 expected_output[:, 10] = x_input_train_data[:, 1] ** 5 expected_output[:, 11] = x_input_train_data[:, 0] ** 6 expected_output[:, 12] = x_input_train_data[:, 1] ** 6 expected_output[:, 13] = x_input_train_data[:, 0] ** 7 expected_output[:, 14] = x_input_train_data[:, 1] ** 7 expected_output[:, 15] = x_input_train_data[:, 0] ** 8 expected_output[:, 16] = x_input_train_data[:, 1] ** 8 expected_output[:, 17] = x_input_train_data[:, 0] ** 9 expected_output[:, 18] = x_input_train_data[:, 1] ** 9 expected_output[:, 19] = x_input_train_data[:, 0] ** 10 expected_output[:, 20] = x_input_train_data[:, 1] ** 10 np.testing.assert_equal(output_1, expected_output) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_polygeneration_05(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) x_input_train_data = regression_data_input[:, :-1] data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=1 ) poly_degree = 1 additional_term = np.sqrt(x_input_train_data) output_1 = data_feed.polygeneration( poly_degree, data_feed.multinomials, x_input_train_data, additional_term ) expected_output_nr = x_input_train_data.shape[0] expected_output_nc = ( 6 # New number of features should be = 2 * max_polynomial_order + 4 ) expected_output = np.zeros((expected_output_nr, expected_output_nc)) expected_output[:, 0] = 1 expected_output[:, 1] = x_input_train_data[:, 0] expected_output[:, 2] = x_input_train_data[:, 1] expected_output[:, 3] = x_input_train_data[:, 0] * x_input_train_data[:, 1] expected_output[:, 4] = additional_term[:, 0] expected_output[:, 5] = additional_term[:, 1] np.testing.assert_equal(output_1, expected_output) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_cost_function_01(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1] x_data_nr = x.shape[0] x_data_nc = 6 x_vector = np.zeros((x_data_nr, x_data_nc)) x_vector[:, 0] = 1 x_vector[:, 1] = x[:, 0] x_vector[:, 2] = x[:, 1] x_vector[:, 3] = x[:, 0] ** 2 x_vector[:, 4] = x[:, 1] ** 2 x_vector[:, 5] = x[:, 0] * x[:, 1] theta = np.zeros((x_data_nc, 1)) expected_value = 6613.875 # Calculated externally as sum(y^2) / 2m output_1 = PolynomialRegression.cost_function( theta, x_vector, y, reg_parameter=0 ) assert output_1 == expected_value @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_cost_function_02(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1] x_data_nr = x.shape[0] x_data_nc = 6 x_vector = np.zeros((x_data_nr, x_data_nc)) x_vector[:, 0] = 1 x_vector[:, 1] = x[:, 0] x_vector[:, 2] = x[:, 1] x_vector[:, 3] = x[:, 0] ** 2 x_vector[:, 4] = x[:, 1] ** 2 x_vector[:, 5] = x[:, 0] * x[:, 1] theta = np.array( [[4.5], [3], [3], [1], [1], [0]] ) # coefficients in (x1 + 1.5)^2 + (x2 + 1.5) ^ 2 expected_value = 90.625 # Calculated externally as sum(dy^2) / 2m output_1 = PolynomialRegression.cost_function( theta, x_vector, y, reg_parameter=0 ) assert output_1 == expected_value @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_cost_function_03(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1] x_data_nr = x.shape[0] x_data_nc = 6 x_vector = np.zeros((x_data_nr, x_data_nc)) x_vector[:, 0] = 1 x_vector[:, 1] = x[:, 0] x_vector[:, 2] = x[:, 1] x_vector[:, 3] = x[:, 0] ** 2 x_vector[:, 4] = x[:, 1] ** 2 x_vector[:, 5] = x[:, 0] * x[:, 1] theta = np.array( [[2], [2], [2], [1], [1], [0]] ) # Actual coefficients in (x1 + 1)^2 + (x2 + 1) ^ 2 expected_value = 0 # Value should return zero for exact solution output_1 = PolynomialRegression.cost_function( theta, x_vector, y, reg_parameter=0 ) assert output_1 == expected_value @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_gradient_function_01(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1] x_data_nr = x.shape[0] x_data_nc = 6 x_vector = np.zeros((x_data_nr, x_data_nc)) x_vector[:, 0] = 1 x_vector[:, 1] = x[:, 0] x_vector[:, 2] = x[:, 1] x_vector[:, 3] = x[:, 0] ** 2 x_vector[:, 4] = x[:, 1] ** 2 x_vector[:, 5] = x[:, 0] * x[:, 1] theta = np.zeros((x_data_nc,)) expected_value = np.array( [[-97], [-635], [-635], [-5246.875], [-5246.875], [-3925]] ) # Calculated externally: see Excel sheet expected_value = expected_value.reshape( expected_value.shape[0], ) output_1 = PolynomialRegression.gradient_function( theta, x_vector, y, reg_parameter=0 ) np.testing.assert_equal(output_1, expected_value) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_gradient_function_02(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1] x_data_nr = x.shape[0] x_data_nc = 6 x_vector = np.zeros((x_data_nr, x_data_nc)) x_vector[:, 0] = 1 x_vector[:, 1] = x[:, 0] x_vector[:, 2] = x[:, 1] x_vector[:, 3] = x[:, 0] ** 2 x_vector[:, 4] = x[:, 1] ** 2 x_vector[:, 5] = x[:, 0] * x[:, 1] theta = np.array( [[4.5], [3], [3], [1], [1], [0]] ) # coefficients in (x1 + 1.5)^2 + (x2 + 1.5) ^ 2 theta = theta.reshape( theta.shape[0], ) expected_value = np.array( [[12.5], [75], [75], [593.75], [593.75], [437.5]] ) # Calculated externally: see Excel sheet expected_value = expected_value.reshape( expected_value.shape[0], ) output_1 = PolynomialRegression.gradient_function( theta, x_vector, y, reg_parameter=0 ) np.testing.assert_equal(output_1, expected_value) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_gradient_function_03(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1] x_data_nr = x.shape[0] x_data_nc = 6 x_vector = np.zeros((x_data_nr, x_data_nc)) x_vector[:, 0] = 1 x_vector[:, 1] = x[:, 0] x_vector[:, 2] = x[:, 1] x_vector[:, 3] = x[:, 0] ** 2 x_vector[:, 4] = x[:, 1] ** 2 x_vector[:, 5] = x[:, 0] * x[:, 1] theta = np.array( [[2], [2], [2], [1], [1], [0]] ) # Actual coefficients in (x1 + 1)^2 + (x2 + 1) ^ 2 theta = theta.reshape( theta.shape[0], ) expected_value = np.array( [[0], [0], [0], [0], [0], [0]] ) # Calculated externally: see Excel sheet expected_value = expected_value.reshape( expected_value.shape[0], ) output_1 = PolynomialRegression.gradient_function( theta, x_vector, y, reg_parameter=0 ) np.testing.assert_equal(output_1, expected_value) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test_bfgs_parameter_optimization_01(self, array_type): original_data_input = array_type(self.test_data) # Create x vector for ax2 + bx + c: x data supplied in x_vector input_array = np.array( [ [0, 1], [1, 4], [2, 9], [3, 16], [4, 25], [5, 36], [6, 49], [7, 64], [8, 81], [9, 100], ] ) x = input_array[:, 0] y = input_array[:, 1] x_vector = np.zeros((x.shape[0], 3)) x_vector[:, 0] = ( x[ :, ] ** 2 ) x_vector[:, 1] = x[ :, ] x_vector[:, 2] = 1 expected_value = np.array([[1.0], [2.0], [1.0]]).reshape( 3, ) data_feed = PolynomialRegression( original_data_input, input_array, maximum_polynomial_order=5, solution_method="bfgs", ) output_1 = data_feed.bfgs_parameter_optimization(x_vector, y) assert data_feed.solution_method == "bfgs" np.testing.assert_array_equal(expected_value, np.round(output_1, 4)) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_bfgs_parameter_optimization_02(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) # Create x vector for ax2 + bx + c: x data supplied in x_vector x = regression_data_input[:, :-1] y = regression_data_input[:, -1] x_vector = np.zeros((x.shape[0], 6)) x_vector[:, 0] = x[:, 0] ** 2 x_vector[:, 1] = x[:, 1] ** 2 x_vector[:, 2] = x[:, 0] x_vector[:, 3] = x[:, 1] x_vector[:, 4] = x[:, 1] * x[:, 0] x_vector[:, 5] = 1 expected_value = np.array([[1.0], [1.0], [2.0], [2.0], [0.0], [2.0]]).reshape( 6, ) data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=4, solution_method="bfgs", ) output_1 = data_feed.bfgs_parameter_optimization(x_vector, y) assert data_feed.solution_method == "bfgs" np.testing.assert_array_equal(expected_value, np.round(output_1, 4)) @pytest.mark.unit def test_mle_estimate_01(self): # Create x vector for ax2 + bx + c: x data supplied in x_vector input_array = np.array( [ [0, 1], [1, 4], [2, 9], [3, 16], [4, 25], [5, 36], [6, 49], [7, 64], [8, 81], [9, 100], ] ) x = input_array[:, 0] y = input_array[:, 1] x_vector = np.zeros((x.shape[0], 3)) x_vector[:, 0] = ( x[ :, ] ** 2 ) x_vector[:, 1] = x[ :, ] x_vector[:, 2] = 1 expected_value = np.array([[1.0], [2.0], [1.0]]).reshape( 3, ) output_1 = PolynomialRegression.MLE_estimate(x_vector, y) np.testing.assert_array_equal(expected_value, np.round(output_1, 4)) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_mle_estimate_02(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1] x_vector = np.zeros((x.shape[0], 6)) x_vector[:, 0] = x[:, 0] ** 2 x_vector[:, 1] = x[:, 1] ** 2 x_vector[:, 2] = x[:, 0] x_vector[:, 3] = x[:, 1] x_vector[:, 4] = x[:, 1] * x[:, 0] x_vector[:, 5] = 1 expected_value = np.array([[1.0], [1.0], [2.0], [2.0], [0.0], [2.0]]).reshape( 6, ) output_1 = PolynomialRegression.MLE_estimate(x_vector, y) np.testing.assert_array_equal(expected_value, np.round(output_1, 4)) @pytest.mark.unit def test_pyomo_optimization_01(self): x_vector = np.array([[i**2, i, 1] for i in range(10)]) y = np.array([[i**2] for i in range(1, 11)]) expected_value = np.array([[1.0], [2.0], [1.0]]) output_1 = PolynomialRegression.pyomo_optimization(x_vector, y) np.testing.assert_array_equal(expected_value, np.round(output_1, 4)) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_pyomo_optimization_02(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1] x_vector = np.zeros((x.shape[0], 6)) x_vector[:, 0] = x[:, 0] ** 2 x_vector[:, 1] = x[:, 1] ** 2 x_vector[:, 2] = x[:, 0] x_vector[:, 3] = x[:, 1] x_vector[:, 4] = x[:, 1] * x[:, 0] x_vector[:, 5] = 1 expected_value = np.array([[1.0], [1.0], [2.0], [2.0], [0.0], [2.0]]) output_1 = PolynomialRegression.pyomo_optimization(x_vector, y) np.testing.assert_array_equal(expected_value, np.round(output_1, 4)) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_cross_validation_error_calculation_01(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1].reshape(regression_data_input.shape[0], 1) x_data_nr = x.shape[0] x_data_nc = 6 x_vector = np.zeros((x_data_nr, x_data_nc)) x_vector[:, 0] = 1 x_vector[:, 1] = x[:, 0] x_vector[:, 2] = x[:, 1] x_vector[:, 3] = x[:, 0] ** 2 x_vector[:, 4] = x[:, 1] ** 2 x_vector[:, 5] = x[:, 0] * x[:, 1] theta = np.zeros((x_data_nc, 1)) expected_value = 2 * 6613.875 # Calculated externally as sum(y^2) / m output_1 = PolynomialRegression.cross_validation_error_calculation( theta, x_vector, y ) assert output_1 == expected_value @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_cross_validation_error_calculation_02(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1].reshape(regression_data_input.shape[0], 1) x_data_nr = x.shape[0] x_data_nc = 6 x_vector = np.zeros((x_data_nr, x_data_nc)) x_vector[:, 0] = 1 x_vector[:, 1] = x[:, 0] x_vector[:, 2] = x[:, 1] x_vector[:, 3] = x[:, 0] ** 2 x_vector[:, 4] = x[:, 1] ** 2 x_vector[:, 5] = x[:, 0] * x[:, 1] theta = np.array( [[4.5], [3], [3], [1], [1], [0]] ) # coefficients in (x1 + 1.5)^2 + (x2 + 1.5) ^ 2 expected_value = 2 * 90.625 # Calculated externally as sum(dy^2) / 2m output_1 = PolynomialRegression.cross_validation_error_calculation( theta, x_vector, y ) assert output_1 == expected_value @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array]) def test_cross_validation_error_calculation_02(self, array_type): regression_data_input = array_type(self.training_data) x = regression_data_input[:, :-1] y = regression_data_input[:, -1].reshape(regression_data_input.shape[0], 1) x_data_nr = x.shape[0] x_data_nc = 6 x_vector = np.zeros((x_data_nr, x_data_nc)) x_vector[:, 0] = 1 x_vector[:, 1] = x[:, 0] x_vector[:, 2] = x[:, 1] x_vector[:, 3] = x[:, 0] ** 2 x_vector[:, 4] = x[:, 1] ** 2 x_vector[:, 5] = x[:, 0] * x[:, 1] theta = np.array( [[2], [2], [2], [1], [1], [0]] ) # Actual coefficients in (x1 + 1)^2 + (x2 + 1) ^ 2 expected_value = 2 * 0 # Value should return zero for exact solution output_1 = PolynomialRegression.cross_validation_error_calculation( theta, x_vector, y ) assert output_1 == expected_value def mock_optimization(self, x, y): return 10 * np.ones((x.shape[1], 1)) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) @patch.object(PolynomialRegression, "MLE_estimate", mock_optimization) def test_polyregression_01(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, solution_method="mle", ) poly_order = 2 training_data = regression_data_input[0:20, :] test_data = regression_data_input[20:, :] expected_output = 10 * np.ones((6, 1)) output_1, _, _ = data_feed.polyregression(poly_order, training_data, test_data) np.testing.assert_array_equal(expected_output, output_1) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) @patch.object( PolynomialRegression, "bfgs_parameter_optimization", mock_optimization ) def test_polyregression_02(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5, solution_method="bfgs", ) poly_order = 2 training_data = regression_data_input[0:20, :] test_data = regression_data_input[20:, :] expected_output = 10 * np.ones((6, 1)) output_1, _, _ = data_feed.polyregression(poly_order, training_data, test_data) np.testing.assert_array_equal(expected_output, output_1) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) @patch.object(PolynomialRegression, "pyomo_optimization", mock_optimization) def test_polyregression_03(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) poly_order = 2 training_data = regression_data_input[0:20, :] test_data = regression_data_input[20:, :] expected_output = 10 * np.ones((6, 1)) output_1, _, _ = data_feed.polyregression(poly_order, training_data, test_data) np.testing.assert_array_equal(expected_output, output_1) @pytest.mark.unit @pytest.mark.parametrize("array_type1", [pd.DataFrame]) @pytest.mark.parametrize("array_type2", [np.array]) def test_polyregression_04(self, array_type1, array_type2): original_data_input = array_type1(self.full_data) regression_data_input = array_type2(self.training_data) data_feed = PolynomialRegression( original_data_input, regression_data_input, maximum_polynomial_order=5 ) poly_order = 10 training_data = regression_data_input[0:20, :] test_data = regression_data_input[20:, :] expected_output = np.Inf output_1, output_2, output_3 = data_feed.polyregression( poly_order, training_data, test_data ) np.testing.assert_array_equal(expected_output, output_1) np.testing.assert_array_equal(expected_output, output_2) np.testing.assert_array_equal(expected_output, output_3) @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test_surrogate_performance_01(self, array_type): original_data_input = array_type(self.test_data) input_array = np.array( [ [0, 1], [1, 4], [2, 9], [3, 16], [4, 25], [5, 36], [6, 49], [7, 64], [8, 81], [9, 100], ] ) order_best = 2 phi_best = np.array([[0.0], [0.0], [0.0]]) expected_value_1 = 38.5 expected_value_2 = 2533.3 expected_value_3 = -1.410256 expected_value_4 = 0 data_feed = PolynomialRegression( original_data_input, input_array, maximum_polynomial_order=5 ) _, output_1, output_2, output_3, output_4 = data_feed.surrogate_performance( phi_best, order_best ) assert output_1 == expected_value_1 assert output_2 == expected_value_2 assert np.round(output_3, 4) ==
np.round(expected_value_3, 4)
numpy.round
# encoding: utf8 import unittest from dynd import nd import numpy as np import bcolz import tables as tb from datashape import dshape from datetime import datetime import os from blaze.compute.chunks import ChunkIterator, chunks import pandas as pd from pandas import DataFrame from blaze.data import CSV from blaze.api.into import into, discover from blaze import Data from blaze.data import Concat from blaze.utils import tmpfile, filetext, example from blaze.pytables import PyTables import pytest class TestInto(unittest.TestCase): def test_containers(self): self.assertEqual(into([], (1, 2, 3)), [1, 2, 3]) self.assertEqual(into([], iter((1, 2, 3))), [1, 2, 3]) self.assertEqual(into((), (1, 2, 3)), (1, 2, 3)) self.assertEqual(into({}, [(1, 2), (3, 4)]), {1: 2, 3: 4}) self.assertEqual(into((), {1: 2, 3: 4}), ((1, 2), (3, 4))) self.assertEqual(into((), {'cat': 2, 'dog': 4}), (('cat', 2), ('dog', 4))) def test_dynd(self): self.assertEqual(nd.as_py(into(nd.array(), (1, 2, 3))), nd.as_py(nd.array([1, 2, 3]))) self.assertEqual(into([], nd.array([1, 2])), [1, 2]) self.assertEqual(into([], nd.array([[1, 2], [3, 4]])), [[1, 2], [3, 4]]) def test_numpy(self): assert (into(np.array(0), [1, 2]) == np.array([1, 2])).all() assert (into(np.array(0), iter([1, 2])) == np.array([1, 2])).all() self.assertEqual(into([], np.array([1, 2])), [1, 2]) def test_numpy_datetime(self): assert isinstance(into(np.ndarray(0), [datetime(2014, 1, 1)])[0], np.datetime64) def test_type(self): self.assertEqual(into(list, (1, 2, 3)), into([], (1, 2, 3))) self.assertEqual(str(into(np.ndarray, (1, 2, 3))), str(into(np.ndarray(()), (1, 2, 3)))) @pytest.yield_fixture def h5(): pytest.importorskip('tables') from tables import IsDescription, UInt8Col, StringCol, open_file class Test(IsDescription): posted_dow = UInt8Col(pos=0) jobtype = UInt8Col(pos=1) location = UInt8Col(pos=2) date = StringCol(20, pos=3) country = StringCol(2, pos=4) with tmpfile('.h5') as filename: h5file = open_file(filename, mode="w", title="Test file") group = h5file.create_group("/", 'test', 'Info') tab = h5file.create_table(group, 'sample', Test, "Example") # Insert a new record tab.append([(3, 1, 0, '20121105', 'ab')]) tab.flush() yield h5file h5file.close() data = [('Alice', 100), ('Bob', 200)] schema = '{name: string, amount: int}' data_table = Data(data, '2 * {name: string, amount: int}') @pytest.fixture def cds(): pytest.importorskip('bokeh') from bokeh.objects import ColumnDataSource cds = ColumnDataSource({ 'id': [1, 2, 3], 'name': ['Alice', 'Bob', 'Charlie'], 'amount': [100, 200, 300], 'timestamp': [datetime(2000, 12, 25, 0, 0, 1), datetime(2001, 12, 25, 0, 0, 1), datetime(2002, 12, 25, 0, 0, 1)] }) return cds @pytest.yield_fixture def good_csv(): with tmpfile(".csv") as filename: with open(filename, mode='w') as f: # Insert a new record f.write("userid,text,country\n") f.write("1,Alice,az\n") f.write("2,Bob,bl\n") f.write("3,Charlie,cz\n") yield filename @pytest.yield_fixture def bad_csv_df(): with tmpfile(".csv") as filename: with open(filename, mode='w') as badfile: # Insert a new record badfile.write("userid,text,country\n") badfile.write("1,Alice,az\n") badfile.write("2,Bob,bl\n") for i in range(100): badfile.write("%d,badguy,zz\n" % i) badfile.write("4,Dan,gb,extra,extra\n") yield filename @pytest.yield_fixture def out_hdf5(): pytest.importorskip('tables') with tmpfile(".h5") as filename: yield filename @pytest.yield_fixture def out_hdf5_alt(): pytest.importorskip('tables') with tmpfile(".h5") as filename: yield filename class A(object): pass class B(object): pass def test_into_fails(): with pytest.raises(NotImplementedError): into(A(), B()) def test_into_pytables_dataframe(h5): samp = h5.root.test.sample final = into(pd.DataFrame, samp) assert len(final) == 1 def test_pandas_dynd(): arr = nd.array(data, dtype=schema) result = into(DataFrame, arr) expected = DataFrame(data, columns=['name', 'amount']) assert str(result) == str(expected) nda = nd.array([[1,2,3], [4,5,6], [7,8,9]]) csv = CSV(example('accounts.csv')) df_csv = into(DataFrame, csv) df_nd = into(df_csv, nda) df_no_names = into(DataFrame, nda) assert list(df_nd.columns) == list(df_csv.columns) assert list(df_no_names.columns) == [0,1,2] def test_pandas_numpy(): dtype = [('name', 'O'), ('amount', int)] x = np.array(data, dtype=dtype) result = into(DataFrame(), x) expected = DataFrame(data, columns=['name', 'amount']) assert str(result) == str(expected) result = into(DataFrame(columns=['name', 'amount']), x) expected = DataFrame(data, columns=['name', 'amount']) assert str(result) == str(expected) def test_pandas_seq(): assert str(into(DataFrame, [1, 2])) == str(DataFrame([1, 2])) assert str(into(DataFrame, (1, 2))) == str(DataFrame([1, 2])) assert (str(into(DataFrame(columns=['a', 'b']), [(1, 2), (3, 4)])) == str(DataFrame([[1, 2], [3, 4]], columns=['a', 'b']))) def test_pandas_pandas(): df = DataFrame(data, columns=['name', 'balance']) new_df = into(DataFrame, df) # Data must be the same assert np.all(new_df == df) # new_df should be a copy of df assert id(new_df) != id(df) def test_DataFrame_Series(): df = DataFrame(data, columns=['name', 'balance']) new_df = into(DataFrame, df['name']) assert np.all(new_df == DataFrame([['Alice'], ['Bob']], columns=['name'])) # new_df should be a copy of df assert id(new_df) != id(df['name']) assert isinstance(new_df, DataFrame) def test_discover_ndarray(): arr = nd.array(data, dtype=schema) assert discover(arr) == 2 * dshape(schema) def test_discover_pandas(): df = DataFrame(data, columns=['name', 'balance']) assert discover(df).subshape[0] == dshape(schema) def test_discover_pandas(): df = DataFrame(data, columns=['name', 'balance']) result = into(nd.array, df) assert nd.as_py(result, tuple=True) == data def test_into_table_dataframe(): t = data_table assert list(into(DataFrame(), t).columns) == list(t.fields) assert into([], into(DataFrame(), t)) == list(map(tuple, data)) def test_Column_data_source(): pytest.importorskip('bokeh') from bokeh.objects import ColumnDataSource cds = into(ColumnDataSource(), data_table) assert isinstance(cds, ColumnDataSource) assert set(cds.column_names) == set(data_table.fields) def test_into_ColumnDataSource_pytables(): pytest.importorskip('bokeh') from bokeh.objects import ColumnDataSource pyt = PyTables(example('accounts.h5'), '/accounts') cds = into(ColumnDataSource, pyt) assert 'balance' and 'id' and 'name' in cds.column_names def test_numpy_list(): dtype = into(np.ndarray, data).dtype assert np.issubdtype(dtype[0], object) assert np.issubdtype(dtype[1], int) assert into([], into(np.ndarray, data)) == data def test_numpy_table_expr(): t = Data(data, 'var * {name: string, amount: int64}') assert (into(np.ndarray, t).dtype ==
np.dtype([('name', 'O'), ('amount', 'i8')])
numpy.dtype
#!/usr/bin/env python # coding=utf-8 """ Basic visualization functions | Option | Description | | ------ | ----------- | | title | viz.py | | authors | <NAME>, <NAME>, <NAME>, <NAME> | | date | 2020-03-18 | """ from copy import copy import os import numpy as np import matplotlib import matplotlib.pyplot as plt import mne import meshio def transform(locs: np.ndarray,traX: float=0.15, traY: float=0, traZ: float=0.5, rotY: float=(np.pi)/2, rotZ: float=(np.pi)/2) -> np.ndarray: """ Calculates new locations for the EEG locations. Arguments: locs: array of shape (n_sensors, 3) 3d coordinates of the sensors traX: float X translation to apply to the sensors traY: float Y translation to apply to the sensors traZ: float Z translation to apply to the sensors rotY: float Y rotation to apply to the sensors rotZ: float Z rotation to apply to the sensors Returns: result: array (n_sensors, 3) new 3d coordinates of the sensors """ # Z rotation newX = locs[:, 0] * np.cos(rotZ) - locs[:, 1] * np.sin(rotZ) newY = locs[:, 0] *
np.sin(rotZ)
numpy.sin
import numpy import pytest from numpy.testing import assert_array_almost_equal_nulp from shapely.geometry import Point from generator import geometry, optimal_path def test_dilate_and_unify_object_bounds(): bounds = [ {'x': -1.0, 'z': -1.0}, {'x': -1.0, 'z': 1.0}, {'x': 1.0, 'z': 1.0}, {'x': 1.0, 'z': -1.0} ] output = optimal_path._dilate_and_unify_object_bounds( [bounds], 0.5, Point(0, -4), Point(0, 4) ) assert_array_almost_equal_nulp(numpy.array(output), numpy.array([[ (-1.0, -1.5), (-1.5, -1.0), (-1.5, 1.0), (-1.0, 1.5), (1.0, 1.5), (1.5, 1.0), (1.5, -1.0), (1.0, -1.5) ]])) output = optimal_path._dilate_and_unify_object_bounds( [bounds], 1, Point(0, -4), Point(0, 4) ) assert_array_almost_equal_nulp(numpy.array(output), numpy.array([[ (-1.0, -2), (-2, -1.0), (-2, 1.0), (-1.0, 2), (1.0, 2), (2, 1.0), (2, -1.0), (1.0, -2) ]])) # Will not dilate if source is inside bounds. output = optimal_path._dilate_and_unify_object_bounds( [bounds], 0.5, Point(0, -1.25), Point(0, 4) ) assert_array_almost_equal_nulp(numpy.array(output), numpy.array([[ (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0), (1.0, -1.0) ]])) # Will not dilate if target is inside bounds. output = optimal_path._dilate_and_unify_object_bounds( [bounds], 0.5, Point(0, -4), Point(0, 1.25) ) assert_array_almost_equal_nulp(numpy.array(output), numpy.array([[ (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0), (1.0, -1.0) ]])) def test_dilate_and_unify_object_bounds_multiple_poly(): bounds_1 = [ {'x': -1.0, 'z': -1.0}, {'x': -1.0, 'z': 1.0}, {'x': 1.0, 'z': 1.0}, {'x': 1.0, 'z': -1.0} ] bounds_2 = [ {'x': -4.0, 'z': -1.0}, {'x': -4.0, 'z': 1.0}, {'x': -3.0, 'z': 1.0}, {'x': -3.0, 'z': -1.0} ] bounds_3 = [ {'x': 3.0, 'z': -1.0}, {'x': 3.0, 'z': 1.0}, {'x': 4.0, 'z': 1.0}, {'x': 4.0, 'z': -1.0} ] output = optimal_path._dilate_and_unify_object_bounds( [bounds_1, bounds_2, bounds_3], 0.5, Point(0, -4), Point(0, 4) ) assert len(output) == 3 assert_array_almost_equal_nulp(numpy.array(output[0]), numpy.array([ (-4.0, -1.5), (-4.5, -1.0), (-4.5, 1.0), (-4.0, 1.5), (-3.0, 1.5), (-2.5, 1.0), (-2.5, -1.0), (-3.0, -1.5) ])) assert_array_almost_equal_nulp(numpy.array(output[1]), numpy.array([ (3.0, -1.5), (2.5, -1.0), (2.5, 1.0), (3.0, 1.5), (4.0, 1.5), (4.5, 1.0), (4.5, -1.0), (4.0, -1.5) ])) assert_array_almost_equal_nulp(numpy.array(output[2]), numpy.array([ (-1.0, -1.5), (-1.5, -1.0), (-1.5, 1.0), (-1.0, 1.5), (1.0, 1.5), (1.5, 1.0), (1.5, -1.0), (1.0, -1.5) ])) bounds_4 = [ {'x': 1.0, 'z': -1.0}, {'x': 1.0, 'z': 1.0}, {'x': 3.0, 'z': 1.0}, {'x': 3.0, 'z': -1.0} ] output = optimal_path._dilate_and_unify_object_bounds( [bounds_1, bounds_2, bounds_3, bounds_4], 0.5, Point(0, -4), Point(0, 4) ) assert len(output) == 2 assert_array_almost_equal_nulp(numpy.array(output[0]), numpy.array([ (-1.0, -1.5), (-1.5, -1.0), (-1.5, 1.0), (-1.0, 1.5), (1.0, 1.5), (3.0, 1.5), (4.0, 1.5), (4.5, 1.0), (4.5, -1.0), (4.0, -1.5), (3.0, -1.5), (1.0, -1.5) ])) assert_array_almost_equal_nulp(numpy.array(output[1]), numpy.array([ (-4.0, -1.5), (-4.5, -1.0), (-4.5, 1.0), (-4.0, 1.5), (-3.0, 1.5), (-2.5, 1.0), (-2.5, -1.0), (-3.0, -1.5) ])) def test_dilate_target_bounds(): output = optimal_path._dilate_target_bounds([ {'x': -1.0, 'z': -1.0}, {'x': -1.0, 'z': 1.0}, {'x': 1.0, 'z': 1.0}, {'x': 1.0, 'z': -1.0} ]) assert_array_almost_equal_nulp(
numpy.array(output)
numpy.array
from __future__ import print_function from pyorbit.classes.common import * from pyorbit.classes.model_container_multinest import ModelContainerMultiNest from pyorbit.classes.model_container_polychord import ModelContainerPolyChord from pyorbit.classes.model_container_emcee import ModelContainerEmcee from pyorbit.classes.input_parser import pars_input from pyorbit.classes.io_subroutines import * import numpy as np import os import matplotlib as mpl import sys mpl.use('Agg') from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.ticker import AutoMinorLocator import corner import pyorbit.classes.kepler_exo as kepler_exo import pyorbit.classes.common as common import pyorbit.classes.results_analysis as results_analysis import h5py import csv import re __all__ = ["pyorbit_getresults"] def pyorbit_getresults(config_in, sampler, plot_dictionary): try: use_tex = config_in['parameters']['use_tex'] except: use_tex = True if use_tex is False: print(' LaTeX disabled') if plot_dictionary['use_getdist']: from getdist import plots, MCSamples # plt.rc('font', **{'family': 'serif', 'serif': ['Computer Modern Roman']}) plt.rcParams["font.family"] = "Times New Roman" plt.rc('text', usetex=use_tex) sample_keyword = { 'multinest': ['multinest', 'MultiNest', 'multi'], 'polychord': ['polychord', 'PolyChord', 'polychrod', 'poly'], 'emcee': ['emcee', 'MCMC', 'Emcee'] } if sampler in sample_keyword['emcee']: dir_input = './' + config_in['output'] + '/emcee/' dir_output = './' + config_in['output'] + '/emcee_plot/' os.system('mkdir -p ' + dir_output) mc, starting_point, population, prob, state, \ sampler_chain, sampler_lnprobability, sampler_acceptance_fraction, _ = \ emcee_load_from_cpickle(dir_input) pars_input(config_in, mc, reload_emcee=True) if hasattr(mc.emcee_parameters, 'version'): emcee_version = mc.emcee_parameters['version'][0] else: import emcee emcee_version = emcee.__version__[0] mc.model_setup() """ Required to create the right objects inside each class - if defined inside """ theta_dictionary = results_analysis.get_theta_dictionary(mc) nburnin = int(mc.emcee_parameters['nburn']) nthin = int(mc.emcee_parameters['thin']) nsteps = int(sampler_chain.shape[1] * nthin) flat_chain = emcee_flatchain(sampler_chain, nburnin, nthin) flat_lnprob = emcee_flatlnprob(sampler_lnprobability, nburnin, nthin, emcee_version) flat_BiC = -2 * flat_lnprob + mc.ndim * np.log(mc.ndata) lnprob_med = common.compute_value_sigma(flat_lnprob) chain_med = common.compute_value_sigma(flat_chain) chain_MAP, lnprob_MAP = common.pick_MAP_parameters(flat_chain, flat_lnprob) n_samplings, n_pams = np.shape(flat_chain) print() print('emcee version: ', emcee.__version__) if mc.emcee_parameters['version'] == '2': print('WARNING: upgrading to version 3 is strongly advised') print() print(' Reference Time Tref: {}'.format(mc.Tref)) print() print(' Dimensions = {}'.format(mc.ndim)) print(' Nwalkers = {}'.format(mc.emcee_parameters['nwalkers'])) print() print(' Steps: {}'.format(nsteps)) results_analysis.print_integrated_ACF(sampler_chain, theta_dictionary, nthin) if sampler in sample_keyword['multinest']: plot_dictionary['lnprob_chain'] = False plot_dictionary['chains'] = False plot_dictionary['traces'] = False dir_input = './' + config_in['output'] + '/multinest/' dir_output = './' + config_in['output'] + '/multinest_plot/' os.system('mkdir -p ' + dir_output) mc = nested_sampling_load_from_cpickle(dir_input) mc.model_setup() mc.initialize_logchi2() results_analysis.results_resumen(mc, None, skip_theta=True) """ Required to create the right objects inside each class - if defined inside """ theta_dictionary = results_analysis.get_theta_dictionary(mc) data_in = np.genfromtxt(dir_input + 'post_equal_weights.dat') flat_lnprob = data_in[:, -1] flat_chain = data_in[:, :-1] # nsample = np.size(flat_lnprob) n_samplings, n_pams = np.shape(flat_chain) lnprob_med = common.compute_value_sigma(flat_lnprob) chain_med = common.compute_value_sigma(flat_chain) chain_MAP, lnprob_MAP = common.pick_MAP_parameters(flat_chain, flat_lnprob) print() print(' Reference Time Tref: {}'.format(mc.Tref)) print() print(' Dimensions: {}'.format(mc.ndim)) print() print(' Samples: {}'.format(n_samplings)) if sampler in sample_keyword['polychord']: plot_dictionary['lnprob_chain'] = False plot_dictionary['chains'] = False plot_dictionary['traces'] = False dir_input = './' + config_in['output'] + '/polychord/' dir_output = './' + config_in['output'] + '/polychord_plot/' os.system('mkdir -p ' + dir_output) mc = nested_sampling_load_from_cpickle(dir_input) # pars_input(config_in, mc) mc.model_setup() mc.initialize_logchi2() results_analysis.results_resumen(mc, None, skip_theta=True) """ Required to create the right objects inside each class - if defined inside """ theta_dictionary = results_analysis.get_theta_dictionary(mc) data_in = np.genfromtxt(dir_input + 'pyorbit_equal_weights.txt') flat_lnprob = data_in[:, 1] flat_chain = data_in[:, 2:] # nsample = np.size(flat_lnprob) n_samplings, n_pams = np.shape(flat_chain) lnprob_med = common.compute_value_sigma(flat_lnprob) chain_med = common.compute_value_sigma(flat_chain) chain_MAP, lnprob_MAP = common.pick_MAP_parameters(flat_chain, flat_lnprob) print() print(' Reference Time Tref: {}'.format(mc.Tref)) print() print(' Dimensions: {}'.format(mc.ndim)) print() print(' Samples: {}'.format(n_samplings)) print() print(' LN posterior: {0:12f} {1:12f} {2:12f} (15-84 p) '.format(lnprob_med[0], lnprob_med[2], lnprob_med[1])) MAP_log_priors, MAP_log_likelihood = mc.log_priors_likelihood(chain_MAP) BIC = -2.0 * MAP_log_likelihood + np.log(mc.ndata) * mc.ndim AIC = -2.0 * MAP_log_likelihood + 2.0 * mc.ndim AICc = AIC + (2.0 + 2.0 * mc.ndim) * mc.ndim / (mc.ndata - mc.ndim - 1.0) # AICc for small sample print() print(' MAP log_priors = {}'.format(MAP_log_priors)) print(' MAP log_likelihood = {}'.format(MAP_log_likelihood)) print(' MAP BIC (using likelihood) = {}'.format(BIC)) print(' MAP AIC (using likelihood) = {}'.format(AIC)) print(' MAP AICc (using likelihood) = {}'.format(AICc)) MAP_log_posterior = MAP_log_likelihood + MAP_log_priors BIC = -2.0 * MAP_log_posterior + np.log(mc.ndata) * mc.ndim AIC = -2.0 * MAP_log_posterior + 2.0 * mc.ndim AICc = AIC + (2.0 + 2.0 * mc.ndim) * mc.ndim / (mc.ndata - mc.ndim - 1.0) print() print(' MAP BIC (using posterior) = {}'.format(BIC)) print(' MAP AIC (using posterior) = {}'.format(AIC)) print(' MAP AICc (using posterior) = {}'.format(AICc)) if mc.ndata < 40 * mc.ndim: print() print(' AICc suggested over AIC because NDATA ( {0:12f} ) < 40 * NDIM ( {1:12f} )'.format(mc.ndata, mc.ndim)) else: print() print(' AIC suggested over AICs because NDATA ( {0:12f} ) > 40 * NDIM ( {1:12f} )'.format(mc.ndata, mc.ndim)) print() print('****************************************************************************************************') print('****************************************************************************************************') print() print(' Confidence intervals (median value, 34.135th percentile from the median on the left and right side)') planet_variables = results_analysis.results_resumen(mc, flat_chain, chain_med=chain_MAP, return_samples=True) print() print('****************************************************************************************************') print() print(' Parameters corresponding to the Maximum a Posteriori probability ( {} )'.format(lnprob_MAP)) print() results_analysis.results_resumen(mc, chain_MAP) print() print('****************************************************************************************************') print() # Computation of all the planetary variables planet_variables_med = results_analysis.get_planet_variables(mc, chain_med[:, 0]) star_variables = results_analysis.get_stellar_parameters(mc, chain_med[:, 0]) planet_variables_MAP = results_analysis.get_planet_variables(mc, chain_MAP) star_variables_MAP = results_analysis.get_stellar_parameters(mc, chain_MAP) if plot_dictionary['lnprob_chain'] or plot_dictionary['chains']: print(' Plot FLAT chain ') if emcee_version == '2': fig = plt.figure(figsize=(12, 12)) plt.xlabel('$\ln \mathcal{L}$') plt.plot(sampler_lnprobability.T, '-', alpha=0.5) plt.axhline(lnprob_med[0]) plt.axvline(nburnin / nthin, c='r') plt.savefig(dir_output + 'LNprob_chain.png', bbox_inches='tight', dpi=300) plt.close(fig) else: fig = plt.figure(figsize=(12, 12)) plt.xlabel('$\ln \mathcal{L}$') plt.plot(sampler_lnprobability, '-', alpha=0.5) plt.axhline(lnprob_med[0]) plt.axvline(nburnin / nthin, c='r') plt.savefig(dir_output + 'LNprob_chain.png', bbox_inches='tight', dpi=300) plt.close(fig) print() print('****************************************************************************************************') print() if plot_dictionary['full_correlation']: corner_plot = { 'samples': np.zeros([np.size(flat_chain, axis=0), np.size(flat_chain, axis=1) + 1]), 'labels': [], 'truths': [] } i_corner = 0 for var, var_dict in theta_dictionary.items(): corner_plot['samples'][:, i_corner] = flat_chain[:, var_dict] corner_plot['labels'].append(re.sub('_', '-', var)) corner_plot['truths'].append(chain_med[var_dict, 0]) i_corner += 1 corner_plot['samples'][:, -1] = flat_lnprob[:] corner_plot['labels'].append('ln-prob') corner_plot['truths'].append(lnprob_med[0]) if plot_dictionary['use_getdist']: print(' Plotting full_correlation plot with GetDist') print() print(' Ignore the no burn in error warning from getdist') print(' since burn in has been already removed from the chains') plt.rc('text', usetex=False) samples = MCSamples(samples=corner_plot['samples'], names=corner_plot['labels'], labels=corner_plot['labels']) g = plots.getSubplotPlotter() g.settings.num_plot_contours = 6 g.triangle_plot(samples, filled=True) g.export(dir_output + "all_internal_variables_corner_getdist.pdf") print() else: # plotting mega-corner plot print('Plotting full_correlation plot with Corner') plt.rc('text', usetex=False) fig = corner.corner(corner_plot['samples'], labels=corner_plot['labels'], truths=corner_plot['truths']) fig.savefig(dir_output + "all_internal_variables_corner_dfm.pdf", bbox_inches='tight', dpi=300) plt.close(fig) plt.rc('text', usetex=use_tex) print() print('****************************************************************************************************') print() if plot_dictionary['chains']: print(' Plotting the chains... ') os.system('mkdir -p ' + dir_output + 'chains') for theta_name, ii in theta_dictionary.items(): file_name = dir_output + 'chains/' + repr(ii) + '_' + theta_name + '.png' fig = plt.figure(figsize=(12, 12)) plt.plot(sampler_chain[:, :, ii].T, '-', alpha=0.5) plt.axvline(nburnin / nthin, c='r') plt.savefig(file_name, bbox_inches='tight', dpi=300) plt.close(fig) print() print('****************************************************************************************************') print() if plot_dictionary['traces']: print(' Plotting the Gelman-Rubin traces... ') print() """ Gelman-Rubin traces are stored in the dedicated folder iniside the _plot folder Note that the GR statistics is not robust because the wlakers are not independent """ os.system('mkdir -p ' + dir_output + 'gr_traces') step_sampling = np.arange(nburnin / nthin, nsteps / nthin, 1, dtype=int) for theta_name, th in theta_dictionary.items(): rhat = np.array([GelmanRubin_v2(sampler_chain[:, :steps, th]) for steps in step_sampling]) print(' Gelman-Rubin: {0:5d} {1:12f} {2:s} '.format(th, rhat[-1], theta_name)) file_name = dir_output + 'gr_traces/v2_' + repr(th) + '_' + theta_name + '.png' fig = plt.figure(figsize=(12, 12)) plt.plot(step_sampling, rhat[:], '-', color='k') plt.axhline(1.01, c='C0') plt.savefig(file_name, bbox_inches='tight', dpi=300) plt.close(fig) print() print('****************************************************************************************************') print() if plot_dictionary['common_corner']: print(' Plotting the common models corner plots') plt.rc('text', usetex=False) for common_name, common_model in mc.common_models.items(): print(' Common model: ', common_name) corner_plot = { 'var_list': [], 'samples': [], 'labels': [], 'truths': [] } variable_values = common_model.convert(flat_chain) variable_median = common_model.convert(chain_med[:, 0]) if len(variable_median) < 1.: continue """ Check if the eccentricity and argument of pericenter were set as free parameters or fixed by simply checking the size of their distribution """ for var in variable_values.keys(): if np.size(variable_values[var]) == 1: variable_values[var] = variable_values[var] * np.ones(n_samplings) else: corner_plot['var_list'].append(var) corner_plot['samples'] = [] corner_plot['labels'] = [] corner_plot['truths'] = [] for var_i, var in enumerate(corner_plot['var_list']): corner_plot['samples'].extend([variable_values[var]]) corner_plot['labels'].append(var) corner_plot['truths'].append(variable_median[var]) """ Check if the semi-amplitude K is among the parameters that have been fitted. If so, it computes the correpsing planetary mass with uncertainty """ fig = corner.corner(np.asarray(corner_plot['samples']).T, labels=corner_plot['labels'], truths=corner_plot['truths']) fig.savefig(dir_output + common_name + "_corners.pdf", bbox_inches='tight', dpi=300) plt.close(fig) print() print('****************************************************************************************************') print() if plot_dictionary['dataset_corner']: print(' Dataset + models corner plots ') print() for dataset_name, dataset in mc.dataset_dict.items(): for model_name in dataset.models: variable_values = dataset.convert(flat_chain) variable_median = dataset.convert(chain_med[:, 0]) for common_ref in mc.models[model_name].common_ref: variable_values.update(mc.common_models[common_ref].convert(flat_chain)) variable_median.update(mc.common_models[common_ref].convert(chain_med[:, 0])) variable_values.update(mc.models[model_name].convert(flat_chain, dataset_name)) variable_median.update(mc.models[model_name].convert(chain_med[:, 0], dataset_name)) corner_plot['samples'] = [] corner_plot['labels'] = [] corner_plot['truths'] = [] for var_i, var in enumerate(variable_values): if np.size(variable_values[var]) <= 1: continue corner_plot['samples'].extend([variable_values[var]]) corner_plot['labels'].append(var) corner_plot['truths'].append(variable_median[var]) fig = corner.corner(np.asarray(corner_plot['samples']).T, labels=corner_plot['labels'], truths=corner_plot['truths']) fig.savefig(dir_output + dataset_name + '_' + model_name + "_corners.pdf", bbox_inches='tight', dpi=300) plt.close(fig) print(' Dataset: ', dataset_name, ' model: ', model_name, ' corner plot done ') print() print('****************************************************************************************************') print() if plot_dictionary['write_planet_samples']: print(' Saving the planet variable samplings to files (with plots)') samples_dir = dir_output + '/planet_samples/' os.system('mkdir -p ' + samples_dir) for common_ref, variable_values in planet_variables.items(): for variable_name, variable in variable_values.items(): rad_filename = samples_dir + common_ref + '_' + variable_name fileout = open(rad_filename + '.dat', 'w') for val in variable: fileout.write('{0:f} \n'.format(val)) fileout.close() fig = plt.figure(figsize=(10, 10)) plt.hist(variable, bins=50, color='C0', alpha=0.75, zorder=0) perc0, perc1, perc2 = np.percentile(variable, [15.865, 50, 84.135], axis=0) plt.axvline(planet_variables_med[common_ref][variable_name], color='C1', zorder=1, label='Median-corresponding value') plt.axvline(planet_variables_MAP[common_ref][variable_name], color='C2', zorder=1, label='MAP-corresponding value') plt.axvline(perc1, color='C3', zorder=2, label='Median of the distribution') plt.axvline(perc0, color='C4', zorder=2, label='15.865th and 84.135th percentile') plt.axvline(perc2, color='C4', zorder=2) plt.xlabel(re.sub('_', '-', variable_name + '_' + common_ref)) plt.legend() plt.ticklabel_format(useOffset=False) plt.savefig(rad_filename + '.png', bbox_inches='tight', dpi=300) plt.close(fig) print() print('****************************************************************************************************') print() if plot_dictionary['plot_models'] or plot_dictionary['write_models']: print(' Computing the models for plot/data writing ') bjd_plot = { 'full': { 'start': None, 'end': None, 'range': None } } kinds = {} P_minimum = 2.0 # this temporal range will be divided in 20 subsets for key_name, key_val in planet_variables_med.items(): P_minimum = min(key_val.get('P', 2.0), P_minimum) for dataset_name, dataset in mc.dataset_dict.items(): if dataset.kind in kinds.keys(): kinds[dataset.kind].extend([dataset_name]) else: kinds[dataset.kind] = [dataset_name] bjd_plot[dataset_name] = { 'start': np.amin(dataset.x), 'end': np.amax(dataset.x), 'range': np.amax(dataset.x) - np.amin(dataset.x), } if bjd_plot[dataset_name]['range'] < 0.1: bjd_plot[dataset_name]['range'] = 0.1 bjd_plot[dataset_name]['start'] -= bjd_plot[dataset_name]['range'] * 0.10 bjd_plot[dataset_name]['end'] += bjd_plot[dataset_name]['range'] * 0.10 if dataset.kind == 'Phot': step_size = np.min(bjd_plot[dataset_name]['range'] / dataset.n / 10.) else: step_size = P_minimum / 20. bjd_plot[dataset_name]['x_plot'] = \ np.arange(bjd_plot[dataset_name]['start'], bjd_plot[dataset_name]['end'], step_size) if bjd_plot['full']['range']: bjd_plot['full']['start'] = min(bjd_plot['full']['start'], np.amin(dataset.x)) bjd_plot['full']['end'] = max(bjd_plot['full']['end'], np.amax(dataset.x)) bjd_plot['full']['range'] = bjd_plot['full']['end'] - bjd_plot['full']['start'] else: bjd_plot['full']['start'] = np.amin(dataset.x) bjd_plot['full']['end'] = np.amax(dataset.x) bjd_plot['full']['range'] = bjd_plot['full']['end'] - bjd_plot['full']['start'] bjd_plot['full']['start'] -= bjd_plot['full']['range'] * 0.10 bjd_plot['full']['end'] += bjd_plot['full']['range'] * 0.10 bjd_plot['full']['x_plot'] = np.arange(bjd_plot['full']['start'], bjd_plot['full']['end'], P_minimum / 20.) for dataset_name, dataset in mc.dataset_dict.items(): if dataset.kind == 'RV': bjd_plot[dataset_name] = bjd_plot['full'] bjd_plot['model_out'], bjd_plot['model_x'] = results_analysis.get_model(mc, chain_med[:, 0], bjd_plot) bjd_plot['MAP_model_out'], bjd_plot['MAP_model_x'] = results_analysis.get_model(mc, chain_MAP, bjd_plot) if plot_dictionary['plot_models']: print(' Writing the plots ') for kind_name, kind in kinds.items(): for dataset_name in kind: try: error_bars = np.sqrt(mc.dataset_dict[dataset_name].e**2 + bjd_plot['model_out'][dataset_name]['jitter']**2) except ValueError: error_bars = mc.dataset_dict[dataset_name].e fig = plt.figure(figsize=(12, 12)) # Partially taken from here: # http://www.sc.eso.org/~bdias/pycoffee/codes/20160407/gridspec_demo.html gs = gridspec.GridSpec(2, 1, height_ratios=[3.0, 1.0]) # Also make sure the margins and spacing are apropriate gs.update(left=0.3, right=0.95, bottom=0.08, top=0.93, wspace=0.15, hspace=0.05) ax_0 = plt.subplot(gs[0]) ax_1 = plt.subplot(gs[1], sharex=ax_0) # Adding minor ticks only to x axis minorLocator = AutoMinorLocator() ax_0.xaxis.set_minor_locator(minorLocator) ax_1.xaxis.set_minor_locator(minorLocator) # Disabling the offset on top of the plot ax_0.ticklabel_format(useOffset=False) ax_1.ticklabel_format(useOffset=False) ax_0.scatter(mc.dataset_dict[dataset_name].x, mc.dataset_dict[dataset_name].y - bjd_plot['model_out'][dataset_name]['systematics'] - bjd_plot['model_out'][dataset_name]['time_independent'], color='C0', zorder=4, s=16) ax_0.errorbar(mc.dataset_dict[dataset_name].x, mc.dataset_dict[dataset_name].y - bjd_plot['model_out'][dataset_name]['systematics'] - bjd_plot['model_out'][dataset_name]['time_independent'], yerr=error_bars, color='C0', fmt='o', ms=0, zorder=3, alpha=0.5) ax_0.plot(bjd_plot[dataset_name]['x_plot'], bjd_plot['model_x'][dataset_name]['complete'], label='Median-corresponding model', color='C1', zorder=2) ax_0.plot(bjd_plot[dataset_name]['x_plot'], bjd_plot['MAP_model_x'][dataset_name]['complete'], label='MAP-corresponding model', color='C2', zorder=1) ax_0.set_ylabel('Same as input data') ax_0.legend() ax_1.scatter(mc.dataset_dict[dataset_name].x, mc.dataset_dict[dataset_name].y - bjd_plot['model_out'][dataset_name]['complete'], color='C0', zorder=4, s=16) ax_1.errorbar(mc.dataset_dict[dataset_name].x, mc.dataset_dict[dataset_name].y - bjd_plot['model_out'][dataset_name]['complete'], yerr=error_bars, color='C0', fmt='o', ms=0, zorder=3, alpha=0.5) ax_1.axhline(0.0, color='k', alpha=0.5, zorder=0) ax_1.set_xlabel('Time [d] (offset as the input data)') ax_1.set_ylabel('Residuals (wrt median model)') plt.savefig(dir_output + 'model_' + kind_name + '_' + dataset_name + '.png', bbox_inches='tight', dpi=300) plt.close(fig) if plot_dictionary['write_models']: for prepend_keyword in ['', 'MAP_']: print(' Writing the ', prepend_keyword, 'data files ') plot_out_keyword = prepend_keyword + 'model_out' plot_x_keyword = prepend_keyword + 'model_x' file_keyword = prepend_keyword + 'model_files' if prepend_keyword == '': planet_vars = planet_variables_med # star_vars = star_variables # leaving here, it could be useful for the future chain_ref = chain_med[:, 0] elif prepend_keyword == 'MAP_': planet_vars = planet_variables_MAP # star_vars = star_variables_MAP chain_ref = chain_MAP dir_models = dir_output + file_keyword + '/' os.system('mkdir -p ' + dir_models) for dataset_name, dataset in mc.dataset_dict.items(): for model_name in dataset.models: if getattr(mc.models[model_name], 'systematic_model', False): continue fileout = open(dir_models + dataset_name + '_' + model_name + '.dat', 'w') phase = np.zeros(dataset.n) tc_folded = np.zeros(dataset.n) phase_plot = np.zeros(np.size(bjd_plot[dataset_name]['x_plot'])) tc_folded_plot = np.zeros(np.size(bjd_plot[dataset_name]['x_plot'])) for common_ref in mc.models[model_name].common_ref: if common_ref in planet_vars: if 'P' in planet_vars[common_ref]: phase = (dataset.x0 / planet_vars[common_ref]['P']) % 1 phase_plot = ((bjd_plot[dataset_name]['x_plot'] - mc.Tref) / planet_vars[common_ref]['P']) % 1 if 'Tc' in planet_vars[common_ref]: tc_folded = (dataset.x - planet_vars[common_ref]['Tc'] + planet_vars[common_ref]['P'] / 2.) \ % planet_vars[common_ref]['P'] \ - planet_vars[common_ref]['P'] / 2. tc_folded_plot = (bjd_plot[dataset_name]['x_plot'] - planet_vars[common_ref][ 'Tc'] + planet_vars[common_ref]['P'] / 2.) \ % planet_vars[common_ref]['P'] \ - planet_vars[common_ref]['P'] / 2. else: tc_folded = dataset.x0 % planet_vars[common_ref]['P'] tc_folded_plot = (bjd_plot[dataset_name]['x_plot'] - mc.Tref) % \ planet_vars[common_ref]['P'] fileout.write('descriptor BJD Tc_folded pha val,+- sys mod full val_compare,+- res,+- jit \n') try: len(bjd_plot[plot_out_keyword][dataset_name][model_name]) except: bjd_plot[plot_out_keyword][dataset_name][model_name] = \ bjd_plot[plot_out_keyword][dataset_name][model_name] * np.ones(dataset.n) bjd_plot[plot_x_keyword][dataset_name][model_name] = \ bjd_plot[plot_x_keyword][dataset_name][model_name] * np.ones(dataset.n) for x, tcf, pha, y, e, sys, mod, com, obs_mod, res, jit in zip( dataset.x, tc_folded, phase, dataset.y, dataset.e, bjd_plot[plot_out_keyword][dataset_name]['systematics'], bjd_plot[plot_out_keyword][dataset_name][model_name], bjd_plot[plot_out_keyword][dataset_name]['complete'], dataset.y - bjd_plot[plot_out_keyword][dataset_name]['complete'] + bjd_plot[plot_out_keyword][dataset_name][model_name], dataset.y - bjd_plot[plot_out_keyword][dataset_name]['complete'], bjd_plot[plot_out_keyword][dataset_name]['jitter']): fileout.write('{0:f} {1:f} {2:f} {3:f} {4:f} {5:f} {6:1f} {7:f} {8:f} {9:f} {10:f} {11:f} {12:f}' '\n'.format(x, tcf, pha, y, e, sys, mod, com, obs_mod, e, res, e, jit)) fileout.close() if getattr(mc.models[model_name], 'systematic_model', False): continue if getattr(mc.models[model_name], 'jitter_model', False): continue fileout = open(dir_models + dataset_name + '_' + model_name + '_full.dat', 'w') if model_name + '_std' in bjd_plot[plot_x_keyword][dataset_name]: fileout.write('descriptor BJD Tc_folded phase mod,+- \n') for x, tfc, pha, mod, std in zip( bjd_plot[dataset_name]['x_plot'], tc_folded_plot, phase_plot, bjd_plot[plot_x_keyword][dataset_name][model_name], bjd_plot[plot_x_keyword][dataset_name][model_name + '_std']): fileout.write('{0:f} {1:f} {2:f} {3:f} {4:f} \n'.format(x, tcf, pha, mod, std)) fileout.close() else: fileout.write('descriptor BJD Tc_folded phase mod \n') for x, tcf, pha, mod in zip(bjd_plot[dataset_name]['x_plot'], tc_folded_plot, phase_plot, bjd_plot[plot_x_keyword][dataset_name][model_name]): fileout.write('{0:f} {1:f} {2:f} {3:f}\n'.format(x, tcf, pha, mod)) fileout.close() if getattr(mc.models[model_name], 'model_class', False) == 'transit': """ Exceptional model writing to deal with under-sampled lightcurves, i.e. when folding the the light curve from the model file is not good enough. Something similar is performed later with the planetary RVs, but here we must keep into account the differences between datasets due to limb darkening, exposure times, etc. """ variable_values = {} for common_ref in mc.models[model_name].common_ref: variable_values.update(mc.common_models[common_ref].convert(chain_ref)) variable_values.update(mc.models[model_name].convert(chain_ref, dataset_name)) fileout = open(dir_models + dataset_name + '_' + model_name + '_transit.dat', 'w') x_range =
np.arange(-variable_values['P']/2., variable_values['P']/2., 0.01)
numpy.arange
import numpy as np def ApplyWindowFunction(t,v,WindowFunction=None,Param=None): ''' Apply a window function to a time series. Inputs ====== t : float Time array v : float Time series data to be windowed WindowFunction : None | str If None - no window is applied, otherwise the string names the window function to be applied (see below for list of functions) Param : float Sometimes a window function may be modified by some parameter, setting this keyword to None will force the routine to use a default value where needed. Returns ======= vw : float Time series data, v, with the appropriate window function applied to it. Window Functions ================ Function | Param --------------------|------------- None | N/A 'cosine-bell' | float (percentage) 'hamming' | float (percentage) 'triangle' | float (percentage) 'welch' | float (percentage) 'blackman' | float (percentage) 'nuttall' | float (percentage) 'blackman-nuttall' | float (percentage) 'flat-top' | float (percentage) 'cosine' | float (percentage) 'gaussian' | tuple: (float (width),float (percentage)) ''' WF = { 'none': (_WFNone,0.0), 'cosine-bell': (_WFCosineBell,10.0), 'hamming': (_WFHamming,50.0), 'hann': (_WFHann,50.0), 'triangle': (_WFTriangle,50.0), 'welch': (_WFWelch,50.0), 'blackman': (_WFBlackman,50.0), 'nuttall': (_WFNuttall,50.0), 'blackman-nuttall': (_WFBlackmanNuttall,50.0), 'flat-top': (_WFFlatTop,50.0), 'cosine': (_WFCosine,10.0), 'gaussian': (_WFGaussian,(0.4,50.0))} # get the appropriate window function and parameters Func,Pdef = WF.get(WindowFunction,(_WFNone,0.0)) #check if anycustom parameters are being used if Param is None: P = Pdef else: P = Param #apply to data return Func(t,v,P) def WindowScaleFactor(WindowFunction=None,Param=None): ''' Work out the scaling factor for the amplitude due to the choice of window function. ''' SF = { 'none': (_SFNone,0.0), 'cosine-bell': (_SFCosineBell,10.0), 'hamming': (_SFHamming,50.0), 'hann': (_SFHann,50.0), 'triangle': (_SFTriangle,50.0), 'welch': (_SFWelch,50.0), 'blackman': (_SFBlackman,50.0), 'nuttall': (_SFNuttall,50.0), 'blackman-nuttall': (_SFBlackmanNuttall,50.0), 'flat-top': (_SFFlatTop,50.0), 'cosine': (_SFCosine,10.0), 'gaussian': (_SFGaussian,(0.4,50.0))} # get the appropriate window function and parameters Func,Pdef = SF.get(WindowFunction,(_SFNone,0.0)) #check if anycustom parameters are being used if Param is None: P = Pdef else: P = Param return Func(P) def _WFNone(t,v,P): ''' No window function - just return original array. ''' return v def _SFNone(P): ''' Scaling factor of the uniform window. ''' return 1.0 def _WFCosineBell(t,v,P=10.0): ''' This will multiply the date by the Split cosine bell function. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of time series at each end to be part of the cosine. The remaining 100 - 2*P % is left unchanged (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 = np.nanmax(t) tr = t1 - t0 #get a scaled time array ts = 100.0*(t - t0)/tr #work out the indices for each section i0 = np.where(ts < P)[0] i2 = np.where(ts > (100 - P))[0] #calculate the window function w = np.ones(t.size,dtype=v.dtype) #first section w[i0] = 0.5 + 0.5*np.cos((ts[i0]/P + 1.0)*np.pi) #last section w[i2] = 0.5 + 0.5*np.cos(np.pi*(ts[i2] - (100 - P))/P) #multiply by v out = v*w return out def _SFCosineBell(P): ''' Scaling factor of the cosine-bell function. ''' #work out the proportions of the window to which the function is #applied #untouched portion p0 = 0.01*(100 - 2*P) #touched portion p1 = 1.0 - p0 #this is the integral of the window function if it were to apply #to the entire window of data Iwind = 0.5 #calculate the overall factor sf = p0 + Iwind*p1 return sf def _WFHamming(t,v,P=50.0): ''' This will multiply the date by the Hamming window function. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of window to have the function applied at each end (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 = np.nanmax(t) tr = t1 - t0 #get a scaled time array ts = 100.0*(t - t0)/tr #work out the indices for each section i0 = np.where(ts < P)[0] i2 = np.where(ts > (100 - P))[0] #calculate the window function w = np.ones(t.size,dtype=v.dtype) #first section w[i0] = 0.53836 - 0.46164*np.cos(np.pi*ts[i0]/P) #last section w[i2] = 0.53836 - 0.46164*np.cos(np.pi*(1.0 + (ts[i2] - (100 - P))/P)) #multiply by v out = v*w return out def _SFHamming(P): ''' Scaling factor of the Hamming function. ''' #work out the proportions of the window to which the function is #applied #untouched portion p0 = 0.01*(100 - 2*P) #touched portion p1 = 1.0 - p0 #this is the integral of the window function if it were to apply #to the entire window of data Iwind = 0.53836 #calculate the overall factor sf = p0 + Iwind*p1 return sf def _WFHann(t,v,P=50.0): ''' This will multiply the date by the Hann window (sometimes erroneously called the "Hanning" window). This is similar to the Hamming window, but is touches zero at each end. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of window to have the function applied at each end (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 =
np.nanmax(t)
numpy.nanmax
# Copyright (C) 2021 <NAME>, <NAME>, and Politecnico di Milano. All rights reserved. # Licensed under the Apache 2.0 License. import sys sys.path = ['.'] + sys.path import numpy as np import scipy.stats as stats # import open bandit pipeline (obp) from obp.ope.utils import find_optimal_lambda, estimate_lambda from prettytable import PrettyTable from scipy.stats import t from scipy.optimize import minimize SIGMA2_B = [1] SIGMA2_E = [1.5, 1.9, 1.99, 1.999] N = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000] N = [10, 20, 50, 100, 200, 500, 1000] N_ref = 10000000 #samples to compute all things mu_b, mu_e = 0., 0.5 n_runs = 60 significance = 0.1 def f(x): return 100*np.cos(2*np.pi*x) def generate_dataset(n, mu, sigma2): generated_samples = stats.norm.rvs(size=n, loc=mu, scale=np.sqrt(sigma2)) return generated_samples, f(generated_samples) def compute_renyi_divergence(mu_b, sigma2_b, mu_e, sigma2_e, alpha=2): var_star = alpha * sigma2_b + (1 - alpha) * sigma2_e contextual_non_exp_Renyi = np.log(sigma2_b ** .5 / sigma2_e ** .5) + 1 / (2 * (alpha - 1)) * np.log( sigma2_b / var_star) + alpha * (mu_e - mu_b) ** 2 / (2 * var_star) non_exp_Renyi = np.mean(contextual_non_exp_Renyi) exp_Renyi = np.exp(non_exp_Renyi) return exp_Renyi def welch_test(res): res_mean = np.mean(res, axis=0) res_std =
np.var(res, axis=0)
numpy.var
import numpy as np import theano.tensor as tt import pymc3 as pm import starry from starry._plotting import ( get_moll_latitude_lines, get_moll_longitude_lines, ) from matplotlib import pyplot as plt from matplotlib import colors from scipy import optimize np.random.seed(42) starry.config.lazy = True ydeg = 20 map = starry.Map(ydeg) lat, lon, Y2P, P2Y, Dx, Dy = map.get_pixel_transforms(oversample=4) npix = Y2P.shape[0] std_p = 1.62 with pm.Model() as model: p = pm.Exponential("p", 1 / std_p, shape=(npix,)) x = tt.dot(P2Y, p) pm.Deterministic("x", x) p_back = tt.dot(Y2P, x) pm.Deterministic("p_back", p_back) trace_pp = pm.sample_prior_predictive(10) # Convert lat, lon to x,y coordinates in Mollewiede projection def lon_lat_to_mollweide(lon, lat): lat *= np.pi / 180 lon *= np.pi / 180 f = lambda x: 2 * x + np.sin(2 * x) - np.pi * np.sin(lat) theta = optimize.newton(f, 0.3) x = 2 * np.sqrt(2) / np.pi * lon * np.cos(theta) y = np.sqrt(2) * np.sin(theta) return x, y x_mol = np.zeros(npix) y_mol = np.zeros(npix) for idx, (lo, la) in enumerate(zip(lon, lat)): x_, y_ = lon_lat_to_mollweide(lo, la) x_mol[idx] = x_ y_mol[idx] = y_ def plot_grid_lines(ax, alpha=0.6): """ Code from https://github.com/rodluger/starry/blob/0546b4e445f6570b9a1cf6e33068e01a96ecf20f/starry/maps.py. """ ax.axis("off") borders = [] x = np.linspace(-2 * np.sqrt(2), 2 * np.sqrt(2), 10000) y = np.sqrt(2) * np.sqrt(1 - (x / (2 * np.sqrt(2))) ** 2) borders += [ax.fill_between(x, 1.1 * y, y, color="w", zorder=-1)] borders += [ ax.fill_betweenx(0.5 * x, 2.2 * y, 2 * y, color="w", zorder=-1) ] borders += [ax.fill_between(x, -1.1 * y, -y, color="w", zorder=-1)] borders += [ ax.fill_betweenx(0.5 * x, -2.2 * y, -2 * y, color="w", zorder=-1) ] x = np.linspace(-2 * np.sqrt(2), 2 *
np.sqrt(2)
numpy.sqrt
import warnings import numpy as np import numpy.testing as npt from dipy.data import get_fnames from dipy.core.gradients import (gradient_table, GradientTable, gradient_table_from_bvals_bvecs, gradient_table_from_qvals_bvecs, gradient_table_from_gradient_strength_bvecs, WATER_GYROMAGNETIC_RATIO, reorient_bvecs, generate_bvecs, check_multi_b) from dipy.io.gradients import read_bvals_bvecs def test_btable_prepare(): sq2 = np.sqrt(2) / 2. bvals = 1500 * np.ones(7) bvals[0] = 0 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2]]) bt = gradient_table(bvals, bvecs) npt.assert_array_equal(bt.bvecs, bvecs) # bt.info fimg, fbvals, fbvecs = get_fnames('small_64D') bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs) bvecs = np.where(np.isnan(bvecs), 0, bvecs) bt = gradient_table(bvals, bvecs) npt.assert_array_equal(bt.bvecs, bvecs) bt2 = gradient_table(bvals, bvecs.T) npt.assert_array_equal(bt2.bvecs, bvecs) btab = np.concatenate((bvals[:, None], bvecs), axis=1) bt3 = gradient_table(btab) npt.assert_array_equal(bt3.bvecs, bvecs) npt.assert_array_equal(bt3.bvals, bvals) bt4 = gradient_table(btab.T) npt.assert_array_equal(bt4.bvecs, bvecs) npt.assert_array_equal(bt4.bvals, bvals) # Test for proper inputs (expects either bvals/bvecs or 4 by n): npt.assert_raises(ValueError, gradient_table, bvecs) def test_GradientTable(): gradients = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 1], [3, 4, 0], [5, 0, 12]], 'float') expected_bvals = np.array([0, 1, 1, 5, 13]) expected_b0s_mask = expected_bvals == 0 expected_bvecs = gradients / (expected_bvals + expected_b0s_mask)[:, None] gt = GradientTable(gradients, b0_threshold=0) npt.assert_array_almost_equal(gt.bvals, expected_bvals) npt.assert_array_equal(gt.b0s_mask, expected_b0s_mask) npt.assert_array_almost_equal(gt.bvecs, expected_bvecs) npt.assert_array_almost_equal(gt.gradients, gradients) gt = GradientTable(gradients, b0_threshold=1) npt.assert_array_equal(gt.b0s_mask, [1, 1, 1, 0, 0]) npt.assert_array_equal(gt.bvals, expected_bvals) npt.assert_array_equal(gt.bvecs, expected_bvecs) # checks negative values in gtab npt.assert_raises(ValueError, GradientTable, -1) npt.assert_raises(ValueError, GradientTable, np.ones((6, 2))) npt.assert_raises(ValueError, GradientTable, np.ones((6,))) with warnings.catch_warnings(record=True) as w: bad_gt = gradient_table(expected_bvals, expected_bvecs, b0_threshold=200) assert len(w) == 1 def test_gradient_table_from_qvals_bvecs(): qvals = 30. * np.ones(7) big_delta = .03 # pulse separation of 30ms small_delta = 0.01 # pulse duration of 10ms qvals[0] = 0 sq2 = np.sqrt(2) / 2 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2]]) gt = gradient_table_from_qvals_bvecs(qvals, bvecs, big_delta, small_delta) bvals_expected = (qvals * 2 * np.pi) ** 2 * (big_delta - small_delta / 3.) gradient_strength_expected = qvals * 2 * np.pi /\ (small_delta * WATER_GYROMAGNETIC_RATIO) npt.assert_almost_equal(gt.gradient_strength, gradient_strength_expected) npt.assert_almost_equal(gt.bvals, bvals_expected) def test_gradient_table_from_gradient_strength_bvecs(): gradient_strength = .03e-3 * np.ones(7) # clinical strength at 30 mT/m big_delta = .03 # pulse separation of 30ms small_delta = 0.01 # pulse duration of 10ms gradient_strength[0] = 0 sq2 = np.sqrt(2) / 2 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2]]) gt = gradient_table_from_gradient_strength_bvecs(gradient_strength, bvecs, big_delta, small_delta) qvals_expected = (gradient_strength * WATER_GYROMAGNETIC_RATIO * small_delta / (2 * np.pi)) bvals_expected = (qvals_expected * 2 * np.pi) ** 2 *\ (big_delta - small_delta / 3.) npt.assert_almost_equal(gt.qvals, qvals_expected) npt.assert_almost_equal(gt.bvals, bvals_expected) def test_gradient_table_from_bvals_bvecs(): sq2 = np.sqrt(2) / 2 bvals = [0, 1, 2, 3, 4, 5, 6, 0] bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2], [0, 0, 0]]) gt = gradient_table_from_bvals_bvecs(bvals, bvecs, b0_threshold=0) npt.assert_array_equal(gt.bvecs, bvecs) npt.assert_array_equal(gt.bvals, bvals) npt.assert_array_equal(gt.gradients, np.reshape(bvals, (-1, 1)) * bvecs) npt.assert_array_equal(gt.b0s_mask, [1, 0, 0, 0, 0, 0, 0, 1]) # Test nans are replaced by 0 new_bvecs = bvecs.copy() new_bvecs[[0, -1]] = np.nan gt = gradient_table_from_bvals_bvecs(bvals, new_bvecs, b0_threshold=0) npt.assert_array_equal(gt.bvecs, bvecs) # Bvalue > 0 for non-unit vector bad_bvals = [2, 1, 2, 3, 4, 5, 6, 0] npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bad_bvals, bvecs, b0_threshold=0.) # num_gard inconsistent bvals, bvecs bad_bvals = np.ones(7) npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bad_bvals, bvecs, b0_threshold=0.) # negative bvals bad_bvals = [-1, -1, -1, -5, -6, -10] npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bad_bvals, bvecs, b0_threshold=0.) # bvals not 1d bad_bvals = np.ones((1, 8)) npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bad_bvals, bvecs, b0_threshold=0.) # bvec not 2d bad_bvecs = np.ones((1, 8, 3)) npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bvals, bad_bvecs, b0_threshold=0.) # bvec not (N, 3) bad_bvecs = np.ones((8, 2)) npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bvals, bad_bvecs, b0_threshold=0.) # bvecs not unit vectors bad_bvecs = bvecs * 2 npt.assert_raises(ValueError, gradient_table_from_bvals_bvecs, bvals, bad_bvecs, b0_threshold=0.) # Test **kargs get passed along gt = gradient_table_from_bvals_bvecs(bvals, bvecs, b0_threshold=0, big_delta=5, small_delta=2) npt.assert_equal(gt.big_delta, 5) npt.assert_equal(gt.small_delta, 2) def test_b0s(): sq2 = np.sqrt(2) / 2. bvals = 1500 * np.ones(8) bvals[0] = 0 bvals[7] = 0 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2], [0, 0, 0]]) bt = gradient_table(bvals, bvecs) npt.assert_array_equal(np.where(bt.b0s_mask > 0)[0], np.array([0, 7])) npt.assert_array_equal(np.where(bt.b0s_mask == 0)[0], np.arange(1, 7)) def test_gtable_from_files(): fimg, fbvals, fbvecs = get_fnames('small_101D') gt = gradient_table(fbvals, fbvecs) bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs) npt.assert_array_equal(gt.bvals, bvals) npt.assert_array_equal(gt.bvecs, bvecs) def test_deltas(): sq2 = np.sqrt(2) / 2. bvals = 1500 * np.ones(7) bvals[0] = 0 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2]]) bt = gradient_table(bvals, bvecs, big_delta=5, small_delta=2) npt.assert_equal(bt.big_delta, 5) npt.assert_equal(bt.small_delta, 2) def test_qvalues(): sq2 = np.sqrt(2) / 2. bvals = 1500 * np.ones(7) bvals[0] = 0 bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2]]) qvals = np.sqrt(bvals / 6) / (2 * np.pi) bt = gradient_table(bvals, bvecs, big_delta=8, small_delta=6) npt.assert_almost_equal(bt.qvals, qvals) def test_reorient_bvecs(): sq2 = np.sqrt(2) / 2 bvals = np.concatenate([[0], np.ones(6) * 1000]) bvecs = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [sq2, sq2, 0], [sq2, 0, sq2], [0, sq2, sq2]]) gt = gradient_table_from_bvals_bvecs(bvals, bvecs, b0_threshold=0) # The simple case: all affines are identity affs = np.zeros((6, 4, 4)) for i in range(4): affs[:, i, i] = 1 # We should get back the same b-vectors new_gt = reorient_bvecs(gt, affs) npt.assert_equal(gt.bvecs, new_gt.bvecs) # Now apply some rotations rotation_affines = [] rotated_bvecs = bvecs[:] for i in
np.where(~gt.b0s_mask)
numpy.where
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74':
np.array([0.13717260713320106, 0.3627779907901665])
numpy.array
import torch import matplotlib.pyplot as plt import numpy as np from skimage import io as img from skimage import color, filters, morphology import os import glob from PIL import Image import torchvision.transforms as transforms from . import keypoint_functions def makedir(path): try: os.makedirs(path) except OSError: pass def denorm(x): if torch.min(x) < -1 or torch.max(x) > 1: return _normalize(x) out = (x + 1) / 2 return out.clamp(0, 1) def norm(x): out = (x - 0.5) * 2 return out.clamp(-1, 1) def _normalize(tensor): tensor = tensor.clone() # avoid modifying tensor in-place def norm_ip(img, min, max): img.clamp_(min=min, max=max) return img.add_(-min).div_(max - min + 1e-5) def norm_range(t): return norm_ip(t, float(t.min()), float(t.max())) tensor = norm_range(tensor) return tensor def convert_image_np(inp): if inp.shape[1]==3: inp = denorm(inp) inp = inp[-1,:,:,:].to(torch.device('cpu')) inp = inp.numpy().transpose((1,2,0)) else: inp = denorm(inp) inp = inp[-1,-1,:,:].to(torch.device('cpu')) inp = inp.numpy().transpose((0,1)) inp = np.clip(inp,0,1) return inp def save_image(name, image): plt.imsave(name, convert_image_np(image), vmin=0, vmax=1) def read_images_and_keypoints(opt): imgs = glob.glob(os.path.join(opt.dataroot, "*.jpg")) + glob.glob(os.path.join(opt.dataroot, "*.png")) + glob.glob(os.path.join(opt.dataroot, "*.jpeg")) keypoints = keypoint_functions.load_keypoints(opt) images = [] keypoints_1d = [] keypoints_2d = [] num_kps = opt.num_keypoints # load images and corresponding keypoints for _img in sorted(imgs): name = _img.split("/")[-1].split(".")[0] x = img.imread(_img) x = x[:, :, :3] # automatically construct the mask based on background color if opt.mask: save_dir = os.path.join(opt.dir2save, "masks") makedir(save_dir) alpha = np.ones_like(x[:, :, 0]) alpha[np.isclose(np.mean(x, axis=2), opt.bkg_color, rtol=1e-1)] = 0 alpha = np.array(alpha, dtype=bool) alpha = morphology.remove_small_objects(alpha, 10, connectivity=1) alpha = morphology.remove_small_holes(alpha, 2, connectivity=2) alpha = np.array(alpha, dtype=float) alpha = np.expand_dims(alpha, -1) alpha_img = np.repeat(alpha, 3, axis=2) alpha = alpha * 255 plt.imsave(os.path.join(save_dir, "mask_{}.jpg".format(name)), alpha_img, vmin=0, vmax=255) alpha = alpha.astype(np.uint8) # load corresponding keypoints for current image try: img_keypoints = keypoints[_img.split("/")[-1]] except KeyError: print("Found no matching keypoints for {}...skipping this image.".format(name)) continue # normalize keypoint conditioning x_condition = keypoint_functions.create_keypoint_condition(x, img_keypoints, opt, num_kps) x_condition = (x_condition + 1) / 2.0 if opt.mask: x = np.concatenate([x, alpha], -1) images.append(x) keypoints_1d.append(img_keypoints) keypoints_2d.append(x_condition) return images, keypoints_1d, keypoints_2d def generate_keypoint_condition(kps, opt): a_path_rgb = np.zeros((opt.image_size_y, opt.image_size_x, 3)) colors = keypoint_functions.get_keypoint_colors() keypoint_layers = keypoint_functions.load_layer_information(opt) kps_2d = keypoint_functions.create_keypoint_condition(a_path_rgb, kps, opt, num_keypoints=opt.num_keypoints) kps_2d = torch.from_numpy(kps_2d) kps_2d = (kps_2d + 1) / 2.0 # each keypoint condition for an image is now a list where each list contains the information # about the keypoints in the given layer for the given image layered_keypoints_2d = [] for layer in keypoint_layers: layered_keypoints_2d.append(kps_2d[[layer], :, :].squeeze()) kps_2d = layered_keypoints_2d layered_keypoints_1d = [] for layer in keypoint_layers: current_keypoint_1d = {x: kps[x] for x in layer} layered_keypoints_1d.append(current_keypoint_1d) kps = layered_keypoints_1d transform_list = [] transform_list += [transforms.ToTensor()] transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] transform = transforms.Compose(transform_list) img_label = [] for layer_idx in range(len(keypoint_layers)): a_path_rgb = np.zeros((3, opt.image_size_y, opt.image_size_x)) for idx in range(kps_2d[layer_idx].shape[0]): current_kp = np.expand_dims(kps_2d[layer_idx][idx], 0) current_color = np.zeros_like(a_path_rgb) current_color[0] = colors[idx][0] current_color[1] = colors[idx][1] current_color[2] = colors[idx][2] a_path_rgb = a_path_rgb + (
np.repeat(current_kp, repeats=3, axis=0)
numpy.repeat
import numpy as np import scipy as sp import scipy.stats def _calculate_number_alleles(G): G = np.asarray(G, int) assert len(G.shape) == 2 u = np.unique(G[:]) assert np.all([ui in [0, 1, 2] for ui in u]) b = np.sum(G, axis=0) a = G.shape[0]*2 - b return (a, b) def _normalize_maf_allele(G): (a, b) = _calculate_number_alleles(G) change = b > a G[:, change] = 2 - G[:, change] def _calculate_maf(G): return np.sum(G, 0) / float(2*G.shape[0]) # According to GCTA's paper def grm_unbiased(G): _normalize_maf_allele(G) p = _calculate_maf(G) denom = 2 * p * (1. - p) n = G.shape[0] K = np.zeros((n, n)) for j in range(n-1): for k in range(j+1, n): v0 = (G[j, :] - 2*p) * (G[k, :] - 2*p) K[j, k] = np.mean(v0 / denom) K[k, j] = K[j, k] for j in range(n): g2 = G[j, :]**2 v0 = g2 - (1 + 2*p) * G[j, :] + 2 * p**2 K[j, j] = 1 + np.mean(v0 / denom) return K if __name__ == '__main__': # np.random.seed(5) # # G = np.random.randint(0, 3, (100000, 1)) # G = sp.stats.binom.rvs(2, 0.5, size=(1000, 10)) # # _calculate_maf(G) # K = grm_unbiased(G) # import ipdb; ipdb.set_trace() # print K import numpy as np import scipy as sp import scipy.stats np.random.seed(0) N = 5 nfrX = sp.stats.binom.rvs(2, 0.3, size=(N, 10)) nbgX = sp.stats.binom.rvs(2, 0.5, size=(N, 10)) y =
np.random.randint(0, 2, size=N)
numpy.random.randint
# -*- coding: utf-8 -*- """ Created on Wed Mar 23 14:51:28 2016 @author: <NAME> """ import os import numpy as np payoff_dir = "data/" paddy_price = 100000 ofc_price = 120000 sd = np.repeat(1000, 72) #multiplicative effects on price received agrowell_effect = 1.2 # 1 is no effect water_scarce_agrowell = 0.7 # i.e. reduces profit by 30 percent water_scarce_no_agrowell = 0.2 # low tank, low rainfall, reduces profit by 80 percent water_damage_effect = 0.2 # reduces ofc profit by 0. bethma_effect = 0.5 # reduces profit by 50 percent ofc_bethma_effect = 0.1 # slashes payoffs, just to ensure no one opts for this option #additive bethma effects agrowell_bm_effect = 0.1 # changes effect on profit by 0.1 high_rf_bm_effect = 0.1 # changes effect on profit by 0.1 #build dataset tank_level = np.repeat((1,2,3), 24) rainfall = np.tile(np.repeat((1,2,3), 8), 3) crop_choice = np.tile(np.repeat((1,0), 4), 9) bethma_choice = np.tile((1,0), 36) agrowell_owner =
np.tile((1,0,0,1), 18)
numpy.tile
""" Group-wise function alignment using SRSF framework and Dynamic Programming moduleauthor:: <NAME> <<EMAIL>> """ import numpy as np import matplotlib.pyplot as plt import fdasrsf.utility_functions as uf import fdasrsf.bayesian_functions as bf import fdasrsf.fPCA as fpca import fdasrsf.geometry as geo from scipy.integrate import trapz, cumtrapz from scipy.interpolate import interp1d from scipy.linalg import svd, cholesky from scipy.cluster.hierarchy import linkage, fcluster from scipy.spatial.distance import squareform, pdist import GPy from numpy.linalg import norm, inv from numpy.random import rand, normal from joblib import Parallel, delayed from fdasrsf.fPLS import pls_svd from tqdm import tqdm import fdasrsf.plot_style as plot import fpls_warp as fpls import collections class fdawarp: """ This class provides alignment methods for functional data using the SRVF framework Usage: obj = fdawarp(f,t) :param f: (M,N): matrix defining N functions of M samples :param time: time vector of length M :param fn: aligned functions :param qn: aligned srvfs :param q0: initial srvfs :param fmean: function mean :param mqn: mean srvf :param gam: warping functions :param psi: srvf of warping functions :param stats: alignment statistics :param qun: cost function :param lambda: lambda :param method: optimization method :param gamI: inverse warping function :param rsamps: random samples :param fs: random aligned functions :param gams: random warping functions :param ft: random warped functions :param qs: random aligned srvfs :param type: alignment type :param mcmc: mcmc output if bayesian Author : <NAME> (JDT) <jdtuck AT sandia.gov> Date : 15-Mar-2018 """ def __init__(self, f, time): """ Construct an instance of the fdawarp class :param f: numpy ndarray of shape (M,N) of N functions with M samples :param time: vector of size M describing the sample points """ a = time.shape[0] if f.shape[0] != a: raise Exception('Columns of f and time must be equal') self.f = f self.time = time self.rsamps = False def srsf_align(self, method="mean", omethod="DP2", center=True, smoothdata=False, MaxItr=20, parallel=False, lam=0.0, cores=-1, grid_dim=7): """ This function aligns a collection of functions using the elastic square-root slope (srsf) framework. :param method: (string) warp calculate Karcher Mean or Median (options = "mean" or "median") (default="mean") :param omethod: optimization method (DP, DP2, RBFGS) (default = DP2) :param center: center warping functions (default = T) :param smoothdata: Smooth the data using a box filter (default = F) :param MaxItr: Maximum number of iterations (default = 20) :param parallel: run in parallel (default = F) :param lam: controls the elasticity (default = 0) :param cores: number of cores for parallel (default = -1 (all)) :param grid_dim: size of the grid, for the DP2 method only (default = 7) :type lam: double :type smoothdata: bool Examples >>> import tables >>> fun=tables.open_file("../Data/simu_data.h5") >>> f = fun.root.f[:] >>> f = f.transpose() >>> time = fun.root.time[:] >>> obj = fs.fdawarp(f,time) >>> obj.srsf_align() """ M = self.f.shape[0] N = self.f.shape[1] self.lam = lam if M > 500: parallel = True elif N > 100: parallel = True eps = np.finfo(np.double).eps f0 = self.f self.method = omethod methods = ["mean", "median"] self.type = method # 0 mean, 1-median method = [i for i, x in enumerate(methods) if x == method] if len(method) == 0: method = 0 else: method = method[0] # Compute SRSF function from data f, g, g2 = uf.gradient_spline(self.time, self.f, smoothdata) q = g / np.sqrt(abs(g) + eps) print("Initializing...") mnq = q.mean(axis=1) a = mnq.repeat(N) d1 = a.reshape(M, N) d = (q - d1) ** 2 dqq = np.sqrt(d.sum(axis=0)) min_ind = dqq.argmin() mq = q[:, min_ind] mf = f[:, min_ind] if parallel: out = Parallel(n_jobs=cores)(delayed(uf.optimum_reparam)(mq, self.time, q[:, n], omethod, lam, grid_dim) for n in range(N)) gam = np.array(out) gam = gam.transpose() else: gam = np.zeros((M,N)) for k in range(0,N): gam[:,k] = uf.optimum_reparam(mq,self.time,q[:,k],omethod,lam,grid_dim) gamI = uf.SqrtMeanInverse(gam) mf = np.interp((self.time[-1] - self.time[0]) * gamI + self.time[0], self.time, mf) mq = uf.f_to_srsf(mf, self.time) # Compute Karcher Mean if method == 0: print("Compute Karcher Mean of %d function in SRSF space..." % N) if method == 1: print("Compute Karcher Median of %d function in SRSF space..." % N) ds = np.repeat(0.0, MaxItr + 2) ds[0] = np.inf qun = np.repeat(0.0, MaxItr + 1) tmp = np.zeros((M, MaxItr + 2)) tmp[:, 0] = mq mq = tmp tmp = np.zeros((M, MaxItr+2)) tmp[:,0] = mf mf = tmp tmp = np.zeros((M, N, MaxItr + 2)) tmp[:, :, 0] = self.f f = tmp tmp = np.zeros((M, N, MaxItr + 2)) tmp[:, :, 0] = q q = tmp for r in range(0, MaxItr): print("updating step: r=%d" % (r + 1)) if r == (MaxItr - 1): print("maximal number of iterations is reached") # Matching Step if parallel: out = Parallel(n_jobs=cores)(delayed(uf.optimum_reparam)(mq[:, r], self.time, q[:, n, 0], omethod, lam, grid_dim) for n in range(N)) gam = np.array(out) gam = gam.transpose() else: for k in range(0,N): gam[:,k] = uf.optimum_reparam(mq[:, r], self.time, q[:, k, 0], omethod, lam, grid_dim) gam_dev = np.zeros((M, N)) vtil = np.zeros((M,N)) dtil = np.zeros(N) for k in range(0, N): f[:, k, r + 1] = np.interp((self.time[-1] - self.time[0]) * gam[:, k] + self.time[0], self.time, f[:, k, 0]) q[:, k, r + 1] = uf.f_to_srsf(f[:, k, r + 1], self.time) gam_dev[:, k] = np.gradient(gam[:, k], 1 / float(M - 1)) v = q[:, k, r + 1] - mq[:,r] d = np.sqrt(trapz(v*v, self.time)) vtil[:,k] = v/d dtil[k] = 1.0/d mqt = mq[:, r] a = mqt.repeat(N) d1 = a.reshape(M, N) d = (q[:, :, r + 1] - d1) ** 2 if method == 0: d1 = sum(trapz(d, self.time, axis=0)) d2 = sum(trapz((1 - np.sqrt(gam_dev)) ** 2, self.time, axis=0)) ds_tmp = d1 + lam * d2 ds[r + 1] = ds_tmp # Minimization Step # compute the mean of the matched function qtemp = q[:, :, r + 1] ftemp = f[:, :, r + 1] mq[:, r + 1] = qtemp.mean(axis=1) mf[:, r + 1] = ftemp.mean(axis=1) qun[r] = norm(mq[:, r + 1] - mq[:, r]) / norm(mq[:, r]) if method == 1: d1 = np.sqrt(sum(trapz(d, self.time, axis=0))) d2 = sum(trapz((1 - np.sqrt(gam_dev)) ** 2, self.time, axis=0)) ds_tmp = d1 + lam * d2 ds[r + 1] = ds_tmp # Minimization Step # compute the mean of the matched function stp = .3 vbar = vtil.sum(axis=1)*(1/dtil.sum()) qtemp = q[:, :, r + 1] ftemp = f[:, :, r + 1] mq[:, r + 1] = mq[:,r] + stp*vbar tmp = np.zeros(M) tmp[1:] = cumtrapz(mq[:, r + 1] * np.abs(mq[:, r + 1]), self.time) mf[:, r + 1] = np.median(f0[1, :])+tmp qun[r] = norm(mq[:, r + 1] - mq[:, r]) / norm(mq[:, r]) if qun[r] < 1e-2 or r >= MaxItr: break # Last Step with centering of gam if center: r += 1 if parallel: out = Parallel(n_jobs=cores)(delayed(uf.optimum_reparam)(mq[:, r], self.time, q[:, n, 0], omethod, lam, grid_dim) for n in range(N)) gam = np.array(out) gam = gam.transpose() else: for k in range(0,N): gam[:,k] = uf.optimum_reparam(mq[:, r], self.time, q[:, k, 0], omethod, lam, grid_dim) gam_dev = np.zeros((M, N)) for k in range(0, N): gam_dev[:, k] = np.gradient(gam[:, k], 1 / float(M - 1)) gamI = uf.SqrtMeanInverse(gam) gamI_dev = np.gradient(gamI, 1 / float(M - 1)) time0 = (self.time[-1] - self.time[0]) * gamI + self.time[0] mq[:, r + 1] = np.interp(time0, self.time, mq[:, r]) * np.sqrt(gamI_dev) for k in range(0, N): q[:, k, r + 1] = np.interp(time0, self.time, q[:, k, r]) * np.sqrt(gamI_dev) f[:, k, r + 1] = np.interp(time0, self.time, f[:, k, r]) gam[:, k] = np.interp(time0, self.time, gam[:, k]) else: gamI = uf.SqrtMeanInverse(gam) gamI_dev = np.gradient(gamI, 1 / float(M - 1)) # Aligned data & stats self.fn = f[:, :, r + 1] self.qn = q[:, :, r + 1] self.q0 = q[:, :, 0] mean_f0 = f0.mean(axis=1) std_f0 = f0.std(axis=1) mean_fn = self.fn.mean(axis=1) std_fn = self.fn.std(axis=1) self.gam = gam self.mqn = mq[:, r + 1] tmp = np.zeros(M) tmp[1:] = cumtrapz(self.mqn * np.abs(self.mqn), self.time) self.fmean = np.mean(f0[1, :]) + tmp fgam = np.zeros((M, N)) for k in range(0, N): time0 = (self.time[-1] - self.time[0]) * gam[:, k] + self.time[0] fgam[:, k] = np.interp(time0, self.time, self.fmean) var_fgam = fgam.var(axis=1) self.orig_var = trapz(std_f0 ** 2, self.time) self.amp_var = trapz(std_fn ** 2, self.time) self.phase_var = trapz(var_fgam, self.time) return def plot(self): """ plot plot functional alignment results Usage: obj.plot() """ M = self.f.shape[0] plot.f_plot(self.time, self.f, title="f Original Data") fig, ax = plot.f_plot(np.arange(0, M) / float(M - 1), self.gam, title="Warping Functions") ax.set_aspect('equal') plot.f_plot(self.time, self.fn, title="Warped Data") mean_f0 = self.f.mean(axis=1) std_f0 = self.f.std(axis=1) mean_fn = self.fn.mean(axis=1) std_fn = self.fn.std(axis=1) tmp = np.array([mean_f0, mean_f0 + std_f0, mean_f0 - std_f0]) tmp = tmp.transpose() plot.f_plot(self.time, tmp, title=r"Original Data: Mean $\pm$ STD") tmp = np.array([mean_fn, mean_fn + std_fn, mean_fn - std_fn]) tmp = tmp.transpose() plot.f_plot(self.time, tmp, title=r"Warped Data: Mean $\pm$ STD") plot.f_plot(self.time, self.fmean, title="$f_{mean}$") plt.show() return def gauss_model(self, n=1, sort_samples=False): """ This function models the functional data using a Gaussian model extracted from the principal components of the srvfs :param n: number of random samples :param sort_samples: sort samples (default = T) :type n: integer :type sort_samples: bool """ fn = self.fn time = self.time qn = self.qn gam = self.gam # Parameters eps = np.finfo(np.double).eps binsize = np.diff(time) binsize = binsize.mean() M = time.size # compute mean and covariance in q-domain mq_new = qn.mean(axis=1) mididx = np.round(time.shape[0] / 2) m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :])) mqn = np.append(mq_new, m_new.mean()) qn2 = np.vstack((qn, m_new)) C = np.cov(qn2) q_s = np.random.multivariate_normal(mqn, C, n) q_s = q_s.transpose() # compute the correspondence to the original function domain fs = np.zeros((M, n)) for k in range(0, n): fs[:, k] = uf.cumtrapzmid(time, q_s[0:M, k] * np.abs(q_s[0:M, k]), np.sign(q_s[M, k]) * (q_s[M, k] ** 2), mididx) fbar = fn.mean(axis=1) fsbar = fs.mean(axis=1) err = np.transpose(np.tile(fbar-fsbar, (n,1))) fs += err # random warping generation rgam = uf.randomGamma(gam, n) gams = np.zeros((M, n)) for k in range(0, n): gams[:, k] = uf.invertGamma(rgam[:, k]) # sort functions and warping if sort_samples: mx = fs.max(axis=0) seq1 = mx.argsort() # compute the psi-function fy = np.gradient(rgam, binsize) psi = fy / np.sqrt(abs(fy) + eps) ip = np.zeros(n) len = np.zeros(n) for i in range(0, n): tmp = np.ones(M) ip[i] = tmp.dot(psi[:, i] / M) len[i] = np.arccos(tmp.dot(psi[:, i] / M)) seq2 = len.argsort() # combine x-variability and y-variability ft = np.zeros((M, n)) for k in range(0, n): ft[:, k] = np.interp(gams[:, seq2[k]], np.arange(0, M) / np.double(M - 1), fs[:, seq1[k]]) tmp = np.isnan(ft[:, k]) while tmp.any(): rgam2 = uf.randomGamma(gam, 1) ft[:, k] = np.interp(gams[:, seq2[k]], np.arange(0, M) / np.double(M - 1), uf.invertGamma(rgam2)) else: # combine x-variability and y-variability ft = np.zeros((M, n)) for k in range(0, n): ft[:, k] = np.interp(gams[:, k], np.arange(0, M) / np.double(M - 1), fs[:, k]) tmp = np.isnan(ft[:, k]) while tmp.any(): rgam2 = uf.randomGamma(gam, 1) ft[:, k] = np.interp(gams[:, k], np.arange(0, M) / np.double(M - 1), uf.invertGamma(rgam2)) self.rsamps = True self.fs = fs self.gams = rgam self.ft = ft self.qs = q_s[0:M,:] return def joint_gauss_model(self, n=1, no=3): """ This function models the functional data using a joint Gaussian model extracted from the principal components of the srsfs :param n: number of random samples :param no: number of principal components (default = 3) :type n: integer :type no: integer """ # Parameters fn = self.fn time = self.time qn = self.qn gam = self.gam M = time.size # Perform PCA jfpca = fpca.fdajpca(self) jfpca.calc_fpca(no=no) s = jfpca.latent U = jfpca.U C = jfpca.C mu_psi = jfpca.mu_psi # compute mean and covariance mq_new = qn.mean(axis=1) mididx = jfpca.id m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :])) mqn = np.append(mq_new, m_new.mean()) # generate random samples vals = np.random.multivariate_normal(np.zeros(s.shape), np.diag(s), n) tmp = np.matmul(U, np.transpose(vals)) qhat = np.tile(mqn.T,(n,1)).T + tmp[0:M+1,:] tmp = np.matmul(U, np.transpose(vals)/C) vechat = tmp[(M+1):,:] psihat = np.zeros((M,n)) gamhat = np.zeros((M,n)) for ii in range(n): psihat[:,ii] = geo.exp_map(mu_psi,vechat[:,ii]) gam_tmp = cumtrapz(psihat[:,ii]**2,np.linspace(0,1,M),initial=0.0) gamhat[:,ii] = (gam_tmp - gam_tmp.min())/(gam_tmp.max()-gam_tmp.min()) ft = np.zeros((M,n)) fhat = np.zeros((M,n)) for ii in range(n): fhat[:,ii] = uf.cumtrapzmid(time, qhat[0:M,ii]*np.fabs(qhat[0:M,ii]), np.sign(qhat[M,ii])*(qhat[M,ii]*qhat[M,ii]), mididx) ft[:,ii] = uf.warp_f_gamma(np.linspace(0,1,M),fhat[:,ii],gamhat[:,ii]) self.rsamps = True self.fs = fhat self.gams = gamhat self.ft = ft self.qs = qhat[0:M,:] return def multiple_align_functions(self, mu, omethod="DP2", smoothdata=False, parallel=False, lam=0.0, cores=-1, grid_dim=7): """ This function aligns a collection of functions using the elastic square-root slope (srsf) framework. Usage: obj.multiple_align_functions(mu) obj.multiple_align_functions(lambda) obj.multiple_align_functions(lambda, ...) :param mu: vector of function to align to :param omethod: optimization method (DP, DP2, RBFGS) (default = DP) :param smoothdata: Smooth the data using a box filter (default = F) :param parallel: run in parallel (default = F) :param lam: controls the elasticity (default = 0) :param cores: number of cores for parallel (default = -1 (all)) :param grid_dim: size of the grid, for the DP2 method only (default = 7) :type lam: double :type smoothdata: bool """ M = self.f.shape[0] N = self.f.shape[1] self.lam = lam if M > 500: parallel = True elif N > 100: parallel = True eps = np.finfo(np.double).eps self.method = omethod self.type = "multiple" # Compute SRSF function from data f, g, g2 = uf.gradient_spline(self.time, self.f, smoothdata) q = g / np.sqrt(abs(g) + eps) mq = uf.f_to_srsf(mu, self.time) if parallel: out = Parallel(n_jobs=cores)(delayed(uf.optimum_reparam)(mq, self.time, q[:, n], omethod, lam, grid_dim) for n in range(N)) gam = np.array(out) gam = gam.transpose() else: gam = np.zeros((M,N)) for k in range(0,N): gam[:,k] = uf.optimum_reparam(mq,self.time,q[:,k],omethod,lam,grid_dim) self.gamI = uf.SqrtMeanInverse(gam) fn = np.zeros((M,N)) qn = np.zeros((M,N)) for k in range(0, N): fn[:, k] = np.interp((self.time[-1] - self.time[0]) * gam[:, k] + self.time[0], self.time, f[:, k]) qn[:, k] = uf.f_to_srsf(f[:, k], self.time) # Aligned data & stats self.fn = fn self.qn = qn self.q0 = q mean_f0 = f.mean(axis=1) std_f0 = f.std(axis=1) mean_fn = self.fn.mean(axis=1) std_fn = self.fn.std(axis=1) self.gam = gam self.mqn = mq self.fmean = mu fgam = np.zeros((M, N)) for k in range(0, N): time0 = (self.time[-1] - self.time[0]) * gam[:, k] + self.time[0] fgam[:, k] = np.interp(time0, self.time, self.fmean) var_fgam = fgam.var(axis=1) self.orig_var = trapz(std_f0 ** 2, self.time) self.amp_var = trapz(std_fn ** 2, self.time) self.phase_var = trapz(var_fgam, self.time) return def pairwise_align_functions(f1, f2, time, omethod="DP2", lam=0, grid_dim=7): """ This function aligns f2 to f1 using the elastic square-root slope (srsf) framework. Usage: out = pairwise_align_functions(f1, f2, time) out = pairwise_align_functions(f1, f2, time, omethod, lam, grid_dim) :param f1: vector defining M samples of function 1 :param f2: vector defining M samples of function 2 :param time: time vector of length M :param omethod: optimization method (DP, DP2, RBFGS) (default = DP) :param lam: controls the elasticity (default = 0) :param grid_dim: size of the grid, for the DP2 method only (default = 7) :rtype list containing :return f2n: aligned f2 :return gam: warping function :return q2n: aligned q2 (srsf) """ q1 = uf.f_to_srsf(f1, time) q2 = uf.f_to_srsf(f2, time) gam = uf.optimum_reparam(q1, time, q2, omethod, lam, grid_dim) f2n = uf.warp_f_gamma(time, f2 , gam) q2n = uf.f_to_srsf(f2n, time) return (f2n, gam, q2n) def pairwise_align_bayes(f1i, f2i, time, mcmcopts=None): """ This function aligns two functions using Bayesian framework. It will align f2 to f1. It is based on mapping warping functions to a hypersphere, and a subsequent exponential mapping to a tangent space. In the tangent space, the Z-mixture pCN algorithm is used to explore both local and global structure in the posterior distribution. The Z-mixture pCN algorithm uses a mixture distribution for the proposal distribution, controlled by input parameter zpcn. The zpcn$betas must be between 0 and 1, and are the coefficients of the mixture components, with larger coefficients corresponding to larger shifts in parameter space. The zpcn["probs"] give the probability of each shift size. Usage: out = pairwise_align_bayes(f1i, f2i, time) out = pairwise_align_bayes(f1i, f2i, time, mcmcopts) :param f1i: vector defining M samples of function 1 :param f2i: vector defining M samples of function 2 :param time: time vector of length M :param mcmopts: dict of mcmc parameters :type mcmcopts: dict default mcmc options: tmp = {"betas":np.array([0.5,0.5,0.005,0.0001]),"probs":np.array([0.1,0.1,0.7,0.1])} mcmcopts = {"iter":2*(10**4) ,"burnin":np.minimum(5*(10**3),2*(10**4)//2), "alpha0":0.1, "beta0":0.1,"zpcn":tmp,"propvar":1, "initcoef":np.repeat(0,20), "npoints":200, "extrainfo":True} :rtype collection containing :return f2_warped: aligned f2 :return gamma: warping function :return g_coef: final g_coef :return psi: final psi :return sigma1: final sigma if extrainfo :return accept: accept of psi samples :return betas_ind :return logl: log likelihood :return gamma_mat: posterior gammas :return gamma_stats: posterior gamma stats :return xdist: phase distance posterior :return ydist: amplitude distance posterior) """ if mcmcopts is None: tmp = {"betas":np.array([0.5,0.5,0.005,0.0001]),"probs":np.array([0.1,0.1,0.7,0.1])} mcmcopts = {"iter":2*(10**4) ,"burnin":np.minimum(5*(10**3),2*(10**4)//2),"alpha0":0.1, "beta0":0.1,"zpcn":tmp,"propvar":1, "initcoef":np.repeat(0,20), "npoints":200, "extrainfo":True} if f1i.shape[0] != f2i.shape[0]: raise Exception('Length of f1 and f2 must be equal') if f1i.shape[0] != time.shape[0]: raise Exception('Length of f1 and time must be equal') if mcmcopts["zpcn"]["betas"].shape[0] != mcmcopts["zpcn"]["probs"].shape[0]: raise Exception('In zpcn, betas must equal length of probs') if np.mod(mcmcopts["initcoef"].shape[0], 2) != 0: raise Exception('Length of mcmcopts.initcoef must be even') # Number of sig figs to report in gamma_mat SIG_GAM = 13 iter = mcmcopts["iter"] # parameter settings pw_sim_global_burnin = mcmcopts["burnin"] valid_index = np.arange(pw_sim_global_burnin-1,iter) pw_sim_global_Mg = mcmcopts["initcoef"].shape[0]//2 g_coef_ini = mcmcopts["initcoef"] numSimPoints = mcmcopts["npoints"] pw_sim_global_domain_par = np.linspace(0,1,numSimPoints) g_basis = uf.basis_fourier(pw_sim_global_domain_par, pw_sim_global_Mg, 1) sigma1_ini = 1 zpcn = mcmcopts["zpcn"] pw_sim_global_sigma_g = mcmcopts["propvar"] def propose_g_coef(g_coef_curr): pCN_beta = zpcn["betas"] pCN_prob = zpcn["probs"] probm = np.insert(np.cumsum(pCN_prob),0,0) z = np.random.rand() result = {"prop":g_coef_curr,"ind":1} for i in range (0,pCN_beta.shape[0]): if z <= probm[i+1] and z > probm[i]: g_coef_new = normal(0, pw_sim_global_sigma_g / np.repeat(np.arange(1,pw_sim_global_Mg+1),2)) result["prop"] = np.sqrt(1-pCN_beta[i]**2) * g_coef_curr + pCN_beta[i] * g_coef_new result["ind"] = i return result # normalize time to [0,1] time = (time - time.min())/(time.max()-time.min()) timet = np.linspace(0,1,numSimPoints) f1 = uf.f_predictfunction(f1i,timet,0) f2 = uf.f_predictfunction(f2i,timet,0) # srsf transformation q1 = uf.f_to_srsf(f1,timet) q1i = uf.f_to_srsf(f1i,time) q2 = uf.f_to_srsf(f2,timet) tmp = uf.f_exp1(uf.f_basistofunction(g_basis["x"],0,g_coef_ini,g_basis)) if tmp.min() < 0: raise Exception("Invalid initial value of g") # result vectors g_coef = np.zeros((iter,g_coef_ini.shape[0])) sigma1 = np.zeros(iter) logl = np.zeros(iter) SSE = np.zeros(iter) accept = np.zeros(iter, dtype=bool) accept_betas = np.zeros(iter) # init g_coef_curr = g_coef_ini sigma1_curr = sigma1_ini SSE_curr = bf.f_SSEg_pw(uf.f_basistofunction(g_basis["x"],0,g_coef_ini,g_basis),q1,q2) logl_curr = bf.f_logl_pw(uf.f_basistofunction(g_basis["x"],0,g_coef_ini,g_basis),q1,q2,sigma1_ini**2,SSE_curr) g_coef[0,:] = g_coef_ini sigma1[0] = sigma1_ini SSE[0] = SSE_curr logl[0] = logl_curr # update the chain for iter-1 times for m in tqdm(range(1,iter)): # update g g_coef_curr, tmp, SSE_curr, accepti, zpcnInd = bf.f_updateg_pw(g_coef_curr, g_basis, sigma1_curr**2, q1, q2, SSE_curr, propose_g_coef) # update sigma1 newshape = q1.shape[0]/2 + mcmcopts["alpha0"] newscale = 1/2 * SSE_curr + mcmcopts["beta0"] sigma1_curr = np.sqrt(1/np.random.gamma(newshape,1/newscale)) logl_curr = bf.f_logl_pw(uf.f_basistofunction(g_basis["x"],0,g_coef_curr,g_basis), q1, q2, sigma1_curr**2, SSE_curr) # save updates to results g_coef[m,:] = g_coef_curr sigma1[m] = sigma1_curr SSE[m] = SSE_curr if mcmcopts["extrainfo"]: logl[m] = logl_curr accept[m] = accepti accept_betas[m] = zpcnInd # calculate posterior mean of psi pw_sim_est_psi_matrix = np.zeros((numSimPoints,valid_index.shape[0])) for k in range(0,valid_index.shape[0]): g_temp = uf.f_basistofunction(g_basis["x"],0,g_coef[valid_index[k],:],g_basis) psi_temp = uf.f_exp1(g_temp) pw_sim_est_psi_matrix[:,k] = psi_temp result_posterior_psi_simDomain = uf.f_psimean(pw_sim_global_domain_par, pw_sim_est_psi_matrix) # resample to same number of points as the input f1 and f2 interp = interp1d(np.linspace(0,1,result_posterior_psi_simDomain.shape[0]), result_posterior_psi_simDomain, fill_value="extrapolate") result_posterior_psi = interp(np.linspace(0,1,f1i.shape[0])) # transform posterior mean of psi to gamma result_posterior_gamma = uf.f_phiinv(result_posterior_psi) result_posterior_gamma = uf.norm_gam(result_posterior_gamma) # warped f2 f2_warped = uf.warp_f_gamma(time, f2i, result_posterior_gamma) if mcmcopts["extrainfo"]: M,N = pw_sim_est_psi_matrix.shape gamma_mat = np.zeros((time.shape[0],N)) one_v = np.ones(M) Dx = np.zeros(N) Dy = Dx for ii in range(0,N): interp = interp1d(np.linspace(0,1,result_posterior_psi_simDomain.shape[0]), pw_sim_est_psi_matrix[:,ii], fill_value="extrapolate") result_i = interp(time) tmp = uf.f_phiinv(result_i) gamma_mat[:,ii] = uf.norm_gam(tmp) v, theta = geo.inv_exp_map(one_v,pw_sim_est_psi_matrix[:,ii]) Dx[ii] = np.sqrt(trapz(v**2,pw_sim_global_domain_par)) q2warp = uf.warp_q_gamma(pw_sim_global_domain_par,q2,gamma_mat[:,ii]) Dy[ii] = np.sqrt(trapz((q1i-q2warp)**2,time)) gamma_stats = uf.statsFun(gamma_mat) results_o = collections.namedtuple('align_bayes', ['f2_warped', 'gamma','g_coef', 'psi', 'sigma1', 'accept', 'betas_ind', 'logl', 'gamma_mat', 'gamma_stats', 'xdist', 'ydist']) out = results_o(f2_warped, result_posterior_gamma, g_coef, result_posterior_psi, sigma1, accept[1:], accept_betas[1:], logl, gamma_mat, gamma_stats, Dx, Dy) return(out) def pairwise_align_bayes_infHMC(y1i, y2i, time, mcmcopts=None): """ This function aligns two functions using Bayesian framework. It uses a hierarchical Bayesian framework assuming mearsurement error error It will align f2 to f1. It is based on mapping warping functions to a hypersphere, and a subsequent exponential mapping to a tangent space. In the tangent space, the \infty-HMC algorithm is used to explore both local and global structure in the posterior distribution. Usage: out = pairwise_align_bayes_infHMC(f1i, f2i, time) out = pairwise_align_bayes_infHMC(f1i, f2i, time, mcmcopts) :param y1i: vector defining M samples of function 1 :param y2i: vector defining M samples of function 2 :param time: time vector of length M :param mcmopts: dict of mcmc parameters :type mcmcopts: dict default mcmc options: mcmcopts = {"iter":1*(10**4), "nchains":4, "vpriorvar":1, "burnin":np.minimum(5*(10**3),2*(10**4)//2), "alpha0":0.1, "beta0":0.1, "alpha":1, "beta":1, "h":0.01, "L":4, "f1propvar":0.0001, "f2propvar":0.0001, "L1propvar":0.3, "L2propvar":0.3, "npoints":200, "thin":1, "sampfreq":1, "initcoef":np.repeat(0,20), "nbasis":10, "basis":'fourier', "extrainfo":True} Basis can be 'fourier' or 'legendre' :rtype collection containing :return f2_warped: aligned f2 :return gamma: warping function :return v_coef: final v_coef :return psi: final psi :return sigma1: final sigma if extrainfo :return theta_accept: accept of psi samples :return f2_accept: accept of f2 samples :return SSE: SSE :return gamma_mat: posterior gammas :return gamma_stats: posterior gamma stats :return xdist: phase distance posterior :return ydist: amplitude distance posterior) <NAME>, <NAME>, and <NAME>. “Multimodal Bayesian Registration of Noisy Functions using Hamiltonian Monte Carlo”, Computational Statistics and Data Analysis, accepted, 2021. """ if mcmcopts is None: mcmcopts = {"iter":1*(10**4), "nchains":4 , "vpriorvar":1, "burnin":np.minimum(5*(10**3),2*(10**4)//2), "alpha0":0.1, "beta0":0.1, "alpha":1, "beta":1, "h":0.01, "L":4, "f1propvar":0.0001, "f2propvar":0.0001, "L1propvar":0.3, "L2propvar":0.3, "npoints":200, "thin":1, "sampfreq":1, "initcoef":np.repeat(0,20), "nbasis":10, "basis":'fourier', "extrainfo":True} if y1i.shape[0] != y2i.shape[0]: raise Exception('Length of f1 and f2 must be equal') if y1i.shape[0] != time.shape[0]: raise Exception('Length of f1 and time must be equal') if np.mod(mcmcopts["initcoef"].shape[0], 2) != 0: raise Exception('Length of mcmcopts.initcoef must be even') if np.mod(mcmcopts["nbasis"], 2) != 0: raise Exception('Length of mcmcopts.nbasis must be even') # set up random start points for more than 1 chain random_starts = np.zeros((mcmcopts["initcoef"].shape[0], mcmcopts["nchains"])) if mcmcopts["nchains"] > 1: for i in range(0, mcmcopts["nchains"]): randcoef = -1 + (2)*rand(mcmcopts["initcoef"].shape[0]) random_starts[:, i] = randcoef isparallel = True if mcmcopts["nchains"] == 1: isparallel = False if isparallel: mcmcopts_p = [] for i in range(0, mcmcopts["nchains"]): mcmcopts["initcoef"] = random_starts[:, i] mcmcopts_p.append(mcmcopts) # run chains if isparallel: chains = Parallel(n_jobs=-1)(delayed(run_mcmc)(y1i, y2i, time, mcmcopts_p[n]) for n in range(mcmcopts["nchains"])) else: chains = [] chains1 = run_mcmc(y1i, y2i, time, mcmcopts) chains.append(chains1) # combine outputs Nsamples = chains[0]['f1'].shape[0] M = chains[0]['f1'].shape[1] f1 = np.zeros((Nsamples*mcmcopts["nchains"], M)) f2 = np.zeros((Nsamples*mcmcopts["nchains"], M)) gamma = np.zeros((M, mcmcopts["nchains"])) v_coef = np.zeros((Nsamples*mcmcopts["nchains"], chains[0]['v_coef'].shape[1])) psi = np.zeros((M, Nsamples*mcmcopts["nchains"])) sigma = np.zeros(Nsamples*mcmcopts["nchains"]) sigma1 = np.zeros(Nsamples*mcmcopts["nchains"]) sigma2 = np.zeros(Nsamples*mcmcopts["nchains"]) s1 = np.zeros(Nsamples*mcmcopts["nchains"]) s2 = np.zeros(Nsamples*mcmcopts["nchains"]) L1 = np.zeros(Nsamples*mcmcopts["nchains"]) L2 = np.zeros(Nsamples*mcmcopts["nchains"]) f2_warped_mu = np.zeros((M, mcmcopts["nchains"])) if mcmcopts["extrainfo"]: Nsamplesa = chains[0]['theta_accept'].shape[0] theta_accept = np.zeros(Nsamplesa*mcmcopts["nchains"]) f1_accept = np.zeros(Nsamplesa*mcmcopts["nchains"]) f2_accept = np.zeros(Nsamplesa*mcmcopts["nchains"]) L1_accept = np.zeros(Nsamplesa*mcmcopts["nchains"]) L2_accept = np.zeros(Nsamplesa*mcmcopts["nchains"]) gamma_mat = np.zeros((M,Nsamplesa*mcmcopts["nchains"])) SSE = np.zeros((Nsamplesa+1)*mcmcopts["nchains"]) logl = np.zeros((Nsamplesa+1)*mcmcopts["nchains"]) f2_warped = np.zeros((Nsamples*mcmcopts["nchains"], M)) phasedist = np.zeros(Nsamples*mcmcopts["nchains"]) ampdist = np.zeros(Nsamples*mcmcopts["nchains"]) for i in range(0, mcmcopts["nchains"]): a = (i)*Nsamples b = (i+1)*Nsamples f1[a:b, :] = chains[i]['f1'] f2[a:b, :] = chains[i]['f2'] gamma[:, i] = chains[i]['gamma'] v_coef[a:b, :] = chains[i]['v_coef'] psi[:, i] = chains[i]['psi'] sigma[a:b] = chains[i]['sigma'] sigma1[a:b] = chains[i]['sigma1'] sigma2[a:b] = chains[i]['sigma2'] s1[a:b] = chains[i]['s1'] s2[a:b] = chains[i]['s2'] L1[a:b] = chains[i]['L1'] L2[a:b] = chains[i]['L2'] f2_warped_mu[:, i] = chains[i]['f2_warped_mu'] if mcmcopts["extrainfo"]: a1 = (i)*Nsamplesa b1 = (i+1)*Nsamplesa theta_accept[a1:b1] = chains[i]['theta_accept'] f1_accept[a1:b1] = chains[i]['f1_accept'] f2_accept[a1:b1] = chains[i]['f2_accept'] L1_accept[a1:b1] = chains[i]['L1_accept'] L2_accept[a1:b1] = chains[i]['L2_accept'] gamma_mat[:, a:b] = chains[i]['gamma_mat'] a1 = (i)*(Nsamplesa) b1 = (i+1)*Nsamplesa SSE[a1:b1] = chains[i]['SSE'] logl[a1:b1] = chains[i]['logl'] f2_warped[a:b, :] = chains[i]['f2_warped'] phasedist[a:b] = chains[i]['phasedist'] ampdist[a:b] = chains[i]['ampdist'] # finding modes if mcmcopts["nchains"] > 1: Dx = np.zeros((mcmcopts["nchains"], mcmcopts["nchains"])) time1 = np.linspace(0,1,gamma.shape[0]) binsize = np.diff(time1) binsize = binsize.mean() for i in range(0, mcmcopts["nchains"]): for j in range(i+1,mcmcopts["nchains"]): psi1 = np.sqrt(np.gradient(gamma[:, i], binsize)) psi2 = np.sqrt(np.gradient(gamma[:, j], binsize)) q1dotq2 = trapz(psi1*psi2, time1) if q1dotq2 > 1: q1dotq2 = 1 elif q1dotq2 < -1: q1dotq2 = -1 Dx[i,j] = np.real(np.arccos(q1dotq2)) Dx = Dx + Dx.T # cluster modes y = squareform(Dx) Z = linkage(y, method='complete') cutoff = np.median(Dx) T = fcluster(Z, cutoff, criterion='distance') N = np.unique(T) # find mean and confidence region of cluster posterior_gamma_modes = np.zeros((M, N.shape[0])) posterior_gamma_modes_cr = np.zeros((M, 2, N.shape[0])) for i in range(1, N.shape[0]+1): idx = np.where(T == i)[0] tmp = np.zeros((M, Nsamples*idx.shape[0])) for j in range(0, idx.shape[0]): a = (j)*Nsamples b = (j+1)*Nsamples tmp[:, a:b] = chains[idx[j]]['gamma_mat'] mu, gam_mu, psi, vec = uf.SqrtMean(tmp) posterior_gamma_modes[:, i-1] = gam_mu posterior_gamma_modes_cr[:, :, i-1] = uf.statsFun(tmp) # thining f1 = f1[0::mcmcopts["thin"], :] f2 = f2[0::mcmcopts["thin"], :] v_coef = v_coef[0::mcmcopts["thin"], :] sigma = sigma[0::mcmcopts["thin"]] sigma1 = sigma1[0::mcmcopts["thin"]] sigma2 = sigma2[0::mcmcopts["thin"]] s1 = s1[0::mcmcopts["thin"]] s2 = s2[0::mcmcopts["thin"]] L1 = L1[0::mcmcopts["thin"]] L2 = L2[0::mcmcopts["thin"]] if mcmcopts["extrainfo"]: theta_accept = theta_accept[0::mcmcopts["thin"]] f1_accept = f1_accept[0::mcmcopts["thin"]] f2_accept = f2_accept[0::mcmcopts["thin"]] L1_accept = L1_accept[0::mcmcopts["thin"]] L2_accept = L2_accept[0::mcmcopts["thin"]] gamma_mat = gamma_mat[:, 0::mcmcopts["thin"]] SSE = SSE[0::mcmcopts["thin"]] logl = logl[0::mcmcopts["thin"]] f2_warped = f2_warped[0::mcmcopts["thin"], :] phasedist = phasedist[0::mcmcopts["thin"]] ampdist = ampdist[0::mcmcopts["thin"]] if mcmcopts["extrainfo"]: results_o = collections.namedtuple('align_bayes_HMC', ['f1', 'f2', 'gamma', 'v_coef', 'psi', 'sigma', 'sigma1', 'sigma2', 's1', 's2', 'L1', 'L2', 'f2_warped_mu', 'theta_accept', 'f1_accept', 'f2_accept', 'L1_accept', 'L2_accept', 'gamma_mat', 'SSE', 'logl', 'f2_warped', 'phasedist', 'ampdist']) out = results_o(f1, f2, gamma, v_coef, psi, sigma, sigma1, sigma2, s1, s2, L1, L2, f2_warped_mu, theta_accept, f1_accept, f2_accept, L1_accept, L2_accept, gamma_mat, SSE, logl, f2_warped, phasedist, ampdist) else: results_o = collections.namedtuple('align_bayes_HMC', ['f1', 'f2', 'gamma', 'v_coef', 'psi', 'sigma', 'sigma1', 'sigma2', 's1', 's2', 'L1', 'L2', 'f2_warped_mu']) out = results_o(f1, f2, gamma, v_coef, psi, sigma, sigma1, sigma2, s1, s2, L1, L2, f2_warped_mu) return(out) def run_mcmc(y1i, y2i, time, mcmcopts): # Number of sig figs to report in gamma_mat SIG_GAM = 13 iter = mcmcopts["iter"] T = time.shape[0] # normalize time to [0,1] time = (time - time.min())/(time.max()-time.min()) # parameter settings pw_sim_global_burnin = mcmcopts["burnin"] valid_index = np.arange(pw_sim_global_burnin-1,iter) ncoef = mcmcopts["initcoef"].shape[0] nbasis = mcmcopts["nbasis"] pw_sim_global_Mv = ncoef//2 numSimPoints = T pw_sim_global_domain_par = np.linspace(0,1,numSimPoints) d_basis = uf.basis_fourierd(pw_sim_global_domain_par, nbasis) if mcmcopts["basis"] == 'fourier': v_basis = uf.basis_fourier(pw_sim_global_domain_par, pw_sim_global_Mv, 1) elif mcmcopts["basis"] == 'legendre': v_basis = uf.basis_legendre(pw_sim_global_domain_par, pw_sim_global_Mv, 1) else: raise Exception('Incorrect Basis Specified') sigma_ini = 1 v_priorvar = mcmcopts["vpriorvar"] v_coef_ini = mcmcopts["initcoef"] D = pdist(time.reshape((time.shape[0],1))) Dmat = squareform(D) C = v_priorvar / np.repeat(np.arange(1,pw_sim_global_Mv+1), 2) cholC = cholesky(np.diag(C)) h = mcmcopts["h"] L = mcmcopts["L"] def propose_v_coef(v_coef_curr): v_coef_new = normal(v_coef_curr, C.T) return v_coef_new # f1,f2 prior, propoposal params sigma1_ini = 0.01 sigma2_ini = 0.01 f1_propvar = mcmcopts["f1propvar"] f2_propvar = mcmcopts["f2propvar"] y1itmp = y1i[0::mcmcopts["sampfreq"]] timetmp = time[0::mcmcopts["sampfreq"]] kernel1 = GPy.kern.RBF(input_dim=1, variance=y1itmp.std()/np.sqrt(2), lengthscale=np.mean(timetmp.std())) y2itmp = y2i[0::mcmcopts["sampfreq"]] kernel2 = GPy.kern.RBF(input_dim=1, variance=y2itmp.std()/
np.sqrt(2)
numpy.sqrt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Feb 14 19:50:56 2020 @author: hiroyasu """ import cvxpy as cp import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import control import SCPmulti as scp import pickle import TrainRNN as trnn import torch import pandas as pd DT = scp.DT TSPAN = scp.TSPAN M = scp.M II = scp.II L = scp.L bb = scp.bb FMIN = scp.FMIN FMAX = scp.FMAX RungeNum = scp.RungeNum AA = scp.AA Robs = scp.Robs Rsafe = scp.Rsafe XOBSs = scp.XOBSs XXd0 =
np.load('data/params/desired_n/Xhis.npy')
numpy.load
""" Author: <NAME> (<EMAIL>, http://personales.upv.es/jon) Version: 1.0 Date: September 2021 Universitat Politecnica de Valencia Technical University of Valencia TU.VLC Computing the confusion matrix for a K-Means-based naive classifier """ import os import sys import numpy import pickle from machine_learning import KMeans try: from pyspark import SparkContext except: pass if __name__ == "__main__": """ Usage: spark-submit --master local[4] python/kmeans_uc13_compute_confusion_matrix_spark.py \ --dataset data/uc13.csv \ --codebook models/kmeans_model-uc13-1000.pkl 2>/dev/null """ verbose = 0 dataset_filename = 'data/uc13.csv' codebook_filename = 'models/kmeans_model-uc13-200.pkl' spark_context = None num_partitions = 40 batch_size = 100 for i in range(len(sys.argv)): if sys.argv[i] == "--dataset": dataset_filename = sys.argv[i + 1] elif sys.argv[i] == "--verbosity": verbose = int(sys.argv[i + 1]) elif sys.argv[i] == "--num-partitions": num_partitions = int(sys.argv[i + 1]) elif sys.argv[i] == "--batch-size": batch_size = int(sys.argv[i + 1]) elif sys.argv[i] == "--codebook": codebook_filename = sys.argv[i + 1] spark_context = SparkContext(appName = "K-Means compute confusion matrix") with open(codebook_filename, 'rb') as f: centers = pickle.load(f) f.close() kmeans = KMeans() kmeans.n_clusters = len(centers) kmeans.cluster_centers_ =
numpy.array(centers)
numpy.array
# -*- coding: utf-8 -*- # LICENCE from __future__ import absolute_import, division, print_function, unicode_literals import six # NOQA from six.moves import zip import numpy as np from vtool_ibeis import histogram as htool from vtool_ibeis import keypoint as ktool from vtool_ibeis import linalg as ltool from vtool_ibeis import image as gtool from vtool_ibeis import trig import utool as ut import ubelt as ub from .util_math import TAU try: import cv2 except ImportError as ex: print('ERROR: import cv2 is failing!') cv2 = ut.DynStruct() cv2.INTER_LANCZOS4 = None cv2.INTER_CUBIC = None cv2.BORDER_CONSTANT = None cv2.BORDER_REPLICATE = None def patch_gradient(patch, ksize=1, gaussian_weighted=False): patch_ = np.array(patch, dtype=np.float64) gradx = cv2.Sobel(patch_, cv2.CV_64F, 1, 0, ksize=ksize) grady = cv2.Sobel(patch_, cv2.CV_64F, 0, 1, ksize=ksize) if gaussian_weighted: gausspatch = gaussian_patch(shape=gradx.shape) gausspatch /= gausspatch.max() gradx *= gausspatch grady *= gausspatch return gradx, grady def patch_mag(gradx, grady): return np.sqrt((gradx ** 2) + (grady ** 2)) def patch_ori(gradx, grady): """ returns patch orientation relative to the x-axis """ gori = trig.atan2(grady, gradx) return gori def get_test_patch(key='star', jitter=False): r""" Args: key (str): jitter (bool): Returns: ndarray: patch CommandLine: python -m vtool_ibeis.patch --test-get_test_patch --show Example: >>> # DISABLE_DOCTEST >>> from vtool_ibeis.patch import * # NOQA >>> import plottool_ibeis as pt >>> key = 'star2' >>> jitter = False >>> patch = get_test_patch(key, jitter) >>> pt.imshow(255 * patch) >>> pt.show_if_requested() """ func = { 'star2': get_star2_patch, 'cross': get_cross_patch, 'star': get_star_patch, 'stripe': get_stripe_patch, }[key] patch = func(jitter) return patch def make_test_image_keypoints(imgBGR, scale=1.0, skew=0, theta=0, shift=(0, 0)): h, w = imgBGR.shape[0:2] half_w, half_h = w / 2.0, h / 2.0 x, y = (half_w - .5) + (w * shift[0]), (half_h - .5) + (h * shift[1]) a = (half_w) * scale c = skew d = (half_h) * scale theta = theta kpts = np.array([[x, y, a, c, d, theta]], np.float32) return kpts def get_no_symbol(variant='symbol', size=(100, 100)): r""" Returns: ndarray: errorimg CommandLine: python -m vtool_ibeis.patch --test-get_no_symbol --show Example: >>> # ENABLE_DOCTEST >>> from vtool_ibeis.patch import * # NOQA >>> errorimg = get_no_symbol() >>> # xdoctest: +REQUIRES(--show) >>> import plottool_ibeis as pt >>> pt.imshow(errorimg) >>> ut.show_if_requested() """ thickness = 2 shape = (size[1], size[0], 3) errorimg = np.zeros(shape) center = (size[0] // 2, size[1] // 2) radius = min(center) - thickness color_bgr = [0, 0, 255] tau = 2 * np.pi angle = 45 / 360 * tau pt1 = (center[0] - int(np.sin(angle) * radius), center[1] - int(np.cos(angle) * radius)) pt2 = (center[0] + int(np.sin(angle) * radius), center[1] + int(np.cos(angle) * radius)) if variant == 'symbol': cv2.circle(errorimg, center, radius, color_bgr, thickness) cv2.line(errorimg, pt1, pt2, color_bgr, thickness) else: import vtool_ibeis as vt fontFace = cv2.FONT_HERSHEY_PLAIN org = (size[0] * .1, size[1] * .6) fontkw = dict(bottomLeftOrigin=False, fontScale=2.5, fontFace=fontFace) vt.draw_text(errorimg, 'NaN', org, thickness=2, textcolor_rgb=color_bgr[::-1], **fontkw) return errorimg def get_star_patch(jitter=False): """ test data patch """ _, O = .1, .8 patch = np.array([ [_, _, _, O, _, _, _], [_, _, _, O, _, _, _], [_, _, O, O, O, _, _], [O, O, O, O, O, O, O], [_, O, O, O, O, O, _], [_, _, O, O, O, _, _], [_, O, O, O, O, O, _], [_, O, _, _, _, O, _], [O, _, _, _, _, _, O]]) if jitter: patch += np.random.rand(*patch.shape) * .1 return patch def get_star2_patch(jitter=False): """ test data patch """ _, i, O = .1, .8, .5 patch = np.array([ [_, _, _, _, _, _, _, O, O, _, _, _, _, _, _, _], [_, _, _, _, _, _, O, i, i, O, _, _, _, _, _, _], [_, _, _, _, _, _, O, i, i, O, _, _, _, _, _, _], [_, _, _, _, _, O, i, i, i, i, O, _, _, _, _, _], [O, O, O, O, O, O, i, i, i, i, O, O, O, O, O, O], [O, i, i, i, i, i, i, i, i, i, i, i, i, i, i, O], [_, O, i, i, i, i, O, i, i, O, i, i, i, i, O, _], [_, _, O, i, i, i, O, i, i, O, i, i, i, O, _, _], [_, _, _, O, i, i, O, i, i, O, i, i, O, _, _, _], [_, _, _, O, i, i, i, i, i, i, i, i, O, _, _, _], [_, _, O, i, i, i, i, i, i, i, i, i, i, O, _, _], [_, _, O, i, i, i, i, i, i, i, i, i, i, O, _, _], [_, O, i, i, i, i, i, O, O, i, i, i, i, i, O, _], [_, O, i, i, i, O, O, _, _, O, O, i, i, i, O, _], [O, i, i, O, O, _, _, _, _, _, _, O, O, i, i, O], [O, O, O, _, _, _, _, _, _, _, _, _, _, O, O, O]]) if jitter: patch += np.random.rand(*patch.shape) * .1 return patch def get_cross_patch(jitter=False): """ test data patch """ _, O = .1, .8 patch = np.array([ [_, _, O, O, O, _, _], [_, _, O, O, O, _, _], [_, _, O, O, O, _, _], [O, O, O, O, O, O, O], [O, O, O, O, O, O, O], [_, _, O, O, O, _, _], [_, _, O, O, O, _, _], [_, _, O, O, O, _, _], [_, _, O, O, O, _, _]]) if jitter: patch += np.random.rand(*patch.shape) * .1 return patch def get_stripe_patch(jitter=False): """ test data patch """ _, O = .1, .8 patch = np.array([ [O, O, O, _, _, _, _], [O, O, O, _, _, _, _], [O, O, O, _, _, _, _], [O, O, O, _, _, _, _], [O, O, O, _, _, _, _], [O, O, O, _, _, _, _], [O, O, O, _, _, _, _], [O, O, O, _, _, _, _], [O, O, O, _, _, _, _]]) if jitter: patch += np.random.rand(*patch.shape) * .1 return patch def test_show_gaussian_patches2(shape=(19, 19)): r""" CommandLine: python -m vtool_ibeis.patch --test-test_show_gaussian_patches2 --show python -m vtool_ibeis.patch --test-test_show_gaussian_patches2 --show --shape=7,7 python -m vtool_ibeis.patch --test-test_show_gaussian_patches2 --show --shape=19,19 python -m vtool_ibeis.patch --test-test_show_gaussian_patches2 --show --shape=41,41 python -m vtool_ibeis.patch --test-test_show_gaussian_patches2 --show --shape=41,7 References: http://matplotlib.org/examples/mplot3d/surface3d_demo.html Example: >>> # DISABLE_DOCTEST >>> from vtool_ibeis.patch import * # NOQA >>> from mpl_toolkits.mplot3d import Axes3D # NOQA >>> import plottool_ibeis as pt >>> shape = ut.get_argval(('--shape',), type_=list, default=[19, 19]) >>> test_show_gaussian_patches2(shape=shape) >>> pt.show_if_requested() """ from mpl_toolkits.mplot3d import Axes3D # NOQA import plottool_ibeis as pt import numpy as np import matplotlib as mpl import vtool_ibeis as vt shape = tuple(map(int, shape)) print('shape = %r' % (shape,)) #shape = (27, 27) #shape = (7, 7) #shape = (41, 41) #shape = (5, 5) #shape = (3, 3) sigma_percent_list = [.1, .3, .5, .6, .7, .8, .9, .95, 1.0] #np.linspace(.1, 3, 9) ybasis = np.arange(shape[0]) xbasis = np.arange(shape[1]) xgrid, ygrid = np.meshgrid(xbasis, ybasis) fnum = pt.next_fnum() for sigma_percent in pt.param_plot_iterator(sigma_percent_list, fnum=fnum, projection='3d'): radius1 = shape[0] radius2 = shape[1] sigma1 = radius1 * sigma_percent sigma2 = radius2 * sigma_percent sigma = [sigma1, sigma2] gausspatch = vt.gaussian_patch(shape, sigma=sigma) #print(gausspatch) #pt.imshow(gausspatch * 255) pt.plot_surface3d(xgrid, ygrid, gausspatch, rstride=1, cstride=1, cmap=mpl.cm.coolwarm, title='sigma_percent=%.3f' % (sigma_percent,)) pt.update() pt.set_figtitle('2d gaussian kernels') def show_gaussian_patch(shape, sigma1, sigma2): from mpl_toolkits.mplot3d import Axes3D # NOQA import matplotlib as mpl import plottool_ibeis as pt import vtool_ibeis as vt ybasis = np.arange(shape[0]) xbasis = np.arange(shape[1]) xgrid, ygrid = np.meshgrid(xbasis, ybasis) sigma = [sigma1, sigma2] gausspatch = vt.gaussian_patch(shape, sigma=sigma) #print(gausspatch) #pt.imshow(gausspatch * 255) title = 'ksize=%r, sigma=%r' % (shape, (sigma1, sigma2),) pt.plot_surface3d(xgrid, ygrid, gausspatch, rstride=1, cstride=1, cmap=mpl.cm.coolwarm, title=title) def inverted_sift_patch(sift, dim=32): """ Idea for inverted sift visualization CommandLine: python -m vtool_ibeis.patch test_sift_viz --show --name=star python -m vtool_ibeis.patch test_sift_viz --show --name=star2 python -m vtool_ibeis.patch test_sift_viz --show --name=cross python -m vtool_ibeis.patch test_sift_viz --show --name=stripe Example: >>> # DISABLE_DOCTEST >>> from vtool_ibeis.patch import * # NOQA >>> import vtool_ibeis as vt >>> patch = vt.get_test_patch(ut.get_argval('--name', default='star')) >>> sift = vt.extract_feature_from_patch(patch) >>> siftimg = test_sift_viz(sift) >>> # Need to do some image blending >>> # xdoctest: +REQUIRES(--show) >>> import plottool_ibeis as pt >>> pt.figure(fnum=1, pnum=(1, 2, 1)) >>> pt.mpl_sift.draw_sift_on_patch(siftimg, sift) >>> pt.figure(fnum=1, pnum=(1, 2, 2)) >>> patch2 = patch >>> patch2 = vt.rectify_to_uint8(patch2) >>> patch2 = vt.rectify_to_square(patch2) >>> pt.mpl_sift.draw_sift_on_patch(patch2, sift) >>> ut.show_if_requested() """ import vtool_ibeis as vt # dim = 21 pad = dim // 2 + (dim % 2) # pad = 0 blocks = [] for siftmags in ut.ichunks(sift, 8): thetas =
np.linspace(0, TAU, 8, endpoint=False)
numpy.linspace
import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold import pdb import sys sys.path.append('../data') from pytorch_data_operations import buildLakeDataForRNN_manylakes_finetune2, parseMatricesFromSeqs import torch import torch.nn as nn import torch.utils.data from torch.utils.data import Dataset, DataLoader from torch.nn.init import xavier_normal_ from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.svm import SVR from sklearn.model_selection import cross_val_score from sklearn.neural_network import MLPRegressor from scipy.stats import spearmanr from joblib import dump, load import re import os metadata = pd.read_feather("../../metadata/lake_metadata_2700plus.feather") sites = pd.read_csv('../../metadata/sites_moreThan10ProfilesWithGLM_Mar2020Update.csv') ids = pd.read_csv('../../metadata/pball_site_ids.csv', header=None) ids = ids[0].values glm_all_f = pd.read_csv("../../results/glm_transfer/RMSE_transfer_glm_pball.csv") train_df = pd.read_feather("../../results/transfer_learning/glm/train_rmses_pball.feather") train_lakes = [re.search('nhdhr_(.*)', x).group(1) for x in np.unique(glm_all_f['target_id'].values)] n_lakes = len(train_lakes) all_sites = metadata['site_id'].values test_lakes = np.array(all_sites[~np.isin(all_sites, train_lakes)]) metadata.set_index('site_id', inplace=True) output_to_file = True biases = [] verbose=False # print(train_lakes.shape[0], " training lakes") #temp # test_lakes = np.array(['{B5AAC6E6-9ED3-413C-B1D8-9094367B2EEC}']) csv = [] csv.append(",".join(["source_id","pgdl_rmse","glm_rmse"])) test_lakes = np.array(train_lakes) # test_lakes = train_lakes rmse_per_lake = np.empty(test_lakes.shape[0]) glm_rmse_per_lake = np.empty(test_lakes.shape[0]) srcorr_per_lake = np.empty(test_lakes.shape[0]) meta_rmse_per_lake = np.empty(test_lakes.shape[0]) med_meta_rmse_per_lake = np.empty(test_lakes.shape[0]) rmse_per_lake[:] = np.nan glm_rmse_per_lake[:] = np.nan meta_rmse_per_lake[:] = np.nan csv = [] csv.append('target_id,rmse,rmse_pred,rmse_pred_lower,rmse_pred_upper,rmse_pred_med,spearman,glm_rmse,site_id') err_per_source = np.empty((9,len(train_lakes))) # test_lakes = np.array(['120020398']) for targ_ct, target_id in enumerate(train_lakes): #for each target lake nid = target_id # if nid == '120018008' or nid == '120020307' or nid == '120020636' or nid == '32671150' or nid =='58125241'or nid=='120020800' or nid=='91598525': # continue print("target lake ",targ_ct,"/",len(train_lakes),": ", target_id) top_ids = [target_id] #define target test data to use data_dir_target = "../../data/processed/lake_data/"+target_id+"/" #target agnostic model and data params use_gpu = True n_features = 8 # n_hidden = 20 seq_length = 350 win_shift = 175 begin_loss_ind = 0 (_, _, tst_data_target, tst_dates_target, unique_tst_dates_target, all_data_target, all_phys_data_target, all_dates_target, _) = buildLakeDataForRNN_manylakes_finetune2(target_id, data_dir_target, seq_length, n_features, win_shift = win_shift, begin_loss_ind = begin_loss_ind, outputFullTestMatrix=True, allTestSeq=True) #useful values, LSTM params batch_size = all_data_target.size()[0] u_depths_target = np.unique(all_data_target[:,0,0]) n_depths = torch.unique(all_data_target[:,:,0]).size()[0] n_test_dates_target = unique_tst_dates_target.shape[0] #define LSTM model class LSTM(nn.Module): def __init__(self, input_size, hidden_size, batch_size): super(LSTM, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.batch_size = batch_size self.lstm = nn.LSTM(input_size = n_features, hidden_size=hidden_size, batch_first=True) self.out = nn.Linear(hidden_size, 1) self.hidden = self.init_hidden() def init_hidden(self, batch_size=0): # initialize both hidden layers if batch_size == 0: batch_size = self.batch_size ret = (xavier_normal_(torch.empty(1, batch_size, self.hidden_size)), xavier_normal_(torch.empty(1, batch_size, self.hidden_size))) if use_gpu: item0 = ret[0].cuda(non_blocking=True) item1 = ret[1].cuda(non_blocking=True) ret = (item0,item1) return ret def forward(self, x, hidden): #forward network propagation self.lstm.flatten_parameters() x = x.float() x, hidden = self.lstm(x, self.hidden) self.hidden = hidden x = self.out(x) return x, hidden #output matrix n_lakes = len(top_ids) output_mats = np.empty((n_lakes, n_depths, n_test_dates_target)) ind_rmses = np.empty((n_lakes)) ind_rmses[:] = np.nan label_mats = np.empty((n_depths, n_test_dates_target)) output_mats[:] = np.nan label_mats[:] = np.nan for i, source_id in enumerate(top_ids): #for each top id #load source model load_path = "../../models/single_lake_models/"+source_id+"/PGRNN_source_model_0.7" n_hidden = torch.load(load_path)['state_dict']['out.weight'].shape[1] lstm_net = LSTM(n_features, n_hidden, batch_size) if use_gpu: lstm_net = lstm_net.cuda(0) pretrain_dict = torch.load(load_path)['state_dict'] model_dict = lstm_net.state_dict() pretrain_dict = {key: v for key, v in pretrain_dict.items() if key in model_dict} model_dict.update(pretrain_dict) lstm_net.load_state_dict(pretrain_dict) #things needed to predict test data mse_criterion = nn.MSELoss() testloader = torch.utils.data.DataLoader(tst_data_target, batch_size=tst_data_target.size()[0], shuffle=False, pin_memory=True) lstm_net.eval() with torch.no_grad(): avg_mse = 0 ct = 0 for m, data in enumerate(testloader, 0): #now for mendota data #this loop is dated, there is now only one item in testloader #parse data into inputs and targets inputs = data[:,:,:n_features].float() targets = data[:,:,-1].float() targets = targets[:, begin_loss_ind:] tmp_dates = tst_dates_target[:, begin_loss_ind:] depths = inputs[:,:,0] if use_gpu: inputs = inputs.cuda() targets = targets.cuda() #run model h_state = None lstm_net.hidden = lstm_net.init_hidden(batch_size=inputs.size()[0]) pred, h_state = lstm_net(inputs, h_state) pred = pred.view(pred.size()[0],-1) pred = pred[:, begin_loss_ind:] #calculate error targets = targets.cpu() loss_indices = np.where(~np.isnan(targets)) if use_gpu: targets = targets.cuda() inputs = inputs[:, begin_loss_ind:, :] depths = depths[:, begin_loss_ind:] mse = mse_criterion(pred[loss_indices], targets[loss_indices]) # print("test loss = ",mse) avg_mse += mse if mse > 0: #obsolete i think ct += 1 avg_mse = avg_mse / ct #save model (outputm_npy, labelm_npy) = parseMatricesFromSeqs(pred.cpu().numpy(), targets.cpu().numpy(), depths, tmp_dates, n_depths, n_test_dates_target, u_depths_target, unique_tst_dates_target) #store output output_mats[i,:,:] = outputm_npy if i == 0: #store label label_mats = labelm_npy loss_output = outputm_npy[~np.isnan(labelm_npy)] loss_label = labelm_npy[~np.isnan(labelm_npy)] mat_rmse = np.sqrt(((loss_output - loss_label) ** 2).mean()) print(source_id+" rmse=", mat_rmse) err_per_source[i,targ_ct] = mat_rmse outputm_npy = np.transpose(outputm_npy) output_df = pd.DataFrame(data=outputm_npy, columns=[str(float(x/2)) for x in range(outputm_npy.shape[1])], index=[str(x)[:10] for x in unique_tst_dates_target]).reset_index() output_df.rename(columns={'index': 'depth'}) assert np.isfinite(np.array(output_df.values[:,1:],dtype=np.float32)).all(), "nan output" output_df.to_feather('./source_pgdl_outputs/nhdhr_'+target_id+'.feather') #save model total_output_npy = np.average(output_mats, axis=0) loss_output = total_output_npy[~np.isnan(label_mats)] loss_label = label_mats[~
np.isnan(label_mats)
numpy.isnan
import numpy as np import pytest import apexpy import tempfile import os import h5py from ttools import create_dataset, config, io, utils map_periods = [np.timedelta64(10, 'm'), np.timedelta64(30, 'm'), np.timedelta64(1, 'h'), np.timedelta64(2, 'h')] @pytest.fixture def times(): yield np.datetime64('2010-01-01T00:00:00') + np.arange(100) * np.timedelta64(5, 'm') @pytest.mark.parametrize('map_period', map_periods) def test_assemble_args(times, map_period): mlat = np.arange(10) mlt = np.arange(10) ssmlon = np.random.rand(times.shape[0]) mlt, mlat =
np.meshgrid(mlt, mlat)
numpy.meshgrid
import argparse import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import time from scipy import stats from sklearn.metrics import r2_score import math # Force using CPU globally by hiding GPU(s) tf.config.set_visible_devices([], 'GPU') # import edl import evidential_deep_learning as edl import data_loader import trainers import models from models.toy.h_params import h_params import itertools tf.config.threading.set_intra_op_parallelism_threads(1) import random data_name = 'flight_delay' original_data_path = '../flight_delay_data/' results_path = './Results_DER/'+data_name + '_DER_results.txt' save_loss_history = False save_loss_history_path = './Results_DER/loss_history/' plot_loss_history = False plot_loss_history_path = './Results_DER/loss_curves/' parser = argparse.ArgumentParser() parser.add_argument("--num-trials", default=1, type=int, help="Number of trials to repreat training for \ statistically significant results.") parser.add_argument("--num-epochs", default=100, type=int) parser.add_argument('--datasets', nargs='+', default=["flight_delay"], choices=['flight_delay']) dataset = data_name # learning_rate = h_params[dataset]["learning_rate"] # batch_size = h_params[dataset]["batch_size"] learning_rate = 1e-4 batch_size = 512 neurons = 100 ### New flight delay data loader for customized train/test data same with PI3NN method xTrain, yTrain, yTrain_scale, test_data_list = data_loader.load_flight_delays('../flight_delay_data/') # '''choose the train/test dataset ''' x_train = xTrain y_train = yTrain y_scale = yTrain_scale test_idx = 0 # [0, 1, 2, 3] for test 1,2,3,4 x_test = test_data_list[test_idx][0] y_test = test_data_list[test_idx][1] seed = 12345 random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) args = parser.parse_args() args.datasets[0] = data_name training_schemes = [trainers.Evidential] datasets = args.datasets print('--- Printing datasets:') print(datasets) num_trials = args.num_trials print('num_trials:{}'.format(num_trials)) # num_trials = 3 num_epochs = args.num_epochs dev = "/cpu:0" # for small datasets/models cpu is faster than gpu """" ================================================""" RMSE = np.zeros((len(datasets), len(training_schemes), num_trials)) NLL = np.zeros((len(datasets), len(training_schemes), num_trials)) PICP_arr = np.zeros(num_trials) MPIW_arr = np.zeros(num_trials) R2_arr = np.zeros(num_trials) for di, dataset in enumerate(datasets): # print(di) # print(dataset) for ti, trainer_obj in enumerate(training_schemes): for n in range(num_trials): print('*********************************************') print('--- data: {}, trial: {}'.format(data_name, n+1)) print('*********************************************') # batch_size = h_params[dataset]["batch_size"] num_iterations = num_epochs * x_train.shape[0]//batch_size print('num_epochs: {}, num_x_data: {}, batch_size: {}, total iters {} = {} * {} // {}'.format(num_epochs, x_train.shape[0], batch_size, num_iterations, num_epochs, x_train.shape[0], batch_size)) done = False while not done: with tf.device(dev): model_generator = models.get_correct_model(dataset="toy", trainer=trainer_obj) model, opts = model_generator.create(input_shape=x_train.shape[1:], num_neurons=neurons, tf_seed=seed) trainer = trainer_obj(model, opts, dataset, learning_rate=learning_rate) model, rmse, nll, loss = trainer.train(x_train, y_train, x_test, y_test, y_scale, batch_size=batch_size, iters=num_iterations, verbose=True, data_name=data_name, rnd_seed=seed, trial_num=n, bool_plot_loss=False, bool_save_loss=True, save_loss_path=save_loss_history_path, plot_loss_path=plot_loss_history_path) ''' Evaluate the PICP and MPIW for each trial ''' ### taken from the 'plot_ng' function from the original evidential regression code x_test_input_tf = tf.convert_to_tensor(x_test, tf.float32) outputs = model(x_test_input_tf) mu, v, alpha, beta = tf.split(outputs, 4, axis=1) epistemic_var = np.sqrt(beta / (v * (alpha - 1))) epistemic_var = np.minimum(epistemic_var, 1e3) y_pred_U = mu.numpy() + epistemic_var * 1.96 y_pred_L = mu.numpy() - epistemic_var * 1.96 # print('y_pred_U: {}'.format(y_pred_U)) # print('y_pred_L: {}'.format(y_pred_L)) ''' Do same thing for training data in order to do OOD analysis ''' x_train_input_tf = tf.convert_to_tensor(x_train, tf.float32) outputs_train = model(x_train_input_tf) mu_train, v_train, alpha_train, beta_train = tf.split(outputs_train, 4, axis=1) epistemic_var_train = np.sqrt(beta_train / (v_train * (alpha_train - 1))) epistemic_var_train = np.minimum(epistemic_var_train, 1e3) y_pred_U_train = mu_train.numpy() + epistemic_var_train * 1.96 y_pred_L_train = mu_train.numpy() - epistemic_var_train * 1.96 if np.isnan(y_pred_U).any() or np.isnan(y_pred_L).any(): PICP = math.nan MPIW = math.nan R2 = math.nan rmse = math.nan nll = math.nan print('--- the y_pred_U/L contains NaN(s) in current trial') else: ''' Calculate the confidence scores (y-axis) range from 0-1''' y_U_cap_train = y_pred_U_train.flatten() > y_train y_L_cap_train = y_pred_L_train.flatten() < y_train MPIW_array_train = y_pred_U_train.flatten() - y_pred_L_train.flatten() MPIW_train = np.mean(MPIW_array_train) #### for test (evaluate each y_U_cap - y_L_cap in the pre-calculated MPIW_train single value # for the confidence score) print(y_pred_U.shape) print(y_pred_L.shape) print(y_test.reshape(-1).shape) y_pred_U = y_pred_U.reshape(-1) y_pred_L = y_pred_L.reshape(-1) y_U_cap = y_pred_U > y_test y_L_cap = y_pred_L < y_test # print('y_U_cap: {}'.format(y_U_cap)) # print('y_L_cap: {}'.format(y_L_cap)) # print('y_L_cap: {}'.format(y_L_cap)) y_all_cap = y_U_cap * y_L_cap PICP = np.sum(y_all_cap) / y_L_cap.shape[0] MPIW_array = y_pred_U - y_pred_L MPIW = np.mean(MPIW_array) confidence_arr_test = [min(MPIW_train / test_width, 1.0) for test_width in MPIW_array] confidence_arr_train = [min(MPIW_train / train_width, 1.0) for train_width in MPIW_array_train] print('----------- OOD analysis --- confidence scores ----------------') print('--- Train conf_scores MEAN: {}, STD: {}'.format(np.mean(confidence_arr_train), np.std(confidence_arr_train))) print('--- Test: {} rank: {} conf_scores MEAN: {}, STD: {}'.format(test_idx+1, test_idx+1, np.mean(confidence_arr_test), np.std(confidence_arr_test))) ''' Calculate the L2 distance to the mean of training data (x-axis), range from 0-30''' dist_arr_train = np.sqrt(np.sum(x_train ** 2.0, axis=1)) dist_arr_test = np.sqrt(np.sum(x_test ** 2.0, axis=1)) # print('dist_arr_train shape: {}'.format(dist_arr_train.shape)) # print('confidence arr train len: {}'.format(len(confidence_arr_train))) # print('dist_arr_test shape: {}'.format(dist_arr_test.shape)) # print('confidence arr test len: {}'.format(len(confidence_arr_test))) ''' Save to file and plot the results ''' confidence_arr_train = np.array(confidence_arr_train) confidence_arr_test = np.array(confidence_arr_test) DER_OOD_train_np = np.hstack( (dist_arr_train.reshape(-1, 1), confidence_arr_train.reshape(-1, 1))) DER_OOD_test_np = np.hstack( (dist_arr_test.reshape(-1, 1), confidence_arr_test.reshape(-1, 1))) np.savetxt('DER_OOD_flight_delay_'+ str(test_idx+1) +'_train_np.txt', DER_OOD_train_np, delimiter=',') np.savetxt('DER_OOD_flight_delay_'+ str(test_idx+1) +'_test_np.txt', DER_OOD_test_np, delimiter=',') # plt.plot(dist_arr_train, confidence_arr_train, 'r.', label='Training data (in distribution)') # plt.plot(dist_arr_test, confidence_arr_test, 'b.',label='testing data (out of distribution') # plt.xlabel('L2 distance to the mean of training data $\{x_i\}_{i=1}^N$') # plt.ylabel('The Confidence Score') # plt.legend(loc='lower left') # plt.title('DER flight delay test case '+ str(test_idx+1)) # # plt.ylim(0, 1.2) # plt.savefig('DER_OOD_flight_delay_'+str(test_idx+1)+'.png') # # plt.show() R2 = r2_score(y_test, mu.numpy()) print('PICP: {}, MPIW: {}, R2: {}'.format(PICP, MPIW, R2)) del model tf.keras.backend.clear_session() done = False if np.isinf(nll) or np.isnan(nll) else True ### new added done criteria if np.isnan(loss): done = True print("saving {} {}".format(rmse, nll)) RMSE[di, ti, n] = rmse NLL[di, ti, n] = nll PICP_arr[n] = PICP MPIW_arr[n] = MPIW R2_arr[n] = R2 print('PICP_arr: {}'.format(PICP_arr)) print('MPIW_arr: {}'.format(MPIW_arr)) print('R2_arr: {}'.format(R2_arr)) PICP_mean = np.nanmean(PICP_arr) MPIW_mean = np.nanmean(MPIW_arr) RMSE_mean = np.nanmean(RMSE) NLL_mean = np.nanmean(NLL) R2_mean = np.nanmean(R2_arr) print('--- Mean PICP: {}'.format(PICP_mean)) print('--- Mean MPIW: {}'.format(MPIW_mean)) print('--- Mean RMSE: {}'.format(RMSE_mean)) print('--- Mean NLL: {}'.format(NLL_mean)) print('--- Mean R2: {}'.format(R2_mean)) RESULTS =
np.hstack((RMSE, NLL))
numpy.hstack
import pandas as pd import numpy as np import time t0 = time.time() number_array =
np.arange(1101,2000)
numpy.arange
import collections import numpy as np import os import time from tqdm import tqdm from apex import amp import torch import torch.nn.functional as F from pycocotools.cocoeval import COCOeval from simpleAICV.classification.common import ClassificationDataPrefetcher, AverageMeter, accuracy from simpleAICV.detection.common import DetectionDataPrefetcher from simpleAICV.segmentation.common import SegmentationDataPrefetcher def validate_classification(val_loader, model, criterion, config): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() model_on_cuda = next(model.parameters()).is_cuda for images, targets in tqdm(val_loader): if model_on_cuda: images, targets = images.cuda(), targets.cuda() data_time.update(time.time() - end) end = time.time() outputs = model(images) batch_time.update(time.time() - end) loss = criterion(outputs, targets) acc1, acc5 = accuracy(outputs, targets, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1.item(), images.size(0)) top5.update(acc5.item(), images.size(0)) end = time.time() # per image data load time(ms) and inference time(ms) per_image_load_time = data_time.avg / config.batch_size * 1000 per_image_inference_time = batch_time.avg / config.batch_size * 1000 return top1.avg, top5.avg, losses.avg, per_image_load_time, per_image_inference_time def train_classification(train_loader, model, criterion, optimizer, scheduler, epoch, logger, config): ''' train classification model for one epoch ''' top1 = AverageMeter() top5 = AverageMeter() losses = AverageMeter() # switch to train mode model.train() local_rank = torch.distributed.get_rank() if config.distributed else None if config.distributed: gpus_num = torch.cuda.device_count() iters = len(train_loader.dataset) // ( config.batch_size * gpus_num) if config.distributed else len( train_loader.dataset) // config.batch_size else: iters = len(train_loader.dataset) // config.batch_size prefetcher = ClassificationDataPrefetcher(train_loader) images, targets = prefetcher.next() iter_index = 1 while images is not None: images, targets = images.cuda(), targets.cuda() outputs = model(images) loss = criterion(outputs, targets) loss = loss / config.accumulation_steps if config.apex: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if iter_index % config.accumulation_steps == 0: optimizer.step() optimizer.zero_grad() # measure accuracy and record loss acc1, acc5 = accuracy(outputs, targets, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1.item(), images.size(0)) top5.update(acc5.item(), images.size(0)) images, targets = prefetcher.next() if iter_index % config.print_interval == 0: log_info = f'train: epoch {epoch:0>4d}, iter [{iter_index:0>5d}, {iters:0>5d}], lr: {scheduler.get_lr()[0]:.6f}, top1: {acc1.item():.2f}%, top5: {acc5.item():.2f}%, loss: {loss.item():.4f}' logger.info(log_info) if (config.distributed and local_rank == 0) or not config.distributed else None iter_index += 1 scheduler.step() return top1.avg, top5.avg, losses.avg def validate_KD(val_loader, model, criterion): top1 = AverageMeter() top5 = AverageMeter() total_losses = AverageMeter() # switch to evaluate mode model.eval() with torch.no_grad(): model_on_cuda = next(model.parameters()).is_cuda for images, targets in tqdm(val_loader): if model_on_cuda: images, targets = images.cuda(), targets.cuda() tea_outputs, stu_outputs = model(images) total_loss = 0 for loss_name in criterion.keys(): if 'KD' in loss_name: temp_loss = criterion[loss_name](stu_outputs, tea_outputs) else: temp_loss = criterion[loss_name](stu_outputs, targets) total_loss += temp_loss acc1, acc5 = accuracy(stu_outputs, targets, topk=(1, 5)) total_losses.update(total_loss.item(), images.size(0)) top1.update(acc1.item(), images.size(0)) top5.update(acc5.item(), images.size(0)) return top1.avg, top5.avg, total_losses.avg def train_KD(train_loader, model, criterion, optimizer, scheduler, epoch, logger, config): ''' train classification model for one epoch ''' top1 = AverageMeter() top5 = AverageMeter() total_losses = AverageMeter() # switch to train mode model.train() local_rank = torch.distributed.get_rank() if config.distributed else None if config.distributed: gpus_num = torch.cuda.device_count() iters = len(train_loader.dataset) // ( config.batch_size * gpus_num) if config.distributed else len( train_loader.dataset) // config.batch_size else: iters = len(train_loader.dataset) // config.batch_size prefetcher = ClassificationDataPrefetcher(train_loader) images, targets = prefetcher.next() iter_index = 1 while images is not None: images, targets = images.cuda(), targets.cuda() tea_outputs, stu_outputs = model(images) loss = 0 loss_value = {} for loss_name in criterion.keys(): if 'KD' in loss_name: temp_loss = criterion[loss_name](stu_outputs, tea_outputs) else: temp_loss = criterion[loss_name](stu_outputs, targets) loss_value[loss_name] = temp_loss loss += temp_loss total_losses.update(loss.item(), images.size(0)) loss = loss / config.accumulation_steps if config.apex: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if iter_index % config.accumulation_steps == 0: optimizer.step() optimizer.zero_grad() # measure accuracy and record loss acc1, acc5 = accuracy(stu_outputs, targets, topk=(1, 5)) top1.update(acc1.item(), images.size(0)) top5.update(acc5.item(), images.size(0)) images, targets = prefetcher.next() log_info = '' if iter_index % config.print_interval == 0: log_info += f'train: epoch {epoch:0>4d}, iter [{iter_index:0>5d}, {iters:0>5d}], lr: {scheduler.get_lr()[0]:.6f}, top1: {acc1.item():.2f}%, top5: {acc5.item():.2f}%, total_loss: {loss.item():.4f} ' for loss_name in criterion.keys(): log_info += f'{loss_name}: {loss_value[loss_name].item():.4f} ' logger.info(log_info) if (config.distributed and local_rank == 0) or not config.distributed else None iter_index += 1 scheduler.step() return top1.avg, top5.avg, total_losses.avg def compute_voc_ap(recall, precision, use_07_metric=True): if use_07_metric: # use voc 2007 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(recall >= t) == 0: p = 0 else: # get max precision for recall >= t p = np.max(precision[recall >= t]) # average 11 recall point precision ap = ap + p / 11. else: # use voc>=2010 metric,average all different recall precision as ap # recall add first value 0. and last value 1. mrecall = np.concatenate(([0.], recall, [1.])) # precision add first value 0. and last value 0. mprecision =
np.concatenate(([0.], precision, [0.]))
numpy.concatenate
# Funktion til Fama-MacBeth 2-pass regression der skal bruges i Fama-French Framework import numpy as np from numpy import mat, mean, sqrt, diag import statsmodels.api as sm import pandas as pd # Første forsøg kører med det downloadede Kenneth French data returns = pd.read_csv(r'Data/5x5 FF.csv') riskFactors = pd.read_csv(r'Data/FF3Monthly.csv') returns = returns.drop(['Unnamed: 0'],axis=1) returns = returns.sub(riskFactors['RF'], axis=0) riskFactors = riskFactors.drop(['Unnamed: 0', 'RF'], axis=1) FMB_result = FMB(returns, riskFactors, nLagsTS = 3) def FMB(returns, riskFactors, nLagsTS): # function fmbOut = famaMacBeth(returns,riskFactors) # Purpose: Estimate linear asset pricing models using the Fama and MacBeth # (1973) two-pass cross-sectional regression methodology. # # Input: returns = TxN maxtrix of portfolio excess returns # riskFactors = TxK matrix of common risk factors # nLagsTS = Scalar indicating the number of lags to include in HAC # estimator of variance in first-stage regression # # Output: Two structures including results from the two steps # Use mat for easier linear algebra factors = mat(riskFactors.values) excessReturns = mat(returns.values) # Måske ikke .values # Shape information t,n = excessReturns.shape nFactors = factors.shape[1] # Time series regressions # X = sm.add_constant(factors) # Laver X ved at inkludere en 1 vektor på faktorer # ts_res = sm.OLS(excessReturns, X).fit() # First pass regression # Gammel ts_res = nwRegress(excessReturns, factors, 1, nLagsTS) beta = ts_res['bv'][1:] # Cross-section regression cs_params = pd.DataFrame() cs_X = sm.add_constant(beta.T) for iObs in range(t): cs_params = pd.concat([cs_params, pd.DataFrame(sm.OLS(excessReturns[iObs].T, cs_X).fit().params)], axis=1) # Risk prices and Fama-MacBeth standard errors and t-stats RiskPrices = cs_params.mean(axis=1).T covGamma = (cs_params.T.sub(RiskPrices).T @ cs_params.T.sub(RiskPrices)) / t**2 # seGamma = sqrt((cs_params.T.sub(RiskPrices)**2).sum(axis=0)/t**2) seGamma = sqrt(diag(covGamma)) tGammaFM = RiskPrices/seGamma # Adding a Shanken (1992) corrections as per Goyal (2012) eq. (33) covRiskFactors = ((factors - mean(factors, axis=0)).T @ (factors - mean(factors, axis=0))) / (t - nFactors) c = RiskPrices[1:] @ np.linalg.inv(covRiskFactors) @ RiskPrices[1:].T # Excluding the constant covShanken = 1/t * ((1+c) * (t * covGamma.iloc[1:,1:]) + covRiskFactors) seGammaShanken = sqrt(diag(covShanken)).T seGammaShanken = np.insert(seGammaShanken, 0,seGamma[0]) tGammaShanken = RiskPrices / seGammaShanken # Mean and fitted excess returns meanReturns = pd.DataFrame(mean(excessReturns,0)) fittedValues = (pd.DataFrame(cs_X) @ pd.DataFrame(RiskPrices)).T # Cross sectional R^2 Ones = pd.DataFrame(np.ones((1, n), dtype=int)).T errResid = meanReturns-fittedValues s2 = mean(errResid**2, axis=1) vary = mean((meanReturns.T - Ones*mean(meanReturns,axis=1))**2) rSquared = 100 * (1 - s2 / vary) MAPE = mean(abs(errResid), axis=0) RMSE = sqrt(mean(errResid**2, axis=0)) fmbOut = dict() fmbOut['FS_beta'] = ts_res['bv'] fmbOut['FS_tstat'] = ts_res['tbv'] fmbOut['FS_R2'] = ts_res['R2v'] fmbOut['FS_R2adj'] = ts_res['R2vadj'] fmbOut['SS_gamma'] = RiskPrices fmbOut['SS_seGammaFM'] = seGamma fmbOut['SS_seGammaShanken'] = seGammaShanken fmbOut['SS_tstatFM'] = tGammaFM fmbOut['SS_tstatShanken'] = tGammaShanken fmbOut['SS_r2'] = rSquared fmbOut['SS_fit'] = fittedValues fmbOut['MeanReturns'] = meanReturns fmbOut['MAPE'] = MAPE fmbOut['RMSE'] = RMSE fmbOut['cShanken'] = c return fmbOut def nwRegress(y, x, constant, nlag): # Function regResults = nwRegress(y,x,constant, method,nlag) # Purpose: Estimate a linear regression model Newey-West standard errors. # a constant is added by default unless otherwise specified # Input: y = TxN matrix of dependent variables (N seperate regressions) # x = A TxK matrix of common explanatory variables # constant = 1 to add constant internally, 0 otherwise # nlag = scalar indicating the number of lags to include # Output: A structure including: # bv = A K x N matrix of parameter estimates # sbv= A K x N matrix of user-selected standard errors # tbv= A K x N matrix of t-statistics # R2v= A N x 1 vector of r-square values # R2vadj= A N x 1 vector of adjusted r-square values # Preliminaries #y = mat(y.values) #x = mat(x.values) if constant == 1: x = sm.add_constant(x) nObs, nReg = y.shape nVars = x.shape[1] OnesObs = pd.DataFrame(np.ones((1, nObs), dtype=int)).T OnesVars = pd.DataFrame(np.ones((1, nVars), dtype=int)).T # Coefficient estimates bv = sm.OLS(y, x).fit().params # Input for standard errors Exx = x.T @ x / nObs errv = y - x @ bv # Coefficient determination s2 = mean(np.square(errv), axis = 0) vary = mat(mean((y - OnesObs @ mean(y, axis = 0))**2, axis = 0)) s2vary = np.divide(s2, vary) R2v = 100 * (1 - s2vary).T R2vadj = 100 * (1- s2vary * (nObs-1) / (nObs - nVars)).T # Newey-West standard errors # Preallocations sbv = np.zeros((nVars, nReg)) tbv = np.zeros((nVars, nReg)) # Individual regressions for each dependent variable for iReg in range(nReg): ww = 1 err = errv[:,iReg] # (:,iReg) inner = (x * (err @ OnesVars.T)).T @ (x * (err @ OnesVars.T)) / nObs for iLag in range(1,nlag): innadd = (x[1:(nObs-iLag),:] * (err[1:(nObs-iLag)] @ OnesVars.T)).T @ (x[1+iLag:nObs,:] * (err[1+iLag:nObs] @ OnesVars.T)) / nObs inner = inner + (1 - ww * iLag/(nlag+1)) * (innadd+innadd.T) varb = sm.OLS(inner, Exx).fit().params @ np.linalg.inv(Exx) / nObs # Standard errors sbv[:,iReg] = sqrt(diag(varb)) # t-stats tbv[:,iReg] = bv[:,iReg] / sbv[:, iReg] # Structure for results: nwOut = dict() nwOut['bv'] = bv nwOut['tbv'] = tbv nwOut['R2v'] = R2v nwOut['R2vadj'] = R2vadj nwOut['resid'] = errv return nwOut # Test med Quarterly data for at se om resultater matcher hans sizeValuePortfolios2 = pd.read_csv(r'Data/sizeValuePortfoliosQ2.csv', sep=';' ,header=None) # fjerne kolonne 0,3 og 15 sizeValuePortfolios = pd.read_csv(r'Data/sizeValuePortfoliosQ.csv', sep=';' ,header=None, dtype=np.float64) # fjerne kolonne 0,3 og 15 famaFrenchFactorsQ = pd.read_csv(r'Data/famaFrenchFactorsQ.csv', sep=';', header=None, dtype=np.float64) logConsGrowthQ = pd.read_csv(r'Data/logConsGrowthQ.csv', sep=';', header=None) SMB = pd.DataFrame() HML = pd.DataFrame() riskFreeRate = pd.DataFrame() SMB['SMB'] = famaFrenchFactorsQ.iloc[0:,0] HML['HML'] = famaFrenchFactorsQ.iloc[0:,1] logConsGrowth = logConsGrowthQ riskFreeRate['RF'] = famaFrenchFactorsQ.iloc[0:,2] excessReturns = sizeValuePortfolios.sub(riskFreeRate['RF'], axis=0) meanExcess =
mean(excessReturns)
numpy.mean
# coding: utf-8 # public items __all__ = ["loaddfits", "savefits", "loadnetcdf", "savenetcdf"] # standard library from datetime import datetime from pytz import timezone from logging import getLogger from uuid import uuid4 from pathlib import Path from pkgutil import get_data # dependent packages import tomli import decode as dc import numpy as np import xarray as xr from astropy.io import fits from scipy.interpolate import interp1d # module logger logger = getLogger(__name__) def loaddfits( fitsname, coordtype="azel", loadtype="temperature", starttime=None, endtime=None, pixelids=None, scantypes=None, mode=0, **kwargs ): """Load a decode array from a DFITS file. Args: fitsname (str): Name of DFITS file. coordtype (str): Coordinate type included into a decode array. 'azel': Azimuth / elevation. 'radec': Right ascension / declination. loadtype (str): Data unit of xarray. 'Tsignal': Temperature [K]. 'Psignal': Power [W]. 'amplitude': Amplitude. 'phase': Phase. 'linphase': Linear phase. starttime (int, str or numpy.datetime64): Start time of loaded data. It can be specified by the start index (int), the time compatible with numpy.datetime64 (str), or numpy.datetime64 (numpy.datetime64). Default is None and it means the data will be loaded from the first record. endtime (int, str or numpy.datetime64): End time of loaded data. It can be specified by the end index (int), the time compatible with numpy.datetime64 (str), or numpy.datetime64 (numpy.datetime64). Default is None and it means the data will be loaded until the last record. pixelids (int or list): Under development. scantypes (list(str)): Scan types, such as 'GRAD', 'SCAN', 'OFF', 'R'. mode (int): Loading mode. 0: Relative coordinates with cosine projection (RECOMMENDED). 1: Relative coordinates without cosine projection. 2: Absolute coordinates. kwargs (optional): findR (bool): Automatically find R positions. ch (int): Representative channel id used for finding R. Rth (float): Threshold of R. skyth (flaot): Threshold of sky. cutnum (int): The number of points of unused data at the edge. still (bool): When it is true, scantypes of on/off are manually assigned. period (float): On/off period in second for still data. shuttle (bool): For shuttle observations. xmin_off (float): Minimum x of off-point data. xmax_off (float): Maximum x of off-point data. xmin_on (float): Minimum x of on-point data. xmax_on (float): Maximum x of on-point data. Returns: decode array (decode.array): Loaded decode array. """ if mode not in [0, 1, 2]: raise KeyError(mode) logger.info("coordtype starttime endtime mode loadtype") logger.info("{} {} {} {} {}".format(coordtype, starttime, endtime, mode, loadtype)) # pick up kwargs # for findR findR = kwargs.pop("findR", False) ch = kwargs.pop("ch", 0) Rth = kwargs.pop("Rth", 280) skyth = kwargs.pop("skyth", 150) cutnum = kwargs.pop("cutnum", 1) # for still still = kwargs.pop("still", False) period = kwargs.pop("period", 2) # for shuttle shuttle = kwargs.pop("shuttle", False) xmin_off = kwargs.pop("xmin_off", 0) xmax_off = kwargs.pop("xmax_off", 0) xmin_on = kwargs.pop("xmin_on", 0) xmax_on = kwargs.pop("xmax_on", 0) # load data fitsname = str(Path(fitsname).expanduser()) with fits.open(fitsname) as hdulist: obsinfo = hdulist["OBSINFO"].data obshdr = hdulist["OBSINFO"].header antlog = hdulist["ANTENNA"].data readout = hdulist["READOUT"].data wealog = hdulist["WEATHER"].data # obsinfo masterids = obsinfo["masterids"][0].astype(np.int64) kidids = obsinfo["kidids"][0].astype(np.int64) kidfreqs = obsinfo["kidfreqs"][0].astype(np.float64) kidtypes = obsinfo["kidtypes"][0].astype(np.int64) # parse start/end time t_ant = np.array(antlog["time"]).astype(np.datetime64) t_out = np.array(readout["starttime"]).astype(np.datetime64) t_wea = np.array(wealog["time"]).astype(np.datetime64) if starttime is None: startindex = 0 elif isinstance(starttime, int): startindex = starttime elif isinstance(starttime, str): startindex = np.searchsorted(t_out, np.datetime64(starttime)) elif isinstance(starttime, np.datetime64): startindex = np.searchsorted(t_out, starttime) else: raise ValueError(starttime) if endtime is None: endindex = t_out.shape[0] elif isinstance(endtime, int): endindex = endtime elif isinstance(endtime, str): endindex = np.searchsorted(t_out, np.datetime64(endtime), "right") elif isinstance(endtime, np.datetime64): endindex = np.searchsorted(t_out, endtime, "right") else: raise ValueError(starttime) if t_out[endindex - 1] > t_ant[-1]: logger.warning("Endtime of readout is adjusted to that of ANTENNA HDU.") endindex = np.searchsorted(t_out, t_ant[-1], "right") t_out = t_out[startindex:endindex] # readout if loadtype == "temperature": response = readout["Tsignal"][startindex:endindex].astype(np.float64) elif loadtype == "power": response = readout["Psignal"][startindex:endindex].astype(np.float64) elif loadtype == "amplitude": response = readout["amplitude"][startindex:endindex].astype(np.float64) elif loadtype == "phase": response = readout["phase"][startindex:endindex].astype(np.float64) elif loadtype == "linphase": response = readout["line_phase"][startindex:endindex].astype(np.float64) else: raise KeyError(loadtype) # antenna if coordtype == "azel": x = antlog["az"].copy() y = antlog["el"].copy() xref = np.median(antlog["az_center"]) yref = np.median(antlog["el_center"]) if mode in [0, 1]: x -= antlog["az_center"] y -= antlog["el_center"] if mode == 0: x *= np.cos(np.deg2rad(antlog["el"])) elif coordtype == "radec": x = antlog["ra"].copy() y = antlog["dec"].copy() xref = obshdr["RA"] yref = obshdr["DEC"] if mode in [0, 1]: x -= xref y -= yref if mode == 0: x *= np.cos(np.deg2rad(antlog["dec"])) else: raise KeyError(coordtype) scantype = antlog["scantype"] # weatherlog temp = wealog["temperature"] pressure = wealog["pressure"] vpressure = wealog["vapor-pressure"] windspd = wealog["windspd"] winddir = wealog["winddir"] # interpolation dt_out = (t_out - t_out[0]) / np.timedelta64(1, "s") dt_ant = (t_ant - t_out[0]) / np.timedelta64(1, "s") dt_wea = (t_wea - t_out[0]) / np.timedelta64(1, "s") x_i = np.interp(dt_out, dt_ant, x) y_i = np.interp(dt_out, dt_ant, y) temp_i = np.interp(dt_out, dt_wea, temp) pressure_i = np.interp(dt_out, dt_wea, pressure) vpressure_i = np.interp(dt_out, dt_wea, vpressure) windspd_i = np.interp(dt_out, dt_wea, windspd) winddir_i = np.interp(dt_out, dt_wea, winddir) scandict = {t: n for n, t in enumerate(np.unique(scantype))} scantype_v = np.zeros(scantype.shape[0], dtype=int) for k, v in scandict.items(): scantype_v[scantype == k] = v scantype_vi = interp1d( dt_ant, scantype_v, kind="nearest", bounds_error=False, fill_value=(scantype_v[0], scantype_v[-1]), )(dt_out) scantype_i = np.full_like(scantype_vi, "GRAD", dtype="<U8") for k, v in scandict.items(): scantype_i[scantype_vi == v] = k # for still data if still: for n in range(int(dt_out[-1]) // period + 1): offmask = (period * 2 * n <= dt_out) & (dt_out < period * (2 * n + 1)) onmask = (period * (2 * n + 1) <= dt_out) & (dt_out < period * (2 * n + 2)) scantype_i[offmask] = "OFF" scantype_i[onmask] = "SCAN" if shuttle: offmask = (xmin_off < x_i) & (x_i < xmax_off) onmask = (xmin_on < x_i) & (x_i < xmax_on) scantype_i[offmask] = "OFF" scantype_i[onmask] = "SCAN" scantype_i[(~offmask) & (~onmask)] = "JUNK" if findR: Rindex = np.where(response[:, ch] >= Rth) scantype_i[Rindex] = "R" movemask = np.hstack( [[False] * cutnum, scantype_i[cutnum:] != scantype_i[:-cutnum]] ) | np.hstack( [scantype_i[:-cutnum] != scantype_i[cutnum:], [False] * cutnum] ) & ( scantype_i == "R" ) scantype_i[movemask] = "JUNK" scantype_i[(response[:, ch] > skyth) & (scantype_i != "R")] = "JUNK" scantype_i[(response[:, ch] <= skyth) & (scantype_i == "R")] = "JUNK" skyindex = np.where(response[:, ch] <= skyth) scantype_i_temp = scantype_i.copy() scantype_i_temp[skyindex] = "SKY" movemask = np.hstack( [[False] * cutnum, scantype_i_temp[cutnum:] != scantype_i_temp[:-cutnum]] ) | np.hstack( [scantype_i_temp[:-cutnum] != scantype_i_temp[cutnum:], [False] * cutnum] ) & ( scantype_i_temp == "SKY" ) scantype_i[movemask] = "JUNK" # scanid scanid_i = np.cumsum(np.hstack([False, scantype_i[1:] != scantype_i[:-1]])) # coordinates tcoords = { "x": x_i, "y": y_i, "time": t_out, "temp": temp_i, "pressure": pressure_i, "vapor-pressure": vpressure_i, "windspd": windspd_i, "winddir": winddir_i, "scantype": scantype_i, "scanid": scanid_i, } chcoords = { "masterid": masterids, "kidid": kidids, "kidfq": kidfreqs, "kidtp": kidtypes, } scalarcoords = { "coordsys": coordtype.upper(), "datatype": loadtype, "xref": xref, "yref": yref, } # make array array = dc.array( response, tcoords=tcoords, chcoords=chcoords, scalarcoords=scalarcoords ) if scantypes is not None: mask = np.full(array.shape[0], False) for scantype in scantypes: mask |= array.scantype == scantype array = array[mask] return array def savefits(cube, fitsname, **kwargs): """Save a cube to a 3D-cube FITS file. Args: cube (xarray.DataArray): Cube to be saved. fitsname (str): Name of output FITS file. kwargs (optional): Other arguments common with astropy.io.fits.writeto(). """ # pick up kwargs dropdeg = kwargs.pop("dropdeg", False) ndim = len(cube.dims) # load yaml fitsinfo = get_data("decode", "data/fitsinfo.toml") hdrdata = tomli.loads(fitsinfo.decode("utf-8")) # default header if ndim == 2: header = fits.Header(hdrdata["dcube_2d"]) data = cube.values.T elif ndim == 3: if dropdeg: header = fits.Header(hdrdata["dcube_2d"]) data = cube.values[:, :, 0].T else: header = fits.Header(hdrdata["dcube_3d"]) kidfq = cube.kidfq.values freqrange = ~np.isnan(kidfq) orderedfq =
np.argsort(kidfq[freqrange])
numpy.argsort
# Import standard modules import sqlite3 from datetime import datetime, timedelta # Import installed modules import spiceypy import numpy as np import pandas as pd #%% # Load the SPICE kernel meta file spiceypy.furnsh('kernel_meta.txt') #%% # Get the G*M value of the Sun _, GM_SUN_PRE = spiceypy.bodvcd(bodyid=10, item='GM', maxn=1) GM_SUN = GM_SUN_PRE[0] #%% # Connect to the comet database CON = sqlite3.connect('../_databases/_comets/mpc_comets.db') # Extract orbit data of the comet C/2019 Y4 (ATLAS) ATLAS_ORB_EL = pd.read_sql('SELECT NAME, PERIHELION_AU, ' \ 'ECCENTRICITY, INCLINATION_DEG, ' \ 'LONG_OF_ASC_NODE_DEG, ARG_OF_PERIH_DEG, ' \ 'MEAN_ANOMALY_DEG, EPOCH_ET ' \ 'FROM comets_main ' \ 'WHERE NAME="C/2019 Y4 (ATLAS)"', CON) # Convert the perihelion, that is given in AU, to km ATLAS_ORB_EL.loc[:, 'PERIHELION_KM'] = \ ATLAS_ORB_EL['PERIHELION_AU'].apply(lambda x: \ spiceypy.convrt(x, inunit='AU', \ outunit='km')) # Convert all angular parameters to radians, since the entries in the database # are stored in degrees. The for-loop iterates through all column names that # contain the word "DEG" for angle_col_name in [col for col in ATLAS_ORB_EL.columns if 'DEG' in col]: ATLAS_ORB_EL.loc[:, angle_col_name.replace('DEG', 'RAD')] = \ np.radians(ATLAS_ORB_EL[angle_col_name]) # Add the G*M value of the Sun ATLAS_ORB_EL.loc[:, 'SUN_GM'] = GM_SUN #%% # Extract all orbital elements / information in a SPICE compatible order (see # function conics) ATLAS_SPICE_ORB_EL = ATLAS_ORB_EL[['PERIHELION_KM', 'ECCENTRICITY', \ 'INCLINATION_RAD', 'LONG_OF_ASC_NODE_RAD', \ 'ARG_OF_PERIH_RAD', 'MEAN_ANOMALY_DEG', \ 'EPOCH_ET', 'SUN_GM']].iloc[0].values #%% # Set an initial time and end time for the computation procedure INI_DATETIME = datetime(year=2020, month=5, day=20) END_DATETIME = datetime(year=2020, month=6, day=10) # Create an array that covers the initial and end time in 1 hour steps TIME_ARRAY = np.arange(INI_DATETIME, END_DATETIME, \ timedelta(hours=1)).astype(datetime) #%% # Set an empty array that will store the distances between the Sun # and ATLAS atlas_vecs = [] # Set an empty array that will store the distances between the Sun # and the Solar Orbiter solar_orb_vecs = [] # Iterate through the time array (comet ATLAS) for atlas_time_step in TIME_ARRAY: # Compute the ET atlas_et = spiceypy.datetime2et(atlas_time_step) # Compute the ET corresponding state vector of the comet ATLAS atlas_state_vec = spiceypy.conics(ATLAS_SPICE_ORB_EL, atlas_et) # Store the position vector atlas_vecs.append(atlas_state_vec[:3]) # Iterate through the time array (Solar Orbiter) for so_time_step in TIME_ARRAY: # Compute the ET so_et = spiceypy.datetime2et(so_time_step) # Compute the state vector of the Solar Orbiter (NAIF ID: -144) solar_orb_state_vec, _ = spiceypy.spkgeo(targ=-144, et=so_et, \ ref='ECLIPJ2000', obs=10) # Store the position vector solar_orb_vecs.append(solar_orb_state_vec[:3]) # Convert the lists that contain the vectors to numpy lists atlas_vecs = np.array(atlas_vecs) solar_orb_vecs = np.array(solar_orb_vecs) #%% # Minimum distance ATLAS - Sun MIN_DIST_ATLAS_SUN = np.min(np.linalg.norm(atlas_vecs, axis=1)) print('Minimum distance ATLAS - Sun in AU: ' \ f'{spiceypy.convrt(MIN_DIST_ATLAS_SUN, "km", "AU")}') # Minimum distance Solar Orbiter - Sun MIN_DIST_SOLAR_ORB_SUN = np.min(np.linalg.norm(solar_orb_vecs, axis=1)) print('Minimum distance Solar Orbiter - Sun in AU: ' \ f'{spiceypy.convrt(MIN_DIST_SOLAR_ORB_SUN, "km", "AU")}') print('\n') #%% # What is the closest approach between both trajectories? # Compute a matrix that contains all possible distances, using the scipy # function cdist import scipy.spatial MIN_DIST_MATRIX = scipy.spatial.distance.cdist(atlas_vecs, solar_orb_vecs) # Print the minimum distance print('Minimum distance between ATLAS and Solar Orbiter in km: ' \ f'{np.min(np.round(MIN_DIST_MATRIX))}') print('\n') #%% # The timing needs to be correct too! The comet produces ions and creates # its tail within the spacecraft's trajectory. Thus, the comet needs to pass # by the minimum distance first # Determine the distance matrix indices of the closest approach indices_min = np.where(MIN_DIST_MATRIX == np.min(MIN_DIST_MATRIX)) indices_min = [k.item() for k in indices_min] # Let's print the indices for # ATLAS print(f'Atlas Index of close approach: {indices_min[0]}') # Solar Orbiter print(f'Solar Orbiter Index of close approach: {indices_min[1]}') print('\n') #%% # Corresponding times (only a few days apart. Thus, an ion tail could be # detectable) print(f'ATLAS closest approach date-time: {TIME_ARRAY[indices_min[0]]}') print('Solar Orbiter closest approach date-time: ' \ f'{TIME_ARRAY[indices_min[1]]}') print('\n') #%% # ... but is the ion tail "aiming" towards the trajectory of the spacecraft? # (at least within a few degrees?) # Compute the angular distance between the trajectories' closest approach # Set the closest approach vectors, based on the obtained indices for ATLAS and # the Solar Orbiter, respectively VEC_ATLAS_AP = atlas_vecs[indices_min[0]] VEC_SOLAR_ORB_AP = solar_orb_vecs[indices_min[1]] # Determine the norm of both closest approach vectors ATLAS_NORM_AP = spiceypy.vnorm(VEC_ATLAS_AP) SOLORB_NORM_AP = spiceypy.vnorm(VEC_SOLAR_ORB_AP) # Compute the dot product DOT_PRODUCT_AP =
np.dot(VEC_ATLAS_AP, VEC_SOLAR_ORB_AP)
numpy.dot
# -*- coding: utf-8 -*- # Copyright (C) 2012 VT SuperDARN Lab # Full license can be found in LICENSE.txt """Earth coordinate conversion routines Functions --------- geodToGeoc : converts from geodetic to geocentric (and vice-versa) geodToGeocAzEl : converts azimuth and elevation from geodetic to geocentric (and vice-versa) gspToGcar : converts global spherical coordinates to global cartesian coordinates (and vice-versa) gcarToLcar : converts from global cartesian coordinates to local cartesian coordinates (and vice-versa) lspToLcar : converts from local spherical coordinates to local cartesian coordinates (and vice-versa) calcDistPnt : calculates the coordines|distance,elevation,azimuth of a point given a point of origin and distance, elevation, azimuth|distant point coordinates greatCircleMove : Calculates the coordinates of an end point along a great circle path given the original coordinates, distance, azimuth, and altitude. greatCircleAzm : Calculates the azimuth from the coordinates of a start point to and end point along a great circle path. greatCircleDist : Calculates the distance in radians along a great circle path between two points. References ---------- Based on <NAME>'s geopack Based on <NAME> radar.pro Updates based on <NAME> cnvtcoord_vhm.c Copied from DaViTPy """ import logging import numpy as np def geodToGeoc(lat, lon, inverse=False): """Converts position from geodetic to geocentric or vice-versa. Based on the IAU 1964 oblate spheroid model of the Earth. Parameters ---------- lat : float latitude [degree] lon : float longitude [degree] inverse : Optional[bool] inverse conversion (geocentric to geodetic). Default is false. Returns ------- lat_out : float latitude [degree] (geocentric/detic if inverse=False/True) lon_out : float longitude [degree] (geocentric/detic if inverse=False/True) rade : float Earth radius [km] (geocentric/detic if inverse=False/True) """ a = 6378.16 f = 1.0 / 298.25 b = a * (1.0 - f) e2 = (a**2 / b**2) - 1.0 if not inverse: # geodetic into geocentric lat_out = np.degrees(np.arctan(b**2 / a**2 * np.tan(np.radians(lat)))) lon_out = lon else: # geocentric into geodetic lat_out = np.degrees(np.arctan(a**2 / b**2 * np.tan(np.radians(lat)))) lon_out = lon rade = a / np.sqrt( 1. + e2 * np.sin(np.radians(lat_out))**2) return lat_out, lon_out, rade def geodToGeocAzEl(lat, lon, az, el, inverse=False): """Converts pointing azimuth and elevation measured with respect to the local horizon to azimuth and elevation with respect to the horizon defined by the plane perpendicular to the Earth-centered radial vector drawn through a user defined point. Parameters ---------- lat : float latitude [degree] lon : float longitude [degree] az : float azimuth [degree, N] el : float elevation [degree] inverse : Optional[bool] inverse conversion Returns ------- lat : float latitude [degree] lon : float longitude [degree] Re : float Earth radius [km] az : float azimuth [degree, N] el : float elevation [degree] """ taz = np.radians(az) tel = np.radians(el) # In this transformation x is east, y is north and z is up if not inverse: # Calculate deviation from vertical (in radians) (geocLat, geocLon, Re) = geodToGeoc(lat, lon) devH = np.radians(lat - geocLat) # Calculate cartesian coordinated in local system kxGD = np.cos(tel) * np.sin(taz) kyGD = np.cos(tel) * np.cos(taz) kzGD = np.sin(tel) # Now rotate system about the x axis to align local vertical vector # with Earth radial vector kxGC = kxGD kyGC = kyGD * np.cos(devH) + kzGD * np.sin(devH) kzGC = -kyGD * np.sin(devH) + kzGD * np.cos(devH) # Finally calculate the new azimuth and elevation in the geocentric # frame azOut = np.degrees(np.arctan2(kxGC, kyGC)) elOut = np.degrees(np.arctan(kzGC / np.sqrt(kxGC**2 + kyGC**2))) latOut = geocLat lonOut = geocLon else: # Calculate deviation from vertical (in radians) (geodLat, geodLon, Re) = geodToGeoc(lat, lon, inverse=True) devH = np.radians(geodLat - lat) # Calculate cartesian coordinated in geocentric system kxGC = np.cos(tel) * np.sin(taz) kyGC = np.cos(tel) * np.cos(taz) kzGC = np.sin(tel) # Now rotate system about the x axis to align local vertical vector # with Earth radial vector kxGD = kxGC kyGD = kyGC * np.cos(-devH) + kzGC * np.sin(-devH) kzGD = -kyGC * np.sin(-devH) + kzGC * np.cos(-devH) # Finally calculate the new azimuth and elevation in the geocentric # frame azOut = np.degrees(np.arctan2(kxGD, kyGD)) elOut = np.degrees(np.arctan(kzGD / np.sqrt(kxGD**2 + kyGD**2))) latOut = geodLat lonOut = geodLon return latOut, lonOut, Re, azOut, elOut def gspToGcar(xin, yin, zin, inverse=False): """Converts a position from global spherical (geocentric) to global cartesian (and vice-versa). Parameters ---------- xin : float latitude [degree] or global cartesian X [km] yin : float longitude [degree] or global cartesian Y [km] zin : float distance from center of the Earth [km] or global cartesian Z [km] inverse : Optional[bool] inverse conversion Returns ------- xout : float global cartesian X [km] (inverse=False) or latitude [degree] yout : float global cartesian Y [km] (inverse=False) or longitude [degree] zout : float global cartesian Z [km] (inverse=False) or distance from the center of the Earth [km] Notes ------- The global cartesian coordinate system is defined as: - origin: center of the Earth - x-axis in the equatorial plane and through the prime meridian. - z-axis in the direction of the rotational axis and through the North pole The meaning of the input (x,y,z) depends on the direction of the conversion (to global cartesian or to global spherical). """ if not inverse: # Global spherical to global cartesian xout = zin * np.cos(
np.radians(xin)
numpy.radians
import datetime as dt from io import StringIO import logging import numpy as np import os import pytest import warnings import aacgmv2 class TestConvertArray: def setup(self): self.out = None self.ref = None self.rtol = 1.0e-4 def teardown(self): del self.out, self.ref, self.rtol def evaluate_output(self, ind=None): """ Function used to evaluate convert_latlon_arr output""" if self.out is not None: if ind is not None: self.ref = [[rr[ind]] for rr in self.ref] np.testing.assert_equal(len(self.out), len(self.ref)) for i, oo in enumerate(self.out): if not isinstance(oo, np.ndarray): raise TypeError("output value is not a numpy array") np.testing.assert_equal(len(oo), len(self.ref[i])) np.testing.assert_allclose(oo, self.ref[i], rtol=self.rtol) class TestConvertLatLon: def setup(self): """Runs before every method to create a clean testing setup""" self.dtime = dt.datetime(2015, 1, 1, 0, 0, 0) self.ddate = dt.date(2015, 1, 1) self.in_args = [60, 0] self.out = None self.rtol = 1.0e-4 def teardown(self): """Runs after every method to clean up previous testing""" del self.out, self.in_args, self.rtol, self.dtime, self.ddate @pytest.mark.parametrize('alt,method_code,ref', [(300, 'TRACE', [58.2268, 81.1613, 1.0457]), (3000.0, "G2A|BADIDEA", [64.3578, 83.2895, 1.4694]), (7000.0, "G2A|TRACE|BADIDEA", [69.3187, 85.0845, 2.0973])]) def test_convert_latlon(self, alt, method_code, ref): """Test single value latlon conversion""" self.in_args.extend([alt, self.dtime, method_code]) self.out = aacgmv2.convert_latlon(*self.in_args) np.testing.assert_allclose(self.out, ref, rtol=self.rtol) @pytest.mark.parametrize('lat,ref', [(90.01, [83.927161, 170.1471396, 1.04481923]), (-90.01, [-74.9814852, 17.990332, 1.044819236])]) def test_convert_latlon_high_lat(self, lat, ref): """Test single latlon conversion with latitude just out of bounds""" self.in_args[0] = lat self.in_args.extend([300, self.dtime, 'G2A']) self.out = aacgmv2.convert_latlon(*self.in_args) np.testing.assert_allclose(self.out, ref, rtol=self.rtol) def test_convert_latlon_datetime_date(self): """Test single latlon conversion with date and datetime input""" self.in_args.extend([300, self.ddate, 'TRACE']) self.out = aacgmv2.convert_latlon(*self.in_args) np.testing.assert_allclose(self.out, [58.2268, 81.1613, 1.0457], rtol=self.rtol) def test_convert_latlon_location_failure(self): """Test single value latlon conversion with a bad location""" self.out = aacgmv2.convert_latlon(0, 0, 0, self.dtime, self.in_args[-1]) assert np.all(np.isnan(np.array(self.out))) def test_convert_latlon_maxalt_failure(self): """test convert_latlon failure for an altitude too high for coeffs""" self.in_args.extend([2001, self.dtime, ""]) self.out = aacgmv2.convert_latlon(*self.in_args) assert np.all(np.isnan(np.array(self.out))) @pytest.mark.parametrize('in_rep,in_irep,msg', [(None, 3, "must be a datetime object"), (91, 0, "unrealistic latitude"), (-91, 0, "unrealistic latitude"), (None, 4, "unknown method code")]) def test_convert_latlon_failure(self, in_rep, in_irep, msg): self.in_args.extend([300, self.dtime, "G2A"]) self.in_args[in_irep] = in_rep with pytest.raises(ValueError, match=msg): aacgmv2.convert_latlon(*self.in_args) class TestConvertLatLonArr(TestConvertArray): def setup(self): """Runs before every method to create a clean testing setup""" self.dtime = dt.datetime(2015, 1, 1, 0, 0, 0) self.ddate = dt.date(2015, 1, 1) self.lat_in = [60.0, 61.0] self.lon_in = [0.0, 0.0] self.alt_in = [300.0, 300.0] self.method = 'TRACE' self.out = None self.ref = [[58.2268, 59.3184], [81.1613, 81.6080], [1.0457, 1.0456]] self.rtol = 1.0e-4 def teardown(self): """Runs after every method to clean up previous testing""" del self.lat_in, self.lon_in, self.alt_in, self.dtime, self.ddate del self.method, self.out, self.ref, self.rtol def test_convert_latlon_arr_single_val(self): """Test array latlon conversion for a single value""" self.out = aacgmv2.convert_latlon_arr(self.lat_in[0], self.lon_in[0], self.alt_in[0], self.dtime, self.method) self.evaluate_output(ind=0) def test_convert_latlon_arr_arr_single(self): """Test array latlon conversion for array input of shape (1,)""" self.out = aacgmv2.convert_latlon_arr(np.array([self.lat_in[0]]), np.array([self.lon_in[0]]), np.array([self.alt_in[0]]), self.dtime, self.method) self.evaluate_output(ind=0) def test_convert_latlon_arr_list_single(self): """Test array latlon conversion for list input of single values""" self.out = aacgmv2.convert_latlon_arr([self.lat_in[0]], [self.lon_in[0]], [self.alt_in[0]], self.dtime, self.method) self.evaluate_output(ind=0) def test_convert_latlon_arr_list(self): """Test array latlon conversion for list input""" self.out = aacgmv2.convert_latlon_arr(self.lat_in, self.lon_in, self.alt_in, self.dtime, self.method) self.evaluate_output() def test_convert_latlon_arr_arr(self): """Test array latlon conversion for array input""" self.out = aacgmv2.convert_latlon_arr(np.array(self.lat_in), np.array(self.lon_in), np.array(self.alt_in), self.dtime, self.method) self.evaluate_output() def test_convert_latlon_arr_list_mix(self): """Test array latlon conversion for mixed types with list""" self.out = aacgmv2.convert_latlon_arr(self.lat_in, self.lon_in[0], self.alt_in[0], self.dtime, self.method) self.evaluate_output() def test_convert_latlon_arr_arr_mix(self): """Test array latlon conversion for mixed type with an array""" self.out = aacgmv2.convert_latlon_arr(np.array(self.lat_in), self.lon_in[0], self.alt_in[0], self.dtime, self.method) self.evaluate_output() def test_convert_latlon_arr_arr_mult_and_single_element(self): """Test latlon conversion for arrays with multiple and single vals""" self.out = aacgmv2.convert_latlon_arr(np.array(self.lat_in), np.array([self.lon_in[0]]), np.array(self.alt_in), self.dtime, self.method) self.evaluate_output() @pytest.mark.parametrize('method_code,alt,local_ref', [("BADIDEA", 3000.0, [[64.3580], [83.2895], [1.4694]]), ("BADIDEA|TRACE", 7000.0, [[69.3187], [85.0845], [2.0973]])]) def test_convert_latlon_arr_badidea(self, method_code, alt, local_ref): """Test array latlon conversion for BADIDEA""" self.out = aacgmv2.convert_latlon_arr(self.lat_in[0], self.lon_in[0], [alt], self.dtime, method_code) self.ref = local_ref self.evaluate_output() def test_convert_latlon_arr_location_failure(self): """Test array latlon conversion with a bad location""" with warnings.catch_warnings(): # Causes all warnings to be surpressed warnings.simplefilter("ignore") # Trigger a warning self.out = aacgmv2.convert_latlon_arr([0], [0], [0], self.dtime, "") # Test the output np.testing.assert_equal(len(self.out), len(self.ref)) assert np.any(~np.isfinite(np.array(self.out))) def test_convert_latlon_arr_datetime_date(self): """Test array latlon conversion with date and datetime input""" self.out = aacgmv2.convert_latlon_arr(self.lat_in, self.lon_in, self.alt_in, self.ddate, self.method) self.evaluate_output() def test_convert_latlon_arr_clip(self): """Test array latlon conversion with latitude clipping""" self.lat_in = [90.01, -90.01] self.ref = [[83.92352053, -74.98110552], [170.1381271, 17.98164313], [1.04481924, 1.04481924]] self.out = aacgmv2.convert_latlon_arr(self.lat_in, self.lon_in, self.alt_in, self.ddate, self.method) self.evaluate_output() def test_convert_latlon_arr_maxalt_failure(self): """test convert_latlon_arr failure for altitudes too high for coeffs""" self.method = "" self.out = aacgmv2.convert_latlon_arr(self.lat_in[0], self.lon_in[0], [2001], self.dtime, self.method) assert np.all(np.isnan(np.array(self.out))) @pytest.mark.parametrize('in_rep,in_irep,msg', [(None, 3, "must be a datetime object"), ([np.full(shape=(3, 2), fill_value=50.0), 0], [0, 1], "unable to process multi-dimensional"), ([50, 60, 70], 0, "arrays are mismatched"), ([[91, 60, -91], 0, 300], [0, 1, 2], "unrealistic latitude"), (None, 4, "unknown method code")]) def test_convert_latlon_arr_failure(self, in_rep, in_irep, msg): in_args = np.array([self.lat_in, self.lon_in, self.alt_in, self.dtime, "G2A"], dtype=object) in_args[in_irep] = in_rep with pytest.raises(ValueError, match=msg): aacgmv2.convert_latlon_arr(*in_args) class TestGetAACGMCoord: def setup(self): """Runs before every method to create a clean testing setup""" self.dtime = dt.datetime(2015, 1, 1, 0, 0, 0) self.ddate = dt.date(2015, 1, 1) self.in_args = [60, 0] self.out = None self.rtol = 1.0e-4 def teardown(self): """Runs after every method to clean up previous testing""" del self.out, self.in_args, self.rtol, self.dtime, self.ddate @pytest.mark.parametrize('alt,method_code,ref', [(300, 'TRACE', [58.2268, 81.1613, 0.1888]), (3000.0, "G2A|BADIDEA", [64.3578, 83.2895, 0.3307]), (7000.0, "G2A|TRACE|BADIDEA", [69.3187, 85.0845, 0.4503])]) def test_get_aacgm_coord(self, alt, method_code, ref): """Test single value AACGMV2 calculation, defaults to TRACE""" self.in_args.extend([alt, self.dtime, method_code]) self.out = aacgmv2.get_aacgm_coord(*self.in_args) np.testing.assert_allclose(self.out, ref, rtol=self.rtol) def test_get_aacgm_coord_datetime_date(self): """Test single AACGMV2 calculation with date and datetime input""" self.in_args.extend([300.0, self.ddate, 'TRACE']) self.out = aacgmv2.get_aacgm_coord(*self.in_args) np.testing.assert_allclose(self.out, [58.2268, 81.1613, 0.1888], rtol=self.rtol) def test_get_aacgm_coord_location_failure(self): """Test single value AACGMV2 calculation with a bad location""" self.in_args.extend([0.0, self.dtime, 'TRACE']) self.in_args[0] = 0.0 self.out = aacgmv2.get_aacgm_coord(*self.in_args) np.all(np.isnan(np.array(self.out))) def test_get_aacgm_coord_maxalt_failure(self): """test get_aacgm_coord failure for an altitude too high for coeffs""" self.in_args.extend([2001, self.dtime, ""]) self.out = aacgmv2.get_aacgm_coord(*self.in_args) assert np.all(np.isnan(np.array(self.out))) @pytest.mark.parametrize('in_index,value', [(3, None), (0, 91.0), (0, -91.0)]) def test_get_aacgm_coord_raise_value_error(self, in_index, value): """Test different ways to raise a ValueError""" self.in_args.extend([300.0, self.dtime]) self.in_args[in_index] = value with pytest.raises(ValueError): self.out = aacgmv2.get_aacgm_coord(*self.in_args) class TestGetAACGMCoordArr(TestConvertArray): def setup(self): """Runs before every method to create a clean testing setup""" self.dtime = dt.datetime(2015, 1, 1, 0, 0, 0) self.ddate = dt.date(2015, 1, 1) self.lat_in = [60.0, 61.0] self.lon_in = [0.0, 0.0] self.alt_in = [300.0, 300.0] self.method = 'TRACE' self.out = None self.ref = [[58.22676, 59.31847], [81.16135, 81.60797], [0.18880, 0.21857]] self.rtol = 1.0e-4 def teardown(self): """Runs after every method to clean up previous testing""" del self.out, self.ref, self.lat_in, self.dtime, self.ddate del self.lon_in, self.alt_in, self.method, self.rtol def test_get_aacgm_coord_arr_single_val(self): """Test array AACGMV2 calculation for a single value""" self.out = aacgmv2.get_aacgm_coord_arr(self.lat_in[0], self.lon_in[0], self.alt_in[0], self.dtime, self.method) self.evaluate_output(ind=0) def test_get_aacgm_coord_arr_list_single(self): """Test array AACGMV2 calculation for list input of single values""" self.out = aacgmv2.get_aacgm_coord_arr([self.lat_in[0]], [self.lon_in[0]], [self.alt_in[0]], self.dtime, self.method) self.evaluate_output(ind=0) def test_get_aacgm_coord_arr_arr_single(self): """Test array AACGMV2 calculation for array with a single value""" self.out = aacgmv2.get_aacgm_coord_arr(np.array([self.lat_in[0]]), np.array([self.lon_in[0]]), np.array([self.alt_in[0]]), self.dtime, self.method) self.evaluate_output(ind=0) def test_get_aacgm_coord_arr_list(self): """Test array AACGMV2 calculation for list input""" self.out = aacgmv2.get_aacgm_coord_arr(self.lat_in, self.lon_in, self.alt_in, self.dtime, self.method) self.evaluate_output() def test_get_aacgm_coord_arr_arr(self): """Test array AACGMV2 calculation for an array""" self.out = aacgmv2.get_aacgm_coord_arr(np.array(self.lat_in), np.array(self.lon_in), np.array(self.alt_in), self.dtime, self.method) self.evaluate_output() def test_get_aacgm_coord_arr_list_mix(self): """Test array AACGMV2 calculation for a list and floats""" self.out = aacgmv2.get_aacgm_coord_arr(self.lat_in, self.lon_in[0], self.alt_in[0], self.dtime, self.method) self.evaluate_output() def test_get_aacgm_coord_arr_arr_mix(self): """Test array AACGMV2 calculation for an array and floats""" self.out = aacgmv2.get_aacgm_coord_arr(np.array(self.lat_in), self.lon_in[0], self.alt_in[0], self.dtime, self.method) self.evaluate_output() def test_get_aacgm_coord_arr_badidea(self): """Test array AACGMV2 calculation for BADIDEA""" self.method = "|".join([self.method, "BADIDEA"]) self.out = aacgmv2.get_aacgm_coord_arr(self.lat_in[0], self.lon_in[0], [3000.0], self.dtime, self.method) self.ref = [[64.3481], [83.2885], [0.3306]] self.evaluate_output() def test_get_aacgm_coord_arr_location_failure(self): """Test array AACGMV2 calculation with a bad location""" self.out = aacgmv2.get_aacgm_coord_arr([0], [0], [0], self.dtime, self.method) np.testing.assert_equal(len(self.out), len(self.ref)) assert [isinstance(oo, np.ndarray) and len(oo) == 1 for oo in self.out] assert np.any([np.isnan(oo) for oo in self.out]) def test_get_aacgm_coord_arr_mult_failure(self): """Test aacgm_coord_arr failure with multi-dim array input""" with pytest.raises(ValueError): (self.mlat_out, self.mlon_out, self.mlt_out) = aacgmv2.get_aacgm_coord_arr( np.array([[60, 61, 62], [63, 64, 65]]), 0, 300, self.dtime) def test_get_aacgm_coord_arr_time_failure(self): """Test array AACGMV2 calculation with a bad time""" with pytest.raises(ValueError): aacgmv2.get_aacgm_coord_arr(self.lat_in, self.lon_in, self.alt_in, None, self.method) def test_get_aacgm_coord_arr_mlat_failure(self): """Test error return for co-latitudes above 90 for an array""" self.lat_in = [91, 60, -91] with pytest.raises(ValueError): self.out = aacgmv2.get_aacgm_coord_arr(self.lat_in, self.lon_in[0], self.alt_in[0], self.dtime, self.method) def test_get_aacgm_coord_arr_datetime_date(self): """Test array AACGMV2 calculation with date and datetime input""" self.out = aacgmv2.get_aacgm_coord_arr(self.lat_in, self.lon_in, self.alt_in, self.ddate, self.method) self.ref = aacgmv2.get_aacgm_coord_arr(self.lat_in, self.lon_in, self.alt_in, self.dtime, self.method) self.evaluate_output() def test_get_aacgm_coord_arr_maxalt_failure(self): """test aacgm_coord_arr failure for an altitude too high for coeff""" self.method = "" self.alt_in = [2001 for ll in self.lat_in] self.out = aacgmv2.get_aacgm_coord_arr(self.lat_in, self.lon_in, self.alt_in, self.dtime, self.method) np.testing.assert_equal(len(self.out), len(self.ref)) assert [isinstance(oo, np.ndarray) and len(oo) == len(self.lat_in) for oo in self.out] assert np.all(np.isnan(np.array(self.out))) class TestConvertCode: def setup(self): self.c_method_code = None self.ref_code = None self.out = None def teardown(self): del self.c_method_code, self.ref_code, self.out def set_c_code(self): """ Utility test to get desired C method code""" if self.ref_code is not None: self.ref_code = self.ref_code.upper() self.c_method_code = getattr(aacgmv2._aacgmv2, self.ref_code) def set_bad_c_code(self): """ Test failure to get bad code name""" self.ref_code = "not_a_valid_code" with pytest.raises(AttributeError): self.set_c_code() @pytest.mark.parametrize('method_code', [('G2A'), ('A2G'), ('TRACE'), ('ALLOWTRACE'), ('BADIDEA'), ('GEOCENTRIC'), ('g2a')]) def test_standard_convert_str_to_bit(self, method_code): """Test conversion from string code to bit for standard cases""" self.ref_code = method_code self.set_c_code() self.out = aacgmv2.convert_str_to_bit(method_code) np.testing.assert_equal(self.out, self.c_method_code) @pytest.mark.parametrize('str_code,bit_ref', [("G2A | trace", aacgmv2._aacgmv2.G2A + aacgmv2._aacgmv2.TRACE), ("ggoogg|", aacgmv2._aacgmv2.G2A)]) def test_non_standard_convert_str_to_bit(self, str_code, bit_ref): """Test conversion from string code to bit for non-standard cases""" self.out = aacgmv2.convert_str_to_bit(str_code) np.testing.assert_equal(self.out, bit_ref) @pytest.mark.parametrize('bool_dict,method_code', [({}, 'G2A'), ({'a2g': True}, 'A2G'), ({'trace': True}, 'TRACE'), ({'allowtrace': True}, 'ALLOWTRACE'), ({'badidea': True}, 'BADIDEA'), ({'geocentric': True}, 'GEOCENTRIC')]) def test_convert_bool_to_bit(self, bool_dict, method_code): """Test conversion from Boolean code to bit""" self.ref_code = method_code self.set_c_code() self.out = aacgmv2.convert_bool_to_bit(**bool_dict) np.testing.assert_equal(self.out, self.c_method_code) class TestMLTConvert: def setup(self): """Runs before every method to create a clean testing setup""" self.dtime = dt.datetime(2015, 1, 1, 0, 0, 0) self.dtime2 = dt.datetime(2015, 1, 1, 10, 0, 0) self.ddate = dt.date(2015, 1, 1) self.mlon_out = None self.mlt_out = None self.mlt_diff = None self.mlon_list = [270.0, 80.0, -95.0] self.mlt_list = [12.0, 25.0, -1.0] self.mlon_comp = [-101.670617955439, 93.329382044561, 63.329382044561] self.mlt_comp = [12.7780412, 0.11137453, 12.44470786] self.diff_comp = np.ones(shape=(3,)) * -10.52411552 def teardown(self): """Runs after every method to clean up previous testing""" del self.mlon_out, self.mlt_out, self.mlt_list, self.mlon_list del self.mlon_comp, self.mlt_comp, self.mlt_diff, self.diff_comp def test_date_input(self): """Test to see that the date input works""" self.mlt_out = aacgmv2.convert_mlt(self.mlon_list, self.ddate, m2a=False) np.testing.assert_allclose(self.mlt_out, self.mlt_comp, rtol=1.0e-4) def test_datetime_exception(self): """Test to see that a value error is raised with bad time input""" with pytest.raises(ValueError): self.mlt_out = aacgmv2.wrapper.convert_mlt(self.mlon_list, 1997) def test_inv_convert_mlt_single(self): """Test MLT inversion for a single value""" for i, mlt in enumerate(self.mlt_list): self.mlon_out = aacgmv2.convert_mlt(mlt, self.dtime, m2a=True) np.testing.assert_almost_equal(self.mlon_out, self.mlon_comp[i], decimal=4) def test_inv_convert_mlt_list(self): """Test MLT inversion for a list""" self.mlon_out = aacgmv2.convert_mlt(self.mlt_list, self.dtime, m2a=True) np.testing.assert_allclose(self.mlon_out, self.mlon_comp, rtol=1.0e-4) def test_inv_convert_mlt_arr(self): """Test MLT inversion for an array""" self.mlon_out = aacgmv2.convert_mlt(np.array(self.mlt_list), self.dtime, m2a=True) np.testing.assert_allclose(self.mlon_out, self.mlon_comp, rtol=1.0e-4) def test_inv_convert_mlt_wrapping(self): """Test MLT wrapping""" self.mlon_out = aacgmv2.convert_mlt(np.array([1, 25, -1, 23]), self.dtime, m2a=True) np.testing.assert_almost_equal(self.mlon_out[0], self.mlon_out[1], decimal=6) np.testing.assert_almost_equal(self.mlon_out[2], self.mlon_out[3], decimal=6) def test_mlt_convert_mlon_wrapping(self): """Test mlon wrapping""" self.mlt_out = aacgmv2.convert_mlt(np.array([270, -90, 1, 361]), self.dtime, m2a=False) np.testing.assert_almost_equal(self.mlt_out[0], self.mlt_out[1], decimal=6) np.testing.assert_almost_equal(self.mlt_out[2], self.mlt_out[3], decimal=6) def test_mlt_convert_single(self): """Test MLT calculation for a single value""" for i, mlon in enumerate(self.mlon_list): self.mlt_out = aacgmv2.convert_mlt(mlon, self.dtime, m2a=False) np.testing.assert_almost_equal(self.mlt_out, self.mlt_comp[i], decimal=4) def test_mlt_convert_list(self): """Test MLT calculation for a list""" self.mlt_out = aacgmv2.convert_mlt(self.mlon_list, self.dtime, m2a=False) np.testing.assert_allclose(self.mlt_out, self.mlt_comp, rtol=1.0e-4) def test_mlt_convert_arr(self): """Test MLT calculation for an array""" self.mlt_out = aacgmv2.convert_mlt(np.array(self.mlon_list), self.dtime, m2a=False) np.testing.assert_allclose(self.mlt_out, self.mlt_comp, rtol=1.0e-4) def test_mlt_convert_list_w_times(self): """Test MLT calculation for data and time arrays""" self.dtime = [self.dtime for dd in self.mlon_list] self.mlt_out = aacgmv2.convert_mlt(self.mlon_list, self.dtime, m2a=False) np.testing.assert_allclose(self.mlt_out, self.mlt_comp, rtol=1.0e-4) def test_mlt_convert_change(self): """Test that MLT changes with UT""" self.mlt_out = aacgmv2.convert_mlt(self.mlon_list, self.dtime) self.mlt_diff = np.array(self.mlt_out) \ - np.array(aacgmv2.convert_mlt(self.mlon_list, self.dtime2))
np.testing.assert_allclose(self.mlt_diff, self.diff_comp, rtol=1.0e-4)
numpy.testing.assert_allclose
from __future__ import print_function import numpy as np import pytest EPS = 1e-8 def kmeans_cluster(x, k, max_iter=10, threshold=1e-3, verbose=False): # init centers = np.zeros([k, x.shape[-1]]) for i in range(k): total_num = len(x) chosen_num = max(1, total_num / k) random_ids = np.random.choice(total_num, chosen_num, replace=False) centers[i, :] = np.mean(x[random_ids]) cur_total_dist = np.float('inf') dist = np.zeros([k, len(x)]) for i in range(max_iter): for j in range(k): for m, p in enumerate(x): dist[j, m] = np.mean((p - centers[j]) ** 2) min_idx =
np.argmin(dist, 0)
numpy.argmin
# -*- coding: utf-8 -*- """ This module contains functions relating to more advanced binning techniques, in particular recursive binning algorithms. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from tact import util def _meets_num_threshold(xw, cat, s_num_thresh=1, b_num_thresh=1, s_err_thresh=0.3, b_err_thresh=0.3): """ Check if the number of signal and background events in xw are above the specified number threshold and above the specified error threshold. Parameters ---------- xw : array-like, shape=N Event weights. cat : 1D array, shape=N Array containing labels describing whether an entry is signal (1 or True) or background (0 or False). s_num_thresh, b_num_thresh, float, optional Signal and background event count thresholds. s_num_thresh, b_num_thresh, float, optional Signal and background event bin error thresholds. Returns ------- bool True if meets either threshold, False otherwise. """ sums = xw[cat == 1].sum() sumb = xw[cat == 0].sum() return sumb < b_num_thresh or sums < s_num_thresh \ or (xw[cat == 0] ** 2).sum() ** 0.5 / sumb > s_err_thresh \ or (xw[cat == 1] ** 2).sum() ** 0.5 / sums > b_err_thresh def _recursive_median_tree(x, cat, xw=None, s_num_thresh=1, b_num_thresh=1, s_err_thresh=0.3, b_err_thresh=0.3): """ Perform binning by recursively finding the median. The provided data is split at the median. The resulting subsamples are continually split until doing so would result in a sample with less than s_num_thresh (b_num_thresh) signal (background) events or a % bin error greater than s_err_thresh in signal or b_err_thresh in background. Parameters ---------- x : array-like, shape=N Data to be binned. cat : 1D array, shape=N Array containing labels describing whether an entry is signal (1 or True) or background (0 or False). xw : array-like, shape=N, optional Weights for samples in x. If None, equal weights are used. s_num_thresh, b_num_thresh, float, optional Minimum number of samples in a cluster in signal or background before splitting is stopped. s_err_thresh, b_err_thresh, float, optional Maximum percentage error in a cluster in signal or background before splitting is stopped. Returns ------- BinaryTree BinaryTree containing subsample medians. """ if xw is None: xw = np.ones(len(x)) median =
np.median(x)
numpy.median
#!/usr/bin/python """ Perform HI survey Fisher forecast based on Pedro's formalism (see notes from August 2013). Requires up-to-date NumPy, SciPy (tested with version 0.11.0) and matplotlib. A number of functions can optionally use MPI (mpi4py). (<NAME> & <NAME>, 2013--2014) """ import numpy as np import scipy.integrate import scipy.interpolate from scipy.misc import derivative import pylab as P import matplotlib.patches import matplotlib.cm from .units import * import uuid, os, sys, copy from hashlib import md5 from . import camb_wrapper as camb from . import mg_growth from tempfile import gettempdir # No. of samples in log space in each dimension. 300 seems stable for (AA). NSAMP_K = 500 # 1000 NSAMP_U = 1500 # 3000 # Debug settings (set all to False for normal operation) DBG_PLOT_CUMUL_INTEGRAND = False # Plot k-space integrand of the dP/P integral INF_NOISE = 1e200 # Very large finite no. used to denote infinite noise EXP_OVERFLOW_VAL = 250. # Max. value of exponent for np.exp() before assuming overflow # Decide which RSD function to use (N.B. interpretation of sigma_NL changes # slightly depending on option) RSD_FUNCTION = 'kaiser' #RSD_FUNCTION = 'loeb' # Location of CAMB fiducial P(k) file # NOTE: Currently expects CAMB P(k) needs to be at chosen z value (z=0 here). CAMB_KMAX = 20. / 0.7 # Max. k for CAMB, in h Mpc^-1 CAMB_EXEC = "/home/phil/lynx/oslo/bao21cm/camb" # Directory containing camb executable ################################################################################ # Plotting functions ################################################################################ def figure_of_merit(p1, p2, F, cov=None, twosigma=False): """ DETF Figure of Merit, defined as the area inside the 95% contour of w0,wa. fom = 1 / [ sqrt( |cov(w0, wa)| ) ], where cov = F^-1, and cov(w0, wa) is the w0,wa 2x2 sub-matrix of the covmat. If twosigma=True, there is an additional factor of 1/4 that comes from looking at the 95% (2-sigma) contours. """ if cov == None: cov = np.linalg.inv(F) # Calculate determinant c11 = cov[p1,p1] c22 = cov[p2,p2] c12 = cov[p1,p2] det = c11*c22 - c12**2. fom = 1. / np.sqrt(det) if twosigma: fom *= 0.25 return fom def ellipse_for_fisher_params(p1, p2, F, Finv=None): """ Return covariance ellipse parameters (width, height, angle) from Fisher matrix F, for parameters in the matrix with indices p1 and p2. See arXiv:0906.4123 for expressions. """ if Finv is not None: cov = Finv else: cov = np.linalg.inv(F) c11 = cov[p1,p1] c22 = cov[p2,p2] c12 = cov[p1,p2] # Calculate ellipse parameters (Eqs. 2-4 of Coe, arXiv:0906.4123) y1 = 0.5*(c11 + c22) y2 = np.sqrt( 0.25*(c11 - c22)**2. + c12**2. ) a = 2. * np.sqrt(y1 + y2) # Factor of 2 because def. is *total* width of ellipse b = 2. * np.sqrt(y1 - y2) # Flip major/minor axis depending on which parameter is dominant if c11 >= c22: w = a; h = b else: w = b; h = a # Handle c11==c22 case for angle calculation if c11 != c22: ang = 0.5*
np.arctan( 2.*c12 / (c11 - c22) )
numpy.arctan
import numpy as np import pytest # pylint: disable=line-too-long from tensornetwork.block_sparse.charge import BaseCharge, intersect, fuse_ndarrays, U1Charge, fuse_degeneracies, fuse_charges def test_BaseCharge_charges(): D = 100 B = 6 np.random.seed(10) charges = np.random.randint(-B // 2, B // 2 + 1, (2, D)).astype(np.int16) q1 = BaseCharge(charges) np.testing.assert_allclose(q1.charges, charges) def test_BaseCharge_generic(): D = 300 B = 5 np.random.seed(10) q = np.random.randint(-B // 2, B // 2 + 1, (2, D)).astype(np.int16) unique = np.unique(q, axis=1) Q = BaseCharge(charges=q) assert Q.dim == 300 assert Q.num_symmetries == 2 assert Q.num_unique == unique.shape[1] def test_BaseCharge_len(): D = 300 B = 5 np.random.seed(10) q = np.random.randint(-B // 2, B // 2 + 1, (2, D)).astype(np.int16) Q = BaseCharge(charges=q) assert len(Q) == 300 def test_BaseCharge_copy(): D = 300 B = 5 np.random.seed(10) q = np.random.randint(-B // 2, B // 2 + 1, (2, D)).astype(np.int16) Q = BaseCharge(charges=q) Qcopy = Q.copy() assert Q.charge_labels is not Qcopy.charge_labels assert Q.unique_charges is not Qcopy.unique_charges np.testing.assert_allclose(Q.charge_labels, Qcopy.charge_labels) np.testing.assert_allclose(Q.unique_charges, Qcopy.unique_charges) def test_BaseCharge_unique(): D = 3000 B = 5 np.random.seed(10) q = np.random.randint(-B // 2, B // 2 + 1, (2, D)).astype(np.int16) Q = BaseCharge(charges=q, charge_types=[U1Charge, U1Charge]) expected = np.unique( q, return_index=True, return_inverse=True, return_counts=True, axis=1) actual = Q.unique(return_index=True, return_inverse=True, return_counts=True) assert np.all(actual[0].charges == expected[0]) assert np.all(actual[1] == expected[1]) assert np.all(actual[2] == expected[2]) assert np.all(actual[3] == expected[3]) def test_BaseCharge_unique_sort(): np.random.seed(10) unique = np.array([1, 0, -1]) labels = np.random.randint(0, 3, 100) Q = U1Charge(charges=unique, charge_labels=labels) actual = Q.unique( return_index=True, return_inverse=True, return_counts=True, sort=False) np.testing.assert_allclose(actual[0].unique_charges, [[1, 0, -1]]) def test_intersect_1(): a = np.array([[0, 1, 2], [2, 3, 4]]) b = np.array([[0, -2, 6], [2, 3, 4]]) out = intersect(a, b, axis=1) np.testing.assert_allclose(np.array([[0], [2]]), out) def test_intersect_2(): a = np.array([[0, 1, 2], [2, 3, 4]]) b = np.array([[0, -2, 6, 2], [2, 3, 4, 4]]) out, la, lb = intersect(a, b, axis=1, return_indices=True) np.testing.assert_allclose(np.array([[0, 2], [2, 4]]), out) np.testing.assert_allclose(la, [0, 2]) np.testing.assert_allclose(lb, [0, 3]) def test_intersect_3(): a = np.array([0, 1, 2, 3, 4]) b = np.array([0, -1, 4]) out = intersect(a, b) np.testing.assert_allclose([0, 4], out) def test_intersect_4(): a = np.array([0, 1, 2, 3, 4]) b = np.array([0, -1, 4]) out, la, lb = intersect(a, b, return_indices=True) np.testing.assert_allclose([0, 4], out) np.testing.assert_allclose(la, [0, 4]) np.testing.assert_allclose(lb, [0, 2]) def test_intersect_raises(): np.random.seed(10) a = np.random.randint(0, 10, (4, 5)) b = np.random.randint(0, 10, (4, 6)) with pytest.raises(ValueError): intersect(a, b, axis=0) c = np.random.randint(0, 10, (3, 7)) with pytest.raises(ValueError): intersect(a, c, axis=1) with pytest.raises(NotImplementedError): intersect(a, c, axis=2) d = np.random.randint(0, 10, (3, 7, 3)) e = np.random.randint(0, 10, (3, 7, 3)) with pytest.raises(NotImplementedError): intersect(d, e, axis=1) def test_fuse_ndarrays(): d1 = np.asarray([0, 1]) d2 = np.asarray([2, 3, 4]) fused = fuse_ndarrays([d1, d2]) np.testing.assert_allclose(fused, [2, 3, 4, 3, 4, 5]) def test_fuse_degeneracies(): d1 = np.asarray([0, 1]) d2 = np.asarray([2, 3, 4]) fused_degeneracies = fuse_degeneracies(d1, d2) np.testing.assert_allclose(fused_degeneracies, np.kron(d1, d2)) def test_U1Charge_charges(): D = 100 B = 6 np.random.seed(10) charges = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) q1 = U1Charge(charges) assert np.all(q1.charges == charges) def test_U1Charge_dual(): D = 100 B = 6 np.random.seed(10) charges = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) q1 = U1Charge(charges) assert np.all(q1.dual(True).charges == -charges) def get_charges(B0, B1, D, num_charges): return [ np.random.randint(B0, B1 + 1, D).astype(np.int16) for _ in range(num_charges) ] def fuse_many_charges(num_charges, num_charge_types, seed, D, B, use_flows=False): np.random.seed(seed) if use_flows: flows = np.random.choice([True, False], num_charges, replace=True) else: flows = np.asarray([False] * num_charges) np_flows = np.ones(num_charges, dtype=np.int16) np_flows[flows] = -1 charges = [ get_charges(-B // 2, B // 2, D, num_charge_types) for _ in range(num_charges) ] fused = [ fuse_ndarrays([charges[n][m] * np_flows[n] for n in range(num_charges)]) for m in range(num_charge_types) ] final_charges = [U1Charge(charges[n][0]) for n in range(num_charges)] for n in range(num_charges): for m in range(1, num_charge_types): final_charges[n] = final_charges[n] @ U1Charge(charges[n][m]) np_target_charges = np.random.randint(-B, B, num_charge_types, dtype=np.int16) target_charges = [ U1Charge(np.array([np_target_charges[n]])) for n in range(num_charge_types) ] target = target_charges[0] for m in range(1, num_charge_types): target = target @ target_charges[m] final = final_charges[0] * flows[0] for n in range(1, num_charges): final = final + final_charges[n] * flows[n] nz_1 = np.nonzero(final == target)[0] masks = [fused[m] == target.charges[m, 0] for m in range(num_charge_types)] #pylint: disable=no-member nz_2 = np.nonzero(np.logical_and.reduce(masks))[0] return nz_1, nz_2 @pytest.mark.parametrize('use_flows', [True, False]) @pytest.mark.parametrize('num_charges, num_charge_types, D, B', [(2, 1, 1000, 6), (2, 2, 1000, 6), (3, 1, 100, 6), (3, 2, 100, 6), (3, 3, 100, 6)]) def test_U1Charge_fusion(num_charges, num_charge_types, D, B, use_flows): nz_1, nz_2 = fuse_many_charges( num_charges=num_charges, num_charge_types=num_charge_types, seed=20, D=D, B=B, use_flows=use_flows) assert len(nz_1) > 0 assert len(nz_2) > 0 assert np.all(nz_1 == nz_2) def test_BaseCharge_intersect(): q1 = np.array([[0, 1, 2, 0, 6], [2, 3, 4, -1, 4]]) q2 = np.array([[0, -2, 6], [2, 3, 4]]) Q1 = BaseCharge(charges=q1) Q2 = BaseCharge(charges=q2) res = Q1.intersect(Q2) np.testing.assert_allclose(res.charges, np.asarray([[0, 6], [2, 4]])) def test_BaseCharge_intersect_2(): c1 = U1Charge(np.array([1, 0, -1]), charge_labels=np.array([2, 0, 1])) c2 = U1Charge(np.array([-1, 0, 1])) res = c1.intersect(c2) np.testing.assert_allclose(res.charges, [[-1, 0, 1]]) def test_BaseCharge_intersect_return_indices(): q1 = np.array([[0, 1, 2, 0, 6], [2, 3, 4, -1, 4]]) q2 = np.array([[-2, 0, 6], [3, 2, 4]]) Q1 = BaseCharge(charges=q1) Q2 = BaseCharge(charges=q2) res, i1, i2 = Q1.intersect(Q2, return_indices=True) #res, i1, i2 = intersect(q1, q2, axis=1, return_indices=True) np.testing.assert_allclose(res.charges, np.asarray([[0, 6], [2, 4]])) np.testing.assert_allclose(i1, [0, 4]) np.testing.assert_allclose(i2, [1, 2]) def test_U1Charge_matmul(): D = 1000 B = 5 np.random.seed(10) C1 = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) C2 = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) C3 = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) q1 = U1Charge(C1) q2 = U1Charge(C2) q3 = U1Charge(C3) Q = q1 @ q2 @ q3 Q_ = BaseCharge( np.stack([C1, C2, C3], axis=0), charge_labels=None, charge_types=[U1Charge, U1Charge, U1Charge]) assert np.all(Q.charges == Q_.charges) def test_U1Charge_matmul_raises(): B = 5 np.random.seed(10) C1 = np.random.randint(-B // 2, B // 2 + 1, 10).astype(np.int16) C2 = np.random.randint(-B // 2, B // 2 + 1, 11).astype(np.int16) q1 = U1Charge(C1) q2 = U1Charge(C2) with pytest.raises(ValueError): q1 @ q2 def test_U1Charge_identity(): D = 100 B = 5 np.random.seed(10) C1 = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) C2 = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) C3 = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) q1 = U1Charge(C1) q2 = U1Charge(C2) q3 = U1Charge(C3) Q = q1 @ q2 @ q3 eye = Q.identity_charges np.testing.assert_allclose(eye.unique_charges, 0) assert eye.num_symmetries == 3 def test_U1Charge_mul(): D = 100 B = 5 np.random.seed(10) C1 = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) C2 = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) q1 = U1Charge(C1) q2 = U1Charge(C2) q = q1 @ q2 res = q * True np.testing.assert_allclose(res.charges, (-1) * np.stack([C1, C2])) def test_fuse_charges(): num_charges = 5 B = 6 D = 10 np_charges = [ np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) for _ in range(num_charges) ] charges = [U1Charge(c) for c in np_charges] flows = [True, False, True, False, True] np_flows = np.ones(5, dtype=np.int16) np_flows[flows] = -1 fused = fuse_charges(charges, flows) np_fused = fuse_ndarrays([c * f for c, f in zip(np_charges, np_flows)]) np.testing.assert_allclose(np.squeeze(fused.charges), np_fused) def test_fuse_charges_raises(): num_charges = 5 B = 6 D = 10 np_charges = [ np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) for _ in range(num_charges) ] charges = [U1Charge(c) for c in np_charges] flows = [True, False, True, False] with pytest.raises(ValueError): fuse_charges(charges, flows) def test_reduce(): q = np.array([[0, 1, 2, 0, 6, 1, -9, 0, -7], [2, 3, 4, -1, 4, 3, 1, 2, 0]]) Q = BaseCharge(charges=q) target_charge = np.array([[0, 1, 6, -12], [2, 3, 4, 16]]) expected = np.array([[0, 1, 6, 1, 0], [2, 3, 4, 3, 2]]) res, locs = Q.reduce(target_charge, return_locations=True) np.testing.assert_allclose(res.charges, expected) np.testing.assert_allclose(locs, [0, 1, 4, 5, 7]) def test_getitem(): q1 = np.array([0, 1, 2, 0, 6, 1, -9, 0, -7]) q2 = np.array([2, 3, 4, -1, 4, 3, 1, 2, 0]) Q1 = U1Charge(charges=q1) Q2 = U1Charge(charges=q2) Q = Q1 @ Q2 t1 = Q[5] np.testing.assert_allclose(t1.charges, [[1], [3]]) assert np.all([t1.charge_types[n] == U1Charge for n in range(2)]) t2 = Q[[2, 5, 7]] assert np.all([t2.charge_types[n] == U1Charge for n in range(2)]) np.testing.assert_allclose(t2.charges, [[2, 1, 0], [4, 3, 2]]) t3 = Q[[5, 2, 7]] assert np.all([t3.charge_types[n] == U1Charge for n in range(2)]) np.testing.assert_allclose(t3.charges, [[1, 2, 0], [3, 4, 2]]) def test_isin(): np.random.seed(10) c1 = U1Charge(np.random.randint(-5, 5, 1000, dtype=np.int16)) c2 = U1Charge(np.random.randint(-5, 5, 1000, dtype=np.int16)) c = c1 @ c2 c3 = np.array([[-1, 0, 1], [-1, 0, 1]]) n = c.isin(c3) for m in np.nonzero(n)[0]: charges = c[m].charges #pylint: disable=unsubscriptable-object assert np.any( [np.array_equal(charges[:, 0], c3[:, k]) for k in range(c3.shape[1])]) for m in np.nonzero(np.logical_not(n))[0]: charges = c[m].charges #pylint: disable=unsubscriptable-object assert not np.any( [np.array_equal(charges[:, 0], c3[:, k]) for k in range(c3.shape[1])]) def test_isin_2(): np.random.seed(10) c1 = U1Charge(np.random.randint(-5, 5, 1000, dtype=np.int16)) c2 = U1Charge(np.random.randint(-5, 5, 1000, dtype=np.int16)) c = c1 @ c2 c3 = U1Charge(np.array([-1, 0, 1])) @ U1Charge(np.array([-1, 0, 1])) n = c.isin(c3) for m in np.nonzero(n)[0]: charges = c[m].charges assert np.any([ np.array_equal(charges[:, 0], c3.charges[:, k]) for k in range(c3.charges.shape[1]) ]) for m in np.nonzero(
np.logical_not(n)
numpy.logical_not
from astropy.cosmology import WMAP7 as cosmo from astropy.constants import c as C from astropy import units as u from astropy.table import Table from astropy.io import ascii import numpy as np from linetools import utils as ltu from linetools.isgm.abscomponent import AbsComponent from linetools.spectra.io import readspec from linetools.spectra.xspectrum1d import XSpectrum1D import linetools.isgm.io as ltiio from linetools.isgm import utils as ltiu from pyntejos.io import table_from_marzfile import json import glob import matplotlib.pyplot as plt """Module for utils""" def get_closest_ind(array, value): """Gets the index of array such that array[ind] is the closest element to given value""" ind = np.argmin(np.fabs(value - array)) return ind def get_closest_inds(array, values): """Gets the indices of array such that array[inds] give the closest elements to given values, respectively. Note: there could come with duplication dependind on the `values` array.""" inds = [get_closest_ind(array, value) for value in values] return inds def compare_z(z1, z2, dv): """Return true if the difference between z1 and z2 is within dv at the mean redshift. Otherwise return False. dv has to be much smaller and speed of light as the function does not account for relativity.""" z1 = np.array(z1) z2 = np.array(z2) dv = np.array(dv) dz = np.fabs(z1 - z2) z = np.mean([z1, z2]) if dz / (1. + z) < dv / C.to('km/s').value: return True else: return False def group_z(z, dv=1000): """Group redshifts within dv (km/s) at the redshift of the group. Returns an array of id_membership, of the same dimension than z""" z_original = np.array(z) z = np.array(z) z.sort() ids = np.zeros(len(z)) # This is the output, here we store the id_membership of each z ids_aux = np.zeros(len(z)) # This is the same, but matching a sorted z array q = 0 # counter for groups ids[0] = q for i in np.arange(1, len(z)): if compare_z(z[i], z[i - 1], dv): ids_aux[i] = q else: q += 1 ids_aux[i] = q # remap ids_aux to ids for i in np.arange(len(z_original)): cond = z_original[i] == z if np.sum(cond) > 1: # in case there are 2 or more with same z ids[i] = ids_aux[cond][0] else: ids[i] = ids_aux[cond] return ids.astype(int) def poisson_err(n): """Gets poissonian error analytical approximation from equations of Gherels 1986. Returns the upper and lower uncertainties""" n = np.array(n) errp = np.sqrt(n + 0.75) + 1. errp = np.where(errp == errp, errp, errp) errm = np.where(n > 0.25, np.sqrt(n - 0.25), 0) return errp, errm def Nmin(e, dz, s, a, a_err): """Estimates the minimum number of independent structures to detect a difference in dN/dz w/r to a field value given by dNdz|field = a +- a_err, at a statistical significance s, using a redshift path of dz per structure""" e = np.array(e).astype(float) dz = np.array(dz).astype(float) s = np.array(s).astype(float) a = np.array(a).astype(float) a_err = np.array(a_err).astype(float) # this is a analytical expression was derived by N.T. return (e / dz / a) * (s ** 2) / ((e - 1.) - s * a_err / a) ** 2 def find_edges(a): """Assume a is 1-D array of values, where 0 mean masked out. This function will provide the indices of lower and upper edges of chunks having values different than 0. Useful for spectra analyses""" a = np.array(a) # append 0 before and after the original array to an auxiliary array # in this way: # lower case limits are always 0,something # upper case limits are always something,0 a_aux = np.append(0, a) a_aux = np.append(a_aux, 0) lower = [] upper = [] for i in range(1, len(a_aux) - 1): # only for indices with original info if (a_aux[i] != 0) and (a_aux[i - 1] == 0): # lower case lower += [i] if (a_aux[i] != 0) and (a_aux[i + 1] == 0): # upper case upper += [i] lower = np.array(lower) upper = np.array(upper) # lower and upper have indices of a_aux # we substract one to get the indices in the original array a lower = lower - 1 upper = upper - 1 assert len(lower) == len(upper), 'Something is wrong with find_edges function. Debug code!' return lower.astype(int), upper.astype(int) def is_local_minima(a): """For a given array a, it returns true for local minima""" return ltu.is_local_minima(a) def is_local_maxima(a): """For a given array a, returns true for local maxima""" return ltu.is_local_maxima(a) def associate_redshifts(z1, z2, dv): """Returns an array of same lenght as z1, with a 1 if z1 redshift lie within dv from any of the redshifts given by the array z2; otherwise it has a value of 0""" z1 = np.array(z1) z2 = np.array(z2) association = np.zeros(len(z1)) for z in z2: dv_aux = np.fabs(ltu.dv_from_z(z1, z)) association = np.where(dv_aux < dv, 1, association) return association def get_dv_closest_z(z1, z2, give_ids=False): """Returns an array of same lenght as z1, with the velocity difference (in km/s) associates to the closest redshift in z2, at restframe given by z2. (Using relativistic approximation for flat-space time; see ltu.dv_from_z() function) If give_ids is True , it also returns the indices of z2 where the difference is minimum. """ z1 = np.array(z1) z2 = np.array(z2) dv = [] inds = [] for z in z1: dv_aux = ltu.dv_from_z(z, z2) # find minimum difference cond = np.fabs(dv_aux) == np.min(np.fabs(dv_aux)) ind = np.where(cond)[0][0] # append dv dv += [dv_aux[ind]] inds += [ind] dv = np.array(dv) if give_ids: return dv, inds else: return dv def clean_array(x, value=0): """Get rid of nan and inf in the array x, and replace them with the given value.""" x = np.array(x) cond = (np.isnan(x)) | (np.isinf(x)) x = np.where(cond, value, x) return x def get_original_indices(original, new): """For a pair of arrays containing the same information but sorted in a different way, this function provides the indices associated to the original array that make up the new array so original[indices]=new. Add check to make sore arrays contain exact same information """ original = np.array(original) new = np.array(new) # use np.argsort() inds_orig_sorted = np.argsort(original) inds_new_sorted = np.argsort(new) # find indices such that original[indices] = new indices_aux =
np.argsort(inds_new_sorted)
numpy.argsort
# Copyright (c) 2020, # ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, Switzerland, # Laboratoire de Traitement des Signaux 4 (LTS4). # All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Author: <NAME> (rossi-mattia-at-gmail-com) import numpy as np import torch from typing import Tuple, Union def gauss_filter_1d(length: int, sigma: float) -> np.array: """It builds a 1D Gaussian filter. Args: length: number of filter taps. sigma: standard deviation. Returns: A 1D Gaussian filter arranged as a `(length,)` array. """ # Check the filter length. if (length % 2) == 0: raise ValueError('The length of the filter must be odd.') # Build the filter. radius = int((length - 1) / 2.0) x = np.arange(-radius, radius + 1, dtype=np.float32) y = np.exp(- (x ** 2) / (2 * (sigma ** 2))) / (sigma * np.sqrt(2 * np.pi)) # Normalize the filter. const = np.sum(y) assert const != 0, 'The filter is zero everywhere.' y = y / const return y def gauss_filter_deriv_1d(length: int, sigma: float) -> np.array: """It builds the derivative of a 1D Gaussian filter. Args: length: number of filter taps. sigma: standard deviation. Returns: A 1D Gaussian filter derivative, arranged as a `(length,)` array. """ # Check the filter length. if (length % 2) == 0: raise ValueError('The length of the filter must be odd.') # Build the filter. radius = int((length - 1) / 2.0) x = np.arange(-radius, radius + 1, dtype=np.float32) y = gauss_filter_1d(length, sigma) * (- x / (sigma ** 2)) # Normalize the filter. const = np.sum(np.abs(y)) assert const != 0, 'The filter is zero everywhere.' y = y / const # TODO: check whether this normalization makes sense. return y def gauss_filter_2d(size: int, sigma: float) -> np.array: """It builds a 2D Gaussian filter. Args: size: height (and width) of the filter. sigma: standard deviation (in pixels) of the Gaussian filter. Returns: A 2D Gaussian filter arranged as a `(size, size)` array. """ # Build the filter. y = (gauss_filter_1d(size, sigma)[:, None]).dot(gauss_filter_1d(size, sigma)[None, :]) # Normalize the filter. const = np.sum(y) assert const != 0, 'The filter is zero everywhere.' y = y / const return y def gauss_filter_deriv_2d(size: int, sigma: float) -> np.array: """It builds the vertical derivative of a 2D Gaussian filter. It builds the vertical derivative of a 2D Gaussian filter. The horizontal derivative can be obtained just by taking the transpose of the vertical one. Args: size: height (and width) of the filters. sigma: standard deviation (in pixels) of the Gaussian filter underneath the derivative filters. Returns: The vertical derivative of a 2D Gaussian filter arranged as a `(size, size)` array. """ # Build the filter. y = (gauss_filter_deriv_1d(size, sigma)[:, None]).dot(gauss_filter_1d(size, sigma)[None, :]) # Normalize the filter. const = np.sum(np.abs(y)) assert const != 0, 'The filter is zero everywhere.' y = y / const return y def gradient_filter(size: int, sigma: float) -> torch.Tensor: """It builds a gradient filter for images in PyTorch tensor format. It builds a filter that can be used with `torch.nn.functional.conv2d` to compute the gradient of a batch of images or, more in general, of maps. The images or maps must have only one channel. The filter is arranged as a `(2, 1, H, W)` tensor with `[0, :, :, :]` and `[1, :, :, :]` the 2D horizontal and vertical derivative filters. Example: batch_nb = 5 height = 100 width = 200 size = 7 image = torch.random(batch_nb, 1, height, width) filter = gradient_filter(7, 0.1) pad = tuple([int((size - 1) / 2)] * 4) image_grad = torch.nn.functional.conv2d(torch.nn.functional.pad(image, pad, mode='replicate'), filter) In the example, `image_grad` is a `(batch_nb, 2, height, width)` tensor with `image_grad[k, 0, :, :]` and `image_grad[k, 1, :, :]` the horizontal and vertical derivatives of the image `k`. Args: size: height (and width) of the filters. sigma: standard deviation (in pixels) of the Gaussian filter underneath the derivative filters. Returns: The gradient filter, arranged as a `(2, 1, H, W)` tensor. """ # Build the vertical (y) derivative filter. d_gauss_dy = gauss_filter_deriv_2d(size, sigma) # Flip the filter around the (x, y) origin, as torch.nn.functional.conv2d() performs just cross-correlation rather # than the standard convolution. d_gauss_dy = np.fliplr(d_gauss_dy) d_gauss_dy = np.flipud(d_gauss_dy) # Build the horizontal (x) derivative filter, which is just the transpose of the vertical one. d_gauss_dx = d_gauss_dy.T # Expand the filters to make them compliant with torch.nn.functional.conv2d. d_gauss_dy = d_gauss_dy[None, None, :, :] # [1, 1, size, size] d_gauss_dx = d_gauss_dx[None, None, :, :] # [1, 1, size, size] # Concatenate the two filters into a single filter with two channels. grad_filter =
np.concatenate((d_gauss_dx, d_gauss_dy), axis=0)
numpy.concatenate
#python makeAllGraphs.py [cutoff value] [-w for weighted matrix, -uw for unweighted] # [-nb for no biases, -b for biases] [optional filename prefix for saving] import sys import makeGraph import makeGraphNoBias import numpy as np path = "" ''' MAIN HAS BEEN MODIFIED TO RETURN THE MATRIX INSTEAD OF SAVING IT. ''' def main(argv): assert len(argv) >= 4, 'ERROR: Please enter required paramters. See readme.txt ...' global path #essential arguments cutoff = float(argv[1]) saveName = str(argv[4]) path = argv[5] matrix = None #flags specifying format of matrix if argv[2] == '-w': if argv[3] == '-nb': print('Creating weighted adjacency matrix without including the biases') matrix = getWeightedAdjacencyMatrixNoBias() elif argv[3] == '-b': print('Creating weighted adjacency matrix, including the biases') matrix = getWeightedAdjacencyMatrix() else: print('ERROR: incorrect flag. Please specify -b to include biases and -nb for no biases.') elif argv[2] == '-uw': if argv[3] == '-nb': print('Creating graphs without including the biases') matrix = getUnweightedAdjacencyMatrixNoBias(cutoff) elif argv[3] == '-b': print('Creating graphs including the biases') matrix = getUnweightedAdjacencyMatrix(cutoff) else: print('ERROR: incorrect flag. Please specify -b to include biases and -nb for no biases.') else: print('ERROR: incorrect flag. Please specify -w for weighted and -uw for unweighted as the second parameter.') #save output #saveBinary(matrix, saveName) ''' THIS NEEDS TO BE CHANGED BACK ''' return matrix def getUnweightedAdjacencyMatrixNoBias(cutoff): w1 = np.load(path+'_W1.npy') w2 = np.load(path+'_W2.npy') G = makeGraphNoBias.makeGraph([w1,w2], cutoff) print('Vertices:', len(G[0]),'\tEdges:',len(G[1])) return graphToAdjacencyMatrix(G) def getUnweightedAdjacencyMatrix(cutoff): w1 = np.load(path+'_W1.npy') w2 = np.load(path+'_W2.npy') b1 = np.load(path+'_b1.npy') b2 = np.load(path+'_b2.npy') b1 = np.reshape(b1, (1, -1)) b2 = np.reshape(b2, (1, -1)) G = makeGraph.makeGraph([w1,w2],[b1,b2], cutoff) print('Vertices:', len(G[0]),'\tEdges:',len(G[1])) return graphToAdjacencyMatrix(G) def getWeightedAdjacencyMatrix(): w1 = np.load(path+'_W1.npy') w2 = np.load(path+'_W2.npy') b1 = np.load(path+'_b1.npy') b2 = np.load(path+'_b2.npy') b1 = np.reshape(b1, (1, -1)) b2 = np.reshape(b2, (1, -1)) dim = w1.shape[0] + 1 + w2.shape[0] + 1 + w2.shape[1] m = np.zeros((dim,dim)) inputLayerOffset = w1.shape[0] # +1 for bias layer and +1 for next starting point hiddenLayerOffset = inputLayerOffset + 1 + w2.shape[0] #place w1 placeSmallerInBiggerMatrix(0, inputLayerOffset + 1, w1,m) #place b1 placeSmallerInBiggerMatrix(inputLayerOffset, inputLayerOffset + 1, b1,m) #place w2 placeSmallerInBiggerMatrix(inputLayerOffset+1, hiddenLayerOffset + 1, w2, m) #place b2 placeSmallerInBiggerMatrix(hiddenLayerOffset, hiddenLayerOffset + 1, b2, m) assert check_symmetric(m) return m def getWeightedAdjacencyMatrixNoBias(): w1 = np.load(path+'_W7.npy') w2 =
np.load(path+'_W8.npy')
numpy.load
from __future__ import print_function import os import time import cv2 import random import mxnet as mx import numpy as np from six.moves import cPickle, range from .module import MutableModule from .helper import get_scale_factor from ..config import config from ..config import config as cfg from ..io import image from ..processing.bbox_transform import nonlinear_pred, clip_boxes from ..processing.nms import py_nms_wrapper import matplotlib.pyplot as plt from keypoint_utils import decode_keypoint, get_skeletons, get_keypoint_wrt_box bbox_pred = nonlinear_pred class Predictor(object): def __init__(self, symbol, data_names, label_names, context=mx.cpu(), max_data_shapes=None, provide_data=None, provide_label=None, arg_params=None, aux_params=None): self._mod = MutableModule(symbol, data_names, label_names, context=context, max_data_shapes=max_data_shapes) self._mod.bind(provide_data, provide_label, for_training=False) self._mod.init_params(arg_params=arg_params, aux_params=aux_params) def predict(self, data_batch): self._mod.forward(data_batch) return dict(zip(self._mod.output_names, self._mod.get_outputs())) def im_proposal(predictor, data_batch, data_names, scale): data_dict = dict(zip(data_names, data_batch.data)) output = predictor.predict(data_batch) boxes = output['rpn_rois_output'].asnumpy()[:, :, 1:] scores = output['rpn_scores_output'].asnumpy()[:, :, 0:1] bs = boxes.shape[0] box_score = np.concatenate([boxes, scores], axis=2).tolist() for img_id in range(len(box_score)): for box_id in range(len(box_score[img_id])): box_score[img_id][box_id] = tuple(box_score[img_id][box_id]) for img_id in range(len(box_score)): box_score[img_id] = list(set(box_score[img_id])) box_score[img_id] = np.array(box_score[img_id]) scores = [single_img_box_score[:, 4] for single_img_box_score in box_score] boxes = [single_img_box_score[:, :4] for single_img_box_score in box_score] for i in range(len(scores)): order = np.argsort(-scores[i]) boxes[i] = boxes[i][order] scores[i] = scores[i][order] for i in range(len(scores)): boxes[i] = boxes[i][:config.TRAIN.PROPOSAL_POST_NMS_TOP_N] scores[i] = scores[i][:config.TRAIN.PROPOSAL_POST_NMS_TOP_N][:, None] for i in range(len(boxes)): num_proposals = (boxes[i].shape)[0] if num_proposals < config.TRAIN.PROPOSAL_POST_NMS_TOP_N: pad_num = config.TRAIN.PROPOSAL_POST_NMS_TOP_N - num_proposals for idx in range(pad_num): rand_idx = np.random.randint(0, num_proposals) boxes[i] = np.row_stack((boxes[i], boxes[i][rand_idx])) scores[i] = np.row_stack((scores[i], scores[i][rand_idx])) boxes = np.array(boxes) scores = np.array(scores) # transform to original scale boxes = boxes / scale[:, None, None] return scores, boxes, data_dict def generate_proposals(predictor, test_data, imdb, vis=False, thresh=0.): """ Generate detections results using RPN. :param predictor: Predictor :param test_data: data iterator, must be non-shuffled :param imdb: image database :param vis: controls visualization :param thresh: thresh for valid detections :return: list of detected boxes """ assert vis or not test_data.shuffle data_names = [k[0] for k in test_data.provide_data] i = 0 t = time.time() imdb_boxes = list() original_boxes = list() for im_info, data_batch in test_data: t1 = time.time() - t t = time.time() scale = im_info[:, 2] scores, boxes, data_dict = im_proposal(predictor, data_batch, data_names, scale) t2 = time.time() - t t = time.time() for ii in range(scores.shape[0] - data_batch.pad): # assemble proposals dets = np.concatenate((boxes[ii], scores[ii]), axis=-1) original_boxes.append(dets) # filter proposals keep = np.where(dets[:, 4] > thresh) dets = dets[keep] imdb_boxes.append(dets) if vis: vis_all_detection(data_dict['data'].asnumpy(), [dets], ['obj'], scale) i += 1 t3 = time.time() - t t = time.time() if i % 100 == 0: print('generating %d/%d' % (i + 1, imdb.num_images) + ' proposal %d' % (dets.shape[0]) + ' data %.4fs net %.4fs post %.4fs' % (t1, t2, t3)) assert len(imdb_boxes) == imdb.num_images, 'calculations not complete' return imdb_boxes, original_boxes def im_detect_mask(predictor, data_batch, data_names, scale): output = predictor.predict(data_batch) data_dict = dict(zip(data_names, data_batch.data)) # ['mask_roi_score', 'mask_prob_output', 'mask_roi_pred_boxes'] if config.TEST.HAS_RPN: pred_boxes = output['mask_roi_pred_boxes'].asnumpy() scores = output['mask_roi_score'].asnumpy() mask_outputs = output['mask_prob_output'].asnumpy() mask_outputs = mask_outputs.reshape((data_batch.data[0].shape[0], -1) + mask_outputs.shape[1:]) else: raise NotImplementedError # we used scaled image & roi to train, so it is necessary to transform them back if isinstance(scale, float) or isinstance(scale, int): pred_boxes = pred_boxes / scale elif isinstance(scale, np.ndarray): pred_boxes = pred_boxes / scale[:, None, None] return scores, pred_boxes, data_dict, mask_outputs def im_detect_keypoint(predictor, data_batch, data_names, scale): output = predictor.predict(data_batch) # ['kp_prob_reshape_output', 'kp_roi_pred_boxes', 'kp_roi_score'] data_dict = dict(zip(data_names, data_batch.data)) if config.TEST.HAS_RPN: pred_boxes = output['kp_roi_pred_boxes'].asnumpy() scores = output['kp_roi_score'].asnumpy() if config.KEYPOINT.USE_HEATMAP: kp_outputs = output['kp_prob_output'].asnumpy() kp_outputs = kp_outputs.reshape((data_batch.data[0].shape[0], -1) + kp_outputs.shape[1:]) else: kp_outputs = output['kp_prob_reshape_output'].asnumpy() else: raise NotImplementedError # we used scaled image & roi to train, so it is necessary to transform them back if isinstance(scale, float) or isinstance(scale, int): pred_boxes = pred_boxes / scale elif isinstance(scale, np.ndarray): pred_boxes = pred_boxes / scale[:, None, None] return scores, pred_boxes, data_dict, kp_outputs def pred_eval_mask(predictor, test_data, imdb, roidb, result_path, vis=False, thresh=1e-1): """ wrapper for calculating offline validation for faster data analysis in this example, all threshold are set by hand :param predictor: Predictor :param test_data: data iterator, must be non-shuffle :param imdb: image database :param vis: controls visualization :param thresh: valid detection threshold :return: """ assert vis or not test_data.shuffle data_names = [k[0] for k in test_data.provide_data] nms = py_nms_wrapper(config.TEST.NMS) num_images, num_classes = imdb.num_images, imdb.num_classes results_list = [] all_boxes = [[None for _ in range(num_images)] for _ in range(num_classes)] # (#cls, #img) all_masks = [[None for _ in range(num_images)] for _ in range(num_classes)] # (#cls, #img) img_ind = 0 t = time.time() SCORE_THRESH = 0.05 for im_infos, data_batch in test_data: t1 = time.time() - t t = time.time() scales = im_infos[:, 2] scores, boxes, data_dict, mask_outputs = im_detect_mask(predictor, data_batch, data_names, scales) t2 = time.time() - t t = time.time() for i in range(data_batch.data[0].shape[0] - data_batch.pad): score, box, mask_output, im_info = scores[i], boxes[i], mask_outputs[i], im_infos[i:i + 1] roi_rec = roidb[img_ind] label =
np.argmax(score, axis=1)
numpy.argmax
# Reverse photography ##h3D-II sensor size # 36 * 48 mm, 0.036 x 0.048m ## focal length # 28mm, 0.028m ## multiplier # 1.0 from skimage import io import matplotlib.pyplot as plt import numpy as np import cv2 from scipy.spatial import distance import shapefile as shp def buildshape(corners, filename): """build a shapefile geometry from the vertices of the image in world coordinates, then save it using the image name. Sub critical""" #create a shapefile instance #shape = shp.writer(shape.POLYGON) #shape.poly(parts = [[proj_coords[:,0], proj_coords[:,1]], [proj_coords[:,1], proj_coords[:,2]] # [proj_coords[:,3], proj_coords[:,2]], [proj_coords[:,0], proj_coords[:,3]]] #shape.save("./", filename) def worldfile(corners, im_pix, filename, filepath): """build a world file from the vertices of the image in world coordinates, then save it using the image name. here we build a small array and then dump it to a file input is: - the image file name - projected corners in world coordinates (*not* bounding box) - pxel resolution as a two-element vector [pix_x, pix_y] - path to warped image files reference: http://support.esri.com/en/knowledgebase/techarticles/detail/17489 """ world_arr = np.zeros([6,1]) #line 1 is the X pixel resolution in M world_arr[0] = im_pix[0] #line 2 is the Y pixel resolution in M world_arr[3] = -im_pix[1] #now the X coord of the top left corner world_arr[4] = np.min(corners[0,:]) #and the Y coordinate of the top left corner world_arr[5] = np.max(corners[1,:]) #strip some parts from the filename filename = filename[0:len(filename)-4] np.savetxt(filepath + filename + '.jpgw', world_arr, "%.3f") #------ # 2D homogeneous vectors and transformations def hom2(x, y): """2D homogeneous column vector.""" return
np.matrix([x, y, 1])
numpy.matrix
import numpy as np import pandas as pd from pyswarm import pso import scipy.optimize as optimize from DolphinApi.config import * from optimizers.tables import * from optimizers.portfolio import * def opti_min_func(weights, assets_id, return_matrix, cov_matrix, prices): """ Function to calculate Sharpe ratio """ true_w = np.round((weights * 100000000) / prices) weights = [w / sum(true_w) for w in true_w] weights = np.matrix(weights) port_return = np.round(np.sum(weights * return_matrix.T) * 1274, 2)/5 port_volacity = np.round( np.sqrt(weights * cov_matrix * weights.T) * np.sqrt(1274), 2)/
np.sqrt(5)
numpy.sqrt
import hoki.age_utils as au import hoki.load as load import pkg_resources import numpy as np import pandas as pd import pytest from hoki.utils.exceptions import HokiFatalError, HokiUserWarning, HokiFormatError # Loading Data data_path = pkg_resources.resource_filename('hoki', 'data') hr_file = data_path + '/hrs-sin-imf_chab100.zem4.dat' cmd_file = data_path + '/cmd_bv_z002_bin_imf135_300' myhrd = load.model_output(hr_file, hr_type='TL') mycmd = load.unpickle(cmd_file) # Creating Test Inputs fake_hrd_input = pd.DataFrame.from_dict({'name': ['star1', 'star2', 'star3'], 'logT': np.array([4.58, 4.48, 4.14]), 'logL': np.array([4.83, 5.07, 5.40])}) bad_hrd_input = pd.DataFrame.from_dict({'logT': np.array(['bla']), 'logL': np.array([4.83])}) no_name_input = pd.DataFrame.from_dict({'logT': np.array([4.58, 4.48, 4.14]), 'logL': np.array([4.83, 5.07, 5.40])}) bad_hrd_input2 = pd.DataFrame.from_dict({'logT': np.array([4.58, 'bla']), 'logL': np.array([4.83, 2.0])}) fake_cmd_input = pd.DataFrame.from_dict({'name': ['star1', 'star2', 'STAR3'], 'col': np.array([-0.3, 0.5, -0.25]), 'mag': np.array([-5, -10, -1])}) bad_cmd_input = pd.DataFrame.from_dict({'col': np.array(['bla']), 'mag': np.array([-5])}) # Testing Suite class TestAgeWizard(object): def test_init_basic(self): assert au.AgeWizard(obs_df=fake_hrd_input, model=hr_file), "Loading HRD file path failed" assert au.AgeWizard(obs_df=fake_hrd_input, model=myhrd), "Loading with hoki.hrdiagrams.HRDiagram failed" assert au.AgeWizard(obs_df=fake_cmd_input, model=mycmd), 'Loading with hoki.cmd.CMD' assert au.AgeWizard(obs_df=fake_cmd_input, model=cmd_file), 'Loading CMD from frile failed' def test_bad_init(self): with pytest.raises(HokiFatalError): __, __ = au.AgeWizard(obs_df=fake_cmd_input, model='sdfghj'), 'HokiFatalError should be raised' with pytest.raises(HokiFormatError): __, __ = au.AgeWizard(obs_df='edrftgyhu', model=cmd_file), 'HokiFormatError should be raised' def test_combine_pdfs_not_you(self): wiz = au.AgeWizard(fake_hrd_input, myhrd) wiz.calculate_sample_pdf(not_you=['star1']) cpdf = wiz.sample_pdf.pdf assert np.sum(np.isclose([cpdf[0], cpdf[9]], [0.0, 0.7231526323765232])) == 2, "combined pdf is not right" def test_most_likely_age(self): wiz = au.AgeWizard(obs_df=fake_hrd_input, model=hr_file) assert np.isclose(wiz.most_likely_age[0], 6.9), "Most likely age wrong" def test_most_likely_ages(self): wiz = au.AgeWizard(obs_df=fake_hrd_input, model=hr_file) a = wiz.most_likely_ages assert np.sum(np.isclose([a[0], a[1], a[2]], [6.9, 6.9, 6.9])) == 3, "Most likely ages not right" def test_combine_pdfs(self): wiz = au.AgeWizard(fake_hrd_input, myhrd) wiz.calculate_sample_pdf() assert np.isclose(wiz.sample_pdf.pdf[9],0.551756734145878), "Something is wrong with the combined_Age PDF" def test_calculate_p_given_age_range(self): wiz = au.AgeWizard(fake_hrd_input, myhrd) probas = wiz.calculate_p_given_age_range([6.7, 6.9]) assert np.sum(np.isclose([probas[0], probas[1], probas[2]], [0.515233714952414, 0.7920611550946726, 0.6542441096583737])) == 3, \ "probability given age range is messed up" class TestFindCoordinates(object): def test_hrd_input(self): T_coord, L_coord = au.find_coordinates(obs_df=fake_hrd_input, model=myhrd) assert np.sum( np.isclose([T_coord[0], T_coord[1], T_coord[2]], [45, 44, 40])) == 3, "Temperature coordinates wrong" assert np.sum( np.isclose([L_coord[0], L_coord[1], L_coord[2]], [77, 80, 83])) == 3, "Luminosity coordinates wrong" def test_cmd_input(self): col_coord, mag_range = au.find_coordinates(obs_df=fake_cmd_input, model=mycmd) assert np.sum( np.isclose([col_coord[0], col_coord[1], col_coord[2]], [27, 35, 27])) == 3, "color coordinates wrong" assert np.sum( np.isclose([mag_range[0], mag_range[1], mag_range[2]], [90, 40, 130])) == 3, "magnitude coordinates wrong" class TestFindCMDCoordinates(object): def test_fake_input(self): col_coord, mag_range = au._find_cmd_coordinates(obs_df=fake_cmd_input, mycmd=mycmd) assert np.sum( np.isclose([col_coord[0], col_coord[1], col_coord[2]], [27, 35, 27])) == 3, "color coordinates wrong" assert np.sum( np.isclose([mag_range[0], mag_range[1], mag_range[2]], [90, 40, 130])) == 3, "magnitude coordinates wrong" def test_bad_input(self): with pytest.raises(HokiFormatError): col_coord, mag_range = au._find_cmd_coordinates(obs_df=bad_hrd_input, mycmd=mycmd) def test_bad_input_2(self): col_coord, mag_range = au._find_cmd_coordinates(obs_df=bad_cmd_input, mycmd=mycmd) #assert np.siz(col_coord[0]), "This should be a nan" assert np.isclose(mag_range[0], 90), "This L coordinate is wrong - test_bad_input." class TestFindHRDCoordinates(object): def test_fake_input(self): T_coord, L_coord = au._find_hrd_coordinates(obs_df=fake_hrd_input, myhrd=myhrd) assert np.sum( np.isclose([T_coord[0], T_coord[1], T_coord[2]], [45, 44, 40])) == 3, "Temperature coordinates wrong" assert np.sum(
np.isclose([L_coord[0], L_coord[1], L_coord[2]], [77, 80, 83])
numpy.isclose
import pandas as pd import numpy as np import pdb import sys sys.path.append('../../data') from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import GridSearchCV import re glm_all_f = pd.read_csv("../../results/glm_transfer/RMSE_transfer_glm_pball.csv") train_df = pd.read_feather("../../results/transfer_learning/glm/glm_meta_train_rmses.feather") train_lakes = [re.search('nhdhr_(.*)', x).group(1) for x in
np.unique(glm_all_f['target_id'].values)
numpy.unique
import numpy as np from baseDecomp import BaseDecomp from decimal import * import os, sys currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) from convexRegion.ellipse import Ellipsoid from utils import vec2_to_rotation, vec3_to_rotation epsilon_ = 1e-10 class Line(): def __init__(self, dim, p1, p2): self.dim = dim self.p1 = p1 self.p2 = p2 class LineSegment(BaseDecomp): def __init__(self, dim, obs, local_bbox, p1, p2): super().__init__(dim, obs, local_bbox) self.p1 = p1 self.p2 = p2 def dilate(self, radius): self.find_ellipsoid_2D(radius) self.find_polyhedron() self.add_local_bbox(self.polyhedron_) def get_line_segment(self): return Line(self.dim, self.p1, self.p2) def add_local_bbox(self, polyhedron): # 最初为地图大小 self.local_bbox_ = polyhedron def find_ellipsoid_2D(self, offset): f = Decimal(np.linalg.norm(self.p1-self.p2) / 2) C = f * np.identity(2) axes = np.array([f, f]) C[0][0] += offset axes[0] += offset if axes[0] > 0: ratio = axes[1] / axes[0] axes *= ratio C *= ratio Ri = vec2_to_rotation(self.p2 - self.p1) C = Ri.dot(C).dot(Ri.T) ellipsoid = Ellipsoid(2, C, (self.p1 + self.p2)/2) obs = ellipsoid.points_inside(self.obs_) obs_inside = obs while len(obs_inside) > 0: pw = ellipsoid.closest_point(obs_inside) p = Ri.T.dot(pw - ellipsoid.d) if p[0] < axes[0]: axes[1]= np.abs(p[1]) / np.sqrt(1 - (p[0] / axes[0])**2) new_C = np.identity(2) new_C[0][0] = axes[0] new_C[1][1] = axes[1] ellipsoid.C = Ri.dot(new_C).dot(Ri.T) obs_new = [] for item in obs_inside: if 1 - ellipsoid.dist(item) > epsilon_: obs_new.append(item) obs_inside = obs_new self.ellipsoid_ = ellipsoid def find_ellipsoid_3D(self, offset): f = Decimal(np.linalg.norm(self.p1 - self.p2) / 2) C = f * np.identity(3) axes = np.array([f, f, f]) C[0][0] += offset axes[0] += offset if axes[0] > 0: ratio = axes[1] / axes[0] axes *= ratio C *= ratio Ri = vec3_to_rotation(self.p2 - self.p1) C = Ri.dot(C).dot(Ri.T) ellipsoid = Ellipsoid(3, C, (self.p1 + self.p2) / 2) Rf = Ri obs = ellipsoid.points_inside(self.obs_) obs_inside = obs while len(obs_inside) > 0: pw = ellipsoid.closest_point(obs_inside) p = Ri.T.dot(pw - ellipsoid.d) roll = np.atan2(p[2], p[1]) Rf = Ri * Quatf(np.cos(roll/2), np.sin(roll/2), 0, 0) p = Rf.T.dot(pw - ellipsoid.d) if p[0] < axes[0]: axes[1] = np.abs(p[1]) / np.sqrt(1 - (p[0] / axes[0]) ** 2) new_C = np.identity(3) new_C[0][0] = axes[0] new_C[1][1] = axes[1] new_C[2][2] = axes[2] ellipsoid.C = Rf.dot(new_C).dot(Rf.T) obs_new = [] for item in obs_inside: if 1 - ellipsoid.dist(item) > epsilon_: obs_new.append(item) obs_inside = obs_new C = f * np.identity(3) C[0][0] = axes[0] C[1][1] = axes[1] C[2][2] = axes[2] ellipsoid.C = Rf.dot(C).dot(Rf.T) obs_inside = ellipsoid.points_inside(obs) while len(obs_inside) > 0: pw = ellipsoid.closest_point(obs_inside) p = Rf.T.dot(pw - ellipsoid.d) dd = 1 - (p[0] / axes[0]) ** 2 - (p[1] / axes[1]) ** 2 if dd > epsilon_: axes[2] = np.abs(p[2]) / np.sqrt(dd) new_C =
np.identity(3)
numpy.identity
from random import choice, random, sample import numpy as np import networkx as nx from BanditAlg.BanditAlgorithms import ArmBaseStruct class LinUCBUserStruct: def __init__(self, featureDimension,lambda_, userID, RankoneInverse = False): self.userID = userID self.d = featureDimension self.A = lambda_*np.identity(n = self.d) self.b = np.zeros(self.d) self.AInv =
np.linalg.inv(self.A)
numpy.linalg.inv
import numpy as np from scipy.constants import mu_0 # TODO: make this to take a vector rather than a single frequency def rTEfunfwd(n_layer, f, lamda, sig, chi, depth, HalfSwitch): """ Compute reflection coefficients for Transverse Electric (TE) mode. Only one for loop for multiple layers. Parameters ---------- n_layer : int The number layers f : complex, ndarray Frequency (Hz); size = (n_frequency x n_filter) lamda : complex, ndarray Frequency (Hz); size = (n_frequency x n_filter) sig: compelx, ndarray Conductivity (S/m); size = (n_layer x n_frequency x n_filter) chi: compelx, ndarray Susceptibility (SI); size = (n_layer,) depth: float, ndarray Top boundary of the layers; size = (n_ayer,) HalfSwitch: bool Switch for halfspace Returns ------- rTE: compex, ndarray Reflection coefficients; size = (n_frequency x n_lamba) """ n_frequency, n_filter = lamda.shape Mtemp00 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp10 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp01 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp11 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum00 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum10 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum01 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum11 = np.zeros((n_frequency, n_filter), dtype=complex) thick = -np.diff(depth) w = 2*np.pi*f rTE = np.zeros((n_frequency, n_filter), dtype=complex) utemp0 = np.zeros((n_frequency, n_filter), dtype=complex) utemp1 = np.zeros((n_frequency, n_filter), dtype=complex) const = np.zeros((n_frequency, n_filter), dtype=complex) utemp0 = lamda utemp1 = np.sqrt(lamda**2+1j*w*mu_0*(1+chi[0])*sig[0, :, :]) const = mu_0*utemp1/(mu_0*(1+chi[0])*utemp0) Mtemp00 = 0.5*(1+const) Mtemp10 = 0.5*(1-const) Mtemp01 = 0.5*(1-const) Mtemp11 = 0.5*(1+const) # may be store these and reuse for sensitivity? M00 = [] M10 = [] M01 = [] M11 = [] M0sum00 = Mtemp00 M0sum10 = Mtemp10 M0sum01 = Mtemp01 M0sum11 = Mtemp11 if HalfSwitch: M1sum00 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum10 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum01 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum11 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum00 = M0sum00 M1sum10 = M0sum10 M1sum01 = M0sum01 M1sum11 = M0sum11 else: for j in range(n_layer-1): utemp0 = np.sqrt(lamda**2+1j*w*mu_0*(1+chi[j])*sig[j, :, :]) utemp1 = np.sqrt(lamda**2+1j*w*mu_0*(1+chi[j+1])*sig[j+1, :, :]) const = mu_0*(1+chi[j])*utemp1/(mu_0*(1+chi[j+1])*utemp0) h0 = thick[j] Mtemp00 = 0.5*(1.+const)*np.exp(-2.*utemp0*h0) Mtemp10 = 0.5*(1.-const) Mtemp01 = 0.5*(1.-const)*np.exp(-2.*utemp0*h0) Mtemp11 = 0.5*(1.+const) M1sum00 = M0sum00*Mtemp00 + M0sum01*Mtemp10 M1sum10 = M0sum10*Mtemp00 + M0sum11*Mtemp10 M1sum01 = M0sum00*Mtemp01 + M0sum01*Mtemp11 M1sum11 = M0sum10*Mtemp01 + M0sum11*Mtemp11 M0sum00 = M1sum00 M0sum10 = M1sum10 M0sum01 = M1sum01 M0sum11 = M1sum11 rTE = M1sum01/M1sum11 return rTE def matmul(a00, a10, a01, a11, b00, b10, b01, b11): """ Compute 2x2 matrix mutiplication in vector way C = A*B C = [a00 a01] * [b00 b01] = [c00 c01] [a10 a11] [b10 b11] [c10 c11] """ c00 = a00*b00 + a01*b10 c10 = a10*b00 + a11*b10 c01 = a00*b01 + a01*b11 c11 = a10*b01 + a11*b11 return c00, c10, c01, c11 # TODO: make this to take a vector rather than a single frequency def rTEfunjac(n_layer, f, lamda, sig, chi, depth, HalfSwitch): """ Compute sensitivity of reflection coefficients for Transverse Electric (TE) mode with regard to conductivity Parameters ---------- n_layer : int The number layers f : complex, ndarray Frequency (Hz); size = (n_frequency x n_finlter) lamda : complex, ndarray Frequency (Hz); size = (n_frequency x n_finlter) sig: compelx, ndarray Conductivity (S/m); size = (n_layer x 1) chi: compelx, ndarray Susceptibility (SI); size = (n_layer x 1) depth: float, ndarray Top boundary of the layers HalfSwitch: bool Switch for halfspace Returns ------- rTE: compex, ndarray Derivative of reflection coefficients; size = (n_frequency x n_layer x n_finlter) """ # Initializing arrays n_frequency, n_filter = lamda.shape Mtemp00 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp10 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp01 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp11 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum00 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum10 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum01 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum11 = np.zeros((n_frequency, n_filter), dtype=complex) M0sum00 = np.zeros((n_frequency, n_filter), dtype=complex) M0sum10 = np.zeros((n_frequency, n_filter), dtype=complex) M0sum01 = np.zeros((n_frequency, n_filter), dtype=complex) M0sum11 = np.zeros((n_frequency, n_filter), dtype=complex) dMtemp00 = np.zeros((n_frequency, n_filter), dtype=complex) dMtemp10 = np.zeros((n_frequency, n_filter), dtype=complex) dMtemp01 = np.zeros((n_frequency, n_filter), dtype=complex) dMtemp11 = np.zeros((n_frequency, n_filter), dtype=complex) dj0temp00 = np.zeros((n_frequency, n_filter), dtype=complex) dj0temp10 = np.zeros((n_frequency, n_filter), dtype=complex) dj0temp01 = np.zeros((n_frequency, n_filter), dtype=complex) dj0temp11 = np.zeros((n_frequency, n_filter), dtype=complex) dj1temp00 = np.zeros((n_frequency, n_filter), dtype=complex) dj1temp10 = np.zeros((n_frequency, n_filter), dtype=complex) dj1temp01 = np.zeros((n_frequency, n_filter), dtype=complex) dj1temp11 = np.zeros((n_frequency, n_filter), dtype=complex) thick = -np.diff(depth) w = 2*np.pi*f rTE = np.zeros((n_frequency, n_filter), dtype=complex) drTE = np.zeros((n_layer, n_frequency, n_filter), dtype=complex) utemp0 = np.zeros((n_frequency, n_filter), dtype=complex) utemp1 = np.zeros((n_frequency, n_filter), dtype=complex) const = np.zeros((n_frequency, n_filter), dtype=complex) utemp0 = lamda utemp1 = np.sqrt(lamda**2+1j*w*mu_0*(1+chi[0])*sig[0, :, :]) const = mu_0*utemp1/(mu_0*(1+chi[0])*utemp0) # Compute M1 Mtemp00 = 0.5*(1+const) Mtemp10 = 0.5*(1-const) Mtemp01 = 0.5*(1-const) Mtemp11 = 0.5*(1+const) utemp0 = lamda utemp1 = np.sqrt(lamda**2+1j*w*mu_0*(1+chi[0])*sig[0, :, :]) const = mu_0*utemp1/(mu_0*(1+chi[0])*utemp0) # Compute dM1du1 dj0Mtemp00 = 0.5*(mu_0/(mu_0*(1+chi[0])*utemp0)) dj0Mtemp10 = -0.5*(mu_0/(mu_0*(1+chi[0])*utemp0)) dj0Mtemp01 = -0.5*(mu_0/(mu_0*(1+chi[0])*utemp0)) dj0Mtemp11 = 0.5*(mu_0/(mu_0*(1+chi[0])*utemp0)) # TODO: for computing Jacobian M00 = [] M10 = [] M01 = [] M11 = [] dJ00 = [] dJ10 = [] dJ01 = [] dJ11 = [] M00.append(Mtemp00) M01.append(Mtemp01) M10.append(Mtemp10) M11.append(Mtemp11) M0sum00 = Mtemp00.copy() M0sum10 = Mtemp10.copy() M0sum01 = Mtemp01.copy() M0sum11 = Mtemp11.copy() if HalfSwitch or n_layer == 1: M1sum00 = M0sum00.copy() M1sum10 = M0sum10.copy() M1sum01 = M0sum01.copy() M1sum11 = M0sum11.copy() else: for j in range(n_layer-1): dJ_10Mtemp00 = np.zeros((n_frequency, n_filter), dtype=complex) dJ_10Mtemp10 = np.zeros((n_frequency, n_filter), dtype=complex) dJ_10Mtemp01 = np.zeros((n_frequency, n_filter), dtype=complex) dJ_10Mtemp11 = np.zeros((n_frequency, n_filter), dtype=complex) dJ01Mtemp00 = np.zeros((n_frequency, n_filter), dtype=complex) dJ01Mtemp10 = np.zeros((n_frequency, n_filter), dtype=complex) dJ01Mtemp01 =
np.zeros((n_frequency, n_filter), dtype=complex)
numpy.zeros
import bpy import bmesh import numpy as np from mathutils import Vector def find_first_view3d(): '''Helper function to find first space view 3d and associated window region. The three returned objects are useful for setting up offscreen rendering in Blender. Returns ------- area: object Area associated with space view. window: object Window region associated with space view. space: bpy.types.SpaceView3D Space view. ''' areas = [a for a in bpy.context.screen.areas if a.type == 'VIEW_3D'] assert len(areas) > 0 area = areas[0] region = sorted([r for r in area.regions if r.type == 'WINDOW'], key=lambda x:x.width, reverse=True)[0] spaces = [s for s in areas[0].spaces if s.type == 'VIEW_3D'] assert len(spaces) > 0 return area, spaces[0], region def object_coordinates(*objs, depsgraph=None): '''Returns XYZ object coordinates of all objects in positional *args. Params ------ objs: list-like of bpy.types.Object Object to return vertices for depsgraph: bpy.types.Depsgraph, None Dependency graph Returns ------- xyz: Nx3 array World coordinates of object vertices ''' # To be on the safe side, we use the evaluated object after # all modifiers etc. applied (done internally by bmesh) dg = depsgraph or bpy.context.evaluated_depsgraph_get() xyz = [] for obj in objs: eval_obj = obj.evaluated_get(dg) xyz_obj = [v.co for v in eval_obj.data.vertices] xyz.extend(xyz_obj) return np.stack(xyz) def world_coordinates(*objs, depsgraph=None): '''Returns XYZ world coordinates of all objects in positional *args. Params ------ objs: list-like of bpy.types.Object Object to return vertices for depsgraph: bpy.types.Depsgraph, None Dependency graph Returns ------- xyz: Nx3 array World coordinates of object vertices ''' # To be on the safe side, we use the evaluated object after # all modifiers etc. applied (done internally by bmesh) dg = depsgraph or bpy.context.evaluated_depsgraph_get() xyz = [] for obj in objs: eval_obj = obj.evaluated_get(dg) xyz_obj = [(eval_obj.matrix_world @ v.co) for v in eval_obj.data.vertices] xyz.extend(xyz_obj) return np.stack(xyz) def bbox_world_coordinates(*objs, depsgraph=None): '''Returns XYZ world coordinates of all bounding box corners of each object in *objs. Params ------ objs: list-like of bpy.types.Object Object to return vertices for depsgraph: bpy.types.Depsgraph, None Dependency graph Returns ------- xyz: Nx3 array World coordinates of object vertices ''' # To be on the safe side, we use the evaluated object after # all modifiers etc. applied (done internally by bmesh) dg = depsgraph or bpy.context.evaluated_depsgraph_get() xyz = [] for obj in objs: eval_obj = obj.evaluated_get(dg) xyz_obj = [(eval_obj.matrix_world @ Vector(c)) for c in eval_obj.bound_box] xyz.extend(xyz_obj) return
np.stack(xyz)
numpy.stack
import os import numpy as np import scipy.misc from scipy.misc import imsave from LRCN import load, videoRender import dataset_list datasets = dataset_list.datasets_LRCN for num, dataset in enumerate(datasets): indir = ''.join([os.path.basename(x)+'_' for x in dataset])[0:-1] indir = os.path.join(os.path.dirname(dataset[0]), 'output', indir) ds_name = os.path.basename(os.path.dirname(dataset[0])) all_predictions = np.load(os.path.join(indir, 'all_prediction.npy')) all_gt = np.load(os.path.join(indir, 'all_gt.npy')) pcas = np.load(os.path.join(indir, 'pcas.npy'), encoding='latin1') n_planes = 1 # load original data to render the uncompressed (pca) test images as movie train, test = load.load_train_and_test_data(dataset) # render the low-speed predictions (one for each test MR image) for plane in range(n_planes): pca = pcas[plane] recon_test = pca.inverse_transform(all_predictions[plane]) recon_test = np.reshape(recon_test, (recon_test.shape[0], 192, 192)) test_gt = pca.inverse_transform(all_gt[plane]) test_gt = np.reshape(test_gt, (test_gt.shape[0], 192, 192)) recon_test[recon_test < 0] = 0 test_gt[test_gt < 0] = 0 test_gt[test_gt == np.inf] = 0 ma = np.max(test_gt) # normalize with the maximum of the ground-truth recon_test = recon_test / (ma) test_gt = test_gt / (ma) test_gt *= 0.75 # matching KDE histogram profile as good as it gets recon_test *= 0.75 # matching KDE histogram profile as good as it gets # '3 - plane' equals the number of invalid MR frames at the beginning # (3 for plane 1, 2 for plane 2) test_gt = test['mri'][0][3-plane:3-plane+25, :, :] test_gt[test_gt < 0] = 0 test_gt = test_gt / (ma) # Normalize ground-truth diff = (recon_test - test_gt) / 2 + 0.5 comparison = np.concatenate((recon_test, test_gt, diff), axis=1) comparison = np.concatenate((comparison, comparison, comparison), axis=2) text = "LRCN output Acquired Difference" vid_fn = os.path.join(indir, ds_name + '_comparison_plane{}_'.format(plane)) videoRender.render_movie(comparison, vid_fn + '.mp4', 0.6, text) os.system('ffmpeg -y -i ' + vid_fn + '.mp4' + ' -filter:v \"crop=576:192:0:0\" ' + vid_fn[0:-1] + '.mp4') print('Native speed comparison video saved to {}'.format(vid_fn)) idx_mid = int(test_gt.shape[1] / 2) mmode_test_gt = test_gt[:, idx_mid, :] mmode_recon_test = recon_test[:, idx_mid, :] mmode_diff = mmode_recon_test - mmode_test_gt divider = np.transpose(np.ndarray((2, mmode_test_gt.shape[1]))) divider.fill(np.max(mmode_test_gt)) mmode_comparison = np.concatenate((np.transpose(mmode_recon_test), divider, np.transpose(mmode_test_gt), divider, np.abs(np.transpose( mmode_diff))), axis=1) imsave(os.path.join(indir, 'mmode_test_gt_plane'+str(plane)+'.png'), mmode_test_gt) imsave(os.path.join(indir, 'mmode_recon_test_plane'+str(plane)+'.png'), mmode_recon_test) imsave(os.path.join(indir, 'mmode_diff_plane'+str(plane)+'.png'), mmode_diff) imsave(os.path.join(indir, 'mmode_comparison_plane'+str(plane)+'.png'), mmode_comparison) # pick a specific image, save reconstruction and ground-truth as image example_image_gt = np.transpose(np.squeeze(test_gt[15, :, :])) example_image_rec = np.transpose(np.squeeze( recon_test[15, :, :])) imsave(os.path.join(indir, 'example_image_gt_plane'+str(plane)+'.png'), example_image_gt) imsave(os.path.join(indir, 'example_image_rec_plane'+str(plane)+'.png'), example_image_rec) imsave(os.path.join(indir, 'example_image_diff_plane'+str(plane)+'.png'), np.abs(example_image_rec-example_image_gt)) print('M-mode images and example images saved to {}'.format(indir)) # render high-speed predictions (at the speed of OCM) highspeed_prediction = np.load(os.path.join(indir, 'highspeed_prediction.npy')) for plane in range(n_planes): # make high speed prediction movie pca = pcas[plane] # Reconstruct 5000 images using inverse PCA highspeed_prediction_ = pca.inverse_transform( highspeed_prediction[plane][0:5000, :]) highspeed_prediction_ = np.reshape(highspeed_prediction_, (highspeed_prediction_.shape[0], 192, 192)) m = comparison.mean() std = comparison.std() highspeed_prediction_ highspeed_prediction_[highspeed_prediction_ < m - 2*std] = np.inf highspeed_prediction_ = highspeed_prediction_ \ -
np.min(highspeed_prediction_)
numpy.min
import torch import numpy as np from hparams import create_hparams as hps def mode(obj, model = False): if model and hps.is_cuda: obj = obj.cuda() elif hps.is_cuda: obj = obj.cuda(non_blocking = hps.pin_mem) return obj def to_arr(var): return var.cpu().detach().numpy().astype(np.float32) def get_mask_from_lengths(lengths, pad = False): max_len = torch.max(lengths).item() if pad and max_len%hps.n_frames_per_step != 0: max_len += hps.n_frames_per_step - max_len%hps.n_frames_per_step assert max_len%hps.n_frames_per_step == 0 ids = torch.arange(0, max_len, out = torch.LongTensor(max_len)) ids = mode(ids) mask = (ids < lengths.unsqueeze(1)) return mask import scipy import librosa import librosa.filters import numpy as np from scipy.io import wavfile from hparams import hparams as hps def load_wav(path): sr, wav = wavfile.read(path) wav = wav.astype(np.float32) wav = wav / np.max(np.abs(wav)) try: assert sr == hps.sample_rate except: print('Error:', path, 'has wrong sample rate.') return wav def save_wav(wav, path): wav *= 32767 / max(0.01, np.max(np.abs(wav))) wavfile.write(path, hps.sample_rate, wav.astype(np.int16)) def preemphasis(x): return scipy.signal.lfilter([1, -hps.preemphasis], [1], x) def inv_preemphasis(x): return scipy.signal.lfilter([1], [1, -hps.preemphasis], x) def spectrogram(y): D = _stft(preemphasis(y)) S = _amp_to_db(np.abs(D)) - hps.ref_level_db return _normalize(S) def inv_spectrogram(spectrogram): '''Converts spectrogram to waveform using librosa''' S = _db_to_amp(_denormalize(spectrogram) + hps.ref_level_db) # Convert back to linear return inv_preemphasis(_griffin_lim(S ** hps.power)) # Reconstruct phase def melspectrogram(y): D = _stft(preemphasis(y)) S = _amp_to_db(_linear_to_mel(np.abs(D))) - hps.ref_level_db return _normalize(S) def inv_melspectrogram(spectrogram): mel = _db_to_amp(_denormalize(spectrogram) + hps.ref_level_db) S = _mel_to_linear(mel) return inv_preemphasis(_griffin_lim(S ** hps.power)) def find_endpoint(wav, threshold_db=-40, min_silence_sec=0.8): window_length = int(hps.sample_rate * min_silence_sec) hop_length = int(window_length / 4) threshold = _db_to_amp(threshold_db) for x in range(hop_length, len(wav) - window_length, hop_length): if np.max(wav[x:x + window_length]) < threshold: return x + hop_length return len(wav) def _griffin_lim(S): '''librosa implementation of Griffin-Lim Based on https://github.com/librosa/librosa/issues/434 ''' angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) S_complex = np.abs(S).astype(np.complex) y = _istft(S_complex * angles) for i in range(hps.gl_iters): angles = np.exp(1j * np.angle(_stft(y))) y = _istft(S_complex * angles) return y def _stft(y): n_fft, hop_length, win_length = _stft_parameters() return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length) def _istft(y): _, hop_length, win_length = _stft_parameters() return librosa.istft(y, hop_length=hop_length, win_length=win_length) def _stft_parameters(): return (hps.num_freq - 1) * 2, hps.frame_shift, hps.frame_length # Conversions: _mel_basis = None def _linear_to_mel(spectrogram): global _mel_basis if _mel_basis is None: _mel_basis = _build_mel_basis() return
np.dot(_mel_basis, spectrogram)
numpy.dot
import d4rl import click import h5py import os import gym import numpy as np import pickle from mjrl.utils.gym_env import GymEnv DESC = """ Helper script to visualize policy (in mjrl format).\n USAGE:\n Visualizes policy on the env\n $ python utils/visualize_policy --env_name relocate-v0 --policy policies/relocate-v0.pickle --mode evaluation\n """ # MAIN ========================================================= @click.command(help=DESC) @click.option("--env_name", type=str, help="environment to load", required=True) # @click.option('--policy', type=str, help='absolute path of the policy file', required=True) @click.option("--num_trajs", type=int, help="Num trajectories", default=5000) @click.option( "--mode", type=str, help="exploration or evaluation mode for policy", default="evaluation", ) def main(env_name, mode, num_trajs, clip=True): e = GymEnv(env_name) policy = "./policies/" + env_name + ".pickle" pi = pickle.load(open(policy, "rb")) # render policy pol_playback(env_name, pi, num_trajs, clip=clip) def pol_playback(env_name, pi, num_trajs=100, clip=True): e = gym.make(env_name) e.reset() obs_ = [] act_ = [] rew_ = [] term_ = [] info_qpos_ = [] info_qvel_ = [] info_mean_ = [] info_logstd_ = [] ravg = [] for n in range(num_trajs): e.reset() returns = 0 for t in range(e._max_episode_steps): obs = e.get_obs() obs_.append(obs) info_qpos_.append(e.env.data.qpos.ravel().copy()) info_qvel_.append(e.env.data.qvel.ravel().copy()) action, infos = pi.get_action(obs) action = pi.get_action(obs)[0] # eval if clip: action = np.clip(action, -1, 1) act_.append(action) info_mean_.append(infos["mean"]) info_logstd_.append(infos["log_std"]) _, rew, _, info = e.step(action) returns += rew rew_.append(rew) done = False if t == (e._max_episode_steps - 1): done = True term_.append(done) # e.env.mj_render() # this is much faster # e.render() ravg.append(returns) print(n, returns, np.mean(ravg)) # write out hdf5 file obs_ = np.array(obs_).astype(np.float32) act_ = np.array(act_).astype(np.float32) rew_ = np.array(rew_).astype(np.float32) term_ = np.array(term_).astype(np.bool_) info_qpos_ =
np.array(info_qpos_)
numpy.array
# Copyright (c) 2016 by <NAME> and the other collaborators on GitHub at # https://github.com/rmjarvis/Piff All rights reserved. # # Piff is free software: Redistribution and use in source and binary forms # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the disclaimer given in the documentation # and/or other materials provided with the distribution. """ .. module:: interp """ from __future__ import print_function import numpy as np import scipy.linalg import galsim import warnings from .interp import Interp from .star import Star, StarFit class BasisInterp(Interp): """An Interp class that works whenever the interpolating functions are linear sums of basis functions. Does things the "slow way" to be stable to degenerate fits to individual stars, instead of fitting to parameter sets produced by single stars. First time coding this we will assume that each element of the PSF parameter vector p is a linear combination of the same set of basis functions across the focal plane, p_i = \sum_{j} q_{ij} K_j(u,v,other stellar params). The property degenerate_points is set to True to indicate that this interpolator uses the alpha/beta quadratic form of chisq for each sample, rather than assuming that a best-fit parameter vector is available at every sample. Internally we'll store the interpolation coefficients in a 2d array of dimensions (nparams, nbases) Note: This is an abstract base class. The concrete class you probably want to use is BasisPolynomial. """ def __init__(self): self.degenerate_points = True # This Interpolator uses chisq quadratic forms self.q = None def initialize(self, stars, logger=None): """Initialize both the interpolator to some state prefatory to any solve iterations and initialize the stars for use with this interpolator. This class will initialize everything to have constant PSF parameter vector taken from the first Star in the list. :param stars: A list of Star instances to use to initialize. :param logger: A logger object for logging debug info. [default: None] :returns: A new list of Stars which have their parameters initialized. """ c = stars[0].fit.params.copy() self.q = c[:,np.newaxis] * self.constant(1.)[np.newaxis,:] stars = self.interpolateList(stars) return stars def basis(self, star): """Return 1d array of polynomial basis values for this star :param star: A Star instance :returns: 1d numpy array with values of u^i v^j for 0<i+j<=order """ raise NotImplementedError("Cannot call `basis` for abstract base class BasisInterp. " "You probably want to use BasisPolynomial.") def constant(self, value=1.): """Return 1d array of coefficients that represent a polynomial with constant value. :param value: The value to use as the constant term. [default: 1.] :returns: 1d numpy array with values of u^i v^j for 0<i+j<=order """ raise NotImplementedError("Cannot call `constant` for abstract base class BasisInterp. " "You probably want to use BasisPolynomial.") def solve(self, stars, logger=None): """Solve for the interpolation coefficients given some data. The StarFit element of each Star in the list is assumed to hold valid alpha and beta members specifying depending of chisq on differential changes to its parameter vector. :param stars: A list of Star instances to interpolate between :param logger: A logger object for logging debug info. [default: None] """ logger = galsim.config.LoggerWrapper(logger) if self.q is None: raise RuntimeError("Attempt to solve() before initialize() of BasisInterp") # Empty A and B A = np.zeros( self.q.shape+self.q.shape, dtype=float) B = np.zeros_like(self.q) for s in stars: # Get the basis function values at this star K = self.basis(s) # Sum contributions into A, B B += s.fit.beta[:,np.newaxis] * K tmp = s.fit.alpha[:,:,np.newaxis] * K A += K[np.newaxis,:,np.newaxis,np.newaxis] * tmp[:,np.newaxis,:,:] # Reshape to have single axis for all q's B = B.flatten() nq = B.shape[0] A = A.reshape(nq,nq) logger.debug('Beginning solution of matrix size %d',A.shape[0]) # cf. comments in pixelgrid.py about this function in scipy 1.0.0 with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") logger.info('A.shape = %s',A.shape) logger.info('B.shape = %s',B.shape) dq = scipy.linalg.solve(A, B, assume_a='pos', check_finite=False) if len(w) > 0: logger.warning('Caught %s',w[0].message) logger.debug('norm(A dq - B) = %s',scipy.linalg.norm(A.dot(dq) - B)) logger.debug('norm(dq) = %s',scipy.linalg.norm(dq)) if False: logger.warning('Switching to svd solution') Sd,U = scipy.linalg.eigh(A) nsvd = np.sum(np.abs(Sd) > 1.e-15 * np.abs(Sd[-1])) logger.info('2-condition is %e',np.abs(Sd[-1]/Sd[0])) logger.info('nsvd = %d of %d',nsvd,len(Sd)) # Note: unlike scipy.linalg.svd, the Sd here is in *ascending* order, not descending. Sd[-nsvd:] = 1./Sd[-nsvd:] Sd[:-nsvd] = 0. S = np.diag(Sd) dq = U.dot(S.dot(U.T.dot(B))) logger.info('norm(A dq - B) = %s',scipy.linalg.norm(A.dot(dq) - B)) logger.info('norm(dq) = %s',scipy.linalg.norm(dq)) logger.info('norm(q) = %s',scipy.linalg.norm(self.q)) logger.debug('...finished solution') self.q += dq.reshape(self.q.shape) def interpolate(self, star, logger=None): """Perform the interpolation to find the interpolated parameter vector at some position. :param star: A Star instance to which one wants to interpolate :param logger: A logger object for logging debug info. [default: None] :returns: a new Star instance holding the interpolated parameters """ if self.q is None: raise RuntimeError("Attempt to interpolate() before initialize() of BasisInterp") K = self.basis(star) p = np.dot(self.q,K) fit = star.fit.newParams(p) return Star(star.data, fit) class BasisPolynomial(BasisInterp): """A version of the Polynomial interpolator that works with BasisModels and can use the quadratic form of the chisq information it calculates. It works better than the regular Polynomial interpolator when there is missing or degenerate information. The order is the highest power of a key to be used. This can be the same for all keys or you may provide a list of separate order values to be used for each key. (e.g. you may want to use 2nd order in the positions, but only 1st order in the color). All combinations of powers of keys that have total order <= max_order are used. The maximum order is normally the maximum order of any given key's order, but you may specify a larger value. (e.g. to use 1, x, y, xy, you would specify order=1, max_order=2.) :param order: The order to use for each key. Can be a single value (applied to all keys) or an array matching number of keys. :param keys: List of keys for properties that will be used as the polynomial arguments. [default: ('u','v')] :param max_order: The maximum total order to use for cross terms between keys. [default: None, which uses the maximum value of any individual key's order] :param logger: A logger object for logging debug info. [default: None] """ def __init__(self, order, keys=('u','v'), max_order=None, logger=None): super(BasisPolynomial, self).__init__() self._keys = keys if hasattr(order,'len'): if not len(order)==len(keys): raise ValueError('Number of provided orders does not match number of keys') self._orders = order else: self._orders = (order,) * len(keys) if max_order is None: self._max_order = np.max(self._orders) else: self._max_order = max_order if self._max_order<0 or np.any(np.array(self._orders) < 0): # Exception if we have any requests for negative orders raise ValueError('Negative polynomial order specified') # TODO: Need to update the Interp write command to handle lists. # Or write a custom BasisPolynomial.write function. self.kwargs = { 'order' : order, } # Now build a mask that picks the desired polynomial products # Start with 1d arrays giving orders in all dimensions ord_ranges = [np.arange(order+1,dtype=int) for order in self._orders] # Nifty trick to produce n-dim array holding total order sumorder = np.sum(
np.ix_(*ord_ranges)
numpy.ix_
# -*- coding: utf-8 -*- """ Created on Tue Feb 23 23:53:09 2016 @author: ORCHISAMA """ #calculate short time fourier transform and plot spectrogram from __future__ import division import matplotlib.pyplot as plt import numpy as np from scipy.fftpack import fft, fftshift from scipy.signal import hann def nearestPow2(inp): power = np.ceil(np.log2(inp)) return 2**power def stft(signal, fs, nfft, overlap): #plotting time domain signal plt.figure(1) t = np.arange(0,len(signal)/fs, 1/fs) plt.plot(t,signal) plt.axis(xmax = 1) plt.xlabel('Time in seconds') plt.ylabel('Amplitude') plt.title('Speech signal') if not np.log2(nfft).is_integer(): nfft = nearestPow2(nfft) slength = len(signal) hop_size = np.int32(overlap * nfft) nFrames = int(np.round(len(signal)/(nfft-hop_size))) #zero padding to make signal length long enough to have nFrames signal = np.append(signal, np.zeros(nfft)) STFT = np.empty((nfft, nFrames)) segment = np.zeros(nfft) start = 0 for n in range(nFrames): segment = signal[start:start+nfft] * hann(nfft) padded_seg = np.append(segment,
np.zeros(nfft)
numpy.zeros
""" data_utils.py Collection of functions for dealing with data for plotting. Author: <NAME> Date: 01/27/2020 """ from __future__ import absolute_import, division, print_function import os import arviz as az import numpy as np import tensorflow as tf import pandas as pd import xarray as xr from dataclasses import dataclass import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as ticker from typing import Dict from pathlib import Path import utils.file_io as io from utils.file_io import timeit from lattice.utils import u1_plaq_exact from utils.attr_dict import AttrDict # from plotters.plot_utils import get_matching_log_dirs # from plotters.plot_observables import get_obs_dict, grid_plot mpl.style.use('fast') sns.set_palette('bright') TLS_DEFAULT = mpl.rcParams['xtick.labelsize'] @dataclass class RunParams: hmc: bool run_dir: str eps: float beta: float run_steps: int plaq_weight: float charge_weight: float num_steps: int x_shape: tuple input_shape: tuple def __post__init__(self): self.traj_len = self.num_steps * self.eps @dataclass class ChargeData: q: tf.Tensor dq: tf.Tensor params: RunParams # pylint:disable=invalid-name def filter_dict(d, cond, key=None): if key is not None: val = d[key] if isinstance(val, dict): return { k: v for k, v in val.items() if cond } raise ValueError('If passing a key, d[key] must be a dict.') return { k: v for k, v in d.items() if cond } def _look(p, s, conds=None): print(f'Looking in {p}...') matches = [x for x in Path(p).rglob(f'*{s}*')] if conds is not None: if isinstance(conds, (list, tuple)): for cond in conds: matches = [x for x in matches if cond(x)] else: matches = [x for x in matches if cond(x)] return matches def _get_dirs(paths, hmc=False): def _look(p, s, conds=None): print(f'Looking in {p}...') matches = [x for x in Path(p).rglob(f'*{s}*')] if conds is not None: if isinstance(conds, (list, tuple)): for cond in conds: matches = [x for x in matches if cond(x)] else: matches = [x for x in matches if cond(x)] return matches dirs = [] if hmc: search_str = 'HMC_L16_b' conds = ( lambda x: 'hmc_logs' in str(x), lambda x: 'hmc' in str(x).lower() ) else: search_str = 'L16_b2048' conds = ( lambda x: 'GaugeModel_logs' in (str(x)), lambda x: 'HMC_' not in str(x), lambda x: Path(x).is_dir(), ) if isinstance(paths, (list, tuple)): for path in paths: dirs += _look(path, search_str, conds) else: dirs = _look(paths, search_str, conds) return dirs def load_from_dir(d, fnames=None): if fnames is None: fnames = { 'dq': 'dq.z', 'charges': 'charges.z', 'run_params': 'run_params.z' } darr = [x for x in Path(d).iterdir() if x.is_dir()] for rd in darr: files = {k: sorted(rd.glob(f'*{v}*')) for k, v in fnames.items()} data = {k: io.loadz(v) for k, v in files.items()} return data def load_charge_data(dirs, hmc=False): data = {} for d in dirs: print(f'Looking in dir: {d}...') if 'inference_hmc' in str(d): print(f'Skipping {str(d)}...') continue dqfile = sorted(d.rglob('dq.z')) qfile = sorted(d.rglob('charges.z')) rpfile = sorted(d.rglob('run_params.z')) num_runs = len(dqfile) if num_runs > 0: for dqf, qf, rpf in zip(dqfile, qfile, rpfile): params = io.loadz(rpf) if 'xeps' and 'veps' in params.keys(): xeps = np.array([i.numpy() for i in params['xeps']]) veps = np.array([i.numpy() for i in params['veps']]) eps = (np.mean(xeps) + np.mean(veps)) / 2. elif 'eps' in params.keys(): eps = params['eps'] params['eps'] = eps params = RunParams(**params) qarr = io.loadz(qf) dqarr = io.loadz(dqf) print( '...loading data for (beta, num_steps, eps): ' f'({params.beta}, {params.num_steps}, {params.eps:.3g})' ) charge_data = ChargeData(q=qarr, dq=dqarr, params=params) try: data[params.beta].update({params.traj_len: charge_data}) except KeyError: data[params.beta] = {params.traj_len: charge_data} # def _update_dict(beta, z, qdata): # try: # z[beta].update({params.traj_len: qdata}) # except KeyError: # z[beta] = {params.traj_len: qdata} # # return z # # data = _update_dict(params.beta, data, charge_data) return data def calc_tau_int(data, therm_frac=0.2): """Calculate the integrated autocorrelation time.""" tau_int = {} for key, val in data.items(): tau_int[key] = {} for k, v in val.items(): arr, _ = therm_arr(v, therm_frac=therm_frac) arr = arr.T pass # reference: # https://github.com/rougier/numpy-100/blob/master/100_Numpy_exercises_with_solutions.md # ---------- # Problem: # 100. Compute bootstrapped 95% confidence intervals for the mean of a 1D # array X (i.e., resample the elements of an array with replacement N times, # compute the mean of each sample, and then compute percentiles over the # means). def bootstrapped_confidence_interval(x: np.ndarray, N: int = 1000): idx = np.random.randint(0, x.size, (N, x.size)) means = x[idx].mean(axis=1) confint = np.percentile(means, [2.5, 97.5]) return confint # Reference: https://dfm.io/posts/autocorr/ def next_pow_two(n): i = 1 while i < n: i = i << 1 return i def autocorr_func_1d(x, norm=True): """Compute the autocorrelation function of a 1D chain.""" x = np.atleast_1d(x) if len(x.shape) != 1: raise ValueError('Invalid dimensions for 1D autocorrelation function.') n = next_pow_two(len(x)) # Compute the FFT and then (from that) the auto-correlation function f = np.fft.fft(x - np.mean(x), n=2*n) acf = np.fft.ifft(f * np.conjugate(f))[:len(x)].real acf /= 4 * n # Optionally normalize if norm: acf /= acf[0] return acf def auto_window(taus, c): """Automated windowing procedure following Sokal (1989).""" m = np.arange(len(taus)) < c * taus if np.any(m): return np.argmin(m) return len(taus) - 1 def autocorr_gw2010(y, c=5.0): """Following the suggestion from Goodman & Weare (2010).""" f = autocorr_func_1d(np.mean(y, axis=0)) taus = 2.0 * np.cumsum(f) - 1.0 window = auto_window(taus, c) return taus[window] def autocorr_new(y, c=5.0): """New implementation of autocorrelation function.""" f = np.zeros(y.shape[1]) for yy in y: f += autocorr_func_1d(yy) f /= len(y) taus = 2.0 * np.cumsum(f) - 1.0 window = auto_window(taus, c) return taus[window] def calc_autocorr(x): N = np.exp(np.linspace(np.log(100), np.log(y.shape[1]), 20)).astype(int) new = np.empty(len(N)) for i, n in enumerate(N): new[i] = autocorr_new(y[:, :n]) return N, new def flatten_dict(d): """Recursively convert all entries of `d` to be `AttrDict`.""" if not isinstance(d, AttrDict): d = AttrDict(**d) for key, val in d.items(): if isinstance(val, dict): if not isinstance(val, AttrDict): d[key] = flatten_dict(val) else: d[key] = AttrDict(**val) return d def _load_inference_data(log_dir, fnames, inference_str='inference'): """Helper function for loading inference data from `log_dir`.""" run_dir = os.path.join(log_dir, inference_str) if os.path.isdir(run_dir): data_dir = os.path.join(run_dir, 'run_data') rp_file = os.path.join(run_dir, 'run_params.z') if os.path.isfile(rp_file) and os.path.isdir(data_dir): run_params = io.loadz(rp_file) key = (run_params['beta'], run_params['eps'], run_params['num_steps']) data = [ io.loadz(os.path.join(data_dir, f'{fname}.z')) for fname in fnames ] return key, data def load_inference_data(dirs, search_strs, inference_str='inference'): data = { s: {} for s in search_strs } for d in dirs: print(f'Looking in dir: {d}...') run_dir = Path(os.path.join(d, inference_str)) if run_dir.is_dir(): run_dirs = [x for x in run_dir.iterdir() if x.is_dir()] for rd in run_dirs: print(f'...looking in run_dir: {rd}...') rp_file = os.path.join(str(rd), 'run_params.z') if os.path.isfile(rp_file): params = io.loadz(rp_file) beta = params['beta'] eps = params['eps'] num_steps = params['num_steps'] data_dir = os.path.join(str(rd), 'run_data') if os.path.isdir(data_dir): for search_str in search_strs: dfile = os.path.join(data_dir, f'{search_str}.z') if os.path.isfile(dfile): _data = io.loadz(dfile) try: data[search_str].update({ (beta, num_steps, eps): _data }) except KeyError: data[search_str] = { (beta, num_steps, eps): _data } return data def _get_l2hmc_dirs(paths, search_str=None): """Look for `log_dirs` containing a training/inference run for L2HMC.""" if search_str is None: search_str = '*L16_b*' dirs = [] for path in paths: if not isinstance(path, Path): path = Path(os.path.abspath(path)) print(f'Looking in {path}...') dirs += [ x for x in path.rglob(search_str) if 'GaugeModel_logs' in str(x) and 'HMC_' not in str(x) and x.is_dir() ] return dirs def get_l2hmc_dirs(): bd_local = os.path.abspath( '/Users/saforem2/thetaGPU/training' ) bd_theta = os.path.abspath( '/lus/theta-fs0/projects/DLHMC/thetaGPU/training' ) l2hmc_dirs = [] if os.path.isdir(bd_local): l2hmc_dirs += _get_l2hmc_dirs(bd_local) if os.path.isdir(bd_theta): l2hmc_dirs += _get_l2hmc_dirs(bd_theta) return l2hmc_dirs def get_hmc_dirs(base_dir=None): if base_dir is None: base_dir = os.path.abspath( '/lus/theta-fs0/projects/DLHMC/thetaGPU/inference/' ) if not os.path.isdir(base_dir): base_dir = os.path.abspath( '/Users/saforem2/thetaGPU/inference' ) if not os.path.isdir(base_dir): raise FileNotFoundError(f'Unable to locate {base_dir}') base_dir = Path(base_dir) hmc_dirs = [x for x in hmc_dir.rglob('*HMC_L16*') if x.is_dir()] return hmc_dirs def bootstrap(x, reps=10000): n = len(x) xb = np.random.choice(x, (n, reps), replace=True) yb = xb.mean(axis=0) upper, lower = np.percentile(yb, [2.5, 97.5]) return yb, (lower, upper) def dq_stats(dq, reps=10000, therm_frac=0.2): stats = {} for key, val in dq.items(): for k, v in val.items(): data = therm_arr(v, therm_frac=therm_frac, ret_steps=False) avgs = [] errs = [] for chain in data.T: avg, (lower, upper) = bootstrap(chain, reps) err = np.max([np.abs(avg - lower), np.abs(upper - avg)]) avgs.append(avg) errs.append(err) try: stats[key].update({ k: { 'avg': np.mean(avgs), 'avg_std': np.std(avgs), 'err': np.mean(errs), 'err_std': np.std(errs), 'min': np.min(data), 'max': np.max(data), } }) except KeyError: stats[key] = { k: { 'avg':
np.mean(avgs)
numpy.mean
ENABLE_MULTIPROCESSING = True from dsl import cpp_trace_param_automata def generate_public_submission(): import numpy as np import pandas as pd import os import json from pathlib import Path import matplotlib.pyplot as plt from matplotlib import colors import numpy as np from xgboost import XGBClassifier import pdb # data_path = Path('.') data_path = Path('.') if not (data_path / 'test').exists(): data_path = Path('../input/abstraction-and-reasoning-challenge') training_path = data_path / 'training' evaluation_path = data_path / 'evaluation' test_path = data_path / 'test' def plot_result(test_input, test_prediction, input_shape): """ Plots the first train and test pairs of a specified task, using same color scheme as the ARC app """ cmap = colors.ListedColormap( ['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25']) norm = colors.Normalize(vmin=0, vmax=9) fig, axs = plt.subplots(1, 2, figsize=(15, 15)) test_input = test_input.reshape(input_shape[0], input_shape[1]) axs[0].imshow(test_input, cmap=cmap, norm=norm) axs[0].axis('off') axs[0].set_title('Actual Target') test_prediction = test_prediction.reshape(input_shape[0], input_shape[1]) axs[1].imshow(test_prediction, cmap=cmap, norm=norm) axs[1].axis('off') axs[1].set_title('Model Prediction') plt.tight_layout() plt.show() def plot_test(test_prediction, task_name): """ Plots the first train and test pairs of a specified task, using same color scheme as the ARC app """ cmap = colors.ListedColormap( ['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25']) norm = colors.Normalize(vmin=0, vmax=9) fig, axs = plt.subplots(1, 1, figsize=(15, 15)) axs.imshow(test_prediction, cmap=cmap, norm=norm) axs.axis('off') axs.set_title(f'Test Prediction {task_name}') plt.tight_layout() plt.show() # https://www.kaggle.com/inversion/abstraction-and-reasoning-starter-notebook def flattener(pred): str_pred = str([row for row in pred]) str_pred = str_pred.replace(', ', '') str_pred = str_pred.replace('[[', '|') str_pred = str_pred.replace('][', '|') str_pred = str_pred.replace(']]', '|') return str_pred sample_sub1 = pd.read_csv(data_path / 'sample_submission.csv') sample_sub1 = sample_sub1.set_index('output_id') sample_sub1.head() def get_moore_neighbours(color, cur_row, cur_col, nrows, ncols): if cur_row <= 0: top = -1 else: top = color[cur_row - 1][cur_col] if cur_row >= nrows - 1: bottom = -1 else: bottom = color[cur_row + 1][cur_col] if cur_col <= 0: left = -1 else: left = color[cur_row][cur_col - 1] if cur_col >= ncols - 1: right = -1 else: right = color[cur_row][cur_col + 1] return top, bottom, left, right def get_tl_tr(color, cur_row, cur_col, nrows, ncols): if cur_row == 0: top_left = -1 top_right = -1 else: if cur_col == 0: top_left = -1 else: top_left = color[cur_row - 1][cur_col - 1] if cur_col == ncols - 1: top_right = -1 else: top_right = color[cur_row - 1][cur_col + 1] return top_left, top_right def make_features(input_color, nfeat): nrows, ncols = input_color.shape feat = np.zeros((nrows * ncols, nfeat)) cur_idx = 0 for i in range(nrows): for j in range(ncols): feat[cur_idx, 0] = i feat[cur_idx, 1] = j feat[cur_idx, 2] = input_color[i][j] feat[cur_idx, 3:7] = get_moore_neighbours(input_color, i, j, nrows, ncols) feat[cur_idx, 7:9] = get_tl_tr(input_color, i, j, nrows, ncols) feat[cur_idx, 9] = len(np.unique(input_color[i, :])) feat[cur_idx, 10] = len(np.unique(input_color[:, j])) feat[cur_idx, 11] = (i + j) feat[cur_idx, 12] = len(np.unique(input_color[i - local_neighb:i + local_neighb, j - local_neighb:j + local_neighb])) cur_idx += 1 return feat def features(task, mode='train'): num_train_pairs = len(task[mode]) feat, target = [], [] global local_neighb for task_num in range(num_train_pairs): input_color = np.array(task[mode][task_num]['input']) target_color = task[mode][task_num]['output'] nrows, ncols = len(task[mode][task_num]['input']), len(task[mode][task_num]['input'][0]) target_rows, target_cols = len(task[mode][task_num]['output']), len(task[mode][task_num]['output'][0]) if (target_rows != nrows) or (target_cols != ncols): print('Number of input rows:', nrows, 'cols:', ncols) print('Number of target rows:', target_rows, 'cols:', target_cols) not_valid = 1 return None, None, 1 imsize = nrows * ncols # offset = imsize*task_num*3 #since we are using three types of aug feat.extend(make_features(input_color, nfeat)) target.extend(np.array(target_color).reshape(-1, )) return np.array(feat), np.array(target), 0 # mode = 'eval' mode = 'test' if mode == 'eval': task_path = evaluation_path elif mode == 'train': task_path = training_path elif mode == 'test': task_path = test_path all_task_ids = sorted(os.listdir(task_path)) nfeat = 13 local_neighb = 5 valid_scores = {} model_accuracies = {'ens': []} pred_taskids = [] for task_id in all_task_ids: task_file = str(task_path / task_id) with open(task_file, 'r') as f: task = json.load(f) feat, target, not_valid = features(task) if not_valid: print('ignoring task', task_file) print() not_valid = 0 continue xgb = XGBClassifier(n_estimators=10, n_jobs=-1) xgb.fit(feat, target, verbose=-1) # training on input pairs is done. # test predictions begins here num_test_pairs = len(task['test']) for task_num in range(num_test_pairs): cur_idx = 0 input_color = np.array(task['test'][task_num]['input']) nrows, ncols = len(task['test'][task_num]['input']), len( task['test'][task_num]['input'][0]) feat = make_features(input_color, nfeat) print('Made predictions for ', task_id[:-5]) preds = xgb.predict(feat).reshape(nrows, ncols) if (mode == 'train') or (mode == 'eval'): ens_acc = (np.array(task['test'][task_num]['output']) == preds).sum() / (nrows * ncols) model_accuracies['ens'].append(ens_acc) pred_taskids.append(f'{task_id[:-5]}_{task_num}') # print('ensemble accuracy',(np.array(task['test'][task_num]['output'])==preds).sum()/(nrows*ncols)) # print() preds = preds.astype(int).tolist() # plot_test(preds, task_id) sample_sub1.loc[f'{task_id[:-5]}_{task_num}', 'output'] = flattener(preds) if (mode == 'train') or (mode == 'eval'): df = pd.DataFrame(model_accuracies, index=pred_taskids) print(df.head(10)) print(df.describe()) for c in df.columns: print(f'for {c} no. of complete tasks is', (df.loc[:, c] == 1).sum()) df.to_csv('ens_acc.csv') sample_sub1.head() training_path = data_path / 'training' evaluation_path = data_path / 'evaluation' test_path = data_path / 'test' training_tasks = sorted(os.listdir(training_path)) eval_tasks = sorted(os.listdir(evaluation_path)) T = training_tasks Trains = [] for i in range(400): task_file = str(training_path / T[i]) task = json.load(open(task_file, 'r')) Trains.append(task) E = eval_tasks Evals = [] for i in range(400): task_file = str(evaluation_path / E[i]) task = json.load(open(task_file, 'r')) Evals.append(task) cmap = colors.ListedColormap( ['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25']) norm = colors.Normalize(vmin=0, vmax=9) # 0:black, 1:blue, 2:red, 3:greed, 4:yellow, # 5:gray, 6:magenta, 7:orange, 8:sky, 9:brown plt.figure(figsize=(5, 2), dpi=200) plt.imshow([list(range(10))], cmap=cmap, norm=norm) plt.xticks(list(range(10))) plt.yticks([]) # plt.show() def plot_task(task): n = len(task["train"]) + len(task["test"]) fig, axs = plt.subplots(2, n, figsize=(4 * n, 8), dpi=50) plt.subplots_adjust(wspace=0, hspace=0) fig_num = 0 for i, t in enumerate(task["train"]): t_in, t_out = np.array(t["input"]), np.array(t["output"]) axs[0][fig_num].imshow(t_in, cmap=cmap, norm=norm) axs[0][fig_num].set_title(f'Train-{i} in') axs[0][fig_num].set_yticks(list(range(t_in.shape[0]))) axs[0][fig_num].set_xticks(list(range(t_in.shape[1]))) axs[1][fig_num].imshow(t_out, cmap=cmap, norm=norm) axs[1][fig_num].set_title(f'Train-{i} out') axs[1][fig_num].set_yticks(list(range(t_out.shape[0]))) axs[1][fig_num].set_xticks(list(range(t_out.shape[1]))) fig_num += 1 for i, t in enumerate(task["test"]): t_in, t_out = np.array(t["input"]), np.array(t["output"]) axs[0][fig_num].imshow(t_in, cmap=cmap, norm=norm) axs[0][fig_num].set_title(f'Test-{i} in') axs[0][fig_num].set_yticks(list(range(t_in.shape[0]))) axs[0][fig_num].set_xticks(list(range(t_in.shape[1]))) axs[1][fig_num].imshow(t_out, cmap=cmap, norm=norm) axs[1][fig_num].set_title(f'Test-{i} out') axs[1][fig_num].set_yticks(list(range(t_out.shape[0]))) axs[1][fig_num].set_xticks(list(range(t_out.shape[1]))) fig_num += 1 plt.tight_layout() plt.show() def plot_picture(x): plt.imshow(np.array(x), cmap=cmap, norm=norm) plt.show() def Defensive_Copy(A): n = len(A) k = len(A[0]) L = np.zeros((n, k), dtype=int) for i in range(n): for j in range(k): L[i, j] = 0 + A[i][j] return L.tolist() def Create(task, task_id=0): n = len(task['train']) Input = [Defensive_Copy(task['train'][i]['input']) for i in range(n)] Output = [Defensive_Copy(task['train'][i]['output']) for i in range(n)] Input.append(Defensive_Copy(task['test'][task_id]['input'])) return Input, Output def Recolor(task): Input = task[0] Output = task[1] Test_Picture = Input[-1] Input = Input[:-1] N = len(Input) for x, y in zip(Input, Output): if len(x) != len(y) or len(x[0]) != len(y[0]): return -1 Best_Dict = -1 Best_Q1 = -1 Best_Q2 = -1 Best_v = -1 # v ranges from 0 to 3. This gives an extra flexibility of measuring distance from any of the 4 corners Pairs = [] for t in range(15): for Q1 in range(1, 8): for Q2 in range(1, 8): if Q1 + Q2 == t: Pairs.append((Q1, Q2)) for Q1, Q2 in Pairs: for v in range(4): if Best_Dict != -1: continue possible = True Dict = {} for x, y in zip(Input, Output): n = len(x) k = len(x[0]) for i in range(n): for j in range(k): if v == 0 or v == 2: p1 = i % Q1 else: p1 = (n - 1 - i) % Q1 if v == 0 or v == 3: p2 = j % Q2 else: p2 = (k - 1 - j) % Q2 color1 = x[i][j] color2 = y[i][j] if color1 != color2: rule = (p1, p2, color1) if rule not in Dict: Dict[rule] = color2 elif Dict[rule] != color2: possible = False if possible: # Let's see if we actually solve the problem for x, y in zip(Input, Output): n = len(x) k = len(x[0]) for i in range(n): for j in range(k): if v == 0 or v == 2: p1 = i % Q1 else: p1 = (n - 1 - i) % Q1 if v == 0 or v == 3: p2 = j % Q2 else: p2 = (k - 1 - j) % Q2 color1 = x[i][j] rule = (p1, p2, color1) if rule in Dict: color2 = 0 + Dict[rule] else: color2 = 0 + y[i][j] if color2 != y[i][j]: possible = False if possible: Best_Dict = Dict Best_Q1 = Q1 Best_Q2 = Q2 Best_v = v if Best_Dict == -1: return -1 # meaning that we didn't find a rule that works for the traning cases # Otherwise there is a rule: so let's use it: n = len(Test_Picture) k = len(Test_Picture[0]) answer = np.zeros((n, k), dtype=int) for i in range(n): for j in range(k): if Best_v == 0 or Best_v == 2: p1 = i % Best_Q1 else: p1 = (n - 1 - i) % Best_Q1 if Best_v == 0 or Best_v == 3: p2 = j % Best_Q2 else: p2 = (k - 1 - j) % Best_Q2 color1 = Test_Picture[i][j] rule = (p1, p2, color1) if (p1, p2, color1) in Best_Dict: answer[i][j] = 0 + Best_Dict[rule] else: answer[i][j] = 0 + color1 return answer.tolist() sample_sub2 = pd.read_csv(data_path / 'sample_submission.csv') sample_sub2.head() def flattener(pred): str_pred = str([row for row in pred]) str_pred = str_pred.replace(', ', '') str_pred = str_pred.replace('[[', '|') str_pred = str_pred.replace('][', '|') str_pred = str_pred.replace(']]', '|') return str_pred example_grid = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # display(example_grid) print(flattener(example_grid)) Solved = [] Problems = sample_sub2['output_id'].values Proposed_Answers = [] test_paths_my = {task.stem: json.load(task.open()) for task in test_path.iterdir()} test_task_ids = np.sort(list(test_paths_my.keys())) print(Problems, len(Problems)) task_number_my = dict(zip(test_task_ids, np.arange(100))) for i in range(len(Problems)): output_id = Problems[i] task_id = output_id.split('_')[0] pair_id = int(output_id.split('_')[1]) f = str(test_path / str(task_id + '.json')) with open(f, 'r') as read_file: task = json.load(read_file) n = len(task['train']) Input = [Defensive_Copy(task['train'][j]['input']) for j in range(n)] Output = [Defensive_Copy(task['train'][j]['output']) for j in range(n)] Input.append(Defensive_Copy(task['test'][pair_id]['input'])) solution = Recolor([Input, Output]) pred = '' if solution != -1: Solved.append(i) pred1 = flattener(solution) pred = pred + pred1 + ' ' if pred == '': pred = flattener(example_grid) Proposed_Answers.append(pred) sample_sub2['output'] = Proposed_Answers sample_sub1 = sample_sub1.reset_index() sample_sub1 = sample_sub1.sort_values(by="output_id") sample_sub2 = sample_sub2.sort_values(by="output_id") out1 = sample_sub1["output"].astype(str).values out2 = sample_sub2["output"].astype(str).values merge_output = [] for o1, o2 in zip(out1, out2): o = o1.strip().split(" ")[:1] + o2.strip().split(" ")[:2] o = " ".join(o[:3]) merge_output.append(o) sample_sub1["output"] = merge_output sample_sub1["output"] = sample_sub1["output"].astype(str) # test_paths_my = { task.stem: json.load(task.open()) for task in test_path.iterdir() } # test_task_ids = np.sort(list(test_paths_my.keys())) # task_number_my = dict(zip(test_task_ids, np.arange(100))) submission = sample_sub1.copy() submission.to_csv("public_submission.csv", index=False) #generate_public_submission() import numpy as np from tqdm.notebook import tqdm from PIL import Image, ImageDraw import time from collections import defaultdict import os import json import random import copy import networkx as nx from pathlib import Path import matplotlib.colors as colors import matplotlib.pyplot as plt from itertools import product import pandas as pd import multiprocessing import subprocess # from moviepy.editor import ImageSequenceClip # from moviepy.editor import clips_array, CompositeVideoClip # from moviepy.video.io.html_tools import html_embed, HTML2 # def display_vid(vid, verbose=False, **html_kw): # """ # Display a moviepy video clip, useful for removing loadbars # """ # rd_kwargs = { # 'fps': 10, 'verbose': verbose # } # if not verbose: # rd_kwargs['logger'] = None # return HTML2(html_embed(vid, filetype=None, maxduration=60, # center=True, rd_kwargs=rd_kwargs, **html_kw)) data_path = Path('../input/abstraction-and-reasoning-challenge/') # data_path = Path('.') # Artyom: it's better use symlinks locally cmap_lookup = [ '#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25' ] cmap_lookup = [np.array([int(x[1:3], 16), int(x[3:5], 16), int(x[5:], 16)]) for x in cmap_lookup] def cmap(x): """ Translate a task matrix to a color coded version arguments x : a h x w task matrix returns a h x w x 3 matrix with colors instead of numbers """ y = np.zeros((*x.shape, 3)) y[x < 0, :] = np.array([112, 128, 144]) y[x > 9, :] = np.array([255, 248, 220]) for i, c in enumerate(cmap_lookup): y[x == i, :] = c return y def draw_one(x, k=20): """ Create a PIL image from a task matrix, the task will be drawn using the default color coding with grid lines arguments x : a task matrix k = 20 : an up scaling factor returns a PIL image """ img = Image.fromarray(cmap(x).astype(np.uint8)).resize((x.shape[1] * k, x.shape[0] * k), Image.NEAREST) draw = ImageDraw.Draw(img) for i in range(x.shape[0]): draw.line((0, i * k, img.width, i * k), fill=(80, 80, 80), width=1) for j in range(x.shape[1]): draw.line((j * k, 0, j * k, img.height), fill=(80, 80, 80), width=1) return img def vcat_imgs(imgs, border=10): """ Concatenate images vertically arguments: imgs : an array of PIL images border = 10 : the size of space between images returns: a PIL image """ h = max(img.height for img in imgs) w = sum(img.width for img in imgs) res_img = Image.new('RGB', (w + border * (len(imgs) - 1), h), color=(255, 255, 255)) offset = 0 for img in imgs: res_img.paste(img, (offset, 0)) offset += img.width + border return res_img def plot_task(task): n = len(task["train"]) + len(task["test"]) fig, axs = plt.subplots(2, n, figsize=(n * 4, 8)) plt.subplots_adjust(wspace=0, hspace=0) fig_num = 0 def go(ax, title, x): ax.imshow(draw_one(x), interpolation='nearest') ax.set_title(title) ax.set_yticks([]) ax.set_xticks([]) for i, t in enumerate(task["train"]): go(axs[0][fig_num], f'Train-{i} in', t["input"]) go(axs[1][fig_num], f'Train-{i} out', t["output"]) fig_num += 1 for i, t in enumerate(task["test"]): go(axs[0][fig_num], f'Test-{i} in', t["input"]) try: go(axs[1][fig_num], f'Test-{i} out', t["output"]) except: go(axs[1][fig_num], f'Test-{i} out', np.zeros_like(t["input"])) fig_num += 1 plt.tight_layout() plt.show() def real_trace_param_automata(input, params, n_iter, n_hidden): """ Execute an automata and return all the intermediate states arguments: step_fn : transition rule function, should take two arguments `input` and `hidden_i`, should return an output grid an a new hidden hidden grid n_iter : num of iteration to perform n_hidden: number of hidden grids, if set to 0 `hidden_i` will be set to None laodbar = True: weather display loadbars returns: an array of tuples if output and hidden grids """ # hidden = np.zeros((n_hidden, *input.shape)) if n_hidden > 0 else None # # global_rules, ca_rules = params # # trace = [(input, hidden)] # # for rule in global_rules: # # output, hidden = apply_rule(input, hidden, rule) # trace.append((output, hidden)) # input = output # # its = range(n_iter) # # for i_it in its: # output, hidden = compute_parametrized_automata(input, hidden, ca_rules) # trace.append((output, hidden)) # # if (input.shape == output.shape) and (output == input).all(): # break # input = output hidden = np.zeros((n_hidden, *input.shape)) if n_hidden > 0 else None global_rules, ca_rules, split_rule, merge_rule = params grids = apply_split_rule(input, hidden, split_rule) #print(grids[0][0]) for rule in global_rules: for i, (inp, hid) in enumerate(grids): if rule['macro_type'] == 'global_rule': if rule['apply_to'] == 'all' or \ (rule['apply_to'] == 'index' and i == rule['apply_to_index']%len(grids) or (rule['apply_to'] == 'last' and i == len(grids) - 1)): grids[i] = apply_rule(inp, hid, rule) elif rule['macro_type'] == 'global_interaction_rule': grids = apply_interaction_rule(grids, rule) #print(grids[0][0]) #1/0 for i, (input, hidden) in enumerate(grids): for _ in range(n_iter): output, hidden = compute_parametrized_automata(input, hidden, ca_rules) if np.array_equal(input, output): break input = output grids[i] = (output, hidden) output = apply_merge_rule(grids, merge_rule, split_rule) return output def apply_interaction_rule(grids, rule): if rule['type'] == 'align_pattern': # index_from = rule['index_from'] % len(grids) # index_to = rule['index_to'] % len(grids) # allow_rotation = rule['allow_rotation'] if len(grids) > 5: return grids for index_from in range(len(grids)): for index_to in range(index_from+1, len(grids)): input_i = grids[index_from][0] input_j = grids[index_to][0] # print(np.max(input_i>0, axis=1)) # print(np.max(input_i>0, axis=1).shape) # print(np.arange(input_i.shape[0]).shape) #1/0 i_nonzero_rows = np.arange(input_i.shape[0])[np.max(input_i>0, axis=1)] i_nonzero_columns = np.arange(input_i.shape[1])[np.max(input_i>0, axis=0)] j_nonzero_rows = np.arange(input_j.shape[0])[np.max(input_j>0, axis=1)] j_nonzero_columns = np.arange(input_j.shape[1])[np.max(input_j>0, axis=0)] if i_nonzero_rows.shape[0] == 0 or i_nonzero_columns.shape[0] == 0 or \ j_nonzero_rows.shape[0] == 0 or j_nonzero_columns.shape[0] == 0: continue i_minrow = np.min(i_nonzero_rows) i_mincol = np.min(i_nonzero_columns) i_maxrow = np.max(i_nonzero_rows) + 1 i_maxcol = np.max(i_nonzero_columns) + 1 j_minrow = np.min(j_nonzero_rows) j_mincol = np.min(j_nonzero_columns) j_maxrow = np.max(j_nonzero_rows) + 1 j_maxcol = np.max(j_nonzero_columns) + 1 figure_to_align = input_i[i_minrow:i_maxrow, i_mincol:i_maxcol] figure_target = input_j[j_minrow:j_maxrow, j_mincol:j_maxcol] best_fit = 0 best_i_fit, best_j_fit = -1, -1 #print(figure_to_align) #print(figure_target) if figure_to_align.shape[0] < figure_target.shape[0] or figure_to_align.shape[1] < figure_target.shape[1]: continue #1/0 else: for i_start in range((figure_to_align.shape[0] - figure_target.shape[0])+1): for j_start in range((figure_to_align.shape[1] - figure_target.shape[1])+1): fig_1 = figure_to_align[i_start:(i_start + figure_target.shape[0]), j_start:(j_start + figure_target.shape[1])] if np.logical_and(np.logical_and(figure_target > 0, figure_target!=rule['allow_color']), figure_target != fig_1).any(): continue fit = np.sum(figure_target==fig_1) if fit > best_fit: best_i_fit, best_j_fit = i_start, j_start best_fit = fit if best_fit == 0: continue imin = j_minrow-best_i_fit imax = j_minrow-best_i_fit + figure_to_align.shape[0] jmin = j_mincol - best_j_fit jmax = j_mincol - best_j_fit + figure_to_align.shape[1] begin_i = max(imin, 0) begin_j = max(jmin, 0) end_i = min(imax, input_j.shape[0]) end_j = min(jmax, input_j.shape[1]) i_fig_begin = (begin_i-imin) i_fig_end = figure_to_align.shape[0]-(imax-end_i) j_fig_begin = (begin_j-jmin) j_fig_end = figure_to_align.shape[1]-(jmax-end_j) if rule['fill_with_color'] == 0: input_j[begin_i:end_i, begin_j:end_j] = figure_to_align[i_fig_begin:i_fig_end, j_fig_begin:j_fig_end] else: for i, j in product(range(end_i-begin_i + 1), range(end_j-begin_j + 1)): if input_j[begin_i + i, begin_j + j] == 0: input_j[begin_i + i, begin_j + j] = rule['fill_with_color'] * (figure_to_align[i_fig_begin + i, j_fig_begin + j]) return grids def trace_param_automata(input, params, n_iter, n_hidden): # expected = real_trace_param_automata(input, params, n_iter, n_hidden) # # testcase = {'input': input, 'params': params} # print(str(testcase).replace('\'', '"').replace('array(', '').replace(')', '')) output = cpp_trace_param_automata(input, params, n_iter) # if not np.array_equal(expected, output): # print('cpp result is wrong') # print('input:') # print(input) # print('expected:') # print(expected) # print('got:') # print(output) # # diff = [[str(g) if e != g else '-' for e, g in zip(exp_row, got_row)] # for exp_row, got_row in zip(expected, output)] # diff_lines = [' '.join(line) for line in diff] # diff_str = '[[' + ']\n ['.join(diff_lines) # # print('diff:') # print(diff_str) # print('rules') # print(params) # # assert False return [[output]] # def vis_automata_trace(states, loadbar=False, prefix_image=None): # """ # Create a video from an array of automata states # # arguments: # states : array of automata steps, returned by `trace_automata()` # loadbar = True: weather display loadbars # prefix_image = None: image to add to the beginning of each frame # returns # a moviepy ImageSequenceClip # """ # frames = [] # if loadbar: # states = tqdm(states, desc='Frame') # for i, (canvas, hidden) in enumerate(states): # # frame = [] # if prefix_image is not None: # frame.append(prefix_image) # frame.append(draw_one(canvas)) # frames.append(vcat_imgs(frame)) # # return ImageSequenceClip(list(map(np.array, frames)), fps=10) # def vis_automata_paramed_task(tasks, parameters, n_iter, n_hidden, vis_only_ix=None): # """ # Visualize the automata steps during the task solution # arguments: # tasks : the task to be solved by the automata # step_fn : automata transition function as passed to `trace_automata()` # n_iter : number of iterations to perform # n_hidden : number of hidden girds # """ # # n_vis = 0 # # def go(task, n_vis, test=False): # # if vis_only_ix is not None and vis_only_ix != n_vis: # return # trace = trace_param_automata(task['input'], parameters, n_iter, n_hidden) # if not test: # vid = vis_automata_trace(trace, prefix_image=draw_one(task['output'])) # else: # vid = vis_automata_trace(trace, prefix_image=draw_one(np.zeros_like(task['input']))) # # # display(display_vid(vid)) # # for task in (tasks['train']): # n_vis += 1 # go(task, n_vis) # # for task in (tasks['test']): # n_vis += 1 # go(task, n_vis, True) training_path = data_path / 'training' evaluation_path = data_path / 'evaluation' test_path = data_path / 'test' training_tasks = sorted(os.listdir(training_path)) evaluation_tasks = sorted(os.listdir(evaluation_path)) test_tasks = sorted(os.listdir(test_path)) def load_data(p, phase=None): """ Load task data """ if phase in {'training', 'test', 'evaluation'}: p = data_path / phase / p task = json.loads(Path(p).read_text()) dict_vals_to_np = lambda x: {k: np.array(v) for k, v in x.items()} assert set(task) == {'test', 'train'} res = dict(test=[], train=[]) for t in task['train']: assert set(t) == {'input', 'output'} res['train'].append(dict_vals_to_np(t)) for t in task['test']: if phase == 'test': assert set(t) == {'input'} else: assert set(t) == {'input', 'output'} res['test'].append(dict_vals_to_np(t)) return res nbh = lambda x, i, j: { (ip, jp) : x[i+ip, j+jp] for ip, jp in product([1, -1, 0], repeat=2) if 0 <= i+ip < x.shape[0] and 0 <= j+jp < x.shape[1] and (not (ip==0 and jp==0)) } def get_random_split_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): rule = {} rule['type'] = random.choice(['nothing', 'color_figures', 'figures', 'macro_multiply']) if rule['type'] in ['color_figures', 'figures']: rule['sort'] = random.choice(['biggest', 'smallest']) if rule['type'] == 'macro_multiply': rule['k1'] = np.random.randint(config['mink1'], config['maxk1']+1) rule['k2'] = np.random.randint(config['mink2'], config['maxk2']+1) return rule def get_random_merge_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): rule = {} rule['type'] = random.choice(['cellwise_or', 'output_first', 'output_last']) return rule def apply_split_rule(input, hidden, split_rule): if split_rule['type'] == 'nothing': return [(input, hidden)] if split_rule['type'] == 'macro_multiply': ks = split_rule['k1'] * split_rule['k2'] grids = [(np.copy(input), np.copy(hidden)) for _ in range(ks)] return grids #split_rule['type'] = 'figures' dif_c_edge = split_rule['type'] == 'figures' communities = get_connectivity_info(input, ignore_black=True, edge_for_difcolors=dif_c_edge) if len(communities) > 0: if split_rule['sort'] == 'biggest': communities = communities[::-1] grids = [(np.zeros_like(input), np.zeros_like(hidden)) for _ in range(len(communities))] for i in range(len(communities)): for point in communities[i]: grids[i][0][point] = input[point] else: grids = [(input, hidden)] return grids def apply_merge_rule(grids, merge_rule, split_rule): if split_rule['type'] == 'macro_multiply': shape_base = grids[0][0].shape shapes = [arr[0].shape for arr in grids] if not np.array([shape_base == sh for sh in shapes]).all(): return np.zeros((1, 1), dtype=np.int) ks_1 = split_rule['k1'] ks_2 = split_rule['k2'] output = np.zeros((shape_base[0] * ks_1, shape_base[1] * ks_2), dtype=np.int8) for k1 in range(ks_1): for k2 in range(ks_2): output[(k1*shape_base[0]):((k1+1) * shape_base[0]), (k2*shape_base[1]):((k2+1) * shape_base[1])] = grids[k1*ks_2 + k2][0] return output if merge_rule['type'] == 'cellwise_or': output = np.zeros_like(grids[0][0]) for i in np.arange(len(grids))[::-1]: if grids[i][0].shape == output.shape: output[grids[i][0]>0] = grids[i][0][grids[i][0]>0] return output elif merge_rule['type'] == 'output_first': output = grids[0][0] elif merge_rule['type'] == 'output_last': output = grids[-1][0] return output def get_random_ca_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): types_possible = \ [ 'copy_color_by_direction', 'direct_check', 'indirect_check', 'nbh_check', 'corner_check', 'color_distribution', ] ca_rules = [] best_candidates_items = list(best_candidates.items()) if len(best_candidates_items) > 0: for best_score, best_candidates_score in best_candidates_items: for best_c in best_candidates_score: gl, ca, _, _ = best_c ca_rules += [c['type'] for c in ca] type_counts = dict(zip(types_possible, np.zeros(len(types_possible)))) rules, counts = np.unique(ca_rules, return_counts=True) for i in range(rules.shape[0]): type_counts[rules[i]] += counts[i] counts = np.array(list(type_counts.values())) if np.sum(counts) > 0: counts /= np.sum(counts) else: counts = np.ones(counts.shape[0]) / counts.shape[0] uniform = np.ones(counts.shape[0]) / counts.shape[0] probs = temp * counts + (1 - temp) * uniform else: probs = np.ones(len(types_possible)) / len(types_possible) colors = all_colors[1:] type_probs = np.ones(len(types_possible)) / len(types_possible) if r_type is None: random_type = types_possible[np.random.choice(len(types_possible), p=probs)] else: random_type = r_type def get_random_out_color(): possible_colors = config['possible_colors_out'] return np.random.choice(possible_colors) def get_random_ignore_colors(): if config['possible_ignore_colors'].shape[0] > 0: possible_colors = config['possible_ignore_colors'] return possible_colors[np.random.randint(2, size=possible_colors.shape[0]) == 1] else: return [] def get_random_all_colors(): return all_colors[np.random.randint(2, size=all_colors.shape[0]) == 1] def get_random_colors(): return get_random_all_colors() def get_random_all_color(): return np.random.choice(all_colors) def get_random_color(): return get_random_all_color() rule = {} rule['type'] = random_type rule['macro_type'] = 'ca_rule' rule['ignore_colors'] = list(config['ignore_colors']) if np.random.rand() < 0.5 and config['possible_ignore_colors'].shape[0]: rule['ignore_colors'] += [random.choice(config['possible_ignore_colors'])] if random_type == 'copy_color_by_direction': rule['direction'] = random.choice(['everywhere']) rule['copy_color'] = [get_random_out_color()] rule['look_back_color'] = rule['copy_color'][0] elif random_type == 'corner_check': if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'direct_check': rule['nbh_check_sum'] = np.random.randint(4) if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'indirect_check': rule['nbh_check_sum'] = np.random.randint(4) if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'nbh_check': rule['nbh_check_sum'] = np.random.randint(8) if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'color_distribution': rule['direction'] = random.choice( ['top', 'bottom', 'left', 'right', 'top_left', 'bottom_left', 'top_right', 'bottom_right']) rule['check_in_empty'] =
np.random.randint(2)
numpy.random.randint
from collections.abc import Sequence from functools import reduce from typing import Any import numpy as np from mygrad.operation_base import Operation __all__ = ["MaxMin", "Sum", "Mean", "Prod", "CumProd", "CumSum", "Variance", "StdDev"] class MaxMin(Operation): def __call__(self, a, axis=None, keepdims=False, maxmin=None): """ Return the maximum (minimum) of a tensor, or along its axes. Parameters ---------- a : pygrad.Tensor Input data. axis : Optional[int, Tuple[int, ...]] Axis or axes along which to operate. By default, flattened input is used. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. maxmin : str 'max' or 'min'. Selects the operation that is performed Returns ------- amax : ndarray Maximum (minimum) of `a`. If `axis` is None, the result is a 0-D array.""" assert maxmin in ("max", "min"), "Invalid keyword argument" op = np.argmax if maxmin == "max" else np.argmin # let numpy handle error checking np.amax(np.empty([1] * a.ndim), axis=axis, keepdims=keepdims) self.variables = (a,) if a.ndim == 0: return a.data if hasattr(axis, "__iter__"): assert isinstance(axis, tuple) axis = tuple(ax % a.ndim for ax in axis) axis = None if len(axis) == a.ndim else tuple(sorted(axis)) elif axis is not None: axis = (axis % a.ndim,) self.axis = axis self.keepdims = keepdims # max(a) -> use argmax if self.axis is None: self.indices = np.unravel_index(op(a.data), a.shape) dat = a.data[self.indices] # max(x, axis=i) -> use argmax with specified axis elif len(self.axis) == 1: # op_index = op(a.data, axis=self.axis[0]) self.indices = list(
np.indices(op_index.shape)
numpy.indices
import numpy as np import imageio from skimage.feature import canny import cv2 DEG = np.pi / 180.0 def rgb2gray(rgb): return np.dot(rgb[..., :3], [0.299, 0.587, 0.114]).astype(np.uint8) def fast_hough_line(img, angle_step=1, lines_are_white=True, value_threshold=5): """ hough line using vectorized numpy operations, may take more memory, but takes much less time Input: img - 2D binary image with nonzeros representing edges angle_step - Spacing between angles to use every n-th angle between -90 and 90 degrees. Default step is 1. lines_are_white - boolean indicating whether lines to be detected are white value_threshold - Pixel values above or below the value_threshold are edges Returns: accumulator - 2D array of the hough transform accumulator theta - array of angles used in computation, in radians. rhos - array of rho values. Max size is 2 times the diagonal distance of the input image. """ # Rho and Theta ranges thetas = np.deg2rad(np.arange(-90.0, 90.0, angle_step)) #can be changed #width, height = col.size #if we use pillow width, height = img.shape diag_len = int(np.ceil(np.sqrt(width * width + height * height))) # max_dist rhos1 = np.linspace(-diag_len, diag_len, diag_len * 2) # Cache some resuable values cos_theta = np.cos(thetas) sin_theta = np.sin(thetas) num_thetas = len(thetas) # Hough accumulator array of theta vs rho accumulator = np.zeros((2 * diag_len, num_thetas)) are_edges = img > value_threshold if lines_are_white else img < value_threshold #are_edges = cv2.Canny(img,50,150,apertureSize = 3) y_idxs, x_idxs = np.nonzero(are_edges) # (row, col) indexes to edges # Vote in the hough accumulator xcosthetas = np.dot(x_idxs.reshape((-1,1)), cos_theta.reshape((1,-1))) ysinthetas = np.dot(y_idxs.reshape((-1,1)), sin_theta.reshape((1,-1))) rhosmat = np.round(xcosthetas + ysinthetas) + diag_len rhosmat = rhosmat.astype(np.int16) for i in range(num_thetas): rhos, counts = np.unique(rhosmat[:,i], return_counts=True) accumulator[rhos,i] = counts return accumulator, thetas, rhos1, np.arange(0,2 * diag_len) def hough_peaks(H, num_peaks, thetas, rhos): H_values_sorted = np.sort(np.unique(H))[::-1] H_values_num_peaks = H_values_sorted[:num_peaks] peaks = [] for pi in H_values_num_peaks: indexes = np.argwhere(H == pi) for find_indexes in indexes: rho = rhos[find_indexes[0]] theta = thetas[find_indexes[1]] peaks.append([rho, theta]) return np.array(peaks[0:num_peaks]) def peak_votes(accumulator, thetas, rhos): """ Finds the max number of votes in the hough accumulator """ idx = np.argmax(accumulator) rho = rhos[int(idx / accumulator.shape[1])] theta = thetas[idx % accumulator.shape[1]] return idx, theta, rho def hough_lines_draw(image, peaks, rhos1): x = np.arange(0, image.shape[0]-1) H = np.zeros(image.shape) for i in range(peaks.shape[0]): d = rhos1[int(peaks[i, 0])] theta = peaks[i, 1] y = ((d - x*np.cos(theta))/np.sin(theta)).astype(int) index = np.where(y<=image.shape[1]-1)[0] y1 = y[index] x1 = x[index] index1 = np.where(y1>=0)[0] y2 = y1[index1] x2 = x1[index1] H[x2, y2] = 1 return H def show_hough_line(img, accumulator, lines_images, peaks, thetas, rhos, rhos1, save_path=None): import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 2, figsize=(10, 10)) ax[0].imshow(img+lines_images, cmap=plt.cm.gray) ax[0].set_title('Input image') ax[0].axis('image') ax[1].imshow(accumulator, cmap='jet', extent=[np.rad2deg(thetas[0]), np.rad2deg(thetas[-1]), rhos1[-1], rhos1[0]]) for ii in range(len(peaks[:, 0])): ax[1].scatter(np.rad2deg(peaks[ii,1]), rhos1[int(peaks[ii, 0])], color='r') ax[1].set_aspect('equal', adjustable='box') ax[1].set_title('Hough transform') ax[1].set_xlabel('Angles (degrees)') ax[1].set_ylabel('Distance (pixels)') ax[1].axis('image') if save_path is not None: plt.savefig(save_path, bbox_inches='tight') plt.show() def ComputeGnomon_2(TwiceTheta_Chi, CenterProjection=(45 * DEG, 0 * DEG)): data_theta = TwiceTheta_Chi[0] / 2.0 data_chi = TwiceTheta_Chi[1] lat = np.arcsin(np.cos(data_theta * DEG) * np.cos(data_chi * DEG)) # in rads longit = np.arctan( -np.sin(data_chi * DEG) / np.tan(data_theta * DEG)) # + ones(len(data_chi))*(np.pi) centerlat, centerlongit = CenterProjection slat0 = np.ones(len(data_chi)) * np.sin(centerlat) clat0 = np.ones(len(data_chi)) * np.cos(centerlat) longit0 = np.ones(len(data_chi)) * centerlongit slat = np.sin(lat) clat = np.cos(lat) cosanguldist = slat * slat0 + clat * clat0 * np.cos(longit - longit0) _gnomonx = clat * np.sin(longit0 - longit) / cosanguldist _gnomony = (slat * clat0 - clat * slat0 * np.cos(longit - longit0)) / cosanguldist return _gnomonx, _gnomony def computeGnomonicImage(TwiceTheta,Chi): # CenterProjectionAngleTheta = 50#45 TwiceTheta_Chi = TwiceTheta,Chi Xgno,Ygno = ComputeGnomon_2(TwiceTheta_Chi, CenterProjection=(45 * DEG, 0 * DEG)) pts =(np.array([Xgno,Ygno]).T) nbpeaks=len(pts) NbptsGno = 300 maxsize = max(Xgno.max(),Ygno.max(),-Xgno.min(),-Ygno.min())+.0 xgnomin,xgnomax,ygnomin,ygnomax=(-0.8,0.8,-0.5,0.5) xgnomin,xgnomax,ygnomin,ygnomax=(-maxsize,maxsize,-maxsize,maxsize) halfdiagonal = np.sqrt(xgnomax**2+ygnomax**2)*NbptsGno XGNO = np.array((Xgno-xgnomin)/(xgnomax-xgnomin)*NbptsGno, dtype=int) YGNO = np.array((Ygno-ygnomin)/(ygnomax-ygnomin)*NbptsGno, dtype=int) imageGNO=np.zeros((NbptsGno+1,NbptsGno+1), dtype=int) imageGNO[XGNO,YGNO]=1 return imageGNO, nbpeaks, halfdiagonal def InverseGnomon(_gnomonX, _gnomonY): """ from x,y in gnomonic projection gives lat and long return theta and chi of Q (direction of Q) WARNING: assume that center of projection is centerlat, centerlongit = 45 deg, 0 """ lat0 = np.ones(len(_gnomonX)) * np.pi / 4 longit0 = np.zeros(len(_gnomonX)) Rho = np.sqrt(_gnomonX ** 2 + _gnomonY ** 2) * 1.0 CC = np.arctan(Rho) # the sign should be - !! lalat = np.arcsin(np.cos(CC) * np.sin(lat0) + _gnomonY / Rho * np.sin(CC) * np.cos(lat0)) lonlongit = longit0 + np.arctan2(_gnomonX * np.sin(CC), Rho * np.cos(lat0) * np.cos(CC) - _gnomonY * np.sin(lat0) * np.sin(CC)) Theta = np.arcsin(
np.cos(lalat)
numpy.cos
import matplotlib.pyplot as plt import numpy as np import math import time import sys def input_coordinates(filename, showmap=False): with open(filename, 'r') as fin: X = [] Y = [] while True: line = fin.readline() if not line: break x, y = line.split(', ') x, y = float(x), float(y) X.append(x) Y.append(y) if showmap: plt.scatter(X, Y) return X, Y def _coordinates_to_distance_table(coordinates): distance_table = [] for x1, y1 in coordinates: distance_list = [] for x2, y2 in coordinates: distance_list.append(math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)) distance_table.append(distance_list) return distance_table def calc_distance(path, X, Y): distance = 0 i = 0 if isinstance(path, np.ndarray): n_iter = path.size - 1 else: n_iter = len(path) - 1 while i < n_iter: present_idx = path[i] next_idx = path[i + 1] distance += math.sqrt((X[present_idx] - X[next_idx]) ** 2 + (Y[present_idx] - Y[next_idx]) ** 2) i += 1 distance += math.sqrt((X[0] - X[-1]) ** 2 + (Y[0] - Y[-1]) ** 2) return distance def _prob_exec(prob): if np.random.rand() <= prob: return True else: return False def random_path(X, Y): if len(X) != len(Y): sys.stderr.write('X and Y are not same length') n = len(X) path = np.random.permutation(n) return path def _metropolis(path1, X, Y, T): distance1 = calc_distance(path1, X, Y) path2 = np.copy(path1) n = path1.size swap_cities_idx = np.random.randint(0, n, size=2) path2[swap_cities_idx[0]], path2[swap_cities_idx[1]] = \ path2[swap_cities_idx[1]], path2[swap_cities_idx[0]] distance2 = calc_distance(path2, X, Y) if distance2 < distance1: return path2, distance2 delta = distance2 - distance1 prob = math.exp(- delta / T) if _prob_exec(prob): return path2, distance2 else: return path1, distance1 def greedy_tsp(X, Y): coordinates = list(zip(X, Y)) distance_table = _coordinates_to_distance_table(coordinates) distance_table = np.array(distance_table) num_of_cities = len(distance_table) city = np.random.randint(0, num_of_cities) path = np.array([], dtype='int8') bin_path = np.ones([num_of_cities], dtype=bool) falses = np.zeros([num_of_cities], dtype=bool) for i in range(num_of_cities): path =
np.append(path, city)
numpy.append
# Copyright (C) 2021, Mindee. # This program is licensed under the Apache License version 2. # See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details. # Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization import cv2 import numpy as np from shapely.geometry import Polygon import pyclipper from typing import Union, List, Tuple, Optional from doctr.utils.geometry import fit_rbbox, rbbox_to_polygon from doctr.utils.common_types import RotatedBbox from ..core import DetectionPostProcessor __all__ = ['DBPostProcessor'] class DBPostProcessor(DetectionPostProcessor): """Implements a post processor for DBNet adapted from the implementation of `xuannianz <https://github.com/xuannianz/DifferentiableBinarization>`_. Args: unclip ratio: ratio used to unshrink polygons min_size_box: minimal length (pix) to keep a box max_candidates: maximum boxes to consider in a single page box_thresh: minimal objectness score to consider a box bin_thresh: threshold used to binzarized p_map at inference time """ def __init__( self, box_thresh: float = 0.1, bin_thresh: float = 0.3, rotated_bbox: bool = False, ) -> None: super().__init__( box_thresh, bin_thresh, rotated_bbox ) self.unclip_ratio = 2.2 if self.rotated_bbox else 1.5 def polygon_to_box( self, points: np.ndarray, ) -> Optional[Union[RotatedBbox, Tuple[float, float, float, float]]]: """Expand a polygon (points) by a factor unclip_ratio, and returns a rotated box: x, y, w, h, alpha Args: points: The first parameter. Returns: a box in absolute coordinates (xmin, ymin, xmax, ymax) or (x, y, w, h, alpha) """ poly = Polygon(points) distance = poly.area * self.unclip_ratio / poly.length # compute distance to expand polygon offset = pyclipper.PyclipperOffset() offset.AddPath(points, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) _points = offset.Execute(distance) # Take biggest stack of points idx = 0 if len(_points) > 1: max_size = 0 for _idx, p in enumerate(_points): if len(p) > max_size: idx = _idx max_size = len(p) # We ensure that _points can be correctly casted to a ndarray _points = [_points[idx]] expanded_points = np.asarray(_points) # expand polygon if len(expanded_points) < 1: return None return fit_rbbox(expanded_points) if self.rotated_bbox else cv2.boundingRect(expanded_points) def bitmap_to_boxes( self, pred: np.ndarray, bitmap: np.ndarray, ) -> np.ndarray: """Compute boxes from a bitmap/pred_map Args: pred: Pred map from differentiable binarization output bitmap: Bitmap map computed from pred (binarized) Returns: np tensor boxes for the bitmap, each box is a 5-element list containing x, y, w, h, score for the box """ height, width = bitmap.shape[:2] min_size_box = 1 + int(height / 512) boxes = [] # get contours from connected components on the bitmap contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: # Check whether smallest enclosing bounding box is not too small if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < min_size_box): continue # Compute objectness if self.rotated_bbox: score = self.box_score(pred, contour, rotated_bbox=True) else: x, y, w, h = cv2.boundingRect(contour) points = np.array([[x, y], [x, y + h], [x + w, y + h], [x + w, y]]) score = self.box_score(pred, points, rotated_bbox=False) if self.box_thresh > score: # remove polygons with a weak objectness continue _box = self.polygon_to_box(np.squeeze(contour)) if self.rotated_bbox else self.polygon_to_box(points) if _box is None or _box[2] < min_size_box or _box[3] < min_size_box: # remove to small boxes continue if self.rotated_bbox: x, y, w, h, alpha = _box # type: ignore[misc] # compute relative box to get rid of img shape x, y, w, h = x / width, y / height, w / width, h / height boxes.append([x, y, w, h, alpha, score]) else: x, y, w, h = _box # type: ignore[misc] # compute relative polygon to get rid of img shape xmin, ymin, xmax, ymax = x / width, y / height, (x + w) / width, (y + h) / height boxes.append([xmin, ymin, xmax, ymax, score]) if self.rotated_bbox: if len(boxes) == 0: return np.zeros((0, 6), dtype=pred.dtype) coord = np.clip(np.asarray(boxes)[:, :4], 0, 1) # clip boxes coordinates boxes = np.concatenate((coord, np.asarray(boxes)[:, 4:]), axis=1) return boxes else: return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype) class _DBNet: """DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" <https://arxiv.org/pdf/1911.08947.pdf>`_. Args: feature extractor: the backbone serving as feature extractor fpn_channels: number of channels each extracted feature maps is mapped to """ shrink_ratio = 0.4 thresh_min = 0.3 thresh_max = 0.7 min_size_box = 3 rotated_bbox: bool = False @staticmethod def compute_distance( xs: np.array, ys: np.array, a: np.array, b: np.array, eps: float = 1e-7, ) -> float: """Compute the distance for each point of the map (xs, ys) to the (a, b) segment Args: xs : map of x coordinates (height, width) ys : map of y coordinates (height, width) a: first point defining the [ab] segment b: second point defining the [ab] segment Returns: The computed distance """ square_dist_1 = np.square(xs - a[0]) + np.square(ys - a[1]) square_dist_2 = np.square(xs - b[0]) + np.square(ys - b[1]) square_dist = np.square(a[0] - b[0]) + np.square(a[1] - b[1]) cosin = (square_dist - square_dist_1 - square_dist_2) / (2 * np.sqrt(square_dist_1 * square_dist_2) + eps) square_sin = 1 - np.square(cosin) square_sin = np.nan_to_num(square_sin) result = np.sqrt(square_dist_1 * square_dist_2 * square_sin / square_dist) result[cosin < 0] = np.sqrt(np.fmin(square_dist_1, square_dist_2))[cosin < 0] return result def draw_thresh_map( self, polygon: np.array, canvas: np.array, mask: np.array, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Draw a polygon treshold map on a canvas, as described in the DB paper Args: polygon : array of coord., to draw the boundary of the polygon canvas : threshold map to fill with polygons mask : mask for training on threshold polygons """ if polygon.ndim != 2 or polygon.shape[1] != 2: raise AttributeError("polygon should be a 2 dimensional array of coords") # Augment polygon by shrink_ratio polygon_shape = Polygon(polygon) distance = polygon_shape.area * (1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length subject = [tuple(coor) for coor in polygon] # Get coord as list of tuples padding = pyclipper.PyclipperOffset() padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) padded_polygon = np.array(padding.Execute(distance)[0]) # Fill the mask with 1 on the new padded polygon cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0) # Get min/max to recover polygon after distance computation xmin = padded_polygon[:, 0].min() xmax = padded_polygon[:, 0].max() ymin = padded_polygon[:, 1].min() ymax = padded_polygon[:, 1].max() width = xmax - xmin + 1 height = ymax - ymin + 1 # Get absolute polygon for distance computation polygon[:, 0] = polygon[:, 0] - xmin polygon[:, 1] = polygon[:, 1] - ymin # Get absolute padded polygon xs = np.broadcast_to(np.linspace(0, width - 1, num=width).reshape(1, width), (height, width)) ys = np.broadcast_to(np.linspace(0, height - 1, num=height).reshape(height, 1), (height, width)) # Compute distance map to fill the padded polygon distance_map = np.zeros((polygon.shape[0], height, width), dtype=polygon.dtype) for i in range(polygon.shape[0]): j = (i + 1) % polygon.shape[0] absolute_distance = self.compute_distance(xs, ys, polygon[i], polygon[j]) distance_map[i] = np.clip(absolute_distance / distance, 0, 1) distance_map = np.min(distance_map, axis=0) # Clip the padded polygon inside the canvas xmin_valid = min(max(0, xmin), canvas.shape[1] - 1) xmax_valid = min(max(0, xmax), canvas.shape[1] - 1) ymin_valid = min(max(0, ymin), canvas.shape[0] - 1) ymax_valid = min(max(0, ymax), canvas.shape[0] - 1) # Fill the canvas with the distances computed inside the valid padded polygon canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax( 1 - distance_map[ ymin_valid - ymin:ymax_valid - ymin + 1, xmin_valid - xmin:xmax_valid - xmin + 1 ], canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] ) return polygon, canvas, mask def compute_target( self, target: List[np.ndarray], output_shape: Tuple[int, int, int], ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: if any(t.dtype not in (np.float32, np.float16) for t in target): raise AssertionError("the expected dtype of target 'boxes' entry is either 'np.float32' or 'np.float16'.") if any(np.any((t[:, :4] > 1) | (t[:, :4] < 0)) for t in target): raise ValueError("the 'boxes' entry of the target is expected to take values between 0 & 1.") input_dtype = target[0].dtype if len(target) > 0 else np.float32 seg_target = np.zeros(output_shape, dtype=np.uint8) seg_mask = np.ones(output_shape, dtype=bool) thresh_target = np.zeros(output_shape, dtype=np.uint8) thresh_mask = np.ones(output_shape, dtype=np.uint8) for idx, _target in enumerate(target): # Draw each polygon on gt if _target.shape[0] == 0: # Empty image, full masked seg_mask[idx] = False # Absolute bounding boxes abs_boxes = _target.copy() abs_boxes[:, [0, 2]] *= output_shape[-1] abs_boxes[:, [1, 3]] *= output_shape[-2] abs_boxes = abs_boxes.round().astype(np.int32) if abs_boxes.shape[1] == 5: boxes_size = np.minimum(abs_boxes[:, 2], abs_boxes[:, 3]) polys = np.stack([ rbbox_to_polygon(tuple(rbbox)) for rbbox in abs_boxes # type: ignore[arg-type] ], axis=1) else: boxes_size =
np.minimum(abs_boxes[:, 2] - abs_boxes[:, 0], abs_boxes[:, 3] - abs_boxes[:, 1])
numpy.minimum
from skimage.feature import canny import scipy.ndimage as ndimage import cv2 import gdal import numpy as np from skimage.morphology import skeletonize from skimage import measure from skimage.measure import regionprops from multiprocessing import pool, cpu_count from multiprocessing.dummy import Pool as ThreadPool #define variables featureList=[] maxArea=0 xy=[] areaList = [] indexList =[] maskBB = [] maskHeight = [] maskLabel = [] maskStd = [] neighbours=0 regionbb=0 mask=0 regionval=0 smallerThan=0 kernel = np.ones((20,20),np.uint8) def findStdSmaller(regionIndex): global smallerThan pos = np.where(maskLabel==neighbours[regionIndex]) mask2 = (regionbb == maskLabel[pos]).astype(np.uint8)*255 mask2 = cv2.dilate(mask2,kernel,iterations = 1)>0 mask2 = np.multiply(mask2,mask>0) mask2 = np.multiply(mask2,regionval) hData = mask2[np.where(mask2>0)] if len(hData)>0: h = np.mean(hData) if h<maskHeight[pos]+2: smallerThan=smallerThan+1 def findDEMFeature(original_dem,index): global featureList,maxArea,xy,areaList,indexList,maskBB,maskHeight,maskLabel,maskStd,\ neighbours,regionbb,mask,regionval,smallerThan,kernel height,width=original_dem.shape region = regionprops(index, original_dem,cache = True) number_regions=len(region) for i in range(0,number_regions): if region[i].area>10000: areaList.append(region[i].area) indexList.append(i) maskBB.append(region[i].bbox) maskLabel.append(region[i].label) maskHeight.append(region[i].mean_intensity) xy = region[i].coords std = np.std(original_dem[xy[:,0],xy[:,1]]) maskStd.append(std) areaList = np.array(areaList) indexList = np.array(indexList) maskBB = np.array(maskBB) maskHeight = np.array(maskHeight) maskLabel = np.array(maskLabel) maskStd = np.array(maskStd) order =
np.argsort(-areaList)
numpy.argsort
#!/usr/bin/env python3 """ Machine learning for PDF shapes """ # ======================================================================== # # Imports # # ======================================================================== import os import time import datetime import numpy as np import pickle import pandas as pd from scipy import stats from scipy import signal from scipy import ndimage from scipy.stats.kde import gaussian_kde from scipy.spatial import distance import matplotlib import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression, BayesianRidge from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import Matern, WhiteKernel from sklearn.svm import SVR from sklearn.multioutput import MultiOutputRegressor from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline from sklearn.cluster import KMeans from sklearn.externals import joblib from imblearn.over_sampling import RandomOverSampler import torch from torch import nn, optim from torch.autograd import Variable import torchvision.utils as vutils from tensorboardX import SummaryWriter import utilities as utilities import lrp # =============================================================================== # # Some defaults variables # # =============================================================================== cmap = [ "#EE2E2F", "#008C48", "#185AA9", "#F47D23", "#662C91", "#A21D21", "#B43894", "#010202", ] dashseq = [ (None, None), [10, 5], [10, 4, 3, 4], [3, 3], [10, 4, 3, 4, 3, 4], [3, 3], [3, 3], [3, 3], [3, 3], ] markertype = ["s", "d", "o", "p", "h"] # ======================================================================== # # Function definitions # # ======================================================================== def load_dice(fname): """ Load the data and get a training ready data frame """ dat = np.load(fname) df = pd.DataFrame( { "Z": dat["Z"].flatten(), "Z4": dat["Z4"].flatten(), "Z8": dat["Z8"].flatten(), "Z16": dat["Z16"].flatten(), "Z32": dat["Z32"].flatten(), "C": dat["C"].flatten(), "C4": dat["C4"].flatten(), "C8": dat["C8"].flatten(), "C16": dat["C16"].flatten(), "C32": dat["C32"].flatten(), "SRC_PV": dat["SRC_PV"].flatten(), "rhoSRC_PV": (dat["Rho"] * dat["SRC_PV"]).flatten(), "SRC_PV4": dat["SRC_PV4"].flatten(), "SRC_PV8": dat["SRC_PV8"].flatten(), "SRC_PV16": dat["SRC_PV16"].flatten(), "SRC_PV32": dat["SRC_PV32"].flatten(), "Zvar4": dat["Zvar4"].flatten(), "Zvar8": dat["Zvar8"].flatten(), "Zvar16": dat["Zvar16"].flatten(), "Zvar32": dat["Zvar32"].flatten(), "Cvar4": dat["Cvar4"].flatten(), "Cvar8": dat["Cvar8"].flatten(), "Cvar16": dat["Cvar16"].flatten(), "Cvar32": dat["Cvar32"].flatten(), } ) # Clip variables df.Z = np.clip(df.Z, 0.0, 1.0) df.Z4 = np.clip(df.Z4, 0.0, 1.0) df.Z8 = np.clip(df.Z8, 0.0, 1.0) df.Z16 = np.clip(df.Z16, 0.0, 1.0) df.Z32 = np.clip(df.Z32, 0.0, 1.0) df.C = np.clip(df.C, 0.0, None) df.C4 = np.clip(df.C4, 0.0, None) df.C8 = np.clip(df.C8, 0.0, None) df.C16 = np.clip(df.C16, 0.0, None) df.C32 = np.clip(df.C32, 0.0, None) return dat, df # ======================================================================== def gen_training(df, oname="training"): """ Generate scaled training, dev, test arrays """ x_vars = get_xnames() y_vars = get_ynames(df) return utilities.gen_training(df, x_vars, y_vars, oname) # ======================================================================== def get_xnames(): return ["C", "Cvar", "Z", "Zvar"] # ======================================================================== def get_ynames(df): return [col for col in df if col.startswith("Y")] # ======================================================================== def closest_point(point, points): """Find index of closest point""" closest_index = distance.cdist([point], np.asarray(points)).argmin() if isinstance(points, pd.DataFrame): return points.iloc[closest_index, :] else: return points[closest_index, :] # ======================================================================== def wide_to_narrow(X, Y, bins): """ Convert data from predicting a Y(Zbin,Cbin) as a vector to individual predictions of Y(Zbin,Cbin) given a Zbin and Cbin label in the input data. """ varname = "variable" valname = "Y" x_vars = get_xnames() dev = pd.concat([X, Y], axis=1) left = pd.melt( dev.reset_index(), id_vars=x_vars + ["index"], value_vars=Y.columns, var_name=varname, value_name=valname, ) right = pd.concat([bins, pd.DataFrame(Y.columns, columns=[varname])], axis=1) narrow = pd.merge(left, right, on=[varname]).set_index(["index", varname]) narrow = narrow.reindex(X.index, level="index") return narrow.drop(columns=[valname]), narrow[valname] # ======================================================================== def narrow_to_wide(Xn, Yn, idx=None): """ Reverse of wide_to_narrow """ varname = "variable" valname = "Y" x_vars = get_xnames() bin_names = ["Zbins", "Cbins"] narrow = pd.concat([Xn, Yn], axis=1).drop(columns=bin_names) wide = narrow.reset_index().pivot( index="index", columns="variable", values=x_vars + [valname] ) # Get X X = wide[x_vars].stack().xs("Y0000", level=varname) X.index.name = None # Get Y Y = wide[valname] Y.columns.name = None Y.index.name = None # Sort according to original wide if idx is not None: X = X.reindex(idx) Y = Y.reindex(idx) return X, Y # ======================================================================== def fix_imbalance(df, n_clusters=10): """ Fix an imbalanced data set by over sampling minority classes """ x_vars = get_xnames() classes = KMeans(n_clusters=n_clusters, random_state=0).fit_predict(df[x_vars]) ros = RandomOverSampler(random_state=0) X_resampled, classes_resampled = ros.fit_sample(df, classes) return pd.DataFrame(X_resampled, columns=df.columns) # ======================================================================== def deprecated_gen_conditional_means_dice(df, zbin_edges, cbin_edges, oname): """ Generate the conditional means for a dataframe """ means, _, _, nbins = stats.binned_statistic_2d( df.Z, df.C, df.rhoSRC_PV, statistic="mean", bins=[zbin_edges, cbin_edges] ) # Plot ma_means = np.ma.array(means, mask=np.isnan(means)) cm = matplotlib.cm.viridis cm.set_bad("white", 1.0) plt.figure(0) plt.clf() im = plt.imshow( ma_means.T, extent=[ np.min(zbin_edges), np.max(zbin_edges), np.min(cbin_edges), np.max(cbin_edges), ], origin="lower", aspect="auto", cmap=cm, ) plt.colorbar(im) plt.xlabel("Mixture Fraction") plt.ylabel("Progress Variable") plt.title("Conditional means") plt.tight_layout() plt.savefig(oname + ".png", format="png", dpi=300, bbox_inches="tight") # Fix nans means[np.isnan(means)] = 0.0 # Save for later np.savez_compressed( oname + ".npz", means=means, zbin_edges=zbin_edges, cbin_edges=cbin_edges, nbins=nbins, ) return means # ======================================================================== def jensen_shannon_divergence(p, q): """ This will be part of scipy as some point. See https://github.com/scipy/scipy/pull/8295 We use this implementation for now: https://stackoverflow.com/questions/15880133/jensen-shannon-divergence :param p: PDF (normalized to 1) :type p: array :param q: PDF (normalized to 1) :type q: array """ eps = 1e-13 M = np.clip(0.5 * (p + q), eps, None) return 0.5 * (stats.entropy(p, M) + stats.entropy(q, M)) # ======================================================================== def jensen_shannon_distance(p, q): """ Jensen-Shannon distance :param p: PDF (normalized to 1) :type p: array :param q: PDF (normalized to 1) :type q: array """ return np.sqrt(jensen_shannon_divergence(p, q)) # ======================================================================== def calculate_jsd(y, yp): """ Calculate the JSD metric on each PDF prediction """ y = np.asarray(y, dtype=np.float64) yp = np.asarray(yp, dtype=np.float64) return np.array( [jensen_shannon_divergence(y[i, :], yp[i, :]) for i in range(y.shape[0])] ) # ======================================================================== def pdf_distances(base, datadir="data"): """ Compute the minimum JSD between all PDFs in base dice with all the other dice PDFs. Only do this with PDFs in the dev set as this is an expensive operation. :param base: baseline dice :type base: str :param datadir: data directory :type datadir: str :return: minimum distances :rtype: dataframe """ others = [ "dice_0002", "dice_0003", "dice_0004", "dice_0005", "dice_0006", "dice_0007", "dice_0008", "dice_0009", "dice_0010", ] try: others.remove(base) except ValueError: pass # Read the baseline PDFs Ydev_base = pd.read_pickle(os.path.join(datadir, f"{base}_ydev.gz")) # Compute all the distances and keep the minimum for each baseline sample distances = {} for k, other in enumerate(others): # Get pairwise distance matrix Ydev_other = pd.read_pickle(os.path.join(datadir, f"{other}_ydev.gz")) d = distance.cdist(Ydev_base, Ydev_other, jensen_shannon_divergence) # Find the minimum distance from other to base idx = d.argmin(axis=0) distances[other] = pd.DataFrame(index=Ydev_other.index) distances[other]["r"] = d[idx, np.arange(0, Ydev_other.shape[0])] distances[other]["idx"] = Ydev_base.index[idx] # Save with open(os.path.join(datadir, f"{base}_pdf_distances.pkl"), "wb") as f: pickle.dump(distances, f, pickle.HIGHEST_PROTOCOL) return distances # ======================================================================== def clip_normalize(y): """ Clip and normalize (along axis=1) """ y = np.clip(y, 0, 1) return y / np.sum(y, axis=1, keepdims=True) # ======================================================================== def rmse_metric(true, predicted): return np.sqrt(mean_squared_error(true, predicted)) # ======================================================================== def error_metrics(true, predicted, verbose=False): """ Compute some error metrics """ rmse = rmse_metric(true, predicted) mae = mean_absolute_error(true, predicted) r2 = r2_score(true, predicted) if verbose: print(f"RMSE: {rmse:.3f}") print(f"MAE: {mae:.3f}") print(f"R2: {r2:.3f}") return rmse, mae, r2 # ======================================================================== def src_pv_normalization( dices=[ "dice_0002", "dice_0003", "dice_0004", "dice_0005", "dice_0006", "dice_0007", "dice_0008", "dice_0009", "dice_0010", ], datadir="data", ): """Compute the normalization constant""" src_pv_sum = 0.0 count = 0 for dice in dices: pdf = pd.read_pickle(os.path.join(datadir, f"{dice}_pdfs.gz")) src_pv_sum += np.sum(pdf.SRC_PV ** 2) count += pdf.SRC_PV.shape[0] return np.sqrt(src_pv_sum / count) # ======================================================================== def convolution_means(pdf, means): """ Perform the PDF convolution given means means can be one for each PDF or means_dice.flatten(order='F') :param pdf: predictions from model (model.predict(X)) :type pdf: array :param means: conditional means :type means: array """ return np.sum(means * pdf, axis=1) # ======================================================================== def create_logdir(model_name): """Create a log directory for a model""" time = datetime.datetime.now().strftime("%b%d_%H-%M-%S") logdir = os.path.abspath(os.path.join("runs", f"{time}_{model_name}")) if not os.path.exists(logdir): os.makedirs(logdir) return logdir # ======================================================================== def lr_training(Xtrain, Xdev, Ytrain, Ydev): """ Train using a Linear Regression """ model_name = "LR" logdir = create_logdir(model_name) # Training LR = LinearRegression().fit(Xtrain, Ytrain) joblib.dump(LR, os.path.join(logdir, model_name + ".pkl")) mtrain = clip_normalize(LR.predict(Xtrain)) mdev = clip_normalize(LR.predict(Xdev)) # Summarize training summarize_training( Ytrain, mtrain, Ydev, mdev, os.path.join(logdir, model_name + ".log") ) return mtrain, mdev, LR # ======================================================================== def br_training(Xtrain, Xdev, Ytrain, Ydev): """ Train using a Bayesian ridge regression """ model_name = "BR" logdir = create_logdir(model_name) # Training BR = MultiOutputRegressor(BayesianRidge()).fit(Xtrain, Ytrain) joblib.dump(BR, os.path.join(logdir, model_name + ".pkl")) mtrain = BR.predict(Xtrain) mdev = BR.predict(Xdev) # Summarize training summarize_training( Ytrain, mtrain, Ydev, mdev, os.path.join(logdir, model_name + ".log") ) return mtrain, mdev, BR # ======================================================================== def pr_training(Xtrain, Xdev, Ytrain, Ydev, order=6): """ Train using a polynomial regression """ model_name = f"PR{order}" logdir = create_logdir(model_name) # Training PR = Pipeline( [ ("poly", PolynomialFeatures(degree=order)), ("linear", LinearRegression(fit_intercept=False)), ] ) PR = PR.fit(Xtrain, Ytrain) joblib.dump(PR, os.path.join(logdir, model_name + ".pkl")) mtrain = clip_normalize(PR.predict(Xtrain)) mdev = clip_normalize(PR.predict(Xdev)) # Summarize training summarize_training( Ytrain, mtrain, Ydev, mdev, os.path.join(logdir, model_name + ".log") ) return mtrain, mdev, PR # ======================================================================== def svr_training(Xtrain, Xdev, Ytrain, Ydev): """ Train using a support vector regression """ model_name = "SVR" logdir = create_logdir(model_name) # Training svr = MultiOutputRegressor(SVR(kernel="rbf", epsilon=1e-3)) grid_param_svr = { "estimator__C": [1e0, 1e1, 1e2, 1e3], "estimator__gamma": np.logspace(-2, 2, 5), } SR = GridSearchCV(estimator=svr, param_grid=grid_param_svr, cv=5, n_jobs=-1).fit( Xtrain, Ytrain ) print("Best estimator and parameter set found on training set:") print(SR.best_estimator_) print(SR.best_params_) joblib.dump(SR, os.path.join(logdir, model_name + ".pkl")) mtrain = SR.predict(Xtrain) mdev = SR.predict(Xdev) # Summarize training summarize_training( Ytrain, mtrain, Ydev, mdev, os.path.join(logdir, model_name + ".log") ) return mtrain, mdev, SR # ======================================================================== def gp_training(Xtrain, Xdev, Ytrain, Ydev): """ Train using a gaussian process regression """ model_name = "GP" logdir = create_logdir(model_name) # Training kernel = 6.2 ** 2 * Matern( length_scale=[1, 1, 1, 1], length_scale_bounds=(1e-1, 1e4), nu=1.5 ) + WhiteKernel(noise_level=2, noise_level_bounds=(1e-1, 3e0)) GP = GaussianProcessRegressor( kernel=kernel, alpha=0, n_restarts_optimizer=3, normalize_y=True ).fit(Xtrain, Ytrain) print("Trained GP kernel:", GP.kernel_) joblib.dump(GP, os.path.join(logdir, model_name + ".pkl")) mtrain = GP.predict(Xtrain) mdev = GP.predict(Xdev) # Summarize training summarize_training( Ytrain, mtrain, Ydev, mdev, os.path.join(logdir, model_name + ".log") ) return mtrain, mdev, GP # ======================================================================== def count_rf_parameters(model): return np.sum([t.tree_.node_count for t in model.estimators_]) # ======================================================================== def rf_training(Xtrain, Xdev, Ytrain, Ydev, nestim=100, max_depth=30): """ Train using a Random Forest Regression """ # Setup model_name = "RF" logdir = create_logdir(model_name) np.random.seed(985_721) # Training start = time.time() RF = RandomForestRegressor(n_estimators=nestim, max_depth=max_depth, n_jobs=1).fit( Xtrain, Ytrain ) end = time.time() - start joblib.dump(RF, os.path.join(logdir, model_name + ".pkl")) print("Trained RandomForest") print(" Feature importance", RF.feature_importances_) mtrain = RF.predict(Xtrain) mdev = RF.predict(Xdev) # Summarize training summarize_training( Ytrain, mtrain, Ydev, mdev, fname=os.path.join(logdir, model_name + ".log"), timing=end, dofs=count_rf_parameters(RF), ) return mtrain, mdev, RF # ======================================================================== def betaPDF(mean, var, centers, eps=1e-6): """ Calculate beta PDF :param mean: mean :type mean: float :param var: variance :type var: float :param centers: bin centers :type centers: array :param eps: smallness threshold :type eps: float :return: pdf :rtype: array """ pdf = np.zeros(centers.shape) if var < eps: if mean > np.max(centers): pdf[-1] = 1.0 return pdf else: idx = np.argmax(centers > mean) if (idx == 0) or (idx == len(pdf) - 1): pdf[idx] = 1.0 return pdf else: pdf[idx - 1] = (centers[idx] - mean) / (centers[idx] - centers[idx - 1]) pdf[idx] = (mean - centers[idx - 1]) / (centers[idx] - centers[idx - 1]) return pdf elif var > mean * (1.0 - mean): pdf[0] = 1.0 - mean pdf[-1] = mean return pdf else: a = mean * (mean * (1.0 - mean) / var - 1.0) b = a / mean - a ni = 1024 x = np.linspace(0, 1, ni) pdf = np.interp(centers, x, stats.beta.pdf(x, a, b)) pdf /= np.sum(pdf) return pdf # ======================================================================== class AnalyticalPDFModel: """Generic analytical PDF model""" def __init__(self, zbin_edges, cbin_edges): """ :param zbin_edges: bin edges for Z :type bins: array :param cbin_edges: bin edges for C :type bins: array """ self.zbin_edges = zbin_edges self.cbin_edges = cbin_edges self.eps = 1e-13 self.cscale = cbin_edges[-1] self.nc = len(cbin_edges) - 1 self.nz = len(zbin_edges) - 1 self.cbin_centers = utilities.edges_to_midpoint(cbin_edges) self.zbin_centers = utilities.edges_to_midpoint(zbin_edges) self.cbin_widths = np.diff(cbin_edges) self.zbin_widths = np.diff(zbin_edges) self.seed = 9_023_457 # ======================================================================== class DD(AnalyticalPDFModel): """ delta(Z) - delta(C) PDF """ def __init__(self, zbin_edges, cbin_edges): super().__init__(zbin_edges, cbin_edges) def predict(self, X): """ :param X: conditional variables :type X: dataframe :return: PDFs :rtype: array """ # Get indexes for the bins self.zbin_edges[-1] += self.eps self.cbin_edges[-1] += self.eps idx_z = np.digitize(X.Z, self.zbin_edges) idx_c = np.digitize(X.C, self.cbin_edges) # Generate delta PDFs return np.array( [ signal.unit_impulse( (self.nz, self.nc), (idx_z[i] - 1, idx_c[i] - 1) ).flatten(order="F") for i in range(X.shape[0]) ] ) # ======================================================================== class BD(AnalyticalPDFModel): """ beta(Z) - delta(C) PDF """ def __init__(self, zbin_edges, cbin_edges): super().__init__(zbin_edges, cbin_edges) def predict(self, X): """ :param X: conditional variables :type X: dataframe :return: PDFs :rtype: array """ self.cbin_edges[-1] += self.eps idx_c = np.digitize(X.C, self.cbin_edges) # Generate beta-delta PDFs npdfs = X.shape[0] pdfs = np.zeros((X.shape[0], self.nz * self.nc)) np.random.seed(self.seed) for i in range(npdfs): c_pdf = signal.unit_impulse(self.nc, idx_c[i] - 1) z_pdf = betaPDF(X.Z.iloc[i], X.Zvar.iloc[i], self.zbin_centers) pdfs[i, :] = np.outer(z_pdf, c_pdf).flatten(order="F") return pdfs # ======================================================================== class BB(AnalyticalPDFModel): """ beta(Z) - beta(C) PDF """ def __init__(self, zbin_edges, cbin_edges): super().__init__(zbin_edges, cbin_edges) def predict(self, X): """ :param X: conditional variables :type X: dataframe :return: PDFs :rtype: array """ # Generate beta-delta PDFs npdfs = X.shape[0] pdfs = np.zeros((X.shape[0], self.nz * self.nc)) np.random.seed(self.seed) for i in range(npdfs): c_pdf = betaPDF( X.C.iloc[i] / self.cscale, X.Cvar.iloc[i] / (self.cscale ** 2), self.cbin_centers / self.cscale, ) z_pdf = betaPDF(X.Z.iloc[i], X.Zvar.iloc[i], self.zbin_centers) pdfs[i, :] = np.outer(z_pdf, c_pdf).flatten(order="F") return pdfs # ======================================================================== # Torch Variable handler class VariableHandler: def __init__(self, device=torch.device("cpu"), dtype=torch.float): self.device = device self.dtype = dtype def tovar(self, input): return Variable(torch.as_tensor(input, dtype=self.dtype, device=self.device)) # ======================================================================== # Network Architecture from infoGAN (https://arxiv.org/abs/1606.03657) class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.input_height = 32 self.input_width = 64 self.input_dim = 1 + 4 self.output_dim = 1 self.conv = nn.Sequential( nn.Conv2d(self.input_dim, 64, 4, 2, 1), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 4, 2, 1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), ) self.fc = nn.Sequential( nn.Linear(128 * (self.input_height // 4) * (self.input_width // 4), 1024), nn.BatchNorm1d(1024), nn.LeakyReLU(0.2), nn.Linear(1024, self.output_dim), nn.Sigmoid(), ) def forward(self, input, label): x = torch.cat([input, label], 1) x = self.conv(x) x = x.view(-1, 128 * (self.input_height // 4) * (self.input_width // 4)) x = self.fc(x) return x def load(self, fname): """Load pickle file containing model""" self.load_state_dict( torch.load(fname, map_location=lambda storage, loc: storage) ) self.eval() # ======================================================================== class SoftmaxImage(nn.Module): """Apply Softmax on an image. Softmax2d applies on second dimension (i.e. channels), which is not what I want. This applies along the H and W dimensions, where (N, C, H, W) is the size of the input. """ def __init__(self, channels, height, width): super(SoftmaxImage, self).__init__() self.channels = channels self.height = height self.width = width self.softmax = nn.Softmax(dim=2) def forward(self, x): x = x.view(-1, self.channels, self.height * self.width) x = self.softmax(x) x = x.view(-1, self.channels, self.height, self.width) return x # ======================================================================== # Network Architecture from infoGAN (https://arxiv.org/abs/1606.03657) class Generator(nn.Module): def __init__(self, noise_size, vh=None): super(Generator, self).__init__() self.input_height = 32 self.input_width = 64 self.noise_size = noise_size self.input_dim = noise_size + 4 self.output_dim = 1 if vh is None: self.vh = VariableHandler() else: self.vh = vh self.fc = nn.Sequential( nn.Linear(self.input_dim, 1024), nn.BatchNorm1d(1024), nn.ReLU(), nn.Linear(1024, 128 * (self.input_height // 4) * (self.input_width // 4)), nn.BatchNorm1d(128 * (self.input_height // 4) * (self.input_width // 4)), nn.ReLU(), ) self.deconv = nn.Sequential( nn.ConvTranspose2d(128, 64, 4, 2, 1), nn.BatchNorm2d(64), nn.ReLU(), nn.ConvTranspose2d(64, self.output_dim, 4, 2, 1), SoftmaxImage(1, self.input_height, self.input_width), ) def forward(self, input, label): x = torch.cat([input, label], 1) x = self.fc(x) x = x.view(-1, 128, (self.input_height // 4), (self.input_width // 4)) x = self.deconv(x) return x def inference(self, x): noise = self.vh.tovar(torch.rand(x.shape[0], self.noise_size)) return self.forward(noise, x) def predict(self, X, batch_size=64, nestim=1): X = np.asarray(X, dtype=np.float64) n = X.shape[0] meval = np.zeros((n, self.input_height * self.input_width)) for batch, i in enumerate(range(0, n, batch_size)): slc = np.s_[i : i + batch_size, :] xsub = self.vh.tovar(X[slc]) meval[slc] = np.mean( [ self.inference(xsub).cpu().data.numpy().reshape(xsub.shape[0], -1) for j in range(nestim) ] ) return meval def load(self, fname): """Load pickle file containing model""" self.load_state_dict( torch.load(fname, map_location=lambda storage, loc: storage) ) self.eval() # ======================================================================== def cgan_training(Xtrain, Xdev, Ytrain, Ydev, use_gpu=False): """ Train using a conditional GAN """ if use_gpu: device = torch.device("cuda") else: device = torch.device("cpu") dtype = torch.double vh = VariableHandler(device=device, dtype=dtype) # Make sure inputs are numpy arrays Xtrain = np.asarray(Xtrain, dtype=np.float64) Ytrain = np.asarray(Ytrain, dtype=np.float64) Xdev = np.asarray(Xdev, dtype=np.float64) Ydev = np.asarray(Ydev, dtype=np.float64) # Sizes batch_size = 64 input_height = 32 input_width = 64 nsample_lbls = 16 nsample_noise = 10 noise_size = 100 nlabels = Xtrain.shape[1] torch.manual_seed(5_465_462) # Construct the G and D models D = Discriminator().to(device=device, dtype=dtype) G = Generator(noise_size, vh).to(device=device, dtype=dtype) # The number of times entire dataset is trained nepochs = 500 # Learning rate lr_D = 1e-3 lr_G = 1e-3 decay_rate = 0.98 # Loss and optimizers criterion = nn.BCELoss().to(device=device) D_optimizer = optim.SGD(D.parameters(), lr=lr_D, momentum=0.5, nesterov=True) G_optimizer = optim.SGD(G.parameters(), lr=lr_G, momentum=0.5, nesterov=True) D_scheduler = optim.lr_scheduler.StepLR(D_optimizer, step_size=1, gamma=decay_rate) G_scheduler = optim.lr_scheduler.StepLR(G_optimizer, step_size=1, gamma=decay_rate) # Tensorboard writer writer = SummaryWriter() logdir = writer.file_writer.get_logdir() model_name = "CGAN" # Validation images, labels and noise xdev_sub = vh.tovar(Xdev[:nsample_lbls, :]) ydev_sub = vh.tovar(Ydev[:nsample_lbls, :]) valimgs = ydev_sub.view(nsample_lbls, -1, input_height, input_width) vallbl = xdev_sub.expand(input_height, input_width, nsample_lbls, nlabels).permute( 2, 3, 0, 1 ) grid = vutils.make_grid(valimgs, nrow=nsample_lbls, normalize=True, scale_each=True) writer.add_image("True PDF", grid, 0) fixed_noise = vh.tovar( torch.rand(nsample_noise, noise_size) .to(device=device) .repeat(1, nsample_lbls) .reshape(-1, noise_size) ) fixed_labels = xdev_sub.repeat(nsample_noise, 1) # Graphs in Tensorboard xdummy = vh.tovar(torch.rand(1, 1, input_height, input_width)) ldummy = vh.tovar(torch.rand(1, nlabels, input_height, input_width)) writer.add_graph(D, (xdummy, ldummy), verbose=False) writer.add_graph(G, (fixed_noise, fixed_labels), verbose=False) # Train the model nbatches = Xtrain.shape[0] // batch_size D.train() for epoch in range(nepochs): G.train() permutation = torch.randperm(Xtrain.shape[0]) for batch, i in enumerate(range(0, Xtrain.shape[0], batch_size)): # Global step step = epoch * nbatches + batch # Take a batch indices = permutation[i : i + batch_size] batch_x = vh.tovar(Xtrain[indices, :]) batch_y = vh.tovar(Ytrain[indices, :]) # Reshape these for the D network actual_batch_size = batch_x.shape[0] labels = batch_x.expand( input_height, input_width, actual_batch_size, nlabels ).permute(2, 3, 0, 1) imgs = batch_y.view(actual_batch_size, -1, input_height, input_width) noise = vh.tovar(torch.rand((actual_batch_size, noise_size))) # Real and fake labels real_label = vh.tovar(torch.ones(actual_batch_size, 1)) fake_label = vh.tovar(torch.zeros(actual_batch_size, 1)) # update the D network D_optimizer.zero_grad() D_real = D(imgs, labels) D_real_loss = criterion(D_real, real_label) G_ = G(noise, batch_x) D_fake = D(G_, labels) D_fake_loss = criterion(D_fake, fake_label) D_loss = D_real_loss + D_fake_loss writer.add_scalar("D_real_loss", D_real_loss.item(), step) writer.add_scalar("D_fake_loss", D_fake_loss.item(), step) writer.add_scalar("D_loss", D_loss.item(), step) D_loss.backward() D_optimizer.step() # update G network G_optimizer.zero_grad() G_ = G(noise, batch_x) D_fake = D(G_, labels) G_loss = criterion(D_fake, real_label) writer.add_scalar("G_loss", G_loss.item(), step) G_loss.backward() G_optimizer.step() if batch % 10 == 0: print( "Epoch [{0:d}/{1:d}], Batch [{2:d}/{3:d}], D_loss: {4:.4e}, G_loss: {5:.4e}".format( epoch + 1, nepochs, batch + 1, nbatches, D_loss.item(), G_loss.item(), ) ) # Adaptive time step G_scheduler.step() D_scheduler.step() for param_group in D_optimizer.param_groups: print("Current learning rate for discriminator:", param_group["lr"]) for param_group in G_optimizer.param_groups: print(" for generator:", param_group["lr"]) # Visualize results in Tensorboard G.eval() samples = G(fixed_noise, fixed_labels) grid = vutils.make_grid( samples, nrow=nsample_lbls, normalize=True, scale_each=True ) writer.add_image("Generator", grid, step) # Save the models torch.save(G.state_dict(), os.path.join(logdir, model_name + "_G.pkl")) torch.save(D.state_dict(), os.path.join(logdir, model_name + "_D.pkl")) writer.close() # Stuff we need to do to get plots... G.eval() mtrain = G.predict(Xtrain) mdev = G.predict(Xdev) # Summarize training summarize_training( Ytrain, mtrain, Ydev, mdev, os.path.join(logdir, model_name + ".log") ) return mtrain, mdev, G # ======================================================================== # Conditional variational autoencoder # CVAE paper: Learning Structured Output Representation using Deep Conditional Generative Models # https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models # code adapted from https://github.com/timbmg/VAE-CVAE-MNIST/blob/master/models.py class CVAE(nn.Module): def __init__( self, encoder_layer_sizes, latent_size, decoder_layer_sizes, nlabels=0, vh=None ): super(CVAE, self).__init__() self.latent_size = latent_size self.decoder_layer_sizes = decoder_layer_sizes if vh is None: self.vh = VariableHandler() else: self.vh = vh self.encoder = Encoder(encoder_layer_sizes, latent_size, nlabels).to( device=vh.device, dtype=vh.dtype ) self.decoder = Decoder(decoder_layer_sizes, latent_size, nlabels).to( device=vh.device, dtype=vh.dtype ) def forward(self, x, c): batch_size = x.size(0) means, log_var = self.encoder(x, c) std = torch.exp(0.5 * log_var) eps = self.vh.tovar(torch.randn([batch_size, self.latent_size])) z = eps * std + means recon_x = self.decoder(z, c) return recon_x, means, log_var, z def inference(self, c): z = self.vh.tovar(torch.randn(c.shape[0], self.latent_size)) recon_x = self.decoder(z, c) return recon_x def predict(self, X, batch_size=64, nestim=1): X = np.asarray(X, dtype=np.float64) n = X.shape[0] meval = np.zeros((n, self.decoder_layer_sizes[-1])) for batch, i in enumerate(range(0, n, batch_size)): slc = np.s_[i : i + batch_size, :] c = self.vh.tovar(X[slc]) meval[slc] = np.mean( [self.inference(c).cpu().data.numpy() for j in range(nestim)], axis=0 ) return meval def load(self, fname): """Load pickle file containing model""" self.load_state_dict( torch.load(fname, map_location=lambda storage, loc: storage) ) self.eval() class Encoder(nn.Module): def __init__(self, layer_sizes, latent_size, nlabels): super(Encoder, self).__init__() self.MLP = nn.Sequential() for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): self.MLP.add_module(name="L%i" % (i), module=nn.Linear(in_size, out_size)) self.MLP.add_module(name="A%i" % (i), module=nn.ReLU()) self.linear_means = nn.Linear(layer_sizes[-1], latent_size) self.linear_log_var = nn.Linear(layer_sizes[-1], latent_size) def forward(self, x, c): x = torch.cat((x, c), dim=-1) x = self.MLP(x) means = self.linear_means(x) log_vars = self.linear_log_var(x) return means, log_vars class Decoder(nn.Module): def __init__(self, layer_sizes, latent_size, nlabels): super(Decoder, self).__init__() self.MLP = nn.Sequential() input_size = latent_size + nlabels for i, (in_size, out_size) in enumerate( zip([input_size] + layer_sizes[:-1], layer_sizes) ): self.MLP.add_module(name="L%i" % (i), module=nn.Linear(in_size, out_size)) if i + 1 < len(layer_sizes): self.MLP.add_module(name="A%i" % (i), module=nn.ReLU()) else: self.MLP.add_module(name="softmax", module=nn.Softmax(dim=1)) def forward(self, z, c): z = torch.cat((z, c), dim=-1) x = self.MLP(z) return x def loss_fn(recon_x, x, mean, log_var): BCE = nn.functional.binary_cross_entropy(recon_x, x, reduction="sum") KLD = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp()) return BCE + KLD def cvae_training(Xtrain, Xdev, Ytrain, Ydev, use_gpu=False): """ Train using a conditional VAE """ if use_gpu: device = torch.device("cuda") else: device = torch.device("cpu") vh = VariableHandler(device=device, dtype=torch.double) # Make sure inputs are numpy arrays Xtrain = np.asarray(Xtrain, dtype=np.float64) Ytrain = np.asarray(Ytrain, dtype=np.float64) Xdev = np.asarray(Xdev, dtype=np.float64) Ydev = np.asarray(Ydev, dtype=np.float64) # Sizes nlabels = Xtrain.shape[1] input_size = Ytrain.shape[1] batch_size = 64 encoder_layer_sizes = [input_size + nlabels, 512, 256] latent_size = 10 decoder_layer_sizes = [256, 512, input_size] torch.manual_seed(5_465_462) # The number of times entire dataset is trained nepochs = 500 # Learning rate lr = 1e-3 # CVAE model cvae = CVAE( encoder_layer_sizes=encoder_layer_sizes, latent_size=latent_size, decoder_layer_sizes=decoder_layer_sizes, nlabels=nlabels, vh=vh, ).to(device=device) # Optimizer optimizer = optim.Adam(cvae.parameters(), lr=lr) # Tensorboard writer writer = SummaryWriter() logdir = writer.file_writer.get_logdir() model_name = "CVAE" # Graphs in Tensorboard xdummy = vh.tovar(torch.rand(1, input_size)) ldummy = vh.tovar(torch.rand(1, nlabels)) writer.add_graph(cvae, (xdummy, ldummy), verbose=False) # Train the model nbatches = Xtrain.shape[0] // batch_size start = time.time() for epoch in range(nepochs): cvae.train() permutation = torch.randperm(Xtrain.shape[0]) for batch, i in enumerate(range(0, Xtrain.shape[0], batch_size)): # Global step step = epoch * nbatches + batch # Take a batch indices = permutation[i : i + batch_size] batch_c = vh.tovar(Xtrain[indices, :]) batch_x = vh.tovar(Ytrain[indices, :]) # Forward model recon_x, mean, log_var, z = cvae(batch_x, batch_c) # Loss loss = loss_fn(recon_x, batch_x, mean, log_var) writer.add_scalar("loss", loss, step) if batch % 10 == 0: print( "Epoch [{0:d}/{1:d}], Batch [{2:d}/{3:d}], Loss: {4:.4e}".format( epoch + 1, nepochs, batch + 1, nbatches, loss ) ) # Zero gradients, perform a backward pass, and update the weights. optimizer.zero_grad() loss.backward() optimizer.step() # Save the models torch.save(cvae.state_dict(), os.path.join(logdir, model_name + ".pkl")) end = time.time() - start writer.close() cvae.eval() mtrain = cvae.predict(Xtrain) mdev = cvae.predict(Xdev) # Summarize training summarize_training( Ytrain, mtrain, Ydev, mdev, fname=os.path.join(logdir, model_name + ".log"), timing=end, dofs=count_parameters(cvae), ) return mtrain, mdev, cvae # ======================================================================== # Fully connected NN class Net(nn.Module): def __init__(self, input_size, layer_sizes, vh=None): super(Net, self).__init__() if vh is None: self.vh = VariableHandler() else: self.vh = vh self.input_size = input_size self.layer_sizes = layer_sizes self.MLP = nn.Sequential() for i, (in_size, out_size) in enumerate( zip([input_size] + layer_sizes[:-1], layer_sizes) ): if i + 1 < len(layer_sizes): self.MLP.add_module( name="L%i" % (i), module=nn.Linear(in_size, out_size) ) self.MLP.add_module(name="A%i" % (i), module=nn.LeakyReLU()) self.MLP.add_module(name="B%i" % (i), module=nn.BatchNorm1d(out_size)) else: self.MLP.add_module( name="L%i" % (i), module=nn.Linear(in_size, out_size) ) self.MLP.add_module(name="softmax", module=nn.Softmax(dim=1)) def forward(self, x): return self.MLP(x) def predict(self, X, batch_size=64): X = np.asarray(X, dtype=np.float64) n = X.shape[0] meval = np.zeros((n, self.layer_sizes[-1])) for batch, i in enumerate(range(0, n, batch_size)): slc = np.s_[i : i + batch_size, :] meval[slc] = self.forward(self.vh.tovar(X[slc])).cpu().data.numpy() return meval def load(self, fname): """Load pickle file containing model""" self.load_state_dict( torch.load(fname, map_location=lambda storage, loc: storage) ) self.eval() # ======================================================================== # Clip to [0,1] and normalize (because we are predicting a PDF) class ClampNorm(nn.Module): def __init__(self): super(ClampNorm, self).__init__() def forward(self, x): out = x.clamp(0.0, 1.0) return out / out.sum(1, keepdim=True) # ======================================================================== # Linear regression class LinearRegNet(nn.Module): def __init__(self, D_in, D_out): super(LinearRegNet, self).__init__() self.fc1 = nn.Linear(D_in, D_out) def forward(self, x): out = self.fc1(x) return out # ======================================================================== class RelErrorLoss(nn.Module): def __init__(self): super(RelErrorLoss, self).__init__() self.eps = 1e-6 def forward(self, input, target): return torch.mean(torch.abs(target - input) / (target + self.eps)) # ======================================================================== def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) # ======================================================================== def dnn_training(Xtrain, Xdev, Ytrain, Ydev, use_gpu=False): """ Train using a deep neural network """ if use_gpu: device = torch.device("cuda") else: device = torch.device("cpu") dtype = torch.double vh = VariableHandler(device=device, dtype=dtype) # Make sure inputs are numpy arrays Xtrain = np.asarray(Xtrain, dtype=np.float64) Ytrain = np.asarray(Ytrain, dtype=np.float64) Xdev = np.asarray(Xdev, dtype=np.float64) Ydev = np.asarray(Ydev, dtype=np.float64) # N is batch size; D_in is input dimension; D_out is output dimension batch_size = 64 input_size = Xtrain.shape[1] layer_sizes = [256, 512, Ytrain.shape[1]] torch.manual_seed(5_465_462) # Construct the NN model model = Net(input_size, layer_sizes, vh).to(device=device, dtype=dtype) # The number of times entire dataset is trained nepochs = 500 # Learning rate learning_rate = 1e-4 # Loss and optimizer # criterion = nn.BCELoss().to(device=device) criterion = nn.MSELoss().to(device=device) optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Tensorboard output writer = SummaryWriter() logdir = writer.file_writer.get_logdir() model_name = "DNN" xdummy = vh.tovar(torch.randn(1, Xtrain.shape[1])) writer.add_graph(model, (xdummy,), verbose=True) # Train the model nbatches = Xtrain.shape[0] // batch_size start = time.time() for epoch in range(nepochs): model.train() permutation = torch.randperm(Xtrain.shape[0]) for batch, i in enumerate(range(0, Xtrain.shape[0], batch_size)): # Global step step = epoch * nbatches + batch # Take a batch indices = permutation[i : i + batch_size] batch_x = vh.tovar(Xtrain[indices, :]) batch_y = vh.tovar(Ytrain[indices, :]) # Forward pass: Compute predicted y by passing x to the model y_pred = model(batch_x) # Compute and log information loss = criterion(y_pred, batch_y) writer.add_scalar("loss", loss.item(), step) if batch % 10 == 0: print( "Epoch [{0:d}/{1:d}], Batch [{2:d}/{3:d}], Loss: {4:.4e}".format( epoch + 1, nepochs, batch + 1, nbatches, loss.item() ) ) # # Logging to tensorboardX # writer.add_text("Text", "text logged at step:" + str(step), step) # for name, param in model.named_parameters(): # writer.add_histogram(name, param.clone().cpu().data.numpy(), step) # Zero gradients, perform a backward pass, and update the weights. optimizer.zero_grad() loss.backward() optimizer.step() # Validation loss and adaptive time step model.eval() val_loss = criterion(model(vh.tovar(Xdev)), vh.tovar(Ydev)) writer.add_scalar("val_loss", val_loss.item(), step) print( "Epoch [{0:d}/{1:d}], Validation loss: {2:.4e}".format( epoch + 1, nepochs, val_loss.item() ) ) for param_group in optimizer.param_groups: print("Current learning rate", param_group["lr"]) # Save the models torch.save(model.state_dict(), os.path.join(logdir, model_name + ".pkl")) end = time.time() - start writer.close() model.eval() mtrain = model.predict(Xtrain) mdev = model.predict(Xdev) # Summarize training summarize_training( Ytrain, mtrain, Ydev, mdev, fname=os.path.join(logdir, model_name + ".log"), timing=end, dofs=count_parameters(model), ) return mtrain, mdev, model # ======================================================================== def predict_all_dice(model, model_scaler, datadir="data", half=False): """ Predict on data from all dices """ lst = [] dices = [ "dice_0002", "dice_0003", "dice_0004", "dice_0005", "dice_0006", "dice_0007", "dice_0008", "dice_0009", "dice_0010", ] # Normalization constant (computed on all the data) src_pv_norm = src_pv_normalization() for dice in dices: print(f"Predicting model on {dice}") # Load data pdf = pd.read_pickle(os.path.join(datadir, f"{dice}_pdfs.gz")) means = pd.read_pickle(os.path.join(datadir, f"{dice}_src_pv_means.gz")) Xdev = pd.read_pickle(os.path.join(datadir, f"{dice}_xdev.gz")) Ydev = pd.read_pickle(os.path.join(datadir, f"{dice}_ydev.gz")) dat = np.load(os.path.join(datadir, f"{dice}.npz")) z = dat["z"] # Switch scaler scaler = joblib.load(os.path.join(datadir, f"{dice}_scaler.pkl")) Xdev = utilities.switch_scaler(Xdev, scaler, model_scaler) if half: idx = pdf.xc > 0 Xdev = Xdev.loc[idx.loc[Xdev.index]] Ydev = Ydev.loc[idx.loc[Ydev.index]] # Prediction mdev = model.predict(Xdev) jsd = calculate_jsd(Ydev, mdev) jsd90 = np.percentile(jsd, [90]) # Perform convolution conv = convolution_means(mdev, means.loc[Ydev.index]) rmse, mae, r2 = error_metrics(pdf.SRC_PV.loc[Ydev.index], conv) lst.append( { "z": z, "rmse": rmse / src_pv_norm, "mae": mae, "r2": r2, "jsd90": jsd90[0], } ) return pd.DataFrame(lst) # ======================================================================== def predict_full_dices( model, model_scaler, dices=[ "dice_0002", "dice_0003", "dice_0004", "dice_0005", "dice_0006", "dice_0007", "dice_0008", "dice_0009", "dice_0010", ], datadir="data", half=False, ): """ Predict on all data from all dices """ lst = [] for dice in dices: print(f"Predicting model on {dice}") # Load data pdf = pd.read_pickle(os.path.join(datadir, f"{dice}_pdfs.gz")) means = pd.read_pickle(os.path.join(datadir, f"{dice}_src_pv_means.gz")) X = pd.DataFrame( model_scaler.transform(pdf[get_xnames()]), index=pdf.index, columns=get_xnames(), ) # Prediction mpred = model.predict(X) # Perform convolution and save data df = pd.DataFrame( { "xc": pdf.xc, "yc": pdf.yc, "zc": pdf.zc, "exact": pdf.SRC_PV, "model": convolution_means(mpred, means), }, index=pdf.index, ) df["dice"] = dice lst.append(df) return pd.concat(lst) # ======================================================================== def lrp_all_dice(DNN, model_scaler, datadir="data"): """ Calculate DNN LRP on data from all dices """ lst = [] dices = [ "dice_0002", # "dice_0003", "dice_0004", # "dice_0005", "dice_0006", # "dice_0007", "dice_0008", # "dice_0009", "dice_0010", ] fname = "lrp_hist.pdf" with PdfPages(fname) as pdf: plt.close("all") plt.rc("text", usetex=True) for d, dice in enumerate(dices): print(f"DNN LRP on {dice}") # Load data Xdev = pd.read_pickle(os.path.join(datadir, f"{dice}_xdev.gz")) dat = np.load(os.path.join(datadir, f"{dice}.npz")) z = dat["z"] # Switch scaler scaler = joblib.load(os.path.join(datadir, f"{dice}_scaler.pkl")) Xdev = utilities.switch_scaler(Xdev, scaler, model_scaler) # LRP lrp_values = lrp.eval_lrp(Xdev, DNN) # Compute relevances (TODO: figure out which one to use) relevances = np.mean(lrp_values, axis=0) # relevances = np.mean(lrp_values, axis=0) / np.sum(np.mean(lrp_values, axis=0)) # relevances = np.mean(lrp_values / np.sum(lrp_values, axis=1)[:, None], axis=0) # Store lst.append( { "z": z, Xdev.columns[0]: relevances[0], Xdev.columns[1]: relevances[1], Xdev.columns[2]: relevances[2], Xdev.columns[3]: relevances[3], } ) # Histogram plot of LRP values nbins = 100 bins = np.linspace(-0.2, 1.0, 100) for k in range(lrp_values.shape[1]): hist, bins = np.histogram(lrp_values[:, k], bins=nbins, density=True) centers = utilities.edges_to_midpoint(bins) plt.figure(k) plt.plot(centers, hist, color=cmap[d % len(cmap)]) for k, xname in enumerate(get_xnames()): plt.figure(k) plt.title(xname) plt.tight_layout() pdf.savefig(dpi=300, bbox_inches="tight") return pd.DataFrame(lst) # ======================================================================== def shuffled_input_loss(model, X, Y): """Get the loss from shuffling each input column This provides an estimate of the feature importance of a model by evaluating the change in the loss metric when input columns are shuffled one at a time. Note that this is not a "perfect" way of computing feature importance. There are many ways to compute feature importance and there are many failure modes (ftp://ftp.sas.com/pub/neural/importance.html). One major issue is collinearity of input variables. :param model: model :type model: model :param X: data for prediction :type X: dataframe :param Y: true values :type Y: dataframe :return: loss normalized by unshuffled loss :rtype: dataframe """ def loss(true, predicted, metric="rmse"): if metric == "jsd": jsd = calculate_jsd(true, predicted) return np.percentile(jsd, [90])[0] elif metric == "rmse": return rmse_metric(true, predicted) dic = {} metric = "rmse" np.random.seed(985_721) dic["original"] = loss(Y, model.predict(X), metric=metric) for col in X: # Shuffle a single column and compute the loss df = X.copy() np.random.shuffle(df[col].values) dic[col] = loss(Y, model.predict(df), metric=metric) return pd.DataFrame([dic]) # ======================================================================== def prediction_times(models, X, Y): """ Get predictions times for different models :param models: dictionary of models (models must contain predict function) :type models: dict :param X: data for prediction :type X: array :param Y: true values :type Y: array :return: prediction times :rtype: dataframe """ lst = [] N = 10 for key, model in models.items(): # Estimate the prediction time end = [] for k in range(N): start = time.time() mpredict = model.predict(X) end.append(time.time() - start) # Calculate the prediction error jsd = calculate_jsd(Y, mpredict) jsd90 = np.percentile(jsd, [90]) lst.append({"model": key, "time": np.mean(end) / X.shape[0], "error": jsd90[0]}) return pd.DataFrame(lst) # ======================================================================== def summarize_training( ytrain, mtrain, ydev, mdev, fname="summary.log", timing=0.0, dofs=0 ): """ Summarize training :param label: method label :type label: string :param ytrain: true training values :type ytrain: array :param mtrain: predicted training values :type mtrain: array :param ydev: true dev values :type ydev: array :param mdev: predicted dev values :type mdev: array :param fname: log filename :type fname: str :param timing: training time :type timing: float :param dofs: number of degrees of freedom in model :type dofs: int """ jsd_train = calculate_jsd(ytrain, mtrain) jsd_dev = calculate_jsd(ydev, mdev) std_error_train = np.std(np.ravel(ytrain - mtrain) ** 2) std_error_dev = np.std(np.ravel(ydev - mdev) ** 2) percentiles = [85, 90, 95] percentiles_train = np.percentile(jsd_train, percentiles) percentiles_dev = np.percentile(jsd_dev, percentiles) msg = ( f"""Training data errors\n""" f""" MAE: {mean_absolute_error(ytrain, mtrain):e}\n""" f""" MSE: {mean_squared_error(ytrain, mtrain):e}\n""" f""" std SE: {std_error_train:e}\n""" f""" R^2: {r2_score(ytrain, mtrain):.2f}\n""" f""" JSD 85 percentile: {percentiles_train[0]:5f}\n""" f""" JSD 90 percentile: {percentiles_train[1]:5f}\n""" f""" JSD 95 percentile: {percentiles_train[2]:5f}\n""" f"""\n""" f"""Dev data errors\n""" f""" MAE: {mean_absolute_error(ydev, mdev):e}\n""" f""" MSE: {mean_squared_error(ydev, mdev):e}\n""" f""" std SE: {std_error_dev:e}\n""" f""" R^2: {r2_score(ydev, mdev):.2f}\n""" f""" JSD 85 percentile: {percentiles_dev[0]:5f}\n""" f""" JSD 90 percentile: {percentiles_dev[1]:5f}\n""" f""" JSD 95 percentile: {percentiles_dev[2]:5f}\n""" f"""\n""" f"""Training time: {timing:5f} seconds\n""" f"""Model DoFs: {dofs:5d}\n""" ) # Output and write to file print(msg) with open(fname, "w") as f: f.write(msg) # ======================================================================== def plot_result(ytrain, mtrain, ydev, mdev, labels, bins, fname="summary.pdf"): """ Plot results :param ytrain: true training values :type ytrain: array :param mtrain: predicted training values :type mtrain: array :param ydev: true dev values :type ydev: array :param mdev: predicted dev values :type mdev: array :param labels: PDF labels, i.e. pdf.loc[Xdev.index,Xdev.columns] :type labels: dataframe :param bins: bins for Z and C :type bins: dataframe :param fname: plot filename :type fname: str """ ytrain = np.asarray(ytrain, dtype=np.float64) mtrain = np.asarray(mtrain, dtype=np.float64) ydev = np.asarray(ydev, dtype=np.float64) mdev = np.asarray(mdev, dtype=np.float64) with PdfPages(fname) as pdf: plt.close("all") # Plot some sample PDF predictions nc = len(np.unique(bins.Cbins)) nz = len(np.unique(bins.Zbins)) # C = np.reshape(bins.Cbins.values, (nc, nz)) # Z = np.reshape(bins.Zbins.values, (nc, nz)) zbin_edges = utilities.midpoint_to_edges(bins.Zbins) cbin_edges = utilities.midpoint_to_edges(bins.Cbins) extent = [ zbin_edges.min(), zbin_edges.max(), zbin_edges.min(), cbin_edges.max(), ] n = 10 # # Random sort # np.random.seed(42) # indices = np.random.randint(low=0, high=ydev.shape[0], size=n) # Sort by decreasing JSD jsd_dev = calculate_jsd(ydev, mdev) indices = np.argsort(-jsd_dev)[:n] plt.figure(0, figsize=(24, 32)) plt.clf() for i, idx in enumerate(indices): ax = plt.subplot(n, 3, 1 + i * 3) im = plt.imshow( np.reshape(ydev[idx, :], (nc, nz)), origin="lower", extent=extent, aspect="auto", ) plt.colorbar(im) plt.xlabel("Mixture Fraction") plt.ylabel("Progress Variable") label = ( f"""index:{labels.iloc[idx].name}\n""" f"""c ={labels.iloc[idx].C:.6f}\n""" f"""c''={labels.iloc[idx].Cvar:.6f}\n""" f"""Z ={labels.iloc[idx].Z:.6f}\n""" f"""Z''={labels.iloc[idx].Zvar:.6f}""" ) plt.title(f"True Joint PDF") style = dict(size=10, color="white", ha="left", va="top") ax.text(0.02, 0.2, label, **style) plt.subplot(n, 3, 2 + i * 3) im = plt.imshow( np.reshape(mdev[idx, :], (nc, nz)), origin="lower", extent=extent, aspect="auto", ) plt.colorbar(im) plt.xlabel("Mixture Fraction") plt.ylabel("Progress Variable") plt.title("Predicted Joint PDF") plt.subplot(n, 3, 3 + i * 3) err_dev = mdev - ydev im = plt.imshow( np.reshape(err_dev[idx, :], (nc, nz)), origin="lower", extent=extent, aspect="auto", ) plt.colorbar(im) plt.xlabel("Mixture Fraction") plt.ylabel("Progress Variable") plt.title( "Error in PDF (JSD = {0:f})".format( jensen_shannon_divergence(ydev[idx, :], mdev[idx, :]) ) ) plt.tight_layout() pdf.savefig(dpi=300, bbox_inches="tight") # PDF of the JSD jsd_train = calculate_jsd(ytrain, mtrain) jsd_dev = jsd_dev[np.isfinite(jsd_dev)] jsd_train = jsd_train[np.isfinite(jsd_train)] bins = np.linspace(0, 0.5, 100) hist_train, _ = np.histogram(jsd_train, bins=bins, density=True) hist_dev, _ = np.histogram(jsd_dev, bins=bins, density=True) cum_train = np.cumsum(hist_train) * np.diff(bins) cum_dev = np.cumsum(hist_dev) * np.diff(bins) centers = utilities.edges_to_midpoint(bins) plt.figure(1) plt.clf() plt.plot(centers, hist_train, label="Train") plt.plot(centers, hist_dev, label="Dev") plt.legend() plt.title(f"PDF of JSD") plt.xlabel("") plt.tight_layout() pdf.savefig(dpi=300, bbox_inches="tight") plt.figure(2) plt.clf() plt.plot(centers, cum_train, label="Train") plt.plot(centers, cum_dev, label="Dev") plt.legend() plt.title(f"Cumulative sum of JSD PDF") plt.xlabel("") plt.tight_layout() pdf.savefig(dpi=300, bbox_inches="tight") # # PDF of the relative errors DOESNT make sense for PDF prediction # nkde = min(1000, ydev.shape[0]) # kde_train = gaussian_kde(1 - np.ravel(np.ravel(mtrain[:nkde] / ytrain[:nkde]))) # kde_dev = gaussian_kde(1 - np.ravel(np.ravel(mdev[:nkde] / ydev[:nkde]))) # pdf_space = np.linspace(-2e-2, 2e-2, 500) # plt.figure(1) # plt.clf() # plt.semilogy(pdf_space, kde_train(pdf_space), label="Train") # plt.semilogy(pdf_space, kde_dev(pdf_space), label="Dev") # plt.legend() # plt.title(f"{label}: PDF of relative errors") # plt.xlabel("") # plt.ylim([1e-5, 1e4]) # plt.tight_layout() # pdf.savefig(dpi=300, bbox_inches="tight") # ======================================================================== def plot_scatter(true, predicted, fname="scatter.pdf"): """ Make a generic scatter plot of true vs predicted """ eps = 1e-13 error = predicted / (true + eps) - 1 rmse = rmse_metric(true, predicted) lower, upper = np.percentile(error, [5, 95]) bins = np.linspace(-0.5, 0.5, 100) hist, _ = np.histogram(error, bins=bins, density=True) centers = utilities.edges_to_midpoint(bins) with PdfPages(fname) as pdf: plt.close("all") plt.figure(0) plt.scatter(true, predicted, alpha=0.05) plt.plot([0, np.max(true)], [0, np.max(true)], "-k") plt.xlabel("True") plt.ylabel("Predicted") plt.title(f"RMSE: {rmse:.3e}") plt.axis("equal") plt.tight_layout() pdf.savefig(dpi=300, bbox_inches="tight") plt.figure(1) plt.plot(centers, hist) plt.title(f"""PDF of relative errors (90% in [{lower:.3f}, {upper:.3f}])""") plt.tight_layout() pdf.savefig(dpi=300, bbox_inches="tight") # ======================================================================== def plot_input_space(pdfs, fname="inputs.pdf"): """ Make plots of the PDF input space """ # Setup x = pdfs.Z y = pdfs.C with PdfPages(fname) as pdf: plt.close("all") plt.rc("text", usetex=True) # definitions for the axes pad = 0.02 left, width = 0.12, 0.65 bottom, height = 0.1, 0.65 bottom_h = left + width + pad hist_height = 0.2 # First figure rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom_h, width, hist_height] plt.figure(0, figsize=(10, 8)) axs0 = plt.axes(rect_scatter) axhx = plt.axes(rect_histx) # Scatter plot im = axs0.scatter(x, y, c=pdfs.Zvar, marker=".", alpha=0.1, cmap="viridis", rasterized=True) cbar = plt.colorbar(im, ax=axs0) cbar.ax.set_title(r"$\widetilde{Z''}$", fontsize=28) cbar.set_alpha(1.0) cbar.ax.tick_params(labelsize=22) cbar.draw_all() # Histogram on top (resize because of colorbar) axhx.hist(x, bins=50, density=True) axhx.tick_params( axis="both", which="both", bottom=False, top=False, labelbottom=False ) axhx.set_ylabel(r"$P(\widetilde{Z})$", fontsize=28) plt.setp(axhx.get_ymajorticklabels(), fontsize=22) pos_s0 = axs0.get_position() pos_hx = axhx.get_position() axhx.set_position([pos_s0.x0, pos_hx.y0, pos_s0.width, pos_hx.height]) axs0.set_xlabel(r"$\widetilde{Z}$", fontsize=28) axs0.set_ylabel(r"$\widetilde{c}$", fontsize=28) plt.setp(axs0.get_xmajorticklabels(), fontsize=22) plt.setp(axs0.get_ymajorticklabels(), fontsize=22) pdf.savefig(dpi=150) # Second figure rect_histy = [left + pos_s0.width + pad, bottom, hist_height, height] plt.figure(1, figsize=(10, 8)) axs1 = plt.axes(rect_scatter) axhy = plt.axes(rect_histy) # Scatter plot im = axs1.scatter(x, y, c=pdfs.Cvar, marker=".", alpha=0.1, cmap="viridis", rasterized=True) axs1.tick_params(axis="both", which="both", left=False, labelleft=False) pos_s1 = axs1.get_position() axs1.set_position([pos_s0.x0, pos_s1.y0, pos_s0.width, pos_s1.height]) # Histogram to the right axhy.hist(y, bins=50, density=True, orientation="horizontal") axhy.tick_params( axis="both", which="both", bottom=True, top=False, left=False, right=False, labelbottom=True, labelleft=False, ) axhy.set_xlabel(r"$P(\widetilde{c})$", fontsize=28) plt.setp(axhy.get_xmajorticklabels(), fontsize=22) pos_hy = axhy.get_position() axhy.set_position([pos_hy.x0, pos_hy.y0, pos_hx.height, pos_hy.height]) # Then colorbar cbar = plt.colorbar(im, ax=axhy) cbar.ax.set_title(r"$\widetilde{c''}$", fontsize=28) cbar.set_alpha(1.0) cbar.ax.tick_params(labelsize=22) cbar.draw_all() axs1.set_xlabel(r"$\widetilde{Z}$", fontsize=28) plt.setp(axs1.get_xmajorticklabels(), fontsize=22) plt.setp(axs1.get_ymajorticklabels(), fontsize=22) pdf.savefig(dpi=150) # Third figure rect_scatter = [left, bottom, width, height] plt.figure(2, figsize=(10, 8)) axs0 = plt.axes(rect_scatter) # Scatter plot im = axs0.scatter(x, y, c=pdfs.SRC_PV, marker=".", alpha=0.1, cmap="viridis", rasterized=True) cbar = plt.colorbar(im, ax=axs0) cbar.ax.set_title(r"$\widetilde{\dot{\omega}}$", fontsize=28) cbar.set_alpha(1.0) cbar.ax.tick_params(labelsize=22) cbar.draw_all() axs0.set_xlabel(r"$\widetilde{Z}$", fontsize=28) axs0.set_ylabel(r"$\widetilde{c}$", fontsize=28) plt.setp(axs0.get_xmajorticklabels(), fontsize=22) plt.setp(axs0.get_ymajorticklabels(), fontsize=22) pdf.savefig(dpi=150) # ======================================================================== def set_aspect_display_coord(ratio=0.5, ax=None): """Set the aspect ratio based on the figure display coordinates""" if ax is None: ax = plt.gca() xleft, xright = ax.get_xlim() ybottom, ytop = ax.get_ylim() ax.set_aspect(abs((xright - xleft) / (ybottom - ytop)) * ratio) # ======================================================================== def plot_pdfs( pdfs, means, bins, fname="pdfs.pdf", label=False, models=None, legend=False ): """ Make plots of the PDFs """ nc = len(np.unique(bins.Cbins)) nz = len(np.unique(bins.Zbins)) zbin_centers = np.unique(bins.Zbins) cbin_centers = np.unique(bins.Cbins) zbin_edges = utilities.midpoint_to_edges(zbin_centers) cbin_edges = utilities.midpoint_to_edges(cbin_centers) extent = [zbin_edges.min(), zbin_edges.max(), zbin_edges.min(), cbin_edges.max()] y_vars = get_ynames(pdfs) nlines = 4 nskip = len(cbin_centers) // nlines with PdfPages(fname) as pdf: plt.rc("text", usetex=True) plt.close("all") fig0 = plt.figure(0) fig1 = plt.figure(1) fig2 = plt.figure(2) ax2 = fig2.add_subplot(111) fig3 = plt.figure(3) ax3 = fig3.add_subplot(111) fig4 = plt.figure(4) ax4 = fig4.add_subplot(111) fig5 = plt.figure(5) ax5 = fig5.add_subplot(111) for i, idx in enumerate(pdfs.index): pdfi = np.reshape(pdfs.loc[idx, y_vars].values, (nc, nz)) meansi = np.reshape(means.loc[idx, y_vars].values, (nc, nz)) # Plot PDF plt.figure(0) plt.clf() ax0 = fig0.add_subplot(111) im = ax0.imshow( pdfi, origin="lower", extent=extent, aspect="auto", interpolation="lanczos", cmap="magma", ) if label: labels = ( f"""$\widetilde{{Z}} ={pdfs.loc[idx].Z:.4f}$\n""" f"""$\widetilde{{Z''}}={pdfs.loc[idx].Zvar:.4f}$\n""" f"""$\widetilde{{c}} ={pdfs.loc[idx].C:.4f}$\n""" f"""$\widetilde{{c''}}={pdfs.loc[idx].Cvar:.4f}$\n""" f"""$\widetilde{{\dot{{\omega}}}}={pdfs.loc[idx].SRC_PV:.4f}$""" ) print(labels) style = dict(size=10, color="white", ha="left", va="top") ax0.text(0.02, 0.2, labels, **style) cbar = plt.colorbar(im) cbar.ax.set_title(r"$P(Z=Z^*,c = c^*)$") ax0.set_yticks([0, 0.05, 0.1, 0.15, 0.2]) ax0.set_xlabel(r"$Z^*$", fontsize=22, fontweight="bold") ax0.set_ylabel(r"$c^*$", fontsize=22, fontweight="bold") plt.setp(ax0.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax0.get_ymajorticklabels(), fontsize=18, fontweight="bold") fig0.subplots_adjust(bottom=0.14) fig0.subplots_adjust(left=0.17) pdf.savefig(dpi=300) # Plot means plt.figure(1) plt.clf() ax1 = fig1.add_subplot(111) im = ax1.imshow( meansi, origin="lower", extent=extent, aspect="auto", interpolation="lanczos", cmap="magma", ) cbar = plt.colorbar(im) cbar.ax.set_title(r"$\dot{\omega}(Z=Z^*,c = c^*)$") ax1.set_yticks([0, 0.05, 0.1, 0.15, 0.2]) ax1.set_xlabel(r"$Z^*$", fontsize=22, fontweight="bold") ax1.set_ylabel(r"$c^*$", fontsize=22, fontweight="bold") plt.setp(ax1.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax1.get_ymajorticklabels(), fontsize=18, fontweight="bold") fig1.subplots_adjust(bottom=0.14) fig1.subplots_adjust(left=0.17) pdf.savefig(dpi=300) # plot marginal distributions plt.figure(2) p = ax2.plot( zbin_centers, np.sum(pdfi, axis=0), lw=2, color=cmap[i], label=f"""$\widetilde{{\dot{{\omega}}}}={pdfs.loc[idx].SRC_PV:.2f}$""", ) p[0].set_dashes(dashseq[i]) if models is not None: p[0].set_color(cmap[-1]) p[0].set_dashes(dashseq[0]) p[0].set_zorder(10) for m, model in enumerate(models): p = ax2.plot( zbin_centers, np.sum(np.reshape(models[model][i, :], (nc, nz)), axis=0), lw=2, color=cmap[m], ) p[0].set_dashes(dashseq[m]) plt.figure(3) p = ax3.plot(cbin_centers, np.sum(pdfi, axis=1), lw=2, color=cmap[i]) p[0].set_dashes(dashseq[i]) if models is not None: p[0].set_color(cmap[-1]) p[0].set_dashes(dashseq[0]) p[0].set_zorder(10) for m, model in enumerate(models): p = ax3.plot( cbin_centers, np.sum(np.reshape(models[model][i, :], (nc, nz)), axis=1), lw=2, color=cmap[m], ) p[0].set_dashes(dashseq[m]) plt.figure(4) p = ax4.plot(zbin_centers, np.sum(meansi, axis=0), lw=2, color=cmap[i]) p[0].set_dashes(dashseq[i]) plt.figure(5) p = ax5.plot(cbin_centers, np.sum(meansi, axis=1), lw=2, color=cmap[i]) p[0].set_dashes(dashseq[i]) plt.figure(2) if legend: lgd = ax2.legend() ax2.set_xlabel(r"$Z^*$", fontsize=22, fontweight="bold") ax2.set_ylabel(r"$P(Z=Z^*)$", fontsize=22, fontweight="bold") plt.setp(ax2.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax2.get_ymajorticklabels(), fontsize=18, fontweight="bold") fig2.subplots_adjust(bottom=0.14) fig2.subplots_adjust(left=0.17) pdf.savefig(dpi=300) plt.figure(3) ax3.set_xticks([0, 0.05, 0.1, 0.15, 0.2]) ax3.set_xlabel(r"$c^*$", fontsize=22, fontweight="bold") ax3.set_ylabel(r"$P(c=c^*)$", fontsize=22, fontweight="bold") plt.setp(ax3.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax3.get_ymajorticklabels(), fontsize=18, fontweight="bold") fig3.subplots_adjust(bottom=0.14) fig3.subplots_adjust(left=0.17) pdf.savefig(dpi=300) plt.figure(4) # ax4.set_yscale('symlog', linthreshy=1e-3) ax4.set_yscale("log") ax4.set_ylim([1e-1, 1e4]) ax4.set_xlabel(r"$Z^*$", fontsize=22, fontweight="bold") ax4.set_ylabel( r"$\langle \dot{\omega}|Z=Z^* \rangle$", fontsize=22, fontweight="bold" ) plt.setp(ax4.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax4.get_ymajorticklabels(), fontsize=18, fontweight="bold") fig4.subplots_adjust(bottom=0.14) fig4.subplots_adjust(left=0.17) pdf.savefig(dpi=300) plt.figure(5) ax5.set_yscale("log") ax5.set_ylim([1e-1, 1e4]) ax5.set_xticks([0, 0.05, 0.1, 0.15, 0.2]) ax5.set_xlabel(r"$c^*$", fontsize=22, fontweight="bold") ax5.set_ylabel( r"$\langle \dot{\omega}|c=c^* \rangle$", fontsize=22, fontweight="bold" ) plt.setp(ax5.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax5.get_ymajorticklabels(), fontsize=18, fontweight="bold") fig5.subplots_adjust(bottom=0.14) fig5.subplots_adjust(left=0.17) pdf.savefig(dpi=300) # ======================================================================== def plot_dice_slices(fname): """ Make plots of slices in the dice :param fname: dice file name :type fname: str """ # Load dice file dat = np.load(fname) # Variables low = dat["low"] high = dat["high"] extent = [low[0], high[0], low[1], high[1]] dx = dat["dx"] z = dat["z"] rho = dat["Rho"] # index of slice slc = np.s_[:, :, rho.shape[2] // 2] # Get slices rho = rho[slc].T Z = np.clip(dat["Z"][slc].T, 0.0, 1.0) C = np.clip(dat["C"][slc].T, 0.0, None) SRC_PV = np.clip(dat["SRC_PV"][slc].T, 0.0, None) rhoZ = rho * Z rhoC = rho * C rhoSRC_PV = rho * SRC_PV # Filter width = 32 rhof = ndimage.uniform_filter(rho, size=width) Zf = ndimage.uniform_filter(rhoZ, size=width) / rhof Zvarf = ndimage.uniform_filter(rho * (Z - Zf) ** 2, size=width) / rhof Cf = ndimage.uniform_filter(rhoC, size=width) / rhof Cvarf = ndimage.uniform_filter(rho * (C - Cf) ** 2, size=width) / rhof SRC_PVf = ndimage.uniform_filter(rhoSRC_PV, size=width) / rhof figname = os.path.splitext(fname)[0] + "_slice.pdf" with PdfPages(figname) as pdf: plt.close("all") plt.rc("text", usetex=True) fields = [ {"field": Zf, "label": "$\\widetilde{Z}$"}, {"field": Zvarf, "label": "$\\widetilde{Z''}$"}, {"field": Cf, "label": "$\\widetilde{c}$"}, {"field": Cvarf, "label": "$\\widetilde{c''}$"}, {"field": SRC_PVf, "label": "$\\widetilde{\\dot{\\omega}}$"}, ] for i, field in enumerate(fields): fig, (ax0) = plt.subplots(1) im0 = ax0.imshow( field["field"], origin="lower", extent=extent, aspect="equal", vmin=0.0 ) cbar = plt.colorbar(im0, ax=ax0) cbar.ax.set_title(f"""{field["label"]}""", fontsize=22) cbar.ax.tick_params(labelsize=18) ax0.set_xlabel(r"$x~[\mathrm{m}]$", fontsize=22, fontweight="bold") ax0.set_ylabel(r"$y~[\mathrm{m}]$", fontsize=22, fontweight="bold") ticks = [-0.06, 0, 0.06] ax0.set_xticks(ticks) ax0.set_yticks(ticks) plt.setp(ax0.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax0.get_ymajorticklabels(), fontsize=18, fontweight="bold") plt.gcf().subplots_adjust(bottom=0.15) plt.gcf().subplots_adjust(left=0.17) pdf.savefig(dpi=300) # ======================================================================== def plot_jsd(jsd, legend=False): """ Make plots of JSD for different models :param jsd: JSD for different models :type jsd: dataframe :param legend: Draw legend on plots :type legend: bool """ fname = "jsd.pdf" pdf_space = np.linspace(0, 0.7, 500) bins = np.linspace(0, 0.7, 100) with PdfPages(fname) as pdf: plt.close("all") plt.rc("text", usetex=True) fig0 = plt.figure(0) ax0 = fig0.add_subplot(111) fig1 = plt.figure(1) ax1 = fig1.add_subplot(111) lst = [] for k, model in enumerate(jsd): kde = gaussian_kde(jsd[model]) pkde = kde(pdf_space) lst.append({"model": model, "jsd90": np.percentile(jsd[model], [90])[0]}) hist, _ = np.histogram(jsd[model], bins=bins, density=True) centers = utilities.edges_to_midpoint(bins) cum_hist = np.cumsum(hist) * np.diff(bins) plt.figure(0) p = ax0.plot(pdf_space, pkde, lw=2, color=cmap[k], label=model) p[0].set_dashes(dashseq[k]) plt.figure(1) p = ax1.plot(centers, cum_hist, lw=2, color=cmap[k], label=model) p[0].set_dashes(dashseq[k]) df = pd.DataFrame(lst) print(df.to_latex()) # Format figures plt.figure(0) if legend: lgd = ax0.legend() ax0.set_xlabel(r"$J$", fontsize=22, fontweight="bold") ax0.set_ylabel(r"$P(J)$", fontsize=22, fontweight="bold") plt.setp(ax0.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax0.get_ymajorticklabels(), fontsize=18, fontweight="bold") fig0.subplots_adjust(bottom=0.15) fig0.subplots_adjust(left=0.17) pdf.savefig(dpi=300) plt.figure(1) ax1.set_xlabel(r"$J$", fontsize=22, fontweight="bold") ax1.set_ylabel(r"$CDF(J)$", fontsize=22, fontweight="bold") plt.setp(ax1.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax1.get_ymajorticklabels(), fontsize=18, fontweight="bold") fig1.subplots_adjust(bottom=0.15) fig1.subplots_adjust(left=0.17) pdf.savefig(dpi=300) # ======================================================================== def plot_dice_predictions(predictions, legend=False): """ Make plots for predictions from all dice :param legend: Draw legend on plots :type legend: bool """ fname = "dice_predictions.pdf" with PdfPages(fname) as pdf: plt.close("all") plt.rc("text", usetex=True) fig0 = plt.figure(0) ax0 = fig0.add_subplot(111) fig1 = plt.figure(1) ax1 = fig1.add_subplot(111) for k, model in enumerate(predictions): plt.figure(0) p = ax0.plot( predictions[model].z, predictions[model].jsd90, lw=2, color=cmap[k], label=model, marker=markertype[k], ms=10, ) p[0].set_dashes(dashseq[k]) plt.figure(1) p = ax1.plot( predictions[model].z, predictions[model].rmse, lw=2, color=cmap[k], label=model, marker=markertype[k], ms=10, ) p[0].set_dashes(dashseq[k]) # Format figures plt.figure(0) if legend: lgd = ax0.legend() ax0.set_xlabel(r"$z~[\mathrm{m}]$", fontsize=22, fontweight="bold") ax0.set_ylabel(r"$J_{90}$", fontsize=22, fontweight="bold") ax0.set_ylim([0, 0.75]) plt.setp(ax0.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax0.get_ymajorticklabels(), fontsize=18, fontweight="bold") fig0.subplots_adjust(bottom=0.15) fig0.subplots_adjust(left=0.17) pdf.savefig(dpi=300) plt.figure(1) ax1.set_xlabel(r"$z~[\mathrm{m}]$", fontsize=22, fontweight="bold") ax1.set_ylabel( r"RMSE$(\widetilde{\dot{\omega}})$", fontsize=22, fontweight="bold" ) plt.setp(ax1.get_xmajorticklabels(), fontsize=18, fontweight="bold") plt.setp(ax1.get_ymajorticklabels(), fontsize=18, fontweight="bold") fig1.subplots_adjust(bottom=0.15) fig1.subplots_adjust(left=0.17) pdf.savefig(dpi=300) # ======================================================================== def plot_convolution(true, convolutions, bins, legend=False): """ Make plots of convolution for different models :param true: dataframe containing true SRC_PV values :type true: dataframe :param convolution: convolution for different models :type convolution: dataframe :param legend: Draw legend on plots :type legend: bool """ src_pv = np.asarray(true.SRC_PV, dtype=np.float64) zbin_centers = np.unique(bins.Zbins) cbin_centers =
np.unique(bins.Cbins)
numpy.unique
import numpy as np def mean_std(data): mean = sum(data) / len(data) std = np.std(data) return mean, std def min_max(data): min_value = min(data) max_value = max(data) return min_value, max_value def show_stats_number(data): mean, std = mean_std(data) print("Mean: {}".format(mean)) print("Standard Deviation: {}".format(std)) min_value, max_value = min_max(data) print("Min: {}".format(min_value)) print("Max: {}".format(max_value)) def show_stats(df, label): data = df[label] dtype = str(data.dtype) if dtype.find("int") >= 0 or dtype.find("float") >= 0: show_stats_number(data) else: pass # show_stats_categories(data) def reject_outliers(data, m=2): ''' :param data: numpy array :param m: std multiplier :return: data with no outliers based on std ''' return data[abs(data - np.mean(data)) < m * np.std(data)] def reject_outliers_percentile(data,index=False): ''' :param data: numpy array :return: data with no outliers, values are between 25% and 75% percentiles ''' len_data=len(data) data=np.sort(data) return data[int(len_data*0.25):int(len_data*0.75)] p25 =
np.percentile(data, 25)
numpy.percentile
import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import os import json import pandas as pd import re import ir_thermography.thermometry as irt import matplotlib.ticker as ticker from scipy import interpolate from scipy.signal import savgol_filter from scipy import interpolate import platform base_path = r'C:\Users\erick\OneDrive\Documents\ucsd\Postdoc\research\data\firing_tests\heat_flux_calibration\IR Thermography Calibration' # data_file = 'LT_GR008G_4mTorr-contact-shield_080PCT_60GAIN 2022-05-06_1' data_file = 'LT_GR008G_6mTorr-contact-shield_100PCT_50GAIN 2022-05-04_1' time_constant_1, time_constant_2 = 2.1148, 2.1148 emissivity = 1.0 - (36.9 / 100) tc_min = 0.0 def correct_thermocouple_response(measured_temperature, measured_time, time_constant, debug=False): n = len(measured_time) k = int(n / 10) k = k + 1 if k % 2 == 0 else k T = savgol_filter(measured_temperature, k, 2) dTdt = np.gradient(T, measured_time, edge_order=2) if debug: for ti, Ti, Ts, dti in zip(measured_time, measured_temperature, T, dTdt): print(f'{ti:6.3f} s, T = {Ti:6.2f} °C, T_smooth: {Ts:6.3f} dT/dt = {dti:>5.3E}') # dTdt = savgol_filter(dTdt, k, 3) r = T + time_constant * dTdt r = savgol_filter(r, k - 4, 3) return r def get_experiment_params(relative_path: str, filename: str): # Read the experiment parameters results_csv = os.path.join(relative_path, f'{filename}.csv') count = 0 params = {} with open(results_csv) as f: for line in f: if line.startswith('#'): if count > 1: l = line.strip() print(l) if l == '#Data:': break pattern1 = re.compile("\s+(.*?):\s(.*?)\s(.*?)$") pattern2 = re.compile("\s+(.*?):\s(.*?)$") matches1 = pattern1.findall(l) matches2 = pattern2.findall(l) if len(matches1) > 0: params[matches1[0][0]] = { 'value': matches1[0][1], 'units': matches1[0][2] } elif len(matches2) > 0: params[matches2[0][0]] = { 'value': matches2[0][1], 'units': '' } count += 1 return params if __name__ == '__main__': if platform.system() == 'Windows': base_path = r'\\?\\' + base_path results_path = os.path.join(base_path, 'temperature_data') data_filetag = data_file print('results_path: ', results_path) main_csv = os.path.join(base_path, data_filetag + '.csv') if not os.path.exists(results_path): os.makedirs(results_path) measurements_df = pd.read_csv(main_csv, comment='#').apply(pd.to_numeric) experiment_params = get_experiment_params(relative_path=base_path, filename=data_file) photodiode_gain = experiment_params['Photodiode Gain']['value'] laser_power_setting = experiment_params['Laser Power Setpoint']['value'] sample_name = experiment_params['Sample Name']['value'] output_path = os.path.join(results_path, f'{sample_name.upper()}_{laser_power_setting}') if not os.path.exists(output_path): os.makedirs(output_path) with open('plot_style.json', 'r') as file: json_file = json.load(file) plot_style = json_file['defaultPlotStyle'] mpl.rcParams.update(plot_style) thermometry = irt.PDThermometer() # print(measurements_df) measurement_time = measurements_df['Measurement Time (s)'].values trigger_voltage = measurements_df['Trigger (V)'].values photodiode_voltage = measurements_df['Photodiode Voltage (V)'].values # for i, p in enumerate(photodiode_voltage): # if np.isnan(p): # print(i, measurement_time[i], p) tc_csv = os.path.join(base_path, data_filetag + '_tcdata.csv') tc_df = pd.read_csv(tc_csv, comment='#').apply(pd.to_numeric) tc_time = tc_df['Time (s)'].values temperature_a = tc_df['TC1 (C)'].values # temperature_b = tc_df['TC2 (C)'].values ta_corrected = correct_thermocouple_response( measured_temperature=temperature_a, measured_time=tc_time, time_constant=time_constant_1 ) t_max_idx = measurement_time <= 3.0 tc_max_idx = tc_time <= np.inf measurement_time = measurement_time[t_max_idx] trigger_voltage = trigger_voltage[t_max_idx] photodiode_voltage = photodiode_voltage[t_max_idx] tc_time = tc_time[tc_max_idx] temperature_a = temperature_a[tc_max_idx] ta_corrected = ta_corrected[tc_max_idx] trigger_voltage = savgol_filter(trigger_voltage, 5, 4) irradiation_time_idx = trigger_voltage > 1.5 irradiation_time = measurement_time[irradiation_time_idx] reflection_signal = np.zeros_like(photodiode_voltage) sg_window = 9 photodiode_voltage[irradiation_time_idx] = savgol_filter(photodiode_voltage[irradiation_time_idx], sg_window, 2) t_pulse_max = irradiation_time.max() + 0.2 noise_level = np.abs(photodiode_voltage[measurement_time > t_pulse_max]).max() print(f"Noise Level: {noise_level:.4f} V") t0 = irradiation_time.min() # t0_idx = (np.abs(measurement_time - t0)).argmin() - 1 # t0 = measurement_time[t0_idx] irradiation_time -= t0 measurement_time -= t0 n = 3 reflective_signal_zero_idx = (
np.abs(measurement_time)
numpy.abs
#! /usr/bin/env python """Extract and plot channel long profiles. Plotting functions to extract and plot channel long profiles. Call all three functions in sequence from the main code. The functions will return the long profile nodes, return distances upstream of those nodes, and plot the long profiles, respectively. The former two are, by necessity, ragged lists of arrays - the number of channels, then the nodes in that channel. This module selects channels by taking the largest possible drainages crossing the grid boundaries. You can specify how many different channels it handles using the number_of_channels parameter in the channel_nodes function (default is 1). This may lead to strange outputs if the drainage structure of the output changes mid-run (e.g., channel piracy). This may be modified in the future. """ # DEJH, March 2014. from six.moves import range import numpy try: import matplotlib.pyplot as plt except ImportError: import warnings warnings.warn('matplotlib not found', ImportWarning) def channel_nodes(grid, steepest_nodes, drainage_area, flow_receiver, number_of_channels=1, threshold=None): if threshold == None: threshold = 2. * numpy.amin(grid.area_of_cell) boundary_nodes = grid.boundary_nodes #top_two_pc = len(boundary_nodes)//50 #starting_nodes = boundary_nodes[numpy.argsort(drainage_area[boundary_nodes])[-top_two_pc:]] starting_nodes = boundary_nodes[numpy.argsort( drainage_area[boundary_nodes])[-number_of_channels:]] profile_IDs = [] for i in starting_nodes: j = i data_store = [] while 1: data_store.append(j) supplying_nodes =
numpy.where(flow_receiver == j)
numpy.where
from __future__ import print_function import copy import os import sys import time import unittest from nose.plugins.skip import SkipTest from nose.tools import assert_raises import numpy from six.moves import xrange import theano from theano import tensor, config from theano.sandbox import rng_mrg from theano.sandbox.rng_mrg import MRG_RandomStreams from theano.sandbox.cuda import cuda_available from theano.tests import unittest_tools as utt from theano.tests.unittest_tools import attr if cuda_available: from theano.sandbox.cuda import float32_shared_constructor # TODO: test gpu # Done in test_consistency_GPU_{serial,parallel} # TODO: test MRG_RandomStreams # Partly done in test_consistency_randomstreams # TODO: test optimizer mrg_random_make_inplace # TODO: make tests work when no flags gived. Now need: # THEANO_FLAGS=device=gpu0,floatX=float32 # Partly done, in test_consistency_GPU_{serial,parallel} mode = config.mode mode_with_gpu = theano.compile.mode.get_default_mode().including('gpu') utt.seed_rng() # Results generated by Java code using L'Ecuyer et al.'s code, with: # main seed: [12345]*6 (default) # 12 streams # 7 substreams for each stream # 5 samples drawn from each substream java_samples = numpy.loadtxt(os.path.join(os.path.split(theano.__file__)[0], 'sandbox', 'samples_MRG31k3p_12_7_5.txt')) def test_deterministic(): seed = utt.fetch_seed() sample_size = (10, 20) test_use_cuda = [False] if cuda_available: test_use_cuda.append(True) for use_cuda in test_use_cuda: # print 'use_cuda =', use_cuda R = MRG_RandomStreams(seed=seed, use_cuda=use_cuda) u = R.uniform(size=sample_size) f = theano.function([], u) fsample1 = f() fsample2 = f() assert not numpy.allclose(fsample1, fsample2) R2 = MRG_RandomStreams(seed=seed, use_cuda=use_cuda) u2 = R2.uniform(size=sample_size) g = theano.function([], u2) gsample1 = g() gsample2 = g() assert numpy.allclose(fsample1, gsample1) assert numpy.allclose(fsample2, gsample2) def test_consistency_randomstreams(): """ Verify that the random numbers generated by MRG_RandomStreams are the same as the reference (Java) implementation by L'Ecuyer et al. """ seed = 12345 n_samples = 5 n_streams = 12 n_substreams = 7 test_use_cuda = [False] if cuda_available: test_use_cuda.append(True) for use_cuda in test_use_cuda: # print 'use_cuda =', use_cuda samples = [] rng = MRG_RandomStreams(seed=seed, use_cuda=use_cuda) for i in range(n_streams): stream_samples = [] u = rng.uniform(size=(n_substreams,), nstreams=n_substreams) f = theano.function([], u) for j in range(n_samples): s = f() stream_samples.append(s) stream_samples = numpy.array(stream_samples) stream_samples = stream_samples.T.flatten() samples.append(stream_samples) samples = numpy.array(samples).flatten() assert(numpy.allclose(samples, java_samples)) def test_consistency_cpu_serial(): """ Verify that the random numbers generated by mrg_uniform, serially, are the same as the reference (Java) implementation by L'Ecuyer et al. """ seed = 12345 n_samples = 5 n_streams = 12 n_substreams = 7 samples = [] curr_rstate = numpy.array([seed] * 6, dtype='int32') for i in range(n_streams): stream_rstate = curr_rstate.copy() for j in range(n_substreams): rstate = theano.shared(numpy.array([stream_rstate.copy()], dtype='int32')) new_rstate, sample = rng_mrg.mrg_uniform.new(rstate, ndim=None, dtype=config.floatX, size=(1,)) # Not really necessary, just mimicking # rng_mrg.MRG_RandomStreams' behavior sample.rstate = rstate sample.update = (rstate, new_rstate) rstate.default_update = new_rstate f = theano.function([], sample) for k in range(n_samples): s = f() samples.append(s) # next substream stream_rstate = rng_mrg.ff_2p72(stream_rstate) # next stream curr_rstate = rng_mrg.ff_2p134(curr_rstate) samples = numpy.array(samples).flatten() assert(numpy.allclose(samples, java_samples)) def test_consistency_cpu_parallel(): """ Verify that the random numbers generated by mrg_uniform, in parallel, are the same as the reference (Java) implementation by L'Ecuyer et al. """ seed = 12345 n_samples = 5 n_streams = 12 n_substreams = 7 # 7 samples will be drawn in parallel samples = [] curr_rstate =
numpy.array([seed] * 6, dtype='int32')
numpy.array
import argparse import numpy as np import yaml import matplotlib.pyplot as plt if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-f', '--file', type=str, help = 'yaml files') parser.add_argument('-n', '--name', type=str, help = 'A name for figure title', default="") parser.add_argument('-o', '--output_name', type=str, help = 'output filename', default="histogram") parser.add_argument('--nbins', type=int, help = 'distribution nbins', default=20) opt = parser.parse_args() with open(opt.file, 'r') as stream: score_dict = yaml.load(stream, Loader=yaml.FullLoader) score_name = [] for filename in score_dict: for metric_name in score_dict[filename]: score_name.append(metric_name) break score_lists = {x:[] for x in score_name} for filename in score_dict: for metric_name in score_dict[filename]: score_lists[metric_name].append(score_dict[filename][metric_name]) # row = 1. column = len(score_name) fig, axs = plt.subplots(1, len(score_name), sharey=True) for idx, metric_name in enumerate(score_lists): mean_val = np.mean(score_lists[metric_name]) std_val =
np.std(score_lists[metric_name])
numpy.std
from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (assert_allclose, assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal) from scipy.ndimage import convolve1d from scipy.signal import savgol_coeffs, savgol_filter from scipy.signal._savitzky_golay import _polyder def check_polyder(p, m, expected): dp = _polyder(p, m) assert_array_equal(dp, expected) def test_polyder(): cases = [ ([5], 0, [5]), ([5], 1, [0]), ([3, 2, 1], 0, [3, 2, 1]), ([3, 2, 1], 1, [6, 2]), ([3, 2, 1], 2, [6]), ([3, 2, 1], 3, [0]), ([[3, 2, 1], [5, 6, 7]], 0, [[3, 2, 1], [5, 6, 7]]), ([[3, 2, 1], [5, 6, 7]], 1, [[6, 2], [10, 6]]), ([[3, 2, 1], [5, 6, 7]], 2, [[6], [10]]), ([[3, 2, 1], [5, 6, 7]], 3, [[0], [0]]), ] for p, m, expected in cases: check_polyder(np.array(p).T, m, np.array(expected).T) #-------------------------------------------------------------------- # savgol_coeffs tests #-------------------------------------------------------------------- def alt_sg_coeffs(window_length, polyorder, pos): """This is an alternative implementation of the SG coefficients. It uses numpy.polyfit and numpy.polyval. The results should be equivalent to those of savgol_coeffs(), but this implementation is slower. window_length should be odd. """ if pos is None: pos = window_length // 2 t = np.arange(window_length) unit = (t == pos).astype(int) h = np.polyval(np.polyfit(t, unit, polyorder), t) return h def test_sg_coeffs_trivial(): # Test a trivial case of savgol_coeffs: polyorder = window_length - 1 h = savgol_coeffs(1, 0) assert_allclose(h, [1]) h = savgol_coeffs(3, 2) assert_allclose(h, [0, 1, 0], atol=1e-10) h = savgol_coeffs(5, 4) assert_allclose(h, [0, 0, 1, 0, 0], atol=1e-10) h = savgol_coeffs(5, 4, pos=1) assert_allclose(h, [0, 0, 0, 1, 0], atol=1e-10) h = savgol_coeffs(5, 4, pos=1, use='dot') assert_allclose(h, [0, 1, 0, 0, 0], atol=1e-10) def compare_coeffs_to_alt(window_length, order): # For the given window_length and order, compare the results # of savgol_coeffs and alt_sg_coeffs for pos from 0 to window_length - 1. # Also include pos=None. for pos in [None] + list(range(window_length)): h1 = savgol_coeffs(window_length, order, pos=pos, use='dot') h2 = alt_sg_coeffs(window_length, order, pos=pos) assert_allclose(h1, h2, atol=1e-10, err_msg=("window_length = %d, order = %d, pos = %s" % (window_length, order, pos))) def test_sg_coeffs_compare(): # Compare savgol_coeffs() to alt_sg_coeffs(). for window_length in range(1, 8, 2): for order in range(window_length): compare_coeffs_to_alt(window_length, order) def test_sg_coeffs_exact(): polyorder = 4 window_length = 9 halflen = window_length // 2 x = np.linspace(0, 21, 43) delta = x[1] - x[0] # The data is a cubic polynomial. We'll use an order 4 # SG filter, so the filtered values should equal the input data # (except within half window_length of the edges). y = 0.5 * x ** 3 - x h = savgol_coeffs(window_length, polyorder) y0 = convolve1d(y, h) assert_allclose(y0[halflen:-halflen], y[halflen:-halflen]) # Check the same input, but use deriv=1. dy is the exact result. dy = 1.5 * x ** 2 - 1 h = savgol_coeffs(window_length, polyorder, deriv=1, delta=delta) y1 = convolve1d(y, h) assert_allclose(y1[halflen:-halflen], dy[halflen:-halflen]) # Check the same input, but use deriv=2. d2y is the exact result. d2y = 3.0 * x h = savgol_coeffs(window_length, polyorder, deriv=2, delta=delta) y2 = convolve1d(y, h) assert_allclose(y2[halflen:-halflen], d2y[halflen:-halflen]) def test_sg_coeffs_deriv(): # The data in `x` is a sampled parabola, so using savgol_coeffs with an # order 2 or higher polynomial should give exact results. i = np.array([-2.0, 0.0, 2.0, 4.0, 6.0]) x = i ** 2 / 4 dx = i / 2 d2x = 0.5 * np.ones_like(i) for pos in range(x.size): coeffs0 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot') assert_allclose(coeffs0.dot(x), x[pos], atol=1e-10) coeffs1 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot', deriv=1) assert_allclose(coeffs1.dot(x), dx[pos], atol=1e-10) coeffs2 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot', deriv=2) assert_allclose(coeffs2.dot(x), d2x[pos], atol=1e-10) def test_sg_coeffs_large(): # Test that for large values of window_length and polyorder the array of # coefficients returned is symmetric. The aim is to ensure that # no potential numeric overflow occurs. coeffs0 = savgol_coeffs(31, 9) assert_array_almost_equal(coeffs0, coeffs0[::-1]) coeffs1 = savgol_coeffs(31, 9, deriv=1) assert_array_almost_equal(coeffs1, -coeffs1[::-1]) #-------------------------------------------------------------------- # savgol_filter tests #-------------------------------------------------------------------- def test_sg_filter_trivial(): """ Test some trivial edge cases for savgol_filter().""" x = np.array([1.0]) y = savgol_filter(x, 1, 0) assert_equal(y, [1.0]) # Input is a single value. With a window length of 3 and polyorder 1, # the value in y is from the straight-line fit of (-1,0), (0,3) and # (1, 0) at 0. This is just the average of the three values, hence 1.0. x = np.array([3.0]) y = savgol_filter(x, 3, 1, mode='constant') assert_almost_equal(y, [1.0], decimal=15) x = np.array([3.0]) y = savgol_filter(x, 3, 1, mode='nearest') assert_almost_equal(y, [3.0], decimal=15) x = np.array([1.0] * 3) y = savgol_filter(x, 3, 1, mode='wrap') assert_almost_equal(y, [1.0, 1.0, 1.0], decimal=15) def test_sg_filter_basic(): # Some basic test cases for savgol_filter(). x = np.array([1.0, 2.0, 1.0]) y = savgol_filter(x, 3, 1, mode='constant') assert_allclose(y, [1.0, 4.0 / 3, 1.0]) y = savgol_filter(x, 3, 1, mode='mirror') assert_allclose(y, [5.0 / 3, 4.0 / 3, 5.0 / 3]) y = savgol_filter(x, 3, 1, mode='wrap') assert_allclose(y, [4.0 / 3, 4.0 / 3, 4.0 / 3]) def test_sg_filter_2d(): x = np.array([[1.0, 2.0, 1.0], [2.0, 4.0, 2.0]]) expected = np.array([[1.0, 4.0 / 3, 1.0], [2.0, 8.0 / 3, 2.0]]) y = savgol_filter(x, 3, 1, mode='constant') assert_allclose(y, expected) y = savgol_filter(x.T, 3, 1, mode='constant', axis=0) assert_allclose(y, expected.T) def test_sg_filter_interp_edges(): # Another test with low degree polynomial data, for which we can easily # give the exact results. In this test, we use mode='interp', so # savgol_filter should match the exact solution for the entire data set, # including the edges. t = np.linspace(-5, 5, 21) delta = t[1] - t[0] # Polynomial test data. x = np.array([t, 3 * t ** 2, t ** 3 - t]) dx = np.array([np.ones_like(t), 6 * t, 3 * t ** 2 - 1.0]) d2x = np.array([np.zeros_like(t), 6 *
np.ones_like(t)
numpy.ones_like
#!/usr/bin/python3 # -*- coding: utf-8 -*- import numpy as np from scipy.stats import entropy, normaltest, mode, kurtosis, skew, pearsonr, moment import pandas as pd from collections import OrderedDict from feature_extraction.helpers import * from feature_extraction.type_detection import detect_field_type, data_type_to_general_type, data_types, general_types np.warnings.filterwarnings('ignore') field_basic_features_list = [ {'name': 'fid', 'type': 'id'}, {'name': 'field_id', 'type': 'id'}, {'name': 'exists', 'type': 'boolean'}, {'name': 'length', 'type': 'numeric'} ] for data_type in data_types: field_basic_features_list.append({ 'name': 'data_type_is_{}'.format(data_type), 'type': 'boolean' }) for general_type in general_types: field_basic_features_list.append({ 'name': 'general_type_is_{}'.format(general_type), 'type': 'boolean' }) field_existence_features_list = [ {'name': 'has_none', 'type': 'boolean'}, {'name': 'percentage_none', 'type': 'numeric'}, {'name': 'num_none', 'type': 'numeric'}, ] field_uniqueness_features_list = [ {'name': 'num_unique_elements', 'type': 'numeric'}, {'name': 'unique_percent', 'type': 'numeric'}, {'name': 'is_unique', 'type': 'boolean'} ] field_c_statistical_features_list = [ {'name': 'list_entropy', 'type': 'numeric'}, {'name': 'mean_value_length', 'type': 'numeric'}, {'name': 'median_value_length', 'type': 'numeric'}, {'name': 'min_value_length', 'type': 'numeric'}, {'name': 'max_value_length', 'type': 'numeric'}, {'name': 'std_value_length', 'type': 'numeric'}, {'name': 'percentage_of_mode', 'type': 'numeric'}, ] field_q_statistical_features_list = [ {'name': 'mean', 'type': 'numeric'}, {'name': 'normalized_mean', 'type': 'numeric'}, {'name': 'median', 'type': 'numeric'}, {'name': 'normalized_median', 'type': 'numeric'}, {'name': 'var', 'type': 'numeric'}, {'name': 'std', 'type': 'numeric'}, {'name': 'coeff_var', 'type': 'numeric'}, {'name': 'min', 'type': 'numeric'}, {'name': 'max', 'type': 'numeric'}, {'name': 'range', 'type': 'numeric'}, {'name': 'normalized_range', 'type': 'numeric'}, {'name': 'entropy', 'type': 'numeric'}, {'name': 'gini', 'type': 'numeric'}, {'name': 'q25', 'type': 'numeric'}, {'name': 'q75', 'type': 'numeric'}, {'name': 'med_abs_dev', 'type': 'numeric'}, {'name': 'avg_abs_dev', 'type': 'numeric'}, {'name': 'quant_coeff_disp', 'type': 'numeric'}, {'name': 'skewness', 'type': 'numeric'}, {'name': 'kurtosis', 'type': 'numeric'}, {'name': 'moment_5', 'type': 'numeric'}, {'name': 'moment_6', 'type': 'numeric'}, {'name': 'moment_7', 'type': 'numeric'}, {'name': 'moment_8', 'type': 'numeric'}, {'name': 'moment_9', 'type': 'numeric'}, {'name': 'moment_10', 'type': 'numeric'}, {'name': 'percent_outliers_15iqr', 'type': 'numeric'}, {'name': 'percent_outliers_3iqr', 'type': 'numeric'}, {'name': 'percent_outliers_1_99', 'type': 'numeric'}, {'name': 'percent_outliers_3std', 'type': 'numeric'}, {'name': 'has_outliers_15iqr', 'type': 'boolean'}, {'name': 'has_outliers_3iqr', 'type': 'boolean'}, {'name': 'has_outliers_1_99', 'type': 'boolean'}, {'name': 'has_outliers_3std', 'type': 'boolean'}, {'name': 'normality_statistic', 'type': 'numeric'}, {'name': 'normality_p', 'type': 'numeric'}, {'name': 'is_normal_5', 'type': 'boolean'}, {'name': 'is_normal_1', 'type': 'boolean'}, ] field_name_features_list = [ {'name': 'field_name_length', 'type': 'numeric'}, {'name': 'x_in_name', 'type': 'boolean'}, {'name': 'y_in_name', 'type': 'boolean'}, {'name': 'id_in_name', 'type': 'boolean'}, {'name': 'time_in_name', 'type': 'boolean'}, {'name': 'digit_in_name', 'type': 'boolean'}, {'name': 'dollar_in_name', 'type': 'boolean'}, {'name': 'pound_in_name', 'type': 'boolean'}, {'name': 'euro_in_name', 'type': 'boolean'}, {'name': 'yen_in_name', 'type': 'boolean'}, {'name': 'first_char_uppercase_name', 'type': 'boolean'}, {'name': 'num_uppercase_characters', 'type': 'numeric'}, {'name': 'space_in_name', 'type': 'boolean'}, {'name': 'number_of_words_in_name', 'type': 'numeric'}, ] field_sequence_features_list = [ {'name': 'is_sorted', 'type': 'boolean'}, {'name': 'is_monotonic', 'type': 'boolean'}, {'name': 'sortedness', 'type': 'numeric'}, {'name': 'lin_space_sequence_coeff', 'type': 'numeric'}, {'name': 'log_space_sequence_coeff', 'type': 'numeric'}, {'name': 'is_lin_space', 'type': 'boolean'}, {'name': 'is_log_space', 'type': 'boolean'}, ] all_field_features_list = \ field_basic_features_list + \ field_existence_features_list + \ field_uniqueness_features_list + \ field_c_statistical_features_list + \ field_q_statistical_features_list + \ field_name_features_list + \ field_sequence_features_list all_field_features_list_names = [x['name'] for x in all_field_features_list] def get_existence_features(v): r = OrderedDict([(f['name'], None) for f in field_existence_features_list]) if not len(v): return r num_none = sum(1 for e in v if e == 'None') r['num_none'] = num_none r['percentage_none'] = num_none / len(v) r['has_none'] = (num_none > 0) return r # Sequence Properties def get_uniqueness_features(v, field_type, field_general_type): r = OrderedDict([(f['name'], None) for f in field_uniqueness_features_list]) if not len(v): return r if field_general_type == 'c' or field_type == 'integer': unique_elements = get_unique(v) r = {} r['num_unique_elements'] = unique_elements.size r['unique_percent'] = (r['num_unique_elements'] / len(v)) r['is_unique'] = (r['num_unique_elements'] == len(v)) return r def get_statistical_features(v, field_type, field_general_type): r = OrderedDict([(f['name'], None) for f in field_c_statistical_features_list + field_q_statistical_features_list]) if not len(v): return r if field_general_type == 'c': r['list_entropy'] = list_entropy(v) value_lengths = [len(x) for x in v] r['mean_value_length'] = np.mean(value_lengths) r['median_value_length'] = np.median(value_lengths) r['min_value_length'] = np.min(value_lengths) r['max_value_length'] = np.max(value_lengths) r['std_value_length'] = np.std(value_lengths) r['percentage_of_mode'] = (pd.Series(v).value_counts().max() / len(v)) if field_general_type in 'q': sample_mean = np.mean(v) sample_median = np.median(v) sample_var = np.var(v) sample_min = np.min(v) sample_max = np.max(v) sample_std = np.std(v) q1, q25, q75, q99 = np.percentile(v, [0.01, 0.25, 0.75, 0.99]) iqr = q75 - q25 r['mean'] = sample_mean r['normalized_mean'] = sample_mean / sample_max r['median'] = sample_median r['normalized_median'] = sample_median / sample_max r['var'] = sample_var r['std'] = sample_std r['coeff_var'] = (sample_mean / sample_var) if sample_var else None r['min'] = sample_min r['max'] = sample_max r['range'] = r['max'] - r['min'] r['normalized_range'] = (r['max'] - r['min']) / \ sample_mean if sample_mean else None r['entropy'] = entropy(v) r['gini'] = gini(v) r['q25'] = q25 r['q75'] = q75 r['med_abs_dev'] = np.median(np.absolute(v - sample_median)) r['avg_abs_dev'] = np.mean(np.absolute(v - sample_mean)) r['quant_coeff_disp'] = (q75 - q25) / (q75 + q25) r['coeff_var'] = sample_var / sample_mean r['skewness'] = skew(v) r['kurtosis'] = kurtosis(v) r['moment_5'] = moment(v, moment=5) r['moment_6'] = moment(v, moment=6) r['moment_7'] = moment(v, moment=7) r['moment_8'] = moment(v, moment=8) r['moment_9'] = moment(v, moment=9) r['moment_10'] = moment(v, moment=10) # Outliers outliers_15iqr = np.logical_or( v < (q25 - 1.5 * iqr), v > (q75 + 1.5 * iqr)) outliers_3iqr = np.logical_or(v < (q25 - 3 * iqr), v > (q75 + 3 * iqr)) outliers_1_99 = np.logical_or(v < q1, v > q99) outliers_3std = np.logical_or( v < ( sample_mean - 3 * sample_std), v > ( sample_mean + 3 * sample_std)) r['percent_outliers_15iqr'] = np.sum(outliers_15iqr) / len(v) r['percent_outliers_3iqr'] =
np.sum(outliers_3iqr)
numpy.sum
import numpy as np import pandas as pd from numpy.testing import assert_, assert_equal, assert_allclose, assert_raises from statsmodels.tsa.arima import specification, params def test_init(): # Test initialization of the params # Basic test, with 1 of each parameter exog = pd.DataFrame([[0]], columns=['a']) spec = specification.SARIMAXSpecification( exog=exog, order=(1, 1, 1), seasonal_order=(1, 1, 1, 4)) p = params.SARIMAXParams(spec=spec) # Test things copied over from spec assert_equal(p.spec, spec) assert_equal(p.exog_names, ['a']) assert_equal(p.ar_names, ['ar.L1']) assert_equal(p.ma_names, ['ma.L1']) assert_equal(p.seasonal_ar_names, ['ar.S.L4']) assert_equal(p.seasonal_ma_names, ['ma.S.L4']) assert_equal(p.param_names, ['a', 'ar.L1', 'ma.L1', 'ar.S.L4', 'ma.S.L4', 'sigma2']) assert_equal(p.k_exog_params, 1) assert_equal(p.k_ar_params, 1) assert_equal(p.k_ma_params, 1) assert_equal(p.k_seasonal_ar_params, 1) assert_equal(p.k_seasonal_ma_params, 1) assert_equal(p.k_params, 6) # Initial parameters should all be NaN assert_equal(p.params, np.nan) assert_equal(p.ar_params, [np.nan]) assert_equal(p.ma_params, [np.nan]) assert_equal(p.seasonal_ar_params, [np.nan]) assert_equal(p.seasonal_ma_params, [np.nan]) assert_equal(p.sigma2, np.nan) assert_equal(p.ar_poly.coef, np.r_[1, np.nan]) assert_equal(p.ma_poly.coef, np.r_[1, np.nan]) assert_equal(p.seasonal_ar_poly.coef, np.r_[1, 0, 0, 0, np.nan]) assert_equal(p.seasonal_ma_poly.coef, np.r_[1, 0, 0, 0, np.nan]) assert_equal(p.reduced_ar_poly.coef, np.r_[1, [np.nan] * 5]) assert_equal(p.reduced_ma_poly.coef, np.r_[1, [np.nan] * 5]) # Test other properties, methods assert_(not p.is_complete) assert_(not p.is_valid) assert_raises(ValueError, p.__getattribute__, 'is_stationary') assert_raises(ValueError, p.__getattribute__, 'is_invertible') desired = { 'exog_params': [np.nan], 'ar_params': [np.nan], 'ma_params': [np.nan], 'seasonal_ar_params': [np.nan], 'seasonal_ma_params': [np.nan], 'sigma2': np.nan} assert_equal(p.to_dict(), desired) desired = pd.Series([np.nan] * spec.k_params, index=spec.param_names) assert_allclose(p.to_pandas(), desired) # Test with different numbers of parameters for each exog = pd.DataFrame([[0, 0]], columns=['a', 'b']) spec = specification.SARIMAXSpecification( exog=exog, order=(3, 1, 2), seasonal_order=(5, 1, 6, 4)) p = params.SARIMAXParams(spec=spec) # No real need to test names here, since they are already tested above for # the 1-param case, and tested more extensively in test for # SARIMAXSpecification assert_equal(p.k_exog_params, 2) assert_equal(p.k_ar_params, 3) assert_equal(p.k_ma_params, 2) assert_equal(p.k_seasonal_ar_params, 5) assert_equal(p.k_seasonal_ma_params, 6) assert_equal(p.k_params, 2 + 3 + 2 + 5 + 6 + 1) def test_set_params_single(): # Test setting parameters directly (i.e. we test setting the AR/MA # parameters by setting the lag polynomials elsewhere) # Here each type has only a single parameters exog = pd.DataFrame([[0]], columns=['a']) spec = specification.SARIMAXSpecification( exog=exog, order=(1, 1, 1), seasonal_order=(1, 1, 1, 4)) p = params.SARIMAXParams(spec=spec) def check(is_stationary='raise', is_invertible='raise'): assert_(not p.is_complete) assert_(not p.is_valid) if is_stationary == 'raise': assert_raises(ValueError, p.__getattribute__, 'is_stationary') else: assert_equal(p.is_stationary, is_stationary) if is_invertible == 'raise': assert_raises(ValueError, p.__getattribute__, 'is_invertible') else: assert_equal(p.is_invertible, is_invertible) # Set params one at a time, as scalars p.exog_params = -6. check() p.ar_params = -5. check() p.ma_params = -4. check() p.seasonal_ar_params = -3. check(is_stationary=False) p.seasonal_ma_params = -2. check(is_stationary=False, is_invertible=False) p.sigma2 = -1. # Finally, we have a complete set. assert_(p.is_complete) # But still not valid assert_(not p.is_valid) assert_equal(p.params, [-6, -5, -4, -3, -2, -1]) assert_equal(p.exog_params, [-6]) assert_equal(p.ar_params, [-5]) assert_equal(p.ma_params, [-4]) assert_equal(p.seasonal_ar_params, [-3]) assert_equal(p.seasonal_ma_params, [-2]) assert_equal(p.sigma2, -1.) # Lag polynomials assert_equal(p.ar_poly.coef, np.r_[1, 5]) assert_equal(p.ma_poly.coef, np.r_[1, -4]) assert_equal(p.seasonal_ar_poly.coef, np.r_[1, 0, 0, 0, 3]) assert_equal(p.seasonal_ma_poly.coef, np.r_[1, 0, 0, 0, -2]) # (1 - a L) (1 - b L^4) = (1 - a L - b L^4 + a b L^5) assert_equal(p.reduced_ar_poly.coef, np.r_[1, 5, 0, 0, 3, 15]) # (1 + a L) (1 + b L^4) = (1 + a L + b L^4 + a b L^5) assert_equal(p.reduced_ma_poly.coef, np.r_[1, -4, 0, 0, -2, 8]) # Override again, one at a time, now using lists p.exog_params = [1.] p.ar_params = [2.] p.ma_params = [3.] p.seasonal_ar_params = [4.] p.seasonal_ma_params = [5.] p.sigma2 = [6.] p.params = [1, 2, 3, 4, 5, 6] assert_equal(p.params, [1, 2, 3, 4, 5, 6]) assert_equal(p.exog_params, [1])
assert_equal(p.ar_params, [2])
numpy.testing.assert_equal
# Copyright 2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 import numpy as np from scipy.optimize import curve_fit from auspex.log import logger from copy import copy import matplotlib.pyplot as plt from .fits import AuspexFit, Auspex2DFit from .signal_analysis import KT_estimation class RabiAmpFit(AuspexFit): """A fit to a Rabi amplitude curve, assuming a cosine model. """ xlabel = "Amplitude" ylabel = r"<$\sigma_z$>" title = "Rabi Amp Fit" @staticmethod def _model(x, *p): return p[0] - p[1]*np.cos(2*np.pi*p[2]*(x - p[3])) def _initial_guess(self): #seed Rabi frequency from largest FFT component N = len(self.ypts) yfft = np.fft.fft(self.ypts) f_max_ind = np.argmax(np.abs(yfft[1:N//2])) f_0 = 0.5 * max([1, f_max_ind]) / self.xpts[-1] amp_0 = 0.5*(self.ypts.max() - self.ypts.min()) offset_0 = np.mean(self.ypts) phase_0 = 0 if self.ypts[N//2 - 1] > offset_0: amp_0 = -amp_0 return [offset_0, amp_0, f_0, phase_0] def _fit_dict(self, p): return {"y0": p[0], "Api": p[1], "f": p[2], "phi": p[3]} def __str__(self): return "y0 - Api*cos(2*pi*f*(t - phi))" @property def pi_amp(self): """Returns the pi-pulse amplitude of the fit. """ return 0.5/self.fit_params["f"] def annotation(self): return r"$A_\pi$ = {0:.2e} {1} {2:.2e}".format(self.pi_amp, chr(177), self.fit_errors["Api"]) class RabiWidthFit(AuspexFit): """Fit to a single-frequency decaying cosine for fitting Rabi-vs-time experiments """ xlabel = "Delay" ylabel = r"<$\sigma_z$>" title = "Rabi Width Fit" @staticmethod def _model(x, *p): return p[0] + p[1]*np.exp(-x/p[2])*np.cos(2*np.pi*p[3]*(x - p[4])) def _initial_guess(self): frabi, Tcs, amps = KT_estimation(self.ypts-np.mean(self.ypts), self.xpts, 1) offset = np.average(self.xpts) amp = np.max(self.ypts) trabi = self.xpts[np.size(self.ypts) // 3]# assume Trabi is 1/3 of the scan phase = 90.0 return [offset, amp, trabi, frabi[0], phase] def _fit_dict(self, p): return {"y0": p[0], "A": p[1], 'T': p[2], "f": p[3], "phi": p[4]} def __str__(self): return "y0 + A*exp(-x/T)*cos(2*pi*f*(t - phi))" @property def t_rabi(self): return self.fit_params["T"] def annotation(self): return r"$T_\pi$ = {0:.2e} {1} {2:.2e}".format(self.fit_params["T"], chr(177), self.fit_errors["T"]) class T1Fit(AuspexFit): """Fit to a decaying exponential for T1 measurement experiments. """ xlabel = "Delay" ylabel = r"<$\sigma_z$>" title = r"$T_1$ Fit" @staticmethod def _model(x, *p): return p[0]*np.exp(-x/p[1]) + p[2] def _initial_guess(self): ## Initial guess using method of linear regression via integral equations ## https://www.scribd.com/doc/14674814/Regressions-et-equations-integrales N = len(self.xpts) S = np.zeros(N) for j in range(2, N): S[j] = S[j-1] + 0.5*((self.ypts[j] + self.ypts[j-1]) * (self.xpts[j] - self.xpts[j-1])) xs = self.xpts - self.xpts[0] ys = self.ypts - self.ypts[0] M = np.array([[np.sum(xs**2), np.sum(xs * S)], [np.sum(xs * S), np.sum(S**2)]]) B1 = (np.linalg.inv(M) @ np.array([np.sum(ys * xs), np.sum(ys * S)]).T)[1] theta = np.exp(B1 * self.xpts) M2 = np.array([[N, np.sum(theta)], [np.sum(theta), np.sum(theta**2)]]) A = np.linalg.inv(M2) @ np.array([np.sum(self.ypts), np.sum(self.ypts * theta)]).T return [A[1], -1.0/B1, A[0]] def _fit_dict(self, p): return {"A": p[0], "T1": p[1], "A0": p[2]} def __str__(self): return "A0 + A*exp(-t/T1)" @property def T1(self): """Return the measured T1 (i.e. decay constant of exponential). """ return self.fit_params["T1"] def make_plots(self): """Create plot on both linear and semilog scale """ logger.info("Semilog plot of |1> state probability requires calibrated data.") plt.figure(figsize=(2*6.4, 4.8)) plt.subplot(121) plt.plot(self.xpts, self.ypts, ".", markersize=15, label="Data") plt.plot(self.xpts, self.model(self.xpts), "-", linewidth=3, label="Fit") plt.xlabel(self.xlabel, fontsize=14) plt.ylabel(self.ylabel, fontsize=14) plt.annotate(self.annotation(), xy=(0.4, 0.10), xycoords='axes fraction', size=12) plt.subplot(122) plt.semilogy(self.xpts, -1/2*(self.ypts - self.fit_params["A0"]), ".", markersize=15, label="Data") plt.semilogy(self.xpts, -1/2*(self.model(self.xpts) - self.fit_params["A0"]), "-", linewidth=3, label="Fit") plt.xlabel(self.xlabel, fontsize=14) plt.ylabel('|1> probability', fontsize=14) plt.suptitle(self.title, fontsize=14) def annotation(self): return r"$T_1$ = {0:.2e} {1} {2:.2e}".format(self.fit_params["T1"], chr(177), self.fit_errors["T1"]) class RamseyFit(AuspexFit): """Fit to a Ramsey experiment using either a one or two frequency decaying sine model. """ xlabel = "Delay" ylabel = r"<$\sigma_z$>" title = "Ramsey Fit" def __init__(self, xpts, ypts, two_freqs=True, AIC=True, make_plots=False, force=False, ax=None): """One or two frequency Ramsey experiment fit. If a two-frequency fit is selected by the user or by comparing AIC scores, fit parameters are returned as tuples instead of single numbers. Args: xpts (numpy.array): Time data points. ypts (numpy.array): Qubit measurements. two_freqs (Bool): If true, attempt a two-frequency fit of the data. AIC (Bool): Decide between one and two frequency fits using the Akaike information criterion. make_plots (Bool): Display a plot of data and fit result. ax (Axes, optional): Axes on which to draw plot. If None, new figure is created force (Bool): Force the selection of a two-frequency fit regardless of AIC score. """ self.AIC = AIC self.dict_option = two_freqs self.two_freqs = two_freqs self.force = force self.plots = make_plots self.ax = ax assert len(xpts) == len(ypts), "Length of X and Y points must match!" self.xpts = xpts self.ypts = ypts self._do_fit() def _initial_guess_1f(self): freqs, Tcs, amps = KT_estimation(self.ypts-np.mean(self.ypts), self.xpts, 1) return [freqs[0], abs(amps[0]), Tcs[0], np.angle(amps[0]), np.mean(self.ypts)] def _initial_guess_2f(self): freqs, Tcs, amps = KT_estimation(self.ypts-np.mean(self.ypts), self.xpts, 2) return [*freqs, *abs(amps), *Tcs, *np.angle(amps), np.mean(self.ypts)] @staticmethod def _ramsey_1f(x, f, A, tau, phi, y0): return A*np.exp(-x/tau)*np.cos(2*np.pi*f*x + phi) + y0 @staticmethod def _model_2f(x, *p): return (RamseyFit._ramsey_1f(x, p[0], p[2], p[4], p[6], p[8]) + RamseyFit._ramsey_1f(x, p[1], p[3], p[5], p[7], p[8])) @staticmethod def _model_1f(x, *p): return RamseyFit._ramsey_1f(x, p[0], p[1], p[2], p[3], p[4]) def _aicc(self, e, k, n): return 2*k+e+(2*k*(k+1))/(n-k-1) def _do_fit(self): if self.two_freqs: self.dict_option = True self._initial_guess = self._initial_guess_2f self._model = self._model_2f try: super()._do_fit() two_freq_chi2 = self.sq_error except: self.two_freqs = False logger.info("Two-frequency fit failed. Trying single-frequency fit.") if self.two_freqs and self.AIC: #Compare the one and two frequency fits self.dict_option = False self._initial_guess = self._initial_guess_1f self._model = self._model_1f super()._do_fit() one_freq_chi2 = self.sq_error aic = self._aicc(two_freq_chi2, 9, len(self.xpts)) - self._aicc(one_freq_chi2, 5, len(self.xpts)) if aic > 0 and not self.force: self.two_freqs = False rl = 100*np.exp(-aic/2) logger.info(f"Selecting one-frequency fit with relative likelihood = {rl:.2f}%") if rl>33: logger.info("Relative likelihood of 2nd frequency high, take more averages or set force = True.") else: self.dict_option = True self._initial_guess = self._initial_guess_2f self._model = self._model_2f super()._do_fit() if not self.two_freqs: self.dict_option = False self._initial_guess = self._initial_guess_1f self._model = self._model_1f super()._do_fit() if self.plots: self.make_plots() def annotation(self): if self.two_freqs: return r"$T_2$ = {0:.2e} {1} {2:.2e} "'\n'"$T_2$ = {3:.2e} {4} {5:.2e}".format(self.fit_params["tau1"], chr(177), self.fit_errors["tau1"], self.fit_params["tau2"], chr(177), self.fit_errors["tau2"]) else: return r"$T_2$ = {0:.2e} {1} {2:.2e}".format(self.fit_params["tau"], chr(177), self.fit_errors["tau"]) @property def T2(self): if self.two_freqs: return self.fit_params["tau1"], self.fit_params["tau2"] else: return self.fit_params["tau"] @property def ramsey_freq(self): if self.two_freqs: return self.fit_params["f1"], self.fit_params["f2"] else: return self.fit_params["f"] def _fit_dict(self, p): if self.dict_option: return {"f1": p[0], "A1": p[2], "tau1": p[4], "phi1": p[6], "f2": p[1], "A2": p[3], "tau2": p[5], "phi2": p[7], "y0": p[8]} else: return {"f": p[0], "A": p[1], "tau": p[2], "phi": p[3], "y0": p[4]} class SingleQubitRBFit(AuspexFit): """Fit to an RB decay curve using the model A*(r^n) + B """ ylabel = r"<$\sigma_z$>" title = "Single Qubit RB Fit" def __init__(self, lengths, data, make_plots=False, log_scale_x=True, smart_guess=True, bounded_fit=True, ax=None): self.lengths = sorted(list(set(lengths))) repeats = len(data) // len(self.lengths) xpts = np.array(self.lengths) ypts = np.mean(np.reshape(data,(len(self.lengths),repeats)),1) self.data = data self.data_points = np.reshape(data,(len(self.lengths),repeats)) self.errors = np.std(self.data_points, 1) self.log_scale_x = log_scale_x self.ax = ax self.smart_guess = smart_guess if log_scale_x: self.xlabel = r"$log_2$ Clifford Number" else: self.xlabel = "Clifford Number" if bounded_fit: self.bounds = ((0, -np.inf, 0), (1, np.inf, 1)) super().__init__(xpts, ypts, make_plots=make_plots, ax=ax) @staticmethod def _model(x, *p): return p[0] * (1-p[1])**x + p[2] def _initial_guess(self): if self.smart_guess: ## Initial guess using method of linear regression via integral equations ## https://www.scribd.com/doc/14674814/Regressions-et-equations-integrales N = len(self.xpts) S = np.zeros(N) for j in range(2, N): S[j] = S[j-1] + 0.5*((self.ypts[j] + self.ypts[j-1]) * (self.xpts[j] - self.xpts[j-1])) xs = self.xpts - self.xpts[0] ys = self.ypts - self.ypts[0] M = np.array([[np.sum(xs**2), np.sum(xs * S)], [np.sum(xs * S), np.sum(S**2)]]) B1 = (np.linalg.inv(M) @ np.array([
np.sum(ys * xs)
numpy.sum
from __future__ import annotations from dataclasses import dataclass from functools import reduce from typing import Literal import numpy as np from numpy.typing import NDArray from chemex.configuration.data import RelaxationDataSettings from chemex.configuration.experiment import CpmgSettingsEvenNcycs from chemex.configuration.experiment import ExperimentConfig from chemex.configuration.experiment import ToBeFitted from chemex.containers.data import Data from chemex.containers.dataset import load_relaxation_dataset from chemex.experiments.configurations import configurations from chemex.experiments.descriptions import descriptions from chemex.experiments.factories import Creators from chemex.experiments.factories import factories from chemex.filterers import PlanesFilterer from chemex.nmr.liouvillian import Basis from chemex.nmr.liouvillian import LiouvillianIS from chemex.nmr.spectrometer import Spectrometer from chemex.parameters.spin_system import SpinSystem from chemex.plotters import CpmgPlotter from chemex.printers.data import CpmgPrinter # Type definitions NDArrayFloat = NDArray[np.float_] NDArrayBool = NDArray[np.bool_] EXPERIMENT_NAME = "cpmg_hn_dq_zq" class CpmgHNDqZqSettings(CpmgSettingsEvenNcycs): name: Literal["cpmg_hn_dq_zq"] time_t2: float carrier_h: float carrier_n: float pw90_h: float pw90_n: float dq_flg: bool observed_state: Literal["a", "b", "c", "d"] = "a" @property def detection(self) -> str: if self.dq_flg: return f"[2ixsx_{self.observed_state}] - [2iysy_{self.observed_state}]" else: return f"[2ixsx_{self.observed_state}] + [2iysy_{self.observed_state}]" class CpmgHNDqZqConfig(ExperimentConfig[CpmgHNDqZqSettings, RelaxationDataSettings]): @property def to_be_fitted(self) -> ToBeFitted: state = self.experiment.observed_state return ToBeFitted( rates=[f"r2mq_is_{state}", f"mu_is_{state}"], model_free=[f"tauc_{state}", f"s2_{state}"], ) def build_spectrometer( config: CpmgHNDqZqConfig, spin_system: SpinSystem ) -> Spectrometer: settings = config.experiment conditions = config.conditions basis = Basis(type="ixyzsxyz", spin_system="nh") liouvillian = LiouvillianIS(spin_system, basis, conditions) spectrometer = Spectrometer(liouvillian) spectrometer.carrier_i = settings.carrier_n spectrometer.carrier_s = settings.carrier_h spectrometer.b1_i = 1 / (4.0 * settings.pw90_n) spectrometer.b1_s = 1 / (4.0 * settings.pw90_h) spectrometer.detection = settings.detection return spectrometer @dataclass class CpmgHNDqZqSequence: settings: CpmgHNDqZqSettings def _get_tau_cps(self, ncycs: np.ndarray) -> dict[float, float]: ncycs_no_ref = ncycs[ncycs > 0.0] return dict( zip( ncycs_no_ref, self.settings.time_t2 / (4.0 * ncycs_no_ref) - 7.0 / 3.0 * self.settings.pw90_n, ) ) def _get_phases(self, ncyc: float) -> tuple[np.ndarray, np.ndarray]: nu_cpmg = ncyc / self.settings.time_t2 if nu_cpmg < 51.0: cp_phases1 = [0, 1, 0, 1] cp_phases2 = [1, 0, 1, 0] elif nu_cpmg < 255.0: cp_phases1 = [0] cp_phases2 = [1] else: cp_phases1 = [0, 1, 0, 1, 1, 0, 1, 0] cp_phases2 = [1, 0, 1, 0, 0, 1, 0, 1] indexes = np.arange(2 * int(ncyc)) phases1 = np.take(cp_phases1,
np.flip(indexes)
numpy.flip
from __future__ import division import numpy as np import matplotlib.pyplot as plt def burgers( method, nx, nt, t_max, bc, param, plot = False ): """ This function solves the time-dependent inviscid Burgers equation. It also solves sensitivity equations for derivatives of the PDE solution with respect to parameters mu1 and mu2, and computes the values/gradients of some functions of the PDE solution. The code for solving Burgers' equation is ported from "BURGERS_TIME_INVISCID" by <NAME> and <NAME>. Discussion: A number of solution methods are available for the user to choose. Modified: 4 February 2020 Author: <NAME> Inputs: Integer METHOD. 1, Upwind nonconservative; 2, Upwind conservative; 3, Godunov. Integer NX, the number of nodes. Integer NT, the number of time steps. Real T_MAX, the maximum time. Integer BC, defines the boundary conditions. 0, Dirichlet at A, Dirichlet at B. 1, Dirichlet at A, nothing/Neumann at B. Array PARAM, contains two parameters: param(1): left-end boundary condition. param(2): parameter in source term. Bool plot (false by default), enables/disables plot of solution over time. Output: Real U(5, NT+1, NX). U[0] is the solution at each time and node. U[1], U[2] are solution derivatives w.r.t. mu1, mu2 at each time and node. U[3] is the time derivative of the solution at each time and node. U[4] is the spatial derivative of the solution at each time and node. Real Dsav(5, NT+1, NParam+1+NX), stores [parameter value, time, quantity]. Real Q2, value of total kinetic energy, 0.5 * \int_x \int_t w(x, t, \mu)^2. Real gradQ2(3), gradient of Q2(t, \mu). Real Q3alt, value of integrated kinetic energy at right endpoint, 0.5 * \int_t w(100, t, \mu)^2. Real gradQ3alt(3), gradient of Q3alt(t, \mu). Reference: Burgers equation by <NAME> Test problem from A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems, by <NAME> and Model reduction of dynamcial systems on nonlinear manifolds using deep convolutional autoencoders by <NAME> and <NAME> Demo: burgers ( 2, 256, 500, 35, 1, [4.3, 0.021] ); """ def f(u): return 0.5 * u**2 def df(u): return u def nf(u, v): ustar = u if np.ndim(u) == 0: u = np.array( [u] ) ustar = u; if np.ndim(v) == 0: v = np.array( [v] ); for i in range( len(u) ): #i = 1:len(u) if u[i] >= v[i]: if ( u[i] + v[i] ) / 2 > 0: ustar[i] = u[i] else: ustar[i] = v[i] else: if u[i] > 0: ustar[i] = u[i] elif v[i] < 0: ustar[i] = v[i] else: ustar[i] = 0 return 0.5 * ustar**2 a, b = 0, 100 dx = ( b - a ) / nx x = np.linspace(a, b, nx) dt = t_max / nt g = 0.02 * np.exp( param[1] * x ) # Set up the initial solution values and parameter gradient values. U = np.zeros( (5, nt + 1, nx) ) Dsav = np.zeros( (5, nt + 1, nx + len(param) + 1) ) u0 = np.ones_like(x) umu10 = np.zeros_like(x) umu20 = np.zeros_like(x) ut0 = np.zeros_like(x) ux0 = np.zeros_like(x) # impose BC at left endpoint u0[0] = param[0] umu10[0] = 1 umu20[0] = 0 ut0[0] = 0 ux0[0] = 0 # Could vectorize this more, but I think it's more readable like this. U[0][0, :] = u0 U[1][0, :] = umu10 U[2][0, :] = umu20 U[3][0, :] = ut0 U[4][0, :] = ux0 Dsav[0][0, :] = np.concatenate( (param, 0, u0), axis = None ) Dsav[1][0, :] = np.concatenate( (param, 0, umu10), axis = None ) Dsav[2][0, :] = np.concatenate( (param, 0, umu20), axis = None ) Dsav[3][0, :] = np.concatenate( (param, 0, ut0), axis = None ) Dsav[4][0, :] = np.concatenate( (param, 0, ux0), axis = None ) u = u0 umu1 = umu10 umu2 = umu20 ut = ut0 ux = ux0 unew = 0 * u umu1new = 0 * umu1 umu2new = 0 * umu2 utnew = 0 * ut uxnew = 0 * ux # Generate plot data if plot: fig = plt.figure() ax = fig.add_subplot(111) upperlim = 1.4 * param[0] ax.set_ylim( [0, upperlim] ) line1, = ax.plot(x, u0, 'r-') # Implementation of the numerical methods. irange = [ y + 1 for y in range(nt) ] # so irange starts at 1 for i in irange: # Upwind nonconservative. if method == 1: if bc == 0 or bc == 1: unew[0] = u[0] umu1new[0] = umu1[0] umu2new[0] = umu2[0] utnew[0] = ut[0] unew[1:] = u[1:] + dt * ( -1/dx * u[1:] * ( u[1:] - u[:-1] ) + g[1:] ) # Compute parameter derivatives umu1new[1:] = umu1[1:] - dt * ( umu1[1:] * ( u[1:] - u[:-1]) / dx + u[1:] * ( umu1[1:] - umu1[:-1] ) / dx ) umu2new[1:] = umu2[1:] + dt * ( x[1:] * g[1:] - umu2[1:] * ( u[1:] - u[:-1] ) / dx - u[1:] * ( umu2[1:] - umu2[:-1] ) / dx ) utnew[1:] = -1/dx * u[1:] * ( u[1:] - u[:-1] ) + g[1:] # Upwind conservative. if method == 2: if bc == 0 or bc == 1: unew[0] = u[0] umu1new[0] = umu1[0] umu2new[0] = umu2[0] utnew[0] = ut[0] uxnew[0] = ux[0] utnew[1:] = -1/dx * ( f(u[1:]) - f(u[:-1]) ) + g[1:] unew[1:] = u[1:] + dt * utnew[1:] #unew[1:] = u[1:] + dt * ( -1/dx * ( f(u[1:]) - f(u[:-1]) ) + g[1:] ) # Solve for parameter derivatives umu1new[1:] = umu1[1:] - dt * (1/dx) * ( umu1[1:] * u[1:] - u[:-1] * umu1[:-1] ) umu2new[1:] = umu2[1:] + dt * x[1:] * g[1:] - dt * (1/dx) * ( umu2[1:] * u[1:] - u[:-1] * umu2[:-1] ) uxnew[1:-1] = (u[2:] - u[:-2]) / (2*dx) uxnew[-1] = (u[-1] - u[-2]) / dx # Godunov if method == 3: if bc == 0 or bc == 1: unew[0] = u[0] umu1new[0] = umu1[0] umu2new[0] = umu2[0] utnew[0] = ut[0] unew[1:-1] = u[1:-1] + dt * ( -1/dx * ( nf(u[1:-1], u[2:]) - nf(u[:-2], u[1:-1]) ) + g[1:-1] ) if ( bc == 0 or bc == 2 ): unew[-1] = u[-1] elif ( bc == 1 ): unew[-1] = u[-1] + dt * ( -1/dx * ( nf(u[-1], u[-1]) - nf(u[-2], u[-1]) ) + g[-1] ) # assume neumann at the rightend # Solve for parameter derivatives (same as method 2) umu1new[1:] = umu1[1:] - dt * (1/dx) * ( umu1[1:] * u[1:] - u[:-1] * umu1[:-1] ) # umu2new[1:] = umu2[1:] + dt * x[1:] * g[1:] - dt * (1/dx) * ( umu2[1:] * u[1:] - u[:-1] * umu2[:-1] ) utnew[1:] = -1/dx * ( f(u[1:]) - f(u[:-1]) ) + g[1:] # Save the latest result. u = unew umu1 = umu1new umu2 = umu2new ut = utnew ux = uxnew U[0][i, :] = u U[1][i, :] = umu1 U[2][i, :] = umu2 U[3][i, :] = ut U[4][i, :] = ux Dsav[0][i, :] = np.concatenate( (param, dt*i, u), axis = None ) Dsav[1][i, :] = np.concatenate( (param, dt*i, umu1), axis = None ) Dsav[2][i, :] = np.concatenate( (param, dt*i, umu2), axis = None ) Dsav[3][i, :] = np.concatenate( (param, dt*i, ut), axis = None ) Dsav[4][i, :] = np.concatenate( (param, dt*i, ux), axis = None ) # Plot the profile curve. if plot: line1.set_ydata(u) fig.canvas.draw() fig.canvas.flush_events() plt.pause(0.001) # Generate quantity of interest Q2 (total kinetic energy) and its derivatives # All trapezoidal Riemann sums in space and left sums in time tempLeft = np.sum( U[0][:, :-1]**2, 1 ) * dx # left row sum tempRight = np.sum( U[0][:, 1:]**2, 1 ) * dx # right row sum Q2 = 0.25 * np.sum( tempLeft[:-1] + tempRight[:-1] ) * dt # left time sum dQ2dT = 0.25 * np.sum( U[0][-1, :-1]**2 + U[0][-1, 1:]**2 ) * dx # derivative in the final time tempLeft = np.sum( U[0][:, :-1] * U[1][:, :-1], 1 ) * dx tempRight = np.sum( U[0][:, 1:] * U[1][:, 1:], 1 ) * dx dQ2dmu1 = 0.5 * np.sum( tempLeft[:-1] + tempRight[:-1] ) * dt # derivative in mu1 tempLeft = np.sum( U[0][:, :-1] * U[2][:, :-1], 1 ) * dx tempRight = np.sum( U[0][:, 1:] * U[2][:, 1:], 1 ) * dx dQ2dmu2 = 0.5 * np.sum( tempLeft[:-1] + tempRight[:-1] ) * dt # derivative in mu2 gradQ2 = np.array( [dQ2dT, dQ2dmu1, dQ2dmu2] ) # Generate quantity of interest Q3alt (integrated kinetic energy density # at right endpoint) and its derivatives Q3alt = 0.5 *
np.sum( U[0][:-1, -1]**2 )
numpy.sum
import gzip from abc import ABC from pathlib import Path from urllib import request import numpy as np from slick_dnn.data import Dataset class MNISTDataSet(Dataset, ABC): @staticmethod def _load_mnist(images_path: str, labels_path: str, flatten_input, one_hot_output): with open(images_path, 'rb') as f: new_shape = (-1, 28 * 28) if flatten_input else (-1, 1, 28, 28) data = np.frombuffer(f.read(), np.uint8, offset=16).reshape(new_shape) with open(labels_path, 'rb') as f: labels = np.frombuffer(f.read(), np.uint8, offset=8) if one_hot_output: b = np.zeros((labels.size, 10)) b[
np.arange(labels.size)
numpy.arange
import numpy as np class AutoDiff(): """Class which performs forward automatic differentiation ATTRIBUTES ========== val: the value of the object, can be scalar of vector der: the derivative of the object, can be a scalar, vector or array Optional variables: number of variables used in a multivariable function position : position of this variable in the function EXAMPLES ======== >>>x = AutoDiff(4) >>>x.val 4 >>>x.der 1 >>>f = x**2 +2x >>>f.der 10 >>> x1 = AutoDiff(2,1,2,0) >>> x2 = AutoDiff(4,1,2,1) >>> f = x1**2 +2*x2 [4. 2.] >>> x1 = AutoDiff(2,[1,0]) >>> x2 = AutoDiff(4,[0,1]) >>> f = x1**2 +2*x2 [4. 2.] """ def __init__(self, value, deriv=1.0, variables = 1, position = 0): if isinstance(value, list): self.val = np.array([value]).T self.der = np.ones((len(self.val),1))*deriv else: self.val = value self.der = deriv if isinstance(deriv, list): try: self.der = np.zeros((len(self.val),len(deriv))) self.der[ : ] = deriv except TypeError: self.der = np.array(deriv) if variables >1: try: self.der = np.zeros((len(self.val),variables)) self.der[ : , position] = deriv except TypeError: self.der = np.zeros(variables) self.der[position] = deriv def __neg__(self): return AutoDiff(-self.val, -self.der) def __add__(self, other): try: return AutoDiff(self.val+other.val, self.der+other.der) except AttributeError: return AutoDiff(self.val+other, self.der) def __radd__(self, other): return self.__add__(other) def __mul__(self, other): try: return AutoDiff(self.val*other.val, self.der*other.val + self.val*other.der) except AttributeError: return AutoDiff(self.val*other, self.der*other) def __rmul__(self, other): return self.__mul__(other) def __sub__(self, other): try: return AutoDiff(self.val-other.val, self.der-other.der) except AttributeError: return AutoDiff(self.val-other, self.der) def __rsub__(self, other): try: return AutoDiff(other.val-self.val, other.der-self.der) except AttributeError: return AutoDiff(other-self.val, -self.der) def __truediv__(self, other): try: return AutoDiff(self.val/other.val, (self.der*other.val - self.val*other.der)/(other.val**2)) except AttributeError: return AutoDiff(self.val/other, self.der/other) def __rtruediv__(self, other): try: return AutoDiff(other.val/self.val, (self.val*other.der- self.der*other.val)/(self.val**2)) except AttributeError: return AutoDiff(other/self.val, -self.der*other/(self.val**2)) def __pow__(self, other): try: if isinstance(self.val, (np.ndarray, np.generic)): self.val = self.val.astype(float) return AutoDiff(self.val**other.val, other.val*(self.val**(other.val-1))*self.der+np.log(np.abs(self.val))*(self.val**other.val)*other.der) except AttributeError: if isinstance(self.val, (np.ndarray, np.generic)): self.val = self.val.astype(float) return AutoDiff(self.val**other, other*(self.val**(other-1))*self.der) def __rpow__(self, other): try: return AutoDiff(other.val**self.val, self.val*(other.val**(self.val-1))*other.der+np.log(np.abs(other.val))*(other.val**self.val)*self.der) except AttributeError: return AutoDiff(other**self.val, np.log(np.abs(other))*(other**self.val)*self.der) def __str__(self): return 'value: {}, derivative: {}'.format(self.val,self.der) def __eq__ (self, other): try: return ((self.val == other.val) and (self.der == other.der)) except AttributeError: return False def __ne__(self, other): try: return ((self.val != other.val) or (self.der != other.der)) except AttributeError: return True def reverse_mode(self): # recurse only if the value is not yet cached if self.grad_value is None: # calculate derivative using chain rule self.grad_value = sum(weight * var.reverse_mode()for weight, var in self.children) return self.grad_value def sin(x): try: return AutoDiff(np.sin(x.val), x.der*np.cos(x.val)) except AttributeError: return np.sin(x) def cos(x): try: return AutoDiff(np.cos(x.val), x.der*(-np.sin(x.val))) except AttributeError: return np.cos(x) def tan(x): try: return AutoDiff(np.tan(x.val), x.der*(1/np.cos(x.val)**2)) except AttributeError: return np.tan(x) def arcsin(x): try: return AutoDiff(np.arcsin(x.val), x.der/(np.sqrt(1-x.val**2))) except AttributeError: return np.arcsin(x) def arccos(x): try: return AutoDiff(np.arccos(x.val), -x.der/(np.sqrt(1-x.val**2))) except AttributeError: return np.arccos(x) def arctan(x): try: return AutoDiff(np.arctan(x.val), x.der/((1+x.val**2))) except AttributeError: return np.arctan(x) def exp(x): try: return AutoDiff(np.exp(x.val), x.der*np.exp(x.val)) except AttributeError: return np.exp(x) def sinh(x): try: return AutoDiff(np.sinh(x.val), x.der*
np.cosh(x.val)
numpy.cosh
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function import copy import numpy as np import healpy as hp from scipy.interpolate import RegularGridInterpolator from scipy.ndimage.interpolation import map_coordinates from astropy.io import fits from astropy.wcs import WCS from astropy.table import Table from astropy.coordinates import SkyCoord from astropy.coordinates import Galactic, ICRS import gammapy import fermipy.utils as utils import fermipy.wcs_utils as wcs_utils import fermipy.hpx_utils as hpx_utils import fermipy.fits_utils as fits_utils from fermipy.hpx_utils import HPX, HpxToWcsMapping def coadd_maps(geom, maps, preserve_counts=True): """Coadd a sequence of `~gammapy.maps.Map` objects.""" # FIXME: This functionality should be built into the Map.coadd method map_out = gammapy.maps.Map.from_geom(geom) for m in maps: m_tmp = m if isinstance(m, gammapy.maps.HpxNDMap): if m.geom.order < map_out.geom.order: factor = map_out.geom.nside // m.geom.nside m_tmp = m.upsample(factor, preserve_counts=preserve_counts) map_out.coadd(m_tmp) return map_out def make_coadd_map(maps, proj, shape, preserve_counts=True): if isinstance(proj, WCS): return make_coadd_wcs(maps, proj, shape) elif isinstance(proj, HPX): return make_coadd_hpx(maps, proj, shape, preserve_counts=preserve_counts) else: raise Exception("Can't co-add map of unknown type %s" % type(proj)) def make_coadd_wcs(maps, wcs, shape): data = np.zeros(shape) axes = wcs_utils.wcs_to_axes(wcs, shape) for m in maps: c = wcs_utils.wcs_to_coords(m.wcs, m.counts.shape) o = np.histogramdd(c.T, bins=axes[::-1], weights=np.ravel(m.counts))[0] data += o return Map(data, copy.deepcopy(wcs)) def make_coadd_hpx(maps, hpx, shape, preserve_counts=True): data = np.zeros(shape) axes = hpx_utils.hpx_to_axes(hpx, shape) for m in maps: if m.hpx.order != hpx.order: m_copy = m.ud_grade(hpx.order, preserve_counts) else: m_copy = m c = hpx_utils.hpx_to_coords(m_copy.hpx, m_copy.counts.shape) o = np.histogramdd(c.T, bins=axes, weights=np.ravel(m_copy.counts))[0] data += o return HpxMap(data, copy.deepcopy(hpx)) def read_map_from_fits(fitsfile, extname=None): """ """ proj, f, hdu = fits_utils.read_projection_from_fits(fitsfile, extname) if isinstance(proj, WCS): ebins = fits_utils.find_and_read_ebins(f) m = Map(hdu.data, proj, ebins=ebins) elif isinstance(proj, HPX): m = HpxMap.create_from_hdu(hdu, proj.ebins) else: raise Exception("Did not recognize projection type %s" % type(proj)) return m class Map_Base(object): """ Abstract representation of a 2D or 3D counts map.""" def __init__(self, counts): self._counts = counts @property def counts(self): return self._counts @property def data(self): return self._counts @data.setter def data(self, val): if val.shape != self.data.shape: raise Exception('Wrong shape.') self._counts = val def get_pixel_skydirs(self): """Get a list of sky coordinates for the centers of every pixel. """ raise NotImplementedError("MapBase.get_pixel_skydirs()") def get_pixel_indices(self, lats, lons): """Return the indices in the flat array corresponding to a set of coordinates """ raise NotImplementedError("MapBase.get_pixel_indices()") def sum_over_energy(self): """Reduce a counts cube to a counts map by summing over the energy planes """ raise NotImplementedError("MapBase.sum_over_energy()") def get_map_values(self, lons, lats, ibin=None): """Return the map values corresponding to a set of coordinates. """ raise NotImplementedError("MapBase.get_map_values()") def interpolate(self, lon, lat, egy=None): """Return the interpolated map values corresponding to a set of coordinates. """ raise NotImplementedError("MapBase.interpolate()") class Map(Map_Base): """ Representation of a 2D or 3D counts map using WCS. """ def __init__(self, counts, wcs, ebins=None): """ Parameters ---------- counts : `~numpy.ndarray` Counts array in row-wise ordering (LON is first dimension). """ Map_Base.__init__(self, counts) self._wcs = wcs self._npix = counts.shape[::-1] if len(self._npix) == 3: self._xindex = 2 self._yindex = 1 elif len(self._npix) == 2: self._xindex = 1 self._yindex = 0 else: raise Exception('Wrong number of dimensions for Map object.') # if len(self._npix) != 3 and len(self._npix) != 2: # raise Exception('Wrong number of dimensions for Map object.') self._width = np.array([np.abs(self.wcs.wcs.cdelt[0]) * self.npix[0], np.abs(self.wcs.wcs.cdelt[1]) * self.npix[1]]) self._pix_center = np.array([(self.npix[0] - 1.0) / 2., (self.npix[1] - 1.0) / 2.]) self._pix_size = np.array([np.abs(self.wcs.wcs.cdelt[0]), np.abs(self.wcs.wcs.cdelt[1])]) self._skydir = SkyCoord.from_pixel(self._pix_center[0], self._pix_center[1], self.wcs) self._ebins = ebins if ebins is not None: self._ectr = np.exp(utils.edge_to_center(np.log(ebins))) else: self._ectr = None @property def wcs(self): return self._wcs @property def npix(self): return self._npix @property def skydir(self): """Return the sky coordinate of the image center.""" return self._skydir @property def width(self): """Return the dimensions of the image.""" return self._width @property def pix_size(self): """Return the pixel size along the two image dimensions.""" return self._pix_size @property def pix_center(self): """Return the ROI center in pixel coordinates.""" return self._pix_center @classmethod def create_from_hdu(cls, hdu, wcs): return cls(hdu.data.T, wcs) @classmethod def create_from_fits(cls, fitsfile, **kwargs): hdu = kwargs.get('hdu', 0) with fits.open(fitsfile) as hdulist: header = hdulist[hdu].header data = hdulist[hdu].data header = fits.Header.fromstring(header.tostring()) wcs = WCS(header) ebins = None if 'ENERGIES' in hdulist: tab = Table.read(fitsfile, 'ENERGIES') ectr = np.array(tab.columns[0]) ebins = np.exp(utils.center_to_edge(np.log(ectr))) elif 'EBOUNDS' in hdulist: tab = Table.read(fitsfile, 'EBOUNDS') emin = np.array(tab['E_MIN']) / 1E3 emax = np.array(tab['E_MAX']) / 1E3 ebins = np.append(emin, emax[-1]) return cls(data, wcs, ebins) @classmethod def create(cls, skydir, cdelt, npix, coordsys='CEL', projection='AIT', ebins=None, differential=False): crpix = np.array([n / 2. + 0.5 for n in npix]) if ebins is not None: if differential: nebins = len(ebins) else: nebins = len(ebins) - 1 data = np.zeros(list(npix) + [nebins]).T naxis = 3 else: data = np.zeros(npix).T naxis = 2 wcs = wcs_utils.create_wcs(skydir, coordsys, projection, cdelt, crpix, naxis=naxis, energies=ebins) return cls(data, wcs, ebins=ebins) def create_image_hdu(self, name=None, **kwargs): return fits.ImageHDU(self.counts, header=self.wcs.to_header(), name=name) def create_primary_hdu(self): return fits.PrimaryHDU(self.counts, header=self.wcs.to_header()) def sum_over_energy(self): """ Reduce a 3D counts cube to a 2D counts map """ # Note that the array is using the opposite convention from WCS # so we sum over axis 0 in the array, but drop axis 2 in the WCS object return Map(np.sum(self.counts, axis=0), self.wcs.dropaxis(2)) def xypix_to_ipix(self, xypix, colwise=False): """Return the flattened pixel indices from an array multi-dimensional pixel indices. Parameters ---------- xypix : list List of pixel indices in the order (LON,LAT,ENERGY). colwise : bool Use column-wise pixel indexing. """ return np.ravel_multi_index(xypix, self.npix, order='F' if colwise else 'C', mode='raise') def ipix_to_xypix(self, ipix, colwise=False): """Return array multi-dimensional pixel indices from flattened index. Parameters ---------- colwise : bool Use column-wise pixel indexing. """ return np.unravel_index(ipix, self.npix, order='F' if colwise else 'C') def ipix_swap_axes(self, ipix, colwise=False): """ Return the transposed pixel index from the pixel xy coordinates if colwise is True (False) this assumes the original index was in column wise scheme """ xy = self.ipix_to_xypix(ipix, colwise) return self.xypix_to_ipix(xy, not colwise) def get_pixel_skydirs(self): """Get a list of sky coordinates for the centers of every pixel. """ xpix = np.linspace(0, self.npix[0] - 1., self.npix[0]) ypix = np.linspace(0, self.npix[1] - 1., self.npix[1]) xypix = np.meshgrid(xpix, ypix, indexing='ij') return SkyCoord.from_pixel(np.ravel(xypix[0]), np.ravel(xypix[1]), self.wcs) def get_pixel_indices(self, lons, lats, ibin=None): """Return the indices in the flat array corresponding to a set of coordinates Parameters ---------- lons : array-like 'Longitudes' (RA or GLON) lats : array-like 'Latitidues' (DEC or GLAT) ibin : int or array-like Extract data only for a given energy bin. None -> extract data for all energy bins. Returns ---------- pixcrd : list Pixel indices along each dimension of the map. """ lons = np.array(lons, ndmin=1) lats = np.array(lats, ndmin=1) if len(lats) != len(lons): raise RuntimeError('Map.get_pixel_indices, input lengths ' 'do not match %i %i' % (len(lons), len(lats))) if len(self._npix) == 2: pix_x, pix_y = self._wcs.wcs_world2pix(lons, lats, 0) pixcrd = [np.floor(pix_x).astype(int), np.floor(pix_y).astype(int)] elif len(self._npix) == 3: all_lons = np.expand_dims(lons, -1) all_lats = np.expand_dims(lats, -1) if ibin is None: all_bins = (np.expand_dims( np.arange(self.npix[2]), -1) *
np.ones(lons.shape)
numpy.ones
""" Homework4. Replace 'pass' by your implementation. """ import numpy as np import helper # Insert your package here from sympy import * from scipy.ndimage.filters import gaussian_filter from scipy.optimize import leastsq, minimize ''' Q2.1: Eight Point Algorithm Input: pts1, Nx2 Matrix pts2, Nx2 Matrix M, a scalar parameter computed as max (imwidth, imheight) Output: F, the fundamental matrix ''' def eightpoint(pts1, pts2, M): # Replace pass by your implementation T = np.eye(3) / M T[2, 2] = 1; pts1 = pts1.astype('float')/M pts2 = pts2.astype('float')/M A = np.vstack([ pts1[:, 0]*pts2[:, 0],pts1[:, 0]*pts2[:, 1], pts1[:, 0], pts1[:, 1]*pts2[:, 0],pts1[:, 1]*pts2[:, 1], pts1[:, 1], pts2[:, 0],pts2[:, 1], np.ones(pts1.shape[0]) ]).T [U, S, V] = np.linalg.svd(A) F = np.reshape(V[-1,:], (3,3)) F = helper.refineF(F, pts1, pts2) F = T.T @ F @ T return F ''' Q2.2: Seven Point Algorithm Input: pts1, Nx2 Matrix pts2, Nx2 Matrix M, a scalar parameter computed as max (imwidth, imheight) Output: Farray, a list of estimated fundamental matrix. ''' def sevenpoint(pts1, pts2, M): T = np.eye(3) / M T[2, 2] = 1; pts1 = pts1.astype('float')/M pts2 = pts2.astype('float')/M Fs = [] A = np.vstack([ pts1[:, 0]*pts2[:, 0],pts1[:, 0]*pts2[:, 1], pts1[:, 0], pts1[:, 1]*pts2[:, 0],pts1[:, 1]*pts2[:, 1], pts1[:, 1], pts2[:, 0],pts2[:, 1],
np.ones(pts1.shape[0])
numpy.ones
#!/usr/bin/env python3 import numpy as np import nabla from nabla import grad, Dual, minimise def close(x, y, eps=1e-12): return abs(x-y)<eps def dualclose(x, y, eps=1e-12): isclose = close(x.real, y.real, eps) for i in range(x.nvars): isclose = isclose and close(x.dual[i], y.dual[i], eps) return isclose def test_dual(): x = Dual(2,3) y = Dual(4,5) assert x<y and y>x and x<=y and y>=x z = x + y assert z.real==6 and z.dual[0]==8 z = x - y assert z.real==-2 and z.dual[0]==-2 z = x * y assert z.real==8 and z.dual[0]==22 z = x / y assert z.real==0.5 and z.dual[0]==(3*4 - 2*5)/4**2 x = Dual(2,3) y = 4 assert x<y and y>x and x<=y and y>=x z = x + y assert z.real==6 and z.dual[0]==3 z = x - y assert z.real==-2 and z.dual[0]==3 z = x * y assert z.real==8 and z.dual[0]==12 z = x / y assert z.real==0.5 and z.dual[0]==(3*4 - 2*0)/4**2 x = 2 y = Dual(4,5) assert x<y and y>x and x<=y and y>=x z = x + y assert z.real==6 and z.dual[0]==5 z = x - y assert z.real==-2 and z.dual[0]==-5 z = x * y assert z.real==8 and z.dual[0]==10 z = x / y assert z.real==0.5 and z.dual[0]==(0*4 - 2*5)/4**2 sqrty = np.sqrt(y) ytohalf = y ** 0.5 assert close(sqrty.real, ytohalf.real) and close(sqrty.dual[0], ytohalf.dual[0]) z = 2**y zalt = Dual(2)**y assert close(z.real, zalt.real) and close(z.dual[0], zalt.dual[0]) x = Dual(2,3) y = Dual(4,5) w = x*y z = nabla.dot([x], [y]) assert dualclose(z, w) z = nabla.dot(np.array([x]), np.array([y])) assert dualclose(z, w) z = nabla.dot(np.array([x, y]), np.array([x, x])) assert dualclose(z, x*x + y*x) z = nabla.dot(np.array([x, 3]), np.array([x, x])) assert dualclose(z, x*x + 3*x) def test_dual_multivar(): x = Dual(2, [3, 1]) y = Dual(4, [5, 2]) assert x<y and y>x and x<=y and y>=x z = x + y assert z.real==6 and z.dual[0]==8 and z.dual[1]==3 z = x - y assert z.real==-2 and z.dual[0]==-2 and z.dual[1]==-1 z = x * y assert z.real==8 and z.dual[0]==22 and z.dual[1]==8 z = x / y assert z.real==0.5 and z.dual[0]==(3*4 - 2*5)/4**2 and z.dual[1]==(1*4 - 2*2)/4**2 x = Dual(2, [3, 1]) y = 4 assert x<y and y>x and x<=y and y>=x z = x + y assert z.real==6 and z.dual[0]==3 and z.dual[1]==1 z = x - y assert z.real==-2 and z.dual[0]==3 and z.dual[1]==1 z = x * y assert z.real==8 and z.dual[0]==12 and z.dual[1]==4 z = x / y assert z.real==0.5 and z.dual[0]==(3*4 - 2*0)/4**2 and z.dual[1]==(1*4 - 2*0)/4**2 x = 2 y = Dual(4, [5, 2]) assert x<y and y>x and x<=y and y>=x z = x + y assert z.real==6 and z.dual[0]==5 and z.dual[1]==2 z = x - y assert z.real==-2 and z.dual[0]==-5 and z.dual[1]==-2 z = x * y assert z.real==8 and z.dual[0]==10 and z.dual[1]==4 z = x / y assert z.real==0.5 and z.dual[0]==(0*4 - 2*5)/4**2 and z.dual[1]==(0*4 - 2*2)/4**2 def test_gradsimple(): @grad def sq(x): return x*x @grad def cupow(x): return x**3 @grad def plusthree(x): return x + 3 z = sq(3) assert z.real==9 and z.dual[0]==6 z = cupow(4) assert close(z.real, 64) and close(z.dual[0], 48) z = plusthree(3) assert z.real==6 and z.dual[0]==1 def f(x): return x*x w = grad(0)(f)(np.array([1,2,3])) assert dualclose(w[0], Dual(1, [2, 0, 0])) assert dualclose(w[1], Dual(4, [0, 4, 0])) assert dualclose(w[2], Dual(9, [0, 0, 6])) w = grad(f)(np.array([1,2,3])) assert dualclose(w[0], Dual(1, [2, 0, 0])) assert dualclose(w[1], Dual(4, [0, 4, 0])) assert dualclose(w[2], Dual(9, [0, 0, 6])) # Element-wide mult of np arrays A = np.array([[1,2], [3,4]]) w = grad(f)(A) assert dualclose(w[0,0], Dual(1, [2, 0, 0, 0])) assert dualclose(w[0,1], Dual(4, [0, 4, 0, 0])) assert dualclose(w[1,0], Dual(9, [0, 0, 6, 0])) assert dualclose(w[1,1], Dual(16, [0, 0, 0, 8])) # Reduction def f(x): return np.sum(x*x) w = grad(f)(np.array([1,2,3])) assert dualclose(w, Dual(14, [2, 4, 6])) w = grad(0)(f)(np.array([1,2,3])) assert dualclose(w, Dual(14, [2, 4, 6])) # kwargs z = sq(x=3) assert z.real==9 and z.dual[0]==6 # non-numeric args def fn(x, y): print(y) return 2*x**3 fgrad = nabla.grad()(fn)(2, y="non-numeric") assert close(fgrad.real, 16) and fgrad.nvars==1 and close(fgrad.dual[0], 24) fgrad = nabla.grad()(fn)(y="non-numeric", x=2) assert close(fgrad.real, 16) and fgrad.nvars==1 and close(fgrad.dual[0], 24) # Transcendental functions x = Dual(5,1) z = np.sin(x) assert close(z.real,
np.sin(5)
numpy.sin
import numpy as np import pytest from src.models.noise_transformation import average_true_var_real, average_true_var_imag, average_true_cov, \ average_true_noise_covariance, naive_noise_covariance test_cases_real_variance = [ (2 - 3j, 0, 0, 0), (0, 1, 1, np.exp(-2) * (2 * np.cosh(2) - np.cosh(1))), (2j, 1, 1, 4 * np.exp(-2) * (np.sinh(2) - np.sinh(1)) + np.exp(-2) * (2 * np.sinh(2) - np.sinh(1))), (-2j, 1, 1, 4 * np.exp(-2) * (np.sinh(2) - np.sinh(1)) + np.exp(-2) * (2 * np.sinh(2) - np.sinh(1))), ] test_cases_imag_variance = [ (4 - 3j, 0, 0, 0), (0, 1, 1, np.exp(-2) * (2 * np.sinh(2) - np.sinh(1))), (2j, 1, 1, 4 * np.exp(-2) * (np.cosh(2) - np.cosh(1)) + np.exp(-2) * (2 * np.cosh(2) - np.cosh(1))), (-2j, 1, 1, 4 * np.exp(-2) * (np.cosh(2) - np.cosh(1)) + np.exp(-2) * (2 * np.cosh(2) - np.cosh(1))), ] test_cases_covariance = [ (4 - 3j, 0, 0, 0), (0, 1, 1, 0), (2j, 1, 1, 0), (-2j, 1, 1, 0), (np.sqrt(2) * (1 + 1j), 1, 1, 0.5 * np.exp(-4) * (1 + 5 * (1 - np.exp(1)))), ] @pytest.mark.parametrize("m,sd_magnitude,sd_phase,expected", test_cases_real_variance) def test_variance_of_real_noise(m, sd_magnitude, sd_phase, expected): res = average_true_var_real(m, sd_magnitude, sd_phase) np.testing.assert_allclose(res, expected) @pytest.mark.parametrize("m,sd_magnitude,sd_phase,expected", test_cases_imag_variance) def test_variance_of_imag_noise(m, sd_magnitude, sd_phase, expected): res = average_true_var_imag(m, sd_magnitude, sd_phase) np.testing.assert_allclose(res, expected) @pytest.mark.parametrize("m,sd_magnitude,sd_phase,expected", test_cases_covariance) def test_covariance_of_noise(m, sd_magnitude, sd_phase, expected): res = average_true_cov(m, sd_magnitude, sd_phase) np.testing.assert_allclose(res, expected, rtol=0, atol=1e-10) def test_cartesian_noise_covariance_matrix(): sd_magnitude = 1 sd_phase = 1 measurement = np.zeros(2) res = average_true_noise_covariance(measurement, sd_magnitude, sd_phase) expected = np.diag( [np.exp(-2) * (2 * np.cosh(2) - np.cosh(1))] * 2 + [np.exp(-2) * (2 * np.sinh(2) - np.sinh(1))] * 2) np.testing.assert_allclose(res.todense(), expected) def test_naive_covariance_matrix(): sd_magnitude = 1 sd_phase = 1 measurement =
np.array([0, 1j])
numpy.array
''' Utility mesh function for batch generation Author: <NAME> Date: Novemebr 2019 Input: root : data path num_faces : number of sampled faces, default 8000 nb_classes : number of classes, default 8 scale : scale to unite sphere for PointNet, default False sampling : sampling method [random, fps, or knn], default random mode : train or val, default train Output: Class HessigheimDataset, get items: data numpy array NxF label numpy array Nx1 weight numpy array Nx1 Dependencies: numpy - os - h5py - open3d - scipy - sklearn - matplotlib ''' import numpy as np import os import h5py import open3d from scipy.spatial import cKDTree from sklearn import preprocessing import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D class HessigheimDataset(): def __init__(self, root, num_faces=8000, nb_classes=8, scale=False, sampling='random', mode='train'): self.root = root self.num_faces = num_faces self.mode = mode self.sampling = sampling self.nb_classes = nb_classes self.scale = scale files = os.listdir(self.root) self.data_all = None self.label_all = None for file in files: if file.endswith('h5'): hdf = h5py.File(self.root + '/{}'.format(file), mode='r') face_tile =
np.array(hdf['data'])
numpy.array
import numpy as np from pyshtools.shclasses import SHCoeffs from pyshtools.expand import spharm,SHExpandDH from pyshtools.spectralanalysis import Curve2Mask from pyshtools.shio import read_icgem_gfc from sphericalpolygon import create_polygon from ..gg.static_models import static_download from ..gg.lovenums import lovenums from ..gg.utils import month2int,crop_region from ..gg.lsq import lsqm,ilsqm,wlsqm,iwlsqm from ..gg.filter import filter_ddk,filter_gaussian,filter_gaussian_inverse from ..gg.leakage import spectral_domain from .class_Grid import Grid from .class_Series import Series class GSM(object): ''' class GSM - attributes: - info -> All information about the object - degree_order - max_degree - max_order - normalization - permanent_tide - earth_gravity_param - mean_equator_radius - background_gravity - title - summary - institution - processing_level - product_version - time_coverage_start - time_coverage_end - total_month -> Months over a time interval regardless of the existence of the solutions - total_month_counts - solution_month - solution_counts - missing_month - missing_month_counts - missing_solution_flag -> If True, the monthly solution is missing, otherwise, the monthly solution exists - unused_days -> Unused days for monthly solutions - date_issued - equi_material -> Equivalent material used to represent mass per unit area - filter -> filter applied to monthly solutions - shc - shc_std - methods: - deaverage - debackground - replace_slr_c20 - filter_ddk - filter_gaussian - sma - gsm - rate - grid - study_area - leakage_correction ''' def __init__(self,info,shc,shc_std): self.info = info self.degree_order = info['degree_order'] self.max_degree = info['max_degree'] self.max_order = info['max_order'] self.normalization = info['normalization'] self.permanent_tide = info['permanent_tide'] self.earth_gravity_param = info['earth_gravity_param'] self.mean_equator_radius = info['mean_equator_radius'] self.background_gravity = info['background_gravity'] self.title = info['title'] self.summary = info['summary'] self.institution = info['institution'] self.processing_level = info['processing_level'] self.product_version = info['product_version'] self.time_coverage_start = info['time_coverage_start'] self.time_coverage_end = info['time_coverage_end'] self.total_month = info['total_month'] self.total_month_counts = info['total_month_counts'] self.solution_month = info['solution_month'] self.solution_counts = info['solution_counts'] self.missing_month = info['missing_month'] self.missing_month_counts = info['missing_month_counts'] self.missing_solution_flag = info['missing_solution_flag'] self.unused_days = info['unused_days'] self.date_issued = info['date_issued'] self.equi_material = info['equi_material'] self.filter = info['filter'] self.shc = shc self.shc_std = shc_std def __repr__(self): return 'title = {:s}\nmax_degree = {:d}\nmax_order = {:d}\ndegree_order = {:d}\nnormalization = {:s}\ninstitution = {:s}\nprocessing_level = {:s}\nproduct_version = {:s}\ntime_coverage_start = {:s}\ntime_coverage_end = {:s}\nsolution_counts = {:d}\ntotal_month_counts = {:d}\nmissing_month_counts = {:d}'.format\ (self.title,self.max_degree,self.max_order,self.degree_order,self.normalization,self.institution,self.processing_level,self.product_version,self.time_coverage_start,self.time_coverage_end,self.solution_counts,self.total_month_counts,self.missing_month_counts) def deaverage(self): ''' Deaverage the GSM solutions of the GRACE and GRACE-FO RL06 products Usage: xxx_gsm_d = xxx_gsm.deaverage() Outputs: xxx_gsm_d -> instance of SHC class Examples: >>> csr_gsm_d = csr_gsm.deaverage() >>> print(csr_gsm_d) ''' info = self.info.copy() shc_deaverage = self.shc - np.average(self.shc,axis=0) info['title'] = 'Deaveraged ' + info['title'] info['background_gravity'] = 'Average of monthly solutions' return GSM(info,shc_deaverage,self.shc_std) def debackground(self): ''' Debackground the GSM solutions of the GRACE and GRACE-FO RL06 products Usage: xxx_gsm_d = xxx_gsm.debackground() Outputs: xxx_gsm_d -> instance of GSM class Examples: >>> csr_gsm_d = csr_gsm.debackground() >>> print(csr_gsm_d) ''' info = self.info.copy() degree_order = self.degree_order background_gravity = self.background_gravity gravity_file = static_download(background_gravity) if background_gravity == 'GGM05C': cilm,gm,r0,errors = read_icgem_gfc(gravity_file ,lmax=degree_order,errors='calibrated') elif background_gravity == 'EIGEN-6C4': cilm,gm,r0,errors = read_icgem_gfc(gravity_file,lmax=degree_order,errors='formal') else: raise Exception('Currently, available background gravity models are GGM05C and EIGEN-6C4') shc_debackground = self.shc - cilm info['title'] = 'Debackgrounded ' + info['title'] return GSM(info,shc_debackground,self.shc_std) def replace_slr_c20(self,slr_c20): ''' Replace the C20 values from the GSM files of the GRACE and GRACE-FO RL06 products with the 2nd degree terms from SLR measurements. Usage: xxx_gsm_r = xxx_gsm.replace_slr_c20(slr_c20) Inputs: slr_c20 -> instance of SLR_C20 class Outputs: xxx_gsm_r -> instance of GSM class Examples: >>> csr_gsm_r = csr_gsm.replace_slr_c20(slr_c20) >>> print(csr_gsm_r) ''' shc,shc_std = self.shc.copy(),self.shc_std.copy() shc[:,0,2,0] = slr_c20.c20 shc_std[:,0,2,0] = slr_c20.c20_std info = self.info.copy() info['title'] = info['title'] + ' with C20 replaced by the SLR measurements' info['summary'] = info['summary'] + ' Note that the 2nd-degree terms have been replaced with the values from SLR C20.' return GSM(info,shc,shc_std) def filter_ddk(self,filter_type = 'DDK5'): ''' Filt the deaveraged GSM SHC with the DDK filter, where DDK1,DDK2,...,DDK8 are avaliable. Usage: xxx_gsm_fddk = xxx_gsm.filt_DDK() Parameters: filt_type: [optional, str, default = 'DDK5'] types of DDK filter. Avaliable options are 'DDK1', 'DDK2',...,'DDK8' Outputs: xxx_gsm_fddk: instance of GSM class Examples: >>> slr_c20 = read_slr_c20(end_date='2017-06') >>> slr_c20_deaverage = slr_c20.deaverage() >>> csr_gsm = read_gsm('CSR',96,lmax=179,end_date='2017-06') >>> csr_gsm_d = csr_gsm.deaverage() >>> csr_gsm_r = csr_gsm_d.replace_slr_c20(slr_c20_deaverage) >>> csr_gsm_fddk = csr_gsm_r.filt_ddk('DDK5') >>> print(csr_gsm_fddk.title) >>> print(csr_gsm_fddk.summary) DDK5 filtered Deaveraged GRACE Geopotential Coefficients CSR RL06 with C20 replaced by the SLR measurements Spherical harmonic coefficients representing an estimate of the mean gravity field of Earth during the specified timespan derived from GRACE mission measurements. These coefficients represent the full magnitude of land hydrology, ice, and solid Earth processes. Further, they represent atmospheric and oceanic processes not captured in the accompanying GAC product. The 0th and 1st degree terms are excluded from CSR level-2. Note that the 2nd degree terms have been replaced by the C20 values from SLR. Also note that C20 values from SLR also experienced the DDK5 filtering. ''' filter_shc,filter_shc_std = filter_ddk(filter_type,self.shc,self.shc_std) info = self.info.copy() info['title'] = filter_type + ' filtered ' + info['title'] info['filter'] = filter_type if 'with C20 replaced by the SLR measurements' in info['title']: info['summary'] = info['summary'] + ' Also note that C20 from SLR also experienced the ' + filter_type + ' filtering.' return GSM(info,filter_shc,filter_shc_std) def filter_gaussian(self,r): ''' Filtering the deaveraged GSM SHC with the Gaussian filter. Usage: xxx_gsm_gau = xxx_gsm.filt_gaussian() Inputs: r -> [float] Gaussian filter radius in km Outputs: xxx_gsm_gau: instance of GSM class Examples: >>> slr_c20 = read_slr_c20(end_date='2017-06') >>> slr_c20_deaverage = slr_c20.deaverage() >>> csr_gsm = read_GSM('CSR',96,lmax=179,end_date='2017-06') >>> csr_gsm_d = csr_gsm.deaverage() >>> csr_gsm_r = csr_gsm_d.replace_slr_c20(slr_c20_deaverage) >>> csr_gsm_fgau = csr_gsm_r.filt_gaussian(200) >>> print(csr_gsm_fgau.title) Gaussian filtered Deaveraged GRACE Geopotential Coefficients CSR RL06 with C20 replaced by the SLR measurements >>> print(csr_gsm_fgau.summary) Spherical harmonic coefficients representing an estimate of the mean gravity field of Earth during the specified timespan derived from GRACE mission measurements. These coefficients represent the full magnitude of land hydrology, ice, and solid Earth processes. Further, they represent atmospheric and oceanic processes not captured in the accompanying GAC product. The 0th and 1st degree terms are excluded from CSR level-2. Note that the 2nd degree terms have been replaced by the C20 values from SLR. Also note that C20 values from SLR also experienced the Gaussian filtering. ''' filter_shc,filter_shc_std = filter_gaussian(r,self.shc,self.shc_std) info = self.info.copy() info['title'] = 'Gaussian filtered ' + info['title'] info['filter'] = 'Gaussian filter with radius of '+str(r) + ' km' if 'with C20 replaced by the SLR measurements' in info['title']: info['summary'] = info['summary'] + ' Also note that C20 from SLR also experienced the Gaussian filtering.' return GSM(info,filter_shc,filter_shc_std) def sma(self, equi_material = None): ''' Convert Stokes coefficents(or rates) for GSM to that for Surface Mass Anomaly in Equivalent Water(or Ice, Sand) Thickness(EWT) with unit of [mm w.e.](or [mm i.e.],[mm s.e.]) or [mm w.e./yr](or [mm i.e./yr],[mm s.e./yr]) Usage: xxx_sma = xxx_gsm.sma() Parameters: equi_material -> [optional, str, default = None] Equivalent material for Surface Mass Anomaly. Currently, only Water, Ice, and Sand are avaliable. Outputs: xxx_sma: instance of SMA class Examples: >>> csr_gsm = read_gsm('CSR',96) >>> gfz_gsm = read_gsm('GFZ',96) >>> jpl_gsm = read_gsm('JPL',96) >>> slr_c20 = read_slr_c20() >>> comb_gsm = GSM_average([csr_gsm.deaverage(),gfz_gsm.deaverage(),jpl_gsm.deaverage()]) >>> comb_gsm_r = comb_gsm.replace_slr_c20(slr_c20.deaverage()) >>> comb_gsm_ddk5 = comb_gsm_r.filt_DDK('DDK5') >>> sma = comb_gsm_ddk5.sma('Sand') >>> print(sma.title) Stokes coefficients for Surface Mass Anomaly(SMA) in Equivalent Sand Thickness(EWT) derived from the DDK5 filtered Combined Deaveraged GRACE & GRACE-FO Geopotential Coefficients CSR RL06, GFZ RL06, JPL RL06 with C20 replaced by the SLR measurements >>> print(sma.summary) Spherical harmonic coefficients representing an estimate of the Surface Mass Anomaly(SMA) expressed in terms of Equivalent Sand[1442kg/m3] Thickness(EWT) with unit of [mm s.e.] during the specified timespan derived from GRACE & GRACE-FO mission measurements. These coefficients represent the full magnitude of land hydrology, ice, and solid Earth processes. Further, they represent atmospheric and oceanic processes not captured in the accompanying GAC product. Note that the 2nd degree terms have been replaced by the C20 values from SLR. Also note that C20 values from SLR also experienced the DDK5 filtering. >>> print(sma.material) Sand ''' if equi_material is None: equi_material = self.equi_material if equi_material == 'Water': rho = 1000 elif equi_material == 'Ice': rho = 917 elif equi_material == 'Sand': rho = 1442 else: raise Exception('Currently, the equivalent material for SMA can only be Water, Ice, or Sand.') # Calculate the average density of the Earth G = 6.67430e-11 GM = float(self.earth_gravity_param.partition('m3/s2')[0]) a = float(self.mean_equator_radius.partition('m')[0]) rho_ave = 3*GM/(4*G*np.pi*a**3) sma_shc = np.zeros_like(self.shc) sma_shc_std = np.zeros_like(self.shc_std) for l in range(self.degree_order+1): k_l =lovenums(l) factor = a*rho_ave/(3*rho)*(2*l+1)/(1+k_l) #factor = a*h_l[l]/(1+k_l) # for vertical displacement sma_shc[:,:,l,:] = factor*self.shc[:,:,l,:]*1e3 # in mm sma_shc_std[:,:,l,:] = factor*self.shc_std[:,:,l,:]*1e3 info = self.info.copy() if 'change rate' in info['title']: info['title'] = 'Stokes coefficients for annual change rate of Surface Mass Anomaly(SMA) in Equivalent ' + equi_material + ' Thickness(EWT) derived from the ' + info['title'] info['summary'] = info['summary'].replace('mean gravity field of Earth','Surface Mass Anomaly(SMA) expressed in terms of Equivalent ' + equi_material + '['+ str(rho)+ 'kg/m3]' + ' Thickness(EWT) with unit of [mm '+equi_material[0].lower()+'.e./yr]') else: info['title'] = 'Stokes coefficients for Surface Mass Anomaly(SMA) in Equivalent ' + equi_material + ' Thickness(EWT) derived from the ' + info['title'] info['summary'] = info['summary'].replace('mean gravity field of Earth','Surface Mass Anomaly(SMA) expressed in terms of Equivalent ' + equi_material + '['+ str(rho)+ 'kg/m3]' + ' Thickness(EWT) with unit of [mm '+equi_material[0].lower()+'.e.]') info['equi_material'] = equi_material return GSM(info,sma_shc,sma_shc_std) def gsm(self): ''' Convert Stokes coefficents for Surface Mass Anomaly in Equivalent Water(or Ice, Sand) Thickness(EWT) with unit of [mm w.e.] to that for GSM Usage: xxx_gsm = xxx_sma.gsm() Parameters: ----------- None Returns: ----------- xxx_gsm: instance of GSM class Examples: ----------- >>> csr_gsm = read_GSM('CSR',96) >>> gfz_gsm = read_GSM('GFZ',96) >>> jpl_gsm = read_GSM('JPL',96) >>> slr_c20 = read_SLR_C20() >>> comb_gsm = GSM_average([csr_gsm.deaverage(),gfz_gsm.deaverage(),jpl_gsm.deaverage()]) >>> comb_gsm_r = comb_gsm.replace_slr_c20(slr_c20.deaverage()) >>> comb_gsm_ddk5 = comb_gsm_r.filt_DDK('DDK5') >>> sma = comb_gsm_ddk5.sma('Sand') >>> gsm = sma.gsm() >>> print(sma.title) Stokes coefficients for Surface Mass Anomaly(SMA) in Equivalent Sand Thickness(EWT) derived from the DDK5 filtered Combined Deaveraged GRACE & GRACE-FO Geopotential Coefficients CSR RL06, GFZ RL06, JPL RL06 with C20 replaced by the SLR measurements >>> print(sma.summary) Spherical harmonic coefficients representing an estimate of the Surface Mass Anomaly(SMA) expressed in terms of Equivalent Sand[1442kg/m3] Thickness(EWT) with unit of [mm w.e.] during the specified timespan derived from GRACE & GRACE-FO mission measurements. These coefficients represent the full magnitude of land hydrology, ice, and solid Earth processes. Further, they represent atmospheric and oceanic processes not captured in the accompanying GAC product. Note that the 2nd degree terms have been replaced by the C20 values from SLR. Also note that C20 values from SLR also experienced the DDK5 filtering. >>> print(sma.material) Sand >>> print(gsm.title) DDK5 filtered Combined Deaveraged GRACE & GRACE-FO Geopotential Coefficients CSR RL06, GFZ RL06, JPL RL06 with C20 replaced by the SLR measurements >>> print(gsm.summary) Spherical harmonic coefficients representing an estimate of the mean gravity field of Earth during the specified timespan derived from GRACE & GRACE-FO mission measurements. These coefficients represent the full magnitude of land hydrology, ice, and solid Earth processes. Further, they represent atmospheric and oceanic processes not captured in the accompanying GAC product. Note that the 2nd degree terms have been replaced by the C20 values from SLR. Also note that C20 values from SLR also experienced the DDK5 filtering. >>> print(comb_gsm_ddk5.SHC[100,0,30,20]) 1.8369657302246403e-12 >>> print(sma.SHC[100,0,30,20]) 0.9456468755977168 >>> print(gsm.SHC[100,0,30,20]) 1.8369657302246403e-12 ''' equi_material = self.equi_material if equi_material is 'Water': rho = 1000 elif equi_material is 'Ice': rho = 917 elif equi_material is 'Sand': rho = 1442 else: raise Exception('Currently, the equivalent material can only be Water, Ice, or Sand.') # Calculate the average density of the Earth G = 6.67430e-11 GM = float(self.earth_gravity_param.partition('m3/s2')[0]) a = float(self.mean_equator_radius.partition('m')[0]) rho_ave = 3*GM/(4*G*np.pi*a**3) gsm_shc = np.zeros_like(self.shc) gsm_shc_std = np.zeros_like(self.shc_std) for l in range(self.degree_order+1): k_l =lovenums(l) factor = 3*rho/(a*rho_ave)*(1+k_l)/(2*l+1) gsm_shc[:,:,l,:] = factor*self.shc[:,:,l,:]/1e3 gsm_shc_std[:,:,l,:] = factor*self.shc_std[:,:,l,:]/1e3 info = self.info.copy() if 'change rate' in info['title']: info['title'] = info['title'].replace('Stokes coefficients for annual change rate of Surface Mass Anomaly(SMA) in Equivalent ' + equi_material + ' Thickness(EWT) derived from the ','') info['title'] = info['title'].replace('Stokes coefficients for Surface Mass Anomaly(SMA) in Equivalent ' + equi_material + ' Thickness(EWT) derived from the ','') info['summary'] = info['summary'].replace('Surface Mass Anomaly(SMA) expressed in terms of Equivalent ' + equi_material + '['+ str(rho)+ 'kg/m3]' + ' Thickness(EWT) with unit of [mm '+equi_material[0].lower()+'.e./yr]','mean gravity field of Earth') else: info['title'] = info['title'].replace('Stokes coefficients for Surface Mass Anomaly(SMA) in Equivalent ' + equi_material + ' Thickness(EWT) derived from the ','') info['summary'] = info['summary'].replace('Surface Mass Anomaly(SMA) expressed in terms of Equivalent ' + equi_material + '['+ str(rho)+ 'kg/m3]' + ' Thickness(EWT) with unit of [mm '+equi_material[0].lower()+'.e.]','mean gravity field of Earth') return GSM(info,gsm_shc,gsm_shc_std) def rate(self,mode='ILSQM'): ''' Estimate the annual change rate of Geopotential coefficients or Stokes coefficents for Surface Mass Anomaly in Equivalent Water(or Ice, Sand) Thickness(EWT) using the linearly fitting method. There are four methods for linearly fitting, including 'LSM', 'ILSM', 'WLSM', and 'IWSLM'. The ILSM is default and recommended. Usage: xxx_sma_rate = xxx_sma.rate() or xxx_gsm_rate = xxx_gsm.rate('IWLSM') Parameters: ----------- lsm [str] [optional, default: ILSM] alternertively, 'LSM', 'ILSM', 'WLSM', and 'IWSLM' are available, where 'LSM' -- Least Square Method 'ILSM' -- Iterative Least Square Method 'WLSM' -- Weighted Least Square Method 'IWSLM' -- Iterative Weighted Least Square Method Returns: ----------- xxx_gsm: instance of GSM class Examples: ----------- >>> csr_gsm = read_GSM('CSR',96) >>> gfz_gsm = read_GSM('GFZ',96) >>> jpl_gsm = read_GSM('JPL',96) >>> slr_c20 = read_SLR_C20() >>> comb_gsm = GSM_average([csr_gsm.deaverage(),gfz_gsm.deaverage(),jpl_gsm.deaverage()]) >>> comb_gsm_r = comb_gsm.replace_slr_c20(slr_c20.deaverage()) >>> comb_gsm_ddk5 = comb_gsm_r.filt_DDK('DDK5') >>> comb_gsm_ddk5_rate = comb_gsm_ddk5.rate() >>> print(comb_gsm_ddk5_rate.title) 'Annual change rate of DDK5 filtered Combined Deaveraged GRACE & GRACE-FO Geopotential Coefficients CSR RL06, GFZ RL06, JPL RL06 with C20 replaced by the SLR measurements' >>> print(comb_gsm_ddk5_rate.summary) 'Spherical harmonic coefficients representing an estimate of annual change rate of the mean gravity field of Earth during the specified timespan derived from GRACE & GRACE-FO mission measurements. These coefficients represent the full magnitude of land hydrology, ice, and solid Earth processes. Further, they represent atmospheric and oceanic processes not captured in the accompanying GAC product. Note that the 2nd degree terms have been replaced by the C20 values from SLR. Also note that C20 values from SLR also experienced the DDK5 filtering.' >>> sma_rate = comb_gsm_ddk5_rate.sma() >>> print(sma_rate.title) 'Stokes coefficients for annual change rate of Surface Mass Anomaly(SMA) in Equivalent Water Thickness(EWT) derived from the Annual change rate of DDK5 filtered Combined Deaveraged GRACE & GRACE-FO Geopotential Coefficients CSR RL06, GFZ RL06, JPL RL06 with C20 replaced by the SLR measurements' >>> print(sma_rate.summary) 'Spherical harmonic coefficients representing an estimate of annual change rate of the Surface Mass Anomaly(SMA) expressed in terms of Equivalent Water[1000kg/m3] Thickness(EWT) with unit of [mm w.e./yr] during the specified timespan derived from GRACE & GRACE-FO mission measurements. These coefficients represent the full magnitude of land hydrology, ice, and solid Earth processes. Further, they represent atmospheric and oceanic processes not captured in the accompanying GAC product. Note that the 2nd degree terms have been replaced by the C20 values from SLR. Also note that C20 values from SLR also experienced the DDK5 filtering.' ''' shc,shc_std = self.shc,self.shc_std month = month2int(self.solution_month) shc_rate,shc_rate_std = [np.zeros_like(shc[0]) for k in range(2)] degree = order = self.degree_order for i in range(2): for l in range(2,degree+1): # start with 1 if consider the motion of mass center for m in range(order+1): if i==1 and m==0 or m > l: continue if mode is 'LSQM': shc_rate[i,l,m],shc_rate_std[i,l,m],_,_ = lsqm(month,shc[:,i,l,m]) elif mode is 'WLSQM': shc_rate[i,l,m],shc_rate_std[i,l,m],_,_ = wlsqm(month,shc[:,i,l,m],shc_std[:,i,l,m]) elif mode is 'ILSQM': shc_rate[i,l,m],shc_rate_std[i,l,m],normal,_,_ = ilsqm(month,shc[:,i,l,m]) elif mode is 'IWLSQM': shc_rate[i,l,m],shc_rate_std[i,l,m],normal,_,_ = iwlsqm(month,shc[:,i,l,m],shc_std[:,i,l,m]) else: raise Exception('Currently, the least square method can only be LSQM, WLSQM, ILSQM, and IWLSQM.') info = self.info.copy() info['title'] = 'Annual change rate of ' + info['title'] info['summary'] = info['summary'].replace('an estimate of','an estimate of annual change rate of') for em in ['w','i','s']: info['summary'] = info['summary'].replace('[mm '+em+'.e.]','[mm '+em+'.e./yr]') return GSM(info,np.array([shc_rate]),np.array([shc_rate_std])) def grid(self,region=None): ''' Expand spherical harmonic coefficients into a regional grid Usage: xxx_sma_grid = xxx_sma.grid(region) Parameters: region: [float array] range of an area, for example, [96.0,120.0,21.0,39.0] means the boundary in lon and lat; Returns: an instance of GRID class ''' # Create an empty list to contain the grid of EWT from GRACE for each month grids = [] shcs,shcs_std = self.shc,self.shc_std for cilm in shcs: coeffs_class = SHCoeffs.from_array(cilm) grids_class = coeffs_class.expand() grids.append(grids_class.data) grids = np.array(grids) grids_std = np.zeros_like(grids) lons = grids_class.lons() lats = grids_class.lats() if region is not None: if 'rate' not in self.title: print('The calculation will take a few minutes, please be patient.') lons_region,lats_region,grids_region,grids_std_region,lons_flag,lats_flag = crop_region(lons,lats,grids,grids_std,region) # Convert SHCs_std to grids_std lmax = self.degree_order k = 0 for shc_std in shcs_std: i = 0 for theta in lats_region: j = 0 for phi in lons_region: ylm = spharm(lmax, 90-theta, phi) grids_std_region[k,i,j] = np.sqrt(np.sum((ylm*shc_std)**2)) j+=1 i+=1 k+=1 else: region = 'globe' grids_region = grids grids_std_region = np.zeros_like(grids_region) lons_region,lats_region = lons,lats lons_flag = np.ones(len(lons_region),dtype=bool) lats_flag = np.ones(len(lats_region),dtype=bool) # Note: Since it takes a lot of time to calculate the uncertainties of the global grid data, the uncertainties are all set to zero. info = self.info.copy() info['title'] = 'Grids expanded from ' + info['title'] info['summary'] = info['summary'].replace('Spherical harmonic coefficients','Grids') info['summary'] = info['summary'].replace('coefficients','grids') info['region'] = region return Grid(info,grids_region,grids_std_region,lons_region,lats_region,lons_flag,lats_flag) def study_area(self,points): a = float(self.mean_equator_radius.partition('m')[0])/1e3 # km if self.equi_material is 'Water': rho = 1000 elif self.equi_material is 'Ice': rho = 917 elif self.equi_material is 'Sand': rho = 1442 qs,qs_std = [],[] north_pole = create_polygon(points).contains_points([90,0]) # Determine if the North Pole is inside the study area mask_grid = Curve2Mask(2*(self.degree_order+1),points,north_pole,sampling=2) mask_shc = SHExpandDH(mask_grid,sampling=2) area = mask_shc[0,0,0]*4*np.pi*a**2 # km^2 for shc in self.shc: q = np.sum(shc*mask_shc)*4*np.pi*a**2*rho/1e9 # Gt qs.append(q) for shc_std in self.shc_std: q_std = np.sqrt(np.sum((shc_std*mask_shc)**2))*4*np.pi*a**2*rho/1e9 # Gt qs_std.append(q_std) qs,qs_std = np.array(qs),np.array(qs_std) info = self.info.copy() info['title'] = 'Integral(over the study area) of '+info['title'] return Series(info,area,qs,qs_std) def leakage_correction(self,method,r,nodes=None,study_area=None,mode=None,ratio=None): if method == 'filter_inverse': info = self.info.copy() corrected_shc,corrected_shc_std = filter_gaussian_inverse(r,self.shc,self.shc_std) info['title'] = 'Signal leakage corrected(filter inverse method) ' + info['title'] return GSM(info,corrected_shc,corrected_shc_std) elif method == 'spectral_domain': shcs = self.shc if nodes.region == 'globe': grids = self.grid() else: grids = self.grid(nodes.region) info = grids.info lmax = self.degree_order n = (lmax+1)*2 mas,mas_std = spectral_domain(shcs,nodes,study_area,r,mode,ratio) corrected_grids = np.zeros_like(grids.grids) corrected_grids_std = corrected_grids.copy() nodes_index = nodes.nodes_index for k in range(len(nodes_index)): i,j = nodes_index[k] corrected_grids[:,i,j] = mas[:,k] corrected_grids_std[:,i,j] = mas_std[:,k] info['title'] = 'Signal leakage corrected(spectral domain method) ' + info['title'] return Grid(info,corrected_grids,corrected_grids_std,grids.lons,grids.lats,grids.lons_flag,grids.lats_flag) else: raise Exception('Only filter inverse and spectral domain are avaliable') def __add__(self,other): info = self.info.copy() #info['title'] = #info['summary'] = self_shc,self_shc_std = self.shc,self.shc_std other_shc,other_shc_std = other.shc,other.shc_std if 'rate' in self.title and 'rate' in other.title: add_shc = self_shc + other_shc add_shc_std = np.sqrt(self_shc_std**2 + other_shc_std**2) elif ('rate' in self.title and 'rate' not in other.title) or ('rate' not in self.title and 'rate' in other.title): raise Exception('Addition can not be completed between rate object and series object') else: self_existing_solution_flag = ~self.missing_solution_flag other_existing_solution_flag = ~other.missing_solution_flag if (self_existing_solution_flag != other_existing_solution_flag).any(): existing_solution_flag = self_existing_solution_flag & other_existing_solution_flag n = len(existing_solution_flag) assumed_self_shc = np.zeros((n,)+self.shc.shape[1:]) assumed_other_shc = assumed_self_shc.copy() assumed_self_shc[self_existing_solution_flag] = self.shc assumed_other_shc[other_existing_solution_flag] = other.shc self_shc = assumed_self_shc[existing_solution_flag] other_shc = assumed_other_shc[existing_solution_flag] assumed_self_shc_std = np.zeros((n,)+self.shc_std.shape[1:]) assumed_other_shc_std = assumed_self_shc_std.copy() assumed_self_shc_std[self_existing_solution_flag] = self.shc_std assumed_other_shc_std[other_existing_solution_flag] = other.shc_std self_shc_std = assumed_self_shc_std[existing_solution_flag] other_shc_std = assumed_other_shc_std[existing_solution_flag] solution_month = self.total_month[existing_solution_flag] solution_counts = len(solution_month) missing_solution_flag = ~existing_solution_flag missing_month = self.total_month[missing_solution_flag] missing_month_counts = len(missing_month) info['solution_month'] = solution_month info['solution_counts'] = solution_counts info['missing_month'] = missing_month info['missing_month_counts'] = missing_month_counts info['missing_solution_flag'] = missing_solution_flag add_shc = self_shc + other_shc add_shc_std = np.sqrt(self_shc_std**2 + other_shc_std**2) return GSM(info,add_shc,add_shc_std) def __sub__(self,other): info = self.info.copy() #info['title'] = #info['summary'] = self_shc,self_shc_std = self.shc,self.shc_std other_shc,other_shc_std = other.shc,other.shc_std if 'rate' in self.title and 'rate' in other.title: sub_shc = self_shc - other_shc sub_shc_std = np.sqrt(self_shc_std**2 + other_shc_std**2) elif ('rate' in self.title and 'rate' not in other.title) or ('rate' not in self.title and 'rate' in other.title): raise Exception('Subtraction can not be completed between rate object and series object') else: self_existing_solution_flag = ~self.missing_solution_flag other_existing_solution_flag = ~other.missing_solution_flag if (self_existing_solution_flag != other_existing_solution_flag).any(): existing_solution_flag = self_existing_solution_flag & other_existing_solution_flag n = len(existing_solution_flag) assumed_self_shc =
np.zeros((n,)+self.shc.shape[1:])
numpy.zeros
## @ingroup Components-Energy-Converters # Rotor.py # # Created: Jun 2014, <NAME> # Modified: Jan 2016, <NAME> # Feb 2019, <NAME> # Mar 2020, <NAME> # Sep 2020, <NAME> # Mar 2021, <NAME> # Apr 2021, <NAME> # Jul 2021, <NAME> # Jul 2021, <NAME> # Sep 2021, <NAME> # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- from SUAVE.Core import Data, Units from SUAVE.Components.Energy.Energy_Component import Energy_Component from SUAVE.Methods.Geometry.Three_Dimensional \ import orientation_product, orientation_transpose from SUAVE.Methods.Aerodynamics.Common.Fidelity_Zero.Lift.compute_HFW_inflow_velocities \ import compute_HFW_inflow_velocities # package imports import numpy as np import scipy as sp # ---------------------------------------------------------------------- # Generalized Rotor Class # ---------------------------------------------------------------------- ## @ingroup Components-Energy-Converters class Rotor(Energy_Component): """This is a general rotor component. Assumptions: None Source: None """ def __defaults__(self): """This sets the default values for the component to function. Assumptions: None Source: N/A Inputs: None Outputs: None Properties Used: None """ self.tag = 'rotor' self.number_of_blades = 0.0 self.tip_radius = 0.0 self.hub_radius = 0.0 self.twist_distribution = 0.0 self.sweep_distribution = 0.0 # quarter chord offset from quarter chord of root airfoil self.chord_distribution = 0.0 self.mid_chord_alignment = 0.0 self.thickness_to_chord = 0.0 self.blade_solidity = 0.0 self.design_power = None self.design_thrust = None self.airfoil_geometry = None self.airfoil_polars = None self.airfoil_polar_stations = None self.radius_distribution = None self.rotation = 1 self.azimuthal_offset_angle = 0.0 self.orientation_euler_angles = [0.,0.,0.] # This is X-direction thrust in vehicle frame self.ducted = False self.number_azimuthal_stations = 24 self.number_points_around_airfoil = 40 self.induced_power_factor = 1.48 # accounts for interference effects self.profile_drag_coefficient = .03 self.use_2d_analysis = False # True if rotor is at an angle relative to freestream or nonuniform freestream self.nonuniform_freestream = False self.axial_velocities_2d = None # user input for additional velocity influences at the rotor self.tangential_velocities_2d = None # user input for additional velocity influences at the rotor self.radial_velocities_2d = None # user input for additional velocity influences at the rotor self.Wake_VD = Data() self.wake_method = "momentum" self.number_rotor_rotations = 6 self.number_steps_per_rotation = 100 self.wake_settings = Data() self.wake_settings.initial_timestep_offset = 0 # initial timestep self.wake_settings.wake_development_time = 0.05 # total simulation time required for wake development self.wake_settings.number_of_wake_timesteps = 30 # total number of time steps in wake development self.start_angle = 0.0 # angle of first blade from vertical self.inputs.y_axis_rotation = 0. self.inputs.pitch_command = 0. self.variable_pitch = False def spin(self,conditions): """Analyzes a general rotor given geometry and operating conditions. Assumptions: per source Source: <NAME>. "Qprop Formulation", MIT AeroAstro, June 2006 http://web.mit.edu/drela/Public/web/qprop/qprop_theory.pdf Leishman, <NAME>. Principles of helicopter aerodynamics Cambridge university press, 2006. Inputs: self.inputs.omega [radian/s] conditions.freestream. density [kg/m^3] dynamic_viscosity [kg/(m-s)] speed_of_sound [m/s] temperature [K] conditions.frames. body.transform_to_inertial (rotation matrix) inertial.velocity_vector [m/s] conditions.propulsion. throttle [-] Outputs: conditions.propulsion.outputs. number_radial_stations [-] number_azimuthal_stations [-] disc_radial_distribution [m] speed_of_sound [m/s] density [kg/m-3] velocity [m/s] disc_tangential_induced_velocity [m/s] disc_axial_induced_velocity [m/s] disc_tangential_velocity [m/s] disc_axial_velocity [m/s] drag_coefficient [-] lift_coefficient [-] omega [rad/s] disc_circulation [-] blade_dQ_dR [N/m] blade_dT_dr [N] blade_thrust_distribution [N] disc_thrust_distribution [N] thrust_per_blade [N] thrust_coefficient [-] azimuthal_distribution [rad] disc_azimuthal_distribution [rad] blade_dQ_dR [N] blade_dQ_dr [Nm] blade_torque_distribution [Nm] disc_torque_distribution [Nm] torque_per_blade [Nm] torque_coefficient [-] power [W] power_coefficient [-] Properties Used: self. number_of_blades [-] tip_radius [m] twist_distribution [radians] chord_distribution [m] orientation_euler_angles [rad, rad, rad] """ # Unpack rotor blade parameters B = self.number_of_blades R = self.tip_radius beta_0 = self.twist_distribution c = self.chord_distribution sweep = self.sweep_distribution # quarter chord distance from quarter chord of root airfoil r_1d = self.radius_distribution tc = self.thickness_to_chord # Unpack rotor airfoil data a_geo = self.airfoil_geometry a_loc = self.airfoil_polar_stations cl_sur = self.airfoil_cl_surrogates cd_sur = self.airfoil_cd_surrogates # Unpack rotor inputs and conditions omega = self.inputs.omega Na = self.number_azimuthal_stations nonuniform_freestream = self.nonuniform_freestream use_2d_analysis = self.use_2d_analysis wake_method = self.wake_method rotation = self.rotation pitch_c = self.inputs.pitch_command # Check for variable pitch if np.any(pitch_c !=0) and not self.variable_pitch: print("Warning: pitch commanded for a fixed-pitch rotor. Changing to variable pitch rotor for weights analysis.") self.variable_pitch = True # Unpack freestream conditions rho = conditions.freestream.density[:,0,None] mu = conditions.freestream.dynamic_viscosity[:,0,None] a = conditions.freestream.speed_of_sound[:,0,None] T = conditions.freestream.temperature[:,0,None] Vv = conditions.frames.inertial.velocity_vector nu = mu/rho rho_0 = rho # Helpful shorthands pi = np.pi # Calculate total blade pitch total_blade_pitch = beta_0 + pitch_c # Velocity in the rotor frame T_body2inertial = conditions.frames.body.transform_to_inertial T_inertial2body = orientation_transpose(T_body2inertial) V_body = orientation_product(T_inertial2body,Vv) body2thrust = self.body_to_prop_vel() T_body2thrust = orientation_transpose(np.ones_like(T_body2inertial[:])*body2thrust) V_thrust = orientation_product(T_body2thrust,V_body) # Check and correct for hover V = V_thrust[:,0,None] V[V==0.0] = 1E-6 # Number of radial stations and segment control points Nr = len(c) ctrl_pts = len(Vv) # Non-dimensional radial distribution and differential radius chi = r_1d/R diff_r = np.diff(r_1d) deltar = np.zeros(len(r_1d)) deltar[1:-1] = diff_r[0:-1]/2 + diff_r[1:]/2 deltar[0] = diff_r[0]/2 deltar[-1] = diff_r[-1]/2 # Calculating rotational parameters omegar = np.outer(omega,r_1d) n = omega/(2.*pi) # Rotations per second # 2 dimensional radial distribution non dimensionalized chi_2d = np.tile(chi[:, None],(1,Na)) chi_2d = np.repeat(chi_2d[None,:,:], ctrl_pts, axis=0) r_dim_2d = np.tile(r_1d[:, None] ,(1,Na)) r_dim_2d = np.repeat(r_dim_2d[None,:,:], ctrl_pts, axis=0) c_2d = np.tile(c[:, None] ,(1,Na)) c_2d = np.repeat(c_2d[None,:,:], ctrl_pts, axis=0) # Azimuthal distribution of stations psi = np.linspace(0,2*pi,Na+1)[:-1] psi_2d = np.tile(np.atleast_2d(psi),(Nr,1)) psi_2d = np.repeat(psi_2d[None, :, :], ctrl_pts, axis=0) # apply blade sweep to azimuthal position if np.any(np.array([sweep])!=0): use_2d_analysis = True sweep_2d = np.repeat(sweep[:, None], (1,Na)) sweep_offset_angles = np.tan(sweep_2d/r_dim_2d) psi_2d += sweep_offset_angles # Starting with uniform freestream ua = 0 ut = 0 ur = 0 # Include velocities introduced by rotor incidence angles if (np.any(abs(V_thrust[:,1]) >1e-3) or np.any(abs(V_thrust[:,2]) >1e-3)) and use_2d_analysis: # y-component of freestream in the propeller cartesian plane Vy = V_thrust[:,1,None,None] Vy = np.repeat(Vy, Nr,axis=1) Vy = np.repeat(Vy, Na,axis=2) # z-component of freestream in the propeller cartesian plane Vz = V_thrust[:,2,None,None] Vz = np.repeat(Vz, Nr,axis=1) Vz = np.repeat(Vz, Na,axis=2) # check for invalid rotation angle if (rotation == 1) or (rotation == -1): pass else: print("Invalid rotation direction. Setting to 1.") rotation = 1 # compute resulting radial and tangential velocities in polar frame utz = Vz*np.cos(psi_2d* rotation) urz = Vz*np.sin(psi_2d* rotation) uty = Vy*np.sin(psi_2d* rotation) ury = Vy*np.cos(psi_2d* rotation) ut += (utz + uty) ur += (urz + ury) ua += np.zeros_like(ut) # Include external velocities introduced by user if nonuniform_freestream: use_2d_analysis = True # include additional influences specified at rotor sections, shape=(ctrl_pts,Nr,Na) ua += self.axial_velocities_2d ut += self.tangential_velocities_2d ur += self.radial_velocities_2d if use_2d_analysis: # make everything 2D with shape (ctrl_pts,Nr,Na) size = (ctrl_pts,Nr,Na ) PSI = np.ones(size) PSIold = np.zeros(size) # 2-D freestream velocity and omega*r V_2d = V_thrust[:,0,None,None] V_2d = np.repeat(V_2d, Na,axis=2) V_2d = np.repeat(V_2d, Nr,axis=1) omegar = (np.repeat(np.outer(omega,r_1d)[:,:,None], Na, axis=2)) # total velocities Ua = V_2d + ua # 2-D blade pitch and radial distributions if np.size(pitch_c)>1: # control variable is the blade pitch, repeat around azimuth beta = np.repeat(total_blade_pitch[:,:,None], Na, axis=2) else: beta = np.tile(total_blade_pitch[None,:,None],(ctrl_pts,1,Na )) r = np.tile(r_1d[None,:,None], (ctrl_pts, 1, Na)) c = np.tile(c[None,:,None], (ctrl_pts, 1, Na)) deltar = np.tile(deltar[None,:,None], (ctrl_pts, 1, Na)) # 2-D atmospheric properties a = np.tile(np.atleast_2d(a),(1,Nr)) a = np.repeat(a[:, :, None], Na, axis=2) nu = np.tile(np.atleast_2d(nu),(1,Nr)) nu = np.repeat(nu[:, :, None], Na, axis=2) rho = np.tile(np.atleast_2d(rho),(1,Nr)) rho = np.repeat(rho[:, :, None], Na, axis=2) T = np.tile(np.atleast_2d(T),(1,Nr)) T = np.repeat(T[:, :, None], Na, axis=2) else: # total velocities r = r_1d Ua = np.outer((V + ua),np.ones_like(r)) beta = total_blade_pitch # Things that will change with iteration size = (ctrl_pts,Nr) PSI = np.ones(size) PSIold = np.zeros(size) # Total velocities Ut = omegar - ut U = np.sqrt(Ua*Ua + Ut*Ut + ur*ur) if wake_method == 'momentum': # Setup a Newton iteration diff = 1. tol = 1e-6 # Convergence tolerance ii = 0 # BEMT Iteration while (diff>tol): # compute velocities sin_psi = np.sin(PSI) cos_psi = np.cos(PSI) Wa = 0.5*Ua + 0.5*U*sin_psi Wt = 0.5*Ut + 0.5*U*cos_psi va = Wa - Ua vt = Ut - Wt # compute blade airfoil forces and properties Cl, Cdval, alpha, Ma, W = compute_airfoil_aerodynamics(beta,c,r,R,B,Wa,Wt,a,nu,a_loc,a_geo,cl_sur,cd_sur,ctrl_pts,Nr,Na,tc,use_2d_analysis) # compute inflow velocity and tip loss factor lamdaw, F, piece = compute_inflow_and_tip_loss(r,R,Wa,Wt,B) # compute Newton residual on circulation Gamma = vt*(4.*pi*r/B)*F*(1.+(4.*lamdaw*R/(pi*B*r))*(4.*lamdaw*R/(pi*B*r)))**0.5 Rsquiggly = Gamma - 0.5*W*c*Cl # use analytical derivative to get dR_dpsi dR_dpsi = compute_dR_dpsi(B,beta,r,R,Wt,Wa,U,Ut,Ua,cos_psi,sin_psi,piece) # update inflow angle dpsi = -Rsquiggly/dR_dpsi PSI = PSI + dpsi diff = np.max(abs(PSIold-PSI)) PSIold = PSI # If omega = 0, do not run BEMT convergence loop if all(omega[:,0]) == 0. : break # If its really not going to converge if np.any(PSI>pi/2) and np.any(dpsi>0.0): print("Rotor BEMT did not converge to a solution (Stall)") break ii+=1 if ii>10000: print("Rotor BEMT did not converge to a solution (Iteration Limit)") break elif wake_method == "helical_fixed_wake": # converge on va for a semi-prescribed wake method ii,ii_max = 0, 50 va_diff, tol = 1, 1e-3 while va_diff > tol: # compute axial wake-induced velocity (a byproduct of the circulation distribution which is an input to the wake geometry) va, vt = compute_HFW_inflow_velocities(self) # compute new blade velocities Wa = va + Ua Wt = Ut - vt # Compute aerodynamic forces based on specified input airfoil or surrogate Cl, Cdval, alpha, Ma,W = compute_airfoil_aerodynamics(beta,c,r,R,B,Wa,Wt,a,nu,a_loc,a_geo,cl_sur,cd_sur,ctrl_pts,Nr,Na,tc,use_2d_analysis) lamdaw, F, _ = compute_inflow_and_tip_loss(r,R,Wa,Wt,B) va_diff = np.max(abs(va - self.outputs.disc_axial_induced_velocity)) # compute HFW circulation at the blade Gamma = 0.5*W*c*Cl # update the axial disc velocity based on new va from HFW self.outputs.disc_axial_induced_velocity = self.outputs.disc_axial_induced_velocity + 0.5*(va - self.outputs.disc_axial_induced_velocity) ii+=1 if ii>ii_max and va_diff>tol: print("Semi-prescribed helical wake did not converge on axial inflow used for wake shape.") # tip loss correction for velocities, since tip loss correction is only applied to loads in prior BEMT iteration va = F*va vt = F*vt lamdaw = r*(va+Ua)/(R*(Ut-vt)) # More Cd scaling from Mach from AA241ab notes for turbulent skin friction Tw_Tinf = 1. + 1.78*(Ma*Ma) Tp_Tinf = 1. + 0.035*(Ma*Ma) + 0.45*(Tw_Tinf-1.) Tp = (Tp_Tinf)*T Rp_Rinf = (Tp_Tinf**2.5)*(Tp+110.4)/(T+110.4) Cd = ((1/Tp_Tinf)*(1/Rp_Rinf)**0.2)*Cdval epsilon = Cd/Cl epsilon[epsilon==np.inf] = 10. # thrust and torque and their derivatives on the blade. blade_T_distribution = rho*(Gamma*(Wt-epsilon*Wa))*deltar blade_Q_distribution = rho*(Gamma*(Wa+epsilon*Wt)*r)*deltar blade_dT_dr = rho*(Gamma*(Wt-epsilon*Wa)) blade_dQ_dr = rho*(Gamma*(Wa+epsilon*Wt)*r) if use_2d_analysis: blade_T_distribution_2d = blade_T_distribution blade_Q_distribution_2d = blade_Q_distribution blade_dT_dr_2d = blade_dT_dr blade_dQ_dr_2d = blade_dQ_dr blade_Gamma_2d = Gamma alpha_2d = alpha Va_2d = Wa Vt_2d = Wt Va_avg = np.average(Wa, axis=2) # averaged around the azimuth Vt_avg = np.average(Wt, axis=2) # averaged around the azimuth Va_ind_2d = va Vt_ind_2d = vt Vt_ind_avg = np.average(vt, axis=2) Va_ind_avg = np.average(va, axis=2) # set 1d blade loadings to be the average: blade_T_distribution = np.mean((blade_T_distribution_2d), axis = 2) blade_Q_distribution = np.mean((blade_Q_distribution_2d), axis = 2) blade_dT_dr = np.mean((blade_dT_dr_2d), axis = 2) blade_dQ_dr = np.mean((blade_dQ_dr_2d), axis = 2) # compute the hub force / rotor drag distribution along the blade dL_2d = 0.5*rho*c_2d*Cd*omegar**2*deltar dD_2d = 0.5*rho*c_2d*Cl*omegar**2*deltar rotor_drag_distribution = np.mean(dL_2d*np.sin(psi_2d) + dD_2d*np.cos(psi_2d),axis=2) else: Va_2d = np.repeat(Wa[ :, :, None], Na, axis=2) Vt_2d = np.repeat(Wt[ :, :, None], Na, axis=2) blade_T_distribution_2d = np.repeat(blade_T_distribution[:, :, None], Na, axis=2) blade_Q_distribution_2d = np.repeat(blade_Q_distribution[:, :, None], Na, axis=2) blade_dT_dr_2d = np.repeat(blade_dT_dr[:, :, None], Na, axis=2) blade_dQ_dr_2d = np.repeat(blade_dQ_dr[:, :, None], Na, axis=2) blade_Gamma_2d = np.repeat(Gamma[ :, :, None], Na, axis=2) alpha_2d = np.repeat(alpha[ :, :, None], Na, axis=2) Vt_avg = Wt Va_avg = Wa Vt_ind_avg = vt Va_ind_avg = va Va_ind_2d = np.repeat(va[ :, :, None], Na, axis=2) Vt_ind_2d = np.repeat(vt[ :, :, None], Na, axis=2) # compute the hub force / rotor drag distribution along the blade dL = 0.5*rho*c*Cd*omegar**2*deltar dL_2d = np.repeat(dL[:, :, None], Na, axis=2) dD = 0.5*rho*c*Cl*omegar**2*deltar dD_2d = np.repeat(dD[:, :, None], Na, axis=2) rotor_drag_distribution = np.mean(dL_2d*np.sin(psi_2d) + dD_2d*np.cos(psi_2d),axis=2) # forces thrust = np.atleast_2d((B * np.sum(blade_T_distribution, axis = 1))).T torque = np.atleast_2d((B * np.sum(blade_Q_distribution, axis = 1))).T rotor_drag = np.atleast_2d((B * np.sum(rotor_drag_distribution, axis=1))).T power = omega*torque # calculate coefficients D = 2*R Cq = torque/(rho_0*(n*n)*(D*D*D*D*D)) Ct = thrust/(rho_0*(n*n)*(D*D*D*D)) Cp = power/(rho_0*(n*n*n)*(D*D*D*D*D)) Crd = rotor_drag/(rho_0*(n*n)*(D*D*D*D)) etap = V*thrust/power # prevent things from breaking Cq[Cq<0] = 0. Ct[Ct<0] = 0. Cp[Cp<0] = 0. thrust[conditions.propulsion.throttle[:,0] <=0.0] = 0.0 power[conditions.propulsion.throttle[:,0] <=0.0] = 0.0 torque[conditions.propulsion.throttle[:,0] <=0.0] = 0.0 rotor_drag[conditions.propulsion.throttle[:,0] <=0.0] = 0.0 thrust[omega<0.0] = -thrust[omega<0.0] thrust[omega==0.0] = 0.0 power[omega==0.0] = 0.0 torque[omega==0.0] = 0.0 rotor_drag[omega==0.0] = 0.0 Ct[omega==0.0] = 0.0 Cp[omega==0.0] = 0.0 etap[omega==0.0] = 0.0 # Make the thrust a 3D vector thrust_prop_frame = np.zeros((ctrl_pts,3)) thrust_prop_frame[:,0] = thrust[:,0] thrust_vector = orientation_product(orientation_transpose(T_body2thrust),thrust_prop_frame) # Assign efficiency to network conditions.propulsion.etap = etap # Store data self.azimuthal_distribution = psi results_conditions = Data outputs = results_conditions( number_radial_stations = Nr, number_azimuthal_stations = Na, disc_radial_distribution = r_dim_2d, speed_of_sound = conditions.freestream.speed_of_sound, density = conditions.freestream.density, velocity = Vv, blade_tangential_induced_velocity = Vt_ind_avg, blade_axial_induced_velocity = Va_ind_avg, blade_tangential_velocity = Vt_avg, blade_axial_velocity = Va_avg, disc_tangential_induced_velocity = Vt_ind_2d, disc_axial_induced_velocity = Va_ind_2d, disc_tangential_velocity = Vt_2d, disc_axial_velocity = Va_2d, drag_coefficient = Cd, lift_coefficient = Cl, omega = omega, disc_circulation = blade_Gamma_2d, blade_dT_dr = blade_dT_dr, disc_dT_dr = blade_dT_dr_2d, blade_thrust_distribution = blade_T_distribution, disc_thrust_distribution = blade_T_distribution_2d, disc_effective_angle_of_attack = alpha_2d, thrust_per_blade = thrust/B, thrust_coefficient = Ct, disc_azimuthal_distribution = psi_2d, blade_dQ_dr = blade_dQ_dr, disc_dQ_dr = blade_dQ_dr_2d, blade_torque_distribution = blade_Q_distribution, disc_torque_distribution = blade_Q_distribution_2d, torque_per_blade = torque/B, torque_coefficient = Cq, power = power, power_coefficient = Cp, converged_inflow_ratio = lamdaw, propeller_efficiency = etap, blade_H_distribution = rotor_drag_distribution, rotor_drag = rotor_drag, rotor_drag_coefficient = Crd, ) return thrust_vector, torque, power, Cp, outputs , etap def spin_HFW(self,conditions): """Analyzes a general rotor given geometry and operating conditions. Runs the blade element theory with a helical fixed-wake model for the iterative wake analysis. Assumptions: Helical fixed-wake with wake skew angle Source: N/A Inputs: self.inputs.omega [radian/s] conditions.freestream. density [kg/m^3] dynamic_viscosity [kg/(m-s)] speed_of_sound [m/s] temperature [K] conditions.frames. body.transform_to_inertial (rotation matrix) inertial.velocity_vector [m/s] conditions.propulsion. throttle [-] Outputs: conditions.propulsion.outputs. number_radial_stations [-] number_azimuthal_stations [-] disc_radial_distribution [m] speed_of_sound [m/s] density [kg/m-3] velocity [m/s] disc_tangential_induced_velocity [m/s] disc_axial_induced_velocity [m/s] disc_tangential_velocity [m/s] disc_axial_velocity [m/s] drag_coefficient [-] lift_coefficient [-] omega [rad/s] disc_circulation [-] blade_dQ_dR [N/m] blade_dT_dr [N] blade_thrust_distribution [N] disc_thrust_distribution [N] thrust_per_blade [N] thrust_coefficient [-] azimuthal_distribution [rad] disc_azimuthal_distribution [rad] blade_dQ_dR [N] blade_dQ_dr [Nm] blade_torque_distribution [Nm] disc_torque_distribution [Nm] torque_per_blade [Nm] torque_coefficient [-] power [W] power_coefficient [-] Properties Used: self. number_of_blades [-] tip_radius [m] twist_distribution [radians] chord_distribution [m] orientation_euler_angles [rad, rad, rad] """ #-------------------------------------------------------------------------------- # Initialize by running BEMT to get initial blade circulation #-------------------------------------------------------------------------------- _, _, _, _, bemt_outputs , _ = self.spin(conditions) conditions.noise.sources.propellers[self.tag] = bemt_outputs self.outputs = bemt_outputs omega = self.inputs.omega #-------------------------------------------------------------------------------- # generate rotor wake vortex distribution #-------------------------------------------------------------------------------- props = Data() props.propeller = self # generate wake distribution for n rotor rotation nrots = self.number_rotor_rotations steps_per_rot = self.number_steps_per_rotation rpm = omega/Units.rpm # simulation parameters for n rotor rotations init_timestep_offset = 0. time = 60*nrots/rpm[0][0] number_of_wake_timesteps = steps_per_rot*nrots self.wake_settings.init_timestep_offset = init_timestep_offset self.wake_settings.wake_development_time = time self.wake_settings.number_of_wake_timesteps = number_of_wake_timesteps self.use_2d_analysis = True # spin propeller with helical fixed-wake self.wake_method = "helical_fixed_wake" thrust_vector, torque, power, Cp, outputs , etap = self.spin(conditions) return thrust_vector, torque, power, Cp, outputs , etap def vec_to_vel(self): """This rotates from the propellers vehicle frame to the propellers velocity frame Assumptions: There are two propeller frames, the vehicle frame describing the location and the propeller velocity frame velocity frame is X out the nose, Z towards the ground, and Y out the right wing vehicle frame is X towards the tail, Z towards the ceiling, and Y out the right wing Source: N/A Inputs: None Outputs: None Properties Used: None """ rot_mat = sp.spatial.transform.Rotation.from_rotvec([0,np.pi,0]).as_matrix() return rot_mat def body_to_prop_vel(self): """This rotates from the systems body frame to the propellers velocity frame Assumptions: There are two propeller frames, the vehicle frame describing the location and the propeller velocity frame velocity frame is X out the nose, Z towards the ground, and Y out the right wing vehicle frame is X towards the tail, Z towards the ceiling, and Y out the right wing Source: N/A Inputs: None Outputs: None Properties Used: None """ # Go from body to vehicle frame body_2_vehicle = sp.spatial.transform.Rotation.from_rotvec([0,np.pi,0]).as_matrix() # Go from vehicle frame to propeller vehicle frame: rot 1 including the extra body rotation rots = np.array(self.orientation_euler_angles) * 1. rots[1] = rots[1] + self.inputs.y_axis_rotation vehicle_2_prop_vec = sp.spatial.transform.Rotation.from_rotvec(rots).as_matrix() # GO from the propeller vehicle frame to the propeller velocity frame: rot 2 prop_vec_2_prop_vel = self.vec_to_vel() # Do all the matrix multiplies rot1 =
np.matmul(body_2_vehicle,vehicle_2_prop_vec)
numpy.matmul
# -*- coding: utf-8 -*- # _realizeNTF_ct.py # Module providing the realizeNTF_ct function # Copyright 2013 <NAME> # This file is part of python-deltasigma. # # python-deltasigma is a 1:1 Python replacement of Richard Schreier's # MATLAB delta sigma toolbox (aka "delsigma"), upon which it is heavily based. # The delta sigma toolbox is (c) 2009, <NAME>. # # python-deltasigma is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # LICENSE file for the licensing terms. """Module providing the realizeNTF_ct() function """ from __future__ import division, print_function from warnings import warn import numpy as np import numpy.linalg as linalg from scipy.signal import dimpulse, ss2zpk from ._evalTFP import evalTFP from ._impL1 import impL1 from ._padb import padb from ._pulse import pulse from ._utils import _get_zpk, carray, eps def realizeNTF_ct(ntf, form='FB', tdac=(0, 1), ordering=None, bp=None, ABCDc=None, method='LOOP'): """Realize an NTF with a continuous-time loop filter. **Parameters:** ntf : object A noise transfer function (NTF). form : str, optional A string specifying the topology of the loop filter. * 'FB': Feedback form, * 'FF': Feedforward form For the FB structure, the elements of ``Bc`` are calculated so that the sampled pulse response matches the L1 impulse response. For the FF structure, ``Cc`` is calculated. tdac : sequence, optional The timing for the feedback DAC(s). If ``tdac[0] >= 1``, direct feedback terms are added to the quantizer. Multiple timings (one or more per integrator) for the FB topology can be specified by making tdac a list of lists, e.g. ``tdac = [[1, 2], [1, 2], [[0.5, 1], [1, 1.5]], []]`` In this example, the first two integrators have DACs with ``[1, 2]`` timing, the third has a pair of DACs, one with ``[0.5, 1]`` timing and the other with ``[1, 1.5]`` timing, and there is no direct feedback DAC to the quantizer. ordering : sequence, optional A vector specifying which NTF zero-pair to use in each resonator Default is for the zero-pairs to be used in the order specified in the NTF. bp : sequence, optional A vector specifying which resonator sections are bandpass. The default (``zeros(...)``) is for all sections to be lowpass. ABCDc : ndarray, optional The loop filter structure, in state-space form. If this argument is omitted, ABCDc is constructed according to "form." method : str, optional The default fitting method is ``'LOOP'``, which means that the DT and CT loop responses will be matched. Alternatively, it is possible to set the method to ``'NTF'``, which will result in the NTF responses to be matched. See :ref:`discrete-time-to-continuous-time-mapping` for a more in-depth discussion. **Returns:** ABCDc : ndarray A state-space description of the CT loop filter tdac2 : ndarray A matrix with the DAC timings, including ones that were automatically added. **Example:** Realize the NTF :math:`(1 - z^{-1})^2` with a CT system (cf with the example at :func:`mapCtoD`).:: from deltasigma import * ntf = ([1, 1], [0, 0], 1) ABCDc, tdac2 = realizeNTF_ct(ntf, 'FB') Returns: ABCDc:: [[ 0. 0. 1. -1. ] [ 1. 0. 0. -1.49999999] [ 0. 1. 0. 0. ]] tdac2:: [[-1. -1.] [ 0. 1.]] """ ntf_z, ntf_p, _ = _get_zpk(ntf) ntf_z = carray(ntf_z) ntf_p = carray(ntf_p) order = max(ntf_p.shape) order2 = int(np.floor(order/2.)) odd = order - 2*order2 # compensate for limited accuracy of zero calculation ntf_z[np.abs(ntf_z - 1) < eps**(1./(1. + order))] = 1. method = method.upper() if method not in ('LOOP', 'NTF'): raise ValueError('Unimplemented matching method %s.' % method) # check if multiple timings mode if (type(tdac) == list or type(tdac) == tuple) and len(tdac) and \ (type(tdac[0]) == list or type(tdac[0]) == tuple): if len(tdac) != order + 1: msg = 'For multi-timing tdac, len(tdac) ' + \ ' must be order+1.' raise ValueError(msg) if form != 'FB': msg = "Currently only supporting form='FB' " + \ 'for multi-timing tdac' raise ValueError(msg) multi_timing = True else: # single timing tdac = carray(tdac) if np.prod(tdac.shape) != 2: msg = 'For single-timing tdac, len(tdac) must be 2.' raise ValueError(msg) tdac.reshape((2,)) multi_timing = False if ordering is None: ordering = np.arange(order2) if bp is None: bp = np.zeros((order2,)) if not multi_timing: # Need direct terms for every interval of memory in the DAC n_direct = np.ceil(tdac[1]) - 1 if tdac[0] > 0 and tdac[0] < 1 and tdac[1] > 1 and tdac[1] < 2: n_extra = n_direct - 1 # tdac pulse spans a sample point else: n_extra = n_direct tdac2 = np.vstack( (np.array((-1, -1)), np.array(tdac).reshape((1, 2)), 0.5*np.dot(np.ones((n_extra, 1)), np.array([[-1, 1]])) + np.cumsum(np.ones((n_extra, 2)), 0) + (n_direct - n_extra) )) else: n_direct = 0 n_extra = 0 if ABCDc is None: ABCDc = np.zeros((order + 1, order + 2)) # Stuff the A portion if odd: ABCDc[0, 0] = np.real(np.log(ntf_z[0])) ABCDc[1, 0] = 1 dline = np.array([0, 1, 2]) for i in range(order2): n = bp[i] i1 = 2*i + odd zi = 2*ordering[i] + odd w = np.abs(np.angle(ntf_z[zi])) ABCDc[i1 + dline, i1] = np.array([0, 1, n]) ABCDc[i1 + dline, i1 + 1] = np.array([-w**2, 0, 1 - n]) ABCDc[0, order] = 1 # 2006.10.02 Changed to -1 to make FF STF have +ve gain at DC ABCDc[0, order + 1] = -1 Ac = ABCDc[:order, :order] if form == 'FB': Cc = ABCDc[order, :order].reshape((1, -1)) if not multi_timing: Bc = np.hstack((np.eye(order), np.zeros((order, 1)))) Dc = np.hstack((np.zeros((1, order)), np.array([[1]]))) tp = np.tile(np.array(tdac).reshape((1, 2)), (order + 1, 1)) else: #Assemble tdac2, Bc and Dc tdac2 = np.array([[-1, -1]]) Bc = None Dc = None Bci = np.hstack((np.eye(order), np.zeros((order, 1)))) Dci = np.hstack((np.zeros((1, order)), np.array([[1]]))) for i in range(len(tdac)): tdi = tdac[i] if (type(tdi) in (tuple, list)) and len(tdi) and \ (type(tdi[0]) in (list, tuple)): for j in range(len(tdi)): tdj = tdi[j] tdac2 = np.vstack((tdac2, np.array(tdj).reshape(1,-1))) if Bc is not None: Bc = np.hstack((Bc, Bci[:, i].reshape((-1, 1)))) else: Bc = Bci[:, i].reshape((-1, 1)) if Dc is not None: Dc = np.hstack((Dc, Dci[:, i].reshape((-1, 1)))) else: Dc = Dci[:, i].reshape((-1, 1)) elif len(tdi): # we got tdac[i] = [a, b] where a, b are scalars tdac2 = np.vstack((tdac2, np.array(tdi).reshape(1,-1))) if Bc is not None: Bc = np.hstack((Bc, Bci[:, i].reshape((-1, 1)))) else: Bc = Bci[:, i].reshape((-1, 1)) if Dc is not None: Dc = np.hstack((Dc, Dci[:, i].reshape((-1, 1)))) else: Dc = Dci[:, i].reshape((-1, 1)) tp = tdac2[1:, :] elif form == 'FF': Cc = np.vstack((np.eye(order), np.zeros((1, order)))) Bc = np.vstack((np.array([[-1]]), np.zeros((order-1, 1)))) Dc = np.vstack((np.zeros((order, 1)), np.array([[1]]))) tp = tdac # 2008-03-24 fix from <NAME> else: raise ValueError('Sorry, no code for form "%s".', form) n_imp = np.ceil(2*order +
np.max(tdac2[:, 1])
numpy.max
import os import sys import datetime import json import logging import imageio import PIL.Image import numpy as np import matplotlib.pyplot as plt from plark_game import classes from gym_plark.envs import plark_env from gym_plark.envs.plark_env_sparse import PlarkEnvSparse from gym_plark.envs.plark_env import PlarkEnv from stable_baselines.common.vec_env import SubprocVecEnv from stable_baselines.common.env_checker import check_env from stable_baselines import DQN, PPO2, A2C, ACKTR from stable_baselines.bench import Monitor from stable_baselines.common.vec_env import DummyVecEnv, VecEnv from copy import deepcopy # PyTorch Stable Baselines from stable_baselines3 import PPO from stable_baselines3.common.vec_env import SubprocVecEnv as SubprocVecEnv_Torch logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) DEFAULT_FPS = 3 # Originally was 10 BASEWIDTH = 512 # Originally was 512, increase/decrease for higher/lower resolution def model_label(modeltype,basicdate,modelplayer): label = modeltype + "_" + str(basicdate) + "_" + modelplayer return label def make_new_model(model_type,policy,env, n_steps=100, tensorboard_log=None): if model_type.lower() == 'dqn': model = DQN(policy,env,tensorboard_log=tensorboard_log) elif model_type.lower() == 'ppo2': model = PPO2(policy,env,tensorboard_log=tensorboard_log) elif model_type.lower() == 'ppo': model = PPO(policy,env, n_steps=n_steps) elif model_type.lower() == 'a2c': model = A2C(policy,env,tensorboard_log=tensorboard_log) elif model_type.lower() == 'acktr': model = ACKTR(policy,env,tensorboard_log=tensorboard_log) return model def train_until(model, env, victory_threshold=0.8, victory_trials=10, max_seconds=120, testing_interval=200, tb_writer=None, tb_log_name=None): steps = 0 max_victory_fraction = 0.0 initial_time = datetime.datetime.now() current_time = datetime.datetime.now() elapsed_seconds = (current_time - initial_time).total_seconds() while elapsed_seconds < max_seconds: logger.info("Training for {} steps".format(testing_interval)) before_learning = datetime.datetime.now() model.learn(testing_interval) after_learning = datetime.datetime.now() steps = steps + testing_interval logger.info("Learning took {:.2f} seconds".format((after_learning - before_learning).total_seconds())) logger.info("Checking victory") victory_count, avg_reward = check_victory(model, env, trials=victory_trials) after_check = datetime.datetime.now() logger.info("Victory check took {:.2f} seconds".format((after_check - after_learning).total_seconds())) victory_fraction = float(victory_count)/victory_trials logger.info("Won {} of {} evaluations ({:.2f})".format(victory_count, victory_trials, victory_fraction)) max_victory_fraction = max(max_victory_fraction, victory_fraction) if tb_writer is not None and tb_log_name is not None: tb_writer.add_scalar('{}_avg_reward'.format(tb_log_name), avg_reward, steps) tb_writer.add_scalar('{}_victory_count'.format(tb_log_name), victory_count, steps) tb_writer.add_scalar('{}_victory_fraction'.format(tb_log_name), victory_fraction, steps) current_time = datetime.datetime.now() elapsed_seconds = (current_time - initial_time).total_seconds() if victory_fraction >= victory_threshold: logger.info("Achieved victory threshold after {} steps".format(steps)) break logger.info("Achieved max victory fraction {:.2f} after {} seconds ({} steps)".format(max_victory_fraction, elapsed_seconds, steps)) achieved_goal = max_victory_fraction >= victory_threshold return achieved_goal, steps, elapsed_seconds def check_victory(model, env, trials): if isinstance(env, SubprocVecEnv_Torch): list_of_reward, n_steps, victories = evaluate_policy_torch(model, env, n_eval_episodes=trials, deterministic=False, render=False, callback=None, reward_threshold=None, return_episode_rewards=True) else: list_of_reward, n_steps, victories = evaluate_policy(model, env, n_eval_episodes=trials, deterministic=False, render=False, callback=None, reward_threshold=None, return_episode_rewards=True) logger.info("===================================================") modelplayer = env.get_attr('driving_agent')[0] logger.info('In check_victory, driving_agent: %s' % modelplayer) avg_reward = float(sum(list_of_reward))/len(list_of_reward) victory_count = len([v for v in victories if v == True]) victory_prop = float(victory_count)/len(victories) logger.info('victory_prop: %.2f (%s out of %s); avg_reward: %.3f' % (victory_prop, victory_count, len(victories), avg_reward )) logger.info("===================================================") return victory_prop, avg_reward, def evaluate_policy_torch(model, env, n_eval_episodes, deterministic=True, render=False, callback=None, reward_threshold=None, return_episode_rewards=False): """ Modified from https://stable-baselines.readthedocs.io/en/master/_modules/stable_baselines/common/evaluation.html#evaluate_policy to return additional info """ logger.debug("Evaluating policy") episode_rewards, episode_lengths, victories = [], [], [] obs = env.reset() episodes_reward = [0.0 for _ in range(env.num_envs)] episodes_len = [0.0 for _ in range(env.num_envs)] state = None logger.debug("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") logger.debug("In evaluate_policy_torch, n_eval_episodes: %s" % n_eval_episodes) logger.debug("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") while len(episode_rewards) < n_eval_episodes: action, state = model.predict(obs, state=state, deterministic=deterministic) obs, rewards, dones, _infos = env.step(action) for i in range(len(rewards)): episodes_reward[i] += rewards[i] episodes_len[i] += 1 if render: env.render() if dones.any(): for i, d in enumerate(dones): if d: info = _infos[i] victory = info['result'] == "WIN" victories.append(victory) episode_rewards.append(episodes_reward[i]) episode_lengths.append(episodes_len[i]) episodes_reward[i] = 0 episodes_len[i] = 0 mean_reward = np.mean(episode_rewards) std_reward = np.std(episode_rewards) if reward_threshold is not None: assert mean_reward > reward_threshold, "Mean reward below threshold: {:.2f} < {:.2f}".format(mean_reward, reward_threshold) if return_episode_rewards: return episode_rewards, episode_lengths, victories return mean_reward, std_reward, victories def evaluate_policy(model, env, n_eval_episodes=4, deterministic=True, render=False, callback=None, reward_threshold=None, return_episode_rewards=False): """ Modified from https://stable-baselines.readthedocs.io/en/master/_modules/stable_baselines/common/evaluation.html#evaluate_policy to return additional info """ logger.debug("Evaluating policy") episode_rewards, episode_lengths, victories = [], [], [] for ep in range(n_eval_episodes): logger.debug("Evaluating episode {} of {}".format(ep, n_eval_episodes)) obs = env.reset() ep_done, state = False, None episode_length = 0 episode_reward = 0.0 if isinstance(env, VecEnv) or isinstance(env, SubprocVecEnv_Torch): episodes_reward = [0.0 for _ in range(env.num_envs)] else: episodes_reward = [0.0] victory = False while not ep_done: action, state = model.predict(obs, state=state, deterministic=deterministic) obs, rewards, dones, _infos = env.step(action) if not isinstance(env, VecEnv): rewards = [rewards] dones = np.array([dones]) _infos = [_infos] episode_length += 1 for i in range(len(rewards)): episodes_reward[i] += rewards[i] if callback is not None: callback(locals(), globals()) if episode_length > 1000: logger.warning("Episode over 1000 steps.") if render: env.render() if any(dones): first_done_index = dones.tolist().index(True) info = _infos[first_done_index] victory = info['result'] == "WIN" episode_reward = episodes_reward[first_done_index] ep_done = True episode_rewards.append(episode_reward) episode_lengths.append(episode_length) victories.append(victory) mean_reward = np.mean(episode_rewards) std_reward = np.std(episode_rewards) if reward_threshold is not None: assert mean_reward > reward_threshold, "Mean reward below threshold: {:.2f} < {:.2f}".format(mean_reward, reward_threshold) if return_episode_rewards: return episode_rewards, episode_lengths, victories return mean_reward, std_reward, victories def get_env(driving_agent, config_file_path, opponent=None, image_based=False, random_panther_start_position=True, max_illegal_moves_per_turn = 3, sparse=False, normalise=False, is_in_vec_env=False): params = dict(driving_agent = driving_agent, config_file_path = config_file_path, image_based = image_based, random_panther_start_position = random_panther_start_position, max_illegal_moves_per_turn = max_illegal_moves_per_turn, normalise=normalise, is_in_vec_env=is_in_vec_env) if opponent != None and driving_agent == 'pelican': params.update(panther_agent_filepath = opponent) elif opponent != None and driving_agent == 'panther': params.update(pelican_agent_filepath = opponent) if sparse: return PlarkEnvSparse(**params) else: return PlarkEnv(**params) def get_envs(driving_agent, config_file_path, opponents=[], num_envs=1, image_based=False, random_panther_start_position=True, max_illegal_moves_per_turn=3, sparse=False, vecenv=True, mixture=None, normalise=False): params = dict(driving_agent = driving_agent, config_file_path = config_file_path, image_based = image_based, random_panther_start_position = random_panther_start_position, max_illegal_moves_per_turn = max_illegal_moves_per_turn, sparse = sparse, normalise = normalise, is_in_vec_env=vecenv) if len(opponents) == 1: params.update(opponent=opponents[0]) if vecenv == False: return get_env(**params) elif len(opponents) < 2: return SubprocVecEnv_Torch([lambda:get_env(**params) for _ in range(num_envs)]) elif len(opponents) >= 2: opponents = np.random.choice(opponents, size = num_envs, p = mixture) params_list = [] for o in opponents: params.update(opponent=o) params_list.append(deepcopy(params)) return SubprocVecEnv_Torch([lambda:get_env(**params) for params in params_list]) # Save model base on env def save_model_with_env_settings(basepath,model,modeltype,env,basicdate=None): if basicdate is None: basicdate = str(datetime.datetime.now().strftime("%Y%m%d_%H%M%S")) if isinstance(env, VecEnv) or isinstance(env, SubprocVecEnv_Torch): modelplayer = env.get_attr('driving_agent')[0] render_height = env.get_attr('render_height')[0] render_width = env.get_attr('render_width')[0] image_based = env.get_attr('image_based')[0] else: modelplayer = env.driving_agent render_height = env.render_height render_width = env.render_width image_based = env.image_based model_path,model_dir, modellabel = save_model(basepath,model,modeltype,modelplayer,render_height,render_width,image_based,basicdate) return model_path,model_dir, modellabel # Saves model and metadata def save_model(basepath,model,modeltype,modelplayer,render_height,render_width,image_based,basicdate=None): if basicdate is None: basicdate = str(datetime.datetime.now().strftime("%Y%m%d_%H%M%S")) modellabel = model_label(modeltype,basicdate,modelplayer) model_dir = os.path.join(basepath, modellabel) logger.info("Checking folder: " + model_dir) os.makedirs(model_dir, exist_ok=True) os.chmod(model_dir, 0o777) logger.info("Saving Metadata") if isinstance(model.env, VecEnv) or isinstance(model.env, SubprocVecEnv_Torch): normalise = model.env.get_attr('normalise')[0] domain_params_in_obs = model.env.get_attr('domain_params_in_obs')[0] else: normalise = model.env.normalise domain_params_in_obs = model.env.domain_params_in_obs save_model_metadata(model_dir,modeltype,modelplayer,basicdate,render_height,render_width,image_based, normalise, domain_params_in_obs) logger.info("Saving Model") model_path = os.path.join(model_dir, modellabel + ".zip") model.save(model_path) logger.info('model_dir: '+model_dir) logger.info('model_path: '+model_path) return model_path,model_dir, modellabel ## Used for generating the json header file which holds details regarding the model. ## This will be used when playing the game from the GUI. def save_model_metadata(model_dir,modeltype,modelplayer,dateandtime,render_height,render_width,image_based, normalise, domain_params_in_obs): jsondata = {} jsondata['algorithm'] = modeltype jsondata['date'] = str(dateandtime) jsondata['agentplayer'] = modelplayer jsondata['render_height'] = render_height jsondata['render_width'] = render_width jsondata['image_based'] = image_based jsondata['normalise'] = normalise jsondata['domain_params_in_obs'] = domain_params_in_obs json_path = os.path.join(model_dir, 'metadata.json') with open(json_path, 'w') as outfile: json.dump(jsondata, outfile) logger.info('json saved to: '+json_path) ## Custom Model Evaluation Method for evaluating Plark games. ## Does require changes to how data is passed back from environments. ## Instead of using return ob, reward, done, {} use eturn ob, reward, done, {game.state} def custom_eval(model, env, n_eval_episodes=10, deterministic=True, render=False, callback=None, reward_threshold=None, return_episode_rewards=False, player_type="PELICAN"): """ Runs policy for `n_eval_episodes` episodes and returns average reward. This is made to work only with one env. :param model: (BaseRLModel) The RL agent you want to evaluate. :param env: (gym.Env or VecEnv) The gym environment. In the case of a `VecEnv` this must contain only one environment. :param n_eval_episodes: (int) Number of episode to evaluate the agent :param deterministic: (bool) Whether to use deterministic or stochastic actions :param render: (bool) Whether to render the environment or not :param callback: (callable) callback function to do additional checks, called after each step. :param reward_threshold: (float) Minimum expected reward per episode, this will raise an error if the performance is not met :param return_episode_rewards: (bool) If True, a list of reward per episode will be returned instead of the mean. :return: (float, float) Mean reward per episode, std of reward per episode returns ([float], [int]) when `return_episode_rewards` is True """ if player_type == "PELICAN": WINCONDITION = "PELICANWIN" if player_type == "PANTHER": WINCONDITION = "PANTHERWIN" if isinstance(env, VecEnv): assert env.num_envs == 1, "You must pass only one environment when using this function" totalwin = 0 episode_rewards, episode_lengths = [], [] for _ in range(n_eval_episodes): obs = env.reset() done, state = False, None episode_reward = 0.0 episode_length = 0 while not done: action, state = model.predict(obs, state=state, deterministic=deterministic) obs, reward, done, _info = env.step(action) episode_reward += reward if callback is not None: callback(locals(), globals()) episode_length += 1 if render: env.render() if WINCONDITION in _info: totalwin = totalwin + 1 episode_rewards.append(episode_reward) episode_lengths.append(episode_length) mean_reward = np.mean(episode_rewards) std_reward = np.std(episode_rewards) if reward_threshold is not None: assert mean_reward > reward_threshold, 'Mean reward below threshold: '\ '{:.2f} < {:.2f}'.format(mean_reward, reward_threshold) if return_episode_rewards: return episode_rewards, episode_lengths, totalwin return mean_reward, std_reward, totalwin def loadAgent(filepath, algorithm_type): try: if algorithm_type.lower() == 'dqn': model = DQN.load(filepath) elif algorithm_type.lower() == 'ppo2': model = PPO2.load(filepath) elif algorithm_type.lower() == 'ppo': model = PPO.load(filepath) elif algorithm_type.lower() == 'a2c': model = A2C.load(filepath) elif algorithm_type.lower() == 'acktr': model = ACKTR.load(filepath) return model except: raise ValueError('Error loading agent. File : "' + filepath + '" does not exsist' ) def og_load_driving_agent_make_video(pelican_agent_filepath, pelican_agent_name, panther_agent_filepath, panther_agent_name, config_file_path='/Components/plark-game/plark_game/game_config/10x10/balanced.json',video_path='/Components/plark_ai_flask/builtangularSite/dist/assets/videos'): """ Method for loading and agent, making and environment, and making a video. Mainly used in notebooks. """ logger.info("Load driving agent make viedo - pelican agent filepast = " + pelican_agent_filepath) basicdate = str(datetime.datetime.now().strftime("%Y%m%d_%H%M%S")) video_file = basicdate+'.mp4' video_file_path = os.path.join(video_path, video_file) os.makedirs(video_path, exist_ok=True) files = os.listdir(pelican_agent_filepath) if len(files) > 0: for f in files: if '.zip' in f: # load model metadata_filepath = os.path.join(pelican_agent_filepath, 'metadata.json') agent_filepath = os.path.join(pelican_agent_filepath, f) with open(metadata_filepath) as f: metadata = json.load(f) logger.info('Playing against:'+agent_filepath) if metadata['agentplayer'] == 'pelican': pelican_agent = classes.Pelican_Agent_Load_Agent(agent_filepath, metadata['algorithm']) pelican_model = pelican_agent.model env = plark_env.PlarkEnv(driving_agent='pelican',panther_agent_filepath=panther_agent_filepath, panther_agent_name=panther_agent_name, config_file_path=config_file_path) basewidth,hsize = make_video(pelican_model,env,video_file_path) logger.info("This is the environment variable " + str(env)) elif metadata['agentplayer'] == 'panther': raise ValueError('No Pelican agent found in ', pelican_agent_filepath) else: raise ValueError('no agent found in ', files) return video_file, env.status,video_file_path def load_driving_agent_make_video(pelican_agent_filepath, pelican_agent_name, panther_agent_filepath, panther_agent_name, config_file_path='/Components/plark-game/plark_game/game_config/10x10/balanced.json',video_path='/Components/plark_ai_flask/builtangularSite/dist/assets/videos',basic_agents_filepath='/Components/plark-game/plark_game/agents/basic', renderWidth=None, renderHeight=None): """ Method for loading and agent, making and environment, and making a video. Mainly used from flask server. """ basicdate = str(datetime.datetime.now().strftime("%Y%m%d_%H%M%S")) video_file = basicdate+'.mp4' video_file_path = os.path.join(video_path, video_file) os.makedirs(video_path, exist_ok=True) kwargs = { 'driving_agent': "pelican", 'panther_agent_filepath': panther_agent_filepath, 'panther_agent_name': panther_agent_name, } game_env = classes.Environment() game_env.createNewGame(config_file_path, **kwargs) game = game_env.activeGames[len(game_env.activeGames)-1] agent = classes.load_agent(pelican_agent_filepath,pelican_agent_name,basic_agents_filepath,game,**kwargs) if renderHeight is None: renderHeight = game.pelican_parameters['render_height'] if renderHeight is None: renderWidth = game.pelican_parameters['render_width'] basewidth, hsize = new_make_video(agent, game, video_file_path, renderWidth, renderHeight) return video_file, game.gameState ,video_file_path def make_video_VEC_ENV(model, env, video_file_path,n_steps = 10000,fps=DEFAULT_FPS,deterministic=False,basewidth=BASEWIDTH,verbose=False): # Test the trained agent # This is when you have a stable baselines model and an gym env obs = env.reset() writer = imageio.get_writer(video_file_path, fps=fps) hsize = None for step in range(n_steps): ####################################################################### # Get image and comvert back to PIL.Image try: image = PIL.Image.fromarray(env.render(mode='rgb_array')) except: print("NOT WORKED TO CONVERT BACK TO PIL") ####################################################################### action, _ = model.predict(obs, deterministic=deterministic) obs, reward, done, info = env.step(action) if verbose: logger.info("Step: "+str(step)+" Action: "+str(action)+' Reward:'+str(reward)+' Done:'+str(done)) if hsize is None: wpercent = (basewidth/float(image.size[0])) hsize = int((float(image.size[1])*float(wpercent))) res_image = image.resize((basewidth,hsize), PIL.Image.ANTIALIAS) writer.append_data(np.copy(np.array(res_image))) writer.close() return basewidth,hsize def make_video(model,env,video_file_path,n_steps = 10000,fps=DEFAULT_FPS,deterministic=False,basewidth=BASEWIDTH,verbose =False): # Test the trained agent # This is when you have a stable baselines model and an gym env obs = env.reset() writer = imageio.get_writer(video_file_path, fps=fps) hsize = None for step in range(n_steps): image = env.render(view='ALL') action, _ = model.predict(obs, deterministic=deterministic) obs, reward, done, info = env.step(action) if verbose: logger.info("Step: "+str(step)+" Action: "+str(action)+' Reward:'+str(reward)+' Done:'+str(done)) if hsize is None: wpercent = (basewidth/float(image.size[0])) hsize = int((float(image.size[1])*float(wpercent))) res_image = image.resize((basewidth,hsize), PIL.Image.ANTIALIAS) writer.append_data(np.copy(
np.array(res_image)
numpy.array
from __future__ import print_function import matplotlib matplotlib.use('Agg') import pylab as plt import numpy as np import sys from astrometry.util.fits import * from astrometry.util.plotutils import * from astrometry.libkd.spherematch import match_radec from tractor.sfd import SFDMap from legacypipe.survey import * def sample_in_radec_box(ralo, rahi, declo, dechi, N, nbatch=1000): ''' Draw N samples uniformly within the given RA,Dec box, correctly handling the change of scale of RA with respect to Dec. ''' rr,dd = [],[] ntotal = 0 while ntotal < N: # "unit" values ru in [0, 1) that will be scaled to RA ru = np.random.uniform(size=nbatch) # Draw Dec values d = np.random.uniform(low=declo, high=dechi, size=nbatch) # Taper the accepted width in RA based on Dec; reject ones outside # NOTE that we could make this more efficient (reject fewer) by # scaling by the min/max cos(Dec) values. cosd = np.cos(np.deg2rad(d)) I = np.flatnonzero(ru < cosd) if len(I) == 0: continue # Scale "ru" to RAs r = ralo + (rahi - ralo) * ru[I]/cosd[I] d = d[I] rr.append(r) dd.append(d) ntotal += len(r) #print('Kept', len(r), 'of', nbatch) ra = np.hstack(rr)[:N] dec = np.hstack(dd)[:N] return ra,dec def main(): ps = PlotSequence('shotgun') survey = LegacySurveyData() C = fits_table('survey-ccds-annotated.fits') print(len(C), 'CCDs') C.cut(C.photometric) C.cut(C.blacklist_ok) print(len(C), 'photometric and not blacklisted') # HACK print('FIXME not cutting on DECALS') #C.cut(C.tilepass > 0) #print(len(C), 'taken by DECaLS') targets = dict(g=24.0, r=23.4, z=22.5) def ivtomag(iv, nsigma=5.): return -2.5 * (np.log10(nsigma / np.sqrt(iv)) - 9) def band_index(band): allbands = 'ugrizY' return allbands.index(band) ccmap = dict(g='g', r='r', z='m') ceil_exptime = dict(g=125., r=125., z=250.) #plt.clf() bands = 'grz' for band in bands: tmag = targets[band] print() print(band, 'band, target depth', tmag) ccds = C[C.filter == band] ccdarea = (2046*4094*(0.262/3600.)**2) print(len(ccds), 'CCDs, total exptime', np.sum(ccds.exptime), '(mean %.1f)' % np.mean(ccds.exptime), 'total area', len(ccds)*ccdarea, 'sq.deg') detsig1 = ccds.sig1 / ccds.galnorm_mean totiv = np.sum(1. / detsig1**2) # depth we would have if we had all exposure time in one CCD # print('5-sigma galaxy depth if concentrated in one CCD:', ivtomag(totiv)) # # mean depth # print('5-sigma galaxy depth if spread equally among', len(ccds), 'CCDs:', ivtomag(totiv / len(ccds))) # print('vs median depth', np.median(ccds.galdepth)) # print('5-sigma galaxy depth if spread equally among %i/2' % (len(ccds)), 'CCDs:', ivtomag(totiv / (len(ccds)/2))) # print('5-sigma galaxy depth if spread equally among %i/3' % (len(ccds)), 'CCDs:', ivtomag(totiv / (len(ccds)/3))) # spread over 6000 sq deg sqdeg = 6000 avgiv = totiv * ccdarea / sqdeg #print('5-sigma galaxy depth if spread over', sqdeg, 'sqdeg:', ivtomag(avgiv)) tflux = 10.**(tmag / -2.5 + 9) tiv = 1. / (tflux / 5)**2 #print('Fraction of', sqdeg, 'sqdeg survey complete:', avgiv / tiv) iband = band_index(band) ext = ccds.decam_extinction[:,iband] medext = np.median(ext) print('With extinction (median %.2f mag):' % medext) transmission = 10.**(-ext / 2.5) detsig1 = ccds.sig1 / ccds.galnorm_mean / transmission totiv =
np.sum(1. / detsig1**2)
numpy.sum
import numpy as np from ..adjacency import mask_adjacency_array, reindex_adjacency_array from .base import TriMesh class ColouredTriMesh(TriMesh): r""" Combines a :map:`TriMesh` with a colour per vertex. Parameters ---------- points : ``(n_points, n_dims)`` `ndarray` The array representing the points. trilist : ``(M, 3)`` `ndarray` or ``None``, optional The triangle list. If `None`, a Delaunay triangulation of the points will be used instead. colours : ``(N, 3)`` `ndarray`, optional The floating point RGB colour per vertex. If not given, grey will be assigned to each vertex. copy: `bool`, optional If ``False``, the points, trilist and colours will not be copied on assignment. In general this should only be used if you know what you are doing. Raises ------ ValueError If the number of colour values does not match the number of vertices. """ def __init__(self, points, trilist=None, colours=None, copy=True): TriMesh.__init__(self, points, trilist=trilist, copy=copy) # Handle the settings of colours, either be provided a default grey # set of colours, or copy the given array if necessary if colours is None: # default to grey colours_handle =
np.ones_like(points, dtype=np.float)
numpy.ones_like
import numpy as np import torch import torch.nn as nn import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) # add parent path import torch.optim as optim import matplotlib.pyplot as plt from sim2real_policies.utils.choose_env import choose_env from sim2real_policies.utils.policy_networks import DPG_PolicyNetwork, RandomPolicy from mujoco_py import MujocoException def query_params(env, normalize=True, randomised_only=False, dynamics_only=False): """ Query the dynamics parameters from the env, normalize it if normalize is True, only return randomised parameters if randomised_only is True, only return dynamics parameters (no noise parameters) if dynamics_only is True. Return: array of parameters """ params_dict = env.get_dynamics_parameters() randomised_params_keys = env.get_randomised_parameters() params_ranges = env.get_parameter_sampling_ranges() # range params_factors = env.get_factors_for_randomisation() # multiplied factor params_value_list = [] for param_key, param_value in params_dict.items(): if randomised_only and (param_key in randomised_params_keys) is False: continue if dynamics_only and ("time" in param_key or "noise" in param_key): # print('Non-dynamics parameters: ', param_key) continue else: if normalize: if param_key in params_factors.keys(): param_factor = params_factors[param_key] else: raise NotImplementedError if param_key in params_ranges.keys(): param_range = params_ranges[param_key] else: raise NotImplementedError scale = param_range[1]-param_range[0] param_factor = param_factor + 1e-15 # for factor=0. param_value = np.clip((param_value/(param_factor) - param_range[0])/(scale), 0., 1.) if isinstance(param_value, np.ndarray): params_value_list = list(np.concatenate((params_value_list, param_value))) else: # scalar params_value_list.append(param_value) return np.array(params_value_list) def _flatten_obs(obs_dict, verbose=False): # gym observation wrapper """ Filters keys of interest out and concatenate the information. Args: obs_dict: ordered dictionary of observations """ keys = ["robot-state", "task-state", "target_pos",] ob_lst = [] for key in obs_dict: if key in keys: # hacked if verbose: print("adding key: {}".format(key)) ob_lst.append(obs_dict[key]) return np.concatenate(ob_lst) def offline_history_collection(env_name, itr=30, policy=None, \ vectorize=True, discrete=False, vine=False, vine_sample_size=500, egreedy=0): """ Collect random simulation parameters and trajetories with given policy. ---------------------------------------------------------------- params: env_name: name of env to collect data from itr: data episodes policy: policy used for collecting data vectorize: vectorized parameters into a list rather than a dictionary, used for system identification discrete: discrete randomisation range, as in EPI paper vine: Vine data collection, same state and same action at the initial of trajectory, as in EPI paper vine_sample_size: number of state action samples in vine trajectory set egreedy: the factor for collecting data with epsilon-greedy policy """ env, environment_params, environment_wrappers, environment_wrapper_arguments = choose_env(env_name) action_space = env.action_space state_space = env.observation_space if policy is None: # load off-line policy if no policy policy=DPG_PolicyNetwork(state_space, action_space, 512).cuda() # load from somewhere history_sa=[] history_s_=[] params_list=[] if vine: vine_state_set = [] # underlying state of env, not the observation vine_action_set = [] # initial action after initial state vine_idx = 0 # collect state action sets according to EPI's vine implementation while vine_idx<vine_sample_size: state = env.reset() while vine_idx<vine_sample_size: if np.random.rand() < egreedy: action = env.action_space.sample() else: action = policy.get_action(state) vine_state_set.append(env.get_state()) vine_action_set.append(action) vine_idx += 1 next_state, _, done, _ = env.step(action) state = next_state if done: break print('Start collecting transitions.') env.ignore_done = True for epi in range(itr): print('Episode: {}'.format(epi)) state = env.reset() env.randomisation_off() # reset_params = env.get_dynamics_parameters() if discrete: env.randomisation_on() # as sample_discretized_env_parameters() needs randomisation ranges sampled_env_params_dict = sample_discretized_env_parameters(env) env.randomisation_off() env.set_dynamics_parameters(sampled_env_params_dict) if vectorize: env.randomisation_on() params = query_params(env) env.randomisation_off() else: params = env.get_dynamics_parameters() params_list.append(params) if vine: epi_sa =[] epi_s_ =[] for underlying_state, action in zip(vine_state_set, vine_action_set): env.set_state(underlying_state) # underlying state is different from obs of env state = _flatten_obs(env._get_observation()) # hacked try: next_state, _, done, _ = env.step(action) except MujocoException: print('Data collection: MujocoException') action = np.zeros_like(action) next_state = state epi_sa.append(np.concatenate((state, action))) epi_s_.append(np.array(next_state)) if done: # keep using same env after done env.reset() history_sa.append(np.array(epi_sa)) history_s_.append(np.array(epi_s_)) else: epi_traj = [] for step in range(env.horizon): action = policy.get_action(state) epi_traj.append(np.concatenate((state, action))) try: next_state, _, _, _ = env.step(action) except MujocoException: print('MujocoException') action =
np.zeros(action)
numpy.zeros
""" Monitoring algorithms for Quicklook pipeline """ import numpy as np import scipy.ndimage import yaml from lvmspec.quicklook.qas import MonitoringAlg, QASeverity from lvmspec.quicklook import qlexceptions from lvmspec.quicklook import qllogger import os,sys import datetime from astropy.time import Time from lvmspec.qa import qalib from lvmspec.io import qa qlog=qllogger.QLLogger("QuickLook",0) log=qlog.getlog() def qlf_post(qadict): """ A general function to HTTP post the QA output dictionary, intended for QLF requires environmental variables: QLF_API_URL, QLF_USER, QLF_PASSWD Args: qadict: returned dictionary from a QA """ #- Check for environment variables and set them here if "QLF_API_URL" in os.environ: qlf_url=os.environ.get("QLF_API_URL") if "QLF_USER" not in os.environ or "QLF_PASSWD" not in os.environ: log.warning("Environment variables are not set for QLF. Set QLF_USER and QLF_PASSWD.") else: qlf_user=os.environ.get("QLF_USER") qlf_passwd=os.environ.get("QLF_PASSWD") log.debug("Environment variables are set for QLF. Now trying HTTP post.") #- All set. Now try to HTTP post try: import requests response=requests.get(qlf_url) #- Check if the api has json api=response.json() #- proceed with post job={"name":"QL","status":0,"dictionary":qadict} #- QLF should disintegrate dictionary response=requests.post(api['job'],json=job,auth=(qlf_user,qlf_passwd)) except: log.error("Skipping HTTP post... Exception",exc_info=true) else: log.warning("Skipping QLF. QLF_API_URL must be set as environment variable") class Get_RMS(MonitoringAlg): def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="RMS" from lvmspec.image import Image as im kwargs=config['kwargs'] parms=kwargs['param'] key=kwargs['refKey'] if 'refKey' in kwargs else "NOISE_AMP" status=kwargs['statKey'] if 'statKey' in kwargs else "NOISE_STAT" kwargs["SAMI_RESULTKEY"]=key kwargs["SAMI_QASTATUSKEY"]=status if "ReferenceMetrics" in kwargs: r=kwargs["ReferenceMetrics"] if key in r: kwargs["REFERENCE"]=r[key] if "NOISE_WARN_RANGE" in parms and "NOISE_NORMAL_RANGE" in parms: kwargs["RANGES"]=[(np.asarray(parms["NOISE_WARN_RANGE"]),QASeverity.WARNING), (np.asarray(parms["NOISE_NORMAL_RANGE"]),QASeverity.NORMAL)]# sorted by most severe to least severe MonitoringAlg.__init__(self,name,im,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : raise qlexceptions.ParameterException("Missing input parameter") if not self.is_compatible(type(args[0])): raise qlexceptions.ParameterException("Incompatible parameter type. Was expecting lvmspec.image.Image got {}".format(type(args[0]))) input_image=args[0] if "paname" not in kwargs: paname=None else: paname=kwargs["paname"] if "ReferenceMetrics" in kwargs: refmetrics=kwargs["ReferenceMetrics"] else: refmetrics=None amps=False if "amps" in kwargs: amps=kwargs["amps"] if "param" in kwargs: param=kwargs["param"] else: param=None if "qlf" in kwargs: qlf=kwargs["qlf"] else: qlf=False if "qafile" in kwargs: qafile = kwargs["qafile"] else: qafile = None if "qafig" in kwargs: qafig=kwargs["qafig"] else: qafig = None return self.run_qa(input_image,paname=paname,amps=amps,qafile=qafile,qafig=qafig, param=param, qlf=qlf, refmetrics=refmetrics) def run_qa(self,image,paname=None,amps=False,qafile=None, qafig=None,param=None,qlf=False, refmetrics=None): retval={} retval["EXPID"] = '{0:08d}'.format(image.meta["EXPID"]) retval["PANAME"] = paname retval["QATIME"] = datetime.datetime.now().isoformat() retval["CAMERA"] = image.meta["CAMERA"] retval["PROGRAM"] = image.meta["PROGRAM"] retval["FLAVOR"] = image.meta["FLAVOR"] retval["NIGHT"] = image.meta["NIGHT"] kwargs=self.config['kwargs'] # return rms values in rms/sqrt(exptime) rmsccd=qalib.getrms(image.pix/np.sqrt(image.meta["EXPTIME"])) #- should we add dark current and/or readnoise to this as well? if param is None: log.debug("Param is None. Using default param instead") param = { "NOISE_NORMAL_RANGE":[-1.0, 1.0], "NOISE_WARN_RANGE":[-2.0, 2.0] } retval["PARAMS"] = param if "REFERENCE" in kwargs: retval['PARAMS']['NOISE_AMP_REF']=kwargs["REFERENCE"] expnum=[] rms_row=[] rms_amps=[] rms_over_amps=[] overscan_values=[] #- get amp/overcan boundary in pixels from lvmspec.preproc import _parse_sec_keyword for kk in ['1','2','3','4']: thisampboundary=_parse_sec_keyword(image.meta["CCDSEC"+kk]) thisoverscanboundary=_parse_sec_keyword(image.meta["BIASSEC"+kk]) for i in range(image.pix[thisoverscanboundary].shape[0]): rmsrow = qalib.getrms(image.pix[thisoverscanboundary][i]/np.sqrt(image.meta["EXPTIME"])) rms_row.append(rmsrow) rms_thisover_thisamp=qalib.getrms(image.pix[thisoverscanboundary]/np.sqrt(image.meta["EXPTIME"])) rms_thisamp=qalib.getrms(image.pix[thisampboundary]/np.sqrt(image.meta["EXPTIME"])) rms_amps.append(rms_thisamp) rms_over_amps.append(rms_thisover_thisamp) rmsover=np.max(rms_over_amps) rmsdiff_err='NORMAL' if amps: rms_amps=[] rms_over_amps=[] overscan_values=[] #- get amp/overcan boundary in pixels from lvmspec.preproc import _parse_sec_keyword for kk in ['1','2','3','4']: thisampboundary=_parse_sec_keyword(image.meta["CCDSEC"+kk]) thisoverscanboundary=_parse_sec_keyword(image.meta["BIASSEC"+kk]) rms_thisover_thisamp=qalib.getrms(image.pix[thisoverscanboundary]/np.sqrt(image.meta["EXPTIME"])) thisoverscan_values=np.ravel(image.pix[thisoverscanboundary]/np.sqrt(image.meta["EXPTIME"])) rms_thisamp=qalib.getrms(image.pix[thisampboundary]/np.sqrt(image.meta["EXPTIME"])) rms_amps.append(rms_thisamp) rms_over_amps.append(rms_thisover_thisamp) overscan_values+=thisoverscan_values.tolist() rmsover=np.std(overscan_values) # retval["METRICS"]={"RMS":rmsccd,"NOISE":rmsover,"RMS_AMP":np.array(rms_amps),"NOISE_AMP":np.array(rms_over_amps),"RMS_ROW":rms_row,"EXPNUM_WARN":expnum} retval["METRICS"]={"RMS":rmsccd,"NOISE":rmsover,"RMS_AMP":np.array(rms_amps),"NOISE_AMP":np.array(rms_over_amps),"RMS_ROW":rms_row,"NOISE_STAT":rmsdiff_err,"EXPNUM_WARN":expnum} else: # retval["METRICS"]={"RMS":rmsccd,"NOISE":rmsover,"RMS_ROW":rms_row,"EXPNUM_WARN":expnum} retval["METRICS"]={"RMS":rmsccd,"NOISE":rmsover,"RMS_ROW":rms_row,"NOISE_STAT":rmsdiff_err,"EXPNUM_WARN":expnum} if qlf: qlf_post(retval) if qafile is not None: outfile = qa.write_qa_ql(qafile,retval) log.debug("Output QA data is in {}".format(outfile)) if qafig is not None: from lvmspec.qa.qa_plots_ql import plot_RMS plot_RMS(retval,qafig) log.debug("Output QA fig {}".format(qafig)) return retval def get_default_config(self): return {} class Count_Pixels(MonitoringAlg): def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="COUNTPIX" from lvmspec.image import Image as im kwargs=config['kwargs'] parms=kwargs['param'] key=kwargs['refKey'] if 'refKey' in kwargs else "NPIX_AMP" status=kwargs['statKey'] if 'statKey' in kwargs else "NPIX_STAT" kwargs["SAMI_RESULTKEY"]=key kwargs["SAMI_QASTATUSKEY"]=status if "ReferenceMetrics" in kwargs: r=kwargs["ReferenceMetrics"] if key in r: kwargs["REFERENCE"]=r[key] if "NPIX_WARN_RANGE" in parms and "NPIX_NORMAL_RANGE" in parms: kwargs["RANGES"]=[(np.asarray(parms["NPIX_WARN_RANGE"]),QASeverity.WARNING), (np.asarray(parms["NPIX_NORMAL_RANGE"]),QASeverity.NORMAL)]# sorted by most severe to least severe MonitoringAlg.__init__(self,name,im,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : raise qlexceptions.ParameterException("Missing input parameter") if not self.is_compatible(type(args[0])): raise qlexceptions.ParameterException("Incompatible input. Was expecting {} got {}".format(type(self.__inpType__),type(args[0]))) input_image=args[0] if "paname" not in kwargs: paname=None else: paname=kwargs["paname"] if "ReferenceMetrics" in kwargs: refmetrics=kwargs["ReferenceMetrics"] else: refmetrics=None amps=False if "amps" in kwargs: amps=kwargs["amps"] if "param" in kwargs: param=kwargs["param"] else: param=None if "qlf" in kwargs: qlf=kwargs["qlf"] else: qlf=False if "qafile" in kwargs: qafile = kwargs["qafile"] else: qafile = None if "qafig" in kwargs: qafig=kwargs["qafig"] else: qafig = None return self.run_qa(input_image,paname=paname,amps=amps,qafile=qafile,qafig=qafig, param=param, qlf=qlf, refmetrics=refmetrics) def run_qa(self,image,paname=None,amps=False,qafile=None,qafig=None, param=None, qlf=False, refmetrics=None): retval={} retval["PANAME"] = paname retval["QATIME"] = datetime.datetime.now().isoformat() retval["EXPID"] = '{0:08d}'.format(image.meta["EXPID"]) retval["CAMERA"] = image.meta["CAMERA"] retval["PROGRAM"] = image.meta["PROGRAM"] retval["FLAVOR"] = image.meta["FLAVOR"] retval["NIGHT"] = image.meta["NIGHT"] kwargs=self.config['kwargs'] if param is None: log.debug("Param is None. Using default param instead") param = { "CUTLO":3, # low threshold for number of counts in sigmas "CUTHI":10, "NPIX_NORMAL_RANGE":[200.0, 500.0], "NPIX_WARN_RANGE":[50.0, 650.0] } retval["PARAMS"] = param if "REFERENCE" in kwargs: retval['PARAMS']['NPIX_AMP_REF']=kwargs["REFERENCE"] #- get the counts over entire CCD in counts per second npixlo=qalib.countpix(image.pix,nsig=param['CUTLO']) #- above 3 sigma in counts npixhi=qalib.countpix(image.pix,nsig=param['CUTHI']) #- above 10 sigma in counts npix_err='NORMAL' #- get the counts for each amp if amps: npixlo_amps=[] npixhi_amps=[] #- get amp boundary in pixels from lvmspec.preproc import _parse_sec_keyword for kk in ['1','2','3','4']: ampboundary=_parse_sec_keyword(image.meta["CCDSEC"+kk]) npixlo_thisamp=qalib.countpix(image.pix[ampboundary]/image.meta["EXPTIME"],nsig=param['CUTLO']) npixlo_amps.append(npixlo_thisamp) npixhi_thisamp=qalib.countpix(image.pix[ampboundary]/image.meta["EXPTIME"],nsig=param['CUTHI']) npixhi_amps.append(npixhi_thisamp) # retval["METRICS"]={"NPIX_LOW":npixlo,"NPIX_HIGH":npixhi,"NPIX_AMP": npixlo_amps,"NPIX_HIGH_AMP": npixhi_amps} retval["METRICS"]={"NPIX_LOW":npixlo,"NPIX_HIGH":npixhi,"NPIX_AMP": npixlo_amps,"NPIX_HIGH_AMP": npixhi_amps,"NPIX_STAT":npix_err} else: # retval["METRICS"]={"NPIX_LOW":npixlo,"NPIX_HIGH":npixhi} retval["METRICS"]={"NPIX_LOW":npixlo,"NPIX_HIGH":npixhi,"NPIX_STAT":npix_err} if qlf: qlf_post(retval) if qafile is not None: outfile = qa.write_qa_ql(qafile,retval) log.debug("Output QA data is in {}".format(outfile)) if qafig is not None: from lvmspec.qa.qa_plots_ql import plot_countpix plot_countpix(retval,qafig) log.debug("Output QA fig {}".format(qafig)) return retval def get_default_config(self): return {} class Integrate_Spec(MonitoringAlg): def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="INTEG" from lvmspec.frame import Frame as fr kwargs=config['kwargs'] parms=kwargs['param'] key=kwargs['refKey'] if 'refKey' in kwargs else "INTEG_AVG" status=kwargs['statKey'] if 'statKey' in kwargs else "MAGDIFF_STAT" kwargs["SAMI_RESULTKEY"]=key kwargs["SAMI_QASTATUSKEY"]=status if "ReferenceMetrics" in kwargs: r=kwargs["ReferenceMetrics"] if key in r: kwargs["REFERENCE"]=r[key] if "MAGDIFF_WARN_RANGE" in parms and "MAGDIFF_NORMAL_RANGE" in parms: kwargs["RANGES"]=[(np.asarray(parms["MAGDIFF_WARN_RANGE"]),QASeverity.WARNING), (np.asarray(parms["MAGDIFF_NORMAL_RANGE"]),QASeverity.NORMAL)]# sorted by most severe to least severe MonitoringAlg.__init__(self,name,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : raise qlexceptions.ParameterException("Missing input parameter") if not self.is_compatible(type(args[0])): raise qlexceptions.ParameterException("Incompatible input. Was expecting {}, got {}".format(type(self.__inpType__),type(args[0]))) fibermap=kwargs['FiberMap'] input_frame=args[0] if "paname" not in kwargs: paname=None else: paname=kwargs["paname"] if "ReferenceMetrics" in kwargs: refmetrics=kwargs["ReferenceMetrics"] else: refmetrics=None amps=False if "amps" in kwargs: amps=kwargs["amps"] if "param" in kwargs: param=kwargs["param"] else: param=None dict_countbins=None if "dict_countbins" in kwargs: dict_countbins=kwargs["dict_countbins"] if "qlf" in kwargs: qlf=kwargs["qlf"] else: qlf=False if "qafile" in kwargs: qafile = kwargs["qafile"] else: qafile = None if "qafig" in kwargs: qafig=kwargs["qafig"] else: qafig = None return self.run_qa(fibermap,input_frame,paname=paname,amps=amps, dict_countbins=dict_countbins, qafile=qafile,qafig=qafig, param=param, qlf=qlf, refmetrics=refmetrics) def run_qa(self,fibermap,frame,paname=None,amps=False,dict_countbins=None, qafile=None,qafig=None, param=None, qlf=False, refmetrics=None): retval={} retval["PANAME" ] = paname retval["QATIME"] = datetime.datetime.now().isoformat() retval["EXPID"] = '{0:08d}'.format(frame.meta["EXPID"]) retval["CAMERA"] = frame.meta["CAMERA"] retval["PROGRAM"] = frame.meta["PROGRAM"] retval["FLAVOR"] = frame.meta["FLAVOR"] retval["NIGHT"] = frame.meta["NIGHT"] kwargs=self.config['kwargs'] ra = fibermap["RA_TARGET"] dec = fibermap["DEC_TARGET"] #- get the integrals for all fibers flux=frame.flux wave=frame.wave integrals=np.zeros(flux.shape[0]) for ii in range(len(integrals)): integrals[ii]=qalib.integrate_spec(wave,flux[ii]) #- average integrals over fibers of each object type and get imaging magnitudes integ_avg_tgt=[] mag_avg_tgt=[] for T in ["ELG","QSO","LRG","STD"]: fibers=np.where(frame.fibermap['OBJTYPE']==T)[0] if len(fibers) < 1: log.warning("no {} fibers found.".format(T)) magnitudes=frame.fibermap['MAG'][fibers] mag_avg=np.mean(magnitudes) mag_avg_tgt.append(mag_avg) integ=integrals[fibers] integ_avg=np.mean(integ) integ_avg_tgt.append(integ_avg) if T == "STD": starfibers=fibers int_stars=integ int_average=integ_avg # simple, temporary magdiff calculation (to be corrected...) magdiff_avg=[] for i in range(len(mag_avg_tgt)): mag_fib=-2.5*np.log(integ_avg_tgt[i]/frame.meta["EXPTIME"])+30. if mag_avg_tgt[i] != np.nan: magdiff=mag_fib-mag_avg_tgt[i] else: magdiff=nan magdiff_avg.append(magdiff) if param is None: log.debug("Param is None. Using default param instead") param = { "MAGDIFF_NORMAL_RANGE":[-0.5, 0.5], "MAGDIFF_WARN_RANGE":[-1.0, 1.0] } retval["PARAMS"] = param if "REFERENCE" in kwargs: retval['PARAMS']['MAGDIFF_TGT_REF']=kwargs["REFERENCE"] magdiff_avg_amp = [0.0] magdiff_err='NORMAL' #- get the counts for each amp if amps: #- get the fiducial boundary leftmax = dict_countbins["LEFT_MAX_FIBER"] rightmin = dict_countbins["RIGHT_MIN_FIBER"] bottommax = dict_countbins["BOTTOM_MAX_WAVE_INDEX"] topmin = dict_countbins["TOP_MIN_WAVE_INDEX"] fidboundary = qalib.slice_fidboundary(frame,leftmax,rightmin,bottommax,topmin) int_avg_amps=np.zeros(4) for amp in range(4): wave=frame.wave[fidboundary[amp][1]] select_thisamp=starfibers[(starfibers >= fidboundary[amp][0].start) & (starfibers < fidboundary[amp][0].stop)] stdflux_thisamp=frame.flux[select_thisamp,fidboundary[amp][1]] if len(stdflux_thisamp)==0: continue else: integ_thisamp=np.zeros(stdflux_thisamp.shape[0]) for ii in range(stdflux_thisamp.shape[0]): integ_thisamp[ii]=qalib.integrate_spec(wave,stdflux_thisamp[ii]) int_avg_amps[amp]=np.mean(integ_thisamp) # retval["METRICS"]={"RA":ra,"DEC":dec, "INTEG":int_stars, "INTEG_AVG":int_average,"INTEG_AVG_AMP":int_avg_amps, "STD_FIBERID": starfibers.tolist(),"MAGDIFF_TGT":magdiff_avg,"MAGDIFF_AVG_AMP":magdiff_avg_amp} retval["METRICS"]={"RA":ra,"DEC":dec, "INTEG":int_stars, "INTEG_AVG":int_average,"INTEG_AVG_AMP":int_avg_amps, "STD_FIBERID": starfibers.tolist(),"MAGDIFF_TGT":magdiff_avg,"MAGDIFF_AVG_AMP":magdiff_avg_amp,"MAGDIFF_STAT":magdiff_err} else: # retval["METRICS"]={"RA":ra,"DEC":dec, "INTEG":int_stars,"INTEG_AVG":int_average,"STD_FIBERID":starfibers.tolist(),"MAGDIFF_TGT":magdiff_avg} retval["METRICS"]={"RA":ra,"DEC":dec, "INTEG":int_stars,"INTEG_AVG":int_average,"STD_FIBERID":starfibers.tolist(),"MAGDIFF_TGT":magdiff_avg,"MAGDIFF_STAT":magdiff_err} if qlf: qlf_post(retval) if qafile is not None: outfile = qa.write_qa_ql(qafile,retval) log.debug("Output QA data is in {}".format(outfile)) if qafig is not None: from lvmspec.qa.qa_plots_ql import plot_integral plot_integral(retval,qafig) log.debug("Output QA fig {}".format(qafig)) return retval def get_default_config(self): return {} class Sky_Continuum(MonitoringAlg): def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="SKYCONT" from lvmspec.frame import Frame as fr kwargs=config['kwargs'] parms=kwargs['param'] key=kwargs['refKey'] if 'refKey' in kwargs else "SKYCONT" status=kwargs['statKey'] if 'statKey' in kwargs else "SKYCONT_STAT" kwargs["SAMI_RESULTKEY"]=key kwargs["SAMI_QASTATUSKEY"]=status if "ReferenceMetrics" in kwargs: r=kwargs["ReferenceMetrics"] if key in r: kwargs["REFERENCE"]=r[key] if "SKYCONT_WARN_RANGE" in parms and "SKYCONT_NORMAL_RANGE" in parms: kwargs["RANGES"]=[(np.asarray(parms["SKYCONT_WARN_RANGE"]),QASeverity.WARNING), (np.asarray(parms["SKYCONT_NORMAL_RANGE"]),QASeverity.NORMAL)]# sorted by most severe to least severe MonitoringAlg.__init__(self,name,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : raise qlexceptions.ParameterException("Missing input parameter") if not self.is_compatible(type(args[0])): raise qlexceptions.ParameterException("Incompatible input. Was expecting {}, got {}".format(type(self.__inpType__),type(args[0]))) fibermap=kwargs['FiberMap'] input_frame=args[0] camera=input_frame.meta["CAMERA"] wrange1=None wrange2=None if "wrange1" in kwargs: wrange1=kwargs["wrange1"] if "wrange2" in kwargs: wrange2=kwargs["wrange2"] if wrange1==None: if camera[0]=="b": wrange1= "4000,4500" if camera[0]=="r": wrange1= "5950,6200" if camera[0]=="z": wrange1= "8120,8270" if wrange2==None: if camera[0]=="b": wrange2= "5250,5550" if camera[0]=="r": wrange2= "6990,7230" if camera[0]=="z": wrange2= "9110,9280" paname=None if "paname" in kwargs: paname=kwargs["paname"] if "ReferenceMetrics" in kwargs: refmetrics=kwargs["ReferenceMetrics"] else: refmetrics=None amps=False if "amps" in kwargs: amps=kwargs["amps"] if "param" in kwargs: param=kwargs["param"] else: param=None dict_countbins=None if "dict_countbins" in kwargs: dict_countbins=kwargs["dict_countbins"] if "qlf" in kwargs: qlf=kwargs["qlf"] else: qlf=False if "qafile" in kwargs: qafile = kwargs["qafile"] else: qafile = None if "qafig" in kwargs: qafig=kwargs["qafig"] else: qafig=None return self.run_qa(fibermap,input_frame,wrange1=wrange1,wrange2=wrange2,paname=paname,amps=amps, dict_countbins=dict_countbins,qafile=qafile,qafig=qafig, param=param, qlf=qlf, refmetrics=refmetrics) def run_qa(self,fibermap,frame,wrange1=None,wrange2=None, paname=None,amps=False,dict_countbins=None, qafile=None,qafig=None, param=None, qlf=False, refmetrics=None): #- qa dictionary retval={} retval["PANAME" ]= paname retval["QATIME"] = datetime.datetime.now().isoformat() retval["EXPID"] = '{0:08d}'.format(frame.meta["EXPID"]) retval["CAMERA"] = frame.meta["CAMERA"] retval["PROGRAM"] = frame.meta["PROGRAM"] retval["FLAVOR"] = frame.meta["FLAVOR"] retval["NIGHT"] = frame.meta["NIGHT"] kwargs=self.config['kwargs'] ra = fibermap["RA_TARGET"] dec = fibermap["DEC_TARGET"] if param is None: log.debug("Param is None. Using default param instead") from lvmspec.io import read_params desi_params = read_params() param = {} for key in ['B_CONT','R_CONT', 'Z_CONT', 'SKYCONT_WARN_RANGE', 'SKYCONT_ALARM_RANGE']: param[key] = desi_params['qa']['skysub']['PARAMS'][key] retval["PARAMS"] = param if "REFERENCE" in kwargs: retval['PARAMS']['SKYCONT_REF']=kwargs["REFERENCE"] skyfiber, contfiberlow, contfiberhigh, meancontfiber, skycont = qalib.sky_continuum( frame, wrange1, wrange2) skycont_err = 'NORMAL' if amps: leftmax = dict_countbins["LEFT_MAX_FIBER"] rightmin = dict_countbins["RIGHT_MIN_FIBER"] bottommax = dict_countbins["BOTTOM_MAX_WAVE_INDEX"] topmin = dict_countbins["TOP_MIN_WAVE_INDEX"] fidboundary = qalib.slice_fidboundary(frame,leftmax,rightmin,bottommax,topmin) k1=np.where(skyfiber < fidboundary[0][0].stop)[0] maxsky_index=max(k1) contamp1=np.mean(contfiberlow[:maxsky_index]) contamp3=np.mean(contfiberhigh[:maxsky_index]) if fidboundary[1][0].start >=fidboundary[0][0].stop: k2=np.where(skyfiber > fidboundary[1][0].start)[0] minsky_index=min(k2) contamp2=np.mean(contfiberlow[minsky_index:]) contamp4=np.mean(contfiberhigh[minsky_index:]) else: contamp2=0 contamp4=0 skycont_amps=np.array((contamp1,contamp2,contamp3,contamp4)) #- in four amps regions # retval["METRICS"]={"RA":ra,"DEC":dec, "SKYFIBERID": skyfiber.tolist(), "SKYCONT":skycont, "SKYCONT_FIBER":meancontfiber, "SKYCONT_AMP":skycont_amps} retval["METRICS"]={"RA":ra,"DEC":dec, "SKYFIBERID": skyfiber.tolist(), "SKYCONT":skycont, "SKYCONT_FIBER":meancontfiber, "SKYCONT_AMP":skycont_amps, "SKYCONT_STAT":skycont_err} else: # retval["METRICS"]={"RA":ra,"DEC":dec, "SKYFIBERID": skyfiber.tolist(), "SKYCONT":skycont, "SKYCONT_FIBER":meancontfiber} retval["METRICS"]={"RA":ra,"DEC":dec, "SKYFIBERID": skyfiber.tolist(), "SKYCONT":skycont, "SKYCONT_FIBER":meancontfiber, "SKYCONT_STAT":skycont_err} if qlf: qlf_post(retval) if qafile is not None: outfile = qa.write_qa_ql(qafile,retval) log.debug("Output QA data is in {}".format(outfile)) if qafig is not None: from lvmspec.qa.qa_plots_ql import plot_sky_continuum plot_sky_continuum(retval,qafig) log.debug("Output QA fig {}".format(qafig)) return retval def get_default_config(self): return {} class Sky_Peaks(MonitoringAlg): def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="SKYPEAK" from lvmspec.frame import Frame as fr kwargs=config['kwargs'] parms=kwargs['param'] key=kwargs['refKey'] if 'refKey' in kwargs else "PEAKCOUNT_MED_SKY" status=kwargs['statKey'] if 'statKey' in kwargs else "PEAKCOUNT_STAT" kwargs["SAMI_RESULTKEY"]=key kwargs["SAMI_QASTATUSKEY"]=status if "ReferenceMetrics" in kwargs: r=kwargs["ReferenceMetrics"] if key in r: kwargs["REFERENCE"]=r[key] if "PEAKCOUNT_WARN_RANGE" in parms and "PEAKCOUNT_NORMAL_RANGE" in parms: kwargs["RANGES"]=[(np.asarray(parms["PEAKCOUNT_WARN_RANGE"]),QASeverity.WARNING), (np.asarray(parms["PEAKCOUNT_NORMAL_RANGE"]),QASeverity.NORMAL)]# sorted by most severe to least severe MonitoringAlg.__init__(self,name,fr,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : raise qlexceptions.ParameterException("Missing input parameter") if not self.is_compatible(type(args[0])): raise qlexceptions.ParameterException("Incompatible parameter type. Was expecting lvmspec.image.Image, got {}".format(type(args[0]))) fibermap=kwargs['FiberMap'] input_frame=args[0] if "paname" not in kwargs: paname=None else: paname=kwargs["paname"] if "ReferenceMetrics" in kwargs: refmetrics=kwargs["ReferenceMetrics"] else: refmetrics=None amps=False if "amps" in kwargs: amps=kwargs["amps"] if "param" in kwargs: param=kwargs["param"] else: param=None psf = None if "PSFFile" in kwargs: psf=kwargs["PSFFile"] if "qlf" in kwargs: qlf=kwargs["qlf"] else: qlf=False if "qafile" in kwargs: qafile = kwargs["qafile"] else: qafile = None if "qafig" in kwargs: qafig=kwargs["qafig"] else: qafig = None return self.run_qa(fibermap,input_frame,paname=paname,amps=amps,psf=psf, qafile=qafile, qafig=qafig, param=param, qlf=qlf, refmetrics=refmetrics) def run_qa(self,fibermap,frame,paname=None,amps=False,psf=None, qafile=None,qafig=None, param=None, qlf=False, refmetrics=None): from lvmspec.qa.qalib import sky_peaks retval={} retval["PANAME"] = paname retval["QATIME"] = datetime.datetime.now().isoformat() retval["EXPID"] = '{0:08d}'.format(frame.meta["EXPID"]) retval["CAMERA"] = camera = frame.meta["CAMERA"] retval["PROGRAM"] = frame.meta["PROGRAM"] retval["FLAVOR"] = frame.meta["FLAVOR"] retval["NIGHT"] = frame.meta["NIGHT"] kwargs=self.config['kwargs'] ra = fibermap["RA_TARGET"] dec = fibermap["DEC_TARGET"] # Parameters if param is None: log.info("Param is None. Using default param instead") from lvmspec.io import read_params desi_params = read_params() param = desi_params['qa']['skypeaks']['PARAMS'] # Run nspec_counts, sky_counts = sky_peaks(param, frame, amps=amps) rms_nspec = qalib.getrms(nspec_counts) rms_skyspec = qalib.getrms(sky_counts) sumcount_med_sky=[] retval["PARAMS"] = param if "REFERENCE" in kwargs: retval['PARAMS']['PEAKCOUNT_REF']=kwargs["REFERENCE"] # retval["METRICS"]={"RA":ra,"DEC":dec, "PEAKCOUNT":nspec_counts,"PEAKCOUNT_RMS":rms_nspec,"PEAKCOUNT_MED_SKY":sumcount_med_sky,"PEAKCOUNT_RMS_SKY":rms_skyspec} sumcount_err='NORMAL' retval["METRICS"]={"RA":ra,"DEC":dec, "PEAKCOUNT":nspec_counts,"PEAKCOUNT_RMS":rms_nspec,"PEAKCOUNT_MED_SKY":sumcount_med_sky,"PEAKCOUNT_RMS_SKY":rms_skyspec,"PEAKCOUNT_STAT":sumcount_err} if qlf: qlf_post(retval) if qafile is not None: outfile = qa.write_qa_ql(qafile,retval) log.debug("Output QA data is in {}".format(outfile)) if qafig is not None: from lvmspec.qa.qa_plots_ql import plot_sky_peaks plot_sky_peaks(retval,qafig) log.debug("Output QA fig {}".format(qafig)) return retval def get_default_config(self): return {} class Calc_XWSigma(MonitoringAlg): def __init__(self,name,config,logger=None): if name is None or name.strip() == "": name="XWSIGMA" from lvmspec.image import Image as im kwargs=config['kwargs'] parms=kwargs['param'] key=kwargs['refKey'] if 'refKey' in kwargs else "WSIGMA_MED_SKY" status=kwargs['statKey'] if 'statKey' in kwargs else "XWSIGMA_STAT" kwargs["SAMI_RESULTKEY"]=key kwargs["SAMI_QASTATUSKEY"]=status if "ReferenceMetrics" in kwargs: r=kwargs["ReferenceMetrics"] if key in r: kwargs["REFERENCE"]=r[key] if "XWSIGMA_WARN_RANGE" in parms and "XWSIGMA_NORMAL_RANGE" in parms: kwargs["RANGES"]=[(np.asarray(parms["XWSIGMA_WARN_RANGE"]),QASeverity.WARNING), (np.asarray(parms["XWSIGMA_NORMAL_RANGE"]),QASeverity.NORMAL)]# sorted by most severe to least severe MonitoringAlg.__init__(self,name,im,config,logger) def run(self,*args,**kwargs): if len(args) == 0 : raise qlexceptions.ParameterException("Missing input parameter") if not self.is_compatible(type(args[0])): raise qlexceptions.ParameterException("Incompatible parameter type. Was expecting lvmspec.image.Image got {}".format(type(args[0]))) fibermap=kwargs['FiberMap'] input_image=args[0] if "paname" not in kwargs: paname=None else: paname=kwargs["paname"] if "ReferenceMetrics" in kwargs: refmetrics=kwargs["ReferenceMetrics"] else: refmetrics=None amps=False if "amps" in kwargs: amps=kwargs["amps"] if "param" in kwargs: param=kwargs["param"] else: param=None psf = None if "PSFFile" in kwargs: psf=kwargs["PSFFile"] fibermap = None if "FiberMap" in kwargs: fibermap=kwargs["FiberMap"] if "qlf" in kwargs: qlf=kwargs["qlf"] else: qlf=False if "qafile" in kwargs: qafile = kwargs["qafile"] else: qafile = None if "qafig" in kwargs: qafig=kwargs["qafig"] else: qafig = None return self.run_qa(fibermap,input_image,paname=paname,amps=amps,psf=psf, qafile=qafile,qafig=qafig, param=param, qlf=qlf, refmetrics=refmetrics) def run_qa(self,fibermap,image,paname=None,amps=False,psf=None, qafile=None,qafig=None, param=None, qlf=False, refmetrics=None): from scipy.optimize import curve_fit retval={} retval["PANAME"] = paname retval["QATIME"] = datetime.datetime.now().isoformat() retval["EXPID"] = '{0:08d}'.format(image.meta["EXPID"]) retval["CAMERA"] = camera = image.meta["CAMERA"] retval["PROGRAM"] = image.meta["PROGRAM"] retval["FLAVOR"] = image.meta["FLAVOR"] retval["NIGHT"] = image.meta["NIGHT"] kwargs=self.config['kwargs'] ra = fibermap["RA_TARGET"] dec = fibermap["DEC_TARGET"] if param is None: log.debug("Param is None. Using default param instead") if image.meta["FLAVOR"] == 'arc': param = { "B_PEAKS":[4047.7, 4359.6, 5087.2], "R_PEAKS":[6144.8, 6508.3, 6600.8, 6718.9, 6931.4, 7034.4,], "Z_PEAKS":[8379.9, 8497.7, 8656.8, 8783.0], "XWSIGMA_NORMAL_RANGE":[-2.0, 2.0], "XWSIGMA_WARN_RANGE":[-4.0, 4.0] } else: param = { "B_PEAKS":[3914.4, 5199.3, 5578.9], "R_PEAKS":[6301.9, 6365.4, 7318.2, 7342.8, 7371.3], "Z_PEAKS":[8401.5, 8432.4, 8467.5, 9479.4, 9505.6, 9521.8], "XWSIGMA_NORMAL_RANGE":[-2.0, 2.0], "XWSIGMA_WARN_RANGE":[-4.0, 4.0] } dw=2. dp=3 b_peaks=param['B_PEAKS'] r_peaks=param['R_PEAKS'] z_peaks=param['Z_PEAKS'] if fibermap["OBJTYPE"][0] == 'ARC': import lvmspec.psf psf=lvmspec.psf.PSF(psf) xsigma=[] wsigma=[] xsigma_sky=[] wsigma_sky=[] xsigma_amp1=[] wsigma_amp1=[] xsigma_amp2=[] wsigma_amp2=[] xsigma_amp3=[] wsigma_amp3=[] xsigma_amp4=[] wsigma_amp4=[] if fibermap['FIBER'].shape[0] >= 500: fibers = 500 else: fibers = fibermap['FIBER'].shape[0] for i in range(fibers): if camera[0]=="b": peak_wave=np.array([b_peaks[0]-dw,b_peaks[0]+dw,b_peaks[1]-dw,b_peaks[1]+dw,b_peaks[2]-dw,b_peaks[2]+dw]) xpix=psf.x(ispec=i,wavelength=peak_wave) ypix=psf.y(ispec=i,wavelength=peak_wave) xpix_peak1=np.arange(int(round(xpix[0]))-dp,int(round(xpix[1]))+dp+1,1) ypix_peak1=np.arange(int(round(ypix[0])),int(round(ypix[1])),1) xpix_peak2=np.arange(int(round(xpix[2]))-dp,int(round(xpix[3]))+dp+1,1) ypix_peak2=np.arange(int(round(ypix[2])),int(round(ypix[3])),1) xpix_peak3=np.arange(int(round(xpix[4]))-dp,int(round(xpix[5]))+dp+1,1) ypix_peak3=np.arange(int(round(ypix[4])),int(round(ypix[5])),1) xpopt1,xpcov1=curve_fit(qalib.gauss,np.arange(len(xpix_peak1)),image.pix[int(np.mean(ypix_peak1)),xpix_peak1]) wpopt1,wpcov1=curve_fit(qalib.gauss,np.arange(len(ypix_peak1)),image.pix[ypix_peak1,int(np.mean(xpix_peak1))]) xpopt2,xpcov2=curve_fit(qalib.gauss,np.arange(len(xpix_peak2)),image.pix[int(
np.mean(ypix_peak2)
numpy.mean
import h5py import numpy as np from ..simulation_utilities import * __all__ = ['SimInfo'] class SimInfo: """ Object that takes in a .hdf5 file (one of the outputs of the simulation) and provides tools for analysis. :param h5Name: hdf5 file :type str """ def __init__(self, h5_name): self.fname = h5_name self._initialize() self._load_sim_H5() def _initialize(self): wfn_name_temp = self.fname.split('/') sim_name = wfn_name_temp[-1] pth = '/'.join(wfn_name_temp[:-1]) sim_name = sim_name.split('sim_info')[0] self._wfn_names = f"{pth}/wfns/{sim_name}wfn_" def _load_sim_H5(self): with h5py.File(self.fname, 'r') as f: self.vref_vs_tau = f['vref_vs_tau'][:] self.pop_vs_tau = f['pop_vs_tau'][:] self.atom_nums = f['atomic_nums'][:] self.atom_masses = f['atomic_masses'][:] @staticmethod def get_wfn(wfn_fl, ret_ang=False): """ Given a .hdf5 file, return wave function and descendant weights associated with that wave function. :param wfn_fl: A resultant .hdf5 file from a PyVibDMC simulation :param ret_ang: boolean indicating returning the coordinates in angtstroms. Bohr is the default. :return: Coordinates array in angstroms (nxmx3), descendant weights array (n). """ with h5py.File(wfn_fl, 'r') as f: cds = f['coords'][:] if ret_ang: # Fenris said it was dumb to convert, let the user decide what to do cds = Constants.convert(cds, 'angstroms', to_AU=False) dw = f['desc_wts'][:] return cds, dw def get_wfns(self, time_step_list, ret_ang=False): """ Extract the wave function (walker set) and descendant weights given a time step number or numbers :param time_step_list: a list of ints that correspond to the time steps you want the wfn from given the simulation you are working with :type time_step_list: int or list :param ret_ang: boolean indicating returning the coordinates in angtstroms. Bohr is the default. :return: """ time_step_list = [time_step_list] if isinstance(time_step_list, int) else time_step_list fl_list = [f'{self._wfn_names}{x}ts.hdf5' for x in time_step_list] tot_cds = [] tot_dw = [] for fl in fl_list: cds, dw = self.get_wfn(fl, ret_ang) tot_cds.append(cds) tot_dw.append(dw) tot_cds =
np.concatenate(tot_cds)
numpy.concatenate
# -*- coding: utf-8 -*- """ Created on Fri Mar 25 09:42:22 2016 @author: bing """ import numpy as np #import scipy import numba import sys import math bohr_angstrom = 0.52917721092 hartree_wavenumber = 219474.63 #hartree_wavenumber = scipy.constants.value(u'hartree-inverse meter relationship') / 1e2 def M1mat(a, Nb): M1 =
np.zeros((Nb,Nb))
numpy.zeros
# Test multi-species options in mt3d import os import numpy as np import flopy testpth = os.path.join(".", "temp", "t023") # make the directory if it does not exist if not os.path.isdir(testpth): os.makedirs(testpth) def test_mt3d_multispecies(): # modflow model modelname = "multispecies" nlay = 1 nrow = 20 ncol = 20 nper = 10 mf = flopy.modflow.Modflow(modelname=modelname, model_ws=testpth) dis = flopy.modflow.ModflowDis( mf, nlay=nlay, nrow=nrow, ncol=ncol, nper=nper ) lpf = flopy.modflow.ModflowLpf(mf) rch = flopy.modflow.ModflowRch(mf) evt = flopy.modflow.ModflowEvt(mf) mf.write_input() # Create a 5-component mt3d model and write the files ncomp = 5 mt = flopy.mt3d.Mt3dms( modelname=modelname, modflowmodel=mf, model_ws=testpth, verbose=True ) sconc3 = np.random.random((nrow, ncol)) btn = flopy.mt3d.Mt3dBtn( mt, ncomp=ncomp, sconc=1.0, sconc2=2.0, sconc3=sconc3, sconc5=5.0 ) # check obs I/O mt.btn.obs = np.array([[0, 2, 300], [0, 1, 250]]) crch32 = np.random.random((nrow, ncol)) cevt33 =
np.random.random((nrow, ncol))
numpy.random.random
import numpy as np from pyhack.py_runko_aux import * from pyhack.gauss_lobatto import CollGaussLobatto as lobatto class coll: def __init__(self,tile,dtf=1,M=3,K=3,collclass=lobatto,**kwargs): self.collclass = collclass coll = self.collclass(M,0,1) self.K = K self.M = M self.nodes = coll._getNodes self.weights = coll._getWeights(coll.tleft,coll.tright) #Get M nodes and weights self.Qmat = coll._gen_Qmatrix #Generate q_(m,j), i.e. the large weights matrix self.Smat = coll._gen_Smatrix #Generate s_(m,j), i.e. the large node-to-node weights matrix self.delta_m = coll._gen_deltas #Generate vector of node spacings self.Qmat *= dtf self.Smat *= dtf self.delta_m *= dtf self.ssi = 1 ## Parameters from runko tile/container cont = tile.get_container(0) pos = py_pos(cont) self.nq = pos.shape[0] self.q = cont.q self.c = tile.cfl self.predictor = False if "predictor" in kwargs: if kwargs["predictor"] == True: self.predictor = True nq = self.nq #Collocation solution stuff Ix = np.array([1,0]) Iv = np.array([0,1]) Ixv = np.array([[0,1],[0,0]]) Id = np.identity(nq*3) I2d = np.identity(nq*3*2) self.Ix = Ix self.Iv = Iv self.Ixv = Ixv self.Id = Id Qtil = self.Qmat[1:,1:] I3M = np.identity(3*M) self.Q = np.kron(np.identity(2),np.kron(Qtil,Id)) #Define required calculation matrices QE = np.zeros((M+1,M+1),dtype=np.float) QI = np.zeros((M+1,M+1),dtype=np.float) QT = np.zeros((M+1,M+1),dtype=np.float) SX = np.zeros((M+1,M+1),dtype=np.float) for i in range(0,M): QE[(i+1):,i] = self.delta_m[i] QI[(i+1):,i+1] = self.delta_m[i] QT = 1/2 * (QE + QI) QX = QE @ QT + (QE*QE)/2 SX[:,:] = QX[:,:] SX[1:,:] = QX[1:,:] - QX[0:-1,:] self.SX = SX self.SQ = self.Smat @ self.Qmat d = 3*nq self.x0 = np.zeros((M+1,nq,3),dtype=np.float) self.x = np.zeros((M+1,nq,3),dtype=np.float) self.xn = np.zeros((M+1,nq,3),dtype=np.float) self.u0 = np.zeros((M+1,nq,3),dtype=np.float) self.u = np.zeros((M+1,nq,3),dtype=np.float) self.un = np.zeros((M+1,nq,3),dtype=np.float) self.E = np.zeros((M+1,nq,3),dtype=np.float) self.En = np.zeros((M+1,nq,3),dtype=np.float) self.B = np.zeros((M+1,nq,3),dtype=np.float) self.Bn =
np.zeros((M+1,nq,3),dtype=np.float)
numpy.zeros
# Copyright 2019, the MIDOSS project contributors, The University of British Columbia, # and Dalhousie University. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import h5py import os import yaml def make_stats_file(path, GridX, GridY, output): files =[] for r, d, f in os.walk(path): for file in f: if '.hdf5' in file: files.append(os.path.join(r, file)) stats_dict = {'variable':{'mean':2, 'min':1, 'max':5, 'std':6}} for file in files: with h5py.File(file, 'r') as f: for group in list(f['Results'].keys()): timeseries = np.array([]) for time in list(f['Results'][group].keys()): if np.ndim(f['Results'][group][time][:]) == 3: timeseries = np.append(timeseries, f['Results'][group][time][-1, GridX, GridY]) else: timeseries = np.append(timeseries, f['Results'][group][time][GridX, GridY]) stats_dict[group] = {'min': "%.4g" % np.min(timeseries), 'max': "%.4g" % np.max(timeseries), 'mean': "%.4g" % np.mean(timeseries), 'std': "%.4g" % np.std(timeseries)} if group == 'wind velocity X': windx = timeseries if group == 'wind velocity Y': windy = timeseries if group == 'velocity U': currentsu = timeseries if group == 'velocity V': currentsv = timeseries if group == 'Stokes U': stokesu = timeseries if group == 'Stokes V': stokesv = timeseries windspeed = np.mean(np.array([windx, windy]), axis=0) stats_dict['wind speed'] = {'min': "%.4g" % np.min(windspeed), 'max': "%.4g" % np.max(windspeed), 'mean': "%.4g" % np.mean(windspeed), 'std': "%.4g" % np.std(windspeed)} currentsspeed = np.mean(np.array([currentsu, currentsv]), axis=0) stats_dict['currents speed'] = {'min': "%.4g" % np.min(currentsspeed), 'max': "%.4g" % np.max(currentsspeed), 'mean': "%.4g" % np.mean(currentsspeed), 'std': "%.4g" %
np.std(currentsspeed)
numpy.std
import unittest import numpy as np from seedpod_ground_risk.path_analysis.harm_models.strike_model import StrikeModel, get_lethal_area class StrikeModelTestCase(unittest.TestCase): def setUp(self) -> None: self.test_shape = (100, 100) self.pix_area = 20 * 20 self.test_pdf = np.random.random(self.test_shape) def test_lethal_area_ranges(self): angles = np.deg2rad(np.linspace(1, 90)) la = get_lethal_area(angles, 1) prop_la = la / self.pix_area self.assertLessEqual(prop_la.max(), 1) self.assertGreaterEqual(prop_la.min(), 0) def test_max_range(self): max_grid = np.full(self.test_shape, 1) sm = StrikeModel(max_grid, self.pix_area, 2, np.deg2rad(30)) out = sm.transform(max_grid) self.assertLessEqual(out.max(), 1) self.assertGreaterEqual(out.min(), 0) def test_min_range(self): min_grid = np.full(self.test_shape, 0) sm = StrikeModel(min_grid, self.pix_area, 2, np.deg2rad(30)) out = sm.transform(min_grid) self.assertLessEqual(out.max(), 1) self.assertGreaterEqual(out.min(), 0) def test_array_inputs(self): angles = np.random.random(self.test_shape) * 2 pop_density =
np.random.random(self.test_shape)
numpy.random.random
"""Script to generate figures for Beltran & Kannan et. al. Two figures were made by hand. Figure 1 is a pair of blender renderings. The relevant blend file names are simply mentioned below. Where data has to be pre-computed, the procedure is mentioned.""" import re from pathlib import Path import pickle import matplotlib.cm as cm import matplotlib.ticker as tck from mpl_toolkits.axes_grid1.inset_locator import inset_axes import numpy as np import seaborn as sns import pandas as pd from matplotlib import pyplot as plt import scipy from scipy import stats from scipy.optimize import curve_fit #from sklearn.gaussian_process import GaussianProcessRegressor #from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C from nuc_chain import geometry as ncg from nuc_chain import linkers as ncl from nuc_chain import rotations as ncr from MultiPoint import propagator from nuc_chain import fluctuations as wlc from nuc_chain import visualization as vis from nuc_chain.linkers import convert # Plotting parameters #width of one column on ppt slide in inch col_width = 5.67 full_width = 8.63 aspect_ratio = 2/3 col_height = aspect_ratio*col_width full_height = aspect_ratio*full_width plot_params = { 'backend': 'pdf', 'savefig.format': 'pdf', 'text.usetex': True, 'font.size': 18, 'figure.figsize': [full_width, full_height], 'figure.facecolor': 'white', 'axes.grid': False, 'axes.edgecolor': 'black', 'axes.facecolor': 'white', 'axes.titlesize': 20, 'axes.labelsize': 20, 'legend.fontsize': 18, 'xtick.labelsize': 16, 'ytick.labelsize': 16, 'axes.linewidth': 1, 'xtick.top': False, 'xtick.bottom': True, 'xtick.direction': 'out', 'xtick.minor.size': 3, 'xtick.minor.width': 0.5, 'xtick.major.pad': 5, 'xtick.major.size': 5, 'xtick.major.width': 1, 'ytick.left': True, 'ytick.right': False, 'ytick.direction': 'out', 'ytick.minor.size': 3, 'ytick.minor.width': 0.5, 'ytick.major.pad': 5, 'ytick.major.size': 5, 'ytick.major.width': 1, 'lines.linewidth': 2 } plt.rcParams.update(plot_params) teal_flucts = '#387780' red_geom = '#E83151' dull_purple = '#755F80' rich_purple = '#e830e8' def render_chain(linkers, unwraps=0, **kwargs): entry_rots, entry_pos = ncg.minimum_energy_no_sterics_linker_only(linkers, unwraps=unwraps) # on linux, hit ctrl-d in the ipython terminal but don't accept the # "exit" prompt to get the mayavi interactive mode to work. make sure # to use "off-screen rendering" and fullscreen your window before # saving (this is actually required if you're using a tiling window # manager like e.g. i3 or xmonad). vis.visualize_chain(entry_rots, entry_pos, linkers, unwraps=unwraps, plot_spheres=True, **kwargs) def draw_triangle(alpha, x0, width, orientation, base=10, **kwargs): """Draw a triangle showing the best-fit slope on a linear scale. Parameters ---------- alpha : float the slope being demonstrated x0 : (2,) array_like the "left tip" of the triangle, where the hypotenuse starts width : float horizontal size orientation : string 'up' or 'down', control which way the triangle's right angle "points" base : float scale "width" for non-base 10 Returns ------- corner : (2,) np.array coordinates of the right-angled corner of the triangle """ x0, y0 = x0 x1 = x0 + width y1 = y0 + alpha*(x1 - x0) plt.plot([x0, x1], [y0, y1], 'k') if (alpha >= 0 and orientation == 'up') \ or (alpha < 0 and orientation == 'down'): plt.plot([x0, x1], [y1, y1], 'k') plt.plot([x0, x0], [y0, y1], 'k') # plt.plot lines have nice rounded caps # plt.hlines(y1, x0, x1, **kwargs) # plt.vlines(x0, y0, y1, **kwargs) corner = [x0, y1] elif (alpha >= 0 and orientation == 'down') \ or (alpha < 0 and orientation == 'up'): plt.plot([x0, x1], [y0, y0], 'k') plt.plot([x1, x1], [y0, y1], 'k') # plt.hlines(y0, x0, x1, **kwargs) # plt.vlines(x1, y0, y1, **kwargs) corner = [x1, y0] else: raise ValueError(r"Need $\alpha\in\mathbb{R} and orientation\in{'up', 'down'}") return corner def draw_power_law_triangle(alpha, x0, width, orientation, base=10, **kwargs): """Draw a triangle showing the best-fit power-law on a log-log scale. Parameters ---------- alpha : float the power-law slope being demonstrated x0 : (2,) array_like the "left tip" of the power law triangle, where the hypotenuse starts (in log units, to be consistent with draw_triangle) width : float horizontal size in number of major log ticks (default base-10) orientation : string 'up' or 'down', control which way the triangle's right angle "points" base : float scale "width" for non-base 10 Returns ------- corner : (2,) np.array coordinates of the right-angled corner of the triangle """ x0, y0 = [base**x for x in x0] x1 = x0*base**width y1 = y0*(x1/x0)**alpha plt.plot([x0, x1], [y0, y1], 'k') if (alpha >= 0 and orientation == 'up') \ or (alpha < 0 and orientation == 'down'): plt.plot([x0, x1], [y1, y1], 'k') plt.plot([x0, x0], [y0, y1], 'k') # plt.plot lines have nice rounded caps # plt.hlines(y1, x0, x1, **kwargs) # plt.vlines(x0, y0, y1, **kwargs) corner = [x0, y1] elif (alpha >= 0 and orientation == 'down') \ or (alpha < 0 and orientation == 'up'): plt.plot([x0, x1], [y0, y0], 'k') plt.plot([x1, x1], [y0, y1], 'k') # plt.hlines(y0, x0, x1, **kwargs) # plt.vlines(x1, y0, y1, **kwargs) corner = [x1, y0] else: raise ValueError(r"Need $\alpha\in\mathbb{R} and orientation\in{'up', 'down'}") return corner #link_ix, unwrap_ix, rise, angle, radius = ncg.tabulate_rise(dp_f=ncg.dp_omega_exit) def plot_fig31_rise_vs_linker_length(): fig, ax = plt.subplots(figsize=(1.2*default_width, default_height)) links = np.arange(10, 101) #kuhns1to250 = np.load('csvs/kuhns_1to250links_0to146unwraps.npy') #calculate the 'phi' angle corresponding to twist due to linker phis_dp_omega_exit = np.zeros(links.size) for i, link in enumerate(links): dP, Onext = ncg.dp_omega_exit(link, unwrap=0) phi, theta, alpha = ncr.phi_theta_alpha_from_R(Onext) #record angles in units of pi phis_dp_omega_exit[i] = phi/np.pi + 1 plt.plot(links, rise[0:91,0], linewidth=0.5) plt.scatter(links, rise[0:91,0], c=phis_dp_omega_exit, cmap='Spectral', s=3); plt.xlabel('Linker length (bp)') plt.ylabel(r'Rise (nm)') plt.subplots_adjust(left=0.1, bottom=0.19, top=0.95, right=0.97) cb = plt.colorbar(ticks=[0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2]) cb.set_label(r'$\phi$') cb.ax.yaxis.set_major_formatter(tck.FormatStrFormatter('%g $\pi$')) #cb.ax.yaxis.set_yticks([0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2], # [r'$0$', r'$\frac{\pi}{4}$', r'$\frac{\pi}{2}$', r'$\frac{3\pi}{4}$', r'$\pi$', # r'$\frac{5\pi}{4}$', r'$\frac{3\pi}{2}$', r'$\frac{7\pi}{4}$', r'$2\pi$']) fig.text(0.13, 0.47, r'38 bp', size=10) fig.text(0.12, 0.57, r'36 bp', size=10) plt.savefig('plots/thesis/fig3.1_rise-vs-linker-length.pdf') default_lis = [36] default_colors = [teal_flucts] def plot_r2_homo(lis=default_lis, colors=None): """The r2 of the 36bp homogenous chain (0 unwrapping) compared to the wormlike chain with the corresponding Kuhn length.""" if colors is None: if len(lis) == 2: colors = default_colors else: colors = len(lis) * [teal_flucts] assert(len(colors) == len(lis)) fig, ax = plt.subplots(figsize=(7.79, 4.43)) x = np.logspace(0, 7, 100) #plot rigid rod line plt.plot(x, x, '^', markersize=3, color=red_geom) hdfs = {} for i, li in enumerate(lis): hdfs[li] = pd.read_csv(f'./csvs/r2/r2-fluctuations-mu_{li}-sigma_0_10_0unwraps.csv') try: del hdfs[li]['Unnamed: 0'] except: pass hdfs[li] = hdfs[li].set_index(['variance', 'chain_id']).loc[0.0, 0.0] hdfs[li].iloc[0,0:2] = 1 # rmax,r2 == (0,0) ==> (1,1) plt.plot(hdfs[li]['rmax'], np.sqrt(hdfs[li]['r2']), color=colors[i]) for li in lis: y = np.sqrt(wlc.r2wlc(x, hdfs[li]['kuhn'].mean()/2)) plt.plot(x, y, '-.', color=[0,0,0], markersize=1) xmin = 1 ymin = xmin ymax = 700 xmax = 3_000 # bands representing different regimes of the R^2 plt.fill_between(x, ymin, ymax, where=x<12, color=[0.96, 0.95, 0.95]) plt.fill_between(x, ymin, ymax, where=((x>=12)&(x<250)), color=[0.99, 0.99, 0.99]) plt.fill_between(x, ymin, ymax, where=x>=250, color=[0.9, 0.9, 0.91]) # power law triangle for the two extremal regimes corner = draw_power_law_triangle(1, [np.log10(2), np.log10(3)], 0.5, 'up') plt.text(3, 11, '$L^1$') corner = draw_power_law_triangle(1/2, [
np.log10(350)
numpy.log10
import os import pickle import random import time import PIL import numpy as np import pandas as pd import tensorflow as tf from PIL import Image from keras import Input, Model from keras import backend as K from keras.callbacks import TensorBoard from keras.layers import Dense, LeakyReLU, BatchNormalization, ReLU, Reshape, UpSampling2D, Conv2D, Activation, \ concatenate, Flatten, Lambda, Concatenate from keras.optimizers import Adam from matplotlib import pyplot as plt def load_class_ids(class_info_file_path): """ Load class ids from class_info.pickle file """ with open(class_info_file_path, 'rb') as f: class_ids = pickle.load(f, encoding='latin1') return class_ids def load_embeddings(embeddings_file_path): """ Load embeddings """ with open(embeddings_file_path, 'rb') as f: embeddings = pickle.load(f, encoding='latin1') embeddings = np.array(embeddings) print('embeddings: ', embeddings.shape) return embeddings def load_filenames(filenames_file_path): """ Load filenames.pickle file and return a list of all file names """ with open(filenames_file_path, 'rb') as f: filenames = pickle.load(f, encoding='latin1') return filenames def load_bounding_boxes(dataset_dir): """ Load bounding boxes and return a dictionary of file names and corresponding bounding boxes """ # Paths bounding_boxes_path = os.path.join(dataset_dir, 'bounding_boxes.txt') file_paths_path = os.path.join(dataset_dir, 'images.txt') # Read bounding_boxes.txt and images.txt file df_bounding_boxes = pd.read_csv(bounding_boxes_path, delim_whitespace=True, header=None).astype(int) df_file_names = pd.read_csv(file_paths_path, delim_whitespace=True, header=None) # Create a list of file names file_names = df_file_names[1].tolist() # Create a dictionary of file_names and bounding boxes filename_boundingbox_dict = {img_file[:-4]: [] for img_file in file_names[:2]} # Assign a bounding box to the corresponding image for i in range(0, len(file_names)): # Get the bounding box bounding_box = df_bounding_boxes.iloc[i][1:].tolist() key = file_names[i][:-4] filename_boundingbox_dict[key] = bounding_box return filename_boundingbox_dict def get_img(img_path, bbox, image_size): """ Load and resize image """ img = Image.open(img_path).convert('RGB') width, height = img.size if bbox is not None: R = int(np.maximum(bbox[2], bbox[3]) * 0.75) center_x = int((2 * bbox[0] + bbox[2]) / 2) center_y = int((2 * bbox[1] + bbox[3]) / 2) y1 = np.maximum(0, center_y - R) y2 = np.minimum(height, center_y + R) x1 = np.maximum(0, center_x - R) x2 = np.minimum(width, center_x + R) img = img.crop([x1, y1, x2, y2]) img = img.resize(image_size, PIL.Image.BILINEAR) return img def load_dataset(filenames_file_path, class_info_file_path, cub_dataset_dir, embeddings_file_path, image_size): """ Load dataset """ filenames = load_filenames(filenames_file_path) class_ids = load_class_ids(class_info_file_path) bounding_boxes = load_bounding_boxes(cub_dataset_dir) all_embeddings = load_embeddings(embeddings_file_path) X, y, embeddings = [], [], [] print("Embeddings shape:", all_embeddings.shape) for index, filename in enumerate(filenames): bounding_box = bounding_boxes[filename] try: # Load images img_name = '{}/images/{}.jpg'.format(cub_dataset_dir, filename) img = get_img(img_name, bounding_box, image_size) all_embeddings1 = all_embeddings[index, :, :] embedding_ix = random.randint(0, all_embeddings1.shape[0] - 1) embedding = all_embeddings1[embedding_ix, :] X.append(np.array(img)) y.append(class_ids[index]) embeddings.append(embedding) except Exception as e: print(e) X = np.array(X) y = np.array(y) embeddings = np.array(embeddings) return X, y, embeddings def generate_c(x): mean = x[:, :128] log_sigma = x[:, 128:] stddev = K.exp(log_sigma) epsilon = K.random_normal(shape=K.constant((mean.shape[1],), dtype='int32')) c = stddev * epsilon + mean return c def build_ca_model(): """ Get conditioning augmentation model. Takes an embedding of shape (1024,) and returns a tensor of shape (256,) """ input_layer = Input(shape=(1024,)) x = Dense(256)(input_layer) x = LeakyReLU(alpha=0.2)(x) model = Model(inputs=[input_layer], outputs=[x]) return model def build_embedding_compressor_model(): """ Build embedding compressor model """ input_layer = Input(shape=(1024,)) x = Dense(128)(input_layer) x = ReLU()(x) model = Model(inputs=[input_layer], outputs=[x]) return model def build_stage1_generator(): """ Builds a generator model used in Stage-I """ input_layer = Input(shape=(1024,)) x = Dense(256)(input_layer) mean_logsigma = LeakyReLU(alpha=0.2)(x) c = Lambda(generate_c)(mean_logsigma) input_layer2 = Input(shape=(100,)) gen_input = Concatenate(axis=1)([c, input_layer2]) x = Dense(128 * 8 * 4 * 4, use_bias=False)(gen_input) x = ReLU()(x) x = Reshape((4, 4, 128 * 8), input_shape=(128 * 8 * 4 * 4,))(x) x = UpSampling2D(size=(2, 2))(x) x = Conv2D(512, kernel_size=3, padding="same", strides=1, use_bias=False)(x) x = BatchNormalization()(x) x = ReLU()(x) x = UpSampling2D(size=(2, 2))(x) x = Conv2D(256, kernel_size=3, padding="same", strides=1, use_bias=False)(x) x = BatchNormalization()(x) x = ReLU()(x) x = UpSampling2D(size=(2, 2))(x) x = Conv2D(128, kernel_size=3, padding="same", strides=1, use_bias=False)(x) x = BatchNormalization()(x) x = ReLU()(x) x = UpSampling2D(size=(2, 2))(x) x = Conv2D(64, kernel_size=3, padding="same", strides=1, use_bias=False)(x) x = BatchNormalization()(x) x = ReLU()(x) x = Conv2D(3, kernel_size=3, padding="same", strides=1, use_bias=False)(x) x = Activation(activation='tanh')(x) stage1_gen = Model(inputs=[input_layer, input_layer2], outputs=[x, mean_logsigma]) return stage1_gen def build_stage1_discriminator(): """ Create a model which takes two inputs 1. One from above network 2. One from the embedding layer 3. Concatenate along the axis dimension and feed it to the last module which produces final logits """ input_layer = Input(shape=(64, 64, 3)) x = Conv2D(64, (4, 4), padding='same', strides=2, input_shape=(64, 64, 3), use_bias=False)(input_layer) x = LeakyReLU(alpha=0.2)(x) x = Conv2D(128, (4, 4), padding='same', strides=2, use_bias=False)(x) x = BatchNormalization()(x) x = LeakyReLU(alpha=0.2)(x) x = Conv2D(256, (4, 4), padding='same', strides=2, use_bias=False)(x) x = BatchNormalization()(x) x = LeakyReLU(alpha=0.2)(x) x = Conv2D(512, (4, 4), padding='same', strides=2, use_bias=False)(x) x = BatchNormalization()(x) x = LeakyReLU(alpha=0.2)(x) input_layer2 = Input(shape=(4, 4, 128)) merged_input = concatenate([x, input_layer2]) x2 = Conv2D(64 * 8, kernel_size=1, padding="same", strides=1)(merged_input) x2 = BatchNormalization()(x2) x2 = LeakyReLU(alpha=0.2)(x2) x2 = Flatten()(x2) x2 = Dense(1)(x2) x2 = Activation('sigmoid')(x2) stage1_dis = Model(inputs=[input_layer, input_layer2], outputs=[x2]) return stage1_dis def build_adversarial_model(gen_model, dis_model): input_layer = Input(shape=(1024,)) input_layer2 = Input(shape=(100,)) input_layer3 = Input(shape=(4, 4, 128)) x, mean_logsigma = gen_model([input_layer, input_layer2]) dis_model.trainable = False valid = dis_model([x, input_layer3]) model = Model(inputs=[input_layer, input_layer2, input_layer3], outputs=[valid, mean_logsigma]) return model def KL_loss(y_true, y_pred): mean = y_pred[:, :128] logsigma = y_pred[:, :128] loss = -logsigma + .5 * (-1 + K.exp(2. * logsigma) + K.square(mean)) loss = K.mean(loss) return loss def custom_generator_loss(y_true, y_pred): # Calculate binary cross entropy loss return K.binary_crossentropy(y_true, y_pred) def save_rgb_img(img, path): """ Save an rgb image """ fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.imshow(img) ax.axis("off") ax.set_title("Image") plt.savefig(path) plt.close() def write_log(callback, name, loss, batch_no): """ Write training summary to TensorBoard """ summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = loss summary_value.tag = name callback.writer.add_summary(summary, batch_no) callback.writer.flush() if __name__ == '__main__': data_dir = "data/birds/" train_dir = data_dir + "/train" test_dir = data_dir + "/test" image_size = 64 batch_size = 64 z_dim = 100 stage1_generator_lr = 0.0002 stage1_discriminator_lr = 0.0002 stage1_lr_decay_step = 600 epochs = 1000 condition_dim = 128 embeddings_file_path_train = train_dir + "/char-CNN-RNN-embeddings.pickle" embeddings_file_path_test = test_dir + "/char-CNN-RNN-embeddings.pickle" filenames_file_path_train = train_dir + "/filenames.pickle" filenames_file_path_test = test_dir + "/filenames.pickle" class_info_file_path_train = train_dir + "/class_info.pickle" class_info_file_path_test = test_dir + "/class_info.pickle" cub_dataset_dir = data_dir + "/CUB_200_2011" # Define optimizers dis_optimizer = Adam(lr=stage1_discriminator_lr, beta_1=0.5, beta_2=0.999) gen_optimizer = Adam(lr=stage1_generator_lr, beta_1=0.5, beta_2=0.999) """" Load datasets """ X_train, y_train, embeddings_train = load_dataset(filenames_file_path=filenames_file_path_train, class_info_file_path=class_info_file_path_train, cub_dataset_dir=cub_dataset_dir, embeddings_file_path=embeddings_file_path_train, image_size=(64, 64)) X_test, y_test, embeddings_test = load_dataset(filenames_file_path=filenames_file_path_test, class_info_file_path=class_info_file_path_test, cub_dataset_dir=cub_dataset_dir, embeddings_file_path=embeddings_file_path_test, image_size=(64, 64)) """ Build and compile networks """ ca_model = build_ca_model() ca_model.compile(loss="binary_crossentropy", optimizer="adam") stage1_dis = build_stage1_discriminator() stage1_dis.compile(loss='binary_crossentropy', optimizer=dis_optimizer) stage1_gen = build_stage1_generator() stage1_gen.compile(loss="mse", optimizer=gen_optimizer) embedding_compressor_model = build_embedding_compressor_model() embedding_compressor_model.compile(loss="binary_crossentropy", optimizer="adam") adversarial_model = build_adversarial_model(gen_model=stage1_gen, dis_model=stage1_dis) adversarial_model.compile(loss=['binary_crossentropy', KL_loss], loss_weights=[1, 2.0], optimizer=gen_optimizer, metrics=None) tensorboard = TensorBoard(log_dir="logs/".format(time.time())) tensorboard.set_model(stage1_gen) tensorboard.set_model(stage1_dis) tensorboard.set_model(ca_model) tensorboard.set_model(embedding_compressor_model) # Generate an array containing real and fake values # Apply label smoothing as well real_labels = np.ones((batch_size, 1), dtype=float) * 0.9 fake_labels = np.zeros((batch_size, 1), dtype=float) * 0.1 for epoch in range(epochs): print("========================================") print("Epoch is:", epoch) print("Number of batches", int(X_train.shape[0] / batch_size)) gen_losses = [] dis_losses = [] # Load data and train model number_of_batches = int(X_train.shape[0] / batch_size) for index in range(number_of_batches): print("Batch:{}".format(index+1)) """ Train the discriminator network """ # Sample a batch of data z_noise = np.random.normal(0, 1, size=(batch_size, z_dim)) image_batch = X_train[index * batch_size:(index + 1) * batch_size] embedding_batch = embeddings_train[index * batch_size:(index + 1) * batch_size] image_batch = (image_batch - 127.5) / 127.5 # Generate fake images fake_images, _ = stage1_gen.predict([embedding_batch, z_noise], verbose=3) # Generate compressed embeddings compressed_embedding = embedding_compressor_model.predict_on_batch(embedding_batch) compressed_embedding = np.reshape(compressed_embedding, (-1, 1, 1, condition_dim)) compressed_embedding = np.tile(compressed_embedding, (1, 4, 4, 1)) dis_loss_real = stage1_dis.train_on_batch([image_batch, compressed_embedding], np.reshape(real_labels, (batch_size, 1))) dis_loss_fake = stage1_dis.train_on_batch([fake_images, compressed_embedding], np.reshape(fake_labels, (batch_size, 1))) dis_loss_wrong = stage1_dis.train_on_batch([image_batch[:(batch_size - 1)], compressed_embedding[1:]], np.reshape(fake_labels[1:], (batch_size-1, 1))) d_loss = 0.5 * np.add(dis_loss_real, 0.5 * np.add(dis_loss_wrong, dis_loss_fake)) print("d_loss_real:{}".format(dis_loss_real)) print("d_loss_fake:{}".format(dis_loss_fake)) print("d_loss_wrong:{}".format(dis_loss_wrong)) print("d_loss:{}".format(d_loss)) """ Train the generator network """ g_loss = adversarial_model.train_on_batch([embedding_batch, z_noise, compressed_embedding],[K.ones((batch_size, 1)) * 0.9, K.ones((batch_size, 256)) * 0.9]) print("g_loss:{}".format(g_loss)) dis_losses.append(d_loss) gen_losses.append(g_loss) """ Save losses to Tensorboard after each epoch """ write_log(tensorboard, 'discriminator_loss',
np.mean(dis_losses)
numpy.mean
import numpy as np import matplotlib.pyplot as plt def plot_reliability_diagram(score, labels, linspace, scores_set, legend_set, alpha=1, scatter_prop=0.0, fig=None, n_bins=10, bins_count=True, title=None, **kwargs): ''' Parameters ========== scores_set : list of array_like of floats List of scores given by different methods, the first one is always the original one labels : array_like of ints Labels corresponding to the scores legend_set : list of strings Description of each array in the scores_set alpha : float Laplace regularization when computing the elements in the bins scatter_prop : float If original first specifies the proportion of points (score, label) to show fig : matplotlib.pyplot.figure Plots the axis in the given figure bins_count : bool If True, show the number of samples in each bin Regurns ======= fig : matplotlib.pyplot.figure Figure with the reliability diagram ''' if fig is None: fig = plt.figure() ax = fig.add_subplot(111) if title is not None: ax.set_title(title) n_lines = len(legend_set) # Draw the empirical values in a histogram style # TODO careful that now the min and max depend on the scores s_min = min(score) s_max = max(score) bins = np.linspace(s_min, s_max, n_bins+1) hist_tot =
np.histogram(score, bins=bins)
numpy.histogram
import abc import copy import csv import os import typing import warnings from numbers import Number from collections import defaultdict from collections.abc import Sequence import numpy as np import scipy.interpolate import scipy.signal from slippy.core import _MaterialABC, _SurfaceABC from .ACF_class import ACF from .roughness_funcs import get_height_of_mat_vr, low_pass_filter from .roughness_funcs import get_mat_vr, get_summit_curvatures from .roughness_funcs import roughness, subtract_polynomial, find_summits __all__ = ['Surface', 'assurface', 'read_surface', '_Surface', '_AnalyticalSurface', 'RollingSurface'] def assurface(profile, grid_spacing=None): """ make a surface from a profile Parameters ---------- profile : array-like The surface profile grid_spacing : float optional (None) The spacing between grid points on the surface Returns ------- surface : Surface object A surface object with the specified profile and grid size See Also -------- Surface read_surface Notes ----- Examples -------- >>> profile=np.random.normal(size=[10,10]) >>> my_surface=assurface(profile, 0.1) >>> my_surface.extent [1,1] """ return Surface(profile=profile, grid_spacing=grid_spacing) def read_surface(file_name, **kwargs): """ Read a surface from a file Parameters ---------- file_name : str The full path to the data file Other Parameters ---------------- delim : str optional (',') The delimiter used in the data file, only needed for csv or txt files p_name : str optional ('profile') The name of the variable containing the profile data, needed if a .mat file is given gs_name : str optional ('grid_spacing') The name of the variable containing the grid_spacing, needed if a .mat file is given Returns ------- A surface object generated from the file See Also -------- Surface alicona_read scipy.io.loadmat Notes ----- This function directly invokes the surface class, any other keywords that can be passed to that class can be passed to this function Examples -------- >>> # Read a csv file with tab delimiters >>> my_surface=read_surface('data.csv', delim='\t') >>> # Read a .al3d file >>> my_surface=read_surface('data.al3d') >>> # Read a .mat file with variables called prof and gs >>> my_surface=read_surface('data.mat', p_name='prof', gs_name='gs') """ return Surface(file_name=file_name, **kwargs) class _Surface(_SurfaceABC): """ An abstract base class for surface types, this class should be extended to given new types of surface. To create an analytical surface please subclass _AnalyticalSurface """ # The surface class for discrete surfaces (typically experimental) is_discrete: bool = False """ A bool flag, True if there is a profile present """ acf: typing.Optional[ACF] = None """ The auto correlation function of the surface profile """ psd: typing.Optional[np.ndarray] = None """ The power spectral density of the surface """ fft: typing.Optional[np.ndarray] = None """ The fast fourier transform of the surface """ surface_type: str = "Generic" """ A description of the surface type """ dimensions: typing.Optional[int] = 2 """ The number of spatial dimensions that """ is_analytic: bool = False _material: typing.Optional[_MaterialABC] = None unworn_profile: typing.Optional[np.ndarray] = None _profile: typing.Optional[np.ndarray] = None _grid_spacing: typing.Optional[float] = None _shape: typing.Optional[tuple] = None _extent: typing.Optional[tuple] = None _inter_func = None _allowed_keys = {} _mask: typing.Optional[np.ndarray] = None _size: typing.Optional[int] = None _subclass_registry = [] _original_extent = None wear_volumes: typing.Optional[defaultdict] = None def __init__(self, grid_spacing: typing.Optional[float] = None, extent: typing.Optional[tuple] = None, shape: typing.Optional[tuple] = None, is_discrete: bool = False): if grid_spacing is not None and extent is not None and shape is not None: raise ValueError("Up to two of grid_spacing, extent and size should be set, all three were set") self.is_discrete = is_discrete if grid_spacing is not None: self.grid_spacing = grid_spacing if extent is not None: self.extent = extent if shape is not None: self.shape = shape @classmethod def __init_subclass__(cls, is_abstract=False, **kwargs): super().__init_subclass__(**kwargs) if not is_abstract: _Surface._subclass_registry.append(cls) @property def size(self): """The total number of points in the surface""" return self._size @property def mask(self): """A mask used to exclude some values from analysis, a single float or an array of bool the same size as profile Either a boolean array of size self.size or a float of the value to be excluded """ return self._mask @mask.setter def mask(self, value: typing.Union[float, np.ndarray]): if type(value) is float: if np.isnan(value): mask = np.isnan(self.profile) else: mask = self.profile == value elif isinstance(value, np.ndarray): mask = np.asarray(value, dtype=bool) if not mask.shape == self.shape: msg = ("profile and mask shapes do not match: profile is" "{profile.shape}, mask is {mask.shape}".format(**locals())) raise TypeError(msg) elif isinstance(value, str): raise TypeError('Mask cannot be a string') elif isinstance(value, Sequence): mask = np.zeros_like(self.profile, dtype=bool) for item in value: self.mask = item mask = np.logical_and(self._mask, mask) else: raise TypeError("Mask type is not recognised") self._mask = mask @mask.deleter def mask(self): self._mask = None @property def extent(self): """ The overall dimensions of the surface in the same units as grid spacing """ return self._extent @extent.setter def extent(self, value: typing.Sequence[float]): if not isinstance(value, Sequence): msg = "Extent must be a Sequence, got {}".format(type(value)) raise TypeError(msg) if len(value) > 2: raise ValueError("Too many elements in extent, must be a maximum of two dimensions") if self.profile is not None: p_aspect = (self.shape[0]) / (self.shape[1]) e_aspect = value[0] / value[1] if abs(e_aspect - p_aspect) > 0.0001: msg = "Extent aspect ratio doesn't match profile aspect ratio" raise ValueError(msg) else: self._extent = tuple(value) self._grid_spacing = value[0] / (self.shape[0]) else: self._extent = tuple(value) self.dimensions = len(value) if self.grid_spacing is not None: self._shape = tuple([int(v / self.grid_spacing) for v in value]) self._size = np.product(self._shape) if self._shape is not None: self._grid_spacing = self._extent[0] / self._shape[0] self._extent = tuple([sz * self._grid_spacing for sz in self._shape]) return @extent.deleter def extent(self): self._extent = None self._grid_spacing = None if self.profile is None: self._shape = None self._size = None @property def shape(self): """The shape of the surface profile array, the number of points in each direction """ return self._shape @shape.setter def shape(self, value: typing.Sequence[int]): if not isinstance(value, Sequence): raise ValueError(f"Shape should be a Sequence type, got: {type(value)}") if self._profile is not None: raise ValueError("Cannot set shape when profile is present") self._shape = tuple([int(x) for x in value]) self._size = np.product(self._shape) if self.grid_spacing is not None: self._extent = tuple([v * self.grid_spacing for v in value]) elif self.extent is not None: self._grid_spacing = self._extent[0] / self._shape[0] self._extent = tuple([sz * self.grid_spacing for sz in self.shape]) @shape.deleter def shape(self): if self.profile is None: self._shape = None self._size = None self._extent = None self._grid_spacing = None else: msg = "Cannot delete shape with a surface profile set" raise ValueError(msg) @property def profile(self): """The height data for the surface profile """ return self._profile @profile.setter def profile(self, value: np.ndarray): """Sets the profile property """ if value is None: return try: self.unworn_profile = np.asarray(value, dtype=float).copy() # this has to be before _profile is set (rewritten for rolling surface) self.wear_volumes = defaultdict(lambda: np.zeros_like(self.unworn_profile)) self._profile = np.asarray(value, dtype=float).copy() except ValueError: msg = "Could not convert profile to array of floats, profile contains invalid values" raise ValueError(msg) self._shape = self._profile.shape self._size = self._profile.size self.dimensions = len(self._profile.shape) if self.grid_spacing is not None: self._extent = tuple([self.grid_spacing * p for p in self.shape]) elif self.extent is not None: if self.dimensions == 1: self._grid_spacing = (self.extent[0] / self.shape[0]) if self.dimensions == 2: e_aspect = self.extent[0] / self.extent[1] p_aspect = self.shape[0] / self.shape[1] if abs(e_aspect - p_aspect) < 0.0001: self._grid_spacing = (self.extent[0] / self.shape[0]) else: warnings.warn("Global size does not match profile size," " global size has been deleted") self._extent = None @profile.deleter def profile(self): self.unworn_profile = None self._profile = None del self.shape del self.extent del self.mask self.wear_volumes = None self.is_discrete = False @property def grid_spacing(self): """The distance between grid points in the x and y directions """ return self._grid_spacing @grid_spacing.setter def grid_spacing(self, grid_spacing: float): if grid_spacing is None: return if not isinstance(grid_spacing, float): try: # noinspection PyTypeChecker grid_spacing = float(grid_spacing) except ValueError: msg = ("Invalid type, grid spacing of type {} could not be " "converted into float".format(type(grid_spacing))) raise ValueError(msg) if np.isinf(grid_spacing): msg = "Grid spacing must be finite" raise ValueError(msg) self._grid_spacing = grid_spacing if self.profile is None: if self.extent is not None: self._shape = tuple([int(sz / grid_spacing) for sz in self.extent]) self._size = np.product(self._shape) self._extent = tuple([sz * grid_spacing for sz in self._shape]) elif self.shape is not None: self._extent = tuple([grid_spacing * pt for pt in self.shape]) else: self._extent = tuple([s * grid_spacing for s in self.shape]) @grid_spacing.deleter def grid_spacing(self): self._extent = None self._grid_spacing = None if self.profile is None: del self.shape @property def material(self): """ A material object describing the properties of the surface """ return self._material @material.setter def material(self, value): if isinstance(value, _MaterialABC): self._material = value else: raise ValueError("Unable to set material, expected material object" " received %s" % str(type(value))) @material.deleter def material(self): self._material = None def wear(self, name: str, x_pts: np.ndarray, y_pts: np.ndarray, depth: np.ndarray): """ Add wear / geometry changes to the surface profile Parameters ---------- name: str Name of the source of wear x_pts: np.ndarray The x locations of the worn points in length units y_pts: np.ndarray The y locations of the worn points in length units depth: np.ndarray The depth to wear each point, negative values will add height """ if not x_pts.size == y_pts.size == depth.size: raise ValueError(f"X, Y locations and wear depths are not the same size for wear '{name}':\n" f"x:{x_pts.size}\n" f"y:{y_pts.size}\n" f"depth:{depth.size}") if np.any(np.isnan(depth)): raise ValueError(f"Some wear depth values are nan for wear {name}") # equivalent to rounding and applying wear to nearest node x_ind = np.array(x_pts / self.grid_spacing + self.grid_spacing/2, dtype=np.uint16) y_ind = np.array(y_pts / self.grid_spacing + self.grid_spacing/2, dtype=np.uint16) self.wear_volumes[name][y_ind, x_ind] += depth self._profile[y_ind, x_ind] -= depth self._inter_func = None # force remaking the interpolator if the surface has been worn def get_fft(self, profile_in=None): """ Find the fourier transform of the surface Finds the fft of the surface and stores it in your_instance.fft Parameters ---------- profile_in : array-like optional (None) If set the fft of profile_in will be found and returned otherwise instances profile attribute is used Returns ------- transform : array The fft of the instance's profile or the profile_in if one is supplied See Also -------- get_psd get_acf show Notes ----- Uses numpy fft.fft or fft.fft2 depending on the shape of the profile Examples -------- >>># Set the fft property of the surface >>> import slippy.surface as s >>> my_surface = s.assurface([[1,2],[3,4]], grid_spacing=1) >>>my_surface.get_fft() >>># Return the fft of a provided profile >>>fft_of_profile_2=my_surface.get_fft(np.array([[1,2],[3,4]])) """ if profile_in is None: profile = self.profile else: profile = profile_in try: if len(profile.shape) == 1: transform = np.fft.fft(profile) if type(profile_in) is bool: self.fft = transform else: transform = np.fft.fft2(profile) if type(profile_in) is bool: self.fft = transform except AttributeError: raise AttributeError('Surface must have a defined profile for fft' ' to be used') if profile_in is None: self.fft = transform else: return transform def get_acf(self, profile_in=None): """ Find the auto correlation function of the surface Finds the ACF of the surface and stores it in your_instance.acf Parameters ---------- profile_in : array-like optional (None) Returns ------- output : ACF object An acf object with the acf data stored, the values can be extracted by numpy.array(output) See Also -------- get_psd get_fft show slippy.surface.ACF Notes ----- ACF data is kept in ACF objects, these can then be interpolated or evaluated at specific points with a call: Examples -------- >>> import slippy.surface as s >>> my_surface = s.assurface([[1,2],[3,4]], grid_spacing=1) >>> # Sets the acf property of the surface with an ACF object >>> my_surface.get_acf() >>> # The acf values are then given by the following >>> np.array(my_surface.acf) >>> # The acf can be shown using the show function: >>> my_surface.show('acf', 'image') >>> # Finding the ACF of a provided profile: >>> ACF_object_for_profile_2=my_surface.get_acf(np.array([[4, 3], [2, 1]])) >>> # equivalent to ACF(profile_2) """ if profile_in is None: # noinspection PyTypeChecker self.acf = ACF(self) else: profile = np.asarray(profile_in) # noinspection PyTypeChecker output = np.array(ACF(profile)) return output def get_psd(self): """ Find the power spectral density of the surface Finds the PSD of the surface and stores it in your_instance.psd Parameters ---------- (None) Returns ------- (None), sets the psd attribute of the instance See Also -------- get_fft get_acf show Notes ----- Finds the psd by fourier transforming the ACF, in doing so looks for the instance's acf property. If this is not found the acf is calculated and set. Examples -------- >>> # sets the psd attribute of my_surface >>> import slippy.surface as s >>> my_surface = s.assurface([[1,2],[3,4]], grid_spacing=1) >>> my_surface.get_psd() """ # PSD is the fft of the ACF (https://en.wikipedia.org/wiki/Spectral_density#Power_spectral_density) if self.acf is None: self.get_acf() # noinspection PyTypeChecker self.psd = self.get_fft(np.asarray(self.acf)) def subtract_polynomial(self, order, mask=None): """ Flatten the surface by subtracting a polynomial Alias for :func:`~slippy.surface.subtract_polynomial` function """ if mask is None: mask = self.mask new_profile, coefs = subtract_polynomial(self.profile, order, mask) self.profile = new_profile return coefs def roughness(self, parameter_name, mask=None, curved_surface=False, no_flattening=False, filter_cut_off=None, four_nearest=False): """ Find areal roughness parameters Alias for :func:`~slippy.surface.roughness` function """ if mask is None: mask = self.mask out = roughness(self, parameter_name, mask=mask, curved_surface=curved_surface, no_flattening=no_flattening, filter_cut_off=filter_cut_off, four_nearest=four_nearest) return out def get_mat_vr(self, height, void=False, mask=None, ratio=True): """ Find the material or void volume ratio for a given height Alias for :func:`~slippy.surface.get_mat_vr` function """ if mask is None: mask = self.mask return get_mat_vr(height, profile=self.profile, void=void, mask=mask, ratio=ratio) def get_height_of_mat_vr(self, ratio, void=False, mask=None, accuracy=0.001): """ Find the height of a given material or void volume ratio Alias for :func:`~slippy.surface.get_height_of_mat_vr` function """ if mask is None: mask = self.mask return get_height_of_mat_vr(ratio, self.profile, void=void, mask=mask, accuracy=accuracy) def get_summit_curvature(self, summits=None, mask=None, filter_cut_off=None, four_nearest=False): """ Get summit curvatures Alias for :func:`~slippy.surface.get_summit_curvature` function """ if mask is None: mask = self.mask return get_summit_curvatures(self.profile, summits=summits, mask=mask, filter_cut_off=filter_cut_off, four_nearest=four_nearest, grid_spacing=self.grid_spacing) def find_summits(self, mask=None, four_nearest=False, filter_cut_off=None, invert=False): """ Find summits after low pass filtering Alias for :func:`~slippy.surface.find_summits` function """ if mask is None: mask = self.mask if invert: return find_summits(self.profile * -1, grid_spacing=self.grid_spacing, mask=mask, four_nearest=four_nearest, filter_cut_off=filter_cut_off) else: return find_summits(self, mask=mask, four_nearest=four_nearest, filter_cut_off=filter_cut_off) def low_pass_filter(self, cut_off_freq, return_copy=False): """ Low pass FIR filter the surface profile Alias for :func:`~slippy.surface.low_pass_filter` function """ if return_copy: return low_pass_filter(self, cut_off_freq) else: self.profile = low_pass_filter(self, cut_off_freq) def resample(self, new_grid_spacing=None, return_profile=False, remake_interpolator=False): """ Resample or crop the profile by interpolation Parameters ---------- new_grid_spacing : float, optional (None) The grid spacing on the new surface, if the grid_spacing is not set on the current surface it is assumed to be 1 return_profile : bool, optional (False) If true the interpolated profile is returned otherwise it is set as the profile of the instance remake_interpolator : bool, optional (False) If true any memoized interpolator will be deleted and remade based on the current profile before interpolation, see notes. Returns ------- new_profile : array If return_profile is True the interpolated profile is returned See Also -------- rotate fill_holes surface_like Notes ----- On the first call this function will make an interpolator object which is used to interpolate, on subsequent calls this object is found and used resulting in no loss of quality. If the remake_interpolator key word is set to true this interpolator is remade. This will result in a loss of quality for subsequent calls but is necessary if the profile property has changed. This method does not support masking. The profile should have nan or inf values removed by the fill_holes method before running this Examples -------- >>> import numpy as np >>> import slippy.surface as s >>> profile=np.random.normal(size=(101,101)) >>> my_surface=s.assurface(profile, grid_spacing=1) >>> # interpolate on a coarse grid: >>> my_surface.resample(10) >>> # check shape: >>> my_surface.shape (11,11) >>> # restore original profile: >>> my_surface.resample(1) >>> my_surface.shape (101,101) """ gs_changed = False if self.grid_spacing is None: gs_changed = True self.grid_spacing = 1 if remake_interpolator or self._inter_func is None: self._original_extent = self.extent x0 = np.arange(0, self.extent[0], self.grid_spacing) y0 = np.arange(0, self.extent[1], self.grid_spacing) self._inter_func = scipy.interpolate.RectBivariateSpline(x0, y0, self.profile) x1 = np.arange(0, self._original_extent[0], new_grid_spacing) y1 = np.arange(0, self._original_extent[1], new_grid_spacing) new_profile = self._inter_func(x1, y1) if gs_changed: del self.grid_spacing if return_profile: return new_profile else: self.profile = new_profile if not gs_changed: self.grid_spacing = new_grid_spacing def __add__(self, other): if not isinstance(other, _Surface): return Surface(profile=self.profile + other, grid_spacing=self.grid_spacing) if self.grid_spacing is not None and other.grid_spacing is not None and self.grid_spacing != other.grid_spacing: if self.grid_spacing < other.grid_spacing: prof_2 = other.resample(self.grid_spacing, return_profile=True) prof_1 = self.profile new_gs = self.grid_spacing else: prof_1 = self.resample(other.grid_spacing, return_profile=True) prof_2 = other.profile new_gs = other.grid_spacing else: prof_1 = self.profile prof_2 = other.profile if self.grid_spacing is not None: new_gs = self.grid_spacing else: new_gs = other.grid_spacing new_shape = [min(p1s, p2s) for p1s, p2s in zip(prof_1.shape, prof_2.shape)] new_profile = prof_1[0:new_shape[0], 0:new_shape[1]] + prof_2[0:new_shape[0], 0:new_shape[1]] return Surface(profile=new_profile, grid_spacing=new_gs) def __mul__(self, other): if isinstance(other, Number): return Surface(profile=self.profile*other, grid_spacing=self.grid_spacing) else: raise NotImplementedError("Multiplication not implement for Surfaces unless other parameter is number") def __div__(self, other): if isinstance(other, Number): return Surface(profile=self.profile/other, grid_spacing=self.grid_spacing) else: raise NotImplementedError("Division not implement for Surfaces unless other parameter is number") def __sub__(self, other): if not isinstance(other, _Surface): return Surface(profile=self.profile - other, grid_spacing=self.grid_spacing) if self.grid_spacing is not None and other.grid_spacing is not None and self.grid_spacing != other.grid_spacing: if self.grid_spacing < other.grid_spacing: prof_2 = other.resample(self.grid_spacing, return_profile=True) prof_1 = self.profile new_gs = self.grid_spacing else: prof_1 = self.resample(other.grid_spacing, return_profile=True) prof_2 = other.profile new_gs = other.grid_spacing else: prof_1 = self.profile prof_2 = other.profile if self.grid_spacing is not None: new_gs = self.grid_spacing else: new_gs = other.grid_spacing new_shape = [min(p1s, p2s) for p1s, p2s in zip(prof_1.shape, prof_2.shape)] new_profile = prof_1[0:new_shape[0], 0:new_shape[1]] - prof_2[0:new_shape[0], 0:new_shape[1]] return Surface(profile=new_profile, grid_spacing=new_gs) def __eq__(self, other): if not isinstance(other, _Surface) or self.is_discrete != other.is_discrete: return False if self.is_discrete: return np.array_equal(self.profile, other.profile) and self.grid_spacing == other.grid_spacing else: return repr(self) == repr(other) def show(self, property_to_plot: typing.Union[str, typing.Sequence[str]] = 'profile', plot_type: typing.Union[str, typing.Sequence[str]] = 'default', ax=False, *, dist=None, stride=None, **figure_kwargs): """ Plot surface properties Parameters ---------- property_to_plot : str or list of str length N optional ('profile') The property to be plotted see notes for supported names plot_type : str or list of str length N optional ('default') The type of plot to be produced, see notes for supported types ax : matplotlib axes or False optional (False) If supplied the plot will be added to the axis dist : a scipy probability distribution, optional (None) Only used if probplot is requested, the probability distribution to plot against stride : float, optional (None) Only used if a wire frame plot is requested, the stride between wires figure_kwargs : optional (None) Keyword arguments sent to the figure function in matplotlib Returns ------- ax : matplotlib axes or list of matplotlib axes length N The axis with the plot See Also -------- get_fft get_psd get_acf ACF Notes ----- If fft, psd or acf are requested the field of the surface is filled by the relevant get_ method before plotting. The grid spacing attribute should be set before plotting 2D and 1D plots can be produced. 2D properties are: - profile - surface profile - unworn_profile - the surface profile with no wear applied - fft2d - fft of the surface profile - psd - power spectral density of the surface profile - acf - auto correlation function of the surface - apsd - angular power spectral density of the profile Plot types allowed for 2D plots are: - surface (default) - image - mesh If a mesh plot is requested the distance between lines in the mesh can be specified with the stride keyword 1D properties are: - histogram - histogram of the profile heights - fft1d - 1 dimentional fft of the surface - qq - quartile quartile plot of the surface heights If qq or dist hist are requested the distribution to be plotted against the height values can be specified by the dist keyword Each of the 1D properties can only be plotted on it's default plot type Examples -------- >>> # show the surface profile as an image: >>> import slippy.surface as s >>> import numpy as np >>> my_surface=s.assurface(np.random.rand(10,10)) >>> my_surface.show('profile', 'image') >>> # show the 2D fft of the surface profile with a range of plot types >>> my_surface.show(['fft2D','fft2D','fft2D'], ['mesh', 'image', 'default']) """ import matplotlib.pyplot as plt # noinspection PyUnresolvedReferences from mpl_toolkits.mplot3d import Axes3D # noqa: F401 from scipy.stats import probplot if self.profile is None: raise AttributeError('The profile of the surface must be set before it can be shown') if self.grid_spacing is None: raise AttributeError("The grid spacing of the surface must be set before it can be shown") types2d = ['profile', 'fft2d', 'psd', 'acf', 'apsd', 'unworn_profile'] types1d = ['histogram', 'fft1d', 'qq', 'hist'] # using a recursive call to deal with multiple plots on the same fig if isinstance(property_to_plot, Sequence) and not isinstance(property_to_plot, str): number_of_subplots = len(property_to_plot) if not type(ax) is bool: msg = ("Can't plot multiple plots on single axis, " 'making new figure') warnings.warn(msg) if isinstance(plot_type, Sequence) and not isinstance(plot_type, str): plot_type = list(plot_type) if len(plot_type) < number_of_subplots: plot_type.extend(['default'] * (number_of_subplots - len(plot_type))) else: plot_type = [plot_type, ] * number_of_subplots # 11, 12, 13, 22, then filling up rows of 3 (unlikely to be used) # fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') if len(property_to_plot) < 5: n_cols = [1, 2, 3, 2][number_of_subplots - 1] else: n_cols = 3 n_rows = int(np.ceil(number_of_subplots / 3)) fig = plt.figure(**figure_kwargs) ax = [] sub_plot_number = 100 * n_rows + 10 * n_cols + 1 for i in range(number_of_subplots): if property_to_plot[i].lower() in types2d and not plot_type[i] in ('image', 'default'): ax.append(fig.add_subplot(sub_plot_number + i, projection='3d')) else: ax.append(fig.add_subplot(sub_plot_number + i)) self.show(property_to_plot[i], plot_type[i], ax[i]) return fig, ax ####################################################################### # main method ####################################################################### # 2D plots try: property_to_plot = property_to_plot.lower() except AttributeError: msg = "Property to plot must be a string or a list of strings" raise ValueError(msg) if not (property_to_plot in types2d or property_to_plot in types1d): msg = ('Unsupported property to plot see documentation for details' ', type given: \n' + str(property_to_plot) + ' \nsupported ty' 'pes: \n' + ' '.join(types2d + types1d)) raise ValueError(msg) if not ax: fig = plt.figure(**figure_kwargs) if property_to_plot in types2d: if not ax and (plot_type == 'image' or plot_type == 'default'): # noinspection PyUnboundLocalVariable ax = fig.add_subplot(111) elif not ax: # noinspection PyUnboundLocalVariable ax = fig.add_subplot(111, projection='3d') if property_to_plot == 'profile': labels = ['Surface profile', 'x', 'y', 'Height'] x = self.grid_spacing * np.arange(self.shape[0]) y = self.grid_spacing * np.arange(self.shape[1]) z = self.profile elif property_to_plot == 'unworn_profile': labels = ['Surface profile (unworn)', 'x', 'y', 'Height'] x = self.grid_spacing * np.arange(self.shape[0]) y = self.grid_spacing * np.arange(self.shape[1]) z = self.unworn_profile elif property_to_plot == 'fft2d': labels = ['Fourier transform of surface', 'u', 'v', '|F(x)|'] if self.fft is None: self.get_fft() z = np.abs(np.fft.fftshift(self.fft)) x = np.fft.fftfreq(self.shape[0], self.grid_spacing) y = np.fft.fftfreq(self.shape[1], self.grid_spacing) elif property_to_plot == 'psd': labels = ['Power spectral density', 'u', 'v', 'Power/ frequency'] if self.psd is None: self.get_psd() # noinspection PyTypeChecker z = np.log(np.abs(np.fft.fftshift(self.psd))) x = np.fft.fftfreq(self.shape[0], self.grid_spacing) y = np.fft.fftfreq(self.shape[1], self.grid_spacing) elif property_to_plot == 'acf': labels = ['Auto correlation function', 'x', 'y', 'Surface auto correlation'] if self.acf is None: self.get_acf() # noinspection PyTypeChecker z = np.abs(np.asarray(self.acf)) x = self.grid_spacing * np.arange(self.shape[0]) y = self.grid_spacing * np.arange(self.shape[1]) x = x - max(x) / 2 y = y - max(y) / 2 elif property_to_plot == 'apsd': labels = ['Angular power spectral density', 'x', 'y'] if self.fft is None: self.get_fft() p_area = (self.shape[0] - 1) * (self.shape[1] - 1) * self.grid_spacing ** 2 z = self.fft * np.conj(self.fft) / p_area x = self.grid_spacing * np.arange(self.shape[0]) y = self.grid_spacing * np.arange(self.shape[1]) x = x - max(x) / 2 y = y - max(y) / 2 else: raise ValueError("Property not recognised") mesh_x, mesh_y = np.meshgrid(x, y) if plot_type == 'surface': ax.plot_surface(mesh_x, mesh_y, np.transpose(z)) # plt.axis('equal') ax.set_zlabel(labels[3]) elif plot_type == 'mesh': if property_to_plot == 'psd' or property_to_plot == 'fft2d': mesh_x, mesh_y =
np.fft.fftshift(mesh_x)
numpy.fft.fftshift
import pandas as pd import joblib import numpy as np import argparse import os # Inputs: # --sct_train_file: Pickle file that was holds the a list of the dataset used for training. # Can be downloaded at: https://github.com/sct-data/deepseg_sc_models # train_valid_test column: 1 for training, 2 for validating, 3 for testing # --bids_datasets_list: List of dataset folders to gather list of subjects from. # 1 or more (e.g. sct-testing-large spine-generic-multi-subject etc.) # --ofolder: Folder to save the output .joblib file # Example usage: # python3 create_training_joblib --sct_train_file ~/dataset.pkl --bids_datasets_list ~/datasets/testing-large # --ofolder ~/train_new_model # # <NAME> 2021 def create_new_joblib(dataset_sct_file, input_bids_folders, outputFolder): ## Load the merged participants.tsv #merged_folder = '/home/nas/Consulting/ivado-project/Datasets/merged_SCTLARGE_MULTISUBJECT/' #df_merged = bids.BIDS(merged_folder).participants.content # Merge multiple .tsv files into the same dataframe df_merged = pd.read_table(os.path.join(input_bids_folders[0], 'participants.tsv'), encoding="ISO-8859-1") # Convert to string to get rid of potential TypeError during merging within the same column df_merged = df_merged.astype(str) # Add the Bids_path to the dataframe df_merged['bids_path'] = [input_bids_folders[0]] * len(df_merged) for iFolder in range(1, len(input_bids_folders)): df_next = pd.read_table(os.path.join(input_bids_folders[iFolder], 'participants.tsv'), encoding="ISO-8859-1") df_next = df_next.astype(str) df_next['bids_path'] = [input_bids_folders[iFolder]] * len(df_next) # Merge the .tsv files (This keeps also non-overlapping fields) df_merged = pd.merge(left=df_merged, right=df_next, how='outer') dataUsedOnSct = pd.read_pickle(dataset_sct_file) # Force the subjects that were used for testing for SCT models to be used for testing in the new .joblib subjectsUsedForTesting = dataUsedOnSct[dataUsedOnSct['train_valid_test'] == 3]['subject'].to_list() # Use 60% for training/validation and 40% for testing percentage_train = 0.4 percentage_validation = 0.2 # Whatever was used in sct testing, will stay in the testing side of the joblib as well test = df_merged[
np.in1d(df_merged['data_id'], subjectsUsedForTesting)
numpy.in1d