prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from __future__ import print_function, division, absolute_import import functools import sys import warnings # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug.testutils import (array_equal_lists, keypoints_equal, reseed, runtest_pickleable_uint8_img) import imgaug.augmenters.arithmetic as arithmetic_lib import imgaug.augmenters.contrast as contrast_lib class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Add(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Add(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [float, int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.Add(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_add_floats(self): # specific tests with floats aug = iaa.Add(value=0.75) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 aug = iaa.Add(value=0.45) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 aug = iaa.Add(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Add(value=1) aug_det = iaa.Add(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_per_channel(self): # test channelwise aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 1 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Add(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps(self): # test heatmaps (not affected by augmenter) base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 aug = iaa.Add(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): image = np.zeros((3, 3), dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.Add((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10) class TestAddElementwise(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.AddElementwise(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.AddElementwise(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_add_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.AddElementwise(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 aug = iaa.AddElementwise(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AddElementwise(value=1) aug_det = iaa.AddElementwise(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(-50, 50)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.9 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.AddElementwise(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.AddElementwise(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.AddElementwise((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class AdditiveGaussianNoise(unittest.TestCase): def setUp(self): reseed() def test_loc_zero_scale_zero(self): # no noise, shouldnt change anything base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) aug = iaa.AdditiveGaussianNoise(loc=0, scale=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_loc_zero_scale_nonzero(self): # zero-centered noise base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_std_dev_of_added_noise_matches_scale(self): # std correct? base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0]) values = np.array(values) assert np.min(values) == 0 assert 0.1 < np.std(values) / 255.0 < 0.4 def test_nonzero_loc(self): # non-zero loc base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.25 * 255, scale=0.01 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0] - 128) values = np.array(values) assert 54 < np.average(values) < 74 # loc=0.25 should be around 255*0.25=64 average def test_tuple_as_loc(self): # varying locs base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=(0, 0.5 * 255), scale=0.0001 * 255) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_loc(self): # varying locs by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=iap.Choice([-20, 20]), scale=0.0001 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 seen = [0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) mean = np.mean(observed) diff_m20 = abs(mean - (128-20)) diff_p20 = abs(mean - (128+20)) if diff_m20 <= 1: seen[0] += 1 elif diff_p20 <= 1: seen[1] += 1 else: assert False assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_tuple_as_scale(self): # varying stds base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=(0.01 * 255, 0.2 * 255)) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_scale(self): # varying stds by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=iap.Choice([1, 20])) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 128 seen = [0, 0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) std = np.std(observed.astype(np.int32) - 128) diff_1 = abs(std - 1) diff_20 = abs(std - 20) if diff_1 <= 2: seen[0] += 1 elif diff_20 <= 5: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 5 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.AdditiveGaussianNoise(loc="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.AdditiveGaussianNoise(scale="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.5, scale=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.AdditiveGaussianNoise(scale=(0.1, 10), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class TestDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): # no dropout, shouldnt change anything base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] aug = iaa.Dropout(p=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) # 100% dropout, should drop everything aug = iaa.Dropout(p=1.0) observed = aug.augment_images(images) expected = np.zeros((1, 512, 512, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [np.zeros((512, 512, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_p_is_50_percent(self): # 50% dropout base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Dropout(p=0.5) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_tuple_as_p(self): # varying p aug = iaa.Dropout(p=(0.0, 1.0)) aug_det = aug.to_deterministic() images = np.ones((1, 8, 8, 1), dtype=np.uint8) * 255 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_list_as_p(self): aug = iaa.Dropout(p=[0.0, 0.5, 1.0]) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 nb_seen = [0, 0, 0, 0] nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) n_dropped = np.sum(observed_aug == 0) p_observed = n_dropped / observed_aug.size if 0 <= p_observed <= 0.01: nb_seen[0] += 1 elif 0.5 - 0.05 <= p_observed <= 0.5 + 0.05: nb_seen[1] += 1 elif 1.0-0.01 <= p_observed <= 1.0: nb_seen[2] += 1 else: nb_seen[3] += 1 assert np.allclose(nb_seen[0:3], nb_iterations*0.33, rtol=0, atol=75) assert nb_seen[3] < 30 def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.Dropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5]))) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for wrong parameter datatype got_exception = False try: _aug = iaa.Dropout(p="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Dropout(p=1.0) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.Dropout(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = base_img assert np.array_equal(observed, expected) def test_p_is_one(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=1.0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = np.zeros_like(base_img) assert np.array_equal(observed, expected) def test_p_is_50_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_size_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=0.001, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_per_channel(self): aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=True, min_size=1) base_img = np.ones((4, 4, 3), dtype=np.uint8) * 100 found = False for _ in sm.xrange(100): observed = aug.augment_image(base_img) avgs = np.average(observed, axis=(0, 1)) if len(set(avgs)) >= 2: found = True break assert found def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.CoarseDropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5])), size_px=50) images = np.ones((1, 100, 100, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for bad parameters got_exception = False try: _ = iaa.CoarseDropout(p="test") except Exception: got_exception = True assert got_exception def test___init___size_px_and_size_percent_both_none(self): got_exception = False try: _ = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseDropout(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseDropout(p=0.5, size_px=10, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10, shape=(40, 40, 3)) class TestDropout2d(unittest.TestCase): def setUp(self): reseed() def test___init___defaults(self): aug = iaa.Dropout2d(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 1 def test___init___p_is_float(self): aug = iaa.Dropout2d(p=0.7) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 0.3) assert aug.nb_keep_channels == 1 def test___init___nb_keep_channels_is_int(self): aug = iaa.Dropout2d(p=0, nb_keep_channels=2) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 2 def test_no_images_in_batch(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) heatmaps = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=heatmaps) assert np.allclose(heatmaps_aug.arr_0to1, heatmaps.arr_0to1) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_1_heatmaps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_1_segmentation_maps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_1_cbaois__keep_one_channel(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_heatmaps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075(self): image = np.full((1, 1, 3000), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.75, nb_keep_channels=0) image_aug = aug(image=image) nb_kept =
np.sum(image_aug == 255)
numpy.sum
import argparse import os import pydicom import numpy as np from tqdm import tqdm import pandas as pd import hashlib if __name__ == "__main__": os.makedirs('dataset_masked', exist_ok = True) tag_df = pd.read_csv('tags.csv') SOPInstanceUIDs = [] StudyInstanceUIDs = [] encoded_ids = [] for mset in ['test', 'train']: os.makedirs('dataset_masked/' + mset, exist_ok = True) for rdir,_,files in os.walk('dataset/' + mset): for file in files: dicom_path = os.path.join(rdir, file) print(dicom_path) dcm = pydicom.read_file(dicom_path) dcm.file_meta.ImplementationClassUID = "1.2.3.4" MediaStorageSOPInstanceUID = dcm.file_meta.MediaStorageSOPInstanceUID hash_object = hashlib.md5(MediaStorageSOPInstanceUID.encode()) encoded = str(hash_object.hexdigest()) dcm.file_meta.MediaStorageSOPInstanceUID = encoded SOPInstanceUIDs.append(dcm.SOPInstanceUID) StudyInstanceUIDs.append(dcm.StudyInstanceUID) encoded_ids.append(encoded) dcm_keys = list(dcm.keys()) for k in dcm_keys: if k not in tag_df.keyword.values: dcm.pop(k, None) print(dcm) new_dicom_path = dicom_path.replace('dataset/', 'dataset_masked/').replace(file, encoded+'.dicom') dcm.save_as(new_dicom_path) image_uid_encode_df = pd.DataFrame() image_uid_encode_df['encode_id'] = np.array(encoded_ids) image_uid_encode_df['SOPInstanceUID'] = np.array(SOPInstanceUIDs) image_uid_encode_df['StudyInstanceUID'] =
np.array(StudyInstanceUIDs)
numpy.array
from unittest import TestCase import numpy as np RANGE = 100000000 SIZE = 300000 class TestSort(TestCase): def test_compare_int(self): self.assertEqual(-1, quick_pandas.ext.argsort.compare_py([np.array([1, 2])], 0, 1)) self.assertEqual(1, quick_pandas.ext.argsort.compare_py([np.array([2, 1])], 0, 1)) self.assertEqual(1, quick_pandas.ext.argsort.compare_py([np.array([1, 2])], 1, 0)) def test_compare_float(self): self.assertEqual(1, quick_pandas.ext.argsort.compare_py([np.array([2, 1], dtype=np.float64)], 0, 1)) self.assertEqual(-1, quick_pandas.ext.argsort.compare_py([np.array([1, 2], dtype=np.float64)], 0, 1)) self.assertEqual(-1, quick_pandas.ext.argsort.compare_py([np.array([1, np.nan], dtype=np.float64)], 0, 1)) self.assertEqual(0, quick_pandas.ext.argsort.compare_py([np.array([np.nan, np.nan], dtype=np.float64)], 0, 1)) self.assertEqual(-1, quick_pandas.ext.argsort.compare_py([np.array([1, np.inf], dtype=np.float64)], 0, 1)) self.assertEqual(-1, quick_pandas.ext.argsort.compare_py([np.array([-np.inf, 2], dtype=np.float64)], 0, 1)) self.assertEqual(-1, quick_pandas.ext.argsort.compare_py([np.array([-np.inf, np.inf], dtype=np.float64)], 0, 1)) self.assertEqual(1, quick_pandas.ext.argsort.compare_py([np.array([np.nan, np.inf], dtype=np.float64)], 0, 1)) self.assertEqual(1, quick_pandas.ext.argsort.compare_py([np.array([-np.nan, np.inf], dtype=np.float64)], 0, 1)) def test_compare_string(self): self.assertEqual(1, quick_pandas.ext.argsort.compare_py([np.array([2, 1], dtype=str)], 0, 1)) self.assertEqual(-1, quick_pandas.ext.argsort.compare_py([np.array([1, 2], dtype=str)], 0, 1)) self.assertEqual(1, quick_pandas.ext.argsort.compare_py([np.array(['1', ''], dtype=str)], 0, 1)) self.assertEqual(-1, quick_pandas.ext.argsort.compare_py([
np.array(['112', '113'], dtype=str)
numpy.array
"""Unit tests specific to fourier transform tools.""" import pytest import numpy as np from prysm import fttools ARRAY_SIZES = (8, 16, 32, 64, 128, 256, 512, 1024) @pytest.mark.parametrize('samples', ARRAY_SIZES) def test_mtp_equivalent_to_fft(samples): inp = np.random.rand(samples, samples) fft = np.fft.fftshift(np.fft.fft2(
np.fft.ifftshift(inp)
numpy.fft.ifftshift
import os from mmdet.apis import init_detector, inference_detector import mmcv from glob import glob import numpy as np from tqdm import tqdm import argparse def parse_args(): parser = argparse.ArgumentParser(description='MMDet test detector') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--out', help='output result file') args = parser.parse_args() return args def main(): args = parse_args() assert args.out\ ('Please specify out path' 'with the argument "--out"') model = init_detector(args.config, args.checkpoint, device='cuda:0') with open(args.out, 'w') as f: for img in tqdm(glob('data/siweituxin/test_images/*.jpg')): result = inference_detector(model, img) bbox_result = result bboxes = np.vstack(bbox_result) labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
numpy.full
import numpy as np import os import cv2 import keras.backend as K from libra.preprocessing.image_preprocessor import (setwise_preprocessing, csv_preprocessing, classwise_preprocessing, set_distinguisher, already_processed, single_class_preprocessing) from libra.query.supplementaries import generate_id from libra.query.feedforward_nn import logger, clearLog from keras import Model from keras.models import Sequential from keras.layers import (Input, Conv2D, Flatten, Dense, Dropout, LeakyReLU, BatchNormalization, ZeroPadding2D, Reshape, UpSampling2D) from keras.optimizers import Adam ### Source: https://github.com/mitchelljy/DCGAN-Keras/blob/master/DCGAN.py ### def build_discriminator(img_shape): model = Sequential() model.add(Conv2D(32, (3, 3), strides=2, input_shape=img_shape, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), strides=2, padding='same')) model.add(ZeroPadding2D(padding=((0, 1), (0, 1)))) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(128, (3, 3), strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(256, (3, 3), strides=1, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(512, (3, 3), strides=1, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) #img = Input(shape=img_shape) #validity = model(img) #return Model(img, validity) return model ### Source: https://github.com/mitchelljy/DCGAN-Keras/blob/master/DCGAN.py ### def build_generator(img_shape, starting_filters = 64, upsample_layers = 5, noise_shape=(100,)): model = Sequential() model.add(Dense((img_shape[0] // (2 ** upsample_layers)) * (img_shape[1] // (2 ** upsample_layers)) * starting_filters, activation='relu', input_shape=noise_shape)) model.add(Reshape((img_shape[0] // (2 ** upsample_layers), img_shape[1] // (2 ** upsample_layers), starting_filters))) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(1024, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(512, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(256, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(128, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(32, (3, 3), padding='same', activation='relu')) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(img_shape[2], (3, 3), padding='same', activation='tanh', name='ll')) #noise = Input(shape=noise_shape) #img = model(noise) #return Model(noise, img) return model ### train the GAN model ### def train(combined_model, generator, discriminator, x_train=None, epochs=10, batch_size=32, verbose=1): #Normalize input from -1 to 1 x_train = (x_train.astype(np.float32) - 127.5) / 127.5 loss_discriminator_history = [] acc_discriminator_history = [] loss_generator_history = [] for epoch in range(epochs): #Train generator model to generate real-looking images that the discriminator classifies as real noise = np.random.normal(0, 1, (batch_size, 100)) loss_generator = combined_model.train_on_batch(noise, np.ones(batch_size)) #First half of the batch: Generate fake images and train discriminator on them noise = np.random.normal(0, 1, (batch_size//2, 100)) fake_images = generator.predict(noise) loss_discriminator_fake, acc_discriminator_fake = discriminator.train_on_batch(fake_images, np.zeros(batch_size//2)) #Second half of the batch: Select real images from the training set uniformly at random and train discriminator on them idx = np.random.randint(0, len(x_train), batch_size//2) real_images = x_train[idx] loss_discriminator_real, acc_discriminator_real = discriminator.train_on_batch(real_images, np.ones(batch_size//2)) loss_discriminator = 0.5 * np.add(loss_discriminator_fake, loss_discriminator_real) acc_discriminator = 0.5 * np.add(acc_discriminator_fake, acc_discriminator_real) loss_discriminator_history.append(loss_discriminator) acc_discriminator_history.append(acc_discriminator) loss_generator_history.append(loss_generator) if verbose == 1: logger(f"Epoch {(epoch+1)}: [Discriminator loss: {loss_discriminator} | Discriminators Accuracy: {100 * acc_discriminator}] [Generator loss: {loss_generator}]") return loss_discriminator_history, acc_discriminator_history, loss_generator_history ### Use generator model to generate images (after training) ### def generate_images(generator, num_images=3, output_path=None): noise = np.random.normal(0, 1, (num_images, 100)) gen_images = generator.predict(noise) for i in range(num_images): cv2.imwrite(output_path + f"/generated_images/generated_image_{i}.jpg", gen_images[i]) ### Deep Convolutional Generative Adversarial Network ### def dcgan(instruction=None, num_images=None, preprocess=True, data_path=None, verbose=None, epochs=None, height=None, width=None, output_path=None): #K.clear_session() training_path = "" logger("Preprocessing images") num_channels = 3 if preprocess: processInfo = single_class_preprocessing(data_path=data_path, height=height, width=width) training_path = "proc_training_set" num_channels = 1 if processInfo["gray_scale"] else 3 train_images = [] for file in os.listdir(data_path + "/" + training_path): abs_path = os.path.join(data_path, training_path, file) if os.path.isfile(abs_path): train_images.append(cv2.imread(abs_path)) train_images =
np.array(train_images)
numpy.array
""" Auxiliary routines for the modeler ----------------------------------- """ import numpy as np import random import math try: from sim.consts import N, A, B, C except ModuleNotFoundError: try: from consts import N, A, B, C except: from .consts import N, A, B, C def kink_move(coords, kink, kink_minus, kink_plus): """ performs a kink move :param coords: 3D coordinates :type coords: numpy array :param kink: the bead subjected to kink move :type kink: int :param kink_minus: preceding bead :type kink_minus: int :param kink_plus: succeeding bead :type kink_plus: int :return: (3,N) coordinates after the kink move :rtype: Numpy array """ if coords[0, kink_minus] == coords[0, kink] == coords[0, kink_plus]: coords[1, kink] = coords[1, kink_plus] coords[2, kink] = coords[2, kink_minus] # print('x') elif coords[1, kink_minus] == coords[1, kink] == coords[1, kink_plus]: coords[0, kink] = coords[0, kink_plus] coords[2, kink] = coords[2, kink_minus] # print('y') else: coords[0, kink] = coords[0, kink_plus] coords[1, kink] = coords[1, kink_minus] # print('z') return coords def prepare_kink(coords_): """ prepares input data for the kink move :param coords_: 3D coordinates :type coords_: (3,N) Numpy array, int :return: 3-tuple as (preceding, actual, succeeding) :rtype: tuple of int """ orthogonal = False while not orthogonal: kink = np.random.randint(N) kink_minus = kink - 1 kink_plus = kink + 1 if kink == 0: kink_minus = N - 1 elif kink == N - 1: kink_plus = 0 # print(kink, length, coords[:, kink]) v1 = coords_[:, kink] - coords_[:, kink_minus] v2 = coords_[:, kink_plus] - coords_[:, kink] orthogonal = np.dot(v1, v2) == 0 return kink, kink_minus, kink_plus def prepare_crank(coords_): """ generates input data for crankshaft move -- crank points and the index in the rotation list :param coords_: (3,N) coordinates :type coords_: numpy array :return: tuple of 3 integers, ``(crank, crank1, rotation)``, where ``crank`` is the starting and ``crank1`` the ending \ indexes of the coordinates array for the crankshaft move: ``[crank+1:crank1-1]`` are subject to crankshaft; ``rotation`` -- \ is the index of the list with rotation matrices :rtype: tuple """ potentials = [] # if this list is empty, it means that it the chosen bead `crank` has to buddy # to form the rotation axis while not potentials: # selecting random bead crank = np.random.randint(N) # print(crank) # generating potential positions for the second bead potentials_x = np.where((coords_[1] == coords_[1, crank]) & (coords_[2] == coords_[2, crank]))[0] potentials_y = np.where((coords_[0] == coords_[0, crank]) & (coords_[2] == coords_[2, crank]))[0] potentials_z = np.where((coords_[0] == coords_[0, crank]) & (coords_[1] == coords_[1, crank]))[0] potentials = [el for el in [(potentials_x, [0,1]), (potentials_y, [2,3]), (potentials_z, [4,5])] if len(el[0])>0 ] # selecting the axis with rotatios axis_rotation = random.choice(potentials) crank1 = random.choice(axis_rotation[0]) rotation = random.choice(axis_rotation[1]) # index in the list of rotation matrices return crank, crank1, rotation def crankshaft_move(coords_, A, B, rotation): """ performs a crankshaft move for given part of the chain around given axis on given angle. :param coords_: (3,N) coordinates :type coords_: numpy array :param A: starting position to crank about :type A: int :param B: ending position to crank about :type B: int :param rotation: (3,3) rotation matrix :type rotation: Numpu array :return: (3,N) coordinates after crankshaft :rtype: Numpy array """ tail = coords_[:, A+1:B] tail0 = coords_[:,A:A+1] # print(tail, tail0) tail = tail- tail0 # print(tail) # print(rotation.shape) for i in range(tail.shape[1]): coords_[:, A+i+1] = np.matmul(rotation, tail[:,i]) + tail0[:, 0] return coords_ def make_circular_indexes(N): """ :param N: number of bead :type N: int :return: tuple of 4 lists, each list keeps the indexes of beads belonging to a particular group :rtype: tuple """ tmp = [i for i in range(N)] evens = tmp[::2] odds = tmp[1::2] tmp = len(evens) idx = int(np.ceil(N / 4)) # print(idx) i0 = odds[-idx:] i1 = evens[:idx] i2 = evens[-tmp + idx:] i3 = odds[:tmp - idx] return i0, i1, i2, i3 def settle_init_point(): """ returns the initial point for the chain as the center of the parallepiped specified by ``A`` and ``B``. :return: initial position of the polymer, (1,3) numpy array :rtype: int """ return np.array([A//2, B//2, C//2]) def make_circular_chain(N): """ making circular chain of N beads :param N: number of beads :type N: int :return: *squashed* 3D-coordinates of the circular polymer :rtype: numpy array (3,N) """ c =
np.zeros((3, N))
numpy.zeros
## writed by <NAME> 2022-05-05 import os import pandas as pd import xarray as xr import numpy as np def creat_Q(basin_id,Q_file,Q_file1,Qmon): rivers = np.loadtxt(basin_id,delimiter=",", usecols=(0,),skiprows=0,ndmin=1, dtype=np.int32) dates = pd.date_range('1/1/1961', '31/12/2018') shape = (len(dates),len(rivers)) dims = ('time','rivers', ) coords = {'time': dates, 'rivers': rivers} state = xr.Dataset(coords=coords) state.attrs['title'] = 'River reaches discharge' state.attrs['history'] = 'created by jiaojiaogou, 2021-01-18' state.attrs['user_comment'] = 'RAPID output river discharge (driving by CNRD v1.0)' state.attrs['source'] = 'generated from a well-trained VIC model coupled with RAPID model' for varname in ['qout']: state[varname] = xr.DataArray(data=np.full(shape, np.nan), coords=coords, dims=dims, name=varname) Qout = xr.open_dataset(Q_file).load()['Qout'] river_id =xr.open_dataset(Q_file).load()['rivid'] for i in range(len(rivers)): state['qout'].values[:,i] = Qout[366:21550,int(np.where(river_id==rivers[i])[0])] #7305 61-79 if
np.any(state['qout'][:,i].values<0)
numpy.any
# -*- coding: utf-8 -*- """ Expressions for calculations structure factors For details see documentation. """ import numpy from .matrix_operations import calc_det_m, calc_m1_m2, calc_m1_m2_inv_m1, calc_m_v, calc_vector_product_v1_v2_v1, calc_m_q_inv_m from .unit_cell import calc_eq_ccs_by_unit_cell_parameters, calc_m_m_by_unit_cell_parameters, calc_m_m_norm_by_unit_cell_parameters, calc_sthovl_by_unit_cell_parameters from .debye_waller_factor import calc_dwf from .symmetry_elements import calc_multiplicity_by_atom_symm_elems, calc_full_symm_elems_by_reduced, calc_equivalent_reflections from .magnetic_form_factor import calc_form_factor from .local_susceptibility import calc_m_r_inv_m na = numpy.newaxis def calc_f_m_perp_by_sft( sft_ccs, magnetic_field, eq_ccs, flag_sft_ccs: bool = False, flag_magnetic_field: bool = False, flag_eq_ccs: bool = False): """Calculate perpendicular component of magnetic structure factor by susceptibility factor tensor. All parameters are defined in Cartesian coordinate system (x||a*, z||c). """ f_m, dder_f_m = calc_m_v( sft_ccs, magnetic_field, flag_m=flag_sft_ccs, flag_v=flag_magnetic_field) if flag_sft_ccs: dder_f_m["sft_ccs_real"] = dder_f_m.pop("m_real") dder_f_m["sft_ccs_imag"] = dder_f_m.pop("m_imag") if flag_magnetic_field: dder_f_m["magnetic_field"] = dder_f_m.pop("v") flag_f_m = flag_sft_ccs or flag_magnetic_field f_m_perp, dder_f_m_perp = calc_vector_product_v1_v2_v1( eq_ccs, f_m, flag_v1=flag_eq_ccs, flag_v2=flag_f_m) if flag_eq_ccs: dder_f_m_perp["eq_ccs"] = dder_f_m_perp.pop("v1") if flag_f_m: dder_f_m_perp["f_m_real"] = dder_f_m_perp.pop("v2_real") dder_f_m_perp["f_m_imag"] = dder_f_m_perp.pop("v2_imag") dder = {} if flag_sft_ccs: dder["sft_ccs_real"] = ( numpy.expand_dims(dder_f_m_perp["f_m_real"], axis=2)*numpy.expand_dims(dder_f_m["sft_ccs_real"].real, axis=0) + numpy.expand_dims(dder_f_m_perp["f_m_imag"], axis=2)*numpy.expand_dims(dder_f_m["sft_ccs_real"].imag, axis=0)).sum(axis=1) dder["sft_ccs_imag"] = ( numpy.expand_dims(dder_f_m_perp["f_m_real"], axis=2)*numpy.expand_dims(dder_f_m["sft_ccs_imag"].real, axis=0) + numpy.expand_dims(dder_f_m_perp["f_m_imag"], axis=2)*numpy.expand_dims(dder_f_m["sft_ccs_imag"].imag, axis=0)).sum(axis=1) if flag_magnetic_field: dder["magnetic_field"] = ( numpy.expand_dims(dder_f_m_perp["f_m_real"], axis=2)*numpy.expand_dims(dder_f_m["magnetic_field"].real, axis=0) + numpy.expand_dims(dder_f_m_perp["f_m_imag"], axis=2)*numpy.expand_dims(dder_f_m["magnetic_field"].imag, axis=0)).sum(axis=1) if flag_eq_ccs: dder["eq_ccs"] = dder_f_m_perp["eq_css"] return f_m_perp, dder def calc_pr1(index_hkl, reduced_symm_elems, fract_xyz, flag_fract_xyz: bool = False): """Calculate PR1, dimensions [hkl, rs, atoms]. For more details see documentation module "Structure factor". """ index_hkl_exp = numpy.expand_dims(numpy.expand_dims(index_hkl, axis=2), axis=3) h, k, l = index_hkl_exp[0], index_hkl_exp[1], index_hkl_exp[2] reduced_symm_elems_exp = numpy.expand_dims(numpy.expand_dims(reduced_symm_elems, axis=1), axis=3) r_11, r_12, r_13 = reduced_symm_elems_exp[4], reduced_symm_elems_exp[5], reduced_symm_elems_exp[6] r_21, r_22, r_23 = reduced_symm_elems_exp[7], reduced_symm_elems_exp[8], reduced_symm_elems_exp[9] r_31, r_32, r_33 = reduced_symm_elems_exp[10], reduced_symm_elems_exp[11], reduced_symm_elems_exp[12] fract_xyz_exp = numpy.expand_dims(numpy.expand_dims(fract_xyz, axis=1), axis=2) x, y, z = fract_xyz_exp[0], fract_xyz_exp[1], fract_xyz_exp[2] hh = h*(r_11*x + r_12*y + r_13*z) + k*(r_21*x + r_22*y + r_23*z) + l*(r_31*x + r_32*y + r_33*z) res = numpy.exp(-2.*numpy.pi*1j*hh) dder = {} if flag_fract_xyz: dder["fract_xyz"] = numpy.stack([ numpy.exp(-2.*numpy.pi*1j*(h*r_11 + k*r_21 + l*r_31)), numpy.exp(-2.*numpy.pi*1j*(h*r_11 + k*r_21 + l*r_31)), numpy.exp(-2.*numpy.pi*1j*(h*r_11 + k*r_21 + l*r_31))], axis=0) return res, dder def calc_pr2(index_hkl, reduced_symm_elems): """Calculate PR2, dimensions, dimensions [hkl, rs]. For more details see documentation module "Structure factor". """ index_hkl_exp = numpy.expand_dims(index_hkl, axis=2) h, k, l = index_hkl_exp[0], index_hkl_exp[1], index_hkl_exp[2] reduced_symm_elems_exp = numpy.expand_dims(reduced_symm_elems, axis=1) b_1, b_2, b_3, b_d = reduced_symm_elems_exp[0], reduced_symm_elems_exp[1], reduced_symm_elems_exp[2], reduced_symm_elems_exp[3] hh = h*(b_1.astype(float)/b_d) + k*(b_2.astype(float)/b_d) + l*(b_3.astype(float)/b_d) res = numpy.exp(-2.*numpy.pi*1j*hh) return res def calc_pr3(index_hkl, translation_elems): """Calculate PR3, dimensions [hkl,]. For more details see documentation module "Structure factor". """ index_hkl_exp = numpy.expand_dims(index_hkl, axis=2) h, k, l = index_hkl_exp[0], index_hkl_exp[1], index_hkl_exp[2] translation_elems_exp = numpy.expand_dims(translation_elems, axis=1) t_1, t_2, t_3, t_d = translation_elems_exp[0], translation_elems_exp[1], translation_elems_exp[2], translation_elems_exp[3] hh = (h*t_1+k*t_2+l*t_3).astype(float) res =(numpy.exp(-2.*numpy.pi*1j*hh/t_d)).sum(axis=1)/translation_elems.shape[-1] return res def calc_pr4(index_hkl, centrosymmetry_position=None): """Calculate PR4. For more details see documentation module "Structure factor". """ h, k, l = index_hkl[0], index_hkl[1], index_hkl[2] if centrosymmetry_position is None: res = numpy.zeros_like(h) else: p_1, p_2, p_3 = centrosymmetry_position[0]/centrosymmetry_position[3], centrosymmetry_position[1]/centrosymmetry_position[3], centrosymmetry_position[2]/centrosymmetry_position[3] res = numpy.exp(-4.*numpy.pi * 1j * (h*p_1 + k*p_2 + l*p_3)) return res def calc_pr5(reduced_symm_elems, unit_cell_parameters, flag_unit_cell_parameters: bool=False): """Calculate PR5, dimensions [rs,]. For more details see documentation module "Structure factor". """ res, dder = calc_m_r_inv_m(unit_cell_parameters, reduced_symm_elems, flag_unit_cell_parameters=flag_unit_cell_parameters) return res, dder def calc_f_asym_a_by_pr( atom_multiplicity, debye_waller, atom_occupancy, pr_1, pr_2, flag_debye_waller: bool = False, flag_atom_occupancy: bool = False, flag_pr_1: bool = False): """Calculate preliminary asymmetric structure factor by preliminary defined parameters. For more details see documentation module "Structure factor". """ # dimension of pr_1 is [hkl, symmetry, a] res = (pr_2[:, :, na]*(pr_1*atom_multiplicity[na, na, :]*atom_occupancy[na, na, :]*debye_waller)).sum(axis=1)/pr_2.shape[-1] dder = {} # if flag_scat_length_neutron: # dder["scat_length_neutron_real"] = (numpy.expand_dims(pr_2, axis=2)*\ # (pr_1*atom_multiplicity*atom_occupancy*debye_waller)).sum(axis=1)/pr_2.shape[-1] # FIXME: only for neutron diffraction # dder["scat_length_neutron_imag"] = 1j*(numpy.expand_dims(pr_2, axis=2)*\ # (pr_1*atom_multiplicity*atom_occupancy*debye_waller)).sum(axis=1)/pr_2.shape[-1] # FIXME: only for neutron diffraction if flag_debye_waller: dder["debye_waller"] = (numpy.expand_dims(pr_2, axis=2)*\ (pr_1*atom_multiplicity*atom_occupancy))/pr_2.shape[-1] if flag_atom_occupancy: dder["atom_occupancy"] = (numpy.expand_dims(pr_2, axis=2)*\ (pr_1*atom_multiplicity*debye_waller))/pr_2.shape[-1] if flag_pr_1: dder["pr_1_real"] = (pr_2[:,:,na]*atom_multiplicity[na, na, :]*atom_occupancy[na, na, :]*debye_waller)/pr_2.shape[-1] dder["pr_1_imag"] = 1j*(pr_2[:,:,na]*atom_multiplicity[na, na, :]*atom_occupancy[na, na, :]*debye_waller)/pr_2.shape[-1] return res, dder # Delete IT # def calc_f_asym_by_pr( # atom_multiplicity, scat_length_neutron, debye_waller, atom_occupancy, pr_1, pr_2, # flag_scat_length_neutron: bool = False, flag_debye_waller: bool = False, # flag_atom_occupancy: bool = False, flag_pr_1: bool = False): # """Calculate preliminary asymmetric structure factor by preliminary defined parameters. # For more details see documentation module "Structure factor". # """ # # dimension of pr_1 is [hkl, symmetry, a] # if len(scat_length_neutron.shape) == 1: # scat_length = scat_length_neutron[na, na, :] # neutron diffraction [atoms] # elif len(scat_length_neutron.shape) == 2: # scat_length = scat_length_neutron[:, na, :] # X-ray diffraction [hkl, atoms] # # res = (pr_2*(pr_1*atom_multiplicity[na, na, :]*scat_length*atom_occupancy[na, na, :]*debye_waller).sum(axis=2)).sum(axis=1)/pr_2.shape[-1] # dder = {} # if flag_scat_length_neutron: # dder["scat_length_neutron_real"] = (numpy.expand_dims(pr_2, axis=2)*\ # (pr_1*atom_multiplicity*atom_occupancy*debye_waller)).sum(axis=1)/pr_2.shape[-1] # FIXME: only for neutron diffraction # dder["scat_length_neutron_imag"] = 1j*(numpy.expand_dims(pr_2, axis=2)*\ # (pr_1*atom_multiplicity*atom_occupancy*debye_waller)).sum(axis=1)/pr_2.shape[-1] # FIXME: only for neutron diffraction # if flag_debye_waller: # dder["debye_waller"] = (numpy.expand_dims(pr_2, axis=2)*\ # (pr_1*atom_multiplicity*atom_occupancy)*scat_length).sum(axis=1)/pr_2.shape[-1] # if flag_atom_occupancy: # dder["atom_occupancy"] = (numpy.expand_dims(pr_2, axis=2)*\ # (pr_1*atom_multiplicity*debye_waller)*scat_length).sum(axis=1)/pr_2.shape[-1] # if flag_pr_1: # dder["pr_1_real"] = (pr_2[:,:,na]*atom_multiplicity[na, na, :]*atom_occupancy[na, na, :]*scat_length*debye_waller)/pr_2.shape[-1] # dder["pr_1_imag"] = 1j*(pr_2[:,:,na]*atom_multiplicity[na, na, :]*atom_occupancy[na, na, :]*scat_length*debye_waller)/pr_2.shape[-1] # return res, dder def calc_f_by_f_asym_a_pr(f_asym_a, scattering_length, pr_3, centrosymmetry, pr_4, flag_f_asym_a: bool = False, flag_scattering_length: bool = False): """Calculate structure factor by preliminary defined parameters. For more details see documentation module "Structure factor". Dimensions: f_asym_a = [9, hkl, a] or [hkl, a] scattering length = [hkl, a] or [a] pr_3 = [hkl] """ if len(scattering_length.shape) == 1: scat_length_2d = scattering_length[na, :] # neutron diffraction [atoms] elif len(scattering_length.shape) == 2: scat_length_2d = scattering_length[:, :] # X-ray diffraction [hkl, atoms] if len(f_asym_a.shape) == 2: # for structure factor [hkl, a] sum_axis = 1 hh = scat_length_2d pr_3_ext = pr_3 elif len(f_asym_a.shape) == 3: # for tensor structure factor [9, hkl, a] sum_axis = 2 hh = scat_length_2d[na, :, :] pr_3_ext = numpy.expand_dims(pr_3, axis=0) # [9, hkl] f_asym = (hh * f_asym_a).sum(axis=sum_axis) f_asym_conj = (hh * f_asym_a.conjugate()).sum(axis=sum_axis) f_h = pr_3_ext * f_asym f_h_conj = pr_3_ext.conjugate() * f_asym_conj if centrosymmetry: res= 0.5*(f_h+pr_4*f_h_conj) else: res= f_h dder = {} if flag_f_asym_a: ofh = numpy.ones(f_h.shape, dtype=float) if centrosymmetry: hhh_real = pr_3 + pr_4*pr_3.conjugate() hhh_imag = pr_3 - pr_4*pr_3.conjugate() dder["f_asym_a_real"] = 0.5*(numpy.expand_dims(hhh_real, axis=-1))*hh dder["f_asym_a_imag"] = 0.5*1j*(numpy.expand_dims(hhh_imag, axis=-1))*hh else: dder["f_asym_a_real"] = numpy.expand_dims(pr_3_ext, axis=-1)*hh dder["f_asym_a_imag"] = numpy.expand_dims(pr_3_ext, axis=-1)*hh*1j # ofh = numpy.ones(f_h.shape, dtype=float) # if centrosymmetry: # dder["f_asym_real"] = 0.5*(pr_3+pr_4*pr_3.conjugate())*ofh # dder["f_asym_imag"] = 0.5*(pr_3-1j*pr_4*pr_3.conjugate())*ofh # else: # dder["f_asym_real"] = pr_3*ofh # dder["f_asym_imag"] = pr_3*1j*ofh if flag_scattering_length: pass return res, dder # DELETE iT # def calc_f_by_f_asym_pr(f_asym, pr_3, centrosymmetry, pr_4, flag_f_asym: bool = False): # """Calculate structure factor by preliminary defined parameters. # For more details see documentation module "Structure factor". # """ # f_h = pr_3 * f_asym # if centrosymmetry: # res= 0.5*(f_h+pr_4*f_h.conjugate()) # else: # res= f_h # dder = {} # if flag_f_asym: # ofh = numpy.ones(f_h.shape, dtype=float) # if centrosymmetry: # dder["f_asym_real"] = 0.5*(pr_3+pr_4*pr_3.conjugate())*ofh # dder["f_asym_imag"] = 0.5*(pr_3-1j*pr_4*pr_3.conjugate())*ofh # else: # dder["f_asym_real"] = pr_3*ofh # dder["f_asym_imag"] = pr_3*1j*ofh # return res, dder def calc_sft_ccs_asym_a_by_pr( atom_para_multiplicity, debye_waller_factor, atom_para_occupancy, atom_para_susceptibility, atom_para_sc_chi, pr_1, pr_2, pr_5, flag_debye_waller: bool = False, flag_atom_para_occupancy: bool = False, flag_atom_para_susceptibility: bool = False, flag_pr_1: bool = False, flag_pr_5: bool = False): """Calculate preliminary asymmetric structure factor tensor by preliminary defined parameters in 10**-12 cm. For more details see documentation module "Structure factor". The susceptibility parameters are give in mu_B """ mas_constr = (0.2695*atom_para_sc_chi * atom_para_susceptibility[na, :, :]).sum(axis=1) hh, dder_hh = calc_m_q_inv_m(pr_5[:, :, na], mas_constr[:, na, :], flag_m=False, flag_q=flag_atom_para_susceptibility) hh_1 = atom_para_multiplicity * atom_para_occupancy hh_3 = pr_1*debye_waller_factor*hh_1[na, na, :] res = (pr_2[na, :, :, na] * hh_3[na, :, :, :] * hh[:, na, :, :]).sum(axis=2)/pr_2.shape[-1] dder = {} if flag_atom_para_susceptibility: dder_hh_2 = 0.2695*(dder_hh["q"][:,:, na,:, :]* atom_para_sc_chi[na, :, :, na,:]).sum(axis=1) dder["atom_para_susceptibility"] = (pr_2[na, na, :, :, na] * hh_3[na, na, :, :, :] * dder_hh_2[:, :, na, :, :]).sum(axis=3)/pr_2.shape[-1] return res, dder # DELETE IT # def calc_sft_ccs_asym_by_pr( # atom_para_multiplicity, atom_para_form_factor, debye_waller_factor, atom_para_occupancy, # atom_para_susceptibility, atom_para_sc_chi, # pr_1, pr_2, pr_5, # flag_atom_para_form_factor: bool = False, flag_debye_waller: bool = False, # flag_atom_para_occupancy: bool = False, flag_atom_para_susceptibility: bool = False, # flag_pr_1: bool = False, flag_pr_5: bool = False): # """Calculate preliminary asymmetric structure factor tensor by preliminary defined parameters in 10**-12 cm. # For more details see documentation module "Structure factor". # # The susceptibility parameters are give in mu_B # """ # mas_constr = (0.2695*atom_para_sc_chi * atom_para_susceptibility[na, :, :]).sum(axis=1) # # hh, dder_hh = calc_m_q_inv_m(pr_5[:, :, na], mas_constr[:, na, :], flag_m=False, flag_q=flag_atom_para_susceptibility) # hh_1 = atom_para_multiplicity * atom_para_occupancy # hh_2 = atom_para_form_factor * hh_1[na, :] # hh_3 = pr_1*debye_waller_factor*hh_2[:, na, :] # res = (pr_2[na, :, :] * (hh_3[na, :, :, :] * hh[:, na, :, :]).sum(axis=3)).sum(axis=2)/pr_2.shape[-1] # dder = {} # if flag_atom_para_susceptibility: # dder_hh_2 = 0.2695*(dder_hh["q"][:,:, na,:, :]* atom_para_sc_chi[na, :, :, na,:]).sum(axis=1) # dder["atom_para_susceptibility"] = (pr_2[na, na, :, :, na] * hh_3[na, na, :, :, :] * dder_hh_2[:, :, na, :, :]).sum(axis=3)/pr_2.shape[-1] # return res, dder def calc_f_nucl_by_dictionary(dict_crystal, dict_in_out, flag_use_precalculated_data: bool = False): """Calculate nuclear structure factor based on the information given in dictionary. Output information is written in the same dictionary. The following keys have to be defined. """ dict_crystal_keys = dict_crystal.keys() dict_in_out_keys = dict_in_out.keys() necessary_crystal_keys = set(["atom_fract_xyz", "atom_occupancy", "atom_scat_length_neutron", "atom_b_iso", "atom_beta", "unit_cell_parameters"]) diff_set_crystal = necessary_crystal_keys.difference(set(dict_crystal_keys)) if len(diff_set_crystal) != 0: raise AttributeError(f"The following attributes have to be defined {diff_set_crystal:}") flag_reduced_symm_elems = len(set(["reduced_symm_elems", "centrosymmetry", "translation_elems"]).difference(set(dict_crystal_keys))) == 0 flag_full_symm_elems = len(set(["full_symm_elems", ]).difference(set(dict_crystal_keys))) == 0 flag_full_mcif_elems = len(set(["full_mcif_elems", ]).difference(set(dict_crystal_keys))) == 0 if not(flag_reduced_symm_elems or flag_full_symm_elems or flag_full_mcif_elems): raise AttributeError("The symmetry elements have to be defined.") necessary_in_out_keys = set(["index_hkl", ]) diff_set_in_out = necessary_in_out_keys.difference(set(dict_in_out_keys)) if len(diff_set_in_out) != 0: raise AttributeError(f"The following attributes have to be defined {diff_set_in_out:}") index_hkl = dict_in_out["index_hkl"] if flag_reduced_symm_elems: reduced_symm_elems = dict_crystal["reduced_symm_elems"] centrosymmetry = dict_crystal["centrosymmetry"] if centrosymmetry: centrosymmetry_position = dict_crystal["centrosymmetry_position"] else: centrosymmetry_position = None translation_elems = dict_crystal["translation_elems"] elif flag_full_symm_elems: full_symm_elems = dict_crystal["full_symm_elems"] reduced_symm_elems = full_symm_elems centrosymmetry = False centrosymmetry_position = None translation_elems = numpy.array([[0], [0], [0], [1]], dtype=int) elif flag_full_mcif_elems: full_mcif_elems = dict_crystal["full_mcif_elems"] reduced_symm_elems = full_mcif_elems[:13] centrosymmetry = False centrosymmetry_position = None translation_elems = numpy.array([[0], [0], [0], [1]], dtype=int) unit_cell_parameters = dict_crystal["unit_cell_parameters"] atom_fract_xyz = dict_crystal["atom_fract_xyz"] atom_site_sc_fract = dict_crystal["atom_site_sc_fract"] atom_site_sc_b = dict_crystal["atom_site_sc_b"] atom_fract_xyz = calc_m_v(atom_site_sc_fract, numpy.mod(atom_fract_xyz, 1), flag_m=False, flag_v=False)[0] + atom_site_sc_b atom_occupancy = dict_crystal["atom_occupancy"] scat_length_neutron = dict_crystal["atom_scat_length_neutron"] atom_b_iso = dict_crystal["atom_b_iso"] atom_beta = dict_crystal["atom_beta"] if "atom_site_aniso_sc_beta" in dict_crystal_keys: atom_site_aniso_sc_beta = dict_crystal["atom_site_aniso_sc_beta"] atom_site_aniso_index = dict_crystal["atom_site_aniso_index"] atom_sc_beta = numpy.zeros((6,)+atom_beta.shape, dtype=float) atom_sc_beta[:, :, atom_site_aniso_index] = atom_site_aniso_sc_beta atom_beta = (atom_sc_beta*numpy.expand_dims(atom_beta, axis=0)).sum(axis=1) flag_unit_cell_parameters = numpy.any(dict_crystal["flags_unit_cell_parameters"]) flag_atom_fract_xyz = numpy.any(dict_crystal["flags_atom_fract_xyz"]) flag_atom_occupancy = numpy.any(dict_crystal["flags_atom_occupancy"]) flag_atom_b_iso = numpy.any(dict_crystal["flags_atom_b_iso"]) flag_atom_beta = numpy.any(dict_crystal["flags_atom_beta"]) f_nucl, dder = calc_f_nucl(index_hkl, reduced_symm_elems, centrosymmetry, centrosymmetry_position, translation_elems, unit_cell_parameters, atom_fract_xyz, atom_occupancy, scat_length_neutron, atom_b_iso, atom_beta, dict_in_out, flag_unit_cell_parameters=flag_unit_cell_parameters, flag_atom_fract_xyz=flag_atom_fract_xyz, flag_atom_occupancy=flag_atom_occupancy, flag_atom_b_iso=flag_atom_b_iso, flag_atom_beta=flag_atom_beta, flag_use_precalculated_data=flag_use_precalculated_data) return f_nucl, dder def calc_f_nucl(index_hkl, reduced_symm_elems, centrosymmetry, centrosymmetry_position, translation_elems, unit_cell_parameters, atom_fract_xyz, atom_occupancy, scat_length_neutron, atom_b_iso, atom_beta, dict_in_out: dict = None, flag_unit_cell_parameters: bool = False, flag_atom_fract_xyz: bool = False, flag_atom_occupancy: bool = False, flag_atom_b_iso: bool = False, flag_atom_beta: bool = False, flag_use_precalculated_data: bool = False): """Calculate nuclear structure factor based on the information given in dictionary. Output information is written in the same dictionary. The following keys have to be defined. """ if dict_in_out is None: flag_dict = False dict_in_out_keys = [] else: flag_dict = True dict_in_out_keys = dict_in_out.keys() if (flag_use_precalculated_data and ('index_hkl' in dict_in_out_keys)): if numpy.any(dict_in_out["index_hkl"] != index_hkl): dict_in_out.clear() dict_in_out["index_hkl"] = index_hkl if (flag_use_precalculated_data and ("atom_multiplicity" in dict_in_out_keys)): atom_multiplicity = dict_in_out["atom_multiplicity"] else: ones = numpy.ones_like(atom_fract_xyz[0]).astype(int) atom_symm_elems = numpy.stack([ (numpy.round(atom_fract_xyz[0]*10**6, decimals=0)).astype(int), (numpy.round(atom_fract_xyz[1]*10**6, decimals=0)).astype(int), (numpy.round(atom_fract_xyz[2]*10**6, decimals=0)).astype(int), ones*10**6], axis=0) if "full_symm_elems" in dict_in_out_keys: full_symm_elems = dict_in_out["full_symm_elems"] else: full_symm_elems = calc_full_symm_elems_by_reduced( reduced_symm_elems, centrosymmetry, centrosymmetry_position, translation_elems) if flag_dict: dict_in_out["full_symm_elems"] = full_symm_elems atom_multiplicity = calc_multiplicity_by_atom_symm_elems(full_symm_elems, atom_symm_elems) if flag_dict: dict_in_out["atom_multiplicity"] = atom_multiplicity flag_pr_1 = flag_atom_fract_xyz if (flag_use_precalculated_data and ("pr_1" in dict_in_out_keys) and not(flag_atom_fract_xyz)): pr_1 = dict_in_out["pr_1"] else: pr_1, dder_pr_1 = calc_pr1(index_hkl, reduced_symm_elems, atom_fract_xyz, flag_fract_xyz=flag_atom_fract_xyz) if flag_dict: dict_in_out["pr_1"] = pr_1 if (flag_use_precalculated_data and ("pr_2" in dict_in_out_keys)): pr_2 = dict_in_out["pr_2"] else: pr_2 = calc_pr2(index_hkl, reduced_symm_elems) if flag_dict: dict_in_out["pr_2"] = pr_2 if (flag_use_precalculated_data and ("pr_3" in dict_in_out_keys)): pr_3 = dict_in_out["pr_3"] else: pr_3 = calc_pr3(index_hkl, translation_elems) if flag_dict: dict_in_out["pr_3"] = pr_3 if (flag_use_precalculated_data and ("pr_4" in dict_in_out_keys)): pr_4 = dict_in_out["pr_4"] else: pr_4 = calc_pr4(index_hkl, centrosymmetry_position) if flag_dict: dict_in_out["pr_4"] = pr_4 flag_sthovl = flag_unit_cell_parameters if (flag_use_precalculated_data and ("sthovl" in dict_in_out_keys) and not(flag_sthovl)): sthovl = dict_in_out["sthovl"] else: sthovl, dder_sthovl = calc_sthovl_by_unit_cell_parameters( index_hkl, unit_cell_parameters, flag_unit_cell_parameters=flag_unit_cell_parameters) if flag_dict: dict_in_out["sthovl"] = sthovl # dimensions ["hkl", "reduced symmetry", "atom"] flag_debye_waller_factor = flag_sthovl or flag_atom_b_iso or flag_atom_beta if (flag_use_precalculated_data and ("debye_waller_factor" in dict_in_out_keys) and not(flag_debye_waller_factor)): debye_waller_factor = dict_in_out["debye_waller_factor"] else: debye_waller_factor, dder_dw = calc_dwf( index_hkl[:, :, na, na], sthovl[:, na, na], atom_b_iso[na, na, :], atom_beta[:, na, na, :], reduced_symm_elems[:, na, :, na], flag_sthovl=flag_sthovl, flag_b_iso=flag_atom_b_iso, flag_beta=flag_atom_beta) if flag_dict: dict_in_out["debye_waller_factor"] = debye_waller_factor flag_scat_length_neutron = False flag_debye_waller = flag_atom_b_iso or flag_atom_beta flag_f_asym = flag_scat_length_neutron or flag_debye_waller or flag_pr_1 if (flag_use_precalculated_data and ("f_asym" in dict_in_out_keys) and not(flag_f_asym)): f_asym = dict_in_out["f_asym"] else: f_asym, dder_f_asym = calc_f_asym_a_by_pr( atom_multiplicity, debye_waller_factor, atom_occupancy, pr_1, pr_2, flag_debye_waller=flag_debye_waller, flag_atom_occupancy=flag_atom_occupancy, flag_pr_1=flag_pr_1) if flag_dict: dict_in_out["f_asym"] = f_asym flag_f_nucl = flag_f_asym if (flag_use_precalculated_data and ("f_nucl" in dict_in_out_keys) and not(flag_f_nucl)): f_nucl = dict_in_out["f_nucl"] else: f_nucl, dder_f_nucl = calc_f_by_f_asym_a_pr(f_asym, scat_length_neutron, pr_3, centrosymmetry, pr_4, flag_f_asym_a=flag_f_asym, flag_scattering_length=flag_scat_length_neutron) if flag_dict: dict_in_out["f_nucl"] = f_nucl dder = {} if flag_unit_cell_parameters: dder["unit_cell_parameters"] = None if flag_atom_fract_xyz: dder["atom_fract_xyz"] = None if flag_atom_occupancy: dder["atom_occupancy"] = None if flag_atom_b_iso: dder["atom_b_iso"] = None if flag_atom_beta: dder["atom_beta"] = None return f_nucl, dder def calc_f_charge_by_dictionary(dict_crystal, wavelength:float, dict_in_out, flag_use_precalculated_data: bool = False): """Calculate nuclear structure factor based on the information given in dictionary. Output information is written in the same dictionary. The following keys have to be defined. """ dict_crystal_keys = dict_crystal.keys() dict_in_out_keys = dict_in_out.keys() necessary_crystal_keys = set(["atom_fract_xyz", "atom_occupancy", "atom_scat_length_neutron", "atom_b_iso", "atom_beta", "unit_cell_parameters"]) diff_set_crystal = necessary_crystal_keys.difference(set(dict_crystal_keys)) if len(diff_set_crystal) != 0: raise AttributeError(f"The following attributes have to be defined {diff_set_crystal:}") flag_reduced_symm_elems = len(set(["reduced_symm_elems", "centrosymmetry", "translation_elems"]).difference(set(dict_crystal_keys))) == 0 flag_full_symm_elems = len(set(["full_symm_elems", ]).difference(set(dict_crystal_keys))) == 0 flag_full_mcif_elems = len(set(["full_mcif_elems", ]).difference(set(dict_crystal_keys))) == 0 if not(flag_reduced_symm_elems or flag_full_symm_elems or flag_full_mcif_elems): raise AttributeError("The symmetry elements have to be defined.") necessary_in_out_keys = set(["index_hkl", ]) diff_set_in_out = necessary_in_out_keys.difference(set(dict_in_out_keys)) if len(diff_set_in_out) != 0: raise AttributeError(f"The following attributes have to be defined {diff_set_in_out:}") index_hkl = dict_in_out["index_hkl"] if flag_reduced_symm_elems: reduced_symm_elems = dict_crystal["reduced_symm_elems"] centrosymmetry = dict_crystal["centrosymmetry"] if centrosymmetry: centrosymmetry_position = dict_crystal["centrosymmetry_position"] else: centrosymmetry_position = None translation_elems = dict_crystal["translation_elems"] elif flag_full_symm_elems: full_symm_elems = dict_crystal["full_symm_elems"] reduced_symm_elems = full_symm_elems centrosymmetry = False centrosymmetry_position = None translation_elems = numpy.array([[0], [0], [0], [1]], dtype=int) elif flag_full_mcif_elems: full_mcif_elems = dict_crystal["full_mcif_elems"] reduced_symm_elems = full_mcif_elems[:13] centrosymmetry = False centrosymmetry_position = None translation_elems = numpy.array([[0], [0], [0], [1]], dtype=int) unit_cell_parameters = dict_crystal["unit_cell_parameters"] atom_fract_xyz = dict_crystal["atom_fract_xyz"] atom_site_sc_fract = dict_crystal["atom_site_sc_fract"] atom_site_sc_b = dict_crystal["atom_site_sc_b"] atom_fract_xyz = calc_m_v(atom_site_sc_fract, numpy.mod(atom_fract_xyz, 1), flag_m=False, flag_v=False)[0] + atom_site_sc_b atom_occupancy = dict_crystal["atom_occupancy"] table_sthovl = dict_crystal["table_sthovl"] table_atom_scattering_amplitude = dict_crystal["table_atom_scattering_amplitude"] table_wavelength = dict_crystal["table_wavelength"] table_atom_dispersion = dict_crystal["table_atom_dispersion"] atom_dispersion = numpy.array([numpy.interp(float(wavelength), table_wavelength, hh) for hh in table_atom_dispersion], dtype=complex) dict_in_out["atom_dispersion"] = atom_dispersion atom_b_iso = dict_crystal["atom_b_iso"] atom_beta = dict_crystal["atom_beta"] if "atom_site_aniso_sc_beta" in dict_crystal_keys: atom_site_aniso_sc_beta = dict_crystal["atom_site_aniso_sc_beta"] atom_site_aniso_index = dict_crystal["atom_site_aniso_index"] atom_sc_beta = numpy.zeros((6,)+atom_beta.shape, dtype=float) atom_sc_beta[:, :, atom_site_aniso_index] = atom_site_aniso_sc_beta atom_beta = (atom_sc_beta*numpy.expand_dims(atom_beta, axis=0)).sum(axis=1) flag_unit_cell_parameters = numpy.any(dict_crystal["flags_unit_cell_parameters"]) flag_atom_fract_xyz = numpy.any(dict_crystal["flags_atom_fract_xyz"]) flag_atom_occupancy = numpy.any(dict_crystal["flags_atom_occupancy"]) flag_atom_b_iso = numpy.any(dict_crystal["flags_atom_b_iso"]) flag_atom_beta = numpy.any(dict_crystal["flags_atom_beta"]) f_charge, dder = calc_f_charge(index_hkl, reduced_symm_elems, centrosymmetry, centrosymmetry_position, translation_elems, unit_cell_parameters, atom_fract_xyz, atom_occupancy, table_sthovl, table_atom_scattering_amplitude, atom_dispersion, atom_b_iso, atom_beta, dict_in_out, flag_unit_cell_parameters=flag_unit_cell_parameters, flag_atom_fract_xyz=flag_atom_fract_xyz, flag_atom_occupancy=flag_atom_occupancy, flag_atom_b_iso=flag_atom_b_iso, flag_atom_beta=flag_atom_beta, flag_use_precalculated_data=flag_use_precalculated_data) return f_charge, dder def calc_f_charge(index_hkl, reduced_symm_elems, centrosymmetry, centrosymmetry_position, translation_elems, unit_cell_parameters, atom_fract_xyz, atom_occupancy, table_sthovl, table_atom_scattering_amplitude, atom_dispersion, atom_b_iso, atom_beta, dict_in_out: dict = None, flag_unit_cell_parameters: bool = False, flag_atom_fract_xyz: bool = False, flag_atom_occupancy: bool = False, flag_atom_b_iso: bool = False, flag_atom_beta: bool = False, flag_use_precalculated_data: bool = False): """Calculate nuclear structure factor based on the information given in dictionary. Output information is written in the same dictionary. The following keys have to be defined. """ if dict_in_out is None: flag_dict = False dict_in_out_keys = [] else: flag_dict = True dict_in_out_keys = dict_in_out.keys() if (flag_use_precalculated_data and ('index_hkl' in dict_in_out_keys)): if numpy.any(dict_in_out["index_hkl"] != index_hkl): dict_in_out.clear() dict_in_out["index_hkl"] = index_hkl if (flag_use_precalculated_data and ("atom_multiplicity" in dict_in_out_keys)): atom_multiplicity = dict_in_out["atom_multiplicity"] else: ones = numpy.ones_like(atom_fract_xyz[0]).astype(int) atom_symm_elems = numpy.stack([ (numpy.round(atom_fract_xyz[0]*10**6, decimals=0)).astype(int), (numpy.round(atom_fract_xyz[1]*10**6, decimals=0)).astype(int), (numpy.round(atom_fract_xyz[2]*10**6, decimals=0)).astype(int), ones*10**6], axis=0) if "full_symm_elems" in dict_in_out_keys: full_symm_elems = dict_in_out["full_symm_elems"] else: full_symm_elems = calc_full_symm_elems_by_reduced( reduced_symm_elems, centrosymmetry, centrosymmetry_position, translation_elems) if flag_dict: dict_in_out["full_symm_elems"] = full_symm_elems atom_multiplicity = calc_multiplicity_by_atom_symm_elems(full_symm_elems, atom_symm_elems) if flag_dict: dict_in_out["atom_multiplicity"] = atom_multiplicity flag_pr_1 = flag_atom_fract_xyz if (flag_use_precalculated_data and ("pr_1" in dict_in_out_keys) and not(flag_atom_fract_xyz)): pr_1 = dict_in_out["pr_1"] else: pr_1, dder_pr_1 = calc_pr1(index_hkl, reduced_symm_elems, atom_fract_xyz, flag_fract_xyz=flag_atom_fract_xyz) if flag_dict: dict_in_out["pr_1"] = pr_1 if (flag_use_precalculated_data and ("pr_2" in dict_in_out_keys)): pr_2 = dict_in_out["pr_2"] else: pr_2 = calc_pr2(index_hkl, reduced_symm_elems) if flag_dict: dict_in_out["pr_2"] = pr_2 if (flag_use_precalculated_data and ("pr_3" in dict_in_out_keys)): pr_3 = dict_in_out["pr_3"] else: pr_3 = calc_pr3(index_hkl, translation_elems) if flag_dict: dict_in_out["pr_3"] = pr_3 if (flag_use_precalculated_data and ("pr_4" in dict_in_out_keys)): pr_4 = dict_in_out["pr_4"] else: pr_4 = calc_pr4(index_hkl, centrosymmetry_position) if flag_dict: dict_in_out["pr_4"] = pr_4 flag_sthovl = flag_unit_cell_parameters if (flag_use_precalculated_data and ("sthovl" in dict_in_out_keys) and not(flag_sthovl)): sthovl = dict_in_out["sthovl"] else: sthovl, dder_sthovl = calc_sthovl_by_unit_cell_parameters( index_hkl, unit_cell_parameters, flag_unit_cell_parameters=flag_unit_cell_parameters) if flag_dict: dict_in_out["sthovl"] = sthovl # dimensions ["hkl", "reduced symmetry", "atom"] flag_debye_waller_factor = flag_sthovl or flag_atom_b_iso or flag_atom_beta if (flag_use_precalculated_data and ("debye_waller_factor" in dict_in_out_keys) and not(flag_debye_waller_factor)): debye_waller_factor = dict_in_out["debye_waller_factor"] else: debye_waller_factor, dder_dw = calc_dwf( index_hkl[:, :, na, na], sthovl[:, na, na], atom_b_iso[na, na, :], atom_beta[:, na, na, :], reduced_symm_elems[:, na, :, na], flag_sthovl=flag_sthovl, flag_b_iso=flag_atom_b_iso, flag_beta=flag_atom_beta) if flag_dict: dict_in_out["debye_waller_factor"] = debye_waller_factor flag_scat_length_neutron = False flag_debye_waller = flag_atom_b_iso or flag_atom_beta flag_f_asym = flag_scat_length_neutron or flag_debye_waller or flag_pr_1 if (flag_use_precalculated_data and ("f_asym" in dict_in_out_keys) and not(flag_f_asym)): f_asym = dict_in_out["f_asym"] else: l_scat_length_xray = [ numpy.interp(sthovl, table_sthovl, table_sc_ampl) for table_sc_ampl in table_atom_scattering_amplitude] hh = numpy.stack(l_scat_length_xray, axis=1) scat_length_xray = ( numpy.stack(l_scat_length_xray, axis=1) + numpy.expand_dims(atom_dispersion, axis=0) ) f_asym, dder_f_asym = calc_f_asym_a_by_pr( atom_multiplicity, debye_waller_factor, atom_occupancy, pr_1, pr_2, flag_debye_waller=flag_debye_waller, flag_atom_occupancy=flag_atom_occupancy, flag_pr_1=flag_pr_1) if flag_dict: dict_in_out["f_asym"] = f_asym flag_f_charge = flag_f_asym if (flag_use_precalculated_data and ("f_charge" in dict_in_out_keys) and not(flag_f_charge)): f_charge = dict_in_out["f_charge"] else: f_charge, dder_f_charge = calc_f_by_f_asym_a_pr(f_asym, scat_length_xray, pr_3, centrosymmetry, pr_4, flag_f_asym_a=flag_f_asym, flag_scattering_length=flag_scat_length_neutron) if flag_dict: dict_in_out["f_charge"] = f_charge dder = {} if flag_unit_cell_parameters: dder["unit_cell_parameters"] = None if flag_atom_fract_xyz: dder["atom_fract_xyz"] = None if flag_atom_occupancy: dder["atom_occupancy"] = None if flag_atom_b_iso: dder["atom_b_iso"] = None if flag_atom_beta: dder["atom_beta"] = None return f_charge, dder def calc_sft_ccs_by_dictionary(dict_crystal, dict_in_out, flag_use_precalculated_data: bool = False): """Calculate structure factor tensor in CCS (X||a*, Z||c) based on the information given in dictionary. Output information is written in the same dictionary. """ dict_crystal_keys = dict_crystal.keys() dict_in_out_keys = dict_in_out.keys() necessary_crystal_keys = set(["unit_cell_parameters", ]) diff_set_crystal = necessary_crystal_keys.difference(set(dict_crystal_keys)) if len(diff_set_crystal) != 0: raise AttributeError(f"The following attributes have to be defined {diff_set_crystal:}") flag_reduced_symm_elems = len(set(["reduced_symm_elems", "centrosymmetry", "translation_elems"]).difference(set(dict_crystal_keys))) == 0 flag_full_symm_elems = len(set(["full_symm_elems", ]).difference(set(dict_crystal_keys))) == 0 flag_full_mcif_elems = len(set(["full_mcif_elems", ]).difference(set(dict_crystal_keys))) == 0 if not(flag_reduced_symm_elems or flag_full_symm_elems or flag_full_mcif_elems): raise AttributeError("The symmetry elements have to be defined.") necessary_in_out_keys = set(["index_hkl", ]) diff_set_in_out = necessary_in_out_keys.difference(set(dict_in_out_keys)) if len(diff_set_in_out) != 0: raise AttributeError(f"The following attributes have to be defined {diff_set_in_out:}") index_hkl = dict_in_out["index_hkl"] non_zero_keys = set(["mag_atom_lande_factor", "mag_atom_kappa", "mag_atom_j0_parameters", "mag_atom_j2_parameters"]) diff_set_crystal = non_zero_keys.difference(set(dict_crystal_keys)) if len(diff_set_crystal) != 0: sft_ccs = numpy.zeros((9, index_hkl.shape[-1]), dtype=complex) dder = {} return sft_ccs, dder if "flag_only_orbital" in dict_in_out_keys: flag_only_orbital = dict_in_out["flag_only_orbital"] else: flag_only_orbital = False if flag_reduced_symm_elems: reduced_symm_elems = dict_crystal["reduced_symm_elems"] centrosymmetry = dict_crystal["centrosymmetry"] if centrosymmetry: centrosymmetry_position = dict_crystal["centrosymmetry_position"] else: centrosymmetry_position = None translation_elems = dict_crystal["translation_elems"] elif flag_full_symm_elems: full_symm_elems = dict_crystal["full_symm_elems"] reduced_symm_elems = full_symm_elems centrosymmetry = False centrosymmetry_position = None translation_elems = numpy.array([[0], [0], [0], [1]], dtype=int) elif flag_full_mcif_elems: full_mcif_elems = dict_crystal["full_mcif_elems"] reduced_symm_elems = full_mcif_elems[:13] centrosymmetry = False centrosymmetry_position = None translation_elems = numpy.array([[0], [0], [0], [1]], dtype=int) unit_cell_parameters = dict_crystal["unit_cell_parameters"] atom_para_index = dict_crystal["atom_para_index"] atom_para_fract_xyz = dict_crystal["atom_fract_xyz"][:, atom_para_index] atom_para_sc_fract = dict_crystal["atom_site_sc_fract"][:, atom_para_index] atom_para_sc_b = dict_crystal["atom_site_sc_b"][:, atom_para_index] atom_para_fract_xyz = calc_m_v( atom_para_sc_fract, numpy.mod(atom_para_fract_xyz, 1), flag_m=False, flag_v=False)[0] + atom_para_sc_b atom_para_occupancy = dict_crystal["atom_occupancy"][atom_para_index] atom_para_b_iso = dict_crystal["atom_b_iso"][atom_para_index] atom_beta = dict_crystal["atom_beta"] if "atom_site_aniso_sc_beta" in dict_crystal_keys: atom_site_aniso_sc_beta = dict_crystal["atom_site_aniso_sc_beta"] atom_site_aniso_index = dict_crystal["atom_site_aniso_index"] atom_sc_beta = numpy.zeros((6,)+atom_beta.shape, dtype=float) atom_sc_beta[:, :, atom_site_aniso_index] = atom_site_aniso_sc_beta atom_beta = (atom_sc_beta*numpy.expand_dims(atom_beta, axis=0)).sum(axis=1) atom_para_beta = atom_beta[:, atom_para_index] mag_atom_para_index = dict_crystal["mag_atom_para_index"] atom_para_lande_factor = dict_crystal["mag_atom_lande_factor"][mag_atom_para_index] atom_para_kappa = dict_crystal["mag_atom_kappa"][mag_atom_para_index] atom_para_j0_parameters = dict_crystal["mag_atom_j0_parameters"][:, mag_atom_para_index] atom_para_j2_parameters = dict_crystal["mag_atom_j2_parameters"][:, mag_atom_para_index] atom_para_susceptibility = dict_crystal["atom_para_susceptibility"] atom_para_sc_chi = dict_crystal["atom_para_sc_chi"] flag_unit_cell_parameters = numpy.any(dict_crystal["flags_unit_cell_parameters"]) flag_atom_para_fract_xyz = numpy.any(dict_crystal["flags_atom_fract_xyz"][:, atom_para_index]) flag_atom_para_occupancy = numpy.any(dict_crystal["flags_atom_occupancy"][atom_para_index]) flag_atom_para_b_iso = numpy.any(dict_crystal["flags_atom_b_iso"][atom_para_index]) flag_atom_para_beta = numpy.any(dict_crystal["flags_atom_beta"][:, atom_para_index]) flag_atom_para_susceptibility = numpy.any(dict_crystal["flags_atom_para_susceptibility"]) flag_atom_para_lande_factor = numpy.any(dict_crystal["flags_mag_atom_lande_factor"][mag_atom_para_index]) flag_atom_para_kappa = numpy.any(dict_crystal["flags_mag_atom_kappa"][mag_atom_para_index]) sft_ccs, dder = calc_sft_ccs(index_hkl, reduced_symm_elems, centrosymmetry, centrosymmetry_position, translation_elems, unit_cell_parameters, atom_para_fract_xyz, atom_para_occupancy, atom_para_susceptibility, atom_para_b_iso, atom_para_beta, atom_para_lande_factor, atom_para_kappa, atom_para_j0_parameters, atom_para_j2_parameters, atom_para_sc_chi, dict_in_out=dict_in_out, flag_only_orbital=flag_only_orbital, flag_unit_cell_parameters=flag_unit_cell_parameters, flag_atom_para_fract_xyz=flag_atom_para_fract_xyz, flag_atom_para_occupancy=flag_atom_para_occupancy, flag_atom_para_susceptibility=flag_atom_para_susceptibility, flag_atom_para_b_iso=flag_atom_para_b_iso, flag_atom_para_beta=flag_atom_para_beta, flag_atom_para_lande_factor=flag_atom_para_lande_factor, flag_atom_para_kappa=flag_atom_para_kappa, flag_use_precalculated_data=flag_use_precalculated_data) return sft_ccs, dder def calc_sft_ccs(index_hkl, reduced_symm_elems, centrosymmetry, centrosymmetry_position, translation_elems, unit_cell_parameters, atom_para_fract_xyz, atom_para_occupancy, atom_para_susceptibility, atom_para_b_iso, atom_para_beta, atom_para_lande_factor, atom_para_kappa, atom_para_j0_parameters, atom_para_j2_parameters, atom_para_sc_chi, dict_in_out: dict = None, flag_only_orbital: bool = False, flag_unit_cell_parameters: bool = False, flag_atom_para_fract_xyz: bool = False, flag_atom_para_occupancy: bool = False, flag_atom_para_susceptibility: bool = False, flag_atom_para_b_iso: bool = False, flag_atom_para_beta: bool = False, flag_atom_para_lande_factor: bool = False, flag_atom_para_kappa: bool = False, flag_use_precalculated_data: bool = False): """Calculate structure factor tensor in Cartesian coordinate system with X||a*, Z||c in 10**-12 cm. Note, that the susceptibility parameters are given in mu_B. """ if dict_in_out is None: flag_dict = False dict_in_out_keys = [] else: flag_dict = True dict_in_out_keys = dict_in_out.keys() if 'index_hkl' in dict_in_out_keys: if numpy.any(dict_in_out["index_hkl"] != index_hkl): dict_in_out.clear() dict_in_out["index_hkl"] = index_hkl if (flag_use_precalculated_data and ("atom_para_multiplicity" in dict_in_out_keys)): mag_atom_multiplicity = dict_in_out["atom_para_multiplicity"] else: ones = numpy.ones_like(atom_para_fract_xyz[0]).astype(int) atom_symm_elems = numpy.stack([ (numpy.round(atom_para_fract_xyz[0]*10**6, decimals=0)).astype(int), (numpy.round(atom_para_fract_xyz[1]*10**6, decimals=0)).astype(int), (numpy.round(atom_para_fract_xyz[2]*10**6, decimals=0)).astype(int), ones*10**6], axis=0) if "full_symm_elems" in dict_in_out_keys: full_symm_elems = dict_in_out["full_symm_elems"] else: full_symm_elems = calc_full_symm_elems_by_reduced( reduced_symm_elems, centrosymmetry, centrosymmetry_position, translation_elems) if flag_dict: dict_in_out["full_symm_elems"] = full_symm_elems mag_atom_multiplicity = calc_multiplicity_by_atom_symm_elems(full_symm_elems, atom_symm_elems) if flag_dict: dict_in_out["atom_para_multiplicity"] = mag_atom_multiplicity flag_pr_1 = flag_atom_para_fract_xyz if (flag_use_precalculated_data and ("pr_1_atom_para" in dict_in_out_keys) and not(flag_atom_para_fract_xyz)): pr_1 = dict_in_out["pr_1_atom_para"] else: pr_1, dder_pr_1 = calc_pr1(index_hkl, reduced_symm_elems, atom_para_fract_xyz, flag_fract_xyz=flag_atom_para_fract_xyz) if flag_dict: dict_in_out["pr_1_atom_para"] = pr_1 if (flag_use_precalculated_data and ("pr_2" in dict_in_out_keys)): pr_2 = dict_in_out["pr_2"] else: pr_2 = calc_pr2(index_hkl, reduced_symm_elems) if flag_dict: dict_in_out["pr_2"] = pr_2 if (flag_use_precalculated_data and ("pr_3" in dict_in_out_keys)): pr_3 = dict_in_out["pr_3"] else: pr_3 = calc_pr3(index_hkl, translation_elems) if flag_dict: dict_in_out["pr_3"] = pr_3 if (flag_use_precalculated_data and ("pr_4" in dict_in_out_keys)): pr_4 = dict_in_out["pr_4"] else: pr_4 = calc_pr4(index_hkl, centrosymmetry_position) if flag_dict: dict_in_out["pr_4"] = pr_4 flag_sthovl = flag_unit_cell_parameters if (flag_use_precalculated_data and ("sthovl" in dict_in_out_keys) and not(flag_sthovl)): sthovl = dict_in_out["sthovl"] else: sthovl, dder_sthovl = calc_sthovl_by_unit_cell_parameters( index_hkl, unit_cell_parameters, flag_unit_cell_parameters=flag_unit_cell_parameters) if flag_dict: dict_in_out["sthovl"] = sthovl flag_pr_5 = flag_unit_cell_parameters if (flag_use_precalculated_data and ("pr_5" in dict_in_out_keys) and not(flag_pr_5)): pr_5 = dict_in_out["pr_5"] else: pr_5, dder_pr_5 = calc_pr5(reduced_symm_elems, unit_cell_parameters, flag_unit_cell_parameters=flag_unit_cell_parameters) if flag_dict: dict_in_out["pr_5"] = pr_5 flag_atom_para_form_factor = (flag_sthovl or flag_atom_para_lande_factor or flag_atom_para_kappa) flag_hh = True if "flag_only_orbital" in dict_in_out_keys: flag_hh = flag_only_orbital == dict_in_out["flag_only_orbital"] dict_in_out["flag_only_orbital"] = flag_only_orbital if (flag_use_precalculated_data and ("atom_para_form_factor" in dict_in_out_keys) and not(flag_atom_para_form_factor) and flag_hh): atom_para_form_factor = dict_in_out["atom_para_form_factor"] else: atom_para_form_factor, dder_ff = calc_form_factor( sthovl[:, na], atom_para_lande_factor[na, :], atom_para_kappa[na, :], atom_para_j0_parameters[:, na, :], atom_para_j2_parameters[:, na, :], flag_lande_factor=flag_atom_para_lande_factor, flag_only_orbital=flag_only_orbital, flag_sthovl=flag_sthovl, flag_kappa=flag_atom_para_kappa) if flag_dict: dict_in_out["atom_para_form_factor"] = atom_para_form_factor # dimensions ["hkl", "reduced symmetry", "atom"] flag_debye_waller_factor = flag_sthovl or flag_atom_para_b_iso or flag_atom_para_beta if (flag_use_precalculated_data and ("atom_para_debye_waller_factor" in dict_in_out_keys) and not(flag_debye_waller_factor)): debye_waller_factor = dict_in_out["atom_para_debye_waller_factor"] else: debye_waller_factor, dder_dw = calc_dwf( index_hkl[:, :, na, na], sthovl[:, na, na], atom_para_b_iso[na, na, :], atom_para_beta[:, na, na, :], reduced_symm_elems[:, na, :, na], flag_sthovl=flag_sthovl, flag_b_iso=flag_atom_para_b_iso, flag_beta=flag_atom_para_beta) if flag_dict: dict_in_out["atom_para_debye_waller_factor"] = debye_waller_factor flag_scat_length_neutron = False flag_debye_waller = flag_atom_para_b_iso or flag_atom_para_beta flag_sft_ccs_asym = flag_atom_para_form_factor or flag_debye_waller or flag_atom_para_occupancy or flag_atom_para_susceptibility or flag_pr_1 or flag_pr_5 if (flag_use_precalculated_data and ("sft_ccs_asym" in dict_in_out_keys) and not(flag_sft_ccs_asym)): sft_ccs_asym = dict_in_out["sft_ccs_asym"] else: sft_ccs_asym, dder_sft_ccs_asym = calc_sft_ccs_asym_a_by_pr( mag_atom_multiplicity, debye_waller_factor, atom_para_occupancy, atom_para_susceptibility, atom_para_sc_chi, pr_1, pr_2, pr_5, flag_debye_waller=flag_debye_waller, flag_atom_para_occupancy=flag_atom_para_occupancy, flag_atom_para_susceptibility = flag_atom_para_susceptibility, flag_pr_1=flag_pr_1, flag_pr_5=flag_pr_5) if flag_dict: dict_in_out["sft_ccs_asym"] = sft_ccs_asym flag_sft_ccs = flag_sft_ccs_asym if (flag_use_precalculated_data and ("sft_ccs" in dict_in_out_keys) and not(flag_sft_ccs)): sft_ccs = dict_in_out["sft_ccs"] else: sft_ccs, dder_sft_ccs = calc_f_by_f_asym_a_pr(sft_ccs_asym, atom_para_form_factor, pr_3, centrosymmetry, pr_4, flag_f_asym_a=flag_sft_ccs_asym, flag_scattering_length=flag_atom_para_form_factor) if flag_dict: dict_in_out["sft_ccs"] = sft_ccs dder = {} if flag_unit_cell_parameters: dder["unit_cell_parameters"] = None if flag_atom_para_fract_xyz: dder["atom_para_fract_xyz"] = None if flag_atom_para_occupancy: dder["atom_para_occupancy"] = None if flag_atom_para_b_iso: dder["atom_para_b_iso"] = None if flag_atom_para_beta: dder["atom_para_beta"] = None if flag_atom_para_susceptibility: dder["atom_para_susceptibility"] = ( dder_sft_ccs["f_asym_a_real"][:, na, :, :]*dder_sft_ccs_asym["atom_para_susceptibility"]+ dder_sft_ccs["f_asym_a_imag"][:, na, :, :]*dder_sft_ccs_asym["atom_para_susceptibility"]) return sft_ccs, dder def calc_index_hkl_multiplicity_in_range(sthovl_min, sthovl_max, unit_cell_parameters, reduced_symm_elems, translation_elems, centrosymmetry: bool): a, b, c = unit_cell_parameters[0], unit_cell_parameters[1], unit_cell_parameters[2] h_max = int(2.*a*sthovl_max) k_max = int(2.*b*sthovl_max) l_max = int(2.*c*sthovl_max) index_h = numpy.arange(-h_max, h_max+1, 1, dtype=int) index_k = numpy.arange(-k_max, k_max+1, 1, dtype=int) index_l = numpy.arange(-l_max, l_max+1, 1, dtype=int) index_h, index_k, index_l = numpy.meshgrid(index_h, index_k, index_l, indexing="ij") index_h, index_k, index_l = index_h.flatten(), index_k.flatten(), index_l.flatten() index_hkl_full = numpy.stack([index_h, index_k, index_l], axis=0) index_hkl_equivalent = calc_equivalent_reflections(index_hkl_full, reduced_symm_elems, centrosymmetry=centrosymmetry) label_hkl_equivalent = 1000000*index_hkl_equivalent[0] + 1000*index_hkl_equivalent[1] + index_hkl_equivalent[2] index_max = numpy.argsort(label_hkl_equivalent, axis=1)[:,-1] index_hkl_sort = index_hkl_equivalent[:, numpy.arange(index_max.size),index_max] index_hkl_unique, counts_unique = numpy.unique(index_hkl_sort, axis=1, return_counts=True) pr_3 = calc_pr3(index_hkl_unique, translation_elems) flag = numpy.logical_not(numpy.isclose(pr_3, 0.)) index_hkl = index_hkl_unique[:, flag] counts = counts_unique[flag] sthovl, dder_sthovl = calc_sthovl_by_unit_cell_parameters(index_hkl, unit_cell_parameters) arg_sort_sthovl = numpy.argsort(sthovl) index_hkl_sort = index_hkl[:, arg_sort_sthovl] counts_sort = counts[arg_sort_sthovl] sthovl_sort = sthovl[arg_sort_sthovl] flag =
numpy.logical_and(sthovl_sort>= sthovl_min, sthovl_sort <= sthovl_max)
numpy.logical_and
# # nd2cat (n-dimensional 2 categorical) # Author: <NAME> # import numpy as np import pandas as pd import scipy.ndimage import skimage import skimage.color import skimage.io as io import skimage.transform as transform from scipy.ndimage.filters import maximum_filter from sklearn.cluster import KMeans from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import MeanShift from sklearn.cluster import AgglomerativeClustering from sklearn.decomposition import PCA def relabel_clusters(clusters): k = clusters.shape[0] ch = clusters.shape[1] def dist(a, b): return np.sqrt(np.sum(np.square(a-b))) # used will be a list of tuples of (centroid_sum, n) used = [] unused = list(range(k)) prev_cluster =
np.zeros((ch,))
numpy.zeros
# by TR from obspy.core import UTCDateTime try: from sito.util import dist2gps except: pass import logging import numpy as np import matplotlib from matplotlib.colors import Normalize from matplotlib import cbook from numpy import ma log = logging.getLogger(__name__) def equi(m, lat, lon, radius, indeg=True): if indeg: radius = radius / 360. * 6371. * 2 * np.pi X = [] Y = [] for azimuth in range(0, 360): glat2, glon2 = dist2gps(radius, azimuth, lat, lon) X.append(glon2) Y.append(glat2) X.append(X[0]) Y.append(Y[0]) #~ m.plot(X,Y,**kwargs) #Should work, but doesn't... X, Y = m(X, Y) return X, Y def line(m, lat, lon, azi, start, end, indeg=True): if indeg: start = start / 360. * 6371. * 2 * np.pi end = end / 360. * 6371. * 2 * np.pi X = [] Y = [] for distance in np.linspace(start, end, 100): glat2, glon2 = dist2gps(distance, azi, lat, lon) X.append(glon2) Y.append(glat2) X, Y = m(X, Y) return X, Y def _getUTCListFromSth(stream, time, raisenumber=False): N = len(stream) if isinstance(time, basestring): if 'onset' in time or 'time' in time: #isinstance(relative, basestring): ret = stream.getHI(time) elif time == 'middle': starttime = stream.getHI('starttime') endtime = stream.getHI('endtime') ret = [starttime[i] + (endtime[i] - starttime[i]) / 2 for i in range(N)] else: raise ValueError('time is string but not expected one.') elif isinstance(time, UTCDateTime): ret = [time] * N elif cbook.iterable(time): if np.any([not isinstance(entry, (UTCDateTime, float, int, long)) for entry in time]): raise ValueError('time is list, but not of UTCDateTime or float objects.') if len(time) != N: raise ValueError('time is list, but has not the length of stream.') ret = None elif isinstance(time, (float, int, long)) and not raisenumber: ret = None else: raise ValueError('time has wrong type.') return ret def getTimeIntervall(stream, start=None, end=None, relative='starttime', ret_rel='utc'): """ Create two lists of UTCDateTimes - start list and end list 'time' can stand for UTCDateTime, list of UTCDateTimes, header entry out of ('ponset', 'sonset', 'startime', 'endtime') or 'middle' :param start, end: - None (means start- resp. endtime) - time object - or seconds relative to param relative :param relative: times (if given as seconds=numbers) are taken relative to this parameter, is also needed for param ret_rel='relative -time object :param ret_rel: - 'utc' output in absolute UTCDateTime - 'relative': output in seconds relative to param relative - time object: output in seconds relative to time :return: start and end list of UTCDateTime or None if stream has length 0 """ N = len(stream) if N == 0: return # get list of UTCDateTimes for start_out and end_out if start == None: start = 'starttime' if end == None: end = 'endtime' start_out = _getUTCListFromSth(stream, start) end_out = _getUTCListFromSth(stream, end) # get list of UTCDateTimes for relative if needed if start_out == None or end_out == None or ret_rel == 'relative': relative = _getUTCListFromSth(stream, relative, raisenumber=True) # get list of UTCDateTimes for start_out and end_out if start_out == None: if cbook.iterable(start): start_out = [utc + start[i] for i, utc in enumerate(relative)] else: start_out = [i + start for i in relative] if end_out == None: if cbook.iterable(start): end_out = [utc + end[i] for i, utc in enumerate(relative)] else: end_out = [i + end for i in relative] # convert UTCDateTimes to seconds if ret_rel demands it if ret_rel == 'utc': return start_out, end_out elif ret_rel != 'relative': relative = _getUTCListFromSth(stream, ret_rel) start_out = [start_out[i] - relative[i] for i in range(N)] end_out = [end_out[i] - relative[i] for i in range(N)] return start_out, end_out def getDataWindow(stream, start=None, end=None, relative='starttime'): """ Return array with data in time window (start, end) around relative. 'time' can stand for UTCDateTime, list of UTCDateTimes, header entry out of ('ponset', 'sonset', 'startime', 'endtime') or 'middle' :param stream: Stream object with data :param start, end: time or float (seconds) relative to param=relative :param relative: time, is needed if start or end in seconds (float) :return: np.array of shape (N_stream, N_data) """ stream = stream.slice2(start, end, relative=relative) N_stream = len(stream) if N_stream == 0: raise ValueError('Stream has length 0') samp = stream.getHI('sampling_rate') if min(samp) != max(samp): stream.downsample2(min(samp)) log.warning('Downsampling stream because of differing sampling rate.') npts = stream.getHI('npts') if min(npts) != max(npts): log.warning('Traces in stream have different NPTS. ' 'Difference: %d samples' % (max(npts) - min(npts))) data = np.zeros((N_stream, max(npts))) for i, trace in enumerate(stream): data[i, :len(trace.data)] = trace.data return data # create colormap Blue -> White -> Red for xcorr plots cdict = {'red': ((0.0, 0.0, 0.0), # (0.3, 0.5, 0.5), (0.5, 1.0, 1.0), # (0.7, 1.0, 1.0), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), # (0.3, 1.0, 1.0), (0.5, 1.0, 1.0), # (0.7, 1.0, 1.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 1.0, 1.0), # (0.3, 1.0, 1.0), (0.5, 1.0, 1.0), # (0.7, 0.0, 0.0), (1.0, 0.0, 0.0))} xcorr_cmap = matplotlib.colors.LinearSegmentedColormap('xcorr_cmap', cdict, 256) class DLogNorm(Normalize): """ Normalize a given positive or negative value to the 0-1 range on a log scale negative values are mapped to 0-0.5 positive values are mapped to 0.5-1 Derived from: matplotlib.colors.LogNorm """ def __init__(self, vmin=None, vmax=None, cmin=1e-5, cmax=1e-5, clip=False): """ If *vmin* or *vmax* is not given, they are taken from the input's minimum and maximum value respectively. If *clip* is *True* and the given value falls outside the range, the returned value will be 0 or 1, whichever is closer. Returns 0 if:: vmin==vmax Works with scalars or arrays, including masked arrays. If *clip* is *True*, masked values are set to 1; otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and masked colors in the colormap, so it is likely to lead to surprises; therefore the default is *clip* = *False*. cmin, cmax gives the range of logarithmic plot for positive (cmax) and negative (cmin) values. All values with smaller absolute value are mapped to 0.5. """ self.vmin = vmin self.vmax = vmax self.cmin = cmin self.cmax = cmax self.clip = clip def __call__(self, value, clip=None): if clip is None: clip = self.clip if cbook.iterable(value): vtype = 'array' val = ma.asarray(value).astype(np.float) else: vtype = 'scalar' val = ma.array([value]).astype(np.float) self.autoscale_None(val) vmin, vmax = self.vmin, self.vmax cmin, cmax = self.cmin * vmin, self.cmax * vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin == vmax: result = 0.0 * val else: if clip: mask = ma.getmask(val) val = ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = 0. * val + 0.5 result[val > cmax] = (ma.log10(val[val > cmax]) - ma.log10(cmax)) / (np.log10(vmax) - np.log10(cmax)) / 2. + 0.5 result[val < cmin] = -(ma.log10(-val[val < cmin]) - ma.log10(-cmin)) / (np.log10(-vmin) - np.log10(-cmin)) / 2. + 0.5 if vtype == 'scalar': result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax cmin, cmax = self.cmin * vmin, self.cmax * vmax if cbook.iterable(value): val = np.asarray(value) result = 0.0 * val result[val > 0.5] = cmax * (vmax / cmax) ** (2. * val[val > 0.5] - 1) result[val < 0.5] = cmin * (vmin / cmin) ** (-2. * val[val < 0.5] + 1) return result else: if value == 0.5: return 0 elif value > 0.5: return cmax * (vmax / cmax) ** (2. * value - 1) elif value < 0.5: return cmin * (vmin / cmin) ** (-2. * value + 1) def ticks(self): vmin, vmax = self.vmin, self.vmax cmin, cmax = self.cmin, self.cmax a1 = np.logspace(np.log10(cmax * vmax) + 1, np.log10(vmax), int(-np.log10(cmax))) a2 = -np.logspace(np.log10(-cmin * vmin) + 1, np.log10(-vmin), int(-
np.log10(cmin)
numpy.log10
import pickle import logging import numpy as np import pandas as pd from collections import Counter from typing import Union, Sequence, Optional, List, Any from sklearn.base import BaseEstimator from indra.statements import Evidence, Statement, get_all_descendants from indra.belief import BeliefScorer, check_extra_evidence, \ get_stmt_evidence, SimpleScorer logger = logging.getLogger(__name__) class SklearnScorer(BeliefScorer): """Use a pre-trained Sklearn classifier to predict belief scores. An implementing instance of this base class has two personalities: as a subclass of BeliefScorer, it implements the functions required by the BeliefEngine, `score_statements` and `check_prior_probs`. It also behaves like an sklearn model by composition, implementing methods `fit`, `predict`, `predict_proba`, and `predict_log_proba`, which are passed through to an internal sklearn model. A key role of this wrapper class is to implement the preprocessing of statement properties into a feature matrix in a standard way, so that a classifier trained on one corpus of statement data will still work when used on another corpus. Implementing subclasses must implement at least one of the methods for building the feature matrix, `stmts_to_matrix` or `df_to_matrix`. Parameters ---------- model : Any instance of a classifier object supporting the methods `fit`, `predict_proba`, `predict`, and `predict_log_proba`. """ def __init__( self, model: BaseEstimator, ): self.model = model def check_prior_probs( self, statements: Sequence[Statement], ) -> None: """Empty implementation for now.""" pass def score_statements( self, statements: Sequence[Statement], extra_evidence: Optional[List[List[Evidence]]] = None, ) -> Sequence[float]: return self.predict_proba(statements, extra_evidence)[:, 1] def stmts_to_matrix( self, stmts: Sequence[Statement], extra_evidence: Optional[List[List[Evidence]]] = None, ) -> np.ndarray: """Convert a list of Statements to a feature matrix.""" raise NotImplementedError('Need to implement the stmts_to_matrix ' 'method') def df_to_matrix( self, df: pd.DataFrame, ) -> np.ndarray: """Convert a statement DataFrame to a feature matrix.""" raise NotImplementedError('Need to implement the df_to_matrix ' 'method') def to_matrix(self, stmt_data: Union[np.ndarray, Sequence[Statement], pd.DataFrame], extra_evidence: Optional[List[List[Evidence]]] = None, ) -> np.ndarray: """Get stmt feature matrix by calling appropriate method. If `stmt_data` is already a matrix (e.g., obtained after performing a train/test split on a matrix generated for a full statement corpus), it is returned directly; if a DataFrame of Statement metadata, `self.df_to_matrix` is called; if a list of Statements, `self.stmts_to_matrix` is called. Parameters ---------- stmt_data : Statement content to be used to generate a feature matrix. extra_evidence : A list corresponding to the given list of statements, where each entry is a list of Evidence objects providing additional support for the corresponding statement (i.e., Evidences that aren't already included in the Statement's own evidence list). Returns ------- : Feature matrix for the statement data. """ # If we got a Numpy array, just use it! if isinstance(stmt_data, np.ndarray): stmt_arr = stmt_data # Otherwise check if we have a dataframe or a list of statements # and call the appropriate *_to_matrix method elif isinstance(stmt_data, pd.DataFrame): if extra_evidence is not None: raise NotImplementedError( 'extra_evidence cannot be used with a statement DataFrame.') stmt_arr = self.df_to_matrix(stmt_data) # Check if stmt_data is a list/tuple (i.e., of Statements): elif isinstance(stmt_data, (list, tuple)): # Check that the first entry is a Statement if not isinstance(stmt_data[0], Statement): raise ValueError('stmt_data must contain Statements.') stmt_arr = self.stmts_to_matrix(stmt_data, extra_evidence) # If it's something else, error else: raise TypeError(f'stmt_data is type {type(stmt_data)}: ' 'must be a numpy array, DataFrame, or ' 'list/tuple of Statements') return stmt_arr def fit(self, stmt_data: Union[np.ndarray, Sequence[Statement], pd.DataFrame], y_arr: Sequence[float], extra_evidence: Optional[List[List[Evidence]]] = None, *args, **kwargs, ): """Preprocess stmt data and run sklearn model `fit` method. Additional `args` and `kwargs` are passed to the `fit` method of the wrapped sklearn model. Parameters ---------- stmt_data : Statement content to be used to generate a feature matrix. y_arr : Class values for the statements (e.g., a vector of 0s and 1s indicating correct or incorrect). extra_evidence : A list corresponding to the given list of statements, where each entry is a list of Evidence objects providing additional support for the corresponding statement (i.e., Evidences that aren't already included in the Statement's own evidence list). """ # Check dimensions of stmts (x) and y_arr if len(stmt_data) != len(y_arr): raise ValueError("Number of stmts/rows must match length of y_arr.") # Get the data matrix based on the stmt list or stmt DataFrame stmt_arr = self.to_matrix(stmt_data, extra_evidence) # Call the fit method of the internal sklearn model self.model.fit(stmt_arr, y_arr, *args, **kwargs) def predict_proba( self, stmt_data: Union[np.ndarray, Sequence[Statement], pd.DataFrame], extra_evidence: Optional[List[List[Evidence]]] = None, *args, **kwargs, ) -> np.ndarray: """Preprocess stmt data and run sklearn model `predict_proba` method. Additional `args` and `kwargs` are passed to the `predict_proba` method of the wrapped sklearn model. Parameters ---------- stmt_data : Statement content to be used to generate a feature matrix. extra_evidence : A list corresponding to the given list of statements, where each entry is a list of Evidence objects providing additional support for the corresponding statement (i.e., Evidences that aren't already included in the Statement's own evidence list). """ # Call the prediction method of the internal sklearn model stmt_arr = self.to_matrix(stmt_data, extra_evidence) return self.model.predict_proba(stmt_arr, *args, **kwargs) def predict( self, stmt_data: Union[np.ndarray, Sequence[Statement], pd.DataFrame], extra_evidence: Optional[List[List[Evidence]]] = None, *args, **kwargs, ) -> np.ndarray: """Preprocess stmt data and run sklearn model `predict` method. Additional `args` and `kwargs` are passed to the `predict` method of the wrapped sklearn model. Parameters ---------- stmt_data : Statement content to be used to generate a feature matrix. extra_evidence : A list corresponding to the given list of statements, where each entry is a list of Evidence objects providing additional support for the corresponding statement (i.e., Evidences that aren't already included in the Statement's own evidence list). """ stmt_arr = self.to_matrix(stmt_data, extra_evidence) return self.model.predict(stmt_arr, *args, **kwargs) def predict_log_proba( self, stmt_data: Union[np.ndarray, Sequence[Statement], pd.DataFrame], extra_evidence: Optional[List[List[Evidence]]] = None, *args, **kwargs, ) -> np.ndarray: """Preprocess stmt data and run sklearn model `predict_log_proba`. Additional `args` and `kwargs` are passed to the `predict` method of the wrapped sklearn model. Parameters ---------- stmt_data : Statement content to be used to generate a feature matrix. extra_evidence : A list corresponding to the given list of statements, where each entry is a list of Evidence objects providing additional support for the corresponding statement (i.e., Evidences that aren't already included in the Statement's own evidence list). """ stmt_arr = self.to_matrix(stmt_data, extra_evidence) return self.model.predict_log_proba(stmt_arr, *args, **kwargs) class CountsScorer(SklearnScorer): """Belief model learned from evidence counts and other stmt properties. If using a DataFrame for Statement data, it should have the following columns: * `stmt_type` * `source_counts` Alternatively, if the DataFrame doesn't have a `source_counts` column, it should have columns with names matching the sources in `self.source_list`. Parameters ---------- model : Any instance of a classifier object supporting the methods `fit`, `predict_proba`, `predict`, and `predict_log_proba`. source_list : List of strings denoting the evidence sources (evidence.source_api values) to be used for prediction. include_more_specific : If True, will add extra columns to the statement data matrix for the source counts drawn from more specific evidences; if use_num_pmids is True, will also add an additional column for the number of PMIDs from more specific evidences. If False, these columns will not be included even if the `extra_evidence` argument is passed to the `stmts_to_matrix` method. This is to ensure that the featurization of statements is consistent between training and prediction. use_stmt_type : Whether to include statement type as a feature. use_num_members : Whether to include a feature denoting the number of members of the statement. Primarily for stratifying belief predictions about Complex statements with more than two members. Cannot be used for statement data passed in as a DataFrame. use_num_pmids : Whether to include a feature for the total number of unique PMIDs supporting each statement. Cannot be used for statement passed in as a DataFrame. use_promoter : Whether to include a feature giving the fraction of evidence (0 to 1) containing the (case-insensitive) word "promoter". Tends to improve misclassification of Complex statements that actually refer to protein-DNA binding. use_avg_evidence_len : Whether to include a feature giving the average evidence sentence length (in space-separated tokens). Example ------- .. code-block:: python from sklearn.linear_model import LogisticRegression clf = LogisticRegression() all_stmt_sources = CountsScorer.get_all_sources(stmts) scorer = CountsScorer(clf, all_stmt_sources, use_stmt_type=True, use_num_pmids=True) scorer.fit(stmts, y_arr) be = BeliefEngine(scorer) be.set_hierarchy_probs(stmts) """ def __init__( self, model: BaseEstimator, source_list: List[str], include_more_specific: bool = False, use_stmt_type: bool = False, use_num_members: bool = False, use_num_pmids: bool = False, use_promoter: bool = False, use_avg_evidence_len: bool = False, ): # Call superclass constructor to store the model super(CountsScorer, self).__init__(model) self.source_list = source_list self.include_more_specific = include_more_specific self.use_stmt_type = use_stmt_type self.use_num_members = use_num_members self.use_num_pmids = use_num_pmids self.use_promoter = use_promoter self.use_avg_evidence_len = use_avg_evidence_len # Build dictionary mapping INDRA Statement types to integers if use_stmt_type: all_stmt_types = get_all_descendants(Statement) self.stmt_type_map = {t.__name__: ix for ix, t in enumerate(all_stmt_types)} @staticmethod def get_all_sources( stmts: Sequence[Statement], include_more_specific: bool = True, include_less_specific: bool = True, ) -> List[str]: """Get a list of all the source_apis supporting the given statements. Useful for determining the set of sources to be used for fitting and prediction. Parameters ---------- stmts : A list of INDRA Statements to collect source APIs for. include_more_specific : If True (default), then includes the source APIs for the more specific statements in the `supports` attribute of each statement. include_less_specific : If True (default), then includes the source APIs for the less specific statements in the `supported_by` attribute of each statement. Returns ------- : A list of (unique) source_apis found in the set of statements. """ stmt_sources = set([ev.source_api for s in stmts for ev in s.evidence]) if include_more_specific: stmt_sources.update([ev.source_api for stmt in stmts for supp_stmt in stmt.supports for ev in supp_stmt.evidence]) if include_less_specific: stmt_sources.update([ev.source_api for stmt in stmts for supp_by_stmt in stmt.supported_by for ev in supp_by_stmt.evidence]) return list(stmt_sources) def stmts_to_matrix( self, stmts: Sequence[Statement], extra_evidence: Optional[List[List[Evidence]]] = None, ) -> np.ndarray: """Convert a list of Statements to a feature matrix. Features are encoded as follows: * One column for every source listed in `self.source_list`, containing the number of statement evidences from that source. If `self.include_more_specific` is True and `extra_evidence` is provided, these are used in combination with the Statement's own evidence in determining source counts. * If `self.use_stmt_type` is set, statement type is included via one-hot encoding, with one column for each statement type. * If `self.use_num_members` is set, a column is added for the number of agents in the Statement. * If `self.use_num_pmids` is set, a column is added with the total total number of unique PMIDs supporting the Statement. If `extra_evidence` is provided, these are used in combination with the Statement's own evidence in determining the number of PMIDs. Parameters ---------- stmts : A list or tuple of INDRA Statements to be used to generate a feature matrix. extra_evidence : A list corresponding to the given list of statements, where each entry is a list of Evidence objects providing additional support for the corresponding statement (i.e., Evidences that aren't already included in the Statement's own evidence list). Returns ------- : Feature matrix for the statement data. """ # Check arguments for including more specific evidences if self.include_more_specific and extra_evidence is None: logger.info("CountScorer is set to include_more_specific " "evidences but no extra_evidence was included.") extra_evidence = [[] for stmt in stmts] elif not self.include_more_specific and extra_evidence is not None: logger.warning("extra_evidence was included but CountScorer " "instance is not set to include_more_specific " "evidences so extra_evidence will be ignored.") # Check our list of extra evidences check_extra_evidence(extra_evidence, len(stmts)) # Add categorical features and collect source_apis cat_features = [] stmt_sources = set() for ix, stmt in enumerate(stmts): # Collect all source_apis from stmt evidences dir_pmids = set() promoter_ct = 0 evidence_lens = [] for ev in stmt.evidence: stmt_sources.add(ev.source_api) dir_pmids.add(ev.pmid) if ev.text is not None: evidence_lens.append(len(ev.text.split())) if 'promoter' in ev.text.lower(): promoter_ct += 1 indir_pmids = set() if self.include_more_specific and extra_evidence: for ev in extra_evidence[ix]: stmt_sources.add(ev.source_api) indir_pmids.add(ev.pmid) # Collect non-source count features (e.g. type) from stmts feature_row: List[Any] = [] # Appease the Type Hint Gods # One-hot encoding of stmt type if self.use_stmt_type: stmt_type_ix = self.stmt_type_map[type(stmt).__name__] type_features = [1 if ix == stmt_type_ix else 0 for ix in range(len(self.stmt_type_map))] feature_row.extend(type_features) # Add field for number of members if self.use_num_members: feature_row.append(len(stmt.agent_list())) # Add field with number of unique PMIDs if self.use_num_pmids: feature_row.append(len(dir_pmids)) if self.include_more_specific and extra_evidence: feature_row.append(len(indir_pmids)) # Add a field specifying the percentage of evidences containing # the word "promoter": if self.use_promoter: promoter_pct = promoter_ct / len(stmt.evidence) \ if len(stmt.evidence) > 0 else 0 feature_row.append(promoter_pct) # Add a field giving length of the sentence in words if self.use_avg_evidence_len: avg_evidence_len =
np.mean(evidence_lens)
numpy.mean
#!/usr/bin/env python3 import random import numpy as np import matplotlib.pyplot as plt from copy import deepcopy from IPython import embed class Robot: def __init__(self, length=20.0): """ Creates robot and initializes location/orientation to 0, 0, 0. """ self.x = 0.0 self.y = 0.0 self.orientation = 0.0 self.length = length self.steering_noise = 0.0 self.distance_noise = 0.0 self.steering_drift = 0.0 def set(self, x, y, orientation): """ Sets a robot coordinate. """ self.x = x self.y = y self.orientation = orientation % (2.0 * np.pi) def set_noise(self, steering_noise, distance_noise): """ Sets the noise parameters. """ # makes it possible to change the noise parameters # this is often useful in particle filters self.steering_noise = steering_noise self.distance_noise = distance_noise def set_steering_drift(self, drift): """ Sets the systematical steering drift parameter """ self.steering_drift = drift def move(self, steering, distance, tolerance=0.001, max_steering_angle=np.pi / 4.0): """ steering = front wheel steering angle, limited by max_steering_angle distance = total distance driven, most be non-negative """ if steering > max_steering_angle: steering = max_steering_angle if steering < -max_steering_angle: steering = -max_steering_angle if distance < 0.0: distance = 0.0 # apply noise steering2 = random.gauss(steering, self.steering_noise) distance2 = random.gauss(distance, self.distance_noise) # apply steering drift steering2 += self.steering_drift # Execute motion turn = np.tan(steering2) * distance2 / self.length if abs(turn) < tolerance: # approximate by straight line motion self.x += distance2 * np.cos(self.orientation) self.y += distance2 * np.sin(self.orientation) self.orientation = (self.orientation + turn) % (2.0 * np.pi) else: # approximate bicycle model for motion radius = distance2 / turn cx = self.x - (np.sin(self.orientation) * radius) cy = self.y + (np.cos(self.orientation) * radius) self.orientation = (self.orientation + turn) % (2.0 * np.pi) self.x = cx + (
np.sin(self.orientation)
numpy.sin
from __future__ import print_function, division import configargparse #pip install configargparse import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy import PIL import PIL.Image print(torch.__version__) from TorchClassifier.Datasetutil.Visutil import imshow, vistestresult from TorchClassifier.Datasetutil.Torchdatasetutil import loadTorchdataset from TorchClassifier.myTorchModels.TorchCNNmodels import createTorchCNNmodel # from TFClassifier.Datasetutil.TFdatasetutil import loadTFdataset #loadtfds, loadkerasdataset, loadimagefolderdataset # from TFClassifier.myTFmodels.CNNsimplemodels import createCNNsimplemodel # from TFClassifier.Datasetutil.Visutil import plot25images, plot9imagesfromtfdataset, plot_history # from TFClassifier.myTFmodels.optimizer_factory import build_learning_rate, setupTensorboardWriterforLR model = None device = None # import logger parser = configargparse.ArgParser(description='myTorchClassify') parser.add_argument('--data_name', type=str, default='CIFAR10', help='data name: hymenoptera_data, CIFAR10, flower_photos') parser.add_argument('--data_type', default='torchvisiondataset', choices=['trainvalfolder', 'traintestfolder', 'torchvisiondataset'], help='the type of data') parser.add_argument('--data_path', type=str, default='./../ImageClassificationData', help='path to get data') #/Developer/MyRepo/ImageClassificationData parser.add_argument('--img_height', type=int, default=28, help='resize to img height, 224') parser.add_argument('--img_width', type=int, default=28, help='resize to img width, 224') parser.add_argument('--save_path', type=str, default='./outputs/', help='path to save the model') # network parser.add_argument('--model_name', default='mobilenet', choices=['mlpmodel1', 'lenet', 'resnetmodel1', 'vggmodel1', 'cnnmodel1'], help='the network') parser.add_argument('--arch', default='Pytorch', choices=['Tensorflow', 'Pytorch'], help='Model Name, default: Pytorch.') parser.add_argument('--learningratename', default='warmupexpdecay', choices=['fixedstep', 'fixed', 'warmupexpdecay'], help='learning rate name') parser.add_argument('--optimizer', default='Adam', choices=['SGD', 'Adam'], help='select the optimizer') parser.add_argument('--batchsize', type=int, default=32, help='batch size') parser.add_argument('--epochs', type=int, default=15, help='epochs') parser.add_argument('--GPU', type=bool, default=True, help='use GPU') parser.add_argument('--TPU', type=bool, default=False, help='use TPU') parser.add_argument('--MIXED_PRECISION', type=bool, default=False, help='use MIXED_PRECISION') parser.add_argument('--TAG', default='0915', help='setup the experimental TAG to differentiate different running results') parser.add_argument('--reproducible', type=bool, default=False, help='get reproducible results we can set the random seed for Python, Numpy and PyTorch') args = parser.parse_args() def test_model(model, dataloaders, class_names, criterion, batch_size): numclasses = len(class_names) # track test loss test_loss = 0.0 class_correct = list(0. for i in range(numclasses)) class_total = list(0. for i in range(numclasses)) model.eval() if 'test' in dataloaders.keys(): test_loader=dataloaders['test'] else: print("test dataset not available") return # iterate over test data bathindex = 0 for data, target in test_loader: bathindex = bathindex +1 # move tensors to GPU if CUDA is available # if train_on_gpu: # data, target = data.cuda(), target.cuda() data = data.to(device) target = target.to(device) # forward pass: compute predicted outputs by passing inputs to the model outputs = model(data) if type(outputs) is tuple: #model may output multiple tensors as tuple outputs, _ = outputs # calculate the batch loss loss = criterion(outputs, target) # update test loss test_loss += loss.item()*data.size(0) # convert output probabilities to predicted class _, pred = torch.max(outputs, 1) # compare predictions to true label correct_tensor = pred.eq(target.data.view_as(pred)) train_on_gpu = torch.cuda.is_available() correct = np.squeeze(correct_tensor.numpy()) if not train_on_gpu else np.squeeze(correct_tensor.cpu().numpy()) # calculate test accuracy for each object class for i in range(batch_size): if i<len(target.data):#the actual batch size of the last batch is smaller than the batch_size label = target.data[i] class_correct[label] += correct[i].item() class_total[label] += 1 # average test loss test_loss = test_loss/len(test_loader.dataset) print('Test Loss: {:.6f}\n'.format(test_loss)) for i in range(numclasses): if class_total[i] > 0: print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % ( class_names[i], 100 * class_correct[i] / class_total[i], np.sum(class_correct[i]), np.sum(class_total[i]))) else: print('Test Accuracy of %5s: N/A (no training examples)' % (class_names[i])) print('\nTest Accuracy (Overall): %2d%% (%2d/%2d)' % ( 100. * np.sum(class_correct) / np.sum(class_total), np.sum(class_correct), np.sum(class_total))) def visualize_model(model, dataloaders, class_names, num_images=6): was_training = model.training model.eval() images_so_far = 0 fig = plt.figure() with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloaders['val']): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) if type(outputs) is tuple: #model may output multiple tensors as tuple outputs, _ = outputs _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images//2, 2, images_so_far) ax.axis('off') ax.set_title('predicted: {}'.format(class_names[preds[j]])) imshow(inputs.cpu().data[j]) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training) def main(): print("Torch Version: ", torch.__version__) print("Torchvision Version: ", torchvision.__version__) args.save_path=args.save_path+args.data_name+'_'+args.model_name+'_'+args.TAG print("Output path:", args.save_path) if not os.path.exists(args.save_path): os.makedirs(args.save_path) if args.GPU: num_gpu = torch.cuda.device_count() print("Num GPUs:", num_gpu) # Which GPU Is The Current GPU? print(torch.cuda.current_device()) # Get the name of the current GPU print(torch.cuda.get_device_name(torch.cuda.current_device())) # Is PyTorch using a GPU? print(torch.cuda.is_available()) global device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") else: print("No GPU and TPU enabled") #Load dataset dataloaders, dataset_sizes, class_names, img_shape = loadTorchdataset(args.data_name,args.data_type, args.data_path, args.img_height, args.img_width, args.batchsize) numclasses =len(class_names) model_ft = createTorchCNNmodel(args.model_name, numclasses, img_shape) modelpath=os.path.join(args.save_path, 'model_best.pt') print("modelpath ", modelpath) model_ft.load_state_dict(torch.load(modelpath)) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() test_model(model_ft, dataloaders, class_names, criterion, args.batchsize) if 'test' in dataloaders.keys(): test_loader=dataloaders['test'] # obtain one batch of test images dataiter = iter(test_loader) images, labels = dataiter.next() images.numpy() images = images.to(device) # get sample outputs outputs = model_ft(images)#torch.Size([32, 10]) if type(outputs) is tuple: #model may output multiple tensors as tuple outputs, _ = outputs # convert output probabilities to predicted class _, preds_tensor = torch.max(outputs, 1) #https://pytorch.org/docs/stable/generated/torch.max.html, dim=1, [32,10]->[32] on_gpu = torch.cuda.is_available() preds = np.squeeze(preds_tensor.numpy()) if not on_gpu else np.squeeze(preds_tensor.cpu().numpy()) #to numpy array list #preds = np.squeeze(preds_tensor.cpu().numpy()) vistestresult(images, labels, preds, class_names, args.save_path) #Start accuracy evaluation test_loss, test_acc = evaluate(model_ft, dataloaders['test'], criterion, device) print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%') images, labels, probs = get_predictions(model_ft, dataloaders['test'], device) pred_labels = torch.argmax(probs, 1) plot_confusion_matrix(labels, pred_labels) corrects = torch.eq(labels, pred_labels) #get all of the incorrect examples and sort them by descending confidence in their prediction incorrect_examples = [] for image, label, prob, correct in zip(images, labels, probs, corrects): if not correct: incorrect_examples.append((image, label, prob)) incorrect_examples.sort(reverse = True, key = lambda x: torch.max(x[2], dim = 0).values) N_IMAGES = 25 # plot_most_incorrect(incorrect_examples, N_IMAGES) #plot the examples the model got wrong and was most confident about. def plot_most_incorrect(incorrect, n_images): rows = int(np.sqrt(n_images)) cols = int(
np.sqrt(n_images)
numpy.sqrt
import numpy as np import pandas as pd from humidity_variability.utils import add_date_columns, jitter, add_GMT from helpful_utilities.meteo import F_to_C from helpful_utilities.general import lowpass_butter def fit_seasonal_cycle(doy, data, nbases=5): """Fit seasonal cycle of daily data with specified number of Fourier bases. Parameters ---------- doy : numpy.ndarray Day of year for each data value data : numpy.ndarray Data values for seasonal fit nbases : int Number of Fourier bases to use. Default is 5. Returns ------- rec : numpy.ndarray Reconstructed seasonal structure, of same length as data residual : numpy.ndarray The residual from the seasonal fit. rec_ann : numpy.ndarray The 365-day version of the seasonal cycle """ mu = np.mean(data) data -= mu t_basis = (doy - 0.5)/365 ann_basis = (np.arange(1, 366) - 0.5)/365 nt = len(t_basis) bases = np.empty((nbases, nt), dtype=complex) bases_ann = np.empty((nbases, 365), dtype=complex) for counter in range(nbases): bases[counter, :] = np.exp(2*(counter + 1)*np.pi*1j*t_basis) bases_ann[counter, :] = np.exp(2*(counter + 1)*np.pi*1j*ann_basis) coeff = 2/nt*(np.dot(bases, data)) rec = np.real(np.dot(np.conj(coeff), bases)) residual = data - rec rec_ann = np.real(np.dot(np.conj(coeff), bases_ann)) + mu # add mean value back into climatology return rec, residual, rec_ann def fit_seasonal_cycle_lowpass(doy, data, cut_freq=1/30): """Estimate the seasonal cycle by using a lowpass filter on the empirical seasonal cycle. Parameters ---------- doy : numpy.ndarray Day of year for each data value data : numpy.ndarray Data values for seasonal fit cut_freq : float Cutoff frequency (in 1/days) for the lowpass filter Returns ------- rec : numpy.ndarray Reconstructed seasonal structure, of same length as data residual : numpy.ndarray The residual from the seasonal fit. rec_ann : numpy.ndarray The 365-day version of the seasonal cycle """ tmp_df = pd.DataFrame({'doy': doy, 'data': data}) empirical_sc = tmp_df.groupby('doy').mean() ann_doy = empirical_sc.index smooth_sc = lowpass_butter(1, cut_freq, 3, empirical_sc.values.flatten()) residual = np.empty_like(data) for counter, this_doy in enumerate(ann_doy): match_idx = doy == this_doy smooth_sc_val = smooth_sc[counter] residual[match_idx] = data[match_idx] - smooth_sc_val rec = data - residual rec_ann = smooth_sc return rec, residual, rec_ann def calculate_amplification_index2(df, meta, T0, half_width, grouping, fit_data, qs, this_q=0.05): """Calculate the fraction of hot days that are dry within a grouping of stations or gridboxes. This version accounts for the temperature dependence of q5 Parameters ---------- df : pandas.DataFrame Contains the temperature and humidity anomaly data for all stations/gridboxes and times of interest. meta : pandas.DataFrame Contains (at least) the weights for each station/gridbox, as well as the station_id T0 : float The middle percentile to define hot days half_width : float The half-width around T0 to consider a hot day grouping : string Can be 'month' or 'year': how are hot and hot/dry days grouped? fit_data : string Full path to npz file containing the relevant parameters from the quantile smoothing spline fit qs : numpy.ndarray The quantiles fit by the QSS model this_q : float The threshold below which to consider a day "dry" Returns ------- amplification : numpy.ndarray Time series of the amplification index """ # names of temperature and humidity variables humidity_var = 'Q' temp_var = 'TMP' # For each station or gridbox, map temperatures to percentiles # Load fitted QR model df_fit = np.load(fit_data) q_quantiles = df_fit['s0_H'][:, qs == this_q, :].squeeze() temperature_percentiles = df_fit['temperature_percentiles'] lat_vec = np.round(df_fit['lats'], decimals=3) lon_vec = np.round(df_fit['lons'], decimals=3) # Calculate percentiles at each station of temperature df.loc[:, '%s_perc' % temp_var] = df.groupby('station_id')['%s_anom' % temp_var].rank(pct=True) # Get humidity threshold for each temperature at each station df_updated = [] for this_station in np.unique(df['station_id']): tmp_df = df.loc[df['station_id'] == this_station].reset_index() this_lat = np.round(tmp_df['lat'][0], decimals=3) this_lon = np.round(tmp_df['lon'][0], decimals=3) match_idx = (lat_vec == this_lat) & (lon_vec == this_lon) this_quantile = q_quantiles[:, match_idx].squeeze() # Interpolate this_quantile_interp = np.interp(tmp_df['%s_perc' % temp_var], temperature_percentiles/100, this_quantile) tmp_df.loc[:, '%s_cut' % humidity_var] = this_quantile_interp df_updated.append(tmp_df) df = pd.concat(df_updated).reset_index() del df_updated # Drop spare index columns df = df.drop(df.columns[:2], axis='columns') # Assign each day a binary index for whether it is hot, and whether it is hot and dry df = df.assign(is_hot=np.nan*np.ones(len(df))) df = df.assign(is_hot_dry=np.nan*np.ones(len(df))) for station in np.unique(df['station_id']): tmp_df = df.loc[df['station_id'] == station] is_hot = ((tmp_df['%s_perc' % temp_var] > (T0 - half_width)/100) & (tmp_df['%s_perc' % temp_var] < (T0 + half_width)/100)) is_hot_dry = (is_hot & (tmp_df['%s_anom' % humidity_var] < tmp_df['%s_cut' % humidity_var])).astype(float) is_hot = is_hot.astype(float) df.loc[df['station_id'] == station, 'is_hot_dry'] = is_hot_dry df.loc[df['station_id'] == station, 'is_hot'] = is_hot weights = meta.set_index('station_id') if grouping == 'month': groupby_names = ['year', 'month', 'station_id'] elif grouping == 'year': groupby_names = ['year', 'station_id'] hot_dry_weighted = df.groupby(groupby_names)['is_hot_dry'].sum()*weights['area_weights'] hot_weighted = df.groupby(groupby_names)['is_hot'].sum()*weights['area_weights'] # Since the amplification index is the ratio of hot, dry to hot, we don't need to normalize the weights # The same number of stations are present in each month/year combo for both metrics, so will cancel out # But note that any analysis of the hot, dry or hot time series alone has not been normalized # appropriately amplification = (hot_dry_weighted.groupby(groupby_names[:-1]).sum() / hot_weighted.groupby(groupby_names[:-1]).sum()) return amplification def preprocess_data(this_id, datadir, start_year, end_year, start_month, end_month, offset, spread): """ Preprocess GSOD data, getting rid of bad data, and removing stations with insufficient data. Also subsets data to desired (start_year, end_year) and (start_month, end_month) TODO: Move hard coded things to args. Parameters --------- this_id : str GSOD station id datadir : str Location of GSOD csv files start_year : int First year of analysis. Will subset to this range. end_year : int Last year of analysis. Will subset to this range. start_month : int First month of analysis. Will subset to this range. end_month : int Last month of analysis. Will subset to this range. offset : float For jittering, should data be offset? spread : float For jittering, what is the uncertainty in the data? Returns ------- 0 if insufficient data otherwise df : pandas.dataframe Dataframe containing subset data for station """ f = '%s/%s.csv' % (datadir, this_id) df = pd.read_csv(f) # Perform data QC # Drop missing data df = df[~np.isnan(df['dewp'])] df = df[~np.isnan(df['temp'])] # Drop places where less than four obs were used for average df = df[~((df['temp_c'] < 4) | (df['dewp_c'] < 4))] # Drop places where dew point exceeds temperature # Not strictly correct because both are daily averages, but unlikely to happen in valid data df = df[df['temp'] >= df['dewp']] # Add additional date columns df = add_date_columns(df) df_start_year = np.min(df['year'].values) if df_start_year > start_year: return 0 # add GMT anoms df = add_GMT(df) # Drop Feb 29, and rework day of year counters leaps = np.arange(1904, 2020, 4) # leap years for ll in leaps: old_doy = df.loc[(df['year'] == ll) & (df['month'] > 2), 'doy'].values df.loc[(df['year'] == ll) & (df['month'] > 2), 'doy'] = old_doy - 1 df = df[~((df['month'] == 2) & (df['doy'] == 60))] # Add jitter df = df.assign(temp=jitter(df['temp'], offset, spread)) df = df.assign(dewp=jitter(df['dewp'], offset, spread)) # convert to C df = df.assign(dewp=F_to_C(df['dewp'])) df = df.assign(temp=F_to_C(df['temp'])) # Fit seasonal cycle with first three harmonics and remove _, residual_T, _ = fit_seasonal_cycle(df['doy'], df['temp'], nbases=3) # Dew point seasonal cycle requires 10 harmonics because rapid uptick in monsoon regions _, residual_DP, _ = fit_seasonal_cycle(df['doy'], df['dewp'], nbases=10) df = df.assign(dewp_anom=residual_DP) df = df.assign(temp_anom=residual_T) del residual_T, residual_DP # Pull out JJAS df = df.loc[(df['month'] >= start_month) & (df['month'] <= end_month)] # Pull out correct year span df = df[(df['year'] >= start_year) & (df['year'] <= end_year)] # Check if sufficient data yrs = np.arange(start_year, end_year + 1) # inclusive frac_avail = np.zeros((len(yrs))) for ct, yy in enumerate(yrs): count = len(df[(df['year'] == yy)]) frac_avail[ct] = count/122 # 122 days in JJAS! frac_with_80 = np.sum(frac_avail > 0.8)/len(frac_avail) # Conditions to include station: # (1) Overall, must have at least 80% of coverage over at least 80% of years # (2) Must have data in first three and last three years of record # (3) Can't have more than one missing year in a row data_sufficient = ((np.mean(frac_avail[:3]) > 0) & (np.mean(frac_avail[-3:]) > 0) & (frac_with_80 > 0.8)) no_data =
np.where(frac_avail[:-1] == 0)
numpy.where
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. """ Tests lambda functions. """ import dace import numpy as np import pytest def test_inline_lambda_tasklet(): @dace.program def lamb(A: dace.float64[20], B: dace.float64[20], C: dace.float64[20]): for i in dace.map[0:20]: with dace.tasklet: a >> A[i] b << B[i] c << C[i] f = lambda a, b: a + b a = f(b, c) A = np.random.rand(20) B = np.random.rand(20) C =
np.random.rand(20)
numpy.random.rand
""" This module contains some auxilary functions """ import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision import csv import copy import json import random import logging from pathlib import Path import pickle from datetime import datetime import numpy as np from misc.tb_logger import Logger from utils import img_utils from misc.metrics import ( batch_dice, batch_jaccard, calculate_confusion_matrix_from_arrays, calculate_dices, calculate_jaccards, evalExp, pxEval_maximizeFMeasure ) def count_params(model: nn.Module) -> (int, int): """ Calculates the total and trainable parameters in model. """ total = sum(p.numel() for p in model.parameters()) trainable = sum(p.numel() for p in model.parameters() if p.requires_grad) return (total, trainable) def to_gpu(x: torch.Tensor): return x.cuda(non_blocking=True) if torch.cuda.is_available() else x def save_model(model_path: str, model, best_jaccard, best_dice, best_uu_metrics, best_um_metrics, best_umm_metrics, epoch): torch.save({"best_jaccard": best_jaccard, "best_dice": best_dice, "best_uu_metrics": best_uu_metrics, "best_um_metrics": best_um_metrics, "best_umm_metrics": best_umm_metrics, "epoch": epoch, "model": model}, model_path) def save_model_a2d2(model_path: str, model, best_jaccard, best_dice,epoch): torch.save({"best_jaccard": best_jaccard, "best_dice": best_dice, "epoch": epoch, "model": model}, model_path) def make_info_string(sep=',', **kwargs): """ Construct an information string in the following view: key1: value1[sep]key2: value2[sep][(keyN: valueN)] params: sep : a separator between instances. Possible values: ',', '\n' **kwargs : params """ if sep not in [',', '\n']: ValueError("Wrong separator: {}. 'sep' must be: ',' or '\n'".format(sep)) info_str = "" for key, value in kwargs.items(): info_str += "{0}: {1}{2} ".format(key, value, sep) info_str = info_str[:-2] if info_str[-2] == ',' else info_str[:-1] return info_str def save_runparams(params: dict, file_path: str): """ Perform saving run parameters into file. """ with open(str(file_path), "w") as file: file.write(json.dumps(params, indent=True, sort_keys=True)) def write2csv(data, file_name, type_of_header): """ Perform writing info to a csv file. params: data : list of data file_name : name of file type_of_header : """ if type_of_header == "maxf": header = "epoch,uu_MaxF,um_MaxF,umm_MaxF,mMaxf".split(",") elif type_of_header == "avgprec": header = "epoch,uu_AvgPrec,um_AvgPrec,umm_AvgPrec,mAvgPrec".split(",") elif type_of_header == "prec": header = "epoch,uu_PRE,um_PRE,umm_PRE,mPRE".split(",") elif type_of_header == "rec": header = "epoch,uu_REC,um_REC,umm_REC,mREC".split(",") elif type_of_header == "loss": header = "epoch,train_loss,valid_loss".split(",") elif type_of_header == "jd": header = "epoch,Jaccard,DICE".split(",") else: raise ValueError("Unknown type of header: {}".format(type_of_header)) data = [header] + data with open(file_name, "w", newline='') as csv_file: writer = csv.writer(csv_file, delimiter=',') for line in data: writer.writerow(line) def train_routine( args, console_logger: logging.Logger, root: str, model: nn.Module, criterion, optimizer, scheduler, train_loader, valid_loader, fm_eval_dataset, validation, fold, num_classes=1, n_epochs=100, status_every=5): """ General trainig routine. params: args : argument parser parameters for saving it console_logger : logger object for logging root : root dir where stores trained models model : model for training criterion : loss function optimizer : SGD, Adam or other scheduler : learning rate scheduler train_loader : valid_loader : fm_eval_dataset : dataset for F-max evaluation validation : validation routine fold : number of fold num_classes : number of classes n_epochs : number of training epochs status_every : the parameter which controls the frequency of status printing """ #Load model if it exists root = Path(root) root.mkdir(exist_ok=True, parents=True) model_root = root / args.model_type / 'model{}'.format(fold) model_root.mkdir(exist_ok=True, parents=True) #CSV csvs_path = model_root / 'csv' csvs_path.mkdir(exist_ok=True, parents=True) model_path = model_root / 'model.pt' logging_path = model_root / 'train.log' #run params saving save_runparams(vars(args), file_path=(model_root / 'rparams.txt')) #file logger definition file_logger = logging.getLogger("file-logger") file_logger.setLevel(logging.INFO) fh = logging.FileHandler(str(logging_path), mode='w') formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") fh.setFormatter(formatter) file_logger.addHandler(fh) #Logging to the TensorBoardX tbx_logger = Logger(log_dir=str(model_root / "tbxlogs")) if model_path.exists(): state = torch.load(str(model_path)) epoch = state["epoch"] best_jaccard = state["best_jaccard"] best_dice = state["best_dice"] best_uu_metrics = state["best_uu_metrics"] best_um_metrics = state["best_um_metrics"] best_umm_metrics = state["best_umm_metrics"] model.load_state_dict(state["model"]) console_logger.info("\nModel '{0}' was restored. Best Jaccard: {1}, Best DICE: {2}, Epoch: {3}".format(str(model_path), best_jaccard, best_dice, epoch)) else: epoch = 1 best_jaccard = 0 best_dice = 0 best_uu_metrics = {"MaxF": 0, "AvgPrec": 0, "PRE": 0, "REC": 0} best_um_metrics = {"MaxF": 0, "AvgPrec": 0, "PRE": 0, "REC": 0} best_umm_metrics = {"MaxF": 0, "AvgPrec": 0, "PRE": 0, "REC": 0} n_epochs = n_epochs + epoch best_model = copy.deepcopy(model.state_dict()) train_losses = [] valid_losses = [] jaccards = [] dices = [] #CSV data for logging maxf_csv_data = [] avgprec_csv_data = [] prec_csv_data = [] rec_csv_data = [] loss_csv_data = [] jacc_dice_csv_data = [] for epoch in range(epoch, n_epochs): epoch_train_losses = [] #Train mode model.train() #scheduler step scheduler.step() try: for i, (inputs, targets) in enumerate(train_loader): inputs = to_gpu(inputs) targets = to_gpu(targets) optimizer.zero_grad() with torch.set_grad_enabled(True): outputs = model(inputs) loss = criterion(targets, outputs) loss.backward() optimizer.step() epoch_train_losses.append(loss.item()) #Train loss per epoch epoch_train_loss = np.mean(epoch_train_losses).astype(dtype=np.float64) #Validation valid_dict = validation(model, criterion, valid_loader) uu_metrics, um_metrics, umm_metrics = fmeasure_evaluation([model], fm_eval_dataset) train_losses.append(epoch_train_loss) valid_losses.append(valid_dict["val_loss"]) jaccards.append(valid_dict["val_jacc"]) dices.append(valid_dict["val_dice"]) if valid_dict["val_jacc"] > best_jaccard: best_jaccard = valid_dict["val_jacc"] best_dice = valid_dict["val_dice"] best_uu_metrics = {"MaxF": uu_metrics["MaxF"], "AvgPrec": uu_metrics["AvgPrec"], "PRE": uu_metrics["PRE_wp"][0], "REC": uu_metrics["REC_wp"][0]} best_um_metrics = {"MaxF": um_metrics["MaxF"], "AvgPrec": um_metrics["AvgPrec"], "PRE": um_metrics["PRE_wp"][0], "REC": um_metrics["REC_wp"][0]} best_umm_metrics = {"MaxF": umm_metrics["MaxF"], "AvgPrec": umm_metrics["AvgPrec"], "PRE": umm_metrics["PRE_wp"][0], "REC": umm_metrics["REC_wp"][0]} best_model = copy.deepcopy(model.state_dict()) if epoch and (epoch % status_every == 0): info_str = "\nEpoch: {}, LR: {}\n".format(epoch, scheduler.get_lr()) info_str += "-"*30 info_str += "\nTrain loss: {0}".format(epoch_train_loss) info_str += "\nValid loss: {0}".format(valid_dict["val_loss"]) info_str += "\nValid Jaccard: {0}".format(valid_dict["val_jacc"]) info_str += "\nValid DICE: {0}\n".format(valid_dict["val_dice"]) #MaxF, PRE, REC, AvgPrec printing info_str += "\nUU_MaxF: {0}".format(uu_metrics["MaxF"]) info_str += "\nUU_AvgPrec: {0}".format(uu_metrics["AvgPrec"]) info_str += "\nUU_PRE: {0}".format(uu_metrics["PRE_wp"][0]) info_str += "\nUU_REC: {0}\n".format(uu_metrics["REC_wp"][0]) info_str += "\nUM_MaxF: {0}".format(um_metrics["MaxF"]) info_str += "\nUM_AvgPrec: {0}".format(um_metrics["AvgPrec"]) info_str += "\nUM_PRE: {0}".format(um_metrics["PRE_wp"][0]) info_str += "\nUM_REC: {0}\n".format(um_metrics["REC_wp"][0]) info_str += "\nUMM_MaxF: {0}".format(umm_metrics["MaxF"]) info_str += "\nUMM_AvgPrec: {0}".format(umm_metrics["AvgPrec"]) info_str += "\nUMM_PRE: {0}".format(umm_metrics["PRE_wp"][0]) info_str += "\nUMM_REC: {0}\n".format(umm_metrics["REC_wp"][0]) info_str += "-"*30 info_str += "\n" console_logger.info(info_str) #Log to file info_str = "\nepoch: {}, ".format(epoch) info_str += "train_loss: {}, ".format(epoch_train_loss) info_str += "val_loss: {}, ".format(valid_dict["val_loss"]) info_str += "val_jaccard: {}, ".format(valid_dict["val_jacc"]) info_str += "val_dice: {}\n".format(valid_dict["val_dice"]) file_logger.info(info_str) #Log to the tbX tbx_logger.log_scalars(tag="losses", values={"train_loss": epoch_train_loss, "valid_loss": valid_dict["val_loss"]}, step=epoch) tbx_logger.log_scalars(tag="metrics", values={"jaccard": valid_dict["val_jacc"], "DICE": valid_dict["val_dice"]}, step=epoch) #MaxF tbx_logger.log_scalars(tag="MaxF", values={"uu_maxF": uu_metrics["MaxF"], "um_maxF": um_metrics["MaxF"], "umm_maxF": umm_metrics["MaxF"], "mmaxF": (uu_metrics["MaxF"] + um_metrics["MaxF"] + umm_metrics["MaxF"])/3}, step=epoch) #AvgPrec tbx_logger.log_scalars(tag="AvgPrec", values={"uu_AvgPrec": uu_metrics["AvgPrec"], "um_AvgPrec": um_metrics["AvgPrec"], "umm_AvgPrec": umm_metrics["AvgPrec"], "mAvgPrec": (uu_metrics["AvgPrec"] + um_metrics["AvgPrec"] + umm_metrics["AvgPrec"])/3}, step=epoch) #PRE tbx_logger.log_scalars(tag="PRE", values={"uu_PRE": uu_metrics["PRE_wp"][0], "um_PRE": um_metrics["PRE_wp"][0], "umm_PRE": umm_metrics["PRE_wp"][0], "mPRE": (uu_metrics["PRE_wp"][0] + um_metrics["PRE_wp"][0] + umm_metrics["PRE_wp"][0])/3}, step=epoch) #REC tbx_logger.log_scalars(tag="REC", values={"uu_REC": uu_metrics["REC_wp"][0], "um_REC": um_metrics["REC_wp"][0], "umm_REC": umm_metrics["REC_wp"][0], "mREC": (uu_metrics["REC_wp"][0] + um_metrics["REC_wp"][0] + umm_metrics["REC_wp"][0])/3}, step=epoch) #Log to csv maxf_csv_data.append("{},{},{},{},{}".format(epoch, uu_metrics["MaxF"], um_metrics["MaxF"], umm_metrics["MaxF"], (uu_metrics["MaxF"] + um_metrics["MaxF"] + umm_metrics["MaxF"])/3).split(",")) avgprec_csv_data.append("{},{},{},{},{}".format(epoch, uu_metrics["AvgPrec"], um_metrics["AvgPrec"], umm_metrics["AvgPrec"], (uu_metrics["AvgPrec"] + um_metrics["AvgPrec"] + umm_metrics["AvgPrec"])/3).split(",")) prec_csv_data.append("{},{},{},{},{}".format(epoch, uu_metrics["PRE_wp"][0], um_metrics["PRE_wp"][0], umm_metrics["PRE_wp"][0], (uu_metrics["PRE_wp"][0] + um_metrics["PRE_wp"][0] + umm_metrics["PRE_wp"][0])/3).split(",")) rec_csv_data.append("{},{},{},{},{}".format(epoch, uu_metrics["REC_wp"][0], um_metrics["REC_wp"][0], umm_metrics["REC_wp"][0], (uu_metrics["REC_wp"][0] + um_metrics["REC_wp"][0] + umm_metrics["REC_wp"][0])/3).split(",")) loss_csv_data.append("{},{},{}".format(epoch, epoch_train_loss, valid_dict["val_loss"]).split(",")) jacc_dice_csv_data.append("{},{},{}".format(epoch, valid_dict["val_jacc"], valid_dict["val_dice"]).split(",")) except KeyboardInterrupt: console_logger.info("KeyboardInterrupt, saving snapshot.") save_model(str(model_path), best_model, best_jaccard, best_dice, best_uu_metrics, best_um_metrics, best_umm_metrics, epoch) console_logger.info("Done!") info_str = "\nTraining process is done!\n" + "*"*30 info_str += "\nTrain loss: {0}".format(np.mean(train_losses).astype(dtype=np.float64)) info_str += "\nValid loss: {0}".format(np.mean(valid_losses).astype(dtype=np.float64)) info_str += "\nMean Jaccard: {0}".format(np.mean(jaccards).astype(dtype=np.float64)) info_str += "\nMean DICE: {0}".format(np.mean(dices).astype(dtype=np.float64)) info_str += "\nBest Jaccard: {0}".format(best_jaccard) info_str += "\nBest DICE: {0}".format(best_dice) info_str += "\nBest UU_Metrics: {0}".format(best_uu_metrics) info_str += "\nBest UM_Metrics: {0}".format(best_um_metrics) info_str += "\nBest UMM_Metrics: {0}".format(best_umm_metrics) info_str += "\nMean MaxF: {0}\n".format((best_uu_metrics["MaxF"] + best_um_metrics["MaxF"] + best_umm_metrics["MaxF"])/3) info_str += "*"*30 console_logger.info(info_str) file_logger.info(info_str) #model saving save_model(str(model_path), best_model, best_jaccard, best_dice, best_uu_metrics, best_um_metrics, best_umm_metrics, n_epochs) #Save to CSV write2csv(data=maxf_csv_data, file_name=str(csvs_path / "maxf.csv"), type_of_header="maxf") write2csv(data=avgprec_csv_data, file_name=str(csvs_path / "avgprec.csv"), type_of_header="avgprec") write2csv(data=prec_csv_data, file_name=str(csvs_path / "prec.csv"), type_of_header="prec") write2csv(data=rec_csv_data, file_name=str(csvs_path / "rec.csv"), type_of_header="rec") write2csv(data=loss_csv_data, file_name=str(csvs_path / "loss.csv"), type_of_header="loss") write2csv(data=jacc_dice_csv_data, file_name=str(csvs_path / "jd.csv"), type_of_header="jd") def train_routine_a2d2( args, console_logger: logging.Logger, root: str, model: nn.Module, criterion, optimizer, scheduler, train_loader, valid_loader, fm_eval_dataset, validation, fold, num_classes=1, n_epochs=100, status_every=5): """ General trainig routine. params: args : argument parser parameters for saving it console_logger : logger object for logging root : root dir where stores trained models model : model for training criterion : loss function optimizer : SGD, Adam or other scheduler : learning rate scheduler train_loader : valid_loader : fm_eval_dataset : dataset for F-max evaluation validation : validation routine fold : number of fold num_classes : number of classes n_epochs : number of training epochs status_every : the parameter which controls the frequency of status printing """ # Load model if it exists root = Path(root) root.mkdir(exist_ok=True, parents=True) model_root = root / args.model_type / 'model{}'.format(fold) model_root.mkdir(exist_ok=True, parents=True) # CSV csvs_path = model_root / 'csv' csvs_path.mkdir(exist_ok=True, parents=True) model_path = model_root / 'model.pt' logging_path = model_root / 'train.log' # run params saving save_runparams(vars(args), file_path=(model_root / 'rparams.txt')) # file logger definition file_logger = logging.getLogger("file-logger") file_logger.setLevel(logging.INFO) fh = logging.FileHandler(str(logging_path), mode='w') formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") fh.setFormatter(formatter) file_logger.addHandler(fh) # Logging to the TensorBoardX tbx_logger = Logger(log_dir=str(model_root / "tbxlogs")) if model_path.exists(): state = torch.load(str(model_path)) epoch = state["epoch"] best_jaccard = state["best_jaccard"] best_dice = state["best_dice"] # best_metrics = state["best_metrics"] model.load_state_dict(state["model"]) console_logger.info( "\nModel '{0}' was restored. Best Jaccard: {1}, Best DICE: {2}, Epoch: {3}".format(str(model_path), best_jaccard, best_dice, epoch)) else: epoch = 1 best_jaccard = 0 best_dice = 0 # best_metrics = {"MaxF": 0, "AvgPrec": 0, "PRE": 0, "REC": 0} n_epochs = n_epochs + epoch best_model = copy.deepcopy(model.state_dict()) train_losses = [] valid_losses = [] jaccards = [] dices = [] # CSV data for logging loss_csv_data = [] jacc_dice_csv_data = [] # maxf_csv_data = [] # avgprec_csv_data = [] # prec_csv_data = [] # rec_csv_data = [] for epoch in range(epoch, n_epochs): epoch_train_losses = [] # Train mode model.train() # scheduler step scheduler.step() try: optimizer.zero_grad() for i, (inputs1, inputs2, targets) in enumerate(train_loader): inputs1 = to_gpu(inputs1) inputs2 = to_gpu(inputs2) targets = to_gpu(targets) with torch.set_grad_enabled(True): outputs = model(inputs1, inputs2) loss = criterion(targets, outputs) loss = loss/args.batch_factor loss.backward() if i % args.batch_factor == 0: optimizer.step() optimizer.zero_grad() epoch_train_losses.append((loss*args.batch_factor).item()) # Train loss per epoch epoch_train_loss = np.mean(epoch_train_losses).astype(dtype=np.float64) # Validation valid_dict, _, _ = validation(model, criterion, valid_loader, tbx_logger, epoch) # metrics = fmeasure_evaluation([model], fm_eval_dataset) train_losses.append(epoch_train_loss) valid_losses.append(valid_dict["val_loss"]) jaccards.append(valid_dict["val_jacc"]) dices.append(valid_dict["val_dice"]) if valid_dict["val_jacc"] > best_jaccard: best_jaccard = valid_dict["val_jacc"] best_dice = valid_dict["val_dice"] # best_metrics = {"MaxF": metrics["MaxF"], "AvgPrec": metrics["AvgPrec"], # "PRE": metrics["PRE_wp"][0], "REC": metrics["REC_wp"][0]} best_model = copy.deepcopy(model.state_dict()) if epoch and (epoch % status_every == 0): info_str = "\nEpoch: {}, LR: {}\n".format(epoch, scheduler.get_lr()) info_str += "-" * 30 info_str += "\nTrain loss: {0}".format(epoch_train_loss) info_str += "\nValid loss: {0}".format(valid_dict["val_loss"]) info_str += "\nValid Jaccard: {0}".format(valid_dict["val_jacc"]) info_str += "\nValid DICE: {0}\n".format(valid_dict["val_dice"]) # # MaxF, PRE, REC, AvgPrec printing # info_str += "\nUU_MaxF: {0}".format(metrics["MaxF"]) # info_str += "\nUU_AvgPrec: {0}".format(metrics["AvgPrec"]) # info_str += "\nUU_PRE: {0}".format(metrics["PRE_wp"][0]) # info_str += "\nUU_REC: {0}\n".format(metrics["REC_wp"][0]) info_str += "-" * 30 info_str += "\n" console_logger.info(info_str) # Log to file info_str = "\nepoch: {}, ".format(epoch) info_str += "train_loss: {}, ".format(epoch_train_loss) info_str += "val_loss: {}, ".format(valid_dict["val_loss"]) info_str += "val_jaccard: {}, ".format(valid_dict["val_jacc"]) info_str += "val_dice: {}\n".format(valid_dict["val_dice"]) file_logger.info(info_str) # Log to the tbX tbx_logger.log_scalars(tag="losses", values={"train_loss": epoch_train_loss, "valid_loss": valid_dict["val_loss"]}, step=epoch) tbx_logger.log_scalars(tag="metrics", values={"jaccard": valid_dict["val_jacc"], "DICE": valid_dict["val_dice"]}, step=epoch) console_logger.info("End of Epoch: Saving snapshot.") save_model_a2d2(str(model_path), best_model, best_jaccard, best_dice, epoch) except KeyboardInterrupt: console_logger.info("KeyboardInterrupt, saving snapshot.") #save_model(str(model_path), best_model, best_jaccard, best_dice, best_uu_metrics, best_um_metrics, best_umm_metrics, epoch) save_model_a2d2(str(model_path), best_model, best_jaccard, best_dice, epoch) console_logger.info("Done!") info_str = "\nTraining process is done!\n" + "*" * 30 info_str += "\nTrain loss: {0}".format(np.mean(train_losses).astype(dtype=np.float64)) info_str += "\nValid loss: {0}".format(np.mean(valid_losses).astype(dtype=np.float64)) info_str += "\nMean Jaccard: {0}".format(np.mean(jaccards).astype(dtype=np.float64)) info_str += "\nMean DICE: {0}".format(np.mean(dices).astype(dtype=np.float64)) info_str += "\nBest Jaccard: {0}".format(best_jaccard) info_str += "\nBest DICE: {0}\n".format(best_dice) # info_str += "\nBest Metrics: {0}".format(best_metrics) info_str += "*" * 30 console_logger.info(info_str) file_logger.info(info_str) # model saving # save_model(str(model_path), best_model, best_jaccard, best_dice, best_uu_metrics, best_um_metrics, best_umm_metrics, n_epochs) save_model_a2d2(str(model_path), best_model, best_jaccard, best_dice, n_epochs) # Save to CSV # write2csv(data=maxf_csv_data, file_name=str(csvs_path / "maxf.csv"), type_of_header="maxf") # write2csv(data=avgprec_csv_data, file_name=str(csvs_path / "avgprec.csv"), type_of_header="avgprec") # write2csv(data=prec_csv_data, file_name=str(csvs_path / "prec.csv"), type_of_header="prec") # write2csv(data=rec_csv_data, file_name=str(csvs_path / "rec.csv"), type_of_header="rec") write2csv(data=loss_csv_data, file_name=str(csvs_path / "loss.csv"), type_of_header="loss") write2csv(data=jacc_dice_csv_data, file_name=str(csvs_path / "jd.csv"), type_of_header="jd") def binary_validation_routine_a2d2(model: nn.Module, criterion, valid_loader, tbx_logger=None, epoch: int=0, \ save_image: bool=False): """ This method by the given criterion, model and validation loader calculates Jaccard and DICE metrics with the validation loss for binary problem """ with torch.set_grad_enabled(False): valid_losses = [] jaccards = [] dices = [] target_images = [] output_images = [] model.eval() for idx, (inputs1, inputs2, targets) in enumerate(valid_loader): inputs1 = to_gpu(inputs1) inputs2 = to_gpu(inputs2) targets = to_gpu(targets) outputs = model(inputs1, inputs2) loss = criterion(targets, outputs) valid_losses.append(loss.item()) jaccards += batch_jaccard(targets, (outputs > 0).float()) dices += batch_dice(targets, (outputs > 0).float()) if save_image: # Fix tensors to be images outputs = img_utils.getMaskFromTensor(outputs) inputs1 = img_utils.UnNormalize_tensor(inputs1, mean=[0.63263481, 0.63265741, 0.62899464], std=[0.25661512, 0.25698695, 0.2594808]) # Log Images zeros = to_gpu(torch.zeros(targets.size())) mask_target = torch.cat((zeros, targets, zeros), 1) mask_output = torch.cat((zeros, outputs, zeros), 1) img_target = torch.add(inputs1 * 0.70, mask_target * 0.30) img_output = torch.add(inputs1 * 0.70, mask_output * 0.30) img_target = img_utils.getImageFromUnitTensor(torch.squeeze(img_target).cpu()) img_output = img_utils.getImageFromUnitTensor(torch.squeeze(img_output).cpu()) target_images.append(img_target) output_images.append(img_output) # Calculates losses valid_loss = np.mean(valid_losses).astype(dtype=np.float64) valid_jaccard = np.mean(jaccards).astype(dtype=np.float64) valid_dice = np.mean(dices).astype(dtype=np.float64) if not save_image: # Fix tensors to be images outputs = img_utils.getMaskFromTensor(outputs) inputs1 = img_utils.UnNormalize_tensor(inputs1, mean=[0.63263481, 0.63265741, 0.62899464], std=[0.25661512, 0.25698695, 0.2594808]) # Log Images zeros = to_gpu(torch.zeros(targets.size())) mask_target = torch.cat((zeros, targets, zeros), 1) mask_output = torch.cat((zeros, outputs, zeros), 1) img_target = torch.add(inputs1 * 0.70, mask_target * 0.30) img_output = torch.add(inputs1 * 0.70, mask_output * 0.30) tbx_logger.log_image( torch.squeeze(img_target), epoch, dataformats='CHW', title='target') tbx_logger.log_image( torch.squeeze(img_output), epoch, dataformats='CHW', title='predicted') #'Size of images not equal for grid formation' # tbx_logger.log_image(torch.squeeze(inputs1), epoch, dataformats='CHW', title='inout image') # tbx_logger.log_image(torch.squeeze(targets), epoch, dataformats='HW', title='target_mask') # tbx_logger.log_image(torch.squeeze(outputs), epoch, dataformats='HW', title='output_mask') return {"val_loss": valid_loss, "val_jacc": valid_jaccard, "val_dice": valid_dice}, target_images, output_images def fmeasure_evaluation_a2d2(model: nn.Module, valid_dataset): """ This method by the given models and validation dataset calculates F-max measure, Precision, Recall and others metrics """ # Eval mode for all models model.eval() thresh = np.array(range(0, 256)) / 255.0 # UU totalFP = np.zeros(thresh.shape) totalFN = np.zeros(thresh.shape) totalPosNum = 0 totalNegNum = 0 for idx, batch in enumerate(valid_dataset): img, img2, mask = batch img = to_gpu(img.unsqueeze(0).contiguous().float()) img2 = to_gpu(img2.unsqueeze(0).contiguous().float()) mask = mask.squeeze().data.cpu().numpy().astype(dtype=np.bool) with torch.set_grad_enabled(False): predict = model(img, img2) predict = torch.sigmoid(predict) probs = (predict).squeeze(0).squeeze(0).data.cpu().numpy().astype(dtype=np.float32) FN, FP, posNum, negNum = evalExp(mask, probs, thresh, validMap=None, validArea=None) totalFP += FP totalFN += FN totalPosNum += posNum totalNegNum += negNum metrics = pxEval_maximizeFMeasure(totalPosNum, totalNegNum, totalFN, totalFP, thresh=thresh) return metrics def train_routine_a2d2_no_lidar( args, console_logger: logging.Logger, root: str, model: nn.Module, criterion, optimizer, scheduler, train_loader, valid_loader, fm_eval_dataset, validation, fold, num_classes=1, n_epochs=100, status_every=5): """ General trainig routine. params: args : argument parser parameters for saving it console_logger : logger object for logging root : root dir where stores trained models model : model for training criterion : loss function optimizer : SGD, Adam or other scheduler : learning rate scheduler train_loader : valid_loader : fm_eval_dataset : dataset for F-max evaluation validation : validation routine fold : number of fold num_classes : number of classes n_epochs : number of training epochs status_every : the parameter which controls the frequency of status printing """ # Load model if it exists root = Path(root) root.mkdir(exist_ok=True, parents=True) model_root = root / args.model_type / 'model{}'.format(fold) model_root.mkdir(exist_ok=True, parents=True) # CSV csvs_path = model_root / 'csv' csvs_path.mkdir(exist_ok=True, parents=True) model_path = model_root / 'model.pt' logging_path = model_root / 'train.log' # run params saving save_runparams(vars(args), file_path=(model_root / 'rparams.txt')) # file logger definition file_logger = logging.getLogger("file-logger") file_logger.setLevel(logging.INFO) fh = logging.FileHandler(str(logging_path), mode='w') formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") fh.setFormatter(formatter) file_logger.addHandler(fh) # Logging to the TensorBoardX tbx_logger = Logger(log_dir=str(model_root / "tbxlogs")) if model_path.exists(): state = torch.load(str(model_path)) epoch = state["epoch"] best_jaccard = state["best_jaccard"] best_dice = state["best_dice"] # best_metrics = state["best_metrics"] model.load_state_dict(state["model"]) console_logger.info( "\nModel '{0}' was restored. Best Jaccard: {1}, Best DICE: {2}, Epoch: {3}".format(str(model_path), best_jaccard, best_dice, epoch)) else: epoch = 1 best_jaccard = 0 best_dice = 0 # best_metrics = {"MaxF": 0, "AvgPrec": 0, "PRE": 0, "REC": 0} n_epochs = n_epochs + epoch best_model = copy.deepcopy(model.state_dict()) train_losses = [] valid_losses = [] jaccards = [] dices = [] # CSV data for logging loss_csv_data = [] jacc_dice_csv_data = [] # maxf_csv_data = [] # avgprec_csv_data = [] # prec_csv_data = [] # rec_csv_data = [] for epoch in range(epoch, n_epochs): epoch_train_losses = [] # Train mode model.train() # scheduler step scheduler.step() try: optimizer.zero_grad() for i, (inputs, targets) in enumerate(train_loader): inputs = to_gpu(inputs) targets = to_gpu(targets) with torch.set_grad_enabled(True): outputs = model(inputs) loss = criterion(targets, outputs) loss = loss/args.batch_factor loss.backward() if i % args.batch_factor == 0: optimizer.step() optimizer.zero_grad() epoch_train_losses.append((loss*args.batch_factor).item()) # Train loss per epoch epoch_train_loss = np.mean(epoch_train_losses).astype(dtype=np.float64) # Validation valid_dict, _, _ = validation(model, criterion, valid_loader, tbx_logger, epoch) # metrics = fmeasure_evaluation([model], fm_eval_dataset) train_losses.append(epoch_train_loss) valid_losses.append(valid_dict["val_loss"]) jaccards.append(valid_dict["val_jacc"]) dices.append(valid_dict["val_dice"]) if valid_dict["val_jacc"] > best_jaccard: best_jaccard = valid_dict["val_jacc"] best_dice = valid_dict["val_dice"] # best_metrics = {"MaxF": metrics["MaxF"], "AvgPrec": metrics["AvgPrec"], # "PRE": metrics["PRE_wp"][0], "REC": metrics["REC_wp"][0]} best_model = copy.deepcopy(model.state_dict()) if epoch and (epoch % status_every == 0): info_str = "\nEpoch: {}, LR: {}\n".format(epoch, scheduler.get_lr()) info_str += "-" * 30 info_str += "\nTrain loss: {0}".format(epoch_train_loss) info_str += "\nValid loss: {0}".format(valid_dict["val_loss"]) info_str += "\nValid Jaccard: {0}".format(valid_dict["val_jacc"]) info_str += "\nValid DICE: {0}\n".format(valid_dict["val_dice"]) # # MaxF, PRE, REC, AvgPrec printing # info_str += "\nUU_MaxF: {0}".format(uu_metrics["MaxF"]) # info_str += "\nUU_AvgPrec: {0}".format(uu_metrics["AvgPrec"]) # info_str += "\nUU_PRE: {0}".format(uu_metrics["PRE_wp"][0]) # info_str += "\nUU_REC: {0}\n".format(uu_metrics["REC_wp"][0]) # info_str += "\nUM_MaxF: {0}".format(um_metrics["MaxF"]) # info_str += "\nUM_AvgPrec: {0}".format(um_metrics["AvgPrec"]) # info_str += "\nUM_PRE: {0}".format(um_metrics["PRE_wp"][0]) # info_str += "\nUM_REC: {0}\n".format(um_metrics["REC_wp"][0]) # info_str += "\nUMM_MaxF: {0}".format(umm_metrics["MaxF"]) # info_str += "\nUMM_AvgPrec: {0}".format(umm_metrics["AvgPrec"]) # info_str += "\nUMM_PRE: {0}".format(umm_metrics["PRE_wp"][0]) # info_str += "\nUMM_REC: {0}\n".format(umm_metrics["REC_wp"][0]) info_str += "-" * 30 info_str += "\n" console_logger.info(info_str) # Log to file info_str = "\nepoch: {}, ".format(epoch) info_str += "train_loss: {}, ".format(epoch_train_loss) info_str += "val_loss: {}, ".format(valid_dict["val_loss"]) info_str += "val_jaccard: {}, ".format(valid_dict["val_jacc"]) info_str += "val_dice: {}\n".format(valid_dict["val_dice"]) file_logger.info(info_str) # Log to the tbX tbx_logger.log_scalars(tag="losses", values={"train_loss": epoch_train_loss, "valid_loss": valid_dict["val_loss"]}, step=epoch) tbx_logger.log_scalars(tag="metrics", values={"jaccard": valid_dict["val_jacc"], "DICE": valid_dict["val_dice"]}, step=epoch) # # MaxF # tbx_logger.log_scalars(tag="MaxF", values={"uu_maxF": uu_metrics["MaxF"], "um_maxF": um_metrics["MaxF"], # "umm_maxF": umm_metrics["MaxF"], "mmaxF": (uu_metrics[ # "MaxF"] + # um_metrics[ # "MaxF"] + # umm_metrics[ # "MaxF"]) / 3}, # step=epoch) # # AvgPrec # tbx_logger.log_scalars(tag="AvgPrec", # values={"uu_AvgPrec": uu_metrics["AvgPrec"], "um_AvgPrec": um_metrics["AvgPrec"], # "umm_AvgPrec": umm_metrics["AvgPrec"], "mAvgPrec": (uu_metrics[ # "AvgPrec"] + # um_metrics[ # "AvgPrec"] + # umm_metrics[ # "AvgPrec"]) / 3}, # step=epoch) # # PRE # tbx_logger.log_scalars(tag="PRE", # values={"uu_PRE": uu_metrics["PRE_wp"][0], "um_PRE": um_metrics["PRE_wp"][0], # "umm_PRE": umm_metrics["PRE_wp"][0], "mPRE": (uu_metrics["PRE_wp"][0] + # um_metrics["PRE_wp"][0] + # umm_metrics["PRE_wp"][ # 0]) / 3}, step=epoch) # # REC # tbx_logger.log_scalars(tag="REC", # values={"uu_REC": uu_metrics["REC_wp"][0], "um_REC": um_metrics["REC_wp"][0], # "umm_REC": umm_metrics["REC_wp"][0], "mREC": (uu_metrics["REC_wp"][0] + # um_metrics["REC_wp"][0] + # umm_metrics["REC_wp"][ # 0]) / 3}, step=epoch) # # # Log to csv # maxf_csv_data.append( # "{},{},{},{},{}".format(epoch, uu_metrics["MaxF"], um_metrics["MaxF"], umm_metrics["MaxF"], # (uu_metrics["MaxF"] + um_metrics["MaxF"] + umm_metrics["MaxF"]) / 3).split( # ",")) # avgprec_csv_data.append( # "{},{},{},{},{}".format(epoch, uu_metrics["AvgPrec"], um_metrics["AvgPrec"], umm_metrics["AvgPrec"], # (uu_metrics["AvgPrec"] + um_metrics["AvgPrec"] + umm_metrics[ # "AvgPrec"]) / 3).split(",")) # prec_csv_data.append("{},{},{},{},{}".format(epoch, uu_metrics["PRE_wp"][0], um_metrics["PRE_wp"][0], # umm_metrics["PRE_wp"][0], ( # uu_metrics["PRE_wp"][0] + um_metrics["PRE_wp"][ # 0] + umm_metrics["PRE_wp"][0]) / 3).split(",")) # rec_csv_data.append("{},{},{},{},{}".format(epoch, uu_metrics["REC_wp"][0], um_metrics["REC_wp"][0], # umm_metrics["REC_wp"][0], ( # uu_metrics["REC_wp"][0] + um_metrics["REC_wp"][ # 0] + umm_metrics["REC_wp"][0]) / 3).split(",")) # loss_csv_data.append("{},{},{}".format(epoch, epoch_train_loss, valid_dict["val_loss"]).split(",")) # jacc_dice_csv_data.append( # "{},{},{}".format(epoch, valid_dict["val_jacc"], valid_dict["val_dice"]).split(",")) console_logger.info("End of Epoch: Saving snapshot.") save_model_a2d2(str(model_path), best_model, best_jaccard, best_dice, epoch) except KeyboardInterrupt: console_logger.info("KeyboardInterrupt, saving snapshot.") #save_model(str(model_path), best_model, best_jaccard, best_dice, best_uu_metrics, best_um_metrics, best_umm_metrics, epoch) save_model_a2d2(str(model_path), best_model, best_jaccard, best_dice, epoch) console_logger.info("Done!") info_str = "\nTraining process is done!\n" + "*" * 30 info_str += "\nTrain loss: {0}".format(np.mean(train_losses).astype(dtype=np.float64)) info_str += "\nValid loss: {0}".format(np.mean(valid_losses).astype(dtype=np.float64)) info_str += "\nMean Jaccard: {0}".format(np.mean(jaccards).astype(dtype=np.float64)) info_str += "\nMean DICE: {0}".format(np.mean(dices).astype(dtype=np.float64)) info_str += "\nBest Jaccard: {0}".format(best_jaccard) info_str += "\nBest DICE: {0}\n".format(best_dice) # info_str += "\nBest UU_Metrics: {0}".format(best_uu_metrics) # info_str += "\nBest UM_Metrics: {0}".format(best_um_metrics) # info_str += "\nBest UMM_Metrics: {0}".format(best_umm_metrics) # info_str += "\nMean MaxF: {0}\n".format((best_uu_metrics["MaxF"] + best_um_metrics["MaxF"] + best_umm_metrics["MaxF"])/3) info_str += "*" * 30 console_logger.info(info_str) file_logger.info(info_str) # model saving # save_model(str(model_path), best_model, best_jaccard, best_dice, best_uu_metrics, best_um_metrics, best_umm_metrics, n_epochs) save_model_a2d2(str(model_path), best_model, best_jaccard, best_dice, n_epochs) # Save to CSV # write2csv(data=maxf_csv_data, file_name=str(csvs_path / "maxf.csv"), type_of_header="maxf") # write2csv(data=avgprec_csv_data, file_name=str(csvs_path / "avgprec.csv"), type_of_header="avgprec") # write2csv(data=prec_csv_data, file_name=str(csvs_path / "prec.csv"), type_of_header="prec") # write2csv(data=rec_csv_data, file_name=str(csvs_path / "rec.csv"), type_of_header="rec") write2csv(data=loss_csv_data, file_name=str(csvs_path / "loss.csv"), type_of_header="loss") write2csv(data=jacc_dice_csv_data, file_name=str(csvs_path / "jd.csv"), type_of_header="jd") def binary_validation_routine_a2d2_no_lidar(model: nn.Module, criterion, valid_loader, tbx_logger=None, epoch: int=0, \ save_image: bool=False): """ This method by the given criterion, model and validation loader calculates Jaccard and DICE metrics with the validation loss for binary problem """ with torch.set_grad_enabled(False): valid_losses = [] jaccards = [] dices = [] target_images = [] output_images = [] model.eval() for idx, (inputs, targets) in enumerate(valid_loader): inputs = to_gpu(inputs) targets = to_gpu(targets) outputs = model(inputs) loss = criterion(targets, outputs) valid_losses.append(loss.item()) jaccards += batch_jaccard(targets, (outputs > 0).float()) dices += batch_dice(targets, (outputs > 0).float()) if save_image: # Fix tensors to be images outputs = img_utils.getMaskFromTensor(outputs) inputs = img_utils.UnNormalize_tensor(inputs, mean=[0.63263481, 0.63265741, 0.62899464], std=[0.25661512, 0.25698695, 0.2594808]) # Log Images zeros = to_gpu(torch.zeros(targets.size())) mask_target = torch.cat((zeros, targets, zeros), 1) mask_output = torch.cat((zeros, outputs, zeros), 1) img_target = torch.add(inputs * 0.70, mask_target * 0.30) img_output = torch.add(inputs * 0.70, mask_output * 0.30) img_target = img_utils.getImageFromUnitTensor(torch.squeeze(img_target).cpu()) img_output = img_utils.getImageFromUnitTensor(torch.squeeze(img_output).cpu()) target_images.append(img_target) output_images.append(img_output) # Calculates losses valid_loss = np.mean(valid_losses).astype(dtype=np.float64) valid_jaccard = np.mean(jaccards).astype(dtype=np.float64) valid_dice = np.mean(dices).astype(dtype=np.float64) if not save_image: # Fix tensors to be images outputs = img_utils.getMaskFromTensor(outputs) inputs = img_utils.UnNormalize_tensor(inputs, mean=[0.63263481, 0.63265741, 0.62899464], std=[0.25661512, 0.25698695, 0.2594808]) # Log Images zeros = to_gpu(torch.zeros(targets.size())) mask_target = torch.cat((zeros, targets, zeros), 1) mask_output = torch.cat((zeros, outputs, zeros), 1) img_target = torch.add(inputs * 0.70, mask_target * 0.30) img_output = torch.add(inputs * 0.70, mask_output * 0.30) tbx_logger.log_image(torch.squeeze(img_target), epoch, dataformats='CHW', title='target') tbx_logger.log_image(torch.squeeze(img_output), epoch, dataformats='CHW', title='predicted') # 'Size of images not equal for grid formation' # tbx_logger.log_image(torch.squeeze(inputs), epoch, dataformats='CHW', title='inout image') # tbx_logger.log_image(torch.squeeze(targets), epoch, dataformats='HW', title='target_mask') # tbx_logger.log_image(torch.squeeze(outputs), epoch, dataformats='HW', title='output_mask') return {"val_loss": valid_loss, "val_jacc": valid_jaccard, "val_dice": valid_dice}, target_images, output_images def fmeasure_evaluation_a2d2_no_lidar(model: nn.Module, valid_dataset): """ This method by the given models and validation dataset calculates F-max measure, Precision, Recall and others metrics """ # Eval mode for all models model.eval() thresh = np.array(range(0, 256)) / 255.0 # UU totalFP = np.zeros(thresh.shape) totalFN = np.zeros(thresh.shape) totalPosNum = 0 totalNegNum = 0 for idx, batch in enumerate(valid_dataset): img, mask = batch img = to_gpu(img.unsqueeze(0).contiguous().float()) mask = mask.squeeze().data.cpu().numpy().astype(dtype=np.bool) with torch.set_grad_enabled(False): predict = model(img) predict = torch.sigmoid(predict) probs = (predict).squeeze(0).squeeze(0).data.cpu().numpy().astype(dtype=np.float32) FN, FP, posNum, negNum = evalExp(mask, probs, thresh, validMap=None, validArea=None) totalFP += FP totalFN += FN totalPosNum += posNum totalNegNum += negNum metrics = pxEval_maximizeFMeasure(totalPosNum, totalNegNum, totalFN, totalFP, thresh=thresh) return metrics def binary_validation_routine(model: nn.Module, criterion, valid_loader): """ This method by the given criterion, model and validation loader calculates Jaccard and DICE metrics with the validation loss for binary problem """ with torch.set_grad_enabled(False): valid_losses = [] jaccards = [] dices = [] model.eval() for idx, batch in enumerate(valid_loader): inputs, targets = batch inputs = to_gpu(inputs) targets = to_gpu(targets) outputs = model(inputs) loss = criterion(targets, outputs) valid_losses.append(loss.item()) jaccards += batch_jaccard(targets, (outputs > 0).float()) dices += batch_dice(targets, (outputs > 0).float()) # Calculates losses valid_loss = np.mean(valid_losses).astype(dtype=np.float64) valid_jaccard = np.mean(jaccards).astype(dtype=np.float64) valid_dice = np.mean(dices).astype(dtype=np.float64) return {"val_loss": valid_loss, "val_jacc": valid_jaccard, "val_dice": valid_dice} def multi_validation_routine(model: nn.Module, criterion, valid_loader, num_classes=1): """ This method by the given criterion, model and validation loader calculates Jaccard and DICE metrics with the validation loss for a multi-class problem """ with torch.set_grad_enabled(False): valid_losses = [] # Eval mode model.eval() confusion_matrix = np.zeros((num_classes, num_classes), dtype=np.uint32) for idx, batch in enumerate(valid_loader): inputs, targets = batch inputs = to_gpu(inputs) targets = to_gpu(targets) outputs = model(inputs) loss = criterion(targets, outputs) valid_losses.append(loss.item()) output = outputs.data.cpu().numpy().argmax(axis=1) # output classes target = targets.data.cpu().numpy() confusion_matrix += calculate_confusion_matrix_from_arrays(output, target, num_classes) confusion_matrix = confusion_matrix[1:, 1:] # remove background # Jaccards and Dices jaccards = calculate_jaccards(confusion_matrix) dices = calculate_dices(confusion_matrix) mean_valid_loss =
np.mean(valid_losses)
numpy.mean
import os import pathlib import collections import numpy as np import torch import torch.utils.data import cv2 # pytype: disable=attribute-error class EchoSet(torch.utils.data.Dataset): def __init__(self, root, split="train", min_spacing=16, max_length=128, fixed_length=128, pad=8, random_clip=False, dataset_mode='repeat', SDmode = 'reg' # reg, cla ): self.folder = pathlib.Path(root) self.split = split self.max_length = max_length self.min_length = min_spacing self.fixed_length = fixed_length self.padding = pad self.mode = dataset_mode # repeat, sample, full self.random_clip = random_clip self.attenuation = 3 # Exponent to smooth the labels, choose odd numbers, not too big self.SDmode = SDmode #reg, cla self.fnames = [] self.outcome = [] self.ejection = [] self.fps = [] if not os.path.exists(root): raise ValueError("Path does not exist: "+root) with open(self.folder / "FileList.csv") as f: self.header = f.readline().strip().split(",") filenameIndex = self.header.index("FileName") splitIndex = self.header.index("Split") efIndex = self.header.index("EF") fpsIndex = self.header.index("FPS") for line in f: lineSplit = line.strip().split(',') # Get name of the video file fileName = os.path.splitext(lineSplit[filenameIndex])[0]+".avi" # Get subset category (train, val, test) fileMode = lineSplit[splitIndex].lower() # Get EF ef = lineSplit[efIndex] fps = lineSplit[fpsIndex] # Keep only entries where the video exist and "mode" corresponds to what is asked if split in ["all", fileMode] and os.path.exists(self.folder / "Videos" / fileName): self.fnames.append(fileName) self.outcome.append(lineSplit) self.ejection.append(float(ef)) self.fps.append(int(fps)) self.frames = collections.defaultdict(list) self.trace = collections.defaultdict(_defaultdict_of_lists) # Volume and frames metadata - not used in UVT with open(self.folder / "VolumeTracings.csv") as f: header = f.readline().strip().split(",") assert header == ["FileName", "X1", "Y1", "X2", "Y2", "Frame"] # Read lines one by one and store processed data for line in f: filename, x1, y1, x2, y2, frame = line.strip().split(',') x1 = float(x1) y1 = float(y1) x2 = float(x2) y2 = float(y2) frame = int(frame) filename = os.path.splitext(filename)[0] # New frame index for the given filename if frame not in self.trace[filename]: self.frames[filename].append(frame) # Add volume lines to trace self.trace[filename][frame].append((x1, y1, x2, y2)) # Transform into numpy array for filename in self.frames: for frame in self.frames[filename]: self.trace[filename][frame] = np.array(self.trace[filename][frame]) # Reject all files which do not have both ED and ES frames keep = [(len(self.frames[os.path.splitext(f)[0]]) >= 2) and (abs(self.frames[os.path.splitext(f)[0]][0] - self.frames[os.path.splitext(f)[0]][-1]) > self.min_length) for f in self.fnames] # Prepare for getitem self.fnames = [f for (f, k) in zip(self.fnames, keep) if k] self.outcome = [f for (f, k) in zip(self.outcome, keep) if k] self.ejection = [f for (f, k) in zip(self.ejection, keep) if k] self.fps = [f for (f, k) in zip(self.fps, keep) if k] def __getitem__(self, index): if self.mode == 'repeat': path = os.path.join(self.folder, "Videos", self.fnames[index]) # Load video into np.array video = loadvideo(path).astype(np.float32) key = os.path.splitext(self.fnames[index])[0] # Scale pixel values from 0-255 to 0-1 video /= 255.0 video = np.moveaxis(video, 0, 1) samp_size = abs(self.frames[key][0]-self.frames[key][-1]) if samp_size > self.fixed_length//2: video = video[::2,:,:,:] large_key = int(self.frames[key][-1]//2) small_key = int(self.frames[key][0]//2) else: large_key = self.frames[key][-1] small_key = self.frames[key][0] # Frames, Channel, Height, Width f, c, h, w = video.shape first_poi = min(small_key, large_key) last_poi = max(small_key, large_key) label = np.zeros(f) if self.SDmode == 'cla': label[small_key] = 1 # End systole (small) label[large_key] = 2 # End diastole (large) elif self.SDmode == 'reg': label[small_key] = -1 # End systole (small) label[large_key] = 1 # End diastole (large) dist = abs(small_key-large_key) sign = -int((small_key-large_key)/dist) center = min(small_key,large_key)+dist//2 label[small_key+sign:large_key:sign] = sign*np.power((np.arange(small_key+sign,large_key,sign)-center)/dist*2,self.attenuation) nlabel = [] nvideo = [] repeat = 0 while len(nvideo) < self.fixed_length+1: nvideo.append(video[first_poi]) nvideo.extend(video[first_poi+1:last_poi]) nvideo.append(video[last_poi]) nvideo.extend(video[last_poi-1:first_poi:-1]) nlabel.append(label[first_poi]) nlabel.extend(label[first_poi+1:last_poi]) nlabel.append(label[last_poi]) nlabel.extend(label[last_poi-1:first_poi:-1]) repeat += 1 nvideo = np.stack(nvideo) nlabel = np.stack(nlabel) start_index =
np.random.randint(nvideo.shape[0]-self.fixed_length)
numpy.random.randint
#!/usr/bin/env python3 ############################################################################### # # # RMG - Reaction Mechanism Generator # # # # Copyright (c) 2002-2021 Prof. <NAME> (<EMAIL>), # # Prof. <NAME> (<EMAIL>) and the RMG Team (<EMAIL>) # # # # Permission is hereby granted, free of charge, to any person obtaining a # # copy of this software and associated documentation files (the 'Software'), # # to deal in the Software without restriction, including without limitation # # the rights to use, copy, modify, merge, publish, distribute, sublicense, # # and/or sell copies of the Software, and to permit persons to whom the # # Software is furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in # # all copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # # DEALINGS IN THE SOFTWARE. # # # ############################################################################### """ This module provides the :class:`StatMechJob` class, which represents a statistical mechanics job used to compute and save the statistical mechanics information for a single species or transition state. """ import logging import math import os import matplotlib.pyplot as plt import numpy as np import rmgpy.constants as constants from rmgpy.exceptions import InputError, ElementError, StatmechError from rmgpy.molecule.molecule import Molecule from rmgpy.species import TransitionState, Species from rmgpy.statmech.ndTorsions import HinderedRotor2D, HinderedRotorClassicalND from rmgpy.statmech.rotation import LinearRotor, NonlinearRotor from rmgpy.statmech.torsion import HinderedRotor, FreeRotor from rmgpy.statmech.translation import Translation, IdealGasTranslation from rmgpy.statmech.vibration import HarmonicOscillator from rmgpy.quantity import Quantity from arkane.common import ArkaneSpecies, symbol_by_number, get_principal_moments_of_inertia from arkane.encorr.corr import get_atom_correction, get_bac from arkane.ess import ESSAdapter, ess_factory, _registered_ess_adapters, GaussianLog, QChemLog from arkane.encorr.isodesmic import ErrorCancelingSpecies, IsodesmicRingScheme from arkane.modelchem import LevelOfTheory, CompositeLevelOfTheory, standardize_name from arkane.output import prettify from arkane.encorr.reference import ReferenceDatabase from arkane.thermo import ThermoJob ################################################################################ class ScanLog(object): """ Represent a text file containing a table of angles and corresponding scan energies. """ angleFactors = { 'radians': 1.0, 'rad': 1.0, 'degrees': 180.0 / math.pi, 'deg': 180.0 / math.pi, } energyFactors = { 'J/mol': 1.0, 'kJ/mol': 1.0 / 1000., 'cal/mol': 1.0 / 4.184, 'kcal/mol': 1.0 / 4184., 'cm^-1': 1.0 / (constants.h * constants.c * 100. * constants.Na), 'hartree': 1.0 / (constants.E_h * constants.Na), } def __init__(self, path): self.path = path def load(self): """ Load the scan energies from the file. Returns arrays containing the angles (in radians) and energies (in J/mol). """ angles, energies = [], [] angle_units, energy_units, angle_factor, energy_factor = None, None, None, None with open(self.path, 'r') as stream: for line in stream: line = line.strip() if line == '': continue tokens = line.split() if angle_units is None or energy_units is None: angle_units = tokens[1][1:-1] energy_units = tokens[3][1:-1] try: angle_factor = ScanLog.angleFactors[angle_units] except KeyError: raise ValueError('Invalid angle units {0!r}.'.format(angle_units)) try: energy_factor = ScanLog.energyFactors[energy_units] except KeyError: raise ValueError('Invalid energy units {0!r}.'.format(energy_units)) else: angles.append(float(tokens[0]) / angle_factor) energies.append(float(tokens[1]) / energy_factor) angles = np.array(angles) energies = np.array(energies) energies -= energies[0] return angles, energies def save(self, angles, energies, angle_units='radians', energy_units='kJ/mol'): """ Save the scan energies to the file using the given `angles` in radians and corresponding energies `energies` in J/mol. The file is created to use the given `angle_units` for angles and `energy_units` for energies. """ assert len(angles) == len(energies) try: angle_factor = ScanLog.angleFactors[angle_units] except KeyError: raise ValueError('Invalid angle units {0!r}.'.format(angle_units)) try: energy_factor = ScanLog.energyFactors[energy_units] except KeyError: raise ValueError('Invalid energy units {0!r}.'.format(energy_units)) with open(self.path, 'w') as stream: stream.write('{0:>24} {1:>24}\n'.format( 'Angle ({0})'.format(angle_units), 'Energy ({0})'.format(energy_units), )) for angle, energy in zip(angles, energies): stream.write('{0:23.10f} {1:23.10f}\n'.format(angle * angle_factor, energy * energy_factor)) ################################################################################ def hinderedRotor(scanLog, pivots, top, symmetry=None, fit='best'): """Read a hindered rotor directive, and return the attributes in a list""" return [scanLog, pivots, top, symmetry, fit] def freeRotor(pivots, top, symmetry): """Read a free rotor directive, and return the attributes in a list""" return [pivots, top, symmetry] def hinderedRotor2D(scandir, pivots1, top1, symmetry1, pivots2, top2, symmetry2, symmetry='none'): """Read a two dimensional hindered rotor directive, and return the attributes in a list""" return [scandir, pivots1, top1, symmetry1, pivots2, top2, symmetry2, symmetry] def hinderedRotorClassicalND(calcPath, pivots, tops, sigmas, semiclassical): """Read an N dimensional hindered rotor directive, and return the attributes in a list""" return [calcPath, pivots, tops, sigmas, semiclassical] class StatMechJob(object): """ A representation of a Arkane statistical mechanics job. This job is used to compute and save the statistical mechanics information for a single species or transition state. """ def __init__(self, species, path): self.species = species self.path = path self.level_of_theory = None self.frequencyScaleFactor = 1.0 self.includeHinderedRotors = True self.useIsodesmicReactions = False self.isodesmicReactionList = None self.referenceSets = None self.applyAtomEnergyCorrections = True self.applyBondEnergyCorrections = True self.bondEnergyCorrectionType = 'p' self.atomEnergies = None self.bonds = None self.arkane_species = ArkaneSpecies(species=species) self.hindered_rotor_plots = [] def execute(self, output_directory=None, plot=False, pdep=False): """ Execute the statmech job, saving the results within the `output_directory`. If `plot` is True, then plots of the hindered rotor fits will be saved. """ self.load(pdep, plot) if output_directory is not None: try: self.write_output(output_directory) except Exception as e: logging.warning("Could not write statmech output file due to error: " "{0} in species {1}".format(e, self.species.label)) if plot: hr_dir = os.path.join(output_directory, 'plots') if not os.path.exists(hr_dir): os.mkdir(hr_dir) try: self.save_hindered_rotor_figures(hr_dir) except Exception as e: logging.warning("Could not save hindered rotor scans due to error: " "{0} in species {1}".format(e, self.species.label)) logging.debug('Finished statmech job for species {0}.'.format(self.species)) logging.debug(repr(self.species)) def load(self, pdep=False, plot=False): """ Load the statistical mechanics parameters for each conformer from the associated files on disk. Creates :class:`Conformer` objects for each conformer and appends them to the list of conformers on the species object. """ path = self.path directory = os.path.abspath(os.path.dirname(path)) def create_log(log_path, check_for_errors=True): if not os.path.isfile(log_path): modified_log_path = os.path.join(directory, log_path) if not os.path.isfile(modified_log_path): raise InputError('Could not find log file for species {0} ' 'in the specified path {1}'.format(self.species.label, log_path)) else: log_path = modified_log_path return ess_factory(log_path, check_for_errors=check_for_errors) is_ts = isinstance(self.species, TransitionState) file_extension = os.path.splitext(path)[-1] if file_extension in ['.yml', '.yaml']: self.arkane_species.load_yaml(path=path, label=self.species.label, pdep=pdep) self.species.conformer = self.arkane_species.conformer if is_ts: self.species.frequency = self.arkane_species.imaginary_frequency else: self.species.transport_data = self.arkane_species.transport_data self.species.energy_transfer_model = self.arkane_species.energy_transfer_model if self.arkane_species.adjacency_list is not None: self.species.molecule = [Molecule().from_adjacency_list(adjlist=self.arkane_species.adjacency_list)] elif self.arkane_species.inchi is not None: self.species.molecule = [Molecule().from_inchi(inchistr=self.arkane_species.inchi)] elif self.arkane_species.smiles is not None: self.species.molecule = [Molecule().from_smiles(smilesstr=self.arkane_species.smiles)] return logging.info('Loading statistical mechanics parameters for {0}...'.format(self.species.label)) global_context = { '__builtins__': None, } local_context = { '__builtins__': None, 'True': True, 'False': False, 'HinderedRotor': hinderedRotor, 'FreeRotor': freeRotor, 'HinderedRotor2D': hinderedRotor2D, 'HinderedRotorClassicalND': hinderedRotorClassicalND, 'ScanLog': ScanLog, 'Log': create_log, # The Log class no longer exists, so route the path to ess_factory instead 'LevelOfTheory': LevelOfTheory, 'CompositeLevelOfTheory': CompositeLevelOfTheory, } local_context.update({ess_adapter_name: create_log for ess_adapter_name in _registered_ess_adapters.keys()}) with open(path, 'r') as f: try: exec(f.read(), global_context, local_context) except (NameError, TypeError, SyntaxError): logging.error('The species file {0} was invalid:'.format(path)) raise if self.bonds is None: try: self.bonds = local_context['bonds'] except KeyError: self.bonds = {} try: linear = local_context['linear'] except KeyError: linear = None try: external_symmetry = local_context['externalSymmetry'] except KeyError: external_symmetry = None try: spin_multiplicity = local_context['spin_multiplicity'] except KeyError: spin_multiplicity = 0 try: optical_isomers = local_context['opticalIsomers'] except KeyError: logging.debug('No opticalIsomers provided, estimating them from the quantum file.') optical_isomers = None try: energy = local_context['energy'] except KeyError: raise InputError('Required attribute "energy" not found in species file {0!r}.'.format(path)) if isinstance(energy, dict): # Standardize model chemistry names energy = {standardize_name(k) if isinstance(k, str) else k: v for k, v in energy.items()} freq_level = getattr(self.level_of_theory, 'freq', self.level_of_theory) energy_level = getattr(self.level_of_theory, 'energy', self.level_of_theory) try: energy = energy[energy_level.to_model_chem()] except KeyError: try: energy = energy[energy_level] except KeyError: raise InputError(f'{energy_level} not found in dictionary of energy values in species file {path}.') else: freq_level = energy_level = None e0, e_electronic = None, None # E0 = e_electronic + ZPE energy_log = None if isinstance(energy, ESSAdapter): energy_log = energy # Update energy level of theory with software if energy_level is not None: energy_software = energy_log.get_software() if energy_level.software is not None and energy_level.software != energy_software: logging.warning(f'{energy_level.software} was specified as energy software but does not match' f' detected software. Software will be updated to {energy_software}.') energy_level = energy_level.update(software=energy_software) elif isinstance(energy, float): e_electronic = energy elif isinstance(energy, tuple) and len(energy) == 2: # this is likely meant to be a quantity object with ZPE already accounted for energy = Quantity(energy) e0 = energy.value_si # in J/mol elif isinstance(energy, tuple) and len(energy) == 3: if energy[2].lower() == 'e_electronic': energy = Quantity(energy[:2]) e_electronic = energy.value_si / constants.E_h / constants.Na # convert J/mol to Hartree elif energy[2].lower() in ['e0']: energy = Quantity(energy[:2]) e0 = energy.value_si # in J/mol else: raise InputError('The third argument for E0 energy value should be e_elect (for energy w/o ZPE) ' 'or E0 (including the ZPE). Got: {0}'.format(energy[2])) try: statmech_log = local_context['frequencies'] except KeyError: raise InputError('Required attribute "frequencies" not found in species file {0!r}.'.format(path)) try: geom_log = local_context['geometry'] except KeyError: geom_log = statmech_log logging.debug("Reading geometry from the specified frequencies file.") # Update frequency level of theory with software and set new composite level of theory if freq_level is not None: freq_software = statmech_log.get_software() if freq_level.software is not None and freq_level.software != freq_software: logging.warning(f'{freq_level.software} was specified as frequency software but does not match detected' f' software. Software will be updated to {freq_software}.') freq_level = freq_level.update(software=freq_software) if freq_level is not None and energy_level is not None: if energy_level == freq_level: self.level_of_theory = energy_level else: self.level_of_theory = CompositeLevelOfTheory(freq=freq_level, energy=energy_level) if 'frequencyScaleFactor' in local_context: logging.warning('Ignoring frequency scale factor in species file {0!r}.'.format(path)) rotors = [] if self.includeHinderedRotors: self.raw_hindered_rotor_data = [] try: rotors = local_context['rotors'] except KeyError: pass # If hindered/free rotors are included in Statmech job, ensure that the same (freq) log file is used for # both the species's optimized geometry and Hessian. This approach guarantees that the geometry and Hessian # will be defined in the same Cartesian coordinate system ("Input Orientation", as opposed to # "Standard Orientation", or something else). Otherwise, if the geometry and Hessian are read from different # log files, it is very easy for them to be defined in different coordinate systems, unless the user is very # careful. The current implementation only performs this check for Gaussian logs. If QChem logs are used, only # a warning is output reminding the user to ensure the geometry and Hessian are defined in consistent # coordinates. if len(rotors) > 0: if isinstance(statmech_log, GaussianLog): if statmech_log.path != geom_log.path: raise InputError('For {0!r}, the geometry log, {1!r}, and frequency log, {2!r}, are not the same. ' 'In order to ensure the geometry and Hessian of {0!r} are defined in consistent ' 'coordinate systems for hindered/free rotor projection, either use the frequency ' 'log for both geometry and frequency, or remove rotors.'.format( self.species.label, geom_log.path, statmech_log.path)) elif isinstance(statmech_log, QChemLog): logging.warning('QChem log will be used for Hessian of {0!r}. Please verify that the geometry ' 'and Hessian of {0!r} are defined in the same coordinate system'.format( self.species.label)) logging.debug(' Reading molecular degrees of freedom...') conformer, unscaled_frequencies = statmech_log.load_conformer(symmetry=external_symmetry, spin_multiplicity=spin_multiplicity, optical_isomers=optical_isomers, label=self.species.label) for mode in conformer.modes: if isinstance(mode, (Translation, IdealGasTranslation)): break else: # Sometimes the translational mode is not appended to modes for monoatomic species conformer.modes.append(IdealGasTranslation(mass=self.species.molecular_weight)) if conformer.spin_multiplicity == 0: raise ValueError("Could not read spin multiplicity from log file {0},\n" "please specify the multiplicity in the input file.".format(self.path)) logging.debug(' Reading optimized geometry...') coordinates, number, mass = geom_log.load_geometry() if self.species.conformer is not None and len(self.species.conformer.modes): # check that conformer has an IdealGasTranslation mode, append one if it doesn't for mode in self.species.conformer.modes: if isinstance(mode, IdealGasTranslation): break else: self.species.conformer.modes.append(IdealGasTranslation(mass=(mass, "amu"))) # check that conformer has a LinearRotor or a NonlinearRotor mode, append one if it doesn't for mode in self.species.conformer.modes: if isinstance(mode, (LinearRotor, NonlinearRotor)): break else: # get the moments of inertia and the external symmetry moments_of_inertia = get_principal_moments_of_inertia(coords=self.species.conformer.coordinates, numbers=self.species.conformer.number) symmetry = geom_log.get_symmetry_properties()[1] if any([moment_of_inertia == 0.0 for moment_of_inertia in moments_of_inertia]): # this is a linear rotor moments_of_inertia = [moment_of_inertia for moment_of_inertia in moments_of_inertia if moment_of_inertia != 0.0] if abs(moments_of_inertia[0] - moments_of_inertia[1]) > 0.01: raise StatmechError(f'Expected two identical moments of inertia for a linear rigis rotor, ' f'but got {moments_of_inertia}') self.species.conformer.modes.append(LinearRotor(inertia=(moments_of_inertia[0], "amu*angstrom^2"), symmetry=symmetry)) else: # this is a non-linear rotor self.species.conformer.modes.append(NonlinearRotor(inertia=(moments_of_inertia, "amu*angstrom^2"), symmetry=symmetry)) # Infer atoms from geometry atoms = {} for atom_num in number: try: symbol = symbol_by_number[atom_num] except KeyError: raise ElementError('Could not recognize element number {0}.'.format(atom_num)) atoms[symbol] = atoms.get(symbol, 0) + 1 # Save atoms for use in writing thermo output if isinstance(self.species, Species): self.species.props['element_counts'] = atoms conformer.coordinates = (coordinates, "angstroms") conformer.number = number conformer.mass = (mass, "amu") # The 1.014 factor represents the relationship between the harmonic frequencies scaling factor # and the zero point energy scaling factor, see https://pubs.acs.org/doi/10.1021/ct100326h Section 3.1.3. zpe_scale_factor = self.frequencyScaleFactor / 1.014 logging.debug(' Reading energy...') if e0 is None: if e_electronic is None: # The energy read from the log file is without the ZPE e_electronic = energy_log.load_energy(zpe_scale_factor) # in J/mol else: e_electronic *= constants.E_h * constants.Na # convert Hartree/particle into J/mol # Make sure that isodesmic reactions are configured properly if requested if self.useIsodesmicReactions: # Make sure atom and bond corrections are not applied if not self.applyAtomEnergyCorrections: logging.warning('Atom corrections not requested but MUST be used since isodesmic reactions are ' 'being used') self.applyAtomEnergyCorrections = True if self.applyBondEnergyCorrections: logging.warning('Bond corrections requested but will not be used since isodesmic reactions are ' 'being used') self.applyBondEnergyCorrections = False # Apply atom corrections if self.applyAtomEnergyCorrections: atom_corrections = get_atom_correction(self.level_of_theory, atoms, self.atomEnergies) else: atom_corrections = 0 logging.warning('Atom corrections are not being used. Do not trust energies and thermo.') # Apply bond corrections if self.applyBondEnergyCorrections: if not self.bonds and hasattr(self.species, 'molecule') and self.species.molecule: self.bonds = self.species.molecule[0].enumerate_bonds() bond_corrections = get_bac(self.level_of_theory, self.bonds, coordinates, number, bac_type=self.bondEnergyCorrectionType, multiplicity=conformer.spin_multiplicity) else: bond_corrections = 0 e_electronic_with_corrections = e_electronic + atom_corrections + bond_corrections # Get ZPE only for polyatomic species (monoatomic species don't have frequencies, so ZPE = 0) zpe = statmech_log.load_zero_point_energy() * zpe_scale_factor if len(number) > 1 else 0 logging.debug('Scaled zero point energy (ZPE) is {0} J/mol'.format(zpe)) logging.debug(' Harmonic frequencies scaling factor used = {0:g}'.format(self.frequencyScaleFactor)) logging.debug(' Zero point energy scaling factor used = {0:g}'.format(zpe_scale_factor)) logging.debug(' Scaled ZPE (0 K) = {0:g} kcal/mol'.format(zpe / 4184.)) # If loading a transition state, also read the imaginary frequency if is_ts: neg_freq = statmech_log.load_negative_frequency() self.species.frequency = (neg_freq * self.frequencyScaleFactor, "cm^-1") # Read and fit the 1D hindered rotors if applicable # If rotors are found, the vibrational frequencies are also # recomputed with the torsional modes removed hessian = statmech_log.load_force_constant_matrix() if hessian is not None and len(mass) > 1 and len(rotors) > 0: frequencies, rotors, conformer = self._fit_rotors(rotors, conformer, hessian, is_ts, linear, directory, plot) elif len(conformer.modes) > 2: if len(rotors) > 0: logging.warning('Force Constant Matrix Missing Ignoring rotors, if running Gaussian if not already ' 'present you need to add the keyword iop(7/33=1) in your Gaussian frequency job for ' 'Gaussian to generate the force constant matrix, if running Molpro include keyword ' 'print, hessian') frequencies = conformer.modes[2].frequencies.value_si rotors = np.array([]) else: if len(rotors) > 0: logging.warning('Force Constant Matrix Missing Ignoring rotors, if running Gaussian if not already ' 'present you need to add the keyword iop(7/33=1) in your Gaussian frequency job for ' 'Gaussian to generate the force constant matrix, if running Molpro include keyword' 'print, hessian') frequencies = np.array([]) rotors = np.array([]) for mode in conformer.modes: if isinstance(mode, HarmonicOscillator): mode.frequencies = (frequencies * self.frequencyScaleFactor, "cm^-1") if self.useIsodesmicReactions: # First, check that a species structure has been given if not self.species.molecule: raise InputError('A structure must be defined in the species block of the input file to perform ' 'isodesmic reaction calculations. For example, append the following to the species ' 'block: `structure=SMILES(CC)` using ethane as an example here.') # Next, load the reference set database reference_db = ReferenceDatabase() reference_db.load(paths=self.referenceSets) # Set the uncorrected value for E0 on the conformer object so that we can perform the uncorrected thermo job conformer.E0 = ((e_electronic_with_corrections + zpe) * 0.001, 'kJ/mol') self.species.conformer = conformer uncorrected_thermo_job = ThermoJob(species=self.species, thermo_class='nasa') uncorrected_thermo_job.generate_thermo() uncorrected_thermo = self.species.thermo.get_enthalpy(298) scheme = IsodesmicRingScheme(target=ErrorCancelingSpecies(self.species.molecule[0], (uncorrected_thermo, 'J/mol'), self.level_of_theory), reference_set=reference_db.extract_level_of_theory(self.level_of_theory)) isodesmic_thermo, self.isodesmicReactionList = scheme.calculate_target_enthalpy() # Set the difference as the isodesmic EO correction e_electronic_with_corrections += isodesmic_thermo.value_si - uncorrected_thermo e0 = e_electronic_with_corrections + zpe logging.debug(' E0 (0 K) = {0:g} kcal/mol'.format(e0 / 4184.)) conformer.E0 = (e0 * 0.001, "kJ/mol") # save supporting information for calculation self.supporting_info = [self.species.label] optical_isomers_read, symmetry_read, point_group_read = statmech_log.get_symmetry_properties() self.supporting_info.append(external_symmetry if external_symmetry else symmetry_read) self.supporting_info.append(optical_isomers if optical_isomers else optical_isomers_read) self.supporting_info.append(point_group_read) for mode in conformer.modes: if isinstance(mode, (LinearRotor, NonlinearRotor)): self.supporting_info.append(mode) break else: self.supporting_info.append(None) if unscaled_frequencies: self.supporting_info.append(unscaled_frequencies) else: self.supporting_info.append(None) if is_ts: self.supporting_info.append(neg_freq) else: self.supporting_info.append(None) self.supporting_info.append(e_electronic) self.supporting_info.append(e_electronic + zpe) self.supporting_info.append(e0) self.supporting_info.append(list([symbol_by_number[x] for x in number])) # atom symbols self.supporting_info.append(coordinates) try: t1d = energy_log.get_T1_diagnostic() except (NotImplementedError, AttributeError): t1d = None self.supporting_info.append(t1d) try: d1d = energy_log.get_D1_diagnostic() except (NotImplementedError, AttributeError): d1d = None self.supporting_info.append(d1d) # save conformer self.species.conformer = conformer def _fit_rotors(self, rotors, conformer, hessian, is_ts, linear, directory, plot): logging.debug(' Fitting {0} hindered rotors...'.format(len(rotors))) rotor_count = 0 for j, q in enumerate(rotors): symmetry = None if len(q) == 3: # No potential scan is given, this is a free rotor pivots, top, symmetry = q inertia = conformer.get_internal_reduced_moment_of_inertia(pivots, top) * constants.Na * 1e23 rotor = FreeRotor(inertia=(inertia, "amu*angstrom^2"), symmetry=symmetry) conformer.modes.append(rotor) rotor_count += 1 elif len(q) == 8: scan_dir, pivots1, top1, symmetry1, pivots2, top2, symmetry2, symmetry = q logging.info("Calculating energy levels for 2D-HR, may take a while...") rotor = HinderedRotor2D(name='r' + str(j), torsigma1=symmetry1, torsigma2=symmetry2, symmetry=symmetry, calc_path=os.path.join(directory, scan_dir), pivots1=pivots1, pivots2=pivots2, top1=top1, top2=top2) rotor.run() conformer.modes.append(rotor) rotor_count += 2 elif len(q) == 5 and isinstance(q[1][0], list): scan_dir, pivots, tops, sigmas, semiclassical = q rotor = HinderedRotorClassicalND(pivots, tops, sigmas, calc_path=os.path.join(directory, scan_dir), conformer=conformer, F=hessian, semiclassical=semiclassical, is_linear=linear, is_ts=is_ts) rotor.run() conformer.modes.append(rotor) rotor_count += len(pivots) elif len(q) in [4, 5]: # This is a hindered rotor if len(q) == 5: scan_log, pivots, top, symmetry, fit = q elif len(q) == 4: # the symmetry number will be derived from the scan scan_log, pivots, top, fit = q # Load the hindered rotor scan energies if isinstance(scan_log, ScanLog): if not os.path.isfile(scan_log.path): modified_scan_path = os.path.join(directory, scan_log.path) if not os.path.isfile(modified_scan_path): raise InputError('Could not find scan energy file for species {0} ' 'in the specified path {1}'.format(self.species.label, scan_log.path)) else: scan_log.path = modified_scan_path if isinstance(scan_log, (GaussianLog, QChemLog)): v_list, angle = scan_log.load_scan_energies() try: pivot_atoms = scan_log.load_scan_pivot_atoms() except Exception as e: logging.warning("Unable to find pivot atoms in scan due to error: {}".format(e)) pivot_atoms = 'N/A' try: frozen_atoms = scan_log.load_scan_frozen_atoms() except Exception as e: logging.warning("Unable to find pivot atoms in scan due to error: {}".format(e)) frozen_atoms = 'N/A' elif isinstance(scan_log, ScanLog): angle, v_list = scan_log.load() # no way to find pivot atoms or frozen atoms from ScanLog pivot_atoms = 'N/A' frozen_atoms = 'N/A' else: raise InputError('Invalid log file type {0} for scan log.'.format(scan_log.__class__)) if symmetry is None: symmetry = determine_rotor_symmetry(v_list, self.species.label, pivots) self.raw_hindered_rotor_data.append((self.species.label, rotor_count, symmetry, angle, v_list, pivot_atoms, frozen_atoms)) inertia = conformer.get_internal_reduced_moment_of_inertia(pivots, top) * constants.Na * 1e23 cosine_rotor = HinderedRotor(inertia=(inertia, "amu*angstrom^2"), symmetry=symmetry) cosine_rotor.fit_cosine_potential_to_data(angle, v_list) fourier_rotor = HinderedRotor(inertia=(inertia, "amu*angstrom^2"), symmetry=symmetry) fourier_rotor.fit_fourier_potential_to_data(angle, v_list) Vlist_cosine = np.zeros_like(angle) Vlist_fourier = np.zeros_like(angle) for i in range(angle.shape[0]): Vlist_cosine[i] = cosine_rotor.get_potential(angle[i]) Vlist_fourier[i] = fourier_rotor.get_potential(angle[i]) if fit == 'cosine': rotor = cosine_rotor rotor_count += 1 conformer.modes.append(rotor) elif fit == 'fourier': rotor = fourier_rotor rotor_count += 1 conformer.modes.append(rotor) elif fit == 'best': rms_cosine = np.sqrt(np.sum((Vlist_cosine - v_list) * (Vlist_cosine - v_list)) / (len(v_list) - 1)) / 4184. rms_fourier = np.sqrt(np.sum((Vlist_fourier - v_list) * (Vlist_fourier - v_list)) / (len(v_list) - 1)) / 4184. # Keep the rotor with the most accurate potential rotor = cosine_rotor if rms_cosine < rms_fourier else fourier_rotor # However, keep the cosine rotor if it is accurate enough, the # fourier rotor is not significantly more accurate, and the cosine # rotor has the correct symmetry if rms_cosine < 0.05 and rms_cosine / rms_fourier < 2.0 and rms_cosine / rms_fourier < 4.0 \ and symmetry == cosine_rotor.symmetry: rotor = cosine_rotor conformer.modes.append(rotor) if plot: try: self.create_hindered_rotor_figure(angle, v_list, cosine_rotor, fourier_rotor, rotor, rotor_count) except Exception as e: logging.warning("Could not plot hindered rotor graph due to error: {0}".format(e)) rotor_count += 1 logging.debug(' Determining frequencies from reduced force constant matrix...') frequencies = np.array(project_rotors(conformer, hessian, rotors, linear, is_ts, label=self.species.label)) return frequencies, rotors, conformer def write_output(self, output_directory): """ Save the results of the statmech job to the `output.py` file located in `output_directory`. """ output_file = os.path.join(output_directory, 'output.py') logging.info('Saving statistical mechanics parameters for {0}...'.format(self.species.label)) f = open(output_file, 'a') conformer = self.species.conformer coordinates = conformer.coordinates.value_si * 1e10 number = conformer.number.value_si f.write('# Coordinates for {0} in Input Orientation (angstroms):\n'.format(self.species.label)) for i in range(coordinates.shape[0]): x = coordinates[i, 0] y = coordinates[i, 1] z = coordinates[i, 2] f.write('# {0} {1:9.4f} {2:9.4f} {3:9.4f}\n'.format(symbol_by_number[number[i]], x, y, z)) result = 'conformer(label={0!r}, E0={1!r}, modes={2!r}, spin_multiplicity={3:d}, optical_isomers={4:d}'.format( self.species.label, conformer.E0, conformer.modes, conformer.spin_multiplicity, conformer.optical_isomers, ) try: result += ', frequency={0!r}'.format(self.species.frequency) except AttributeError: pass result += ')' f.write('{0}\n\n'.format(prettify(result))) if self.useIsodesmicReactions: f.write('\n#Isodesmic Reactions Used:\n#------------------------\n#') for i, rxn in enumerate(self.isodesmicReactionList): thermo = rxn.calculate_target_thermo() f.write('Reaction {0}: {1:9.3f} kcal/mol\n#'.format(i+1, thermo.value_si/4184.0)) reactant_string = '\tReactants:\n#\t\t1.0*{0}\n#'.format(rxn.target.molecule.to_smiles()) product_string = '\tProducts:\n#' for spcs, v in rxn.species.items(): if v > 0: # Product product_string += '\t\t{0}*{1}\n#'.format(v, spcs.molecule.to_smiles()) else: # Reactant reactant_string += '\t\t{0}*{1}\n#'.format(abs(v), spcs.molecule.to_smiles()) f.write(reactant_string + product_string + '\n#') f.write('\n') f.close() def create_hindered_rotor_figure(self, angle, v_list, cosine_rotor, fourier_rotor, rotor, rotor_index): """ Plot the potential for the rotor, along with its cosine and Fourier series potential fits, and save it in the `hindered_rotor_plots` attribute. """ phi = np.arange(0, 6.3, 0.02, np.float64) Vlist_cosine = np.zeros_like(phi) Vlist_fourier = np.zeros_like(phi) for i in range(phi.shape[0]): Vlist_cosine[i] = cosine_rotor.get_potential(phi[i]) Vlist_fourier[i] = fourier_rotor.get_potential(phi[i]) fig = plt.figure(figsize=(6, 5)) plt.plot(angle, v_list / 4184., 'ok') linespec = '-r' if rotor is cosine_rotor else '--r' plt.plot(phi, Vlist_cosine / 4184., linespec) linespec = '-b' if rotor is fourier_rotor else '--b' plt.plot(phi, Vlist_fourier / 4184., linespec) plt.legend(['scan', 'cosine', 'fourier'], loc=1) plt.xlim(0, 2 * constants.pi) plt.xlabel('Angle') plt.ylabel('Potential (kcal/mol)') plt.title('{0} hindered rotor #{1:d}'.format(self.species.label, rotor_index + 1)) axes = fig.get_axes()[0] axes.set_xticks([float(j * constants.pi / 4) for j in range(0, 9)]) axes.set_xticks([float(j * constants.pi / 8) for j in range(0, 17)], minor=True) axes.set_xticklabels( ['$0$', '$\pi/4$', '$\pi/2$', '$3\pi/4$', '$\pi$', '$5\pi/4$', '$3\pi/2$', '$7\pi/4$', '$2\pi$']) self.hindered_rotor_plots.append((fig, rotor_index)) plt.close(fig) def save_hindered_rotor_figures(self, directory): """ Save hindered rotor plots as set of files of the form ``rotor_[species_label]_0.pdf`` in the specified directory """ if hasattr(self, 'hindered_rotor_plots'): for fig, rotor_index in self.hindered_rotor_plots: fig.savefig(os.path.join(directory, 'rotor_{0}_{1:d}.pdf'.format(self.species.label, rotor_index))) ################################################################################ def is_linear(coordinates): """ Determine whether or not the species is linear from its 3D coordinates First, try to reduce the problem into just two dimensions, use 3D if the problem cannot be reduced `coordinates` is a numpy.array of the species' xyz coordinates """ # epsilon is in degrees # (from our experience, linear molecules have precisely 180.0 degrees between all atom triples) epsilon = 0.1 number_of_atoms = len(coordinates) if number_of_atoms == 1: return False if number_of_atoms == 2: return True # A tensor containing all distance vectors in the molecule d = -np.array([c[:, np.newaxis] - c[np.newaxis, :] for c in coordinates.T]) for i in range(2, len(coordinates)): u1 = d[:, 0, 1] / np.linalg.norm(d[:, 0, 1]) # unit vector between atoms 0 and 1 u2 = d[:, 1, i] / np.linalg.norm(d[:, 1, i]) # unit vector between atoms 1 and i a = math.degrees(np.arccos(np.clip(np.dot(u1, u2), -1.0, 1.0))) # angle between atoms 0, 1, i if abs(180 - a) > epsilon and abs(a) > epsilon: return False return True def project_rotors(conformer, hessian, rotors, linear, is_ts, get_projected_out_freqs=False, label=None): """ For a given `conformer` with associated force constant matrix `hessian`, lists of rotor information `rotors`, `pivots`, and `top1`, and the linearity of the molecule `linear`, project out the nonvibrational modes from the force constant matrix and use this to determine the vibrational frequencies. The list of vibrational frequencies is returned in cm^-1. Refer to Gaussian whitepaper (http://gaussian.com/vib/) for procedure to calculate harmonic oscillator vibrational frequencies using the force constant matrix. """ n_rotors = 0 for rotor in rotors: if len(rotor) == 8: n_rotors += 2 elif len(rotor) == 5 and isinstance(rotor[1][0], list): n_rotors += len(rotor[1]) else: n_rotors += 1 mass = conformer.mass.value_si coordinates = conformer.coordinates.value if linear is None: linear = is_linear(coordinates) if linear: logging.info('Determined species {0} to be linear.'.format(label)) n_atoms = len(conformer.mass.value) n_vib = 3 * n_atoms - (5 if linear else 6) - n_rotors - (1 if is_ts else 0) # Put origin in center of mass xm = 0.0 ym = 0.0 zm = 0.0 totmass = 0.0 for i in range(n_atoms): xm += mass[i] * coordinates[i, 0] ym += mass[i] * coordinates[i, 1] zm += mass[i] * coordinates[i, 2] totmass += mass[i] xm /= totmass ym /= totmass zm /= totmass for i in range(n_atoms): coordinates[i, 0] -= xm coordinates[i, 1] -= ym coordinates[i, 2] -= zm # Make vector with the root of the mass in amu for each atom amass = np.sqrt(mass / constants.amu) # Rotation matrix inertia = conformer.get_moment_of_inertia_tensor() inertia_xyz = np.linalg.eigh(inertia)[1] external = 6 if linear: external = 5 d = np.zeros((n_atoms * 3, external), np.float64) # Transform the coordinates to the principal axes p = np.dot(coordinates, inertia_xyz) for i in range(n_atoms): # Projection vectors for translation d[3 * i + 0, 0] = amass[i] d[3 * i + 1, 1] = amass[i] d[3 * i + 2, 2] = amass[i] # Construction of the projection vectors for external rotation for i in range(n_atoms): d[3 * i, 3] = (p[i, 1] * inertia_xyz[0, 2] - p[i, 2] * inertia_xyz[0, 1]) * amass[i] d[3 * i + 1, 3] = (p[i, 1] * inertia_xyz[1, 2] - p[i, 2] * inertia_xyz[1, 1]) * amass[i] d[3 * i + 2, 3] = (p[i, 1] * inertia_xyz[2, 2] - p[i, 2] * inertia_xyz[2, 1]) * amass[i] d[3 * i, 4] = (p[i, 2] * inertia_xyz[0, 0] - p[i, 0] * inertia_xyz[0, 2]) * amass[i] d[3 * i + 1, 4] = (p[i, 2] * inertia_xyz[1, 0] - p[i, 0] * inertia_xyz[1, 2]) * amass[i] d[3 * i + 2, 4] = (p[i, 2] * inertia_xyz[2, 0] - p[i, 0] * inertia_xyz[2, 2]) * amass[i] if not linear: d[3 * i, 5] = (p[i, 0] * inertia_xyz[0, 1] - p[i, 1] * inertia_xyz[0, 0]) * amass[i] d[3 * i + 1, 5] = (p[i, 0] * inertia_xyz[1, 1] - p[i, 1] * inertia_xyz[1, 0]) * amass[i] d[3 * i + 2, 5] = (p[i, 0] * inertia_xyz[2, 1] - p[i, 1] * inertia_xyz[2, 0]) * amass[i] # Make sure projection matrix is orthonormal inertia = np.identity(n_atoms * 3, np.float64) p = np.zeros((n_atoms * 3, 3 * n_atoms + external), np.float64) p[:, 0:external] = d[:, 0:external] p[:, external:external + 3 * n_atoms] = inertia[:, 0:3 * n_atoms] for i in range(3 * n_atoms + external): norm = 0.0 for j in range(3 * n_atoms): norm += p[j, i] * p[j, i] for j in range(3 * n_atoms): if norm > 1E-15: p[j, i] /= np.sqrt(norm) else: p[j, i] = 0.0 for j in range(i + 1, 3 * n_atoms + external): proj = 0.0 for k in range(3 * n_atoms): proj += p[k, i] * p[k, j] for k in range(3 * n_atoms): p[k, j] -= proj * p[k, i] # Order p, there will be vectors that are 0.0 i = 0 while i < 3 * n_atoms: norm = 0.0 for j in range(3 * n_atoms): norm += p[j, i] * p[j, i] if norm < 0.5: p[:, i:3 * n_atoms + external - 1] = p[:, i + 1:3 * n_atoms + external] else: i += 1 # T is the transformation vector from cartesian to internal coordinates T = np.zeros((n_atoms * 3, 3 * n_atoms - external), np.float64) T[:, 0:3 * n_atoms - external] = p[:, external:3 * n_atoms] # Generate mass-weighted force constant matrix # This converts the axes to mass-weighted Cartesian axes # Units of Fm are J/m^2*kg = 1/s^2 weighted_hessian = hessian.copy() for i in range(n_atoms): for j in range(n_atoms): for u in range(3): for v in range(3): weighted_hessian[3 * i + u, 3 * j + v] /= math.sqrt(mass[i] * mass[j]) hessian_int = np.dot(T.T, np.dot(weighted_hessian, T)) # Get eigenvalues of internal force constant matrix, V = 3N-6 * 3N-6 eig, v = np.linalg.eigh(hessian_int) logging.debug('Frequencies from internal Hessian') for i in range(3 * n_atoms - external): with np.warnings.catch_warnings(): np.warnings.filterwarnings('ignore', r'invalid value encountered in sqrt') logging.debug(np.sqrt(eig[i]) / (2 * math.pi * constants.c * 100)) # Now we can start thinking about projecting out the internal rotations d_int = np.zeros((3 * n_atoms, n_rotors), np.float64) counter = 0 for i, rotor in enumerate(rotors): if len(rotor) == 5 and isinstance(rotor[1][0], list): scan_dir, pivots_list, tops, sigmas, semiclassical = rotor elif len(rotor) == 5: scanLog, pivots, top, symmetry, fit = rotor pivots_list = [pivots] tops = [top] elif len(rotor) == 3: pivots, top, symmetry = rotor pivots_list = [pivots] tops = [top] elif len(rotor) == 8: scan_dir, pivots1, top1, symmetry1, pivots2, top2, symmetry2, symmetry = rotor pivots_list = [pivots1, pivots2] tops = [top1, top2] else: raise ValueError("{} not a proper rotor format".format(rotor)) for k in range(len(tops)): top = tops[k] pivots = pivots_list[k] # Determine pivot atom if pivots[0] in top: pivot1 = pivots[0] pivot2 = pivots[1] elif pivots[1] in top: pivot1 = pivots[1] pivot2 = pivots[0] else: raise ValueError('Could not determine pivot atom for rotor {}.'.format(label)) # Projection vectors for internal rotation e12 = coordinates[pivot1 - 1, :] - coordinates[pivot2 - 1, :] for j in range(n_atoms): atom = j + 1 if atom in top: e31 = coordinates[atom - 1, :] - coordinates[pivot1 - 1, :] d_int[3 * (atom - 1):3 * (atom - 1) + 3, counter] = np.cross(e31, e12) * amass[atom - 1] else: e31 = coordinates[atom - 1, :] - coordinates[pivot2 - 1, :] d_int[3 * (atom - 1):3 * (atom - 1) + 3, counter] = np.cross(e31, -e12) * amass[atom - 1] counter += 1 # Normal modes in mass weighted cartesian coordinates vmw = np.dot(T, v) eigm = np.zeros((3 * n_atoms - external, 3 * n_atoms - external), np.float64) for i in range(3 * n_atoms - external): eigm[i, i] = eig[i] fm = np.dot(vmw, np.dot(eigm, vmw.T)) # Internal rotations are not normal modes => project them on the normal modes and orthogonalize # d_int_proj = (3N-6) x (3N) x (3N) x (Nrotors) d_int_proj = np.dot(vmw.T, d_int) # Reconstruct d_int for i in range(n_rotors): for j in range(3 * n_atoms): d_int[j, i] = 0 for k in range(3 * n_atoms - external): d_int[j, i] += d_int_proj[k, i] * vmw[j, k] # Ortho normalize for i in range(n_rotors): norm = 0.0 for j in range(3 * n_atoms): norm += d_int[j, i] * d_int[j, i] for j in range(3 * n_atoms): d_int[j, i] /= np.sqrt(norm) for j in range(i + 1, n_rotors): proj = 0.0 for k in range(3 * n_atoms): proj += d_int[k, i] * d_int[k, j] for k in range(3 * n_atoms): d_int[k, j] -= proj * d_int[k, i] # calculate the frequencies corresponding to the internal rotors int_proj = np.dot(fm, d_int) kmus = np.array([np.linalg.norm(int_proj[:, i]) for i in range(int_proj.shape[1])]) int_rotor_freqs = np.sqrt(kmus) / (2.0 * math.pi * constants.c * 100.0) if get_projected_out_freqs: return int_rotor_freqs # Do the projection d_int_proj =
np.dot(vmw.T, d_int)
numpy.dot
import lmfit import numpy as np from numpy.linalg import inv import scipy as sp import itertools import matplotlib as mpl from collections import OrderedDict, defaultdict from pycqed.utilities import timer as tm_mod from sklearn.mixture import GaussianMixture as GM from sklearn.tree import DecisionTreeClassifier as DTC from pycqed.analysis import fitting_models as fit_mods from pycqed.analysis import analysis_toolbox as a_tools import pycqed.analysis_v2.base_analysis as ba import pycqed.analysis_v2.readout_analysis as roa from pycqed.analysis_v2.readout_analysis import \ Singleshot_Readout_Analysis_Qutrit as SSROQutrit import pycqed.analysis_v2.tomography_qudev as tomo from pycqed.analysis.tools.plotting import SI_val_to_msg_str from copy import deepcopy from pycqed.measurement.sweep_points import SweepPoints from pycqed.measurement.calibration.calibration_points import CalibrationPoints import matplotlib.pyplot as plt from pycqed.analysis.three_state_rotation import predict_proba_avg_ro import logging from pycqed.utilities import math from pycqed.utilities.general import find_symmetry_index import pycqed.measurement.waveform_control.segment as seg_mod import datetime as dt log = logging.getLogger(__name__) try: import qutip as qtp except ImportError as e: log.warning('Could not import qutip, tomography code will not work') class AveragedTimedomainAnalysis(ba.BaseDataAnalysis): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.single_timestamp = True self.params_dict = { 'value_names': 'value_names', 'measured_values': 'measured_values', 'measurementstring': 'measurementstring', 'exp_metadata': 'exp_metadata'} self.numeric_params = [] if kwargs.get('auto', True): self.run_analysis() def process_data(self): self.metadata = self.raw_data_dict.get('exp_metadata', {}) if self.metadata is None: self.metadata = {} cal_points = self.metadata.get('cal_points', None) cal_points = self.options_dict.get('cal_points', cal_points) cal_points_list = roa.convert_channel_names_to_index( cal_points, len(self.raw_data_dict['measured_values'][0]), self.raw_data_dict['value_names']) self.proc_data_dict['cal_points_list'] = cal_points_list measured_values = self.raw_data_dict['measured_values'] cal_idxs = self._find_calibration_indices() scales = [np.std(x[cal_idxs]) for x in measured_values] observable_vectors = np.zeros((len(cal_points_list), len(measured_values))) observable_vector_stds = np.ones_like(observable_vectors) for i, observable in enumerate(cal_points_list): for ch_idx, seg_idxs in enumerate(observable): x = measured_values[ch_idx][seg_idxs] / scales[ch_idx] if len(x) > 0: observable_vectors[i][ch_idx] = np.mean(x) if len(x) > 1: observable_vector_stds[i][ch_idx] = np.std(x) Omtx = (observable_vectors[1:] - observable_vectors[0]).T d0 = observable_vectors[0] corr_values = np.zeros( (len(cal_points_list) - 1, len(measured_values[0]))) for i in range(len(measured_values[0])): d = np.array([x[i] / scale for x, scale in zip(measured_values, scales)]) corr_values[:, i] = inv(Omtx.T.dot(Omtx)).dot(Omtx.T).dot(d - d0) self.proc_data_dict['corr_values'] = corr_values def measurement_operators_and_results(self): """ Converts the calibration points to measurement operators. Assumes that the calibration points are ordered the same as the basis states for the tomography calculation (e.g. for two qubits |gg>, |ge>, |eg>, |ee>). Also assumes that each calibration in the passed cal_points uses different segments. Returns: A tuple of the measured values with outthe calibration points; the measurement operators corresponding to each channel; and the expected covariation matrix between the operators. """ d = len(self.proc_data_dict['cal_points_list']) cal_point_idxs = [set() for _ in range(d)] for i, idxs_lists in enumerate(self.proc_data_dict['cal_points_list']): for idxs in idxs_lists: cal_point_idxs[i].update(idxs) cal_point_idxs = [sorted(list(idxs)) for idxs in cal_point_idxs] cal_point_idxs = np.array(cal_point_idxs) raw_data = self.raw_data_dict['measured_values'] means = [None] * d residuals = [list() for _ in raw_data] for i, cal_point_idx in enumerate(cal_point_idxs): means[i] = [np.mean(ch_data[cal_point_idx]) for ch_data in raw_data] for j, ch_residuals in enumerate(residuals): ch_residuals += list(raw_data[j][cal_point_idx] - means[i][j]) means = np.array(means) residuals = np.array(residuals) Fs = [np.diag(ms) for ms in means.T] Omega = residuals.dot(residuals.T) / len(residuals.T) data_idxs = np.setdiff1d(np.arange(len(raw_data[0])), cal_point_idxs.flatten()) data = np.array([ch_data[data_idxs] for ch_data in raw_data]) return data, Fs, Omega def _find_calibration_indices(self): cal_indices = set() cal_points = self.options_dict['cal_points'] nr_segments = self.raw_data_dict['measured_values'].shape[-1] for observable in cal_points: if isinstance(observable, (list, np.ndarray)): for idxs in observable: cal_indices.update({idx % nr_segments for idx in idxs}) else: # assume dictionaries for idxs in observable.values(): cal_indices.update({idx % nr_segments for idx in idxs}) return list(cal_indices) def all_cal_points(d, nr_ch, reps=1): """ Generates a list of calibration points for a Hilbert space of dimension d, with nr_ch channels and reps reprtitions of each calibration point. """ return [[list(range(-reps*i, -reps*(i-1)))]*nr_ch for i in range(d, 0, -1)] class Single_Qubit_TimeDomainAnalysis(ba.BaseDataAnalysis): def process_data(self): """ This takes care of rotating and normalizing the data if required. this should work for several input types. - I/Q values (2 quadratures + cal points) - weight functions (1 quadrature + cal points) - counts (no cal points) There are several options possible to specify the normalization using the options dict. cal_points (tuple) of indices of the calibrati on points zero_coord, one_coord """ cal_points = self.options_dict.get('cal_points', None) zero_coord = self.options_dict.get('zero_coord', None) one_coord = self.options_dict.get('one_coord', None) if cal_points is None: # default for all standard Timedomain experiments cal_points = [list(range(-4, -2)), list(range(-2, 0))] if len(self.raw_data_dict['measured_values']) == 1: # if only one weight function is used rotation is not required self.proc_data_dict['corr_data'] = a_tools.rotate_and_normalize_data_1ch( self.raw_data_dict['measured_values'][0], cal_zero_points=cal_points[0], cal_one_points=cal_points[1]) else: self.proc_data_dict['corr_data'], zero_coord, one_coord = \ a_tools.rotate_and_normalize_data( data=self.raw_data_dict['measured_values'][0:2], zero_coord=zero_coord, one_coord=one_coord, cal_zero_points=cal_points[0], cal_one_points=cal_points[1]) # This should be added to the hdf5 datafile but cannot because of the # way that the "new" analysis works. # self.add_dataset_to_analysisgroup('Corrected data', # self.proc_data_dict['corr_data']) class MultiQubit_TimeDomain_Analysis(ba.BaseDataAnalysis): """ Base class for multi-qubit time-domain analyses. Parameters that can be specified in the options dict: - rotation_type: type of rotation to be done on the raw data. Types of rotations supported by this class: - 'cal_states' (default, no need to specify): rotation based on CalibrationPoints for 1D and TwoD data. Supports 2 and 3 cal states per qubit - 'fixed_cal_points' (only for TwoD, with 2 cal states): does PCA on the columns corresponding to the highest cal state to find the indices of that cal state in the columns, then uses those to get the data points for the other cal state. Does rotation using the mean of the data points corresponding to the two cal states as the zero and one coordinates to rotate the data. - 'PCA': ignores cal points and does pca; in the case of TwoD data it does PCA row by row - 'column_PCA': cal points and does pca; in the case of TwoD data it does PCA column by column - 'global_PCA' (only for TwoD): does PCA on the whole 2D array - main_sp (default: None): dict with keys qb_name used to specify which sweep parameter should be used as axis label in plot - functionality to split measurements with tiled sweep_points: - split_params (default: None): list of strings with sweep parameters names expected to be found in SweepPoints. Groups data by these parameters and stores it in proc_data_dict['split_data_dict']. - select_split (default: None): dict with keys qb_names and values a tuple (sweep_param_name, value) or (sweep_param_name, index). Stored in self.measurement_strings which specify the plot title. The selected parameter must also be part of the split_params for that qubit. """ def __init__(self, qb_names: list=None, label: str='', t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True, params_dict=None, numeric_params=None, **kwargs): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting, **kwargs) self.qb_names = qb_names self.params_dict = params_dict if self.params_dict is None: self.params_dict = {} self.numeric_params = numeric_params self.measurement_strings = {} if self.numeric_params is None: self.numeric_params = [] if not hasattr(self, "job"): self.create_job(qb_names=qb_names, t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, do_fitting=do_fitting, options_dict=options_dict, extract_only=extract_only, params_dict=params_dict, numeric_params=numeric_params, **kwargs) if auto: self.run_analysis() def extract_data(self): super().extract_data() if self.qb_names is None: self.qb_names = self.get_param_value('ro_qubits') if self.qb_names is None: raise ValueError('Provide the "qb_names."') self.measurement_strings = { qbn: self.raw_data_dict['measurementstring'] for qbn in self.qb_names} self.channel_map = self.get_param_value('meas_obj_value_names_map') if self.channel_map is None: # if the new name meas_obj_value_names_map is not found, try with # the old name channel_map self.channel_map = self.get_param_value('channel_map') if self.channel_map is None: value_names = self.raw_data_dict['value_names'] if np.ndim(value_names) > 0: value_names = value_names if 'w' in value_names[0]: self.channel_map = a_tools.get_qb_channel_map_from_hdf( self.qb_names, value_names=value_names, file_path=self.raw_data_dict['folder']) else: self.channel_map = {} for qbn in self.qb_names: self.channel_map[qbn] = value_names if len(self.channel_map) == 0: raise ValueError('No qubit RO channels have been found.') # creates self.sp self.get_sweep_points() def get_sweep_points(self): self.sp = self.get_param_value('sweep_points') if self.sp is not None: self.sp = SweepPoints(self.sp) def create_sweep_points_dict(self): sweep_points_dict = self.get_param_value('sweep_points_dict') hard_sweep_params = self.get_param_value('hard_sweep_params') if self.sp is not None: self.mospm = self.get_param_value('meas_obj_sweep_points_map') main_sp = self.get_param_value('main_sp') if self.mospm is None: raise ValueError('When providing "sweep_points", ' '"meas_obj_sweep_points_map" has to be ' 'provided in addition.') if main_sp is not None: self.proc_data_dict['sweep_points_dict'] = {} for qbn, p in main_sp.items(): dim = self.sp.find_parameter(p) if dim == 1: log.warning(f"main_sp is only implemented for sweep " f"dimension 0, but {p} is in dimension 1.") self.proc_data_dict['sweep_points_dict'][qbn] = \ {'sweep_points': self.sp.get_sweep_params_property( 'values', dim, p)} else: self.proc_data_dict['sweep_points_dict'] = \ {qbn: {'sweep_points': self.sp.get_sweep_params_property( 'values', 0, self.mospm[qbn])[0]} for qbn in self.qb_names} elif sweep_points_dict is not None: # assumed to be of the form {qbn1: swpts_array1, qbn2: swpts_array2} self.proc_data_dict['sweep_points_dict'] = \ {qbn: {'sweep_points': sweep_points_dict[qbn]} for qbn in self.qb_names} elif hard_sweep_params is not None: self.proc_data_dict['sweep_points_dict'] = \ {qbn: {'sweep_points': list(hard_sweep_params.values())[0][ 'values']} for qbn in self.qb_names} else: self.proc_data_dict['sweep_points_dict'] = \ {qbn: {'sweep_points': self.data_filter( self.raw_data_dict['hard_sweep_points'])} for qbn in self.qb_names} def create_sweep_points_2D_dict(self): soft_sweep_params = self.get_param_value('soft_sweep_params') if self.sp is not None: self.proc_data_dict['sweep_points_2D_dict'] = OrderedDict() for qbn in self.qb_names: self.proc_data_dict['sweep_points_2D_dict'][qbn] = \ OrderedDict() for pn in self.mospm[qbn]: if pn in self.sp[1]: self.proc_data_dict['sweep_points_2D_dict'][qbn][ pn] = self.sp[1][pn][0] elif soft_sweep_params is not None: self.proc_data_dict['sweep_points_2D_dict'] = \ {qbn: {pn: soft_sweep_params[pn]['values'] for pn in soft_sweep_params} for qbn in self.qb_names} else: if len(self.raw_data_dict['soft_sweep_points'].shape) == 1: self.proc_data_dict['sweep_points_2D_dict'] = \ {qbn: {self.raw_data_dict['sweep_parameter_names'][1]: self.raw_data_dict['soft_sweep_points']} for qbn in self.qb_names} else: sspn = self.raw_data_dict['sweep_parameter_names'][1:] self.proc_data_dict['sweep_points_2D_dict'] = \ {qbn: {sspn[i]: self.raw_data_dict['soft_sweep_points'][i] for i in range(len(sspn))} for qbn in self.qb_names} if self.get_param_value('percentage_done', 100) < 100: # This indicated an interrupted measurement. # Remove non-measured sweep points in that case. # raw_data_dict['soft_sweep_points'] is obtained in # BaseDataAnalysis.add_measured_data(), and its length should # always correspond to the actual number of measured soft sweep # points. ssl = len(self.raw_data_dict['soft_sweep_points']) for sps in self.proc_data_dict['sweep_points_2D_dict'].values(): for k, v in sps.items(): sps[k] = v[:ssl] def create_meas_results_per_qb(self): measured_RO_channels = list(self.raw_data_dict['measured_data']) meas_results_per_qb_raw = {} meas_results_per_qb = {} for qb_name, RO_channels in self.channel_map.items(): meas_results_per_qb_raw[qb_name] = {} meas_results_per_qb[qb_name] = {} if isinstance(RO_channels, str): meas_ROs_per_qb = [RO_ch for RO_ch in measured_RO_channels if RO_channels in RO_ch] for meas_RO in meas_ROs_per_qb: meas_results_per_qb_raw[qb_name][meas_RO] = \ self.raw_data_dict[ 'measured_data'][meas_RO] meas_results_per_qb[qb_name][meas_RO] = \ self.data_filter( meas_results_per_qb_raw[qb_name][meas_RO]) elif isinstance(RO_channels, list): for qb_RO_ch in RO_channels: meas_ROs_per_qb = [RO_ch for RO_ch in measured_RO_channels if qb_RO_ch in RO_ch] for meas_RO in meas_ROs_per_qb: meas_results_per_qb_raw[qb_name][meas_RO] = \ self.raw_data_dict[ 'measured_data'][meas_RO] meas_results_per_qb[qb_name][meas_RO] = \ self.data_filter( meas_results_per_qb_raw[qb_name][meas_RO]) else: raise TypeError('The RO channels for {} must either be a list ' 'or a string.'.format(qb_name)) self.proc_data_dict['meas_results_per_qb_raw'] = \ meas_results_per_qb_raw self.proc_data_dict['meas_results_per_qb'] = \ meas_results_per_qb def process_data(self): super().process_data() self.data_filter = self.get_param_value('data_filter') prep_params = self.get_param_value('preparation_params', default_value=dict()) self.data_with_reset = False if self.data_filter is None: if 'active' in prep_params.get('preparation_type', 'wait'): reset_reps = prep_params.get('reset_reps', 1) self.data_filter = lambda x: x[reset_reps::reset_reps+1] self.data_with_reset = True elif "preselection" in prep_params.get('preparation_type', 'wait'): self.data_filter = lambda x: x[1::2] # filter preselection RO if self.data_filter is None: self.data_filter = lambda x: x self.create_sweep_points_dict() self.create_meas_results_per_qb() # temporary fix for appending calibration points to x values but # without breaking sequences not yet using this interface. self.rotate = self.get_param_value('rotate', default_value=False) cal_points = self.get_param_value('cal_points') last_ge_pulses = self.get_param_value('last_ge_pulses', default_value=False) try: self.cp = CalibrationPoints.from_string(cal_points) # for now assuming the same for all qubits. self.cal_states_dict = self.cp.get_indices( self.qb_names, prep_params)[self.qb_names[0]] cal_states_rots = self.cp.get_rotations(last_ge_pulses, self.qb_names[0])[self.qb_names[0]] if self.rotate \ else None self.cal_states_rotations = self.get_param_value( 'cal_states_rotations', default_value=cal_states_rots) sweep_points_w_calpts = \ {qbn: {'sweep_points': self.cp.extend_sweep_points( self.proc_data_dict['sweep_points_dict'][qbn][ 'sweep_points'], qbn)} for qbn in self.qb_names} self.proc_data_dict['sweep_points_dict'] = sweep_points_w_calpts except TypeError as e: log.error(e) log.warning("Failed retrieving cal point objects or states. " "Please update measurement to provide cal point object " "in metadata. Trying to get them using the old way ...") self.cal_states_rotations = self.get_param_value( 'cal_states_rotations', default_value=None) \ if self.rotate else None self.cal_states_dict = self.get_param_value('cal_states_dict', default_value={}) if self.get_param_value('global_PCA') is not None: log.warning('Parameter "global_PCA" is deprecated. Please set ' 'rotation_type="global_PCA" instead.') self.rotation_type = self.get_param_value( 'rotation_type', default_value='cal_states' if self.rotate else 'no_rotation') # create projected_data_dict self.data_to_fit = deepcopy(self.get_param_value('data_to_fit')) if self.data_to_fit is None: # If we have cal points, but data_to_fit is not specified, # choose a reasonable default value. In cases with only two cal # points, this decides which projected plot is generated. (In # cases with three cal points, we will anyways get all three # projected plots.) if 'e' in self.cal_states_dict.keys(): self.data_to_fit = {qbn: 'pe' for qbn in self.qb_names} elif 'g' in self.cal_states_dict.keys(): self.data_to_fit = {qbn: 'pg' for qbn in self.qb_names} else: self.data_to_fit = {} # TODO: Steph 15.09.2020 # This is a hack to allow list inside data_to_fit. These lists are # currently only supported by MultiCZgate_CalibAnalysis for qbn in self.data_to_fit: if isinstance(self.data_to_fit[qbn], (list, tuple)): self.data_to_fit[qbn] = self.data_to_fit[qbn][0] if self.rotate or self.rotation_type == 'global_PCA': self.cal_states_analysis() else: # this assumes data obtained with classifier detector! # ie pg, pe, pf are expected to be in the value_names self.proc_data_dict['projected_data_dict'] = OrderedDict() for qbn, data_dict in self.proc_data_dict[ 'meas_results_per_qb'].items(): self.proc_data_dict['projected_data_dict'][qbn] = OrderedDict() for state_prob in ['pg', 'pe', 'pf']: self.proc_data_dict['projected_data_dict'][qbn].update( {state_prob: data for key, data in data_dict.items() if state_prob in key}) if self.cal_states_dict is None: self.cal_states_dict = {} self.num_cal_points = np.array(list( self.cal_states_dict.values())).flatten().size # correct probabilities given calibration matrix if self.get_param_value("correction_matrix") is not None: self.proc_data_dict['projected_data_dict_corrected'] = OrderedDict() for qbn, data_dict in self.proc_data_dict[ 'meas_results_per_qb'].items(): self.proc_data_dict['projected_data_dict'][qbn] = OrderedDict() probas_raw = np.asarray([data_dict[k] for k in data_dict for state_prob in ['pg', 'pe', 'pf'] if state_prob in k]) corr_mtx = self.get_param_value("correction_matrix")[qbn] probas_corrected = np.linalg.inv(corr_mtx).T @ probas_raw for state_prob in ['pg', 'pe', 'pf']: self.proc_data_dict['projected_data_dict_corrected'][qbn].update( {state_prob: data for key, data in zip(["pg", "pe", "pf"], probas_corrected)}) # get data_to_fit self.proc_data_dict['data_to_fit'] = OrderedDict() for qbn, prob_data in self.proc_data_dict[ 'projected_data_dict'].items(): if qbn in self.data_to_fit: self.proc_data_dict['data_to_fit'][qbn] = prob_data[ self.data_to_fit[qbn]] # create msmt_sweep_points, sweep_points, cal_points_sweep_points for qbn in self.qb_names: if self.num_cal_points > 0: self.proc_data_dict['sweep_points_dict'][qbn][ 'msmt_sweep_points'] = \ self.proc_data_dict['sweep_points_dict'][qbn][ 'sweep_points'][:-self.num_cal_points] self.proc_data_dict['sweep_points_dict'][qbn][ 'cal_points_sweep_points'] = \ self.proc_data_dict['sweep_points_dict'][qbn][ 'sweep_points'][-self.num_cal_points::] else: self.proc_data_dict['sweep_points_dict'][qbn][ 'msmt_sweep_points'] = self.proc_data_dict[ 'sweep_points_dict'][qbn]['sweep_points'] self.proc_data_dict['sweep_points_dict'][qbn][ 'cal_points_sweep_points'] = [] if self.options_dict.get('TwoD', False): self.create_sweep_points_2D_dict() # handle data splitting if needed self.split_data() def split_data(self): def unique(l): try: return np.unique(l, return_inverse=True) except Exception: h = [repr(a) for a in l] _, i, j = np.unique(h, return_index=True, return_inverse=True) return l[i], j split_params = self.get_param_value('split_params', []) if not len(split_params): return pdd = self.proc_data_dict pdd['split_data_dict'] = {} for qbn in self.qb_names: pdd['split_data_dict'][qbn] = {} for p in split_params: dim = self.sp.find_parameter(p) sv = self.sp.get_sweep_params_property( 'values', param_names=p, dimension=dim) usp, ind = unique(sv) if len(usp) <= 1: continue svs = [self.sp.subset(ind == i, dim) for i in range(len(usp))] [s.remove_sweep_parameter(p) for s in svs] sdd = {} pdd['split_data_dict'][qbn][p] = sdd for i in range(len(usp)): subset = (np.concatenate( [ind == i, [True] * len(pdd['sweep_points_dict'][qbn][ 'cal_points_sweep_points'])])) sdd[i] = {} sdd[i]['value'] = usp[i] sdd[i]['sweep_points'] = svs[i] d = pdd['sweep_points_dict'][qbn] if dim == 0: sdd[i]['sweep_points_dict'] = { 'sweep_points': d['sweep_points'][subset], 'msmt_sweep_points': d['msmt_sweep_points'][ind == i], 'cal_points_sweep_points': d['cal_points_sweep_points'], } sdd[i]['sweep_points_2D_dict'] = pdd[ 'sweep_points_2D_dict'][qbn] else: sdd[i]['sweep_points_dict'] = \ pdd['sweep_points_dict'][qbn] sdd[i]['sweep_points_2D_dict'] = { k: v[ind == i] for k, v in pdd[ 'sweep_points_2D_dict'][qbn].items()} for d in ['projected_data_dict', 'data_to_fit']: if isinstance(pdd[d][qbn], dict): if dim == 0: sdd[i][d] = {k: v[:, subset] for k, v in pdd[d][qbn].items()} else: sdd[i][d] = {k: v[ind == i, :] for k, v in pdd[d][qbn].items()} else: if dim == 0: sdd[i][d] = pdd[d][qbn][:, subset] else: sdd[i][d] = pdd[d][qbn][ind == i, :] select_split = self.get_param_value('select_split') if select_split is not None: for qbn, select in select_split.items(): p, v = select if p not in pdd['split_data_dict'][qbn]: log.warning(f"Split parameter {p} for {qbn} not " f"found. Ignoring this selection.") try: ind = [a['value'] for a in pdd['split_data_dict'][ qbn][p].values()].index(v) except ValueError: ind = v try: pdd['split_data_dict'][qbn][p][ind] except ValueError: log.warning(f"Value {v} for split parameter {p} " f"of {qbn} not found. Ignoring this " f"selection.") continue for d in ['projected_data_dict', 'data_to_fit', 'sweep_points_dict', 'sweep_points_2D_dict']: pdd[d][qbn] = pdd['split_data_dict'][qbn][p][ind][d] self.measurement_strings[qbn] += f' ({p}: {v})' def get_cal_data_points(self): self.num_cal_points = np.array(list( self.cal_states_dict.values())).flatten().size do_PCA = self.rotation_type == 'PCA' or \ self.rotation_type == 'column_PCA' self.cal_states_dict_for_rotation = OrderedDict() states = False cal_states_rotations = self.cal_states_rotations for key in cal_states_rotations.keys(): if key == 'g' or key == 'e' or key == 'f': states = True for qbn in self.qb_names: self.cal_states_dict_for_rotation[qbn] = OrderedDict() if states: cal_states_rot_qb = cal_states_rotations else: cal_states_rot_qb = cal_states_rotations[qbn] for i in range(len(cal_states_rot_qb)): cal_state = \ [k for k, idx in cal_states_rot_qb.items() if idx == i][0] self.cal_states_dict_for_rotation[qbn][cal_state] = \ None if do_PCA and self.num_cal_points != 3 else \ self.cal_states_dict[cal_state] def cal_states_analysis(self): self.get_cal_data_points() self.proc_data_dict['projected_data_dict'] = OrderedDict( {qbn: '' for qbn in self.qb_names}) for qbn in self.qb_names: cal_states_dict = self.cal_states_dict_for_rotation[qbn] if len(cal_states_dict) not in [0, 2, 3]: raise NotImplementedError('Calibration states rotation is ' 'currently only implemented for 0, ' '2, or 3 cal states per qubit.') data_mostly_g = self.get_param_value('data_mostly_g', default_value=True) if self.get_param_value('TwoD', default_value=False): if self.rotation_type == 'global_PCA': self.proc_data_dict['projected_data_dict'].update( self.global_pca_TwoD( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.data_to_fit, data_mostly_g=data_mostly_g)) elif len(cal_states_dict) == 3: self.proc_data_dict['projected_data_dict'].update( self.rotate_data_3_cal_states_TwoD( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.cal_states_dict_for_rotation)) elif self.rotation_type == 'fixed_cal_points': rotated_data_dict, zero_coord, one_coord = \ self.rotate_data_TwoD_same_fixed_cal_idxs( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.cal_states_dict_for_rotation, self.data_to_fit) self.proc_data_dict['projected_data_dict'].update( rotated_data_dict) self.proc_data_dict['rotation_coordinates'] = \ [zero_coord, one_coord] else: self.proc_data_dict['projected_data_dict'].update( self.rotate_data_TwoD( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.cal_states_dict_for_rotation, self.data_to_fit, data_mostly_g=data_mostly_g, column_PCA=self.rotation_type == 'column_PCA')) else: if len(cal_states_dict) == 3: self.proc_data_dict['projected_data_dict'].update( self.rotate_data_3_cal_states( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.cal_states_dict_for_rotation)) else: self.proc_data_dict['projected_data_dict'].update( self.rotate_data( qbn, self.proc_data_dict['meas_results_per_qb'], self.channel_map, self.cal_states_dict_for_rotation, self.data_to_fit, data_mostly_g=data_mostly_g)) @staticmethod def rotate_data_3_cal_states(qb_name, meas_results_per_qb, channel_map, cal_states_dict): # FOR 3 CAL STATES rotated_data_dict = OrderedDict() meas_res_dict = meas_results_per_qb[qb_name] rotated_data_dict[qb_name] = OrderedDict() cal_pts_idxs = list(cal_states_dict[qb_name].values()) cal_points_data = np.zeros((len(cal_pts_idxs), 2)) if list(meas_res_dict) == channel_map[qb_name]: raw_data = np.array([v for v in meas_res_dict.values()]).T for i, cal_idx in enumerate(cal_pts_idxs): cal_points_data[i, :] = np.mean(raw_data[cal_idx, :], axis=0) rotated_data = predict_proba_avg_ro(raw_data, cal_points_data) for i, state in enumerate(list(cal_states_dict[qb_name])): rotated_data_dict[qb_name][f'p{state}'] = rotated_data[:, i] else: raise NotImplementedError('Calibration states rotation with 3 ' 'cal states only implemented for ' '2 readout channels per qubit.') return rotated_data_dict @staticmethod def rotate_data(qb_name, meas_results_per_qb, channel_map, cal_states_dict, data_to_fit, data_mostly_g=True): # ONLY WORKS FOR 2 CAL STATES meas_res_dict = meas_results_per_qb[qb_name] rotated_data_dict = OrderedDict() if len(cal_states_dict[qb_name]) == 0: cal_zero_points = None cal_one_points = None else: cal_zero_points = list(cal_states_dict[qb_name].values())[0] cal_one_points = list(cal_states_dict[qb_name].values())[1] rotated_data_dict[qb_name] = OrderedDict() if len(meas_res_dict) == 1: # one RO channel per qubit if cal_zero_points is None and cal_one_points is None: data = meas_res_dict[list(meas_res_dict)[0]] data = (data - np.min(data))/(np.max(data) - np.min(data)) data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]] = data else: rotated_data_dict[qb_name][data_to_fit[qb_name]] = \ a_tools.rotate_and_normalize_data_1ch( data=meas_res_dict[list(meas_res_dict)[0]], cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) elif list(meas_res_dict) == channel_map[qb_name]: # two RO channels per qubit data, _, _ = a_tools.rotate_and_normalize_data_IQ( data=np.array([v for v in meas_res_dict.values()]), cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]] = data else: # multiple readouts per qubit per channel if isinstance(channel_map[qb_name], str): qb_ro_ch0 = channel_map[qb_name] else: qb_ro_ch0 = channel_map[qb_name][0] ro_suffixes = [s[len(qb_ro_ch0)+1::] for s in list(meas_res_dict) if qb_ro_ch0 in s] for i, ro_suf in enumerate(ro_suffixes): if len(ro_suffixes) == len(meas_res_dict): # one RO ch per qubit if cal_zero_points is None and cal_one_points is None: data = meas_res_dict[list(meas_res_dict)[i]] data = (data - np.min(data))/(np.max(data) - np.min(data)) data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][ro_suf] = data else: rotated_data_dict[qb_name][ro_suf] = \ a_tools.rotate_and_normalize_data_1ch( data=meas_res_dict[list(meas_res_dict)[i]], cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) else: # two RO ch per qubit keys = [k for k in meas_res_dict if ro_suf in k] correct_keys = [k for k in keys if k[len(qb_ro_ch0)+1::] == ro_suf] data_array = np.array([meas_res_dict[k] for k in correct_keys]) data, _, _ = a_tools.rotate_and_normalize_data_IQ( data=data_array, cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][ro_suf] = data return rotated_data_dict @staticmethod def rotate_data_3_cal_states_TwoD(qb_name, meas_results_per_qb, channel_map, cal_states_dict): # FOR 3 CAL STATES meas_res_dict = meas_results_per_qb[qb_name] rotated_data_dict = OrderedDict() rotated_data_dict[qb_name] = OrderedDict() cal_pts_idxs = list(cal_states_dict[qb_name].values()) cal_points_data = np.zeros((len(cal_pts_idxs), 2)) if list(meas_res_dict) == channel_map[qb_name]: # two RO channels per qubit raw_data_arr = meas_res_dict[list(meas_res_dict)[0]] for i, state in enumerate(list(cal_states_dict[qb_name])): rotated_data_dict[qb_name][f'p{state}'] = np.zeros( raw_data_arr.shape) for col in range(raw_data_arr.shape[1]): raw_data = np.concatenate([ v[:, col].reshape(len(v[:, col]), 1) for v in meas_res_dict.values()], axis=1) for i, cal_idx in enumerate(cal_pts_idxs): cal_points_data[i, :] = np.mean(raw_data[cal_idx, :], axis=0) # rotated data is (raw_data_arr.shape[0], 3) rotated_data = predict_proba_avg_ro( raw_data, cal_points_data) for i, state in enumerate(list(cal_states_dict[qb_name])): rotated_data_dict[qb_name][f'p{state}'][:, col] = \ rotated_data[:, i] else: raise NotImplementedError('Calibration states rotation with 3 ' 'cal states only implemented for ' '2 readout channels per qubit.') # transpose data for i, state in enumerate(list(cal_states_dict[qb_name])): rotated_data_dict[qb_name][f'p{state}'] = \ rotated_data_dict[qb_name][f'p{state}'].T return rotated_data_dict @staticmethod def global_pca_TwoD(qb_name, meas_results_per_qb, channel_map, data_to_fit, data_mostly_g=True): meas_res_dict = meas_results_per_qb[qb_name] if list(meas_res_dict) != channel_map[qb_name]: raise NotImplementedError('Global PCA is only implemented ' 'for two-channel RO!') raw_data_arr = meas_res_dict[list(meas_res_dict)[0]] rotated_data_dict = OrderedDict({qb_name: OrderedDict()}) rotated_data_dict[qb_name][data_to_fit[qb_name]] = \ deepcopy(raw_data_arr.transpose()) data_array = np.array( [v.T.flatten() for v in meas_res_dict.values()]) rot_flat_data, _, _ = \ a_tools.rotate_and_normalize_data_IQ( data=data_array) data = np.reshape(rot_flat_data, raw_data_arr.T.shape) data = a_tools.set_majority_sign(data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]] = data return rotated_data_dict @staticmethod def rotate_data_TwoD(qb_name, meas_results_per_qb, channel_map, cal_states_dict, data_to_fit, column_PCA=False, data_mostly_g=True): meas_res_dict = meas_results_per_qb[qb_name] rotated_data_dict = OrderedDict() if len(cal_states_dict[qb_name]) == 0: cal_zero_points = None cal_one_points = None else: cal_zero_points = list(cal_states_dict[qb_name].values())[0] cal_one_points = list(cal_states_dict[qb_name].values())[1] rotated_data_dict[qb_name] = OrderedDict() if len(meas_res_dict) == 1: # one RO channel per qubit raw_data_arr = meas_res_dict[list(meas_res_dict)[0]] rotated_data_dict[qb_name][data_to_fit[qb_name]] = \ deepcopy(raw_data_arr.transpose()) if column_PCA: for row in range(raw_data_arr.shape[0]): data = a_tools.rotate_and_normalize_data_1ch( data=raw_data_arr[row, :], cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]][ :, row] = data else: for col in range(raw_data_arr.shape[1]): data = a_tools.rotate_and_normalize_data_1ch( data=raw_data_arr[:, col], cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]][col] = data elif list(meas_res_dict) == channel_map[qb_name]: # two RO channels per qubit raw_data_arr = meas_res_dict[list(meas_res_dict)[0]] rotated_data_dict[qb_name][data_to_fit[qb_name]] = \ deepcopy(raw_data_arr.transpose()) if column_PCA: for row in range(raw_data_arr.shape[0]): data_array = np.array( [v[row, :] for v in meas_res_dict.values()]) data, _, _ = \ a_tools.rotate_and_normalize_data_IQ( data=data_array, cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][data_to_fit[qb_name]][ :, row] = data else: for col in range(raw_data_arr.shape[1]): data_array = np.array( [v[:, col] for v in meas_res_dict.values()]) data, _, _ = a_tools.rotate_and_normalize_data_IQ( data=data_array, cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][ data_to_fit[qb_name]][col] = data else: # multiple readouts per qubit per channel if isinstance(channel_map[qb_name], str): qb_ro_ch0 = channel_map[qb_name] else: qb_ro_ch0 = channel_map[qb_name][0] ro_suffixes = [s[len(qb_ro_ch0)+1::] for s in list(meas_res_dict) if qb_ro_ch0 in s] for i, ro_suf in enumerate(ro_suffixes): if len(ro_suffixes) == len(meas_res_dict): # one RO ch per qubit raw_data_arr = meas_res_dict[list(meas_res_dict)[i]] rotated_data_dict[qb_name][ro_suf] = \ deepcopy(raw_data_arr.transpose()) for col in range(raw_data_arr.shape[1]): data = a_tools.rotate_and_normalize_data_1ch( data=raw_data_arr[:, col], cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][ro_suf][col] = data else: # two RO ch per qubit raw_data_arr = meas_res_dict[list(meas_res_dict)[i]] rotated_data_dict[qb_name][ro_suf] = \ deepcopy(raw_data_arr.transpose()) for col in range(raw_data_arr.shape[1]): data_array = np.array( [v[:, col] for k, v in meas_res_dict.items() if ro_suf in k]) data, _, _ = a_tools.rotate_and_normalize_data_IQ( data=data_array, cal_zero_points=cal_zero_points, cal_one_points=cal_one_points) if cal_zero_points is None: data = a_tools.set_majority_sign( data, -1 if data_mostly_g else 1) rotated_data_dict[qb_name][ro_suf][col] = data return rotated_data_dict @staticmethod def rotate_data_TwoD_same_fixed_cal_idxs(qb_name, meas_results_per_qb, channel_map, cal_states_dict, data_to_fit): meas_res_dict = meas_results_per_qb[qb_name] if list(meas_res_dict) != channel_map[qb_name]: raise NotImplementedError('rotate_data_TwoD_same_fixed_cal_idxs ' 'only implemented for two-channel RO!') if len(cal_states_dict[qb_name]) == 0: cal_zero_points = None cal_one_points = None else: cal_zero_points = list(cal_states_dict[qb_name].values())[0] cal_one_points = list(cal_states_dict[qb_name].values())[1] # do pca on the one cal states raw_data_arr = meas_res_dict[list(meas_res_dict)[0]] rot_dat_e = np.zeros(raw_data_arr.shape[1]) for row in cal_one_points: rot_dat_e += a_tools.rotate_and_normalize_data_IQ( data=np.array([v[row, :] for v in meas_res_dict.values()]), cal_zero_points=None, cal_one_points=None)[0] rot_dat_e /= len(cal_one_points) # find the values of the zero and one cal points col_idx = np.argmax(np.abs(rot_dat_e)) zero_coord = [np.mean([v[r, col_idx] for r in cal_zero_points]) for v in meas_res_dict.values()] one_coord = [np.mean([v[r, col_idx] for r in cal_one_points]) for v in meas_res_dict.values()] # rotate all data based on the fixed zero_coord and one_coord rotated_data_dict = OrderedDict({qb_name: OrderedDict()}) rotated_data_dict[qb_name][data_to_fit[qb_name]] = \ deepcopy(raw_data_arr.transpose()) for col in range(raw_data_arr.shape[1]): data_array = np.array( [v[:, col] for v in meas_res_dict.values()]) rotated_data_dict[qb_name][ data_to_fit[qb_name]][col], _, _ = \ a_tools.rotate_and_normalize_data_IQ( data=data_array, zero_coord=zero_coord, one_coord=one_coord) return rotated_data_dict, zero_coord, one_coord def get_xaxis_label_unit(self, qb_name): hard_sweep_params = self.get_param_value('hard_sweep_params') sweep_name = self.get_param_value('sweep_name') sweep_unit = self.get_param_value('sweep_unit') if self.sp is not None: main_sp = self.get_param_value('main_sp', None) if main_sp is not None and qb_name in main_sp: param_names = [main_sp[qb_name]] else: param_names = self.mospm[qb_name] _, xunit, xlabel = self.sp.get_sweep_params_description( param_names=param_names, dimension=0)[0] elif hard_sweep_params is not None: xlabel = list(hard_sweep_params)[0] xunit = list(hard_sweep_params.values())[0][ 'unit'] elif (sweep_name is not None) and (sweep_unit is not None): xlabel = sweep_name xunit = sweep_unit else: xlabel = self.raw_data_dict['sweep_parameter_names'] xunit = self.raw_data_dict['sweep_parameter_units'] if np.ndim(xlabel) > 0: xlabel = xlabel[0] if np.ndim(xunit) > 0: xunit = xunit[0] return xlabel, xunit @staticmethod def get_cal_state_color(cal_state_label): if cal_state_label == 'g' or cal_state_label == r'$|g\rangle$': return 'k' elif cal_state_label == 'e' or cal_state_label == r'$|e\rangle$': return 'gray' elif cal_state_label == 'f' or cal_state_label == r'$|f\rangle$': return 'C8' else: return 'C4' @staticmethod def get_latex_prob_label(prob_label): if '$' in prob_label: return prob_label elif 'p' in prob_label.lower(): return r'$|{}\rangle$'.format(prob_label[-1]) else: return r'$|{}\rangle$'.format(prob_label) def prepare_plots(self): if self.get_param_value('plot_proj_data', default_value=True): select_split = self.get_param_value('select_split') fig_name_suffix = self.get_param_value('fig_name_suffix', '') title_suffix = self.get_param_value('title_suffix', '') for qb_name, corr_data in self.proc_data_dict[ 'projected_data_dict'].items(): fig_name = f'projected_plot_{qb_name}' title_suf = title_suffix if select_split is not None: param, idx = select_split[qb_name] # remove qb_name from param p = '_'.join([e for e in param.split('_') if e != qb_name]) # create suffix suf = f'({p}, {str(np.round(idx, 3))})' # add suffix fig_name += f'_{suf}' title_suf = f'{suf}_{title_suf}' if \ len(title_suf) else suf if isinstance(corr_data, dict): for data_key, data in corr_data.items(): if not self.rotate: data_label = data_key plot_name_suffix = data_key plot_cal_points = False data_axis_label = 'Population' else: fn = f'{fig_name}_{data_key}' data_label = 'Data' plot_name_suffix = '' tf = f'{data_key}_{title_suf}' if \ len(title_suf) else data_key plot_cal_points = ( not self.options_dict.get('TwoD', False)) data_axis_label = \ 'Strongest principal component (arb.)' if \ 'pca' in self.rotation_type.lower() else \ '{} state population'.format( self.get_latex_prob_label(data_key)) self.prepare_projected_data_plot( fn, data, qb_name=qb_name, data_label=data_label, title_suffix=tf, plot_name_suffix=plot_name_suffix, fig_name_suffix=fig_name_suffix, data_axis_label=data_axis_label, plot_cal_points=plot_cal_points) else: fig_name = 'projected_plot_' + qb_name self.prepare_projected_data_plot( fig_name, corr_data, qb_name=qb_name, plot_cal_points=( not self.options_dict.get('TwoD', False))) if self.get_param_value('plot_raw_data', default_value=True): self.prepare_raw_data_plots(plot_filtered=False) if 'preparation_params' in self.metadata: if 'active' in self.metadata['preparation_params'].get( 'preparation_type', 'wait'): self.prepare_raw_data_plots(plot_filtered=True) def prepare_raw_data_plots(self, plot_filtered=False): if plot_filtered or not self.data_with_reset: key = 'meas_results_per_qb' suffix = 'filtered' if self.data_with_reset else '' func_for_swpts = lambda qb_name: self.proc_data_dict[ 'sweep_points_dict'][qb_name]['sweep_points'] else: key = 'meas_results_per_qb_raw' suffix = '' func_for_swpts = lambda qb_name: self.raw_data_dict[ 'hard_sweep_points'] for qb_name, raw_data_dict in self.proc_data_dict[key].items(): if qb_name not in self.qb_names: continue sweep_points = func_for_swpts(qb_name) if len(raw_data_dict) == 1: numplotsx = 1 numplotsy = 1 elif len(raw_data_dict) == 2: numplotsx = 1 numplotsy = 2 else: numplotsx = 2 numplotsy = len(raw_data_dict) // 2 + len(raw_data_dict) % 2 plotsize = self.get_default_plot_params(set=False)['figure.figsize'] fig_title = (self.raw_data_dict['timestamp'] + ' ' + self.raw_data_dict['measurementstring'] + '\nRaw data ' + suffix + ' ' + qb_name) plot_name = 'raw_plot_' + qb_name + suffix xlabel, xunit = self.get_xaxis_label_unit(qb_name) for ax_id, ro_channel in enumerate(raw_data_dict): if self.get_param_value('TwoD', default_value=False): if self.sp is None: soft_sweep_params = self.get_param_value( 'soft_sweep_params') if soft_sweep_params is not None: yunit = list(soft_sweep_params.values())[0]['unit'] else: yunit = self.raw_data_dict[ 'sweep_parameter_units'][1] if np.ndim(yunit) > 0: yunit = yunit[0] for pn, ssp in self.proc_data_dict['sweep_points_2D_dict'][ qb_name].items(): ylabel = pn if self.sp is not None: yunit = self.sp.get_sweep_params_property( 'unit', dimension=1, param_names=pn) ylabel = self.sp.get_sweep_params_property( 'label', dimension=1, param_names=pn) self.plot_dicts[f'{plot_name}_{ro_channel}_{pn}'] = { 'fig_id': plot_name + '_' + pn, 'ax_id': ax_id, 'plotfn': self.plot_colorxy, 'xvals': sweep_points, 'yvals': ssp, 'zvals': raw_data_dict[ro_channel].T, 'xlabel': xlabel, 'xunit': xunit, 'ylabel': ylabel, 'yunit': yunit, 'numplotsx': numplotsx, 'numplotsy': numplotsy, 'plotsize': (plotsize[0]*numplotsx, plotsize[1]*numplotsy), 'title': fig_title, 'clabel': '{} (Vpeak)'.format(ro_channel)} else: self.plot_dicts[plot_name + '_' + ro_channel] = { 'fig_id': plot_name, 'ax_id': ax_id, 'plotfn': self.plot_line, 'xvals': sweep_points, 'xlabel': xlabel, 'xunit': xunit, 'yvals': raw_data_dict[ro_channel], 'ylabel': '{} (Vpeak)'.format(ro_channel), 'yunit': '', 'numplotsx': numplotsx, 'numplotsy': numplotsy, 'plotsize': (plotsize[0]*numplotsx, plotsize[1]*numplotsy), 'title': fig_title} if len(raw_data_dict) == 1: self.plot_dicts[ plot_name + '_' + list(raw_data_dict)[0]]['ax_id'] = None def prepare_projected_data_plot( self, fig_name, data, qb_name, title_suffix='', sweep_points=None, plot_cal_points=True, plot_name_suffix='', fig_name_suffix='', data_label='Data', data_axis_label='', do_legend_data=True, do_legend_cal_states=True): if len(fig_name_suffix): fig_name = f'{fig_name}_{fig_name_suffix}' if data_axis_label == '': data_axis_label = 'Strongest principal component (arb.)' if \ 'pca' in self.rotation_type.lower() else \ '{} state population'.format(self.get_latex_prob_label( self.data_to_fit[qb_name])) plotsize = self.get_default_plot_params(set=False)['figure.figsize'] plotsize = (plotsize[0], plotsize[0]/1.25) if sweep_points is None: sweep_points = self.proc_data_dict['sweep_points_dict'][qb_name][ 'sweep_points'] plot_names_cal = [] if plot_cal_points and self.num_cal_points != 0: yvals = data[:-self.num_cal_points] xvals = sweep_points[:-self.num_cal_points] # plot cal points for i, cal_pts_idxs in enumerate( self.cal_states_dict.values()): plot_dict_name_cal = fig_name + '_' + \ list(self.cal_states_dict)[i] + '_' + \ plot_name_suffix plot_names_cal += [plot_dict_name_cal] self.plot_dicts[plot_dict_name_cal] = { 'fig_id': fig_name, 'plotfn': self.plot_line, 'plotsize': plotsize, 'xvals': self.proc_data_dict['sweep_points_dict'][qb_name][ 'cal_points_sweep_points'][cal_pts_idxs], 'yvals': data[cal_pts_idxs], 'setlabel': list(self.cal_states_dict)[i], 'do_legend': do_legend_cal_states, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left', 'linestyle': 'none', 'line_kws': {'color': self.get_cal_state_color( list(self.cal_states_dict)[i])}} self.plot_dicts[plot_dict_name_cal+'_line'] = { 'fig_id': fig_name, 'plotsize': plotsize, 'plotfn': self.plot_hlines, 'y': np.mean(data[cal_pts_idxs]), 'xmin': self.proc_data_dict['sweep_points_dict'][qb_name][ 'sweep_points'][0], 'xmax': self.proc_data_dict['sweep_points_dict'][qb_name][ 'sweep_points'][-1], 'colors': 'gray'} else: yvals = data xvals = sweep_points title = (self.raw_data_dict['timestamp'] + ' ' + self.raw_data_dict['measurementstring']) title += '\n' + f'{qb_name}_{title_suffix}' if len(title_suffix) else \ ' ' + qb_name plot_dict_name = f'{fig_name}_{plot_name_suffix}' xlabel, xunit = self.get_xaxis_label_unit(qb_name) if self.get_param_value('TwoD', default_value=False): if self.sp is None: soft_sweep_params = self.get_param_value( 'soft_sweep_params') if soft_sweep_params is not None: yunit = list(soft_sweep_params.values())[0]['unit'] else: yunit = self.raw_data_dict['sweep_parameter_units'][1] if np.ndim(yunit) > 0: yunit = yunit[0] for pn, ssp in self.proc_data_dict['sweep_points_2D_dict'][ qb_name].items(): ylabel = pn if self.sp is not None: yunit = self.sp.get_sweep_params_property( 'unit', dimension=1, param_names=pn) ylabel = self.sp.get_sweep_params_property( 'label', dimension=1, param_names=pn) self.plot_dicts[f'{plot_dict_name}_{pn}'] = { 'plotfn': self.plot_colorxy, 'fig_id': fig_name + '_' + pn, 'xvals': xvals, 'yvals': ssp, 'zvals': yvals, 'xlabel': xlabel, 'xunit': xunit, 'ylabel': ylabel, 'yunit': yunit, 'zrange': self.get_param_value('zrange', None), 'title': title, 'clabel': data_axis_label} else: self.plot_dicts[plot_dict_name] = { 'plotfn': self.plot_line, 'fig_id': fig_name, 'plotsize': plotsize, 'xvals': xvals, 'xlabel': xlabel, 'xunit': xunit, 'yvals': yvals, 'ylabel': data_axis_label, 'yunit': '', 'setlabel': data_label, 'title': title, 'linestyle': 'none', 'do_legend': do_legend_data, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left'} # add plot_params to each plot dict plot_params = self.get_param_value('plot_params', default_value={}) for plt_name in self.plot_dicts: self.plot_dicts[plt_name].update(plot_params) if len(plot_names_cal) > 0: if do_legend_data and not do_legend_cal_states: for plot_name in plot_names_cal: plot_dict_cal = self.plot_dicts.pop(plot_name) self.plot_dicts[plot_name] = plot_dict_cal class Idling_Error_Rate_Analyisis(ba.BaseDataAnalysis): def __init__(self, t_start: str=None, t_stop: str=None, label: str='', data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): post_sel_th = self.options_dict.get('post_sel_th', 0.5) raw_shots = self.raw_data_dict['measured_values'][0][0] post_sel_shots = raw_shots[::2] data_shots = raw_shots[1::2] data_shots[np.where(post_sel_shots > post_sel_th)] = np.nan states = ['0', '1', '+'] self.proc_data_dict['xvals'] = np.unique(self.raw_data_dict['xvals']) for i, state in enumerate(states): self.proc_data_dict['shots_{}'.format(state)] =data_shots[i::3] self.proc_data_dict['yvals_{}'.format(state)] = \ np.nanmean(np.reshape(self.proc_data_dict['shots_{}'.format(state)], (len(self.proc_data_dict['xvals']), -1), order='F'), axis=1) def prepare_plots(self): # assumes that value names are unique in an experiment states = ['0', '1', '+'] for i, state in enumerate(states): yvals = self.proc_data_dict['yvals_{}'.format(state)] xvals = self.proc_data_dict['xvals'] self.plot_dicts['Prepare in {}'.format(state)] = { 'ax_id': 'main', 'plotfn': self.plot_line, 'xvals': xvals, 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': yvals, 'ylabel': 'Counts', 'yrange': [0, 1], 'xrange': self.options_dict.get('xrange', None), 'yunit': 'frac', 'setlabel': 'Prepare in {}'.format(state), 'do_legend':True, 'title': (self.raw_data_dict['timestamps'][0]+' - ' + self.raw_data_dict['timestamps'][-1] + '\n' + self.raw_data_dict['measurementstring'][0]), 'legend_pos': 'upper right'} if self.do_fitting: for state in ['0', '1', '+']: self.plot_dicts['fit_{}'.format(state)] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['fit {}'.format(state)]['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'fit |{}>'.format(state), 'do_legend': True, 'legend_pos': 'upper right'} self.plot_dicts['fit_text']={ 'ax_id':'main', 'box_props': 'fancy', 'xpos':1.05, 'horizontalalignment':'left', 'plotfn': self.plot_text, 'text_string': self.proc_data_dict['fit_msg']} def analyze_fit_results(self): fit_msg ='' states = ['0', '1', '+'] for state in states: fr = self.fit_res['fit {}'.format(state)] N1 = fr.params['N1'].value, fr.params['N1'].stderr N2 = fr.params['N2'].value, fr.params['N2'].stderr fit_msg += ('Prep |{}> : \n\tN_1 = {:.2g} $\pm$ {:.2g}' '\n\tN_2 = {:.2g} $\pm$ {:.2g}\n').format( state, N1[0], N1[1], N2[0], N2[1]) self.proc_data_dict['fit_msg'] = fit_msg def prepare_fitting(self): self.fit_dicts = OrderedDict() states = ['0', '1', '+'] for i, state in enumerate(states): yvals = self.proc_data_dict['yvals_{}'.format(state)] xvals = self.proc_data_dict['xvals'] mod = lmfit.Model(fit_mods.idle_error_rate_exp_decay) mod.guess = fit_mods.idle_err_rate_guess.__get__(mod, mod.__class__) # Done here explicitly so that I can overwrite a specific guess guess_pars = mod.guess(N=xvals, data=yvals) vary_N2 = self.options_dict.get('vary_N2', True) if not vary_N2: guess_pars['N2'].value = 1e21 guess_pars['N2'].vary = False self.fit_dicts['fit {}'.format(states[i])] = { 'model': mod, 'fit_xvals': {'N': xvals}, 'fit_yvals': {'data': yvals}, 'guess_pars': guess_pars} # Allows fixing the double exponential coefficient class Grovers_TwoQubitAllStates_Analysis(ba.BaseDataAnalysis): def __init__(self, t_start: str=None, t_stop: str=None, label: str='', data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): self.proc_data_dict = OrderedDict() normalize_to_cal_points = self.options_dict.get('normalize_to_cal_points', True) cal_points = [ [[-4, -3], [-2, -1]], [[-4, -2], [-3, -1]], ] for idx in [0,1]: yvals = list(self.raw_data_dict['measured_data'].values())[idx][0] self.proc_data_dict['ylabel_{}'.format(idx)] = \ self.raw_data_dict['value_names'][0][idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][idx] if normalize_to_cal_points: yvals = a_tools.rotate_and_normalize_data_1ch(yvals, cal_zero_points=cal_points[idx][0], cal_one_points=cal_points[idx][1]) self.proc_data_dict['yvals_{}'.format(idx)] = yvals y0 = self.proc_data_dict['yvals_0'] y1 = self.proc_data_dict['yvals_1'] p_success = ((y0[0]*y1[0]) + (1-y0[1])*y1[1] + (y0[2])*(1-y1[2]) + (1-y0[3])*(1-y1[3]) )/4 self.proc_data_dict['p_success'] = p_success def prepare_plots(self): # assumes that value names are unique in an experiment for i in [0, 1]: yvals = self.proc_data_dict['yvals_{}'.format(i)] xvals = self.raw_data_dict['xvals'][0] ylabel = self.proc_data_dict['ylabel_{}'.format(i)] self.plot_dicts['main_{}'.format(ylabel)] = { 'plotfn': self.plot_line, 'xvals': self.raw_data_dict['xvals'][0], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_{}'.format(i)], 'ylabel': ylabel, 'yunit': self.proc_data_dict['yunit'], 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': False, 'legend_pos': 'upper right'} self.plot_dicts['limit_text']={ 'ax_id':'main_{}'.format(ylabel), 'box_props': 'fancy', 'xpos':1.05, 'horizontalalignment':'left', 'plotfn': self.plot_text, 'text_string': 'P succes = {:.3f}'.format(self.proc_data_dict['p_success'])} class FlippingAnalysis(Single_Qubit_TimeDomainAnalysis): def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = True self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'measurementstring': 'measurementstring', 'sweep_points': 'sweep_points', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} # This analysis makes a hardcoded assumption on the calibration points self.options_dict['cal_points'] = [list(range(-4, -2)), list(range(-2, 0))] self.numeric_params = [] if auto: self.run_analysis() def prepare_fitting(self): self.fit_dicts = OrderedDict() # Even though we expect an exponentially damped oscillation we use # a simple cosine as this gives more reliable fitting and we are only # interested in extracting the frequency of the oscillation cos_mod = lmfit.Model(fit_mods.CosFunc) guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.raw_data_dict['sweep_points'][:-4], data=self.proc_data_dict['corr_data'][:-4]) # This enforces the oscillation to start at the equator # and ensures that any over/under rotation is absorbed in the # frequency guess_pars['amplitude'].value = 0.5 guess_pars['amplitude'].vary = False guess_pars['offset'].value = 0.5 guess_pars['offset'].vary = False self.fit_dicts['cos_fit'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.raw_data_dict['sweep_points'][:-4]}, 'fit_yvals': {'data': self.proc_data_dict['corr_data'][:-4]}, 'guess_pars': guess_pars} # In the case there are very few periods we fall back on a small # angle approximation to extract the drive detuning poly_mod = lmfit.models.PolynomialModel(degree=1) # the detuning can be estimated using on a small angle approximation # c1 = d/dN (cos(2*pi*f N) ) evaluated at N = 0 -> c1 = -2*pi*f poly_mod.set_param_hint('frequency', expr='-c1/(2*pi)') guess_pars = poly_mod.guess(x=self.raw_data_dict['sweep_points'][:-4], data=self.proc_data_dict['corr_data'][:-4]) # Constraining the line ensures that it will only give a good fit # if the small angle approximation holds guess_pars['c0'].vary = False guess_pars['c0'].value = 0.5 self.fit_dicts['line_fit'] = { 'model': poly_mod, 'fit_xvals': {'x': self.raw_data_dict['sweep_points'][:-4]}, 'fit_yvals': {'data': self.proc_data_dict['corr_data'][:-4]}, 'guess_pars': guess_pars} def analyze_fit_results(self): sf_line = self._get_scale_factor_line() sf_cos = self._get_scale_factor_cos() self.proc_data_dict['scale_factor'] = self.get_scale_factor() msg = 'Scale fact. based on ' if self.proc_data_dict['scale_factor'] == sf_cos: msg += 'cos fit\n' else: msg += 'line fit\n' msg += 'cos fit: {:.4f}\n'.format(sf_cos) msg += 'line fit: {:.4f}'.format(sf_line) self.raw_data_dict['scale_factor_msg'] = msg # TODO: save scale factor to file def get_scale_factor(self): """ Returns the scale factor that should correct for the error in the pulse amplitude. """ # Model selection based on the Bayesian Information Criterion (BIC) # as calculated by lmfit if (self.fit_dicts['line_fit']['fit_res'].bic < self.fit_dicts['cos_fit']['fit_res'].bic): scale_factor = self._get_scale_factor_line() else: scale_factor = self._get_scale_factor_cos() return scale_factor def _get_scale_factor_cos(self): # 1/period of the oscillation corresponds to the (fractional) # over/under rotation error per gate frequency = self.fit_dicts['cos_fit']['fit_res'].params['frequency'] # the square is needed to account for the difference between # power and amplitude scale_factor = (1+frequency)**2 phase = np.rad2deg(self.fit_dicts['cos_fit']['fit_res'].params['phase']) % 360 # phase ~90 indicates an under rotation so the scale factor # has to be larger than 1. A phase ~270 indicates an over # rotation so then the scale factor has to be smaller than one. if phase > 180: scale_factor = 1/scale_factor return scale_factor def _get_scale_factor_line(self): # 1/period of the oscillation corresponds to the (fractional) # over/under rotation error per gate frequency = self.fit_dicts['line_fit']['fit_res'].params['frequency'] scale_factor = (1+frequency)**2 # no phase sign check is needed here as this is contained in the # sign of the coefficient return scale_factor def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.raw_data_dict['sweep_points'], 'xlabel': self.raw_data_dict['xlabel'], 'xunit': self.raw_data_dict['xunit'], # does not do anything yet 'yvals': self.proc_data_dict['corr_data'], 'ylabel': 'Excited state population', 'yunit': '', 'setlabel': 'data', 'title': (self.raw_data_dict['timestamp'] + ' ' + self.raw_data_dict['measurementstring']), 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['line_fit'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'line fit', 'do_legend': True, 'legend_pos': 'upper right'} self.plot_dicts['cos_fit'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'cos fit', 'do_legend': True, 'legend_pos': 'upper right'} self.plot_dicts['text_msg'] = { 'ax_id': 'main', 'ypos': 0.15, 'plotfn': self.plot_text, 'box_props': 'fancy', 'text_string': self.raw_data_dict['scale_factor_msg']} class Intersect_Analysis(Single_Qubit_TimeDomainAnalysis): """ Analysis to extract the intercept of two parameters. relevant options_dict parameters ch_idx_A (int) specifies first channel for intercept ch_idx_B (int) specifies second channel for intercept if same as first it will assume data was taken interleaved. """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.params_dict = {'xlabel': 'sweep_name', 'xvals': 'sweep_points', 'xunit': 'sweep_unit', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): """ selects the relevant acq channel based on "ch_idx_A" and "ch_idx_B" specified in the options dict. If ch_idx_A and ch_idx_B are the same it will unzip the data. """ self.proc_data_dict = deepcopy(self.raw_data_dict) # The channel containing the data must be specified in the options dict ch_idx_A = self.options_dict.get('ch_idx_A', 0) ch_idx_B = self.options_dict.get('ch_idx_B', 0) self.proc_data_dict['ylabel'] = self.raw_data_dict['value_names'][0][ch_idx_A] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][ch_idx_A] if ch_idx_A == ch_idx_B: yvals = list(self.raw_data_dict['measured_data'].values())[ch_idx_A][0] self.proc_data_dict['xvals_A'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_B'] = self.raw_data_dict['xvals'][0][1::2] self.proc_data_dict['yvals_A'] = yvals[::2] self.proc_data_dict['yvals_B'] = yvals[1::2] else: self.proc_data_dict['xvals_A'] = self.raw_data_dict['xvals'][0] self.proc_data_dict['xvals_B'] = self.raw_data_dict['xvals'][0] self.proc_data_dict['yvals_A'] = list(self.raw_data_dict ['measured_data'].values())[ch_idx_A][0] self.proc_data_dict['yvals_B'] = list(self.raw_data_dict ['measured_data'].values())[ch_idx_B][0] def prepare_fitting(self): self.fit_dicts = OrderedDict() self.fit_dicts['line_fit_A'] = { 'model': lmfit.models.PolynomialModel(degree=2), 'fit_xvals': {'x': self.proc_data_dict['xvals_A']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_A']}} self.fit_dicts['line_fit_B'] = { 'model': lmfit.models.PolynomialModel(degree=2), 'fit_xvals': {'x': self.proc_data_dict['xvals_B']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_B']}} def analyze_fit_results(self): fr_0 = self.fit_res['line_fit_A'].best_values fr_1 = self.fit_res['line_fit_B'].best_values c0 = (fr_0['c0'] - fr_1['c0']) c1 = (fr_0['c1'] - fr_1['c1']) c2 = (fr_0['c2'] - fr_1['c2']) poly_coeff = [c0, c1, c2] poly = np.polynomial.polynomial.Polynomial([fr_0['c0'], fr_0['c1'], fr_0['c2']]) ic = np.polynomial.polynomial.polyroots(poly_coeff) self.proc_data_dict['intersect_L'] = ic[0], poly(ic[0]) self.proc_data_dict['intersect_R'] = ic[1], poly(ic[1]) if (((np.min(self.proc_data_dict['xvals']))< ic[0]) and ( ic[0] < (np.max(self.proc_data_dict['xvals'])))): self.proc_data_dict['intersect'] =self.proc_data_dict['intersect_L'] else: self.proc_data_dict['intersect'] =self.proc_data_dict['intersect_R'] def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_A'], 'xlabel': self.proc_data_dict['xlabel'][0], 'xunit': self.proc_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_A'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'A', 'title': (self.proc_data_dict['timestamps'][0] + ' \n' + self.proc_data_dict['measurementstring'][0]), 'do_legend': True, 'yrange': (0,1), 'legend_pos': 'upper right'} self.plot_dicts['on'] = { 'plotfn': self.plot_line, 'ax_id': 'main', 'xvals': self.proc_data_dict['xvals_B'], 'xlabel': self.proc_data_dict['xlabel'][0], 'xunit': self.proc_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_B'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'B', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['line_fit_A'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_A']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit A', 'do_legend': True} self.plot_dicts['line_fit_B'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_B']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit B', 'do_legend': True} ic, ic_unit = SI_val_to_msg_str( self.proc_data_dict['intersect'][0], self.proc_data_dict['xunit'][0][0], return_type=float) self.plot_dicts['intercept_message'] = { 'ax_id': 'main', 'plotfn': self.plot_line, 'xvals': [self.proc_data_dict['intersect'][0]], 'yvals': [self.proc_data_dict['intersect'][1]], 'line_kws': {'alpha': .5, 'color':'gray', 'markersize':15}, 'marker': 'o', 'setlabel': 'Intercept: {:.1f} {}'.format(ic, ic_unit), 'do_legend': True} def get_intersect(self): return self.proc_data_dict['intersect'] class CZ_1QPhaseCal_Analysis(ba.BaseDataAnalysis): """ Analysis to extract the intercept for a single qubit phase calibration experiment N.B. this is a less generic version of "Intersect_Analysis" and should be deprecated (MAR Dec 2017) """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): """ selects the relevant acq channel based on "ch_idx" in options dict and then splits the data for th """ self.proc_data_dict = OrderedDict() # The channel containing the data must be specified in the options dict ch_idx = self.options_dict['ch_idx'] yvals = list(self.raw_data_dict['measured_data'].values())[ch_idx][0] self.proc_data_dict['ylabel'] = self.raw_data_dict['value_names'][0][ch_idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][ch_idx] self.proc_data_dict['xvals_off'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_on'] = self.raw_data_dict['xvals'][0][1::2] self.proc_data_dict['yvals_off'] = yvals[::2] self.proc_data_dict['yvals_on'] = yvals[1::2] def prepare_fitting(self): self.fit_dicts = OrderedDict() self.fit_dicts['line_fit_off'] = { 'model': lmfit.models.PolynomialModel(degree=1), 'fit_xvals': {'x': self.proc_data_dict['xvals_off']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_off']}} self.fit_dicts['line_fit_on'] = { 'model': lmfit.models.PolynomialModel(degree=1), 'fit_xvals': {'x': self.proc_data_dict['xvals_on']}, 'fit_yvals': {'data': self.proc_data_dict['yvals_on']}} def analyze_fit_results(self): fr_0 = self.fit_res['line_fit_off'].best_values fr_1 = self.fit_res['line_fit_on'].best_values ic = -(fr_0['c0'] - fr_1['c0'])/(fr_0['c1'] - fr_1['c1']) self.proc_data_dict['zero_phase_diff_intersect'] = ic def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_off'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_off'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ off', 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, 'yrange': (0,1), 'legend_pos': 'upper right'} self.plot_dicts['on'] = { 'plotfn': self.plot_line, 'ax_id': 'main', 'xvals': self.proc_data_dict['xvals_on'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_on'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ on', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['line_fit_off'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_off']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ off', 'do_legend': True} self.plot_dicts['line_fit_on'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['line_fit_on']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ on', 'do_legend': True} ic, ic_unit = SI_val_to_msg_str( self.proc_data_dict['zero_phase_diff_intersect'], self.raw_data_dict['xunit'][0][0], return_type=float) self.plot_dicts['intercept_message'] = { 'ax_id': 'main', 'plotfn': self.plot_line, 'xvals': [self.proc_data_dict['zero_phase_diff_intersect']], 'yvals': [np.mean(self.proc_data_dict['xvals_on'])], 'line_kws': {'alpha': 0}, 'setlabel': 'Intercept: {:.1f} {}'.format(ic, ic_unit), 'do_legend': True} def get_zero_phase_diff_intersect(self): return self.proc_data_dict['zero_phase_diff_intersect'] class Oscillation_Analysis(ba.BaseDataAnalysis): """ Very basic analysis to determine the phase of a single oscillation that has an assumed period of 360 degrees. """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, label: str='', options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): self.proc_data_dict = OrderedDict() idx = 1 self.proc_data_dict['yvals'] = list(self.raw_data_dict['measured_data'].values())[idx][0] self.proc_data_dict['ylabel'] = self.raw_data_dict['value_names'][0][idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][idx] def prepare_fitting(self): self.fit_dicts = OrderedDict() cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.raw_data_dict['xvals'][0], data=self.proc_data_dict['yvals'], freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts['cos_fit'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.raw_data_dict['xvals'][0]}, 'fit_yvals': {'data': self.proc_data_dict['yvals']}, 'guess_pars': guess_pars} def analyze_fit_results(self): fr = self.fit_res['cos_fit'].best_values self.proc_data_dict['phi'] = np.rad2deg(fr['phase']) def prepare_plots(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.raw_data_dict['xvals'][0], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals'], 'ylabel': self.proc_data_dict['ylabel'], 'yunit': self.proc_data_dict['yunit'], 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, # 'yrange': (0,1), 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['cos_fit'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit', 'do_legend': True} class Conditional_Oscillation_Analysis(ba.BaseDataAnalysis): """ Analysis to extract quantities from a conditional oscillation. """ def __init__(self, t_start: str=None, t_stop: str=None, data_file_path: str=None, label: str='', options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting) self.single_timestamp = False self.params_dict = {'xlabel': 'sweep_name', 'xunit': 'sweep_unit', 'xvals': 'sweep_points', 'measurementstring': 'measurementstring', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = [] if auto: self.run_analysis() def process_data(self): """ selects the relevant acq channel based on "ch_idx_osc" and "ch_idx_spec" in the options dict and then splits the data for the off and on cases """ self.proc_data_dict = OrderedDict() # The channel containing the data must be specified in the options dict ch_idx_spec = self.options_dict.get('ch_idx_spec', 0) ch_idx_osc = self.options_dict.get('ch_idx_osc', 1) normalize_to_cal_points = self.options_dict.get('normalize_to_cal_points', True) cal_points = [ [[-4, -3], [-2, -1]], [[-4, -2], [-3, -1]], ] i = 0 for idx, type_str in zip([ch_idx_osc, ch_idx_spec], ['osc', 'spec']): yvals = list(self.raw_data_dict['measured_data'].values())[idx][0] self.proc_data_dict['ylabel_{}'.format(type_str)] = self.raw_data_dict['value_names'][0][idx] self.proc_data_dict['yunit'] = self.raw_data_dict['value_units'][0][idx] if normalize_to_cal_points: yvals = a_tools.rotate_and_normalize_data_1ch(yvals, cal_zero_points=cal_points[i][0], cal_one_points=cal_points[i][1]) i +=1 self.proc_data_dict['yvals_{}_off'.format(type_str)] = yvals[::2] self.proc_data_dict['yvals_{}_on'.format(type_str)] = yvals[1::2] self.proc_data_dict['xvals_off'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_on'] = self.raw_data_dict['xvals'][0][1::2] else: self.proc_data_dict['yvals_{}_off'.format(type_str)] = yvals[::2] self.proc_data_dict['yvals_{}_on'.format(type_str)] = yvals[1::2] self.proc_data_dict['xvals_off'] = self.raw_data_dict['xvals'][0][::2] self.proc_data_dict['xvals_on'] = self.raw_data_dict['xvals'][0][1::2] def prepare_fitting(self): self.fit_dicts = OrderedDict() cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.proc_data_dict['xvals_off'][:-2], data=self.proc_data_dict['yvals_osc_off'][:-2], freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts['cos_fit_off'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.proc_data_dict['xvals_off'][:-2]}, 'fit_yvals': {'data': self.proc_data_dict['yvals_osc_off'][:-2]}, 'guess_pars': guess_pars} cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.proc_data_dict['xvals_on'][:-2], data=self.proc_data_dict['yvals_osc_on'][:-2], freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts['cos_fit_on'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.proc_data_dict['xvals_on'][:-2]}, 'fit_yvals': {'data': self.proc_data_dict['yvals_osc_on'][:-2]}, 'guess_pars': guess_pars} def analyze_fit_results(self): fr_0 = self.fit_res['cos_fit_off'].params fr_1 = self.fit_res['cos_fit_on'].params phi0 = np.rad2deg(fr_0['phase'].value) phi1 = np.rad2deg(fr_1['phase'].value) phi0_stderr = np.rad2deg(fr_0['phase'].stderr) phi1_stderr = np.rad2deg(fr_1['phase'].stderr) self.proc_data_dict['phi_0'] = phi0, phi0_stderr self.proc_data_dict['phi_1'] = phi1, phi1_stderr phi_cond_stderr = (phi0_stderr**2+phi1_stderr**2)**.5 self.proc_data_dict['phi_cond'] = (phi1 -phi0), phi_cond_stderr osc_amp = np.mean([fr_0['amplitude'], fr_1['amplitude']]) osc_amp_stderr = np.sqrt(fr_0['amplitude'].stderr**2 + fr_1['amplitude']**2)/2 self.proc_data_dict['osc_amp_0'] = (fr_0['amplitude'].value, fr_0['amplitude'].stderr) self.proc_data_dict['osc_amp_1'] = (fr_1['amplitude'].value, fr_1['amplitude'].stderr) self.proc_data_dict['osc_offs_0'] = (fr_0['offset'].value, fr_0['offset'].stderr) self.proc_data_dict['osc_offs_1'] = (fr_1['offset'].value, fr_1['offset'].stderr) offs_stderr = (fr_0['offset'].stderr**2+fr_1['offset'].stderr**2)**.5 self.proc_data_dict['offs_diff'] = ( fr_1['offset'].value - fr_0['offset'].value, offs_stderr) # self.proc_data_dict['osc_amp'] = (osc_amp, osc_amp_stderr) self.proc_data_dict['missing_fraction'] = ( np.mean(self.proc_data_dict['yvals_spec_on'][:-2]) - np.mean(self.proc_data_dict['yvals_spec_off'][:-2])) def prepare_plots(self): self._prepare_main_oscillation_figure() self._prepare_spectator_qubit_figure() def _prepare_main_oscillation_figure(self): self.plot_dicts['main'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_off'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_osc_off'], 'ylabel': self.proc_data_dict['ylabel_osc'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ off', 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, # 'yrange': (0,1), 'legend_pos': 'upper right'} self.plot_dicts['on'] = { 'plotfn': self.plot_line, 'ax_id': 'main', 'xvals': self.proc_data_dict['xvals_on'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_osc_on'], 'ylabel': self.proc_data_dict['ylabel_osc'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ on', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: self.plot_dicts['cos_fit_off'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit_off']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ off', 'do_legend': True} self.plot_dicts['cos_fit_on'] = { 'ax_id': 'main', 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit_on']['fit_res'], 'plot_init': self.options_dict['plot_init'], 'setlabel': 'Fit CZ on', 'do_legend': True} # offset as a guide for the eye y = self.fit_res['cos_fit_off'].params['offset'].value self.plot_dicts['cos_off_offset'] ={ 'plotfn': self.plot_matplot_ax_method, 'ax_id':'main', 'func': 'axhline', 'plot_kws': { 'y': y, 'color': 'C0', 'linestyle': 'dotted'} } phase_message = ( 'Phase diff.: {:.1f} $\pm$ {:.1f} deg\n' 'Phase off: {:.1f} $\pm$ {:.1f}deg\n' 'Phase on: {:.1f} $\pm$ {:.1f}deg\n' 'Osc. amp. off: {:.4f} $\pm$ {:.4f}\n' 'Osc. amp. on: {:.4f} $\pm$ {:.4f}\n' 'Offs. diff.: {:.4f} $\pm$ {:.4f}\n' 'Osc. offs. off: {:.4f} $\pm$ {:.4f}\n' 'Osc. offs. on: {:.4f} $\pm$ {:.4f}'.format( self.proc_data_dict['phi_cond'][0], self.proc_data_dict['phi_cond'][1], self.proc_data_dict['phi_0'][0], self.proc_data_dict['phi_0'][1], self.proc_data_dict['phi_1'][0], self.proc_data_dict['phi_1'][1], self.proc_data_dict['osc_amp_0'][0], self.proc_data_dict['osc_amp_0'][1], self.proc_data_dict['osc_amp_1'][0], self.proc_data_dict['osc_amp_1'][1], self.proc_data_dict['offs_diff'][0], self.proc_data_dict['offs_diff'][1], self.proc_data_dict['osc_offs_0'][0], self.proc_data_dict['osc_offs_0'][1], self.proc_data_dict['osc_offs_1'][0], self.proc_data_dict['osc_offs_1'][1])) self.plot_dicts['phase_message'] = { 'ax_id': 'main', 'ypos': 0.9, 'xpos': 1.45, 'plotfn': self.plot_text, 'box_props': 'fancy', 'line_kws': {'alpha': 0}, 'text_string': phase_message} def _prepare_spectator_qubit_figure(self): self.plot_dicts['spectator_qubit'] = { 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['xvals_off'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_spec_off'], 'ylabel': self.proc_data_dict['ylabel_spec'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ off', 'title': (self.raw_data_dict['timestamps'][0] + ' \n' + self.raw_data_dict['measurementstring'][0]), 'do_legend': True, # 'yrange': (0,1), 'legend_pos': 'upper right'} self.plot_dicts['spec_on'] = { 'plotfn': self.plot_line, 'ax_id': 'spectator_qubit', 'xvals': self.proc_data_dict['xvals_on'], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': self.proc_data_dict['yvals_spec_on'], 'ylabel': self.proc_data_dict['ylabel_spec'], 'yunit': self.proc_data_dict['yunit'], 'setlabel': 'CZ on', 'do_legend': True, 'legend_pos': 'upper right'} if self.do_fitting: leak_msg = ( 'Missing fraction: {:.2f} % '.format( self.proc_data_dict['missing_fraction']*100)) self.plot_dicts['leak_msg'] = { 'ax_id': 'spectator_qubit', 'ypos': 0.7, 'plotfn': self.plot_text, 'box_props': 'fancy', 'line_kws': {'alpha': 0}, 'text_string': leak_msg} # offset as a guide for the eye y = self.fit_res['cos_fit_on'].params['offset'].value self.plot_dicts['cos_on_offset'] ={ 'plotfn': self.plot_matplot_ax_method, 'ax_id':'main', 'func': 'axhline', 'plot_kws': { 'y': y, 'color': 'C1', 'linestyle': 'dotted'} } class StateTomographyAnalysis(ba.BaseDataAnalysis): """ Analyses the results of the state tomography experiment and calculates the corresponding quantum state. Possible options that can be passed in the options_dict parameter: cal_points: A data structure specifying the indices of the calibration points. See the AveragedTimedomainAnalysis for format. The calibration points need to be in the same order as the used basis for the result. data_type: 'averaged' or 'singleshot'. For singleshot data each measurement outcome is saved and arbitrary order correlations between the states can be calculated. meas_operators: (optional) A list of qutip operators or numpy 2d arrays. This overrides the measurement operators otherwise found from the calibration points. covar_matrix: (optional) The covariance matrix of the measurement operators as a 2d numpy array. Overrides the one found from the calibration points. use_covariance_matrix (bool): Flag to define whether to use the covariance matrix basis_rots_str: A list of standard PycQED pulse names that were applied to qubits before measurement basis_rots: As an alternative to single_qubit_pulses, the basis rotations applied to the system as qutip operators or numpy matrices can be given. mle: True/False, whether to do maximum likelihood fit. If False, only least squares fit will be done, which could give negative eigenvalues for the density matrix. imle: True/False, whether to do iterative maximum likelihood fit. If True, it takes preference over maximum likelihood method. Otherwise least squares fit will be done, then 'mle' option will be checked. pauli_raw: True/False, extracts Pauli expected values from a measurement without assignment correction based on calibration data. If True, takes preference over other methods except pauli_corr. pauli_values: True/False, extracts Pauli expected values from a measurement with assignment correction based on calibration data. If True, takes preference over other methods. iterations (optional): maximum number of iterations allowed in imle. Tomographies with more qubits require more iterations to converge. tolerance (optional): minimum change across iterations allowed in imle. The iteration will stop if it goes under this value. Tomographies with more qubits require smaller tolerance to converge. rho_target (optional): A qutip density matrix that the result will be compared to when calculating fidelity. """ def __init__(self, *args, **kwargs): auto = kwargs.pop('auto', True) super().__init__(*args, **kwargs) kwargs['auto'] = auto self.single_timestamp = True self.params_dict = {'exp_metadata': 'exp_metadata'} self.numeric_params = [] self.data_type = self.options_dict['data_type'] if self.data_type == 'averaged': self.base_analysis = AveragedTimedomainAnalysis(*args, **kwargs) elif self.data_type == 'singleshot': self.base_analysis = roa.MultiQubit_SingleShot_Analysis( *args, **kwargs) else: raise KeyError("Invalid tomography data mode: '" + self.data_type + "'. Valid modes are 'averaged' and 'singleshot'.") if kwargs.get('auto', True): self.run_analysis() def process_data(self): tomography_qubits = self.options_dict.get('tomography_qubits', None) data, Fs, Omega = self.base_analysis.measurement_operators_and_results( tomography_qubits) if 'data_filter' in self.options_dict: data = self.options_dict['data_filter'](data.T).T data = data.T for i, v in enumerate(data): data[i] = v / v.sum() data = data.T Fs = self.options_dict.get('meas_operators', Fs) Fs = [qtp.Qobj(F) for F in Fs] d = Fs[0].shape[0] self.proc_data_dict['d'] = d Omega = self.options_dict.get('covar_matrix', Omega) if Omega is None: Omega = np.diag(np.ones(len(Fs))) elif len(Omega.shape) == 1: Omega = np.diag(Omega) metadata = self.raw_data_dict.get('exp_metadata', self.options_dict.get( 'exp_metadata', {})) if metadata is None: metadata = {} self.raw_data_dict['exp_metadata'] = metadata basis_rots_str = metadata.get('basis_rots_str', None) basis_rots_str = self.options_dict.get('basis_rots_str', basis_rots_str) if basis_rots_str is not None: nr_qubits = int(np.round(np.log2(d))) pulse_list = list(itertools.product(basis_rots_str, repeat=nr_qubits)) rotations = tomo.standard_qubit_pulses_to_rotations(pulse_list) else: rotations = metadata.get('basis_rots', None) rotations = self.options_dict.get('basis_rots', rotations) if rotations is None: raise KeyError("Either 'basis_rots_str' or 'basis_rots' " "parameter must be passed in the options " "dictionary or in the experimental metadata.") rotations = [qtp.Qobj(U) for U in rotations] all_Fs = tomo.rotated_measurement_operators(rotations, Fs) all_Fs = list(itertools.chain(*np.array(all_Fs, dtype=np.object).T)) all_mus = np.array(list(itertools.chain(*data.T))) all_Omegas = sp.linalg.block_diag(*[Omega] * len(data[0])) self.proc_data_dict['meas_operators'] = all_Fs self.proc_data_dict['covar_matrix'] = all_Omegas self.proc_data_dict['meas_results'] = all_mus if self.options_dict.get('pauli_values', False): rho_pauli = tomo.pauli_values_tomography(all_mus,Fs,basis_rots_str) self.proc_data_dict['rho_raw'] = rho_pauli self.proc_data_dict['rho'] = rho_pauli elif self.options_dict.get('pauli_raw', False): pauli_raw = self.generate_raw_pauli_set() rho_raw = tomo.pauli_set_to_density_matrix(pauli_raw) self.proc_data_dict['rho_raw'] = rho_raw self.proc_data_dict['rho'] = rho_raw elif self.options_dict.get('imle', False): it = metadata.get('iterations', None) it = self.options_dict.get('iterations', it) tol = metadata.get('tolerance', None) tol = self.options_dict.get('tolerance', tol) rho_imle = tomo.imle_tomography( all_mus, all_Fs, it, tol) self.proc_data_dict['rho_imle'] = rho_imle self.proc_data_dict['rho'] = rho_imle else: rho_ls = tomo.least_squares_tomography( all_mus, all_Fs, all_Omegas if self.get_param_value('use_covariance_matrix', False) else None ) self.proc_data_dict['rho_ls'] = rho_ls self.proc_data_dict['rho'] = rho_ls if self.options_dict.get('mle', False): rho_mle = tomo.mle_tomography( all_mus, all_Fs, all_Omegas if self.get_param_value('use_covariance_matrix', False) else None, rho_guess=rho_ls) self.proc_data_dict['rho_mle'] = rho_mle self.proc_data_dict['rho'] = rho_mle rho = self.proc_data_dict['rho'] self.proc_data_dict['purity'] = (rho * rho).tr().real rho_target = metadata.get('rho_target', None) rho_target = self.options_dict.get('rho_target', rho_target) if rho_target is not None: self.proc_data_dict['fidelity'] = tomo.fidelity(rho, rho_target) if d == 4: self.proc_data_dict['concurrence'] = tomo.concurrence(rho) else: self.proc_data_dict['concurrence'] = 0 def prepare_plots(self): self.prepare_density_matrix_plot() d = self.proc_data_dict['d'] if 2 ** (d.bit_length() - 1) == d: # dimension is power of two, plot expectation values of pauli # operators self.prepare_pauli_basis_plot() def prepare_density_matrix_plot(self): self.tight_fig = self.options_dict.get('tight_fig', False) rho_target = self.raw_data_dict['exp_metadata'].get('rho_target', None) rho_target = self.options_dict.get('rho_target', rho_target) d = self.proc_data_dict['d'] xtick_labels = self.options_dict.get('rho_ticklabels', None) ytick_labels = self.options_dict.get('rho_ticklabels', None) if 2 ** (d.bit_length() - 1) == d: nr_qubits = d.bit_length() - 1 fmt_string = '{{:0{}b}}'.format(nr_qubits) labels = [fmt_string.format(i) for i in range(2 ** nr_qubits)] if xtick_labels is None: xtick_labels = ['$|' + lbl + r'\rangle$' for lbl in labels] if ytick_labels is None: ytick_labels = [r'$\langle' + lbl + '|$' for lbl in labels] color = (0.5 * np.angle(self.proc_data_dict['rho'].full()) / np.pi) % 1. cmap = self.options_dict.get('rho_colormap', self.default_phase_cmap()) if self.options_dict.get('pauli_raw', False): title = 'Density matrix reconstructed from the Pauli (raw) set\n' elif self.options_dict.get('pauli_values', False): title = 'Density matrix reconstructed from the Pauli set\n' elif self.options_dict.get('mle', False): title = 'Maximum likelihood fit of the density matrix\n' elif self.options_dict.get('it_mle', False): title = 'Iterative maximum likelihood fit of the density matrix\n' else: title = 'Least squares fit of the density matrix\n' empty_artist = mpl.patches.Rectangle((0, 0), 0, 0, visible=False) legend_entries = [(empty_artist, r'Purity, $Tr(\rho^2) = {:.1f}\%$'.format( 100 * self.proc_data_dict['purity']))] if rho_target is not None: legend_entries += [ (empty_artist, r'Fidelity, $F = {:.1f}\%$'.format( 100 * self.proc_data_dict['fidelity']))] if d == 4: legend_entries += [ (empty_artist, r'Concurrence, $C = {:.2f}$'.format( self.proc_data_dict['concurrence']))] meas_string = self.base_analysis.\ raw_data_dict['measurementstring'] if isinstance(meas_string, list): if len(meas_string) > 1: meas_string = meas_string[0] + ' to ' + meas_string[-1] else: meas_string = meas_string[0] self.plot_dicts['density_matrix'] = { 'plotfn': self.plot_bar3D, '3d': True, '3d_azim': -35, '3d_elev': 35, 'xvals': np.arange(d), 'yvals': np.arange(d), 'zvals': np.abs(self.proc_data_dict['rho'].full()), 'zrange': (0, 1), 'color': color, 'colormap': cmap, 'bar_widthx': 0.5, 'bar_widthy': 0.5, 'xtick_loc': np.arange(d), 'xtick_labels': xtick_labels, 'ytick_loc': np.arange(d), 'ytick_labels': ytick_labels, 'ctick_loc': np.linspace(0, 1, 5), 'ctick_labels': ['$0$', r'$\frac{1}{2}\pi$', r'$\pi$', r'$\frac{3}{2}\pi$', r'$2\pi$'], 'clabel': 'Phase (rad)', 'title': (title + self.raw_data_dict['timestamp'] + ' ' + meas_string), 'do_legend': True, 'legend_entries': legend_entries, 'legend_kws': dict(loc='upper left', bbox_to_anchor=(0, 0.94)) } if rho_target is not None: rho_target = qtp.Qobj(rho_target) if rho_target.type == 'ket': rho_target = rho_target * rho_target.dag() elif rho_target.type == 'bra': rho_target = rho_target.dag() * rho_target self.plot_dicts['density_matrix_target'] = { 'plotfn': self.plot_bar3D, '3d': True, '3d_azim': -35, '3d_elev': 35, 'xvals': np.arange(d), 'yvals': np.arange(d), 'zvals': np.abs(rho_target.full()), 'zrange': (0, 1), 'color': (0.5 * np.angle(rho_target.full()) / np.pi) % 1., 'colormap': cmap, 'bar_widthx': 0.5, 'bar_widthy': 0.5, 'xtick_loc': np.arange(d), 'xtick_labels': xtick_labels, 'ytick_loc': np.arange(d), 'ytick_labels': ytick_labels, 'ctick_loc': np.linspace(0, 1, 5), 'ctick_labels': ['$0$', r'$\frac{1}{2}\pi$', r'$\pi$', r'$\frac{3}{2}\pi$', r'$2\pi$'], 'clabel': 'Phase (rad)', 'title': ('Target density matrix\n' + self.raw_data_dict['timestamp'] + ' ' + meas_string), 'bar_kws': dict(zorder=1), } def generate_raw_pauli_set(self): nr_qubits = self.proc_data_dict['d'].bit_length() - 1 pauli_raw_values = [] for op in tomo.generate_pauli_set(nr_qubits)[1]: nr_terms = 0 sum_terms = 0. for meas_op, meas_res in zip(self.proc_data_dict['meas_operators'], self.proc_data_dict['meas_results']): trace = (meas_op*op).tr().real clss = int(trace*2) if clss < 0: sum_terms -= meas_res nr_terms += 1 elif clss > 0: sum_terms += meas_res nr_terms += 1 pauli_raw_values.append(2**nr_qubits*sum_terms/nr_terms) return pauli_raw_values def generate_corr_pauli_set(self,Fs,rotations): nr_qubits = self.proc_data_dict['d'].bit_length() - 1 Fs_corr = [] assign_corr = [] for i,F in enumerate(Fs): new_op = np.zeros(2**nr_qubits) new_op[i] = 1 Fs_corr.append(qtp.Qobj(np.diag(new_op))) assign_corr.append(np.diag(F.full())) pauli_Fs = tomo.rotated_measurement_operators(rotations, Fs_corr) pauli_Fs = list(itertools.chain(*np.array(pauli_Fs, dtype=np.object).T)) mus = self.proc_data_dict['meas_results'] pauli_mus = np.reshape(mus,[-1,2**nr_qubits]) for i,raw_mus in enumerate(pauli_mus): pauli_mus[i] = np.matmul(np.linalg.inv(assign_corr),np.array(raw_mus)) pauli_mus = pauli_mus.flatten() pauli_values = [] for op in tomo.generate_pauli_set(nr_qubits)[1]: nr_terms = 0 sum_terms = 0. for meas_op, meas_res in zip(pauli_Fs,pauli_mus): trace = (meas_op*op).tr().real clss = int(trace*2) if clss < 0: sum_terms -= meas_res nr_terms += 1 elif clss > 0: sum_terms += meas_res nr_terms += 1 pauli_values.append(2**nr_qubits*sum_terms/nr_terms) return pauli_values def prepare_pauli_basis_plot(self): yexp = tomo.density_matrix_to_pauli_basis(self.proc_data_dict['rho']) nr_qubits = self.proc_data_dict['d'].bit_length() - 1 labels = list(itertools.product(*[['I', 'X', 'Y', 'Z']]*nr_qubits)) labels = [''.join(label_list) for label_list in labels] if nr_qubits == 1: order = [1, 2, 3] elif nr_qubits == 2: order = [1, 2, 3, 4, 8, 12, 5, 6, 7, 9, 10, 11, 13, 14, 15] elif nr_qubits == 3: order = [1, 2, 3, 4, 8, 12, 16, 32, 48] + \ [5, 6, 7, 9, 10, 11, 13, 14, 15] + \ [17, 18, 19, 33, 34, 35, 49, 50, 51] + \ [20, 24, 28, 36, 40, 44, 52, 56, 60] + \ [21, 22, 23, 25, 26, 27, 29, 30, 31] + \ [37, 38, 39, 41, 42, 43, 45, 46, 47] + \ [53, 54, 55, 57, 58, 59, 61, 62, 63] else: order = np.arange(4**nr_qubits)[1:] if self.options_dict.get('pauli_raw', False): fit_type = 'raw counts' elif self.options_dict.get('pauli_values', False): fit_type = 'corrected counts' elif self.options_dict.get('mle', False): fit_type = 'maximum likelihood estimation' elif self.options_dict.get('imle', False): fit_type = 'iterative maximum likelihood estimation' else: fit_type = 'least squares fit' meas_string = self.base_analysis. \ raw_data_dict['measurementstring'] if np.ndim(meas_string) > 0: if len(meas_string) > 1: meas_string = meas_string[0] + ' to ' + meas_string[-1] else: meas_string = meas_string[0] self.plot_dicts['pauli_basis'] = { 'plotfn': self.plot_bar, 'xcenters': np.arange(len(order)), 'xwidth': 0.4, 'xrange': (-1, len(order)), 'yvals': np.array(yexp)[order], 'xlabel': r'Pauli operator, $\hat{O}$', 'ylabel': r'Expectation value, $\mathrm{Tr}(\hat{O} \hat{\rho})$', 'title': 'Pauli operators, ' + fit_type + '\n' + self.raw_data_dict['timestamp'] + ' ' + meas_string, 'yrange': (-1.1, 1.1), 'xtick_loc': np.arange(4**nr_qubits - 1), 'xtick_rotation': 90, 'xtick_labels': np.array(labels)[order], 'bar_kws': dict(zorder=10), 'setlabel': 'Fit to experiment', 'do_legend': True } if nr_qubits > 2: self.plot_dicts['pauli_basis']['plotsize'] = (10, 5) rho_target = self.raw_data_dict['exp_metadata'].get('rho_target', None) rho_target = self.options_dict.get('rho_target', rho_target) if rho_target is not None: rho_target = qtp.Qobj(rho_target) ytar = tomo.density_matrix_to_pauli_basis(rho_target) self.plot_dicts['pauli_basis_target'] = { 'plotfn': self.plot_bar, 'ax_id': 'pauli_basis', 'xcenters': np.arange(len(order)), 'xwidth': 0.8, 'yvals': np.array(ytar)[order], 'xtick_loc': np.arange(len(order)), 'xtick_labels': np.array(labels)[order], 'bar_kws': dict(color='0.8', zorder=0), 'setlabel': 'Target values', 'do_legend': True } purity_str = r'Purity, $Tr(\rho^2) = {:.1f}\%$'.format( 100 * self.proc_data_dict['purity']) if rho_target is not None: fidelity_str = '\n' + r'Fidelity, $F = {:.1f}\%$'.format( 100 * self.proc_data_dict['fidelity']) else: fidelity_str = '' if self.proc_data_dict['d'] == 4: concurrence_str = '\n' + r'Concurrence, $C = {:.1f}\%$'.format( 100 * self.proc_data_dict['concurrence']) else: concurrence_str = '' self.plot_dicts['pauli_info_labels'] = { 'ax_id': 'pauli_basis', 'plotfn': self.plot_line, 'xvals': [0], 'yvals': [0], 'line_kws': {'alpha': 0}, 'setlabel': purity_str + fidelity_str, 'do_legend': True } def default_phase_cmap(self): cols = np.array(((41, 39, 231), (61, 130, 163), (208, 170, 39), (209, 126, 4), (181, 28, 20), (238, 76, 152), (251, 130, 242), (162, 112, 251))) / 255 n = len(cols) cdict = { 'red': [[i/n, cols[i%n][0], cols[i%n][0]] for i in range(n+1)], 'green': [[i/n, cols[i%n][1], cols[i%n][1]] for i in range(n+1)], 'blue': [[i/n, cols[i%n][2], cols[i%n][2]] for i in range(n+1)], } return mpl.colors.LinearSegmentedColormap('DMDefault', cdict) class ReadoutROPhotonsAnalysis(Single_Qubit_TimeDomainAnalysis): """ Analyses the photon number in the RO based on the readout_photons_in_resonator function function specific options for options dict: f_qubit chi artif_detuning print_fit_results """ def __init__(self, t_start: str=None, t_stop: str=None, label: str='', data_file_path: str=None, close_figs: bool=False, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=False, auto: bool=True): super().__init__(t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, close_figs=close_figs, label=label, extract_only=extract_only, do_fitting=do_fitting) if self.options_dict.get('TwoD', None) is None: self.options_dict['TwoD'] = True self.label = label self.params_dict = { 'measurementstring': 'measurementstring', 'sweep_points': 'sweep_points', 'sweep_points_2D': 'sweep_points_2D', 'value_names': 'value_names', 'value_units': 'value_units', 'measured_values': 'measured_values'} self.numeric_params = self.options_dict.get('numeric_params', OrderedDict()) self.kappa = self.options_dict.get('kappa_effective', None) self.chi = self.options_dict.get('chi', None) self.T2 = self.options_dict.get('T2echo', None) self.artif_detuning = self.options_dict.get('artif_detuning', 0) if (self.kappa is None) or (self.chi is None) or (self.T2 is None): raise ValueError('kappa_effective, chi and T2echo must be passed to ' 'the options_dict.') if auto: self.run_analysis() def process_data(self): self.proc_data_dict = OrderedDict() self.proc_data_dict['qubit_state'] = [[],[]] self.proc_data_dict['delay_to_relax'] = self.raw_data_dict[ 'sweep_points_2D'][0] self.proc_data_dict['ramsey_times'] = [] for i,x in enumerate(np.transpose(self.raw_data_dict[ 'measured_data']['raw w0 _measure'][0])): self.proc_data_dict['qubit_state'][0].append([]) self.proc_data_dict['qubit_state'][1].append([]) for j,y in enumerate(np.transpose(self.raw_data_dict[ 'measured_data']['raw w0 _measure'][0])[i]): if j%2 == 0: self.proc_data_dict['qubit_state'][0][i].append(y) else: self.proc_data_dict['qubit_state'][1][i].append(y) for i,x in enumerate( self.raw_data_dict['sweep_points'][0]): if i % 2 == 0: self.proc_data_dict['ramsey_times'].append(x) #I STILL NEED to pass Chi def prepare_fitting(self): self.proc_data_dict['photon_number'] = [[],[]] self.proc_data_dict['fit_results'] = [] self.proc_data_dict['ramsey_fit_results'] = [[],[]] for i,tau in enumerate(self.proc_data_dict['delay_to_relax']): self.proc_data_dict['ramsey_fit_results'][0].append(self.fit_Ramsey( self.proc_data_dict['ramsey_times'][:-4], self.proc_data_dict['qubit_state'][0][i][:-4]/ max(self.proc_data_dict['qubit_state'][0][i][:-4]), state=0, kw=self.options_dict)) self.proc_data_dict['ramsey_fit_results'][1].append(self.fit_Ramsey( self.proc_data_dict['ramsey_times'][:-4], self.proc_data_dict['qubit_state'][1][i][:-4]/ max(self.proc_data_dict['qubit_state'][1][i][:-4]), state=1, kw=self.options_dict)) n01 = self.proc_data_dict['ramsey_fit_results' ][0][i][0].params['n0'].value n02 = self.proc_data_dict['ramsey_fit_results' ][1][i][0].params['n0'].value self.proc_data_dict['photon_number'][0].append(n01) self.proc_data_dict['photon_number'][1].append(n02) def run_fitting(self): print_fit_results = self.params_dict.pop('print_fit_results',False) exp_dec_mod = lmfit.Model(fit_mods.ExpDecayFunc) exp_dec_mod.set_param_hint('n', value=1, vary=False) exp_dec_mod.set_param_hint('offset', value=0, min=0, vary=True) exp_dec_mod.set_param_hint('tau', value=self.proc_data_dict[ 'delay_to_relax'][-1], min=1e-11, vary=True) exp_dec_mod.set_param_hint('amplitude', value=1, min=0, vary=True) params = exp_dec_mod.make_params() self.fit_res = OrderedDict() self.fit_res['ground_state'] = exp_dec_mod.fit( data=self.proc_data_dict['photon_number'][0], params=params, t=self.proc_data_dict['delay_to_relax']) self.fit_res['excited_state'] = exp_dec_mod.fit( data=self.proc_data_dict['photon_number'][1], params=params, t=self.proc_data_dict['delay_to_relax']) if print_fit_results: print(self.fit_res['ground_state'].fit_report()) print(self.fit_res['excited_state'].fit_report()) def fit_Ramsey(self, x, y, state, **kw): x = np.array(x) y = np.array(y) exp_dec_p_mod = lmfit.Model(fit_mods.ExpDecayPmod) comb_exp_dec_mod = lmfit.Model(fit_mods.CombinedOszExpDecayFunc) average = np.mean(y) ft_of_data = np.fft.fft(y) index_of_fourier_maximum = np.argmax(np.abs( ft_of_data[1:len(ft_of_data) // 2])) + 1 max_ramsey_delay = x[-1] - x[0] fft_axis_scaling = 1 / max_ramsey_delay freq_est = fft_axis_scaling * index_of_fourier_maximum n_est = (freq_est-self.artif_detuning)/(2 * self.chi) exp_dec_p_mod.set_param_hint('T2echo', value=self.T2, vary=False) exp_dec_p_mod.set_param_hint('offset', value=average, min=0, vary=True) exp_dec_p_mod.set_param_hint('delta', value=self.artif_detuning, vary=False) exp_dec_p_mod.set_param_hint('amplitude', value=1, min=0, vary=True) exp_dec_p_mod.set_param_hint('kappa', value=self.kappa[state], vary=False) exp_dec_p_mod.set_param_hint('chi', value=self.chi, vary=False) exp_dec_p_mod.set_param_hint('n0', value=n_est, min=0, vary=True) exp_dec_p_mod.set_param_hint('phase', value=0, vary=True) comb_exp_dec_mod.set_param_hint('tau', value=self.T2, vary=True) comb_exp_dec_mod.set_param_hint('offset', value=average, min=0, vary=True) comb_exp_dec_mod.set_param_hint('oscillation_offset', value=average, min=0, vary=True) comb_exp_dec_mod.set_param_hint('amplitude', value=1, min=0, vary=True) comb_exp_dec_mod.set_param_hint('tau_gauss', value=self.kappa[state], vary=True) comb_exp_dec_mod.set_param_hint('n0', value=n_est, min=0, vary=True) comb_exp_dec_mod.set_param_hint('phase', value=0, vary=True) comb_exp_dec_mod.set_param_hint('delta', value=self.artif_detuning, vary=False) comb_exp_dec_mod.set_param_hint('chi', value=self.chi, vary=False) if (np.average(y[:4]) > np.average(y[4:8])): phase_estimate = 0 else: phase_estimate = np.pi exp_dec_p_mod.set_param_hint('phase', value=phase_estimate, vary=True) comb_exp_dec_mod.set_param_hint('phase', value=phase_estimate, vary=True) amplitude_guess = 0.5 if np.all(np.logical_and(y >= 0, y <= 1)): exp_dec_p_mod.set_param_hint('amplitude', value=amplitude_guess, min=0.00, max=4.0, vary=True) comb_exp_dec_mod.set_param_hint('amplitude', value=amplitude_guess, min=0.00, max=4.0, vary=True) else: print('data is not normalized, varying amplitude') exp_dec_p_mod.set_param_hint('amplitude', value=max(y), min=0.00, max=4.0, vary=True) comb_exp_dec_mod.set_param_hint('amplitude', value=max(y), min=0.00, max=4.0, vary=True) fit_res_1 = exp_dec_p_mod.fit(data=y, t=x, params= exp_dec_p_mod.make_params()) fit_res_2 = comb_exp_dec_mod.fit(data=y, t=x, params= comb_exp_dec_mod.make_params()) if fit_res_1.chisqr > .35: log.warning('Fit did not converge, varying phase') fit_res_lst = [] for phase_estimate in np.linspace(0, 2*np.pi, 10): for i, del_amp in enumerate(np.linspace( -max(y)/10, max(y)/10, 10)): exp_dec_p_mod.set_param_hint('phase', value=phase_estimate, vary=False) exp_dec_p_mod.set_param_hint('amplitude', value=max(y)+ del_amp) fit_res_lst += [exp_dec_p_mod.fit( data=y, t=x, params= exp_dec_p_mod.make_params())] chisqr_lst = [fit_res_1.chisqr for fit_res_1 in fit_res_lst] fit_res_1 = fit_res_lst[np.argmin(chisqr_lst)] if fit_res_2.chisqr > .35: log.warning('Fit did not converge, varying phase') fit_res_lst = [] for phase_estimate in np.linspace(0, 2*np.pi, 10): for i, del_amp in enumerate(np.linspace( -max(y)/10, max(y)/10, 10)): comb_exp_dec_mod.set_param_hint('phase', value=phase_estimate, vary=False) comb_exp_dec_mod.set_param_hint('amplitude', value=max(y)+ del_amp) fit_res_lst += [comb_exp_dec_mod.fit( data=y, t=x, params= comb_exp_dec_mod.make_params())] chisqr_lst = [fit_res_2.chisqr for fit_res_2 in fit_res_lst] fit_res_2 = fit_res_lst[np.argmin(chisqr_lst)] if fit_res_1.chisqr < fit_res_2.chisqr: self.proc_data_dict['params'] = exp_dec_p_mod.make_params() return [fit_res_1,fit_res_1,fit_res_2] else: self.proc_data_dict['params'] = comb_exp_dec_mod.make_params() return [fit_res_2,fit_res_1,fit_res_2] def prepare_plots(self): self.prepare_2D_sweep_plot() self.prepare_photon_number_plot() self.prepare_ramsey_plots() def prepare_2D_sweep_plot(self): self.plot_dicts['off_full_data_'+self.label] = { 'title': 'Raw data |g>', 'plotfn': self.plot_colorxy, 'xvals': self.proc_data_dict['ramsey_times'], 'xlabel': 'Ramsey delays', 'xunit': 's', 'yvals': self.proc_data_dict['delay_to_relax'], 'ylabel': 'Delay after first RO-pulse', 'yunit': 's', 'zvals': np.array(self.proc_data_dict['qubit_state'][0]) } self.plot_dicts['on_full_data_'+self.label] = { 'title': 'Raw data |e>', 'plotfn': self.plot_colorxy, 'xvals': self.proc_data_dict['ramsey_times'], 'xlabel': 'Ramsey delays', 'xunit': 's', 'yvals': self.proc_data_dict['delay_to_relax'], 'ylabel': 'Delay after first RO-pulse', 'yunit': 's', 'zvals': np.array(self.proc_data_dict['qubit_state'][1]) } def prepare_ramsey_plots(self): x_fit = np.linspace(self.proc_data_dict['ramsey_times'][0], max(self.proc_data_dict['ramsey_times']),101) for i in range(len(self.proc_data_dict['ramsey_fit_results'][0])): self.plot_dicts['off_'+str(i)] = { 'title': 'Ramsey w t_delay = '+\ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |g> state', 'ax_id':'ramsey_off_'+str(i), 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['ramsey_times'], 'xlabel': 'Ramsey delays', 'xunit': 's', 'yvals': np.array(self.proc_data_dict['qubit_state'][0][i]/ max(self.proc_data_dict['qubit_state'][0][i][:-4])), 'ylabel': 'Measured qubit state', 'yunit': '', 'marker': 'o', 'setlabel': '|g> data_'+str(i), 'do_legend': True } self.plot_dicts['off_fit_'+str(i)] = { 'title': 'Ramsey w t_delay = '+ \ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |g> state', 'ax_id':'ramsey_off_'+str(i), 'plotfn': self.plot_line, 'xvals': x_fit, 'yvals': self.proc_data_dict['ramsey_fit_results'][0][i][1].eval( self.proc_data_dict['ramsey_fit_results'][0][i][1].params, t=x_fit), 'linestyle': '-', 'marker': '', 'setlabel': '|g> fit_model'+str(i), 'do_legend': True } self.plot_dicts['off_fit_2_'+str(i)] = { 'title': 'Ramsey w t_delay = '+ \ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |g> state', 'ax_id':'ramsey_off_'+str(i), 'plotfn': self.plot_line, 'xvals': x_fit, 'yvals': self.proc_data_dict['ramsey_fit_results'][0][i][2].eval( self.proc_data_dict['ramsey_fit_results'][0][i][2].params, t=x_fit), 'linestyle': '-', 'marker': '', 'setlabel': '|g> fit_simpel_model'+str(i), 'do_legend': True } self.plot_dicts['hidden_g_'+str(i)] = { 'ax_id':'ramsey_off_'+str(i), 'plotfn': self.plot_line, 'xvals': [0], 'yvals': [0], 'color': 'w', 'setlabel': 'Residual photon count = ' ''+str(self.proc_data_dict['photon_number'][0][i]), 'do_legend': True } self.plot_dicts['on_'+str(i)] = { 'title': 'Ramsey w t_delay = '+ \ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |e> state', 'ax_id':'ramsey_on_'+str(i), 'plotfn': self.plot_line, 'xvals': self.proc_data_dict['ramsey_times'], 'xlabel': 'Ramsey delays', 'xunit': 's', 'yvals': np.array(self.proc_data_dict['qubit_state'][1][i]/ max(self.proc_data_dict['qubit_state'][1][i][:-4])), 'ylabel': 'Measured qubit state', 'yunit': '', 'marker': 'o', 'setlabel': '|e> data_'+str(i), 'do_legend': True } self.plot_dicts['on_fit_'+str(i)] = { 'title': 'Ramsey w t_delay = '+ \ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |e> state', 'ax_id':'ramsey_on_'+str(i), 'plotfn': self.plot_line, 'xvals': x_fit, 'yvals': self.proc_data_dict['ramsey_fit_results'][1][i][1].eval( self.proc_data_dict['ramsey_fit_results'][1][i][1].params, t=x_fit), 'linestyle': '-', 'marker': '', 'setlabel': '|e> fit_model'+str(i), 'do_legend': True } self.plot_dicts['on_fit_2_'+str(i)] = { 'title': 'Ramsey w t_delay = '+ \ str(self.proc_data_dict['delay_to_relax'][i])+ \ ' s, in |e> state', 'ax_id':'ramsey_on_'+str(i), 'plotfn': self.plot_line, 'xvals': x_fit, 'yvals': self.proc_data_dict['ramsey_fit_results'][1][i][2].eval( self.proc_data_dict['ramsey_fit_results'][1][i][2].params, t=x_fit), 'linestyle': '-', 'marker': '', 'setlabel': '|e> fit_simpel_model'+str(i), 'do_legend': True } self.plot_dicts['hidden_e_'+str(i)] = { 'ax_id':'ramsey_on_'+str(i), 'plotfn': self.plot_line, 'xvals': [0], 'yvals': [0], 'color': 'w', 'setlabel': 'Residual photon count = ' ''+str(self.proc_data_dict['photon_number'][1][i]), 'do_legend': True } def prepare_photon_number_plot(self): ylabel = 'Average photon number' yunit = '' x_fit = np.linspace(min(self.proc_data_dict['delay_to_relax']), max(self.proc_data_dict['delay_to_relax']),101) minmax_data = [min(min(self.proc_data_dict['photon_number'][0]), min(self.proc_data_dict['photon_number'][1])), max(max(self.proc_data_dict['photon_number'][0]), max(self.proc_data_dict['photon_number'][1]))] minmax_data[0] -= minmax_data[0]/5 minmax_data[1] += minmax_data[1]/5 self.proc_data_dict['photon_number'][1], self.fit_res['excited_state'].eval( self.fit_res['excited_state'].params, t=x_fit) self.plot_dicts['Photon number count'] = { 'plotfn': self.plot_line, 'xlabel': 'Delay after first RO-pulse', 'ax_id': 'Photon number count ', 'xunit': 's', 'xvals': self.proc_data_dict['delay_to_relax'], 'yvals': self.proc_data_dict['photon_number'][0], 'ylabel': ylabel, 'yunit': yunit, 'yrange': minmax_data, 'title': 'Residual photon number', 'color': 'b', 'linestyle': '', 'marker': 'o', 'setlabel': '|g> data', 'func': 'semilogy', 'do_legend': True} self.plot_dicts['main2'] = { 'plotfn': self.plot_line, 'xunit': 's', 'xvals': x_fit, 'yvals': self.fit_res['ground_state'].eval( self.fit_res['ground_state'].params, t=x_fit), 'yrange': minmax_data, 'ax_id': 'Photon number count ', 'color': 'b', 'linestyle': '-', 'marker': '', 'setlabel': '|g> fit', 'func': 'semilogy', 'do_legend': True} self.plot_dicts['main3'] = { 'plotfn': self.plot_line, 'xunit': 's', 'xvals': self.proc_data_dict['delay_to_relax'], 'yvals': self.proc_data_dict['photon_number'][1], 'yrange': minmax_data, 'ax_id': 'Photon number count ', 'color': 'r', 'linestyle': '', 'marker': 'o', 'setlabel': '|e> data', 'func': 'semilogy', 'do_legend': True} self.plot_dicts['main4'] = { 'plotfn': self.plot_line, 'xunit': 's', 'ax_id': 'Photon number count ', 'xvals': x_fit, 'yvals': self.fit_res['excited_state'].eval( self.fit_res['excited_state'].params, t=x_fit), 'yrange': minmax_data, 'ylabel': ylabel, 'color': 'r', 'linestyle': '-', 'marker': '', 'setlabel': '|e> fit', 'func': 'semilogy', 'do_legend': True} self.plot_dicts['hidden_1'] = { 'ax_id': 'Photon number count ', 'plotfn': self.plot_line, 'yrange': minmax_data, 'xvals': [0], 'yvals': [0], 'color': 'w', 'setlabel': 'tau_g = ' ''+str("%.3f" % (self.fit_res['ground_state'].params['tau'].value*1e9))+'' ' ns', 'do_legend': True } self.plot_dicts['hidden_2'] = { 'ax_id': 'Photon number count ', 'plotfn': self.plot_line, 'yrange': minmax_data, 'xvals': [0], 'yvals': [0], 'color': 'w', 'setlabel': 'tau_e = ' ''+str("%.3f" % (self.fit_res['excited_state'].params['tau'].value*1e9))+'' ' ns', 'do_legend': True} class RODynamicPhaseAnalysis(MultiQubit_TimeDomain_Analysis): def __init__(self, qb_names: list=None, t_start: str=None, t_stop: str=None, data_file_path: str=None, single_timestamp: bool=False, options_dict: dict=None, extract_only: bool=False, do_fitting: bool=True, auto=True): super().__init__(qb_names=qb_names, t_start=t_start, t_stop=t_stop, data_file_path=data_file_path, options_dict=options_dict, extract_only=extract_only, do_fitting=do_fitting, auto=False) if auto: self.run_analysis() def process_data(self): super().process_data() if 'qbp_name' in self.metadata: self.pulsed_qbname = self.metadata['qbp_name'] else: self.pulsed_qbname = self.options_dict.get('pulsed_qbname') self.measured_qubits = [qbn for qbn in self.channel_map if qbn != self.pulsed_qbname] def prepare_fitting(self): self.fit_dicts = OrderedDict() for qbn in self.measured_qubits: ro_dict = self.proc_data_dict['projected_data_dict'][qbn] sweep_points = self.proc_data_dict['sweep_points_dict'][qbn][ 'msmt_sweep_points'] for ro_suff, data in ro_dict.items(): cos_mod = lmfit.Model(fit_mods.CosFunc) if self.num_cal_points != 0: data = data[:-self.num_cal_points] guess_pars = fit_mods.Cos_guess( model=cos_mod, t=sweep_points, data=data) guess_pars['amplitude'].vary = True guess_pars['offset'].vary = True guess_pars['frequency'].vary = True guess_pars['phase'].vary = True key = 'cos_fit_{}{}'.format(qbn, ro_suff) self.fit_dicts[key] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': sweep_points}, 'fit_yvals': {'data': data}, 'guess_pars': guess_pars} def analyze_fit_results(self): self.dynamic_phases = OrderedDict() for meas_qbn in self.measured_qubits: self.dynamic_phases[meas_qbn] = \ (self.fit_dicts['cos_fit_{}_measure'.format(meas_qbn)][ 'fit_res'].best_values['phase'] - self.fit_dicts['cos_fit_{}_ref_measure'.format(meas_qbn)][ 'fit_res'].best_values['phase'])*180/np.pi def prepare_plots(self): super().prepare_plots() if self.do_fitting: for meas_qbn in self.measured_qubits: sweep_points_dict = self.proc_data_dict['sweep_points_dict'][ meas_qbn] if self.num_cal_points != 0: yvals = [self.proc_data_dict['projected_data_dict'][meas_qbn][ '_ref_measure'][:-self.num_cal_points], self.proc_data_dict['projected_data_dict'][meas_qbn][ '_measure'][:-self.num_cal_points]] sweep_points = sweep_points_dict['msmt_sweep_points'] # plot cal points for i, cal_pts_idxs in enumerate( self.cal_states_dict.values()): key = list(self.cal_states_dict)[i] + meas_qbn self.plot_dicts[key] = { 'fig_id': 'dyn_phase_plot_' + meas_qbn, 'plotfn': self.plot_line, 'xvals': np.mean([ sweep_points_dict['cal_points_sweep_points'][ cal_pts_idxs], sweep_points_dict['cal_points_sweep_points'][ cal_pts_idxs]], axis=0), 'yvals': np.mean([ self.proc_data_dict['projected_data_dict'][meas_qbn][ '_ref_measure'][cal_pts_idxs], self.proc_data_dict['projected_data_dict'][meas_qbn][ '_measure'][cal_pts_idxs]], axis=0), 'setlabel': list(self.cal_states_dict)[i], 'do_legend': True, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left', 'linestyle': 'none', 'line_kws': {'color': self.get_cal_state_color( list(self.cal_states_dict)[i])}} else: yvals = [self.proc_data_dict['projected_data_dict'][meas_qbn][ '_ref_measure'], self.proc_data_dict['projected_data_dict'][meas_qbn][ '_measure']] sweep_points = sweep_points_dict['sweep_points'] self.plot_dicts['dyn_phase_plot_' + meas_qbn] = { 'plotfn': self.plot_line, 'xvals': [sweep_points, sweep_points], 'xlabel': self.raw_data_dict['xlabel'][0], 'xunit': self.raw_data_dict['xunit'][0][0], 'yvals': yvals, 'ylabel': 'Excited state population', 'yunit': '', 'setlabel': ['with measurement', 'no measurement'], 'title': (self.raw_data_dict['timestamps'][0] + ' ' + self.raw_data_dict['measurementstring'][0]), 'linestyle': 'none', 'do_legend': True, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left'} self.plot_dicts['cos_fit_' + meas_qbn + '_ref_measure'] = { 'fig_id': 'dyn_phase_plot_' + meas_qbn, 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit_{}_ref_measure'.format( meas_qbn)]['fit_res'], 'setlabel': 'cos fit', 'do_legend': True, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left'} self.plot_dicts['cos_fit_' + meas_qbn + '_measure'] = { 'fig_id': 'dyn_phase_plot_' + meas_qbn, 'plotfn': self.plot_fit, 'fit_res': self.fit_dicts['cos_fit_{}_measure'.format( meas_qbn)]['fit_res'], 'setlabel': 'cos fit', 'do_legend': True, 'legend_bbox_to_anchor': (1, 0.5), 'legend_pos': 'center left'} textstr = 'Dynamic phase = {:.2f}'.format( self.dynamic_phases[meas_qbn]) + r'$^{\circ}$' self.plot_dicts['text_msg_' + meas_qbn] = { 'fig_id': 'dyn_phase_plot_' + meas_qbn, 'ypos': -0.175, 'xpos': 0.5, 'horizontalalignment': 'center', 'verticalalignment': 'top', 'plotfn': self.plot_text, 'text_string': textstr} class FluxAmplitudeSweepAnalysis(MultiQubit_TimeDomain_Analysis): def __init__(self, qb_names, *args, **kwargs): self.mask_freq = kwargs.pop('mask_freq', None) self.mask_amp = kwargs.pop('mask_amp', None) super().__init__(qb_names, *args, **kwargs) def extract_data(self): super().extract_data() # Set some default values specific to FluxPulseScopeAnalysis if the # respective options have not been set by the user or in the metadata. # (We do not do this in the init since we have to wait until # metadata has been extracted.) if self.get_param_value('rotation_type', default_value=None) is None: self.options_dict['rotation_type'] = 'global_PCA' if self.get_param_value('TwoD', default_value=None) is None: self.options_dict['TwoD'] = True def process_data(self): super().process_data() pdd = self.proc_data_dict nr_sp = {qb: len(pdd['sweep_points_dict'][qb]['sweep_points']) for qb in self.qb_names} nr_sp2d = {qb: len(list(pdd['sweep_points_2D_dict'][qb].values())[0]) for qb in self.qb_names} nr_cp = self.num_cal_points # make matrix out of vector data_reshaped = {qb: np.reshape(deepcopy( pdd['data_to_fit'][qb]).T.flatten(), (nr_sp[qb], nr_sp2d[qb])) for qb in self.qb_names} pdd['data_reshaped'] = data_reshaped # remove calibration points from data to fit data_no_cp = {qb: np.array([pdd['data_reshaped'][qb][i, :] for i in range(nr_sp[qb]-nr_cp)]) for qb in self.qb_names} # apply mask for qb in self.qb_names: if self.mask_freq is None: self.mask_freq = [True]*nr_sp2d[qb] # by default, no point is masked if self.mask_amp is None: self.mask_amp = [True]*(nr_sp[qb]-nr_cp) pdd['freqs_masked'] = {} pdd['amps_masked'] = {} pdd['data_masked'] = {} for qb in self.qb_names: sp_param = [k for k in self.mospm[qb] if 'freq' in k][0] pdd['freqs_masked'][qb] = \ pdd['sweep_points_2D_dict'][qb][sp_param][self.mask_freq] pdd['amps_masked'][qb] = \ pdd['sweep_points_dict'][qb]['sweep_points'][ :-self.num_cal_points][self.mask_amp] data_masked = data_no_cp[qb][self.mask_amp,:] pdd['data_masked'][qb] = data_masked[:, self.mask_freq] def prepare_fitting(self): pdd = self.proc_data_dict self.fit_dicts = OrderedDict() # Gaussian fit of amplitude slices gauss_mod = fit_mods.GaussianModel_v2() for qb in self.qb_names: for i in range(len(pdd['amps_masked'][qb])): data = pdd['data_masked'][qb][i,:] self.fit_dicts[f'gauss_fit_{qb}_{i}'] = { 'model': gauss_mod, 'fit_xvals': {'x': pdd['freqs_masked'][qb]}, 'fit_yvals': {'data': data} } def analyze_fit_results(self): pdd = self.proc_data_dict pdd['gauss_center'] = {} pdd['gauss_center_err'] = {} pdd['filtered_center'] = {} pdd['filtered_amps'] = {} for qb in self.qb_names: pdd['gauss_center'][qb] = np.array([ self.fit_res[f'gauss_fit_{qb}_{i}'].best_values['center'] for i in range(len(pdd['amps_masked'][qb]))]) pdd['gauss_center_err'][qb] = np.array([ self.fit_res[f'gauss_fit_{qb}_{i}'].params['center'].stderr for i in range(len(pdd['amps_masked'][qb]))]) # filter out points with stderr > 1e6 Hz pdd['filtered_center'][qb] = np.array([]) pdd['filtered_amps'][qb] = np.array([]) for i, stderr in enumerate(pdd['gauss_center_err'][qb]): try: if stderr < 1e6: pdd['filtered_center'][qb] = \ np.append(pdd['filtered_center'][qb], pdd['gauss_center'][qb][i]) pdd['filtered_amps'][qb] = \ np.append(pdd['filtered_amps'][qb], pdd['sweep_points_dict'][qb]\ ['sweep_points'][:-self.num_cal_points][i]) except: continue # if gaussian fitting does not work (i.e. all points were filtered # out above) use max value of data to get an estimate of freq if len(pdd['filtered_amps'][qb]) == 0: for qb in self.qb_names: freqs = np.array([]) for i in range(pdd['data_masked'][qb].shape[0]): freqs = np.append(freqs, pdd['freqs_masked'][qb]\ [np.argmax(pdd['data_masked'][qb][i,:])]) pdd['filtered_center'][qb] = freqs pdd['filtered_amps'][qb] = pdd['amps_masked'][qb] # fit the freqs to the qubit model self.fit_func = self.get_param_value('fit_func', fit_mods.Qubit_dac_to_freq) if self.fit_func == fit_mods.Qubit_dac_to_freq_precise: fit_guess_func = fit_mods.Qubit_dac_arch_guess_precise else: fit_guess_func = fit_mods.Qubit_dac_arch_guess freq_mod = lmfit.Model(self.fit_func) fixed_params = \ self.get_param_value("fixed_params_for_fit", {}).get(qb, None) if fixed_params is None: fixed_params = dict(E_c=0) freq_mod.guess = fit_guess_func.__get__( freq_mod, freq_mod.__class__) self.fit_dicts[f'freq_fit_{qb}'] = { 'model': freq_mod, 'fit_xvals': {'dac_voltage': pdd['filtered_amps'][qb]}, 'fit_yvals': {'data': pdd['filtered_center'][qb]}, "guessfn_pars": {"fixed_params": fixed_params}} self.run_fitting() def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict for qb in self.qb_names: sp_param = [k for k in self.mospm[qb] if 'freq' in k][0] self.plot_dicts[f'data_2d_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'data_2d_{qb}', 'plotfn': self.plot_colorxy, 'xvals': pdd['sweep_points_dict'][qb]['sweep_points'], 'yvals': pdd['sweep_points_2D_dict'][qb][sp_param], 'zvals': np.transpose(pdd['data_reshaped'][qb]), 'xlabel': r'Flux pulse amplitude', 'xunit': 'V', 'ylabel': r'Qubit drive frequency', 'yunit': 'Hz', 'zlabel': 'Excited state population', } if self.do_fitting: if self.options_dict.get('scatter', True): label = f'freq_scatter_{qb}_scatter' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'data_2d_{qb}', 'plotfn': self.plot_line, 'linestyle': '', 'marker': 'o', 'xvals': pdd['filtered_amps'][qb], 'yvals': pdd['filtered_center'][qb], 'xlabel': r'Flux pulse amplitude', 'xunit': 'V', 'ylabel': r'Qubit drive frequency', 'yunit': 'Hz', 'color': 'white', } amps = pdd['sweep_points_dict'][qb]['sweep_points'][ :-self.num_cal_points] label = f'freq_scatter_{qb}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'data_2d_{qb}', 'plotfn': self.plot_line, 'linestyle': '-', 'marker': '', 'xvals': amps, 'yvals': self.fit_func(amps, **self.fit_res[f'freq_fit_{qb}'].best_values), 'color': 'red', } class T1FrequencySweepAnalysis(MultiQubit_TimeDomain_Analysis): def process_data(self): super().process_data() pdd = self.proc_data_dict nr_cp = self.num_cal_points self.lengths = OrderedDict() self.amps = OrderedDict() self.freqs = OrderedDict() for qbn in self.qb_names: len_key = [pn for pn in self.mospm[qbn] if 'length' in pn] if len(len_key) == 0: raise KeyError('Couldn"t find sweep points corresponding to ' 'flux pulse length.') self.lengths[qbn] = self.sp.get_sweep_params_property( 'values', 0, len_key[0]) amp_key = [pn for pn in self.mospm[qbn] if 'amp' in pn] if len(len_key) == 0: raise KeyError('Couldn"t find sweep points corresponding to ' 'flux pulse amplitude.') self.amps[qbn] = self.sp.get_sweep_params_property( 'values', 1, amp_key[0]) freq_key = [pn for pn in self.mospm[qbn] if 'freq' in pn] if len(freq_key) == 0: self.freqs[qbn] = None else: self.freqs[qbn] =self.sp.get_sweep_params_property( 'values', 1, freq_key[0]) nr_amps = len(self.amps[self.qb_names[0]]) nr_lengths = len(self.lengths[self.qb_names[0]]) # make matrix out of vector data_reshaped_no_cp = {qb: np.reshape(deepcopy( pdd['data_to_fit'][qb][ :, :pdd['data_to_fit'][qb].shape[1]-nr_cp]).flatten(), (nr_amps, nr_lengths)) for qb in self.qb_names} pdd['data_reshaped_no_cp'] = data_reshaped_no_cp pdd['mask'] = {qb: np.ones(nr_amps, dtype=np.bool) for qb in self.qb_names} def prepare_fitting(self): pdd = self.proc_data_dict self.fit_dicts = OrderedDict() exp_mod = fit_mods.ExponentialModel() for qb in self.qb_names: for i, data in enumerate(pdd['data_reshaped_no_cp'][qb]): self.fit_dicts[f'exp_fit_{qb}_amp_{i}'] = { 'model': exp_mod, 'fit_xvals': {'x': self.lengths[qb]}, 'fit_yvals': {'data': data}} def analyze_fit_results(self): pdd = self.proc_data_dict pdd['T1'] = {} pdd['T1_err'] = {} for qb in self.qb_names: pdd['T1'][qb] = np.array([ abs(self.fit_res[f'exp_fit_{qb}_amp_{i}'].best_values['decay']) for i in range(len(self.amps[qb]))]) pdd['T1_err'][qb] = np.array([ self.fit_res[f'exp_fit_{qb}_amp_{i}'].params['decay'].stderr for i in range(len(self.amps[qb]))]) for i in range(len(self.amps[qb])): try: if pdd['T1_err'][qb][i] >= 10 * pdd['T1'][qb][i]: pdd['mask'][qb][i] = False except TypeError: pdd['mask'][qb][i] = False def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict for qb in self.qb_names: for p, param_values in enumerate([self.amps, self.freqs]): if param_values is None: continue suffix = '_amp' if p == 0 else '_freq' mask = pdd['mask'][qb] xlabel = r'Flux pulse amplitude' if p == 0 else \ r'Derived qubit frequency' if self.do_fitting: # Plot T1 vs flux pulse amplitude label = f'T1_fit_{qb}{suffix}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'plotfn': self.plot_line, 'linestyle': '-', 'xvals': param_values[qb][mask], 'yvals': pdd['T1'][qb][mask], 'yerr': pdd['T1_err'][qb][mask], 'xlabel': xlabel, 'xunit': 'V' if p == 0 else 'Hz', 'ylabel': r'T1', 'yunit': 's', 'color': 'blue', } # Plot rotated integrated average in dependece of flux pulse # amplitude and length label = f'T1_color_plot_{qb}{suffix}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'plotfn': self.plot_colorxy, 'linestyle': '-', 'xvals': param_values[qb][mask], 'yvals': self.lengths[qb], 'zvals': np.transpose(pdd['data_reshaped_no_cp'][qb][mask]), 'xlabel': xlabel, 'xunit': 'V' if p == 0 else 'Hz', 'ylabel': r'Flux pulse length', 'yunit': 's', 'zlabel': r'Excited state population' } # Plot population loss for the first flux pulse length as a # function of flux pulse amplitude label = f'Pop_loss_{qb}{suffix}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'plotfn': self.plot_line, 'linestyle': '-', 'xvals': param_values[qb][mask], 'yvals': 1 - pdd['data_reshaped_no_cp'][qb][:, 0][mask], 'xlabel': xlabel, 'xunit': 'V' if p == 0 else 'Hz', 'ylabel': r'Pop. loss @ {:.0f} ns'.format( self.lengths[qb][0]/1e-9 ), 'yunit': '', } # Plot all fits in single figure if self.options_dict.get('all_fits', False) and self.do_fitting: colormap = self.options_dict.get('colormap', mpl.cm.plasma) for i in range(len(self.amps[qb])): color = colormap(i/(len(self.amps[qb])-1)) label = f'exp_fit_{qb}_amp_{i}' fitid = param_values[qb][i] self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'fig_id': f'T1_fits_{qb}', 'xlabel': r'Flux pulse length', 'xunit': 's', 'ylabel': r'Excited state population', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[label], 'plot_init': self.options_dict.get('plot_init', False), 'color': color, 'setlabel': f'freq={fitid:.4f}' if p == 1 else f'amp={fitid:.4f}', 'do_legend': False, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } label = f'freq_scatter_{qb}_{i}' self.plot_dicts[label] = { 'fig_id': f'T1_fits_{qb}', 'plotfn': self.plot_line, 'xvals': self.lengths[qb], 'linestyle': '', 'yvals': pdd['data_reshaped_no_cp'][qb][i, :], 'color': color, 'setlabel': f'freq={fitid:.4f}' if p == 1 else f'amp={fitid:.4f}', } class T2FrequencySweepAnalysis(MultiQubit_TimeDomain_Analysis): def process_data(self): super().process_data() pdd = self.proc_data_dict nr_cp = self.num_cal_points nr_amps = len(self.metadata['amplitudes']) nr_lengths = len(self.metadata['flux_lengths']) nr_phases = len(self.metadata['phases']) # make matrix out of vector data_reshaped_no_cp = {qb: np.reshape( deepcopy(pdd['data_to_fit'][qb][ :, :pdd['data_to_fit'][qb].shape[1]-nr_cp]).flatten(), (nr_amps, nr_lengths, nr_phases)) for qb in self.qb_names} pdd['data_reshaped_no_cp'] = data_reshaped_no_cp if self.metadata['use_cal_points']: pdd['cal_point_data'] = {qb: deepcopy( pdd['data_to_fit'][qb][ len(pdd['data_to_fit'][qb])-nr_cp:]) for qb in self.qb_names} pdd['mask'] = {qb: np.ones(nr_amps, dtype=np.bool) for qb in self.qb_names} def prepare_fitting(self): pdd = self.proc_data_dict self.fit_dicts = OrderedDict() nr_amps = len(self.metadata['amplitudes']) for qb in self.qb_names: for i in range(nr_amps): for j, data in enumerate(pdd['data_reshaped_no_cp'][qb][i]): cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=self.metadata['phases'], data=data, freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts[f'cos_fit_{qb}_{i}_{j}'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': self.metadata['phases']}, 'fit_yvals': {'data': data}, 'guess_pars': guess_pars} def analyze_fit_results(self): pdd = self.proc_data_dict pdd['T2'] = {} pdd['T2_err'] = {} pdd['phase_contrast'] = {} nr_lengths = len(self.metadata['flux_lengths']) nr_amps = len(self.metadata['amplitudes']) for qb in self.qb_names: pdd['phase_contrast'][qb] = {} exp_mod = fit_mods.ExponentialModel() for i in range(nr_amps): pdd['phase_contrast'][qb][f'amp_{i}'] = np.array([self.fit_res[ f'cos_fit_{qb}_{i}_{j}' ].best_values['amplitude'] for j in range(nr_lengths)]) self.fit_dicts[f'exp_fit_{qb}_{i}'] = { 'model': exp_mod, 'fit_xvals': {'x': self.metadata['flux_lengths']}, 'fit_yvals': {'data': np.array([self.fit_res[ f'cos_fit_{qb}_{i}_{j}' ].best_values['amplitude'] for j in range(nr_lengths)])}} self.run_fitting() pdd['T2'][qb] = np.array([ abs(self.fit_res[f'exp_fit_{qb}_{i}'].best_values['decay']) for i in range(len(self.metadata['amplitudes']))]) pdd['mask'][qb] = [] for i in range(len(self.metadata['amplitudes'])): try: if self.fit_res[f'exp_fit_{qb}_{i}']\ .params['decay'].stderr >= 1e-5: pdd['mask'][qb][i] = False except TypeError: pdd['mask'][qb][i] = False def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict for qb in self.qb_names: mask = pdd['mask'][qb] label = f'T2_fit_{qb}' xvals = self.metadata['amplitudes'][mask] if \ self.metadata['frequencies'] is None else \ self.metadata['frequencies'][mask] xlabel = r'Flux pulse amplitude' if \ self.metadata['frequencies'] is None else \ r'Derived qubit frequency' self.plot_dicts[label] = { 'plotfn': self.plot_line, 'linestyle': '-', 'xvals': xvals, 'yvals': pdd['T2'][qb][mask], 'xlabel': xlabel, 'xunit': 'V' if self.metadata['frequencies'] is None else 'Hz', 'ylabel': r'T2', 'yunit': 's', 'color': 'blue', } # Plot all fits in single figure if not self.options_dict.get('all_fits', False): continue colormap = self.options_dict.get('colormap', mpl.cm.plasma) for i in range(len(self.metadata['amplitudes'])): color = colormap(i/(len(self.metadata['frequencies'])-1)) label = f'exp_fit_{qb}_amp_{i}' freqs = self.metadata['frequencies'] is not None fitid = self.metadata.get('frequencies', self.metadata['amplitudes'])[i] self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'T2_fits_{qb}', 'xlabel': r'Flux pulse length', 'xunit': 's', 'ylabel': r'Excited state population', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[label], 'plot_init': self.options_dict.get('plot_init', False), 'color': color, 'setlabel': f'freq={fitid:.4f}' if freqs else f'amp={fitid:.4f}', 'do_legend': False, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } label = f'freq_scatter_{qb}_{i}' self.plot_dicts[label] = { 'ax_id': f'T2_fits_{qb}', 'plotfn': self.plot_line, 'xvals': self.metadata['phases'], 'linestyle': '', 'yvals': pdd['data_reshaped_no_cp'][qb][i,:], 'color': color, 'setlabel': f'freq={fitid:.4f}' if freqs else f'amp={fitid:.4f}', } class MeasurementInducedDephasingAnalysis(MultiQubit_TimeDomain_Analysis): def process_data(self): super().process_data() rdd = self.raw_data_dict pdd = self.proc_data_dict pdd['data_reshaped'] = {qb: [] for qb in pdd['data_to_fit']} pdd['amps_reshaped'] = np.unique(self.metadata['hard_sweep_params']['ro_amp_scale']['values']) pdd['phases_reshaped'] = [] for amp in pdd['amps_reshaped']: mask = self.metadata['hard_sweep_params']['ro_amp_scale']['values'] == amp pdd['phases_reshaped'].append(self.metadata['hard_sweep_params']['phase']['values'][mask]) for qb in self.qb_names: pdd['data_reshaped'][qb].append(pdd['data_to_fit'][qb][:len(mask)][mask]) def prepare_fitting(self): pdd = self.proc_data_dict rdd = self.raw_data_dict self.fit_dicts = OrderedDict() for qb in self.qb_names: for i, data in enumerate(pdd['data_reshaped'][qb]): cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=pdd['phases_reshaped'][i], data=data, freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts[f'cos_fit_{qb}_{i}'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': pdd['phases_reshaped'][i]}, 'fit_yvals': {'data': data}, 'guess_pars': guess_pars} def analyze_fit_results(self): pdd = self.proc_data_dict pdd['phase_contrast'] = {} pdd['phase_offset'] = {} pdd['sigma'] = {} pdd['sigma_err'] = {} pdd['a'] = {} pdd['a_err'] = {} pdd['c'] = {} pdd['c_err'] = {} for qb in self.qb_names: pdd['phase_contrast'][qb] = np.array([ self.fit_res[f'cos_fit_{qb}_{i}'].best_values['amplitude'] for i, _ in enumerate(pdd['data_reshaped'][qb])]) pdd['phase_offset'][qb] = np.array([ self.fit_res[f'cos_fit_{qb}_{i}'].best_values['phase'] for i, _ in enumerate(pdd['data_reshaped'][qb])]) pdd['phase_offset'][qb] += np.pi * (pdd['phase_contrast'][qb] < 0) pdd['phase_offset'][qb] = (pdd['phase_offset'][qb] + np.pi) % (2 * np.pi) - np.pi pdd['phase_offset'][qb] = 180*np.unwrap(pdd['phase_offset'][qb])/np.pi pdd['phase_contrast'][qb] = np.abs(pdd['phase_contrast'][qb]) gauss_mod = lmfit.models.GaussianModel() self.fit_dicts[f'phase_contrast_fit_{qb}'] = { 'model': gauss_mod, 'guess_dict': {'center': {'value': 0, 'vary': False}}, 'fit_xvals': {'x': pdd['amps_reshaped']}, 'fit_yvals': {'data': pdd['phase_contrast'][qb]}} quadratic_mod = lmfit.models.QuadraticModel() self.fit_dicts[f'phase_offset_fit_{qb}'] = { 'model': quadratic_mod, 'guess_dict': {'b': {'value': 0, 'vary': False}}, 'fit_xvals': {'x': pdd['amps_reshaped']}, 'fit_yvals': {'data': pdd['phase_offset'][qb]}} self.run_fitting() self.save_fit_results() pdd['sigma'][qb] = self.fit_res[f'phase_contrast_fit_{qb}'].best_values['sigma'] pdd['sigma_err'][qb] = self.fit_res[f'phase_contrast_fit_{qb}'].params['sigma']. \ stderr pdd['a'][qb] = self.fit_res[f'phase_offset_fit_{qb}'].best_values['a'] pdd['a_err'][qb] = self.fit_res[f'phase_offset_fit_{qb}'].params['a'].stderr pdd['c'][qb] = self.fit_res[f'phase_offset_fit_{qb}'].best_values['c'] pdd['c_err'][qb] = self.fit_res[f'phase_offset_fit_{qb}'].params['c'].stderr pdd['sigma_err'][qb] = float('nan') if pdd['sigma_err'][qb] is None \ else pdd['sigma_err'][qb] pdd['a_err'][qb] = float('nan') if pdd['a_err'][qb] is None else pdd['a_err'][qb] pdd['c_err'][qb] = float('nan') if pdd['c_err'][qb] is None else pdd['c_err'][qb] def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict phases_equal = True for phases in pdd['phases_reshaped'][1:]: if not np.all(phases == pdd['phases_reshaped'][0]): phases_equal = False break for qb in self.qb_names: if phases_equal: self.plot_dicts[f'data_2d_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'plotfn': self.plot_colorxy, 'xvals': pdd['phases_reshaped'][0], 'yvals': pdd['amps_reshaped'], 'zvals': pdd['data_reshaped'][qb], 'xlabel': r'Pulse phase, $\phi$', 'xunit': 'deg', 'ylabel': r'Readout pulse amplitude scale, $V_{RO}/V_{ref}$', 'yunit': '', 'zlabel': 'Excited state population', } colormap = self.options_dict.get('colormap', mpl.cm.plasma) for i, amp in enumerate(pdd['amps_reshaped']): color = colormap(i/(len(pdd['amps_reshaped'])-1)) label = f'cos_data_{qb}_{i}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'amplitude_crossections_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['phases_reshaped'][i], 'yvals': pdd['data_reshaped'][qb][i], 'xlabel': r'Pulse phase, $\phi$', 'xunit': 'deg', 'ylabel': 'Excited state population', 'linestyle': '', 'color': color, 'setlabel': f'amp={amp:.4f}', 'do_legend': True, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } if self.do_fitting: for i, amp in enumerate(pdd['amps_reshaped']): color = colormap(i/(len(pdd['amps_reshaped'])-1)) label = f'cos_fit_{qb}_{i}' self.plot_dicts[label] = { 'ax_id': f'amplitude_crossections_{qb}', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[label], 'plot_init': self.options_dict.get('plot_init', False), 'color': color, 'setlabel': f'fit, amp={amp:.4f}', } # Phase contrast self.plot_dicts[f'phase_contrast_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': 200*pdd['phase_contrast'][qb], 'xlabel': r'Readout pulse amplitude scale, $V_{RO}/V_{ref}$', 'xunit': '', 'ylabel': 'Phase contrast', 'yunit': '%', 'linestyle': '', 'color': 'k', 'setlabel': 'data', 'do_legend': True, } self.plot_dicts[f'phase_contrast_fit_{qb}'] = { 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': 200*self.fit_res[f'phase_contrast_fit_{qb}'].best_fit, 'color': 'r', 'marker': '', 'setlabel': 'fit', 'do_legend': True, } self.plot_dicts[f'phase_contrast_labels_{qb}'] = { 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': 200*pdd['phase_contrast'][qb], 'marker': '', 'linestyle': '', 'setlabel': r'$\sigma = ({:.5f} \pm {:.5f})$ V'. format(pdd['sigma'][qb], pdd['sigma_err'][qb]), 'do_legend': True, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } # Phase offset self.plot_dicts[f'phase_offset_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'], 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': pdd['phase_offset'][qb], 'xlabel': r'Readout pulse amplitude scale, $V_{RO}/V_{ref}$', 'xunit': '', 'ylabel': 'Phase offset', 'yunit': 'deg', 'linestyle': '', 'color': 'k', 'setlabel': 'data', 'do_legend': True, } self.plot_dicts[f'phase_offset_fit_{qb}'] = { 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': self.fit_res[f'phase_offset_fit_{qb}'].best_fit, 'color': 'r', 'marker': '', 'setlabel': 'fit', 'do_legend': True, } self.plot_dicts[f'phase_offset_labels_{qb}'] = { 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['amps_reshaped'], 'yvals': pdd['phase_offset'][qb], 'marker': '', 'linestyle': '', 'setlabel': r'$a = {:.0f} \pm {:.0f}$ deg/V${{}}^2$'. format(pdd['a'][qb], pdd['a_err'][qb]) + '\n' + r'$c = {:.1f} \pm {:.1f}$ deg'. format(pdd['c'][qb], pdd['c_err'][qb]), 'do_legend': True, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } class DriveCrosstalkCancellationAnalysis(MultiQubit_TimeDomain_Analysis): def process_data(self): super().process_data() if self.sp is None: raise ValueError('This analysis needs a SweepPoints ' 'class instance.') pdd = self.proc_data_dict # get the ramsey phases as the values of the first sweep parameter # in the 2nd sweep dimension. # !!! This assumes all qubits have the same ramsey phases !!! pdd['ramsey_phases'] = self.sp.get_sweep_params_property('values', 1) pdd['qb_sweep_points'] = {} pdd['qb_sweep_param'] = {} for k, v in self.sp.get_sweep_dimension(0).items(): if k == 'phase': continue qb, param = k.split('.') pdd['qb_sweep_points'][qb] = v[0] pdd['qb_sweep_param'][qb] = (param, v[1], v[2]) pdd['qb_msmt_vals'] = {} pdd['qb_cal_vals'] = {} for qb, data in pdd['data_to_fit'].items(): pdd['qb_msmt_vals'][qb] = data[:, :-self.num_cal_points].reshape( len(pdd['qb_sweep_points'][qb]), len(pdd['ramsey_phases'])) pdd['qb_cal_vals'][qb] = data[0, -self.num_cal_points:] def prepare_fitting(self): pdd = self.proc_data_dict self.fit_dicts = OrderedDict() for qb in self.qb_names: for i, data in enumerate(pdd['qb_msmt_vals'][qb]): cos_mod = fit_mods.CosModel guess_pars = fit_mods.Cos_guess( model=cos_mod, t=pdd['ramsey_phases'], data=data, freq_guess=1/360) guess_pars['frequency'].value = 1/360 guess_pars['frequency'].vary = False self.fit_dicts[f'cos_fit_{qb}_{i}'] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': pdd['ramsey_phases']}, 'fit_yvals': {'data': data}, 'guess_pars': guess_pars} def analyze_fit_results(self): pdd = self.proc_data_dict pdd['phase_contrast'] = {} pdd['phase_offset'] = {} for qb in self.qb_names: pdd['phase_contrast'][qb] = np.array([ 2*self.fit_res[f'cos_fit_{qb}_{i}'].best_values['amplitude'] for i, _ in enumerate(pdd['qb_msmt_vals'][qb])]) pdd['phase_offset'][qb] = np.array([ self.fit_res[f'cos_fit_{qb}_{i}'].best_values['phase'] for i, _ in enumerate(pdd['qb_msmt_vals'][qb])]) pdd['phase_offset'][qb] *= 180/np.pi pdd['phase_offset'][qb] += 180 * (pdd['phase_contrast'][qb] < 0) pdd['phase_offset'][qb] = (pdd['phase_offset'][qb] + 180) % 360 - 180 pdd['phase_contrast'][qb] = np.abs(pdd['phase_contrast'][qb]) def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict for qb in self.qb_names: self.plot_dicts[f'data_2d_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'plotfn': self.plot_colorxy, 'xvals': pdd['ramsey_phases'], 'yvals': pdd['qb_sweep_points'][qb], 'zvals': pdd['qb_msmt_vals'][qb], 'xlabel': r'Ramsey phase, $\phi$', 'xunit': 'deg', 'ylabel': pdd['qb_sweep_param'][qb][2], 'yunit': pdd['qb_sweep_param'][qb][1], 'zlabel': 'Excited state population', } colormap = self.options_dict.get('colormap', mpl.cm.plasma) for i, pval in enumerate(pdd['qb_sweep_points'][qb]): if i == len(pdd['qb_sweep_points'][qb]) - 1: legendlabel='data, ref.' else: legendlabel = f'data, {pdd["qb_sweep_param"][qb][0]}='\ f'{pval:.4f}{pdd["qb_sweep_param"][qb][1]}' color = colormap(i/(len(pdd['qb_sweep_points'][qb])-1)) label = f'cos_data_{qb}_{i}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'param_crossections_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['ramsey_phases'], 'yvals': pdd['qb_msmt_vals'][qb][i], 'xlabel': r'Ramsey phase, $\phi$', 'xunit': 'deg', 'ylabel': 'Excited state population', 'linestyle': '', 'color': color, 'setlabel': legendlabel, 'do_legend': False, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } if self.do_fitting: for i, pval in enumerate(pdd['qb_sweep_points'][qb]): if i == len(pdd['qb_sweep_points'][qb]) - 1: legendlabel = 'fit, ref.' else: legendlabel = f'fit, {pdd["qb_sweep_param"][qb][0]}='\ f'{pval:.4f}{pdd["qb_sweep_param"][qb][1]}' color = colormap(i/(len(pdd['qb_sweep_points'][qb])-1)) label = f'cos_fit_{qb}_{i}' self.plot_dicts[label] = { 'ax_id': f'param_crossections_{qb}', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[label], 'plot_init': self.options_dict.get('plot_init', False), 'color': color, 'do_legend': False, # 'setlabel': legendlabel } # Phase contrast self.plot_dicts[f'phase_contrast_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['qb_sweep_points'][qb][:-1], 'yvals': pdd['phase_contrast'][qb][:-1] * 100, 'xlabel': pdd['qb_sweep_param'][qb][2], 'xunit': pdd['qb_sweep_param'][qb][1], 'ylabel': 'Phase contrast', 'yunit': '%', 'linestyle': '-', 'marker': 'o', 'color': 'C0', 'setlabel': 'data', 'do_legend': True, } self.plot_dicts[f'phase_contrast_ref_{qb}'] = { 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_hlines, 'xmin': pdd['qb_sweep_points'][qb][:-1].min(), 'xmax': pdd['qb_sweep_points'][qb][:-1].max(), 'y': pdd['phase_contrast'][qb][-1] * 100, 'linestyle': '--', 'colors': '0.6', 'setlabel': 'ref', 'do_legend': True, } # Phase offset self.plot_dicts[f'phase_offset_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['qb_sweep_points'][qb][:-1], 'yvals': pdd['phase_offset'][qb][:-1], 'xlabel': pdd['qb_sweep_param'][qb][2], 'xunit': pdd['qb_sweep_param'][qb][1], 'ylabel': 'Phase offset', 'yunit': 'deg', 'linestyle': '-', 'marker': 'o', 'color': 'C0', 'setlabel': 'data', 'do_legend': True, } self.plot_dicts[f'phase_offset_ref_{qb}'] = { 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_hlines, 'xmin': pdd['qb_sweep_points'][qb][:-1].min(), 'xmax': pdd['qb_sweep_points'][qb][:-1].max(), 'y': pdd['phase_offset'][qb][-1], 'linestyle': '--', 'colors': '0.6', 'setlabel': 'ref', 'do_legend': True, } class FluxlineCrosstalkAnalysis(MultiQubit_TimeDomain_Analysis): """Analysis for the measure_fluxline_crosstalk measurement. The measurement involves Ramsey measurements on a set of crosstalk qubits, which have been brought to a flux-sensitive position with a flux pulse. The first dimension is the ramsey-phase of these qubits. In the second sweep dimension, the amplitude of a flux pulse on another (target) qubit is swept. The analysis extracts the change in Ramsey phase offset, which gets converted to a frequency offset due to the flux pulse on the target qubit. The frequency offset is then converted to a flux offset, which is a measure of the crosstalk between the target fluxline and the crosstalk qubit. The measurement is hard-compressed, meaning the raw data is inherently 1d, with one set of calibration points as the final segments. The experiment part of the measured values are reshaped to the correct 2d shape for the analysis. The sweep points passed into the analysis should still reflect the 2d nature of the measurement, meaning the ramsey phase values should be passed in the first dimension and the target fluxpulse amplitudes in the second sweep dimension. """ def __init__(self, qb_names, *args, **kwargs): params_dict = {f'{qbn}.amp_to_freq_model': f'Instrument settings.{qbn}.fit_ge_freq_from_flux_pulse_amp' for qbn in qb_names} kwargs['params_dict'] = kwargs.get('params_dict', {}) kwargs['params_dict'].update(params_dict) super().__init__(qb_names, *args, **kwargs) def process_data(self): super().process_data() if self.sp is None: raise ValueError('This analysis needs a SweepPoints ' 'class instance.') pdd = self.proc_data_dict pdd['ramsey_phases'] = self.sp.get_sweep_params_property('values', 0) pdd['target_amps'] = self.sp.get_sweep_params_property('values', 1) pdd['target_fluxpulse_length'] = \ self.get_param_value('target_fluxpulse_length') pdd['crosstalk_qubits_amplitudes'] = \ self.get_param_value('crosstalk_qubits_amplitudes') pdd['qb_msmt_vals'] = {qb: pdd['data_to_fit'][qb][:, :-self.num_cal_points].reshape( len(pdd['target_amps']), len(pdd['ramsey_phases'])) for qb in self.qb_names} pdd['qb_cal_vals'] = { qb: pdd['data_to_fit'][qb][0, -self.num_cal_points:] for qb in self.qb_names} def prepare_fitting(self): pdd = self.proc_data_dict self.fit_dicts = OrderedDict() cos_mod = lmfit.Model(fit_mods.CosFunc) cos_mod.guess = fit_mods.Cos_guess.__get__(cos_mod, cos_mod.__class__) for qb in self.qb_names: for i, data in enumerate(pdd['qb_msmt_vals'][qb]): self.fit_dicts[f'cos_fit_{qb}_{i}'] = { 'model': cos_mod, 'guess_dict': {'frequency': {'value': 1 / 360, 'vary': False}}, 'fit_xvals': {'t': pdd['ramsey_phases']}, 'fit_yvals': {'data': data}} def analyze_fit_results(self): pdd = self.proc_data_dict pdd['phase_contrast'] = {} pdd['phase_offset'] = {} pdd['freq_offset'] = {} pdd['freq'] = {} self.skip_qb_freq_fits = self.get_param_value('skip_qb_freq_fits', False) if not self.skip_qb_freq_fits: pdd['flux'] = {} for qb in self.qb_names: pdd['phase_contrast'][qb] = np.array([ 2 * self.fit_res[f'cos_fit_{qb}_{i}'].best_values['amplitude'] for i, _ in enumerate(pdd['qb_msmt_vals'][qb])]) pdd['phase_offset'][qb] = np.array([ self.fit_res[f'cos_fit_{qb}_{i}'].best_values['phase'] for i, _ in enumerate(pdd['qb_msmt_vals'][qb])]) pdd['phase_offset'][qb] *= 180 / np.pi pdd['phase_offset'][qb] += 180 * (pdd['phase_contrast'][qb] < 0) pdd['phase_offset'][qb] = (pdd['phase_offset'][qb] + 180) % 360 - 180 pdd['phase_offset'][qb] = \ np.unwrap(pdd['phase_offset'][qb] / 180 * np.pi) * 180 / np.pi pdd['phase_contrast'][qb] = np.abs(pdd['phase_contrast'][qb]) pdd['freq_offset'][qb] = pdd['phase_offset'][qb] / 360 / pdd[ 'target_fluxpulse_length'] fr = lmfit.Model(lambda a, f_a=1, f0=0: a * f_a + f0).fit( data=pdd['freq_offset'][qb], a=pdd['target_amps']) pdd['freq_offset'][qb] -= fr.best_values['f0'] if not self.skip_qb_freq_fits: mpars = eval(self.raw_data_dict[f'{qb}.amp_to_freq_model']) freq_idle = fit_mods.Qubit_dac_to_freq( pdd['crosstalk_qubits_amplitudes'].get(qb, 0), **mpars) pdd['freq'][qb] = pdd['freq_offset'][qb] + freq_idle mpars.update({'V_per_phi0': 1, 'dac_sweet_spot': 0}) pdd['flux'][qb] = fit_mods.Qubit_freq_to_dac( pdd['freq'][qb], **mpars) # fit fitted results to linear models lin_mod = lmfit.Model(lambda x, a=1, b=0: a*x + b) def guess(model, data, x, **kwargs): a_guess = (data[-1] - data[0])/(x[-1] - x[0]) b_guess = data[0] - x[0]*a_guess return model.make_params(a=a_guess, b=b_guess) lin_mod.guess = guess.__get__(lin_mod, lin_mod.__class__) keys_to_fit = [] for qb in self.qb_names: for param in ['phase_offset', 'freq_offset', 'flux']: if param == 'flux' and self.skip_qb_freq_fits: continue key = f'{param}_fit_{qb}' self.fit_dicts[key] = { 'model': lin_mod, 'fit_xvals': {'x': pdd['target_amps']}, 'fit_yvals': {'data': pdd[param][qb]}} keys_to_fit.append(key) self.run_fitting(keys_to_fit=keys_to_fit) def prepare_plots(self): pdd = self.proc_data_dict rdd = self.raw_data_dict for qb in self.qb_names: self.plot_dicts[f'data_2d_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'plotfn': self.plot_colorxy, 'xvals': pdd['ramsey_phases'], 'yvals': pdd['target_amps'], 'zvals': pdd['qb_msmt_vals'][qb], 'xlabel': r'Ramsey phase, $\phi$', 'xunit': 'deg', 'ylabel': self.sp.get_sweep_params_property('label', 1, 'target_amp'), 'yunit': self.sp.get_sweep_params_property('unit', 1, 'target_amp'), 'zlabel': 'Excited state population', } colormap = self.options_dict.get('colormap', mpl.cm.plasma) for i, pval in enumerate(pdd['target_amps']): legendlabel = f'data, amp. = {pval:.4f} V' color = colormap(i / (len(pdd['target_amps']) - 1)) label = f'cos_data_{qb}_{i}' self.plot_dicts[label] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'param_crossections_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['ramsey_phases'], 'yvals': pdd['qb_msmt_vals'][qb][i], 'xlabel': r'Ramsey phase, $\phi$', 'xunit': 'deg', 'ylabel': 'Excited state population', 'linestyle': '', 'color': color, 'setlabel': legendlabel, 'do_legend': False, 'legend_bbox_to_anchor': (1, 1), 'legend_pos': 'upper left', } if self.do_fitting: for i, pval in enumerate(pdd['target_amps']): legendlabel = f'fit, amp. = {pval:.4f} V' color = colormap(i / (len(pdd['target_amps']) - 1)) label = f'cos_fit_{qb}_{i}' self.plot_dicts[label] = { 'ax_id': f'param_crossections_{qb}', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[label], 'plot_init': self.options_dict.get('plot_init', False), 'color': color, 'setlabel': legendlabel, 'do_legend': False, } # Phase contrast self.plot_dicts[f'phase_contrast_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'phase_contrast_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['target_amps'], 'yvals': pdd['phase_contrast'][qb] * 100, 'xlabel':self.sp.get_sweep_params_property('label', 1, 'target_amp'), 'xunit': self.sp.get_sweep_params_property('unit', 1, 'target_amp'), 'ylabel': 'Phase contrast', 'yunit': '%', 'linestyle': '-', 'marker': 'o', 'color': 'C0', } # Phase offset self.plot_dicts[f'phase_offset_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'phase_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['target_amps'], 'yvals': pdd['phase_offset'][qb], 'xlabel':self.sp.get_sweep_params_property('label', 1, 'target_amp'), 'xunit': self.sp.get_sweep_params_property('unit', 1, 'target_amp'), 'ylabel': 'Phase offset', 'yunit': 'deg', 'linestyle': 'none', 'marker': 'o', 'color': 'C0', } # Frequency offset self.plot_dicts[f'freq_offset_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'freq_offset_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['target_amps'], 'yvals': pdd['freq_offset'][qb], 'xlabel':self.sp.get_sweep_params_property('label', 1, 'target_amp'), 'xunit': self.sp.get_sweep_params_property('unit', 1, 'target_amp'), 'ylabel': 'Freq. offset, $\\Delta f$', 'yunit': 'Hz', 'linestyle': 'none', 'marker': 'o', 'color': 'C0', } if not self.skip_qb_freq_fits: # Flux self.plot_dicts[f'flux_data_{qb}'] = { 'title': rdd['measurementstring'] + '\n' + rdd['timestamp'] + '\n' + qb, 'ax_id': f'flux_{qb}', 'plotfn': self.plot_line, 'xvals': pdd['target_amps'], 'yvals': pdd['flux'][qb], 'xlabel': self.sp[1]['target_amp'][2], 'xunit': self.sp[1]['target_amp'][1], 'ylabel': 'Flux, $\\Phi$', 'yunit': '$\\Phi_0$', 'linestyle': 'none', 'marker': 'o', 'color': 'C0', } for param in ['phase_offset', 'freq_offset', 'flux']: if param == 'flux' and self.skip_qb_freq_fits: continue self.plot_dicts[f'{param}_fit_{qb}'] = { 'ax_id': f'{param}_{qb}', 'plotfn': self.plot_fit, 'fit_res': self.fit_res[f'{param}_fit_{qb}'], 'plot_init': self.options_dict.get('plot_init', False), 'linestyle': '-', 'marker': '', 'color': 'C1', } class RabiAnalysis(MultiQubit_TimeDomain_Analysis): def __init__(self, qb_names, *args, **kwargs): params_dict = {} for qbn in qb_names: s = 'Instrument settings.'+qbn for trans_name in ['ge', 'ef']: params_dict[f'{trans_name}_amp180_'+qbn] = \ s+f'.{trans_name}_amp180' params_dict[f'{trans_name}_amp90scale_'+qbn] = \ s+f'.{trans_name}_amp90_scale' kwargs['params_dict'] = params_dict kwargs['numeric_params'] = list(params_dict) super().__init__(qb_names, *args, **kwargs) def prepare_fitting(self): self.fit_dicts = OrderedDict() for qbn in self.qb_names: data = self.proc_data_dict['data_to_fit'][qbn] sweep_points = self.proc_data_dict['sweep_points_dict'][qbn][ 'msmt_sweep_points'] if self.num_cal_points != 0: data = data[:-self.num_cal_points] cos_mod = lmfit.Model(fit_mods.CosFunc) guess_pars = fit_mods.Cos_guess( model=cos_mod, t=sweep_points, data=data) guess_pars['amplitude'].vary = True guess_pars['amplitude'].min = -10 guess_pars['offset'].vary = True guess_pars['frequency'].vary = True guess_pars['phase'].vary = True self.set_user_guess_pars(guess_pars) key = 'cos_fit_' + qbn self.fit_dicts[key] = { 'fit_fn': fit_mods.CosFunc, 'fit_xvals': {'t': sweep_points}, 'fit_yvals': {'data': data}, 'guess_pars': guess_pars} def analyze_fit_results(self): self.proc_data_dict['analysis_params_dict'] = OrderedDict() for qbn in self.qb_names: fit_res = self.fit_dicts['cos_fit_' + qbn]['fit_res'] sweep_points = self.proc_data_dict['sweep_points_dict'][qbn][ 'msmt_sweep_points'] self.proc_data_dict['analysis_params_dict'][qbn] = \ self.get_amplitudes(fit_res=fit_res, sweep_points=sweep_points) self.save_processed_data(key='analysis_params_dict') def get_amplitudes(self, fit_res, sweep_points): # Extract the best fitted frequency and phase. freq_fit = fit_res.best_values['frequency'] phase_fit = fit_res.best_values['phase'] freq_std = fit_res.params['frequency'].stderr phase_std = fit_res.params['phase'].stderr # If fitted_phase<0, shift fitted_phase by 4. This corresponds to a # shift of 2pi in the argument of cos. if np.abs(phase_fit) < 0.1: phase_fit = 0 # If phase_fit<1, the piHalf amplitude<0. if phase_fit < 1: log.info('The data could not be fitted correctly. ' 'The fitted phase "%s" <1, which gives ' 'negative piHalf ' 'amplitude.' % phase_fit) stepsize = sweep_points[1] - sweep_points[0] if freq_fit > 2 * stepsize: log.info('The data could not be fitted correctly. The ' 'frequency "%s" is too high.' % freq_fit) n =
np.arange(-2, 10)
numpy.arange
import numpy as np from rltf.memory import BaseBuffer class PGBuffer(BaseBuffer): """Fixed-size data buffer. Supports both image observations and low-level observations. """ def __init__(self, size, state_shape, obs_dtype, act_shape, act_dtype, obs_len=1): """ Args: See `BaseBuffer.store()` """ super().__init__(size, state_shape, obs_dtype, act_shape, act_dtype, obs_len) # Create a buffer for the value function vf = np.empty([self.max_size+1], dtype=np.float32) self.vf = vf[:-1] self.next_vf = vf[1:] self.gae_lambda = np.empty([self.max_size], dtype=np.float32) self.td_lambda = np.empty([self.max_size], dtype=np.float32) self.logp = np.empty([self.max_size], dtype=np.float32) self.it = None #pylint: disable=arguments-differ def store(self, obs_t, act_t, rew_tp1, done_tp1, vf_t, logp_t): """Store the observed transition defined as: Given `obs_t`, action `act_t` was taken. Then reward `reward_tp1` was observed. If after action `act_t` the episode terminated, then `done_tp1` will be `True`, otherwise `Fasle`. Note that the observation after taking `act_t` should be passed as `obs_t` on the next call to `store()`. NOTE: if `done_tp1 == True`, then there is no need to call `store()` on `obs_tp1`: we do NOT need to know it since we never use it in computing the backup value Args: obs_t: See `BaseBuffer.store()` act_t: See `BaseBuffer.store()` reward_tp1: See `BaseBuffer.store()` done_tp1: See `BaseBuffer.store()` vf_t: float. Value function estimate for `obs_t` logp_t: float. Log probability of action `act_t` """ # Store these before advancing next_idx in BaseBuffer self.vf[self.next_idx] = vf_t self.logp[self.next_idx] = logp_t super().store(obs_t, act_t, rew_tp1, done_tp1) def __iter__(self): self.it = -1 return self def __next__(self): if self.it >= self.size_now: raise StopIteration else: self.it += 1 return self.__getitem__(self.it) def __getitem__(self, i): # If low-level observations or single frames if self.obs_len == 1: obs = self.obs[i] else: obs = self._encode_img_observation(i) return obs, self.action[i], self.reward[i], self.done[i], self.vf[i], self.next_vf[i] def compute_estimates(self, gamma, lam, next_vf=0): """Compute the advantage estimates using the GAE(gamma, lambda) estimator and the value function targets using the TD(lambda) estimator Args: gamma: float. The value of gamma for GAE(gamma, lambda) lam: float. The value of lambda for GAE(gamma, lambda) and TD(lambda) next_vf: float. The value function estimate for the observation encountered after the last step. Must be 0 if the episode was done """ # Assert that the buffer is exactly filled assert self.next_idx == 0 self.next_vf[-1] = next_vf gae_t = 0 # Compute GAE(gamma, lambda) # pylint: disable=redefined-argument-from-local for t, (_, _, rew, done, vf, next_vf) in zip(reversed(range(self.size_now)), reversed(self)): delta_t = rew + (1 - done) * gamma * next_vf - vf gae_t = delta_t + (1 - done) * gamma * lam * gae_t self.gae_lambda[t] = gae_t # Compute TD(lambda) self.td_lambda = self.gae_lambda + self.vf def get_data(self): """Return all data""" return self._batch_samples(np.arange(0, self.size_now)) def iterate(self, batch_size, shuffle=True): size = (self.size_now // batch_size) * batch_size inds =
np.arange(0, self.size_now)
numpy.arange
# -*- encoding: utf-8 -*- import numba import numpy as np import healpy as hp from scipy.interpolate import griddata from scipy.ndimage.interpolation import zoom @numba.jit(nopython=True) def binned_map(signal, pixidx, mappixels, hits, reset_map=True): """Project a TOD onto a map. This function implements a simple binner to project a TOD into a map. Args: * signal: A TOD containing the signal to be projected (1D vector) * pixidx: A TOD containing the index of the pixels (1D vector, same length as `signal`) * mappixels: A Healpix map that will contain the projected signal * hits: A Healpix map of the same resolution as mappixels that will contain the number of hits """ assert len(mappixels) == len(hits) assert len(signal) == len(pixidx) if reset_map: mappixels[:] = 0.0 hits[:] = 0 for i in range(len(signal)): mappixels[pixidx[i]] += signal[i] hits[pixidx[i]] += 1 for i in range(len(mappixels)): if hits[i] > 0: mappixels[i] /= hits[i] def img2map( img, resultmap, resulthits, delta_theta, delta_phi, rot=np.eye(3), reset_map=True ): """Project a 2D image on a Healpix map. Args: * img: A 2D matrix containing the image to be projected on the map * resultmap: A Healpix map where to project the image * resulthits: A Healpix map of the same side as `resultmap`, which will store the hit count per pixel of `resultmap` * delta_theta: the width of the image along the meridian, in degrees * delta_phi: the height of the image along the meridian, in degrees * rot: Either a 3×3 matrix or a `healpy.rotator.Rotator` object * reset_map: If True, both `resultmap` and `resulthits` will be zeroed before doing the projection Returns: A tuple containing the map and the hit map. Unseen pixels in the map are set to zero. """ assert img.ndim == 2 assert len(resultmap) == len(resulthits) assert delta_theta > 0.0 assert delta_phi > 0.0 nside = hp.npix2nside(len(resultmap)) delta_theta, delta_phi = [np.deg2rad(x) for x in (delta_theta, delta_phi)] if type(rot) is hp.rotator.Rotator: rotmatr = rot.mat else: rotmatr = rot # We fire a number of rays close enough not to miss pixels within # the image frame. We use as a rule of thumb a spacing that is # half the resolution of the map. map_resolution = 0.5 * hp.nside2resol(nside, arcmin=False) nx, ny = [max(1, int(span / map_resolution)) for span in (delta_theta, delta_phi)] theta_proj = np.linspace((np.pi - delta_theta) / 2, (np.pi + delta_theta) / 2, nx) phi_proj = np.linspace(delta_phi / 2, -delta_phi / 2, ny) # In order to fire so many rays, we need to interpolate between # adjacent pixels in the image matrix proj_img = zoom(img, (nx / img.shape[1], ny / img.shape[0]), order=0) # This 2D mesh grid contains the direction of all the rays we're # going to fire around position (θ=π/2, φ=0). theta_proj, phi_proj = np.meshgrid(theta_proj, phi_proj) # The shape of "dirs" is nx × ny × 3 dirs = hp.ang2vec(theta_proj, phi_proj) # "rotdirs" has the same shape as "dirs". With this operation, we # apply the rotation matrix to the rays around position (θ=π/2, # φ=0). rotdirs = np.tensordot(dirs, rotmatr, (2, 1)) # "theta" and "phi" are linear vectors theta, phi = hp.vec2ang(np.reshape(rotdirs, (-1, 3))) pixidx = hp.ang2pix(nside, theta, phi) # Run a simple map-maker binned_map(np.ravel(proj_img), pixidx, resultmap, resulthits) # We're returning nothing, as the result is in "resultmap" and # "resulthits" def img2healpix(img, nside, delta_theta, delta_phi, rot=np.eye(3)): """Projection of a 2D image on a Healpix map. This function is a wrapper to :func:`nnhealpix.img2map`. Use the latter function if you have already allocated a map. Args: * img: A 2D matrix containing the image to be projected on the * map nside (int): The resolution of the Healpix map * delta_theta (float): the width of the image along the * meridian, in degrees delta_phi (float): the height of the * image along the meridian, in degrees rot: Either a 3×3 * matrix or a `healpy.rotator.Rotator` object Returns: A tuple containing the map and the hit map. Unseen pixels in the map are set to zero. """ assert hp.isnsideok(nside) assert delta_theta < 180.0 assert delta_phi < 180.0 result = np.zeros(hp.nside2npix(nside)) hits = np.zeros(result.size, dtype="int") img2map(img, result, hits, delta_theta, delta_phi, rot, reset_map=False) return result, hits class projectimages: """Project a randomly chosen set of 2D images on Healpix maps. This class returns an iterator that produces a set of Healpix maps given a number of 2D images. It can be used in :code:`for` loops to produce datasets for training convolutional neural networks. Args: * images (array): 3D tensor with shape ``[n, width, height]``, where ``n`` is the number of images and ``width×width`` is the size of each 2D image * nside (int): resolution of the Healpix maps * delta_theta (float, or 2-tuple of floats): Either the size along the theta axis of the image (before applying any rotation), or a range ``(min, max)``. In the latter case, each map will have delta_theta picked randomly within the range. * delta_phi (float, or 2-tuple of floats): Same as :param:`delta_phi`, but along the phi direction * num (int): If specified, the iterator will run "num" times. Otherwise, it will loop forever. * rot: Either a 3×3 matrix or a ``healpy.rotator.Rotator`` object (optional) Returns: Each iteration returns a pair (num, pixels) containing the index of the image projected on the map and the pixels of the map itself. The value of "num" is always in the range [0, images.shape[0] - 1). Example:: import nnhealpix as nnh import numpy as np import healpy from tensorflow.keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() for idx, pixels in nnh.projectimages(x_train, 64, 30.0, 30.0, num=5): print('Image index: {0}, digit is {1}'.format(idx, y_train[idx])) healpy.mollview(pixels) """ def __init__(self, images, nside, delta_theta, delta_phi, rot=None, num=None): self.images = images self.nside = nside self.delta_theta = delta_theta self.delta_phi = delta_phi self.num = num self.idx = 0 self.hitmap = np.zeros(hp.nside2npix(self.nside), dtype="int") self.rot = rot def __iter__(self): return self def _get_angle(self, value): if isinstance(value, (list, tuple, np.ndarray)): assert len(value) == 2 start, stop = value result = np.random.rand() * (stop - start) + start else: result = float(value) return result def _get_delta_theta(self): return self._get_angle(self.delta_theta) def _get_delta_phi(self): return self._get_angle(self.delta_phi) def __next__(self): if self.num and self.idx >= self.num: raise StopIteration() delta_theta = self._get_delta_theta() delta_phi = self._get_delta_phi() imgidx = np.random.choice(self.images.shape[0]) if self.rot: rotation = self.rot else: rotation = hp.rotator.Rotator( rot=( np.random.rand() * 360.0, np.random.rand() * 360.0,
np.random.rand()
numpy.random.rand
#!/usr/bin/python from __future__ import division from __future__ import print_function import sys import os import re import datetime import zipfile import tempfile import argparse import math import warnings import json import csv import numpy as np import scipy.stats as scp from lxml import etree as et def get_rdml_lib_version(): """Return the version string of the RDML library. Returns: The version string of the RDML library. """ return "1.0.0" class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.bool_): return bool(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NpEncoder, self).default(obj) class RdmlError(Exception): """Basic exception for errors raised by the RDML-Python library""" def __init__(self, message): Exception.__init__(self, message) pass class secondError(RdmlError): """Just to have, not used yet""" def __init__(self, message): RdmlError.__init__(self, message) pass def _get_first_child(base, tag): """Get a child element of the base node with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: The first child lxml node element found or None. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: return node return None def _get_first_child_text(base, tag): """Get a child element of the base node with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: The text of first child node element found or an empty string. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: return node.text return "" def _get_first_child_bool(base, tag, triple=True): """Get a child element of the base node with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) triple: If True, None is returned if not found, if False, False Returns: The a bool value of tag or if triple is True None. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: return _string_to_bool(node.text, triple) if triple is False: return False else: return None def _get_step_sort_nr(elem): """Get the number of the step eg. for sorting. Args: elem: The node element. (lxml node) Returns: The a int value of the step node nr. """ if elem is None: raise RdmlError('A step element must be provided for sorting.') ret = _get_first_child_text(elem, "nr") if ret == "": raise RdmlError('A step element must have a \"nr\" element for sorting.') return int(ret) def _sort_list_int(elem): """Get the first element of the array as int. for sorting. Args: elem: The 2d list Returns: The a int value of the first list element. """ return int(elem[0]) def _sort_list_float(elem): """Get the first element of the array as float. for sorting. Args: elem: The 2d list Returns: The a float value of the first list element. """ return float(elem[0]) def _sort_list_digital_PCR(elem): """Get the first column of the list as int. for sorting. Args: elem: The list Returns: The a int value of the first list element. """ arr = elem.split("\t") return int(arr[0]), arr[4] def _string_to_bool(value, triple=True): """Translates a string into bool value or None. Args: value: The string value to evaluate. (string) triple: If True, None is returned if not found, if False, False Returns: The a bool value of tag or if triple is True None. """ if value is None or value == "": if triple is True: return None else: return False if type(value) is bool: return value if type(value) is int: if value != 0: return True else: return False if type(value) is str: if value.lower() in ['false', '0', 'f', '-', 'n', 'no']: return False else: return True return def _value_to_booldic(value): """Translates a string, list or dic to a dictionary with true/false. Args: value: The string value to evaluate. (string) Returns: The a bool value of tag or if triple is True None. """ ret = {} if type(value) is str: ret[value] = True if type(value) is list: for ele in value: ret[ele] = True if type(value) is dict: for key, val in value.items(): ret[key] = _string_to_bool(val, triple=False) return ret def _get_first_child_by_pos_or_id(base, tag, by_id, by_pos): """Get a child element of the base node with a given tag and position or id. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) by_id: The unique id to search for. (string) by_pos: The position of the element in the list (int) Returns: The child node element found or raise error. """ if by_id is None and by_pos is None: raise RdmlError('Either an ' + tag + ' id or a position must be provided.') if by_id is not None and by_pos is not None: raise RdmlError('Only an ' + tag + ' id or a position can be provided.') allChildren = _get_all_children(base, tag) if by_id is not None: for node in allChildren: if node.get('id') == by_id: return node raise RdmlError('The ' + tag + ' id: ' + by_id + ' was not found in RDML file.') if by_pos is not None: if by_pos < 0 or by_pos > len(allChildren) - 1: raise RdmlError('The ' + tag + ' position ' + by_pos + ' is out of range.') return allChildren[by_pos] def _add_first_child_to_dic(base, dic, opt, tag): """Adds the first child element with a given tag to a dictionary. Args: base: The base node element. (lxml node) dic: The dictionary to add the element to (dictionary) opt: If false and id is not found in base, the element is added with an empty string (Bool) tag: Child elements group tag used to select the elements. (string) Returns: The dictionary with the added element. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: dic[tag] = node.text return dic if not opt: dic[tag] = "" return dic def _get_all_children(base, tag): """Get a list of all child elements with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: A list with all child node elements found or an empty list. """ ret = [] for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: ret.append(node) return ret def _get_all_children_id(base, tag): """Get a list of ids of all child elements with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: A list with all child id strings found or an empty list. """ ret = [] for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: ret.append(node.get('id')) return ret def _get_number_of_children(base, tag): """Count all child elements with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: A int number of the found child elements with the id. """ counter = 0 for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: counter += 1 return counter def _check_unique_id(base, tag, id): """Find all child elements with a given group and check if the id is already used. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) id: The unique id to search for. (string) Returns: False if the id is already used, True if not. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: if node.get('id') == id: return False return True def _create_new_element(base, tag, id): """Create a new element with a given tag and id. Args: base: The base node element. (lxml node) tag: Child elements group tag. (string) id: The unique id of the new element. (string) Returns: False if the id is already used, True if not. """ if id is None or id == "": raise RdmlError('An ' + tag + ' id must be provided.') if not _check_unique_id(base, tag, id): raise RdmlError('The ' + tag + ' id "' + id + '" must be unique.') return et.Element(tag, id=id) def _add_new_subelement(base, basetag, tag, text, opt): """Create a new element with a given tag and id. Args: base: The base node element. (lxml node) basetag: Child elements group tag. (string) tag: Child elements own tag, to be created. (string) text: The text content of the new element. (string) opt: If true, the element is optional (Bool) Returns: Nothing, the base lxml element is modified. """ if opt is False: if text is None or text == "": raise RdmlError('An ' + basetag + ' ' + tag + ' must be provided.') et.SubElement(base, tag).text = text else: if text is not None and text != "": et.SubElement(base, tag).text = text def _change_subelement(base, tag, xmlkeys, value, opt, vtype, id_as_element=False): """Change the value of the element with a given tag. Args: base: The base node element. (lxml node) tag: Child elements own tag, to be created. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) value: The text content of the new element. opt: If true, the element is optional (Bool) vtype: If true, the element is optional ("string", "int", "float") id_as_element: If true, handle tag "id" as element, else as attribute Returns: Nothing, the base lxml element is modified. """ # Todo validate values with vtype goodVal = value if vtype == "bool": ev = _string_to_bool(value, triple=True) if ev is None or ev == "": goodVal = "" else: if ev: goodVal = "true" else: goodVal = "false" if opt is False: if goodVal is None or goodVal == "": raise RdmlError('A value for ' + tag + ' must be provided.') if tag == "id" and id_as_element is False: if base.get('id') != goodVal: par = base.getparent() groupTag = base.tag.replace("{http://www.rdml.org}", "") if not _check_unique_id(par, groupTag, goodVal): raise RdmlError('The ' + groupTag + ' id "' + goodVal + '" is not unique.') base.attrib['id'] = goodVal return # Check if the tag already excists elem = _get_first_child(base, tag) if elem is not None: if goodVal is None or goodVal == "": base.remove(elem) else: elem.text = goodVal else: if goodVal is not None and goodVal != "": new_node = et.Element(tag) new_node.text = goodVal place = _get_tag_pos(base, tag, xmlkeys, 0) base.insert(place, new_node) def _get_or_create_subelement(base, tag, xmlkeys): """Get element with a given tag, if not present, create it. Args: base: The base node element. (lxml node) tag: Child elements own tag, to be created. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) Returns: The node element with the tag. """ # Check if the tag already excists if _get_first_child(base, tag) is None: new_node = et.Element(tag) place = _get_tag_pos(base, tag, xmlkeys, 0) base.insert(place, new_node) return _get_first_child(base, tag) def _remove_irrelevant_subelement(base, tag): """If element with a given tag has no children, remove it. Args: base: The base node element. (lxml node) tag: Child elements own tag, to be created. (string) Returns: The node element with the tag. """ # Check if the tag already excists elem = _get_first_child(base, tag) if elem is None: return if len(elem) == 0: base.remove(elem) def _move_subelement(base, tag, id, xmlkeys, position): """Change the value of the element with a given tag. Args: base: The base node element. (lxml node) tag: The id to search for. (string) id: The unique id of the new element. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) position: the new position of the element (int) Returns: Nothing, the base lxml element is modified. """ pos = _get_tag_pos(base, tag, xmlkeys, position) ele = _get_first_child_by_pos_or_id(base, tag, id, None) base.insert(pos, ele) def _move_subelement_pos(base, tag, oldpos, xmlkeys, position): """Change the value of the element with a given tag. Args: base: The base node element. (lxml node) tag: The id to search for. (string) oldpos: The unique id of the new element. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) position: the new position of the element (int) Returns: Nothing, the base lxml element is modified. """ pos = _get_tag_pos(base, tag, xmlkeys, position) ele = _get_first_child_by_pos_or_id(base, tag, None, oldpos) base.insert(pos, ele) def _get_tag_pos(base, tag, xmlkeys, pos): """Returns a position were to add a subelement with the given tag inc. pos offset. Args: base: The base node element. (lxml node) tag: The id to search for. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) pos: The position relative to the tag elements (int) Returns: The int number of were to add the element with the tag. """ count = _get_number_of_children(base, tag) offset = pos if pos is None or pos < 0: offset = 0 pos = 0 if pos > count: offset = count return _get_first_tag_pos(base, tag, xmlkeys) + offset def _get_first_tag_pos(base, tag, xmlkeys): """Returns a position were to add a subelement with the given tag. Args: base: The base node element. (lxml node) tag: The id to search for. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) Returns: The int number of were to add the element with the tag. """ listrest = xmlkeys[xmlkeys.index(tag):] counter = 0 for node in base: if node.tag.replace("{http://www.rdml.org}", "") in listrest: return counter counter += 1 return counter def _writeFileInRDML(rdmlName, fileName, data): """Writes a file in the RDML zip, even if it existed before. Args: rdmlName: The name of the RDML zip file fileName: The name of the file to write into the zip data: The data string of the file Returns: Nothing, modifies the RDML file. """ needRewrite = False if os.path.isfile(rdmlName): with zipfile.ZipFile(rdmlName, 'r') as RDMLin: for item in RDMLin.infolist(): if item.filename == fileName: needRewrite = True if needRewrite: tempFolder, tempName = tempfile.mkstemp(dir=os.path.dirname(rdmlName)) os.close(tempFolder) # copy everything except the filename with zipfile.ZipFile(rdmlName, 'r') as RDMLin: with zipfile.ZipFile(tempName, mode='w', compression=zipfile.ZIP_DEFLATED) as RDMLout: RDMLout.comment = RDMLin.comment for item in RDMLin.infolist(): if item.filename != fileName: RDMLout.writestr(item, RDMLin.read(item.filename)) if data != "": RDMLout.writestr(fileName, data) os.remove(rdmlName) os.rename(tempName, rdmlName) else: with zipfile.ZipFile(rdmlName, mode='a', compression=zipfile.ZIP_DEFLATED) as RDMLout: RDMLout.writestr(fileName, data) def _lrp_linReg(xIn, yUse): """A function which calculates the slope or the intercept by linear regression. Args: xIn: The numpy array of the cycles yUse: The numpy array that contains the fluorescence Returns: An array with the slope and intercept. """ counts = np.ones(yUse.shape) xUse = xIn.copy() xUse[np.isnan(yUse)] = 0 counts[np.isnan(yUse)] = 0 cycSqared = xUse * xUse cycFluor = xUse * yUse sumCyc = np.nansum(xUse, axis=1) sumFluor = np.nansum(yUse, axis=1) sumCycSquared = np.nansum(cycSqared, axis=1) sumCycFluor = np.nansum(cycFluor, axis=1) n = np.nansum(counts, axis=1) ssx = sumCycSquared - (sumCyc * sumCyc) / n sxy = sumCycFluor - (sumCyc * sumFluor) / n slope = sxy / ssx intercept = (sumFluor / n) - slope * (sumCyc / n) return [slope, intercept] def _lrp_findStopCyc(fluor, aRow): """Find the stop cycle of the log lin phase in fluor. Args: fluor: The array with the fluorescence values aRow: The row to work on Returns: An int with the stop cycle. """ # Take care of nan values validTwoLessCyc = 3 # Cycles so +1 to array while (validTwoLessCyc <= fluor.shape[1] and (np.isnan(fluor[aRow, validTwoLessCyc - 1]) or np.isnan(fluor[aRow, validTwoLessCyc - 2]) or np.isnan(fluor[aRow, validTwoLessCyc - 3]))): validTwoLessCyc += 1 # First and Second Derivative values calculation fluorShift = np.roll(fluor[aRow], 1, axis=0) # Shift to right - real position is -0.5 fluorShift[0] = np.nan firstDerivative = fluor[aRow] - fluorShift if np.isfinite(firstDerivative).any(): FDMaxCyc = np.nanargmax(firstDerivative, axis=0) + 1 # Cycles so +1 to array else: return fluor.shape[1] firstDerivativeShift = np.roll(firstDerivative, -1, axis=0) # Shift to left firstDerivativeShift[-1] = np.nan secondDerivative = firstDerivativeShift - firstDerivative if FDMaxCyc + 2 <= fluor.shape[1]: # Only add two cycles if there is an increase without nan if (not np.isnan(fluor[aRow, FDMaxCyc - 1]) and not np.isnan(fluor[aRow, FDMaxCyc]) and not np.isnan(fluor[aRow, FDMaxCyc + 1]) and fluor[aRow, FDMaxCyc + 1] > fluor[aRow, FDMaxCyc] > fluor[aRow, FDMaxCyc - 1]): FDMaxCyc += 2 else: FDMaxCyc = fluor.shape[1] maxMeanSD = 0.0 stopCyc = fluor.shape[1] for cycInRange in range(validTwoLessCyc, FDMaxCyc): with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) tempMeanSD = np.mean(secondDerivative[cycInRange - 2: cycInRange + 1], axis=0) # The > 0.000000000001 is to avoid float differences to the pascal version if not np.isnan(tempMeanSD) and (tempMeanSD - maxMeanSD) > 0.000000000001: maxMeanSD = tempMeanSD stopCyc = cycInRange if stopCyc + 2 >= fluor.shape[1]: stopCyc = fluor.shape[1] return stopCyc def _lrp_findStartCyc(fluor, aRow, stopCyc): """A function which finds the start cycle of the log lin phase in fluor. Args: fluor: The array with the fluorescence values aRow: The row to work on stopCyc: The stop cycle Returns: An array [int, int] with the start cycle and the fixed start cycle. """ startCyc = stopCyc - 1 # startCyc might be NaN, so shift it to the first value firstNotNaN = 1 # Cycles so +1 to array while np.isnan(fluor[aRow, firstNotNaN - 1]) and firstNotNaN < startCyc: firstNotNaN += 1 while startCyc > firstNotNaN and np.isnan(fluor[aRow, startCyc - 1]): startCyc -= 1 # As long as there are no NaN and new values are increasing while (startCyc > firstNotNaN and not np.isnan(fluor[aRow, startCyc - 2]) and fluor[aRow, startCyc - 2] <= fluor[aRow, startCyc - 1]): startCyc -= 1 startCycFix = startCyc if (not np.isnan(fluor[aRow, startCyc]) and not np.isnan(fluor[aRow, startCyc - 1]) and not np.isnan(fluor[aRow, stopCyc - 1]) and not np.isnan(fluor[aRow, stopCyc - 2])): startStep = np.log10(fluor[aRow, startCyc]) - np.log10(fluor[aRow, startCyc - 1]) stopStep = np.log10(fluor[aRow, stopCyc - 1]) - np.log10(fluor[aRow, stopCyc - 2]) if startStep > 1.1 * stopStep: startCycFix += 1 return [startCyc, startCycFix] def _lrp_testSlopes(fluor, aRow, stopCyc, startCycFix): """Splits the values and calculates a slope for the upper and the lower half. Args: fluor: The array with the fluorescence values aRow: The row to work on stopCyc: The stop cycle startCycFix: The start cycle Returns: An array with [slopelow, slopehigh]. """ # Both start with full range loopStart = [startCycFix[aRow], stopCyc[aRow]] loopStop = [startCycFix[aRow], stopCyc[aRow]] # Now find the center ignoring nan while True: loopStart[1] -= 1 loopStop[0] += 1 while (loopStart[1] - loopStop[0]) > 1 and np.isnan(fluor[aRow, loopStart[1] - 1]): loopStart[1] -= 1 while (loopStart[1] - loopStop[0]) > 1 and np.isnan(fluor[aRow, loopStop[1] - 1]): loopStop[0] += 1 if (loopStart[1] - loopStop[0]) <= 1: break # basic regression per group ssx = [0, 0] sxy = [0, 0] slope = [0, 0] for j in range(0, 2): sumx = 0.0 sumy = 0.0 sumx2 = 0.0 sumxy = 0.0 nincl = 0.0 for i in range(loopStart[j], loopStop[j] + 1): if not np.isnan(fluor[aRow, i - 1]): sumx += i sumy += np.log10(fluor[aRow, i - 1]) sumx2 += i * i sumxy += i * np.log10(fluor[aRow, i - 1]) nincl += 1 ssx[j] = sumx2 - sumx * sumx / nincl sxy[j] = sumxy - sumx * sumy / nincl slope[j] = sxy[j] / ssx[j] return [slope[0], slope[1]] def _lrp_lastCycMeanMax(fluor, vecSkipSample, vecNoPlateau): """A function which calculates the mean of the max fluor in the last ten cycles. Args: fluor: The array with the fluorescence values vecSkipSample: Skip the sample vecNoPlateau: Sample has no plateau Returns: An float with the max mean. """ maxFlour = np.nanmax(fluor[:, -11:], axis=1) maxFlour[vecSkipSample] = np.nan maxFlour[vecNoPlateau] = np.nan # Ignore all nan slices, to fix them below with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) maxMean = np.nanmean(maxFlour) if np.isnan(maxMean): maxMean = np.nanmax(maxFlour) return maxMean def _lrp_meanPcrEff(tarGroup, vecTarget, pcrEff, vecSkipSample, vecNoPlateau, vecShortLogLin): """A function which calculates the mean efficiency of the selected target group excluding bad ones. Args: tarGroup: The target number vecTarget: The vector with the targets numbers pcrEff: The array with the PCR efficiencies vecSkipSample: Skip the sample vecNoPlateau: True if there is no plateau vecShortLogLin: True indicates a short log lin phase Returns: An array with [meanPcrEff, pcrEffVar]. """ cnt = 0 sumEff = 0.0 sumEff2 = 0.0 for j in range(0, len(pcrEff)): if tarGroup is None or tarGroup == vecTarget[j]: if (not (vecSkipSample[j] or vecNoPlateau[j] or vecShortLogLin[j])) and pcrEff[j] > 1.0: cnt += 1 sumEff += pcrEff[j] sumEff2 += pcrEff[j] * pcrEff[j] if cnt > 1: meanPcrEff = sumEff / cnt pcrEffVar = (sumEff2 - (sumEff * sumEff) / cnt) / (cnt - 1) else: meanPcrEff = 1.0 pcrEffVar = 100 return [meanPcrEff, pcrEffVar] def _lrp_startStopInWindow(fluor, aRow, upWin, lowWin): """Find the start and the stop of the part of the curve which is inside the window. Args: fluor: The array with the fluorescence values aRow: The row to work on upWin: The upper limit of the window lowWin: The lower limit of the window Returns: The int startWinCyc, stopWinCyc and the bool notInWindow. """ startWinCyc = 0 stopWinCyc = 0 # Find the stopCyc and the startCyc cycle of the log lin phase stopCyc = _lrp_findStopCyc(fluor, aRow) [startCyc, startCycFix] = _lrp_findStartCyc(fluor, aRow, stopCyc) if np.isfinite(fluor[aRow, startCycFix - 1:]).any(): stopMaxCyc = np.nanargmax(fluor[aRow, startCycFix - 1:]) + startCycFix else: return startCyc, startCyc, True # If is true if outside the window if fluor[aRow, startCyc - 1] > upWin or fluor[aRow, stopMaxCyc - 1] < lowWin: notInWindow = True if fluor[aRow, startCyc - 1] > upWin: startWinCyc = startCyc stopWinCyc = startCyc if fluor[aRow, stopMaxCyc - 1] < lowWin: startWinCyc = stopMaxCyc stopWinCyc = stopMaxCyc else: notInWindow = False # look for stopWinCyc if fluor[aRow, stopMaxCyc - 1] < upWin: stopWinCyc = stopMaxCyc else: for i in range(stopMaxCyc, startCyc, -1): if fluor[aRow, i - 1] > upWin > fluor[aRow, i - 2]: stopWinCyc = i - 1 # look for startWinCyc if fluor[aRow, startCycFix - 1] > lowWin: startWinCyc = startCycFix else: for i in range(stopMaxCyc, startCyc, -1): if fluor[aRow, i - 1] > lowWin > fluor[aRow, i - 2]: startWinCyc = i return startWinCyc, stopWinCyc, notInWindow def _lrp_paramInWindow(fluor, aRow, upWin, lowWin): """Calculates slope, nNull, PCR efficiency and mean x/y for the curve part in the window. Args: fluor: The array with the fluorescence values aRow: The row to work on upWin: The upper limit of the window lowWin: The lower limit of the window Returns: The calculated values: indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl. """ startWinCyc, stopWinCyc, notInWindow = _lrp_startStopInWindow(fluor, aRow, upWin, lowWin) sumx = 0.0 sumy = 0.0 sumx2 = 0.0 sumy2 = 0.0 sumxy = 0.0 nincl = 0.0 ssx = 0.0 ssy = 0.0 sxy = 0.0 for i in range(startWinCyc, stopWinCyc + 1): fluorSamp = fluor[aRow, i - 1] if not np.isnan(fluorSamp): logFluorSamp = np.log10(fluorSamp) sumx += i sumy += logFluorSamp sumx2 += i * i sumy2 += logFluorSamp * logFluorSamp sumxy += i * logFluorSamp nincl += 1 if nincl > 1: ssx = sumx2 - sumx * sumx / nincl ssy = sumy2 - sumy * sumy / nincl sxy = sumxy - sumx * sumy / nincl if ssx > 0.0 and ssy > 0.0 and nincl > 0.0: cslope = sxy / ssx cinterc = sumy / nincl - cslope * sumx / nincl correl = sxy / np.sqrt(ssx * ssy) indMeanX = sumx / nincl indMeanY = sumy / nincl pcrEff = np.power(10, cslope) nnulls = np.power(10, cinterc) else: correl = np.nan indMeanX = np.nan indMeanY = np.nan pcrEff = np.nan nnulls = np.nan if notInWindow: ninclu = 0 else: ninclu = stopWinCyc - startWinCyc + 1 return indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl def _lrp_allParamInWindow(fluor, tarGroup, vecTarget, indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl, upWin, lowWin, vecNoAmplification, vecBaselineError): """A function which calculates the mean of the max fluor in the last ten cycles. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers indMeanX: The vector with the x mean position indMeanY: The vector with the y mean position pcrEff: The array with the PCR efficiencies nnulls: The array with the calculated nnulls ninclu: The array with the calculated ninclu correl: The array with the calculated correl upWin: The upper limit of the window lowWin: The lower limit of the window vecNoAmplification: True if there is a amplification error vecBaselineError: True if there is a baseline error Returns: An array with [indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl]. """ for row in range(0, fluor.shape[0]): if tarGroup is None or tarGroup == vecTarget[row]: if not (vecNoAmplification[row] or vecBaselineError[row]): if tarGroup is None: indMeanX[row], indMeanY[row], pcrEff[row], nnulls[row], ninclu[row], correl[row] = _lrp_paramInWindow(fluor, row, upWin[0], lowWin[0]) else: indMeanX[row], indMeanY[row], pcrEff[row], nnulls[row], ninclu[row], correl[row] = _lrp_paramInWindow(fluor, row, upWin[tarGroup], lowWin[tarGroup]) else: correl[row] = np.nan indMeanX[row] = np.nan indMeanY[row] = np.nan pcrEff[row] = np.nan nnulls[row] = np.nan ninclu[row] = 0 return indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl def _lrp_meanStopFluor(fluor, tarGroup, vecTarget, stopCyc, vecSkipSample, vecNoPlateau): """Return the mean of the stop fluor or the max fluor if all rows have no plateau. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers stopCyc: The vector with the stop cycle of the log lin phase vecSkipSample: Skip the sample vecNoPlateau: True if there is no plateau Returns: The meanMax fluorescence. """ meanMax = 0.0 maxFluor = 0.0000001 cnt = 0 if tarGroup is None: for aRow in range(0, fluor.shape[0]): if not vecSkipSample[aRow]: if not vecNoPlateau[aRow]: cnt += 1 meanMax += fluor[aRow, stopCyc[aRow] - 1] else: for i in range(0, fluor.shape[1]): if fluor[aRow, i] > maxFluor: maxFluor = fluor[aRow, i] else: for aRow in range(0, fluor.shape[0]): if tarGroup == vecTarget[aRow] and not vecSkipSample[aRow]: if not vecNoPlateau[aRow]: cnt += 1 meanMax += fluor[aRow, stopCyc[aRow] - 1] else: for i in range(0, fluor.shape[1]): if fluor[aRow, i] > maxFluor: maxFluor = fluor[aRow, i] if cnt > 0: meanMax = meanMax / cnt else: meanMax = maxFluor return meanMax def _lrp_maxStartFluor(fluor, tarGroup, vecTarget, startCyc, vecSkipSample): """Return the maximum of the start fluorescence Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers startCyc: The vector with the start cycle of the log lin phase vecSkipSample: Skip the sample Returns: The maxStart fluorescence. """ maxStart = -10.0 if tarGroup is None: for aRow in range(0, fluor.shape[0]): if not vecSkipSample[aRow]: if fluor[aRow, startCyc[aRow] - 1] > maxStart: maxStart = fluor[aRow, startCyc[aRow] - 1] else: for aRow in range(0, fluor.shape[0]): if tarGroup == vecTarget[aRow] and not vecSkipSample[aRow]: if fluor[aRow, startCyc[aRow] - 1] > maxStart: maxStart = fluor[aRow, startCyc[aRow] - 1] return 0.999 * maxStart def _lrp_setLogWin(tarGroup, newUpWin, foldWidth, upWin, lowWin, maxFluorTotal, minFluorTotal): """Sets a new window and ensures its within the total fluorescence values. Args: tarGroup: The target number newUpWin: The new upper window foldWidth: The foldWith to the lower window upWin: The upper window fluorescence lowWin: The lower window fluorescence maxFluorTotal: The maximum fluorescence over all rows minFluorTotal: The minimum fluorescence over all rows Returns: An array with [indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl]. """ # No rounding needed, only present for exact identical output with Pascal version tempUpWin = np.power(10, np.round(1000 * newUpWin) / 1000) tempLowWin = np.power(10, np.round(1000 * (newUpWin - foldWidth)) / 1000) tempUpWin = np.minimum(tempUpWin, maxFluorTotal) tempUpWin = np.maximum(tempUpWin, minFluorTotal) tempLowWin = np.minimum(tempLowWin, maxFluorTotal) tempLowWin = np.maximum(tempLowWin, minFluorTotal) if tarGroup is None: upWin[0] = tempUpWin lowWin[0] = tempLowWin else: upWin[tarGroup] = tempUpWin lowWin[tarGroup] = tempLowWin return upWin, lowWin def _lrp_logStepStop(fluor, tarGroup, vecTarget, stopCyc, vecSkipSample, vecNoPlateau): """Calculates the log of the fluorescence increase at the stop cycle. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers stopCyc: The vector with the stop cycle of the log lin phase vecSkipSample: True if row should be skipped vecNoPlateau: True if there is no plateau Returns: An array with [indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl]. """ cnt = 0 step = 0.0 for aRow in range(0, fluor.shape[0]): if (tarGroup is None or tarGroup == vecTarget[aRow]) and not (vecSkipSample[aRow] or vecNoPlateau[aRow]): cnt += 1 step += np.log10(fluor[aRow, stopCyc[aRow] - 1]) - np.log10(fluor[aRow, stopCyc[aRow] - 2]) if cnt > 0: step = step / cnt else: step = np.log10(1.8) return step def _lrp_setWoL(fluor, tarGroup, vecTarget, pointsInWoL, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, maxFluorTotal, minFluorTotal, stopCyc, startCyc, threshold, vecNoAmplification, vecBaselineError, vecSkipSample, vecNoPlateau, vecShortLogLin, vecIsUsedInWoL): """Find the window with the lowest variation in PCR efficiency and calculate its values. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers pointsInWoL: The number of points in the window indMeanX: The vector with the x mean position indMeanY: The vector with the y mean position pcrEff: The array with the PCR efficiencies nNulls: The array with the calculated nNulls nInclu: The array with the calculated nInclu correl: The array with the calculated correl upWin: The upper limit of the window lowWin: The lower limit of the window maxFluorTotal: The maximum fluorescence over all rows minFluorTotal: The minimum fluorescence over all rows stopCyc: The vector with the stop cycle of the log lin phase startCyc: The vector with the start cycle of the log lin phase threshold: The threshold fluorescence vecNoAmplification: True if there is a amplification error vecBaselineError: True if there is a baseline error vecSkipSample: Skip the sample vecNoPlateau: True if there is no plateau vecShortLogLin: True indicates a short log lin phase vecIsUsedInWoL: True if used in the WoL Returns: The values indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, threshold, vecIsUsedInWoL. """ skipGroup = False stepSize = 0.2 # was 0.5, smaller steps help in finding WoL # Keep 60 calculated results memVarEff = np.zeros(60, dtype=np.float64) memUpWin = np.zeros(60, dtype=np.float64) memFoldWidth = np.zeros(60, dtype=np.float64) maxFluorWin = _lrp_meanStopFluor(fluor, tarGroup, vecTarget, stopCyc, vecSkipSample, vecNoPlateau) if maxFluorWin > 0.0: maxFluorWin = np.log10(maxFluorWin) else: skipGroup = True minFluorLim = _lrp_maxStartFluor(fluor, tarGroup, vecTarget, startCyc, vecSkipSample) if minFluorLim > 0.0: minFluorLim = np.log10(minFluorLim) else: skipGroup = True checkMeanEff = 1.0 if not skipGroup: foldWidth = pointsInWoL * _lrp_logStepStop(fluor, tarGroup, vecTarget, stopCyc, vecSkipSample, vecNoPlateau) upWin, lowWin = _lrp_setLogWin(tarGroup, maxFluorWin, foldWidth, upWin, lowWin, maxFluorTotal, minFluorTotal) _unused, _unused2, checkPcrEff, _unused3, _unused4, _unused5 = _lrp_allParamInWindow(fluor, tarGroup, vecTarget, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, vecNoAmplification, vecBaselineError) [checkMeanEff, _unused] = _lrp_meanPcrEff(tarGroup, vecTarget, checkPcrEff, vecSkipSample, vecNoPlateau, vecShortLogLin) if checkMeanEff < 1.001: skipGroup = True if skipGroup: if tarGroup is None: threshold[0] = (0.5 * np.round(1000 * upWin[0]) / 1000) else: threshold[tarGroup] = (0.5 * np.round(1000 * upWin[tarGroup]) / 1000) if not skipGroup: foldWidth = np.log10(np.power(checkMeanEff, pointsInWoL)) counter = -1 maxVarEff = 0.0 maxVarEffStep = -1 lastUpWin = 2 + maxFluorWin while True: counter += 1 step = np.log10(checkMeanEff) newUpWin = maxFluorWin - counter * stepSize * step if newUpWin < lastUpWin: upWin, lowWin = _lrp_setLogWin(tarGroup, newUpWin, foldWidth, upWin, lowWin, maxFluorTotal, minFluorTotal) _unused, _unused2, checkPcrEff, _unused3, _unused4, _unused5 = _lrp_allParamInWindow(fluor, tarGroup, vecTarget, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, vecNoAmplification, vecBaselineError) [checkMeanEff, _unused] = _lrp_meanPcrEff(tarGroup, vecTarget, checkPcrEff, vecSkipSample, vecNoPlateau, vecShortLogLin) foldWidth = np.log10(np.power(checkMeanEff, pointsInWoL)) if foldWidth < 0.5: foldWidth = 0.5 # to avoid width = 0 above stopCyc upWin, lowWin = _lrp_setLogWin(tarGroup, newUpWin, foldWidth, upWin, lowWin, maxFluorTotal, minFluorTotal) _unused, _unused2, checkPcrEff, _unused3, _unused4, _unused5 = _lrp_allParamInWindow(fluor, tarGroup, vecTarget, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, vecNoAmplification, vecBaselineError) [checkMeanEff, checkVarEff] = _lrp_meanPcrEff(tarGroup, vecTarget, checkPcrEff, vecSkipSample, vecNoPlateau, vecShortLogLin) if checkVarEff > 0.0: memVarEff[counter] =
np.sqrt(checkVarEff)
numpy.sqrt
# Copyright 2016 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # License: Apache License, Version 2.0 # Create: 2016-12-02 """Utilities for the SurrogateModel test process.""" from math import isnan import numpy as np def assert_rel_error(test_case, actual, desired, tolerance): """ Determine that the relative error between `actual` and `desired` is within `tolerance`. If `desired` is zero, then use absolute error. Args ---- test_case : :class:`unittest.TestCase` TestCase instance used for assertions. actual : float The value from the test. desired : float The value expected. tolerance : float Maximum relative error ``(actual - desired) / desired``. """ try: actual[0] except (TypeError, IndexError): if isnan(actual) and not isnan(desired): test_case.fail('actual nan, desired %s, rel error nan, tolerance %s' % (desired, tolerance)) if desired != 0: error = (actual - desired) / desired else: error = actual if abs(error) > tolerance: test_case.fail('actual %s, desired %s, rel error %s, tolerance %s' % (actual, desired, error, tolerance)) else: # array values if not np.all(np.isnan(actual) == np.isnan(desired)): test_case.fail('actual and desired values have non-matching nan values') if np.linalg.norm(desired) == 0: error = np.linalg.norm(actual) else: error = np.linalg.norm(actual - desired) /
np.linalg.norm(desired)
numpy.linalg.norm
#!/usr/bin/env python # coding: utf-8 # updated!!!! ''' For more information and details about the algorithm, please refer to PhD thesis of <NAME> LEARNING AND AGGREGATION OF FUZZY COGNITIVE MAPS – AN EVOLUTIONARY APPROACH by <NAME> ''' import numpy as np import copy import tqdm.auto as tq import matplotlib.pylab as plt import matplotlib #matplotlib.use("TkAgg") # nice feature, it will plot and update fitness function during learning process !!!! do NOT use in the jupyter notebook !!! class rcga: ''' RCGA algrithm for creating FCM based on the sample valuee, nConcepts - number of concepts (nodes), concetps: initial concepts values, Pmutation: probability of mutation (default 0.5), Precombination: probability of crossover (0.9), population_size (default 100), max_generations: max nubmer of steps (def 100000), numberofsteps - number of simulation steps, should be the same as in the historical data, maxfitness - fitness value after which learning process can be stopped ''' def __init__(self, concepts, Pmutation=None, Precombination=None, population_size=None, max_generations=None, historicaldata=None, fcm=None, numberofsteps=None, tournamentP=None, tournamentK=None, lbd=None,maxfitness=None): # GENERAL PARAMS # types of mutations are randomly choosen according to authors of the article W.Stach et al. 2005 self.mutation_methods = ['random', 'nonuniform', 'Muhlenbein'] # types of selection are randomly choosen according to authors of the article W.Stach et al. 2005 self.selection_methods = ['rulette', 'tournament'] # proability of cell mutatiing self.prob_mutation = 0.5 if Pmutation is None else Pmutation self.prob_recombination = 0.9 if Precombination is None else Precombination self.tournamentP = 1 if tournamentP is None else tournamentP self.tournamentK = 5 if tournamentK is None else tournamentK # or 10.... self.lbd = 1 if lbd is None else lbd # this is the operator of the sigmoid function, in a lot of papers it's set to 1 (elpiniki), Stach suggested 5 # GENERATION PROPERTIES # size of the population, number of chromosomes in each population self.population_size = 100 if population_size is None else population_size if self.population_size % 2 != 0: raise ValueError('Population size must be an EVEN number') # nmax number of generations self.max_generations = 100000 # 300000 if max_generations is None else max_generations self.current_gen = 0 self.generations = np.zeros((self.population_size, len(concepts[0]), len(concepts[0]) - 1)) self.nConcepts = len(concepts[0]) # HISTORICAL DATA # historical data obtained from fcm simulations or observations (in the format columns - concepts, rows - simulation steps) if historicaldata is None and fcm is None: raise ValueError('Cannot run the learning process without previous FCM architecture or historical data!!!') self.data = historicaldata # fcm which we are optimizing self.fcm = fcm # FITNESS FUNCTION self.generation_fitness = np.zeros((1, self.population_size)) self.maxfitness = 0.999 if maxfitness is None else maxfitness self.concepts_for_testing = concepts # number of steps we have to run the simulation in order to calculate fintess function (in Stach paper - 1 step) self.numberofsteps = 2 # 5 if numberofsteps is None else numberofsteps # suggested 1 # termination conditions self.termination = False def intitialize(self): # initialize 1st population self.generations = np.random.uniform(low=-1, high=1, size=(self.population_size, self.nConcepts, self.nConcepts - 1)) # -------------------- FITNESS OF THE GENERATION -------------------------------------- def simulateFCM(self, concepts, weights, nsteps): ''' we have to simulate fcm with current weights in order to calculate fitness function concepts should be given as a np.array((1,nConcepts)) :param concepts: conept vector :param weights: weight array :param nsteps: number of time step for the FCM simulation :return: concepts values after nsteps ''' # VERY IMPORTANT # weights as np.array((nConcepts,nConcepts-1)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! assert weights.shape == (self.nConcepts, self.nConcepts - 1), 'wrong encoding' for j in range(1, nsteps): newvalues = np.zeros((concepts.shape[0])) for i in range(concepts.shape[0]): idx = list(range(concepts.shape[0])) idx.remove(i) newvalues[i] = round(1 / (1 + np.exp(-(concepts[i] + concepts[idx] @ weights[i]))), 8) concepts = newvalues return concepts def calculate_fitness(self, weights): ''' calculate fitness for each of the chromosome :param weights: generated weight array, then tested :return: fitness of the chromosome (how well this weight matrix did) ''' # difference alpha = 1 / ((self.numberofsteps - 1) * self.nConcepts* self.data.shape[0]) # we are countin L1 # let's say we have both historical data and fcm, so we can simply # simulate with new weights and calculate difference to obtain the fitness function error = 0 for row, testcase in zip(self.data,self.concepts_for_testing): error += np.sum( np.abs(np.subtract(row, self.simulateFCM(testcase, weights, self.numberofsteps)))) return 1 / (100 * alpha*error + 1) # -------------------- CROSSOVER -------------------------------------- def crossover(self): ''' crossover - swiping the values between the chromosomes in the generation e.g. 0:15 weights from weights1 are swaped with weights 15:: in weights2 :return: crossedovered pair ''' crossover_pairs = self.generations a = list(np.random.choice([False, True], p=[1 - self.prob_recombination, self.prob_recombination], size=self.population_size).astype(int) * range(self.population_size)) a = list(filter(lambda x: x != 0, a)) # we are applying one point corssover and mixing 1st with 2nd, 3rd with 4th and so on... for i in range(0, len(a), 2): # population size (defaul 100), every even idx # choosing if the crossover will happen # 1 take two crossover pairs chromA = crossover_pairs[i] chromB = crossover_pairs[i + 1] # 2 flatten them chromA = np.reshape(chromA, (self.nConcepts * (self.nConcepts - 1))) chromB = np.reshape(chromB, (self.nConcepts * (self.nConcepts - 1))) # 3 randomly choose the 'crossing point' point = np.random.choice(range(self.nConcepts * (self.nConcepts - 1))) # 4 swap the values chromA[point:] = chromB[point:] chromB[:point] = chromA[:point] # 5 reshape to (nconcepts,nconcepts) chromA = np.reshape(chromA, (self.nConcepts, self.nConcepts - 1)) chromB = np.reshape(chromB, (self.nConcepts, self.nConcepts - 1)) # after crossover, crossover_pairs are the latest generation self.generations = crossover_pairs # -------------------- MUTATION -------------------------------------- def mutation(self): ''' randomly chooses one of implemented mutation technique and applies it on the wieght matrix both random and nmutation use techniqes described in Genetic learning offuzzy cognitive maps <NAME>, <NAME>∗, <NAME>, <NAME> :return: ''' mut = np.random.choice(['random','nonuniform']) if mut =='random': self.randommutation() elif mut =='nonuniform': self.numutation() def randommutation(self): ''' randomly chooses one of implemented mutation technique and applies it on the wieght matrix both random and nmutation use techniqes described in Genetic learning offuzzy cognitive maps <NAME>, <NAME>∗, <NAME>, <NAME> :return: ''' # applying mutation # choosing x % indexes for mutation a = list(np.random.choice([False, True], p=[1 - self.prob_mutation, self.prob_mutation], size=self.population_size).astype(int) * range(self.population_size)) a = list(filter(lambda x: x != 0, a)) for i in a: # muation is happening with probability # random method j = np.random.choice(range(self.nConcepts), size=1) k = np.random.choice(range(self.nConcepts - 1), size=1) self.generations[i, j,k] = np.random.uniform(-1,1) def numutation(self): ''' randomly chooses one of implemented mutation technique and applies it on the wieght matrix both random and nmutation use techniqes described in Genetic learning offuzzy cognitive maps <NAME>, <NAME>∗, <NAME>, <NAME> :return: ''' # choosing p % of chromosomes in the generation a = list(np.random.choice([False, True], p=[1 - self.prob_mutation, self.prob_mutation], size=self.population_size).astype(int) * range(self.population_size)) a = list(filter(lambda x: x != 0, a)) # randomly choose max 3 elements in the chromosome and change their vals d = round((self.max_generations-self.current_gen)/(self.max_generations/2)) for i in a: # randomly choosing d% of the elements to mutate, it decreases with the n of generations for change in range(d): j = np.random.choice(range(self.nConcepts), size=1) k = np.random.choice(range(self.nConcepts - 1), size=1) self.generations[i, j, k] = np.random.uniform(-1, 1) # -------------------- SELECTION OF THE BEST CANDIDATES FOR THE NEXT GENERATION -------------------------------------- def selection(self): ''' selecting the candidates from the last generation to the new generation as paper suggestd we are randomly choosing the way to choose gene for crossover ref: Genetic learning offuzzy cognitive maps <NAME>, <NAME>∗, <NAME>, <NAME> calls one of the selection methods rullete or tournament ''' cross = np.random.choice(['rulette', 'tournament']) if cross == 'rulette': crossover_pairs = self.rulette() elif cross == 'tournament': crossover_pairs = self.tournament() def rulette(self): ''' choosing candidates for crossover with probability according to the fitness function of each chromosome more information https://en.wikipedia.org/wiki/Selection_(genetic_algorithm) :return: ''' selection = np.zeros((self.population_size, self.nConcepts, self.nConcepts - 1)) # initial probability list p = self.generation_fitness[-2] /
np.sum(self.generation_fitness[-2])
numpy.sum
import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt #Dados: #Referentes à tabela 1: tabela1x = np.arange(1,21) tabela1y = np.array([9, 16, 21, 25, 33, 48, 61, 75, 91, 27, 148, 175, 244,375, 450, 62, 674, 860, 1100, 1331 ], float) #Referentes à tabela 2: tabela2x = np.arange(21,41) tabela2y = np.array([1696, 1995, 2314, 2606, 3024, 3523, 4032, 5387, 6507, 7560, 8078, 8911, 10328, 10869, 12210, 13197, 13832, 14393, 14967,15729], float) #Versões linearizadas de y, para as tabelas 1 e 2, respectivamente: tabela1Log = np.array([2.19722, 2.77259, 3.04452, 3.21888, 3.49651, 3.8712, 4.11087, 4.31749, 4.51086, 4.84419, 4.99721, 5.16479, 5.49717, 5.92693, 6.10925, 6.3315, 6.51323, 6.75693, 7.00307, 7.19369], float) tabela2Log = np.array([7.43603, 7.5984, 7.74673, 7.86557, 8.01434, 8.16707, 8.30202, 8.59174, 8.78063, 8.93063, 8.9969, 9.09504, 9.24261, 9.29367, 9.41001, 9.48774, 9.53474, 9.5745, 9.6136, 9.66326], float) ''' #Implementando o MMQ p/ um polinômio de grau 1: #C/ dados da tabela 1: m = len(tabela1x) n = 1 A = np.zeros((n+1,n+1)) B = np.zeros(n+1) a = np.zeros(n+1) for row in range(n+1): for col in range(n+1): if row == 0 and col == 0: A[row,col] = m continue A[row, col] = np.sum(tabela1x**(row+col)) B[row] = np.sum(tabela1x**row * tabela1Log) a = np.linalg.solve(A, B) print('Para tabela 1 : ') print('f(x) = %.3f'%a[0]) for i in range(1, n+1): print(' %+.3f x^%d' % (a[i],i)) #Para Tabela 2: m = len(tabela2x) n = 1 A = np.zeros((n+1,n+1)) B = np.zeros(n+1) a = np.zeros(n+1) for row in range(n+1): for col in range(n+1): if row == 0 and col == 0: A[row,col] = m continue A[row, col] = np.sum(tabela2x**(row+col)) B[row] = np.sum(tabela2x**row * tabela2Log) a = np.linalg.solve(A, B) print('Para tabela 2 : ') print('f(x) = %.3f'%a[0]) for i in range(1, n+1): print(' %+.3f x^%d' % (a[i],i)) ''' #Define uma função polinomial de grau 1: def f(x,a0,a1): return a0 + a1*x #Retorna uma função de ajuste de acorodo com os dados: a,_ = curve_fit(f, tabela1x, tabela1Log) #print('Equação p/ tabela 1:') #print('y = (%.3f) + (%.3f)x'%(a[0],a[1])) c,_ = curve_fit(f, tabela2x, tabela2Log) #print('Equação p/ tabela 2:') #print('y = (%.3f) + (%.3f)x' % (c[0],c[1])) ''' #Plotando gráfico para (reta 1 x reta 2): plt.plot(tabela1x, f(tabela1x, *a), 'r-', label='reta 1: %5.2f + %5.2f x' % tuple(a)) plt.plot(tabela2x, f(tabela2x, *a), 'b-', label='reta 2: %5.2f + %5.2f x' % tuple(c)) plt.xlabel('x') plt.ylabel('y') plt.legend() plt.show() ''' #Obtendo os coeficientes das curvas exponenciais: #P/ curva 1: c1 = np.exp(a[0]) c2 = np.exp(a[1]) #P/ curva 2: c3 = np.exp(c[0]) c4 = np.exp(c[1]) #Definindo os intervalos e funções : x1 = np.arange(21) x2 =
np.arange(21, 41)
numpy.arange
import numpy as np from scipy.spatial import distance from ccdc import protein def centroid(arr): length = arr.shape[0] sum_x = np.sum(arr[:, 0]) sum_y =
np.sum(arr[:, 1])
numpy.sum
from typing import Tuple, Dict, List, Union import numpy as np from jina.executors.crafters import BaseSegmenter from .helper import _crop_image, _move_channel_axis, _load_image class RandomImageCropper(BaseSegmenter): """ :class:`RandomImageCropper` crops the image with a random crop box. The coordinate is the same coordinate-system in the :py:mode:`PIL.Image`. """ def __init__(self, target_size: Union[Tuple[int], int] = 224, num_patches: int = 1, channel_axis: int = -1, *args, **kwargs): """ :param target_size: desired output size. If size is a sequence like (h, w), the output size will be matched to this. If size is an int, the output will have the same height and width as the `target_size`. """ super().__init__(*args, **kwargs) self.target_size = target_size self.num_patches = num_patches self.channel_axis = channel_axis def craft(self, blob: 'np.ndarray', *args, **kwargs) -> List[Dict]: """ Crop the input image array. :param blob: the ndarray of the image :return: a list of chunk dicts with the cropped images """ raw_img = _load_image(blob, self.channel_axis) result = [] for i in range(self.num_patches): _img, top, left = _crop_image(raw_img, self.target_size, how='random') img = _move_channel_axis(
np.asarray(_img)
numpy.asarray
# *-* encoding: utf-8 *-* # Unit tests for ppn functions from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import numpy as np import tensorflow as tf from faster_particles.ppn_utils import generate_anchors, \ top_R_pixels, clip_pixels, \ compute_positives_ppn1, compute_positives_ppn2, assign_gt_pixels, \ include_gt_pixels, predicted_pixels, crop_pool_layer, \ all_combinations, slice_rois, \ nms_step, nms def generate_anchors_np(im_shape, repeat=1): dim = len(im_shape) anchors = np.indices(im_shape).transpose(tuple(range(1, dim+1)) + (0,)) anchors = anchors + 0.5 anchors = np.reshape(anchors, (-1, dim)) return np.repeat(anchors, repeat, axis=0) def clip_pixels_np(pixels, im_shape): """ pixels shape: [None, 2] Clip pixels (x, y) to [0, im_shape[0]) x [0, im_shape[1]) """ dim = len(im_shape) for i in range(dim): pixels[:, i] = np.clip(pixels[:, i], 0, im_shape[i]) return pixels class Test(unittest.TestCase): def generate_anchors(self, im_shape, repeat): anchors_np = generate_anchors_np(im_shape, repeat=repeat) with tf.Session(): anchors_tf = generate_anchors(im_shape, repeat=repeat) return np.array_equal(anchors_tf, anchors_np) def test_generate_anchors_2d(self): im_shape = (2, 2) repeat = 3 return self.generate_anchors(im_shape, repeat) def test_generate_anchors_3d(self): im_shape = (2, 2, 2) repeat = 3 return self.generate_anchors(im_shape, repeat) def clip_pixels(self, im_shape, proposals_np): pixels_np = clip_pixels_np(proposals_np, im_shape) with tf.Session() as sess: proposals = tf.constant(proposals_np, dtype=tf.float32) pixels = clip_pixels(proposals, im_shape) pixels_tf = sess.run(pixels) return np.allclose(pixels_np, pixels_tf) def test_clip_pixels_2d(self): im_shape = (3, 3) proposals_np = np.array([[-0.5, 1.0], [0.01, 3.4], [2.5, 2.99]]) return self.clip_pixels(im_shape, proposals_np) def test_clip_pixels_3d(self): im_shape = (2, 2, 2) proposals_np = np.random.rand(5, 3)*4-1 return self.clip_pixels(im_shape, proposals_np) def top_R_pixels(self, R, threshold, proposals_np, scores_np): threshold_indices = np.nonzero(scores_np > threshold) scores_np = scores_np[threshold_indices] proposals_np = proposals_np[threshold_indices] sorted_indices = np.argsort(scores_np) roi_scores_np = scores_np[sorted_indices][::-1][:R] rois_np = proposals_np[sorted_indices][::-1][:R] with tf.Session() as sess: proposals = tf.constant(proposals_np, dtype=tf.float32) scores = tf.constant(scores_np, dtype=tf.float32) rois, roi_scores = top_R_pixels(proposals, scores, R=R, threshold=threshold) rois_tf, roi_scores_tf = sess.run([rois, roi_scores]) return np.allclose(rois_tf, rois_np) and np.allclose(roi_scores_np, roi_scores_tf) def test_top_R_pixels_2d(self): R = 3 threshold = 0.5 # Shape N*N x 2 proposals_np = np.array([[0.0, 1.0], [0.5, 0.7], [0.3, 0.88], [-0.2, 0.76], [0.23, 0.47], [0.33, 0.56], [0.0, 0.4], [-0.6, 0.3], [0.27, -0.98]]) # Shape N*N x 1 scores_np = np.array([0.1, 0.5, 0.7, 0.45, 0.65, 0.01, 0.78, 0.98, 0.72]) return self.top_R_pixels(R, threshold, proposals_np, scores_np) def test_top_R_pixels_3d(self): R = 3 threshold = 0.5 # shape N*N x 3 proposals_np = np.array([[0.0, 1.0, 0.3], [0.87, 0.1, -0.34], [0.45, 0.68, 0.09], [0.34, 0.21, -0.6], [0.12, -0.4, 0.8], [0.48, 0.43, -0.79], [0.89, 0.05, -0.02], [0.9, 0.04, 1.0]]) # shape N*N x 1 scores_np = np.array([0.1, 0.5, 0.7, 0.45, 0.65, 0.01, 0.78, 0.98]) return self.top_R_pixels(R, threshold, proposals_np, scores_np) def predicted_pixels(self, im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np): dim = len(im_shape) anchors_np = generate_anchors_np(im_shape, repeat=repeat) scores = rpn_cls_prob_np[..., 1:] roi_scores_np = np.reshape(scores, (-1, scores.shape[-1])) anchors_np = np.reshape(anchors_np, (-1,) + (rpn_cls_prob_np.shape[1],) * dim + (dim,)) proposals = anchors_np + rpn_bbox_pred_np proposals = np.reshape(proposals, (-1, dim)) # clip predicted pixels to the image proposals = clip_pixels_np(proposals, im_shape) # FIXME np function rois_np = proposals.astype(float) with tf.Session() as sess: anchors_tf = generate_anchors(im_shape, repeat=repeat) rpn_cls_prob_tf = tf.constant(rpn_cls_prob_np, dtype=tf.float32) rpn_bbox_pred_tf = tf.constant(rpn_bbox_pred_np, dtype=tf.float32) rois, roi_scores = predicted_pixels(rpn_cls_prob_tf, rpn_bbox_pred_tf, anchors_tf, im_shape) rois_tf, roi_scores_tf = sess.run([rois, roi_scores]) return np.allclose(rois_tf, rois_np) and np.allclose(roi_scores_tf, roi_scores_np) def test_predicted_pixels1_2d(self): # for PPN1 im_shape = (2, 2) repeat = 1 # Shape [None, N, N, n] where n = 2 (background/signal) rpn_cls_prob_np = np.array([[[[0.1, 0.9], [0.3, 0.7]], [[0.5, 0.5], [0.8, 0.2]]]]) # Shape [None, N, N, 2] rpn_bbox_pred_np = np.array([[[[0.1, 0.1], [0.5, 0.2]], [[0.9, -0.5], [0.1, -0.4]]]]) return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def test_predicted_pixels1_3d(self): im_shape = (2, 2, 2) repeat = 1 rpn_cls_prob_np = np.random.rand(1, 2, 2, 2, 2) rpn_bbox_pred_np = np.random.rand(1, 2, 2, 2, 3)*2-1 return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def test_predicted_pixels2_2d(self): # for PPN2 im_shape = (2, 2) repeat = 1 # Shape [None, N, N, n] where n = num_classes rpn_cls_prob_np = np.array([[[[0.1, 0.8, 0.1], [0.3, 0.65, 0.05]], [[0.5, 0.02, 0.48], [0.8, 0.18, 0.02]]]]) # Shape [None, N, N, 2] rpn_bbox_pred_np = np.array([[[[0.1, 0.1], [0.5, 0.2]], [[0.9, -0.5], [0.1, -0.4]]]]) return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def test_predicted_pixels2_3d(self): im_shape = (2, 2, 2) repeat = 1 rpn_cls_prob_np = np.random.rand(1, 2, 2, 2, 3) rpn_bbox_pred_np = np.random.rand(1, 2, 2, 2, 3)*2-1 return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def include_gt_pixels(self, rois_np, gt_pixels_np, dim1, dim2): dim = gt_pixels_np.shape[-1] # convert to F3 coordinates gt_pixels_coord = np.floor(gt_pixels_np / dim1) # Get 3x3 pixels around this in F3 gt_pixels_coord = gt_pixels_coord[:, np.newaxis, :] gt_pixels_coord = np.tile(gt_pixels_coord, [1, 3**dim, 1]) # shape N x 9 x 2 shifts = all_combinations(([-1, 0, 1],) * dim) update = np.tile(shifts[np.newaxis, :, :], [gt_pixels_coord.shape[0], 1, 1]) gt_pixels_coord = gt_pixels_coord + update gt_pixels_coord = np.reshape(gt_pixels_coord, (-1, dim)) # Shape N*9, 2 # Go back to F5 coordinates gt_pixels_coord = gt_pixels_coord / dim2 rois_result_np = np.vstack([np.floor(rois_np), gt_pixels_coord]) # shape [None, 2] with tf.Session() as sess: rois_tf = tf.constant(rois_np, dtype=tf.float32) gt_pixels_tf = tf.constant(gt_pixels_np, dtype=tf.float32) rois_tf = include_gt_pixels(rois_tf, gt_pixels_tf, dim1, dim2) rois_result_tf = sess.run(rois_tf) return np.allclose(rois_result_tf, rois_result_np) def test_include_gt_pixels_2d(self): dim1, dim2 = 8.0, 4.0 # [None, 2] in F5 coordinates rois_np = np.array([[0, 3], [15, 2], [3, 4], [5.6, 9.1]]) # [None, 2] gt_pixels_np = np.array([[2.4, 2.3], [3, 4], [6.4, 1.2]]) return self.include_gt_pixels(rois_np, gt_pixels_np, dim1, dim2) def test_include_gt_pixels_3d(self): dim1, dim2 = 8.0, 4.0 rois_np = np.random.rand(10, 3) gt_pixels_np = np.random.rand(4, 3)*dim1*dim2 return self.include_gt_pixels(rois_np, gt_pixels_np, dim1, dim2) def compute_positives_ppn1(self, gt_pixels_test, N3, dim1, dim2): dim =gt_pixels_test.shape[-1] classes_np = np.zeros((N3,)*dim) gt_pixels_np = np.floor(gt_pixels_test / (dim1 * dim2)).astype(int) gt_pixels_np = tuple(zip(*gt_pixels_np)) classes_np[gt_pixels_np] = 1. classes_mask_np = classes_np.reshape(-1,1).astype(bool) # shape (16*16, 1) with tf.Session() as sess: gt_pixels_tf = tf.constant(gt_pixels_test, dtype=tf.float32) classes_mask_tf = compute_positives_ppn1(gt_pixels_tf, N3, dim1, dim2) classes_mask_tf = sess.run([classes_mask_tf]) return np.allclose(classes_mask_np, classes_mask_tf) def test_compute_positives_ppn1_2d(self): dim1, dim2, N3 = 8.0, 4.0, 16 # Dummy input for testing, num of gt pixels = N = 3 gt_pixels_test = np.array([[5.5, 7.7], [511.1, 433.3], [320, 320]]) return self.compute_positives_ppn1(gt_pixels_test, N3, dim1, dim2) def test_compute_positives_ppn1_3d(self): dim1, dim2, N3 = 8.0, 4.0, 16 gt_pixels_test = np.array([[5.5, 7.7, 45.9], [511.1, 433.3, 5.6], [320, 320, 201]]) return self.compute_positives_ppn1(gt_pixels_test, N3, dim1, dim2) def compute_positives_ppn2(self, closest_gt_distance_test, thres_test): pixel_count = closest_gt_distance_test.shape[0] common_shape_np = np.array([pixel_count, 1]) mask_np = np.where(np.greater(closest_gt_distance_test, thres_test), False, True) mask_np[np.argmin(closest_gt_distance_test)] = True with tf.Session() as sess: mask_tf = compute_positives_ppn2(closest_gt_distance_test, threshold=thres_test) mask_tf = sess.run([mask_tf]) return np.allclose(mask_np, mask_tf) def test_compute_positives_ppn2_2d(self): nb_rois, N = 5, 16 closest_gt_distance_test = np.arange(nb_rois*N*N).reshape(-1, 1) thres_test = 2 return self.compute_positives_ppn2(closest_gt_distance_test, thres_test) def test_compute_positives_ppn2_3d(self): nb_rois, N = 5, 16 closest_gt_distance_test = np.arange(nb_rois*N*N*N).reshape(-1, 1) thres_test = 2 return self.compute_positives_ppn2(closest_gt_distance_test, thres_test) # TODO test rois option too def assign_gt_pixels(self, gt_pixels_np, proposals_np, dim1, dim2, rois=None): dim = proposals_np.shape[-1] gt_pixels = gt_pixels_np[:, :-1] gt_pixels = gt_pixels[np.newaxis, :, :] if rois is not None: proposals = (proposals_np * dim2 * rois) * dim1 else: proposals = proposals_np * dim1 * dim2 all_gt_pixels = np.tile(gt_pixels, [proposals_np.shape[0], 1, 1]) proposals = proposals[:, np.newaxis, :] distances = np.sqrt(np.sum(np.power(proposals - all_gt_pixels, 2), axis=2)) closest_gt = np.argmin(distances, axis=1) closest_gt_distance = np.amin(distances, axis=1) gt_pixels_labels = gt_pixels_np[:, -1] closest_gt_label = [gt_pixels_labels[i] for i in closest_gt] with tf.Session() as sess: gt_pixels_tf = tf.constant(gt_pixels_np, dtype=tf.float32) proposals_tf = tf.constant(proposals_np, dtype=tf.float32) closest_gt_tf, closest_gt_distance_tf, closest_gt_label_tf = assign_gt_pixels(gt_pixels_tf, proposals_tf, dim1, dim2, rois=rois) closest_gt_result, closest_gt_distance_result, closest_gt_label_result = sess.run([closest_gt_tf, closest_gt_distance_tf, closest_gt_label_tf]) return np.allclose(closest_gt_result, closest_gt) and np.allclose(closest_gt_distance_result, closest_gt_distance) and np.allclose(closest_gt_label_result, closest_gt_label) def test_assign_gt_pixels_2d(self): dim1, dim2 = 8.0, 4.0 gt_pixels_np = np.array([[0.5, 5.6, 1], [53, 76, 2]]) proposals_np = np.array([[1.0, 1.0], [7, 75], [98, 10], [5, 34]]) return self.assign_gt_pixels(gt_pixels_np, proposals_np, dim1, dim2) def test_assign_gt_pixels_3d(self): dim1, dim2 = 8.0, 4.0 gt_pixels_np = np.array([[0.5, 5.6, 45, 1], [53, 76, 102, 2]]) proposals_np = np.array([[1.0, 1.0, 0.43], [7, 75, 2.3], [98, 10, 45], [5, 34, 72]]) return self.assign_gt_pixels(gt_pixels_np, proposals_np, dim1, dim2) def crop_pool_layer(self, net, rois_np, dim2, dim): rois = np.array(rois_np * dim2).astype(int) nb_channels = net.shape[-1] if dim == 2: rois = [net[:, i[0], i[1], :] for i in rois] elif dim == 3: rois = [net[:, i[0], i[1], i[2], :] for i in rois] rois = np.reshape(rois, (-1,) + (1,) * dim + (nb_channels,)) with tf.Session() as sess: rois_tf = crop_pool_layer(tf.constant(net, dtype=tf.float32), tf.constant(rois_np, dtype=tf.float32), dim2, dim) rois_result = sess.run(rois_tf) return np.allclose(rois, rois_result) def test_crop_pool_layer_2d(self): dim2, dim = 4.0, 2 net = np.random.rand(1, 64, 64, 16) rois_np = np.random.rand(10, 2)*16 return self.crop_pool_layer(net, rois_np, dim2, dim) def test_crop_pool_layer_3d(self): dim2, dim = 4.0, 3 net = np.random.rand(1, 64, 64, 64, 16) rois_np = np.random.rand(10, 3)*16 return self.crop_pool_layer(net, rois_np, dim2, dim) def test_all_combinations(self): return np.allclose(all_combinations(([0, 1], [0, 1])), np.array([[0, 0], [0, 1], [1, 0], [1, 1]])) def slice_rois(self, rois_np, dim2): dim = rois_np.shape[-1] rois_slice = [] for i in range(dim): rois_slice.append(np.multiply(rois_np[:, i], dim2)) rois_slice = np.array(rois_slice)[..., np.newaxis, np.newaxis] indices = ([-2, -1, 0, 1],) * dim shifts = all_combinations(indices).T[:, np.newaxis, np.newaxis, :] all_rois = np.add(rois_slice, shifts) rois = np.reshape(all_rois, (-1, dim)) / dim2 with tf.Session() as sess: rois_tf = slice_rois(tf.constant(rois_np, dtype=tf.float32), dim2) rois_result = sess.run(rois_tf) return np.allclose(rois, rois_result) def test_slice_rois_2d(self): dim2 = 4.0 rois_np = np.random.rand(10, 2) * 64 return self.slice_rois(rois_np, dim2) def test_slice_rois_3d(self): dim2 = 4.0 rois_np = np.random.rand(10, 3) * 64 return self.slice_rois(rois_np, dim2) def test_nms_step(self): order = np.array([1, 2, 0]) x1 = np.array([0, 2, 3]) x2 =
np.array([1, 3, 4])
numpy.array
import cv2 import os import sys import numpy as np import pandas as pd from glob import glob import itertools from visionfuncs.io import sorted_glob from visionfuncs import cbcalib from visionfuncs import geometry from epypes.compgraph import CompGraphRunner from .io import open_images_all from .graph import CGCalibrateStereoBase def prepare_points_for_all_images(runner_prepare, imfiles_1, imfiles_2): all_images_1 = open_images_all(imfiles_1) all_images_2 = open_images_all(imfiles_2) runner_prepare.run( calibration_images_1=all_images_1, calibration_images_2=all_images_2 ) def create_runner_calib(im_wh): cg_calib = CGCalibrateStereoBase() params_calib = {'im_wh': im_wh} return CompGraphRunner(cg_calib, params_calib) def run_calib(impoints_1, impoints_2, indices_subset, pattern_points, im_wh): runner_calib = create_runner_calib(im_wh) imp_1 = [impoints_1[idx] for idx in indices_subset] imp_2 = [impoints_2[idx] for idx in indices_subset] obp = cbcalib.make_list_of_identical_pattern_points(len(indices_subset), pattern_points) runner_calib.run( image_points_1=imp_1, image_points_2=imp_2, object_points=obp ) return runner_calib def all_images_reprojection_error_for_subsets(calib_runners, runner_prepare): """ For each indices subset generated by indices_subset_gen, perform stereo calibration. Then, given the resulting intrinsics, solve PnP problem and compute reprojection error for all images. Return two NumPy arrays of equal length, where each element corresponds to reprojection error given all images and intrinsics from calibration based on a specific images subset. """ rms_list_1 = [] rms_list_2 = [] # for all images impoints_1 = runner_prepare['image_points_1'] impoints_2 = runner_prepare['image_points_2'] pattern_points = runner_prepare['pattern_points'] def multiple_pnp(impoints, cm, dc): # capturing object_points rvecs = [] tvecs = [] for imp in impoints: _, rvec, tvec = cv2.solvePnP(pattern_points, imp, cm, dc) rvecs.append(rvec) tvecs.append(tvec) return rvecs, tvecs object_points = cbcalib.make_list_of_identical_pattern_points(len(impoints_1), pattern_points) for rcalib in calib_runners: cm1 = rcalib['cm_1'] dc1 = rcalib['dc_1'] cm2 = rcalib['cm_2'] dc2 = rcalib['dc_2'] rvecs1, tvecs1 = multiple_pnp(impoints_1, cm1, dc1) rvecs2, tvecs2 = multiple_pnp(impoints_2, cm2, dc2) rms1 = cbcalib.reproject_and_measure_error(impoints_1, object_points, rvecs1, tvecs1, cm1, dc1) rms2 = cbcalib.reproject_and_measure_error(impoints_2, object_points, rvecs2, tvecs2, cm2, dc2) rms_list_1.append(rms1) rms_list_2.append(rms2) return np.array(rms_list_1),
np.array(rms_list_2)
numpy.array
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data =
np.array([])
numpy.array
# Copyright (c) 2015, <NAME> and <NAME> All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Author's note: # This file was distributed as part of the Nature Biotechnology # supplementary software release for DeepBind. Users of DeepBind # are encouraged to instead use the latest source code and binaries # for scoring sequences at # http://tools.genes.toronto.edu/deepbind/ # import re import os import csv import copy import time import logging import tempfile import itertools import smat as sm import numpy as np import numpy.random as npr import deepity import scipy import scipy.stats import gzip import cPickle from .util import acgt2ord,acgtcomplement,ord2acgt from . import globals from deepity.util import tic,toc from os.path import join,basename,splitext,exists from math import tanh _dinucs = ["".join(dinuc) for dinuc in itertools.product(['A','C','G','T'],['A','C','G','T'])] def dinuc_enrichment_features(s): # Assumption: all kmers have same length n = len(s) k = len(_dinucs[0]) expected = float(n-k+1) / (4.**k) feats = [] for dinuc in _dinucs: count = sum(1 for _ in re.finditer('(?=%s)'%dinuc, s)) # count all occurrances of kmer; str.count doesn't count overlapping kmers #feats.append(count/expected-1.0) feats.append(0) return feats ######################################################################### class datasource(deepity.resident_datasource): """ A kangaroo datasource that serves input attributes: - X_Sequence0...X_Sequencek: a list of "sequence columns", where each column has the same size, and is provided under the name X_SequenceName (where SequenceName was taken from the column header in the sequencefile) - F: a single table of features F, taken from the featuresfile. and output attributes: - Y: the targets, with one column per target - Ymask: the mask of non-NaN elements in Y """ @staticmethod def fromtxt(sequencefile, featurefile=None, targetfile=None, foldfilter=None, maxrows=None, targetcols=None, sequencenames=None, featurenames=None, targetnames=None, dinucfeatures=True, **kwargs): # Load each text file, possible from cache sequencenames, sequences = loadtxt(sequencefile, maxrows=maxrows, colnames=sequencenames) featurenames, features = loadtxt(featurefile, maxrows=maxrows, colnames=featurenames) targetnames, targets = loadtxt(targetfile, maxrows=maxrows, colnames=targetnames, usecols=targetcols) # If the sequence file contained the targets, then split off that extra column if targets is None and sequencenames[-1].lower() == "bound": targetnames = [sequencenames.pop()] targets = [row[-1] for row in sequences] sequences = [row[:-1] for row in sequences] rowidx = np.arange(len(sequences)).astype(np.uint32).reshape((-1,1)) # Filter out rows that are not actually sequences if foldfilter: idx = [i for i in range(len(sequences)) if sequences[i][0] in foldfilter] sequences = [sequences[i] for i in idx] rowidx = rowidx[idx] if features is not None: features = [features[i] for i in idx] if targets is not None: targets = [targets[i] for i in idx] # Strip out the Fold ID and Event ID columns of the sequence array. if sequencenames and sequencenames[0].lower() in ("fold","foldid","fold id"): sequencenames = sequencenames[2:] foldids = [row[0] for row in sequences] sequences = [row[2:] for row in sequences] else: foldids = ["A" for i in range(len(sequences))] # Automatically add dinucleotide frequency features for each input sequence if dinucfeatures: if not featurenames: featurenames = [] features = [[] for row in sequences] for seqname in sequencenames: featurenames += [seqname+"."+dinuc for dinuc in _dinucs] for rowfeats, rowseqs in zip(features, sequences): for s in rowseqs: rowfeats += dinuc_enrichment_features(s) return datasource(sequencenames, sequences, featurenames, features, targetnames, targets, foldids, rowidx, **kwargs) @staticmethod def _generate_dinuc_featurevec(X): return dinuc_enrichment_features(ord2acgt(X)) def __init__(self, sequencenames, sequences, featurenames, features, targetnames, targets, foldids, rowidx): self.sequencenames = sequencenames self.featurenames = featurenames if features is not None else [] self.targetnames = targetnames if targets is not None else [] nsequence = len(self.sequencenames) seqattrs = sum([self._seqattrnames(i) for i in range(nsequence)],()) featattr = [("F",),("features",)] if features is not None else [(),()] targattrs = [("Y","Ymask"),("targets",)] if targets is not None else [(),()] foldattr = ("foldids",) if foldids is not None else () # Initialize the datasource superclass by telling it how many # input attributes to expect, based on super(datasource,self).__init__(input_attrs = seqattrs + featattr[0], output_attrs = targattrs[0], extra_attrs = ("rowidx","sequences") + featattr[1] + targattrs[1] + foldattr, # Attributes not batched or sent to the GPU ) nrow = len(sequences) self.rowidx = rowidx self.sequences = sequences self.features = np.asarray(features, dtype=np.float32).reshape((nrow,-1)) if features is not None else None self.targets = np.asarray(targets, dtype=np.float32).reshape((nrow,-1)) if targets is not None else None self.foldids = foldids self._task_ids = sorted(self.targetnames) self.preprocessors = {"features" : [], "targets" : []} self.requirements = {} self._create_attributes() def extract_fold(self, foldid): idx = np.asarray([i for i in range(len(self)) if self.foldids[i] == foldid]) return self[idx] def add_requirements(self, reqs): self.requirements.update(reqs) def clamp_extremes(self, lo, hi): self.Y = self.Y.copy() # Make a copy in case we're looking at a row-slice of a larger datasource self.Ymask = self.Ymask.copy() self.preprocessors = copy.deepcopy(self.preprocessors) pp = _clamp_extremes_preprocessor(self.Y, lo, hi) self.targets = self.Y.copy() self.Ymask = ~np.isnan(self.Y) self.preprocessors["targets"].append(pp) def logtransform_targets(self): self.Y = self.Y.copy() # Make a copy in case we're looking at a row-slice of a larger datasource self.Ymask = self.Ymask.copy() self.preprocessors = copy.deepcopy(self.preprocessors) pp = _logtransform_preprocessor(self.Y) self.preprocessors["targets"].append(pp) def arcsinhtransform_targets(self): self.Y = self.Y.copy() # Make a copy in case we're looking at a row-slice of a larger datasource self.Ymask = self.Ymask.copy() self.preprocessors = copy.deepcopy(self.preprocessors) pp = _arcsinhtransform_preprocessor(self.Y) self.preprocessors["targets"].append(pp) def normalize_targets(self, **requirements): requirements.update(self.requirements) if any([value == 'logistic' for value in requirements.values()]): intercept_mode = "min" else: intercept_mode = "mean" self.Y = self.Y.copy() # Make a copy in case we're looking at a row-slice of a larger datasource self.Ymask = self.Ymask.copy() self.preprocessors = copy.deepcopy(self.preprocessors) pp = _normalize_preprocessor(self.Y, intercept_mode) self.preprocessors["targets"].append(pp) def normalize_features(self): if hasattr(self,"F"): self.F = self.F.copy() # Make a copy in case we're looking at a row-slice of a larger datasource self.preprocessors = copy.deepcopy(self.preprocessors) pp = _normalize_preprocessor(self.F, "mean") self.preprocessors["features"].append(pp) def _create_attributes(self): # Adds public attributes with names matching nrow = len(self) nseq = len(self.sequencenames) for i in range(nseq): Xname,Rname = self._seqattrnames(i) self.__dict__[Xname] = [row[i] for row in self.sequences] self.__dict__[Rname] = np.zeros((nrow,1), np.uint32) # empty until set during asbatches() if self.features is not None: self.__dict__['F'] = self.features.copy() if self.targets is not None: self.__dict__['Y'] = self.targets.copy() self.__dict__['Ymask'] = ~np.isnan(self.targets) def _seqattrnames(self, index): return ('X_%s'%self.sequencenames[index], 'R_%s'%self.sequencenames[index]) def __len__(self): return len(self.rowidx) def open(self): return def load_preprocessors(self, indir): if not os.path.exists(join(indir, 'preprocessors.pkl')): return with open(join(indir, 'preprocessors.pkl'),'rb') as f: assert not self.preprocessors['features'], "Cannot load preprocessors for a datasource with already-preprocessed features." assert not self.preprocessors['targets'], "Cannot load preprocessors for a datasource with already-preprocessed targets." self.preprocessors = cPickle.load(f) for pp in self.preprocessors['features']: self.F = self.F.copy() pp.apply(self.F) for pp in self.preprocessors['targets']: self.Y = self.Y.copy() self.Ymask = self.Ymask.copy() pp.apply(self.Y) def dump_preprocessors(self, outdir, cols=None): if cols is None: cols = slice(None) preprocessors_sliced = { 'features' : self.preprocessors['features'], 'targets' : [pp.slice(cols) for pp in self.preprocessors['targets']] } with open(join(outdir, 'preprocessors.pkl'), 'wb') as f: cPickle.dump(preprocessors_sliced, f) def _insert_reversecomplements(self): if "reverse_complement" not in globals.flags: return nseq = len(self.sequencenames) for i in range(nseq): Xname,Rname = self._seqattrnames(i) X = getattr(self, Xname) rows = range(len(X)) Xrev = [acgtcomplement(x[::-1]) for x in X] newX = [Xrev[i] if j else X[i] for i in rows for j in (0,1)] setattr(self, Xname, newX) # For all the other attributes, simply duplicate their rows. duprows = np.repeat(np.arange(len(self)), 2) if hasattr(self, "rowidx"):self.rowidx = self.rowidx[duprows,:] if hasattr(self, "Y"): self.Y = self.Y[duprows,:] if hasattr(self, "Ymask"): self.Ymask = self.Ymask[duprows,:] if hasattr(self, "F"): self.F = self.F[duprows,:] # HACK: For dinuc statistic features, adjust columns. fwdrows = np.arange(0,len(self.F),2) revrows = np.arange(1,len(self.F),2) for j in range(len(self.featurenames)): fname = self.featurenames[j] if "." in fname: prefix, suffix = fname.rsplit(".",1) if suffix in _dinucs: rcsuffix = acgtcomplement(suffix[::-1]) k = self.featurenames.index(prefix+"."+rcsuffix) self.F[revrows,k] = self.F[fwdrows,j] return def asbatches(self, batchsize=64, reshuffle=False): n = len(self) assert n > 0 nbatch = (n + batchsize - 1) // batchsize nseq = len(self.sequencenames) padding = self.requirements.get('padding',0) batches = [] for i in range(nbatch): # Slice a our data attributes row-wise, according to batch index batch = self[np.arange(i*batchsize,min(n,(i+1)*batchsize))] batch._insert_reversecomplements() # Convert each sequence attribute from a list of strings ("GATC") to a # single contiguous numpy array X (0..3), along with a list of # regions R that identify the batch-relative offsets to the start/end # of each individual sequence for i in range(nseq): Xname,Rname = self._seqattrnames(i) batchX = getattr(batch, Xname) batchR = np.asarray(np.cumsum([0]+[padding+len(x) for x in batchX]),np.uint32).reshape((-1,1)) batchR = np.hstack([batchR[:-1],batchR[1:]]) # Convert list of strings to giant contiguous array of integers 0..3, # with padding values of 255 put between the individual sequences batchX = acgt2ord(("."*padding).join([""]+[x for x in batchX]+[""])).reshape((-1,1)) # Convert each batch from numpy array to sarray, # and then quickly forget about the numpy batch batchX = sm.asarray(batchX) batchR = sm.asarray(batchR) setattr(batch, Xname, batchX) setattr(batch, Rname, batchR) setattr(batch, "regions", batchR) batch._data_attrs = batch._data_attrs + ("regions",) if hasattr(batch,"F") and batch.F is not None: batch.F = sm.asarray(batch.F,sm.get_default_dtype()) if hasattr(batch,"Y") and batch.Y is not None: batch.Y = sm.asarray(batch.Y,sm.get_default_dtype()) if isinstance(batch.Ymask,np.ndarray): batch.Ymask = sm.asarray(batch.Ymask) batches.append(batch) return deepity.shuffled_repeat_iter(batches, reshuffle) ################################################################################### class _preprocessor(object): def apply(self, data): raise NotImplementedError("Subclass should implement this.") def undo(self, data): raise NotImplementedError("Subclass should implement this.") def slice(self, cols): return self # Do nothing by default class _normalize_preprocessor(_preprocessor): def __init__(self, data, intercept_mode): self.scales = [] self.biases = [] # Preprocess each column to have unit variance and zero mean ncol = data.shape[1] for i in range(ncol): col = data[:,i:i+1] mask = ~
np.isnan(col)
numpy.isnan
""" In this example we use the pysid library to estimate a SIMO armax model """ #Import Libraries from numpy import concatenate, dot, zeros, sqrt from numpy.random import rand, randn #To generate the experiment from scipy.signal import lfilter #To generate the data from pysid import armax #To estimate an arx model #True System #Number of inputs nu = 1 #Number of outputs ny = 2 #Orders na = [[2, 2], [2, 2]] #This variable must be (ny x ny) nb = [1, 1] #This variable must be (ny x nu) nk = [1, 1] #This variable must be (ny x nu) nc = [2, 2] #This variable must be (ny x 1) #with the following true parameters A1o = [1, -1.2, 0.36] A12o = [0, 0.09, -0.1] A2o = [1, -1.6, 0.64] A21o = [0, 0.2, -0.01] B1o = [0, 0.5, 0.4] B2o = [0, 0.2,-0.3] C1o = [1, 0.8,-0.1] C2o = [1, 0.9,-0.2] #True parameter vector thetao = [-1.2, 0.36, 0.5, 0.4, 0.2, -0.3, 0.8, -0.1] #Generate the experiment #The true system is generates by the following relation: # S: y(t) = Go(q)*u(t) + Ho(q)*e(t), #with u(t) the input and e white noise. #Number of Samples N = 400 #Take u as uniform u = -sqrt(3) + 2*sqrt(3)*rand(N, nu) #Generate gaussian white noise with standat deviation 0.01 e = 0.01*randn(N, ny) #Calculate the y through S (ARX: G(q) = B(q)/A(q) and H(q) = 1/A(q)) #Calculate the y through S (ARX: G(q) = B(q)/A(q) and H(q) = 1/A(q)) y1 =
zeros((N, 1))
numpy.zeros
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from six.moves import xrange import tensorflow as tf import os, sys, pickle, argparse sys.path.append('../utils/') from model_eval import model_eval from scipy.misc import logsumexp import keras.backend sys.path.append('load/') from load_classifier import load_classifier def comp_logp(logit, y, text, comp_logit_dist = False): logpx = logsumexp(logit, axis=1) logpx_mean = np.mean(logpx) logpx_std = np.sqrt(np.var(logpx)) logpxy = np.sum(y * logit, axis=1) logpxy_mean = []; logpxy_std = [] for i in xrange(y.shape[1]): ind = np.where(y[:, i] == 1)[0] logpxy_mean.append(np.mean(logpxy[ind])) logpxy_std.append(np.sqrt(np.var(logpxy[ind]))) print('%s: logp(x) = %.3f +- %.3f, logp(x|y) = %.3f +- %.3f' \ % (text, logpx_mean, logpx_std, np.mean(logpxy_mean), np.mean(logpxy_std))) results = [logpx, logpx_mean, logpx_std, logpxy, logpxy_mean, logpxy_std] # compute distribution of the logits if comp_logit_dist: logit_mean = [] logit_std = [] logit_kl_mean = [] logit_kl_std = [] softmax_mean = [] for i in xrange(y.shape[1]): ind = np.where(y[:, i] == 1)[0] logit_mean.append(np.mean(logit[ind], 0)) logit_std.append(np.sqrt(np.var(logit[ind], 0))) logit_tmp = logit[ind] - logsumexp(logit[ind], axis=1)[:, np.newaxis] softmax_mean.append(np.mean(np.exp(logit_tmp), 0)) logit_kl = np.sum(softmax_mean[i] * (np.log(softmax_mean[i]) - logit_tmp), 1) logit_kl_mean.append(np.mean(logit_kl)) logit_kl_std.append(np.sqrt(np.var(logit_kl))) results.extend([logit_mean, logit_std, logit_kl_mean, logit_kl_std, softmax_mean]) return results def comp_detect(x, x_mean, x_std, alpha, plus): if plus: detect_rate = np.mean(x > x_mean + alpha * x_std) else: detect_rate = np.mean(x < x_mean - alpha * x_std) return detect_rate * 100 def search_alpha(x, x_mean, x_std, target_rate = 5.0, plus = False): alpha_min = 0.0 alpha_max = 3.0 alpha_now = 1.5 detect_rate = comp_detect(x, x_mean, x_std, alpha_now, plus) T = 0 while np.abs(detect_rate - target_rate) > 0.01 and T < 20: if detect_rate > target_rate: alpha_min = alpha_now else: alpha_max = alpha_now alpha_now = 0.5 * (alpha_min + alpha_max) detect_rate = comp_detect(x, x_mean, x_std, alpha_now, plus) T += 1 return alpha_now, detect_rate def test_attacks(batch_size, conv, guard_name, targeted, attack_method, victim_name, data_name, save): # Set TF random seed to improve reproducibility tf.set_random_seed(1234) # Create TF session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) print("Created TensorFlow session.") # Get MNIST test data use_data = True if use_data: if data_name == 'mnist': img_rows, img_cols, channels = 28, 28, 1 from cleverhans.utils_mnist import data_mnist x_train, y_train, x_clean, y_clean = data_mnist(train_start=0, train_end=60000, test_start=0, test_end=10000) if data_name in ['cifar10', 'plane_frog']: img_rows, img_cols, channels = 32, 32, 3 from import_data_cifar10 import load_data_cifar10 labels = None if data_name == 'plane_frog': labels = [0, 6] datapath = '../cifar_data/' x_train, x_clean, y_train, y_clean = load_data_cifar10(datapath, labels=labels) nb_classes = y_train.shape[1] # Define input TF placeholder x = tf.placeholder(tf.float32, shape=(batch_size, img_rows, img_cols, channels)) y = tf.placeholder(tf.float32, shape=(batch_size, nb_classes)) # Define TF model graph gen = load_classifier(sess, guard_name, data_name) if 'bayes' in guard_name and 'distill' not in guard_name and 'query' not in guard_name: vae_type = guard_name[-1] guard_name += '_cnn' # now perform detection path = 'raw_attack_results/' + victim_name + '/' print(path) assert os.path.isdir(path) filename = data_name + '_' + attack_method if targeted: filename = filename + '_targeted' else: filename = filename + '_untargeted' filename = path + filename + '.pkl' x_adv, _, y_clean, adv_logits = pickle.load(open(filename, 'rb')) # for cifar-binary, need to extract test data that all the classifiers agree on if data_name == 'plane_frog': load_path = 'data_ind/' ind = range(x_clean.shape[0]) classifiers = ['bayes_K10_A_cnn', 'bayes_K10_B_cnn', 'bayes_K10_C_cnn', 'bayes_K10_D_cnn', 'bayes_K10_E_cnn', 'bayes_K10_F_cnn', 'bayes_K10_G_cnn']#, 'bnn_K10'] for c in classifiers: filename = load_path + data_name + '_' + c + '.pkl' tmp = pickle.load(open(filename, 'rb')) ind = list(set(ind) & set(tmp)) print('crafting adversarial examples only on correctly prediced images...') print('%d / %d in total' % (len(ind), x_clean.shape[0])) x_clean = x_clean[ind]; y_clean = y_clean[ind] print(len(ind), x_adv.shape, adv_logits.shape) x_adv = x_adv[ind]; adv_logits = adv_logits[ind] print("data loaded from %s, %d samples in total" % (filename, x_adv.shape[0])) print(x_clean.shape, x_adv.shape) if 'bnn' not in guard_name: keras.backend.set_learning_phase(0) else: keras.backend.set_learning_phase(1) y_logit_op = gen.predict(x, softmax=False) # compute classification y_logit_adv = [] for i in xrange(int(x_adv.shape[0] / batch_size)): X_batch = x_adv[i*batch_size:(i+1)*batch_size] y_logit_adv.append(sess.run(y_logit_op, feed_dict={x: X_batch})) y_logit_adv = np.concatenate(y_logit_adv, 0) N_adv_total = y_logit_adv.shape[0] x_clean = x_clean[:N_adv_total]; y_clean = y_clean[:N_adv_total] x_adv = x_adv[:N_adv_total]; adv_logits = adv_logits[:N_adv_total] test_attack = False if guard_name != victim_name: if guard_name + '_cnn' != victim_name: print('test transfer attack: attack crafted on victim model') test_attack = True if 'distill' in victim_name: print('test gray-box attack: attack crafted on a distilled model') test_attack = True if test_attack: # test adversarial example transfer, compute the classification again print('test adversarial example transfer from %s to %s' % (victim_name, guard_name)) y_adv = np.zeros((y_logit_adv.shape[0], nb_classes), dtype=np.float32) y_adv[np.arange(y_logit_adv.shape[0]),
np.argmax(y_logit_adv, 1)
numpy.argmax
import math import numpy as np import pybullet as p from gym_pybullet_drones.control.BaseControl import BaseControl from gym_pybullet_drones.envs.BaseAviary import DroneModel, BaseAviary from gym_pybullet_drones.utils.utils import nnlsRPM class SimplePIDControl(BaseControl): """Generic PID control class without yaw control. Based on https://github.com/prfraanje/quadcopter_sim. """ ################################################################################ def __init__(self, drone_model: DroneModel, g: float=9.8 ): """Common control classes __init__ method. Parameters ---------- drone_model : DroneModel The type of drone to control (detailed in an .urdf file in folder `assets`). g : float, optional The gravitational acceleration in m/s^2. """ super().__init__(drone_model=drone_model, g=g) if self.DRONE_MODEL not in [DroneModel.HB, DroneModel.ARDRONE2]: print("[ERROR] in SimplePIDControl.__init__(), SimplePIDControl requires DroneModel.HB") exit() self.P_COEFF_FOR = np.array([1, 1, 2]) self.I_COEFF_FOR = np.array([.001, .001, .001]) self.D_COEFF_FOR = np.array([3, 3, 4]) self.P_COEFF_TOR = np.array([3, 3, .5]) self.I_COEFF_TOR =
np.array([.001, .001, .001])
numpy.array
# Copyright 2019 AUI, Inc. Washington DC, USA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def mask(xds, name='MASK1', ra=None, dec=None, pixels=None, pol=-1, channels=-1): """ Create a new mask Data variable in the Dataset \n .. note:: This function currently only supports rectangles and integer pixel boundaries Parameters ---------- xds : xarray.core.dataset.Dataset input Image name : str dataset variable name for mask, overwrites if already present ra : list right ascension coordinate range in the form of [min, max]. Default None means all dec : list declination coordinate range in the form of [min, max]. Default None means all pixels : numpy.ndarray array of shape (N,2) containing pixel box. AND'd with ra/dec pol : int or list polarization dimension(s) to include in mask. Default of -1 means all channels : int or list channel dimension(s) to include in mask. Default of -1 means all Returns ------- xarray.core.dataset.Dataset output Image """ import numpy as np import xarray as xr # type checking/conversion if not name.strip(): name = 'maskX' if ra is None: ra = [0.0, 0.0] if dec is None: dec = [0.0, 0.0] if pixels is None: pixels = np.zeros((1,2), dtype=int)-1 pixels = np.array(pixels, dtype=int) if (pixels.ndim != 2) or (pixels.shape[1] != 2): print('ERROR: pixels parameter not a (N,2) array') return None pol = np.array(np.atleast_1d(pol), dtype=int) if pol[0] == -1: pol = [-1] channels = np.array(np.atleast_1d(channels), dtype=int) if channels[0] == -1: channels = [-1] # define mask within ra/dec range mask = xr.zeros_like(xds.IMAGE, dtype=bool).where((xds.right_ascension > np.min(ra)) & (xds.right_ascension < np.max(ra)) & (xds.declination > np.min(dec)) & (xds.declination < np.max(dec)), True) # AND pixel values with ra/dec values mask = mask & xr.zeros_like(xds.IMAGE, dtype=bool).where((xds.d0 > np.min(pixels[:, 0])) & (xds.d0 < np.max(pixels[:, 0])) & (xds.d1 >
np.min(pixels[:, 1])
numpy.min
import cv2 import numpy as np import math from PIL import Image import random class DIP: def __init__(self): pass def read(self, file): return np.array(Image.open(file)) def save(self, file, image): return cv2.imwrite(file, image ) def resize(self, image, size): return cv2.resize(image, (size[0], size[1])) def cvtGreyscale(self, image): grey = np.dot(image[...,:3], [0.2989, 0.5870, 0.114]) grey /= np.max(grey) return grey def gaussianKernel(self, kernelSize, sigma, flag=True, BilSpatial=None): normal = 1 / (2.0 * np.pi * sigma * sigma) if flag: center = kernelSize // 2 x, y = np.mgrid[-center:center + 1, -center:center + 1] kernel = np.exp(-((x * x + y * y) / (2.0 * sigma * sigma))) * normal else: kernel = np.exp(-(kernelSize*kernelSize / (2.0 * sigma * sigma))) kernel = np.multiply(kernel, BilSpatial) return kernel def gaussianFilter(self, image, kernelSize, sigma): gKernel = self.gaussianKernel(kernelSize, sigma) output = np.zeros(image.shape, np.float) padded_image = np.pad(image, int((kernelSize - 1) / 2), 'edge') for row in range(image.shape[1]): for col in range(image.shape[0]): output[col, row] = np.sum(gKernel * padded_image[col:col + kernelSize, row:row + kernelSize]) output /= np.max(output) return output def gabf(self, image, kernelSize, sigmaS, sigmaR): spatialKernel = self.gaussianKernel(kernelSize, sigmaS) LP_guide = np.zeros(image.shape, np.float) output = np.zeros(image.shape, np.float) padded_image = np.pad(image, int((kernelSize - 1) / 2), 'edge') for row in range(image.shape[1]): for col in range(image.shape[0]): LP_guide[col, row] = np.sum(spatialKernel * padded_image[col:col + kernelSize, row:row + kernelSize]) LP_guide /= np.max(LP_guide) padded_image = np.pad(LP_guide, int((kernelSize - 1) / 2), 'edge') for row in range(image.shape[1]): for col in range(image.shape[0]): neighb_win = padded_image[col:col + kernelSize, row:row + kernelSize] intensity_diff = np.absolute(image[col, row] - neighb_win) weights = self.gaussianKernel(intensity_diff, sigmaR, flag=False, BilSpatial=spatialKernel) vals = np.sum(np.multiply(weights, neighb_win)) norm = np.sum(weights) output[col, row] = np.divide(vals, norm, out=np.zeros_like(vals), where=norm != 0) output /= np.max(output) return output def median(self, image, kernelSize): output = np.zeros(image.shape, np.float) padded_image = np.pad(image, int((kernelSize - 1) / 2), 'edge') for row in range(image.shape[1]): for col in range(image.shape[0]): neighb_win = padded_image[col:col + kernelSize, row:row + kernelSize] output[col, row] = np.median(neighb_win) output /= np.max(output) return output def gradient2x2(self, image): kernelSize = 2 gX = np.array([ [-1, 1], [-1, 1] ]) gY = np.array([ [1, 1], [-1, -1] ]) G_x = np.zeros(image.shape, np.float) G_y = np.zeros(image.shape, np.float) padded_image = np.pad(image, int((kernelSize - 1) / 2), 'edge') for row in range(image.shape[1]): # loop through row for col in range(image.shape[0]): # loop through col pix = padded_image[col:col + kernelSize, row:row + kernelSize] # get pixel value G_x[col, row] = np.sum(np.multiply(gX, pix)) G_y[col, row] = np.sum(np.multiply(gY, pix)) filtered_image = np.hypot(G_x, G_y) angle_image =
np.arctan2(G_y, G_x)
numpy.arctan2
import numpy as np import time import scipy.sparse as sp import networkx as nx from revop import * import sys import time from joblib import Parallel, delayed from multiprocessing import Process, Manager DATA_PATH = '/media/chundi/3b6b0f74-0ac7-42c7-b76b-00c65f5b3673/revisitop/cnnimageretrieval-pytorch/data/test/matlab_data' if os.path.exists(DATA_PATH)==False: DATA_PATH = '/d2/lmk_code/revisitop/data' if os.path.exists(DATA_PATH)==False: DATA_PATH = '/media/gcn-gae/data' assert os.path.exists(DATA_PATH),'out of data path to search, add your path to preprocess_graph!' def sparse_to_tuple(sparse_mx): if not sp.isspmatrix_coo(sparse_mx): sparse_mx = sparse_mx.tocoo() coords =
np.vstack((sparse_mx.row, sparse_mx.col))
numpy.vstack
# Parallel implementation template from: https://gitlab.com/lucasrthompson/Sonic-Bot-In-OpenAI-and-NEAT import os import pickle import numpy as np import neat import visualize from IceGame import IceGame DRAW_NETS = True NUM_WORKERS = 4 # number of workers for parallel genome score evaluation NUM_RUNS = 1 # game runs per genome NUM_GEN = 5000 # max number of generations MUL_LEVELS = True # train on multiple levels? NUM_ACTIONS = 4 MAX_STEPS = 57 # max steps for fastest completion filename = "ezrmazeLevels.txt" # file with training levels fn_results = "feedforward-" + filename.replace(".txt", "") class Worker(): def __init__(self, genome, config): self.genome = genome self.config = config def doWork(self): self.env = IceGame(filename, max_steps=MAX_STEPS, multiple=MUL_LEVELS) net = neat.nn.feed_forward.FeedForwardNetwork.create(self.genome, self.config) total_reward = 0.0 for _ in range(NUM_RUNS): ob = self.env.reset() done = False while True: # Input is simple state of the game in a grid inputs = np.ndarray.flatten(ob) / 4 # normalize between 0-1 nn_output = net.activate(inputs) action =
np.argmax(nn_output)
numpy.argmax
import pytest import numpy as np import tensorflow as tf import jax import torch from tensornetwork.backends import backend_factory #pylint: disable=line-too-long from tensornetwork.matrixproductstates.mpo import (FiniteMPO, BaseMPO, InfiniteMPO, FiniteFreeFermion2D) from tensornetwork.matrixproductstates.finite_mps import FiniteMPS from tensornetwork.matrixproductstates.dmrg import FiniteDMRG @pytest.fixture( name="backend_dtype_values", params=[('numpy', np.float64), ('numpy', np.complex128), ('tensorflow', tf.float64), ('tensorflow', tf.complex128), ('pytorch', torch.float64), ('jax', np.float64), ('jax', np.complex128)]) def backend_dtype(request): return request.param def test_base_mpo_init(backend_dtype_values): backend = backend_factory.get_backend(backend_dtype_values[0]) dtype = backend_dtype_values[1] tensors = [ backend.randn((1, 5, 2, 2), dtype=dtype), backend.randn((5, 5, 2, 2), dtype=dtype), backend.randn((5, 1, 2, 2), dtype=dtype) ] mpo = BaseMPO(tensors=tensors, backend=backend, name='test') assert mpo.backend is backend assert mpo.dtype == dtype np.testing.assert_allclose(mpo.bond_dimensions, [1, 5, 5, 1]) def test_base_mpo_raises(): backend = backend_factory.get_backend('numpy') tensors = [ backend.randn((1, 5, 2, 2), dtype=np.float64), backend.randn((5, 5, 2, 2), dtype=np.float64), backend.randn((5, 1, 2, 2), dtype=np.float32) ] with pytest.raises(TypeError): BaseMPO(tensors=tensors, backend=backend) mpo = BaseMPO(tensors=[], backend=backend) mpo.tensors = tensors with pytest.raises(TypeError): mpo.dtype def test_finite_mpo_raises(backend): tensors = [np.random.rand(2, 5, 2, 2), np.random.rand(5, 1, 2, 2)] with pytest.raises(ValueError): FiniteMPO(tensors=tensors, backend=backend) tensors = [np.random.rand(1, 5, 2, 2), np.random.rand(5, 2, 2, 2)] with pytest.raises(ValueError): FiniteMPO(tensors=tensors, backend=backend) def test_infinite_mpo_raises(backend): tensors = [np.random.rand(2, 5, 2, 2),
np.random.rand(5, 3, 2, 2)
numpy.random.rand
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: import nipype.interfaces.fsl as fsl # fsl from nipype.algorithms.misc import TSNR import nipype.interfaces.utility as util # utility import nipype.pipeline.engine as pe # pypeline engine from nipype.algorithms.rapidart import ArtifactDetect from nipype.interfaces.fsl.utils import ImageMaths # For unwarping from dti_wf import my_robex, invert_contrast, my_ants_registration_syn from nipype.workflows.dmri.fsl.artifacts import remove_bias from nipype.interfaces.freesurfer.preprocess import MRIConvert from nipype.interfaces.ants.resampling import WarpTimeSeriesImageMultiTransform from nipype.interfaces.fsl.preprocess import FAST def morph_open_close(vol_in, sphere_radius=7, suffix='smooth'): ''' Performs and open and close morphological operation on input mask, using FSL's fslmaths, added py <NAME> ''' import os def splitext2(path): for ext in ['.nii.gz']: if path.endswith(ext): path, ext = path[:-len(ext)], path[-len(ext):] break else: path, ext = os.path.splitext(path) return path, ext vol_p, vol_e = splitext2(vol_in) vol_out = ''.join([vol_p, '_' + suffix, vol_e]) cmd = ('fslmaths -dt input {vol_in} -kernel sphere {sphere_radius} ' '-ero -dilD -dilD -ero {vol_out}') op = os.system(cmd.format(vol_in=vol_in, sphere_radius=sphere_radius, vol_out=vol_out)) print(op) return vol_out def concatetante_reg_files(file1, file2): ''' For merging regressors ''' import numpy as np import os.path as op in_mats = {f: np.loadtxt(f) for f in [file1, file2]} out_mat = np.hstack(tuple(in_mats.values())) out_dir = op.dirname(file1) out_fn = op.join(out_dir, 'merged_regressors.txt') np.savetxt(out_fn, out_mat) return out_fn def remove_first_n_frames(in_vol_fn, n_frames=5): import nibabel as nib import os.path as op im_d = nib.load(in_vol_fn) in_4d = im_d.get_data() out_4d = in_4d[:, :, :, n_frames:] out_dir = op.dirname(in_vol_fn) in_fn = op.basename(in_vol_fn).split('.')[0] out_fn = op.join(out_dir, in_fn + '_start_excised.nii.gz') out_header = im_d.header out_affine = im_d.affine out_img = nib.Nifti1Image(out_4d, out_affine, header=out_header) nib.save(out_img, out_fn) return out_fn def extract_noise_components(realigned_file, noise_mask_file, num_components): """Derive components most reflective of physiological noise num_components: the number of components to use. If <1, it means fraction of the variance than needs to be explained. """ import os from nibabel import load import numpy as np import scipy as sp imgseries = load(realigned_file) components = None mask = load(noise_mask_file).get_data() voxel_timecourses = imgseries.get_data()[mask > 0] voxel_timecourses[np.isnan(
np.sum(voxel_timecourses, axis=1)
numpy.sum
from pytpt.validation import is_stochastic_matrix, is_irreducible_matrix import numpy as np import pytest from pytpt import periodic import random import functools class TestPeriodic: @pytest.fixture def P_random(self, S, M, seed): ''' Random periodic stationary transition matrix Args: S: int dimension of the state space seed: int seed ''' # set seed np.random.seed(seed) # create random matrix uniformly distributed over [0, 1) and normalize # at time point mod 0 P0 = np.random.rand(S, S) P0 = np.divide(P0, np.sum(P0, axis=1).reshape(S, 1)) # at last time point P1 = np.random.rand(S, S) P1 = np.divide(P1, np.sum(P1, axis=1).reshape(S, 1)) # transition matrix interpolates between P0 and P1 during period def P_M(k, M): gamma = np.mod(k, M) / (M-1) # ranges from 0 to 1 during each period return (1-gamma)*P0 + gamma*P1 return functools.partial(P_M, M=M) @pytest.fixture def states_random(self, S, seed): ''' States classification Args: S: int dimension of the state space seed: int seed ''' # set seed random.seed(seed) states = np.empty(S, dtype='str') # sorted list of two elements chosen from the set of integers # between 0 and S-1 without replacement i, j = sorted(random.sample(range(1, S), 2)) states[:i] = 'A' states[i:j] = 'B' states[j:] = 'C' return states @pytest.fixture def P_small_network(self, shared_datadir, M): ''' Periodic transition matrix of the small network example ''' small_network_construction = np.load( shared_datadir / 'small_network_construction.npz', allow_pickle=True, ) T = small_network_construction['T'] L = small_network_construction['L'] def P_p(k, M): return T + np.cos(k * 2. * np.pi / M) * L return functools.partial(P_p, M=M) @pytest.fixture def states_small_network(self, shared_datadir): ''' States classification of the small network example ''' small_network_construction = np.load( shared_datadir / 'small_network_construction.npz', allow_pickle=True, ) states = small_network_construction['states'].item() return states @pytest.fixture def tpt_periodic(self, M, states_random, P_random, states_small_network, P_small_network, small_network): ''' initialize the tpt object ''' if small_network: states = states_small_network P = P_small_network ind_A = np.array([key for key in states if states[key] == 'A']) ind_B = np.array([key for key in states if states[key] == 'B']) ind_C = np.array([key for key in states if states[key] == 'C']) else: states = states_random P = P_random ind_A = np.where(states == 'A')[0] ind_B = np.where(states == 'B')[0] ind_C = np.where(states == 'C')[0] tpt_periodic = periodic.tpt(P, M, ind_A, ind_B, ind_C) return tpt_periodic def test_transition_matrix(self, tpt_periodic): S = tpt_periodic.S M = tpt_periodic.M P = tpt_periodic.P for m in range(M): assert P(m).shape == (S, S) assert np.isclose(P(m), P(M + m)).all() assert np.isnan(P(m)).any() == False assert is_stochastic_matrix(P(m)) assert is_irreducible_matrix(P(m)) def test_stationary_density(self, tpt_periodic): S = tpt_periodic.S M = tpt_periodic.M stationary_density = tpt_periodic.stationary_density() assert stationary_density.shape == (M, S) assert np.isnan(stationary_density).any() == False assert np.greater_equal(stationary_density, 0).all() assert np.less_equal(stationary_density, 1).all() def test_backward_transition_matrix(self, tpt_periodic): S = tpt_periodic.S M = tpt_periodic.M stationary_density = tpt_periodic.stationary_density() P = tpt_periodic.P P_back = tpt_periodic.backward_transitions() for m in range(M): assert P_back(m).shape == (S, S) assert np.isnan(P_back(m)).any() == False assert is_stochastic_matrix(P_back(m)) for i in np.arange(S): for j in np.arange(S): assert np.isclose( stationary_density[m, i] * P_back(m)[i, j], stationary_density[m-1, j] * P(m-1)[j, i], ) def test_committors(self, tpt_periodic): S = tpt_periodic.S M = tpt_periodic.M q_f = tpt_periodic.forward_committor() q_b = tpt_periodic.backward_committor() assert q_f.shape == (M, S) assert np.isnan(q_f).any() == False assert
np.greater_equal(q_f, 0)
numpy.greater_equal
import numpy as np from itertools import count import matplotlib from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from easy21 import Easy21 EPSILON = 0.05 GAMMA = 1 def feature_id(s, a): sf = [] for i, (l, r) in enumerate(zip(range(1, 8, 3), range(4, 11, 3))): if s[1] >= l and s[1] <= r: sf.append(i) break for i, (l, r) in enumerate(zip(range(1, 17, 3), range(6, 22, 3))): if s[0] >= l and s[0] <= r: sf.append(i) break for i, j in enumerate(range(2)): if a == j: sf.append(i) break return tuple(sf) def feature(s, a): sf = feature_id(s, a) m = np.zeros((3, 6, 2)) m[tuple(sf)] = 1 return m def Qvalue(s, a, theta): return np.sum(feature(s, a) * theta) def choose_action(s, theta): # epsilon greedy exploration if np.random.random_sample() < EPSILON: if np.random.random_sample() < 0.5: return 1 else: return 0 lst = list(map(lambda a: Qvalue(s, a, theta), [0, 1])) return np.argmax(lst) def TD_learning(env): LAMBDAS = list(
np.arange(0, 1.1, 0.1)
numpy.arange
# ---------------------------------------------------------------------------- # Copyright (c) 2017 Massachusetts Institute of Technology (MIT) # All rights reserved. # # Distributed under the terms of the BSD 3-clause license. # # The full license is in the LICENSE file, distributed with this software. # ---------------------------------------------------------------------------- """Module defining a Digital RF Source block.""" from __future__ import absolute_import, division, print_function import os import sys import traceback import warnings from collections import defaultdict from itertools import chain, tee import numpy as np import pmt import six from gnuradio import gr from six.moves import zip from digital_rf import DigitalMetadataWriter, DigitalRFWriter, _py_rf_write_hdf5, util def parse_time_pmt(val, samples_per_second): """Get (sec, frac, idx) from an rx_time pmt value.""" tsec = np.uint64(pmt.to_uint64(pmt.tuple_ref(val, 0))) tfrac = pmt.to_double(pmt.tuple_ref(val, 1)) # calculate sample index of time and floor to uint64 tidx = np.uint64(tsec * samples_per_second + tfrac * samples_per_second) return int(tsec), tfrac, int(tidx) def translate_rx_freq(tag): """Translate 'rx_freq' tag to 'center_frequencies' metadata sample.""" offset = tag.offset key = "center_frequencies" val = np.array(pmt.to_python(tag.value), ndmin=1) yield offset, key, val def translate_metadata(tag): """Translate 'metadata' dictionary tag to metadata samples.""" offset = tag.offset md = pmt.to_python(tag.value) try: for key, val in md.items(): yield offset, key, val except AttributeError: wrnstr = "Received 'metadata' stream tag that isn't a dictionary. Ignoring." warnings.warn(wrnstr) def collect_tags_in_dict(tags, translator, tag_dict=None): """Add the stream tags to `tag_dict` by their offset.""" if tag_dict is None: tag_dict = {} for tag in tags: for offset, key, val in translator(tag): # add tag as its own dictionary to tag_dict[offset] tag_dict.setdefault(offset, {}).update(((key, val),)) def recursive_dict_update(d, u): """Update d with values from u, recursing into sub-dictionaries.""" for k, v in u.items(): if isinstance(v, dict): try: # copy because we don't want to modify the sub-dictionary # just use its values to create an updated sub-dictionary subdict = d[k].copy() except KeyError: subdict = {} d[k] = recursive_dict_update(subdict, v) else: d[k] = v return d def pairwise(iterable): """Return iterable elements in pairs, e.g. range(3) -> (0, 1), (1, 2).""" a, b = tee(iterable) next(b, None) return zip(a, b) class digital_rf_channel_sink(gr.sync_block): """Sink block for writing a channel of Digital RF data.""" def __init__( self, channel_dir, dtype, subdir_cadence_secs, file_cadence_millisecs, sample_rate_numerator, sample_rate_denominator, start=None, ignore_tags=False, is_complex=True, num_subchannels=1, uuid_str=None, center_frequencies=None, metadata=None, is_continuous=True, compression_level=0, checksum=False, marching_periods=True, stop_on_skipped=False, stop_on_time_tag=False, debug=False, min_chunksize=None, ): """Write a channel of data in Digital RF format. In addition to storing the input samples in Digital RF format, this block also populates the channel's accompanying Digital Metadata at the sample indices when the metadata changes or a data skip occurs. See the Notes section for details on what metadata is stored. Parameters ---------- channel_dir : string The directory where this channel is to be written. It will be created if it does not exist. The basename (last component) of the path is considered the channel's name for reading purposes. dtype : np.dtype | object to be cast by np.dtype() Object that gives the numpy dtype of the data to be written. This value is passed into ``np.dtype`` to get the actual dtype (e.g. ``np.dtype('>i4')``). Scalar types, complex types, and structured complex types with 'r' and 'i' fields of scalar types are valid. subdir_cadence_secs : int The number of seconds of data to store in one subdirectory. The timestamp of any subdirectory will be an integer multiple of this value. file_cadence_millisecs : int The number of milliseconds of data to store in each file. Note that an integer number of files must exactly span a subdirectory, implying:: (subdir_cadence_secs*1000 % file_cadence_millisecs) == 0 sample_rate_numerator : int Numerator of sample rate in Hz. sample_rate_denominator : int Denominator of sample rate in Hz. Other Parameters ---------------- start : None | int | float | string, optional A value giving the time/index of the channel's first sample. When `ignore_tags` is False, 'rx_time' tags will be used to identify data gaps and skip the sample index forward appropriately (tags that refer to an earlier time will be ignored). If None or '' and `ignore_tags` is False, a default value of 0 is used (a ValueError is raised if `ignore_tags` is True). If an integer, it is interpreted as a sample index given in the number of samples since the epoch (time_since_epoch*sample_rate). If a float, it is interpreted as a UTC timestamp (seconds since epoch). If a string, three forms are permitted: 1) a string which can be evaluated to an integer/float and interpreted as above, 2) a time in ISO8601 format, e.g. '2016-01-01T16:24:00Z' 3) 'now' ('nowish'), indicating the current time (rounded up) ignore_tags : bool, optional If True, do not use 'rx_time' tags to set the sample index and do not write other tags as Digital Metadata. is_complex : bool, optional This parameter is only used when `dtype` is not complex. If True (the default), interpret supplied data as interleaved complex I/Q samples. If False, each sample has a single value. num_subchannels : int, optional Number of subchannels to write simultaneously. Default is 1. uuid_str : None | string, optional UUID string that will act as a unique identifier for the data and can be used to tie the data files to metadata. If None, a random UUID will be generated. center_frequencies : None | array_like of floats, optional List of subchannel center frequencies to include in initial metadata. If None, ``[0.0]*num_subchannels`` will be used. Subsequent center frequency metadata samples can be written using 'rx_freq' stream tags. metadata : dict, optional Dictionary of additional metadata to include in initial Digital Metadata sample. Subsequent metadata samples can be written using 'metadata' stream tags, but all keys intended to be included should be set here first even if their values are empty. is_continuous : bool, optional If True, data will be written in continuous blocks. If False data will be written with gapped blocks. Fastest write/read speed is achieved with `is_continuous` True, `checksum` False, and `compression_level` 0 (all defaults). compression_level : int, optional 0 for no compression (default), 1-9 for varying levels of gzip compression (1 == least compression, least CPU; 9 == most compression, most CPU). checksum : bool, optional If True, use HDF5 checksum capability. If False (default), no checksum. marching_periods : bool, optional If True, write a period to stdout for every subdirectory when writing. stop_on_skipped : bool, optional If True, stop writing when a sample would be skipped (such as from a dropped packet). stop_on_time_tag : bool, optional If True, stop writing when any but an initial 'rx_time' tag is received. debug : bool, optional If True, print debugging information. min_chunksize : None | int, optional Minimum number of samples to consume at once. This value can be used to adjust the sink's performance to reduce processing time. If None, a sensible default will be used. Notes ----- By convention, this block sets the following Digital Metadata fields: uuid_str : string Value provided by the `uuid_str` argument. sample_rate_numerator : int Value provided by the `sample_rate_numerator` argument. sample_rate_denominator : int Value provided by the `sample_rate_denominator` argument. center_frequencies : list of floats with length `num_subchannels` Subchannel center frequencies as specified by `center_frequencies` argument and 'rx_freq' stream tags. Additional metadata fields can be set using the `metadata` argument and stream tags. Nested dictionaries are permitted and are helpful for grouping properties. For example, receiver-specific metadata is typically specified with a sub-dictionary using the 'receiver' field. This block acts on the following stream tags when `ignore_tags` is False: rx_time : (int secs, float frac) tuple Used to set the sample index from the given time since epoch. rx_freq : float Used to set the 'center_frequencies' value in the channel's Digital Metadata as described above. metadata : dict Used to populate additional (key, value) pairs in the channel's Digital Metadata. Any keys passed in 'metadata' tags should be included in the `metadata` argument at initialization to ensure that they always exist in the Digital Metadata. """ dtype = np.dtype(dtype) # create structured dtype for interleaved samples if necessary if is_complex and ( not np.issubdtype(dtype, np.complexfloating) and not dtype.names ): realdtype = dtype dtype = np.dtype([("r", realdtype), ("i", realdtype)]) if num_subchannels == 1: in_sig = [dtype] else: in_sig = [(dtype, num_subchannels)] gr.sync_block.__init__( self, name="digital_rf_channel_sink", in_sig=in_sig, out_sig=None ) self._channel_dir = channel_dir self._channel_name = os.path.basename(channel_dir) self._dtype = dtype self._subdir_cadence_secs = subdir_cadence_secs self._file_cadence_millisecs = file_cadence_millisecs self._sample_rate_numerator = sample_rate_numerator self._sample_rate_denominator = sample_rate_denominator self._uuid_str = uuid_str self._ignore_tags = ignore_tags self._is_complex = is_complex self._num_subchannels = num_subchannels self._is_continuous = is_continuous self._compression_level = compression_level self._checksum = checksum self._marching_periods = marching_periods self._stop_on_skipped = stop_on_skipped self._stop_on_time_tag = stop_on_time_tag self._debug = debug self._work_done = False self._samples_per_second = np.longdouble( np.uint64(sample_rate_numerator) ) / np.longdouble(np.uint64(sample_rate_denominator)) if min_chunksize is None: self._min_chunksize = max(int(self._samples_per_second // 1000), 1) else: self._min_chunksize = min_chunksize # reduce CPU usage by setting a minimum number of samples to handle # at once # (really want to set_min_noutput_items, but no way to do that from # Python) try: self.set_output_multiple(self._min_chunksize) except RuntimeError: traceback.print_exc() errstr = "Failed to set sink block min_chunksize to {min_chunksize}." if min_chunksize is None: errstr += ( " This value was calculated automatically based on the sample rate." " You may have to specify min_chunksize manually." ) raise ValueError(errstr.format(min_chunksize=self._min_chunksize)) # will be None if start is None or '' self._start_sample = util.parse_identifier_to_sample( start, self._samples_per_second, None ) if self._start_sample is None: if self._ignore_tags: raise ValueError("Must specify start if ignore_tags is True.") # data without a time tag will be written starting at global index # of 0, i.e. the Unix epoch # we don't want to guess the start time because the user would # know better and it could obscure bugs by setting approximately # the correct time (samples in 1970 are immediately obvious) self._start_sample = 0 self._next_rel_sample = 0 if self._debug: tidx = self._start_sample timedelta = util.samples_to_timedelta(tidx, self._samples_per_second) tsec = int(timedelta.total_seconds() // 1) tfrac = timedelta.microseconds / 1e6 tagstr = ("|{0}|start @ sample 0: {1}+{2} ({3})\n").format( self._channel_name, tsec, tfrac, tidx ) sys.stdout.write(tagstr) sys.stdout.flush() # stream tags to read (in addition to rx_time, handled specially) self._stream_tag_translators = { # disable rx_freq until we figure out what to do with polyphase # also, USRP source in gr < 3.7.12 has bad rx_freq tags # pmt.intern('rx_freq'): translate_rx_freq, pmt.intern("metadata"): translate_metadata } # create metadata dictionary that will be updated and written whenever # new metadata is received in stream tags if metadata is None: metadata = {} self._metadata = metadata.copy() if not center_frequencies: center_frequencies = np.array([0.0] * self._num_subchannels) else: center_frequencies = np.ascontiguousarray(center_frequencies) self._metadata.update( # standard metadata by convention uuid_str="", sample_rate_numerator=self._sample_rate_numerator, sample_rate_denominator=self._sample_rate_denominator, center_frequencies=center_frequencies, ) # create directories for RF data channel and metadata self._metadata_dir = os.path.join(self._channel_dir, "metadata") if not os.path.exists(self._metadata_dir): os.makedirs(self._metadata_dir) # sets self._Writer, self._DMDWriter, and adds to self._metadata self._create_writer() # dict of metadata samples to be written, add for first sample # keys: absolute sample index for metadata # values: metadata dictionary to update self._metadata and then write self._md_queue = defaultdict(dict) self._md_queue[self._start_sample] = {} def _create_writer(self): # Digital RF writer self._Writer = DigitalRFWriter( self._channel_dir, self._dtype, self._subdir_cadence_secs, self._file_cadence_millisecs, self._start_sample, self._sample_rate_numerator, self._sample_rate_denominator, uuid_str=self._uuid_str, compression_level=self._compression_level, checksum=self._checksum, is_complex=self._is_complex, num_subchannels=self._num_subchannels, is_continuous=self._is_continuous, marching_periods=self._marching_periods, ) # update UUID in metadata after parsing by DigitalRFWriter self._metadata.update(uuid_str=self._Writer.uuid) # Digital Metadata writer self._DMDWriter = DigitalMetadataWriter( metadata_dir=self._metadata_dir, subdir_cadence_secs=self._subdir_cadence_secs, file_cadence_secs=1, sample_rate_numerator=self._sample_rate_numerator, sample_rate_denominator=self._sample_rate_denominator, file_name="metadata", ) def _read_tags(self, nsamples): """Read stream tags and set data blocks and metadata to write. Metadata from tags is added to the queue at ``self._md_queue``. """ nread = self.nitems_read(0) md_queue = self._md_queue # continue writing at next continuous sample with start of block # unless overridden by a time tag data_blk_idxs = [0] data_rel_samples = [self._next_rel_sample] # read time tags # get_tags_in_window convenience function is broken, so use get_tags_in_range time_tags = self.get_tags_in_range( 0, nread, nread + nsamples, pmt.intern("rx_time") ) if time_tags and self._stop_on_time_tag and self._next_rel_sample != 0: self._work_done = True # separate data into blocks to be written for tag in time_tags: offset = tag.offset tsec, tfrac, tidx = parse_time_pmt(tag.value, self._samples_per_second) # index into data block for this tag bidx = offset - nread # get sample index relative to start sidx = tidx - self._start_sample # add new data block if valid and it indicates a gap prev_bidx = data_blk_idxs[-1] prev_sidx = data_rel_samples[-1] next_continuous_sample = prev_sidx + (bidx - prev_bidx) if sidx < next_continuous_sample: if self._debug: errstr = ( "\n|{0}|rx_time tag @ sample {1}: {2}+{3} ({4})" "\n INVALID: time cannot go backwards from index {5}." " Skipping." ).format( self._channel_name, offset, tsec, tfrac, tidx, self._start_sample + next_continuous_sample, ) sys.stdout.write(errstr) sys.stdout.flush() continue elif sidx == next_continuous_sample: # don't create a new block because it's continuous if self._debug: tagstr = ("\n|{0}|rx_time tag @ sample {1}: {2}+{3} ({4})").format( self._channel_name, offset, tsec, tfrac, tidx ) sys.stdout.write(tagstr) sys.stdout.flush() continue else: # add new block to write based on time tag if self._debug: tagstr = ( "\n|{0}|rx_time tag @ sample {1}: {2}+{3} ({4})" "\n {5} dropped samples." ).format( self._channel_name, offset, tsec, tfrac, tidx, sidx - next_continuous_sample, ) sys.stdout.write(tagstr) sys.stdout.flush() # set flag to stop work when stop_on_skipped is set if self._stop_on_skipped and self._next_rel_sample != 0: self._work_done = True if bidx == 0: # override assumed continuous write # data_blk_idxs[0] is already 0 data_rel_samples[0] = sidx else: data_blk_idxs.append(bidx) data_rel_samples.append(sidx) # reset metadata queue with only valid values for md_idx in list(md_queue.keys()): md_sidx = md_idx - self._start_sample if next_continuous_sample <= md_sidx and md_sidx < sidx: del md_queue[md_idx] # new metadata sample to help flag data skip md_queue.setdefault(sidx + self._start_sample, {}) # read other tags by data block (so we know the sample index) for (bidx, bend), sidx in zip( pairwise(chain(data_blk_idxs, (nsamples,))), data_rel_samples ): tags_by_offset = {} # read tags, translate to metadata dict, add to tag dict for tag_name, translator in self._stream_tag_translators.items(): tags = self.get_tags_in_range(0, nread + bidx, nread + bend, tag_name) collect_tags_in_dict(tags, translator, tags_by_offset) # add tags to metadata sample dictionary for offset, tag_dict in tags_by_offset.items(): mbidx = offset - nread # get the absolute sample index for the metadata sample msidx = (sidx + (mbidx - bidx)) + self._start_sample md_queue[msidx].update(tag_dict) return data_blk_idxs, data_rel_samples def work(self, input_items, output_items): in_data = input_items[0] nsamples = len(in_data) if not self._ignore_tags: # break data into blocks from time tags # get metadata from other tags and add to self._md_queue data_blk_idxs, data_rel_samples = self._read_tags(nsamples) else: # continue writing at next continuous sample with start of block data_blk_idxs = [0] data_rel_samples = [self._next_rel_sample] # make index lists into uint64 arrays data_rel_samples = np.array(data_rel_samples, dtype=np.uint64, ndmin=1) data_blk_idxs = np.array(data_blk_idxs, dtype=np.uint64, ndmin=1) # get any metadata samples to be written from queue if self._md_queue: md_samples, md_dict_updates = zip( *sorted(self._md_queue.items(), key=lambda x: x[0]) ) md_samples =
np.array(md_samples, dtype=np.uint64, ndmin=1)
numpy.array
import csv import matplotlib.pyplot as plt import numpy as np from pylab import * import math #### Data Reading #### with open("cookies_report.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') #### Pie chart clicked vs not #### cookiesClicked = 0 cookiesNotClicked = 0 totalDomains = -1 # REMEMBER! Column 6 is clicked, if we add more columns remember to change this value for row in csv_reader: totalDomains += 1 if row[6] == "True": cookiesClicked += 1 elif row[6] == "False": cookiesNotClicked += 1 print("cookiesClicked: ", cookiesClicked) print("cookiesNotClicked: ", cookiesNotClicked) print("totalDomains: ", totalDomains) cookies = [cookiesClicked, cookiesNotClicked] nombres = ["Accepted", "Not asked/Not accepted"] plt.pie(cookies, labels=nombres, autopct="%0.1f %%") plt.axis("equal") plt.title("Pages able to accept cookies") plt.show() with open("cookies_report.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') #### Pie chart same vs more cookies #### moreCookies = 0 sameCookies = 0 # Column 2 is cookies_default, column 5 is cookies_accepted for row in csv_reader: if row[6] == "True": if row[2] == row[5] or row[5] < row[2]: sameCookies += 1 elif row[5] > row[2]: moreCookies += 1 print("moreCookies: ", moreCookies) print("sameCookies: ", sameCookies) cookies = [moreCookies, sameCookies] nombres = ["More cookies", "Same Cookies"] plt.pie(cookies, labels=nombres, autopct="%0.1f %%") plt.axis("equal") plt.title("Domains with the same cookies after accept") plt.show() with open("cookies_report.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') #### How many cookies by saying yes #### accepting = 0 notInteract = 0 firstLine = 0 # Column 2 is cookies_default, column 5 is cookies_accepted for row in csv_reader: if firstLine == 0: firstLine += 1 else: accepting = accepting + int(row[5]) notInteract = notInteract + int(row[2]) print("Cookies accepting: ", accepting) print("Cookies not interacting: ", notInteract) objects = ('Accepting','Not interacting') y_pos = np.arange(len(objects)) performance = [accepting,notInteract] plt.bar(y_pos, performance, align='center', alpha=0.5) plt.xticks(y_pos, objects) plt.ylabel('Number of cookies') plt.xlabel('Action performed') plt.title('Total of cookies accepting or not interacting') plt.show() with open("cookies_report.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') firstLine = 0 mydict = {} allCountries = [] myDictPercentage = {} #Colum 7 is location (countries) and column 6 is clicked for row in csv_reader: if firstLine == 0: firstLine += 1 else: newStr = row[7].replace('[','') newStr2 = newStr.replace(']','') arrayCountry = eval('[' + newStr2 + ']') #print(arrayCountry) for country in arrayCountry: allCountries.append(country) numCountry = allCountries.count(country) #print("total numCountry: ", numCountry) if row[6] == "False": mydict[country] = mydict.get(country,0) + 1 else: mydict[country] = mydict.get(country,0) actualValDic = mydict.get(country) #print("actualValDic: ", actualValDic) percentFalse = (actualValDic/numCountry) * 100 #print("percentatge: ", percentFalse) myDictPercentage.update({country:percentFalse}) print(mydict) print(myDictPercentage) plt.bar(range(len(myDictPercentage)), list(myDictPercentage.values()), align='center') plt.xticks(range(len(myDictPercentage)), list(myDictPercentage.keys())) plt.ylabel('Percentatge of NOT accepted') plt.xlabel('Country') plt.title('Country vs acceptance') plt.show() csv_header = ["country","perNotAccept"] with open("countryCookiesNot.csv", 'w', newline='') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(csv_header) for key in myDictPercentage.keys(): csv_file.write("%s,%s\n"%(key,myDictPercentage[key])) with open("cookies_report.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') #### Pie chart same vs more cookies #### moreCookies = 0 sameCookies = 0 lessCookies = 0 # Column 2 is cookies_default, column 4 is cookies_ninja for row in csv_reader: if row[2] == row[4]: sameCookies += 1 elif row[4] > row[2]: moreCookies += 1 elif row[4] < row[2]: lessCookies += 1 print("moreCookies: ", moreCookies) print("sameCookies: ", sameCookies) print("lessCookies: ", lessCookies) cookies = [moreCookies, sameCookies, lessCookies] nombres = ["More cookies", "Same Cookies", "Less Cookies"] plt.pie(cookies, labels=nombres, autopct="%0.1f %%") plt.axis("equal") plt.title("Domains with the same cookies case Ninja Cookie plugin") plt.show() with open("cookies_report.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') #### How many cookies by saying yes #### ninja = 0 notInteract = 0 firstLine = 0 # Column 2 is cookies_default, column 4 is cookies_ninja for row in csv_reader: if firstLine == 0: firstLine += 1 else: ninja = ninja + int(row[4]) notInteract = notInteract + int(row[2]) print("Cookies ninja plugin: ", ninja) print("Cookies not interacting: ", notInteract) objects = ('Ninja Plugin','Not interacting') y_pos = np.arange(len(objects)) performance = [ninja,notInteract] plt.bar(y_pos, performance, align='center', alpha=0.5) plt.xticks(y_pos, objects) plt.ylabel('Number of cookies') plt.xlabel('Action performed') plt.title('Total of cookies with ninja plugin or not interacting') plt.show() #CDF accept cookies vs default def cdf(data, data2): data_size=len(data) data_size2=len(data2) # Set bins edges data_set=sorted(set(data)) data_set2=sorted(set(data2)) bins=np.append(data_set, data_set[-1]+1) bins2=np.append(data_set2, data_set2[-1]+1) # Use the histogram function to bin the data counts, bin_edges = np.histogram(data, bins=bins, density=False) counts2, bin_edges2 = np.histogram(data2, bins=bins2, density=False) counts=counts.astype(float)/data_size counts2=counts2.astype(float)/data_size2 # Find the cdf cdf = np.cumsum(counts) cdf2 = np.cumsum(counts2) # Plot the cdf blueLine, = plt.plot(bin_edges[0:-1], cdf,linestyle='--', marker="o", color='b') redLine, = plt.plot(bin_edges2[0:-1], cdf2,linestyle='--', marker="o", color='r') plt.legend([blueLine,redLine],['cookies Accepted', 'cookies Default']) plt.ylim((0,1)) plt.xlabel('Number of cookies') plt.title("CDF cookies accepted vs default") plt.grid(True) plt.show() print("resource_id,num_fonts") data = [] data2 = [] with open('cookies_report.csv', newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=',') first = True for row in spamreader: if not first: data.append(row[5]) #Cookies accepted column data2.append(row[2]) #Default cookies column first = False data_array = np.asarray(data).astype(int) data_array2 = np.asarray(data2).astype(int) cdf(data_array, data_array2) #CDF ninja cookies vs default def cdf(data, data2): data_size=len(data) data_size2=len(data2) # Set bins edges data_set=sorted(set(data)) data_set2=sorted(set(data2)) bins=np.append(data_set, data_set[-1]+1) bins2=np.append(data_set2, data_set2[-1]+1) # Use the histogram function to bin the data counts, bin_edges = np.histogram(data, bins=bins, density=False) counts2, bin_edges2 = np.histogram(data2, bins=bins2, density=False) counts=counts.astype(float)/data_size counts2=counts2.astype(float)/data_size2 # Find the cdf cdf = np.cumsum(counts) cdf2 = np.cumsum(counts2) # Plot the cdf blueLine, = plt.plot(bin_edges[0:-1], cdf,linestyle='--', marker="o", color='b') redLine, = plt.plot(bin_edges2[0:-1], cdf2,linestyle='--', marker="o", color='r') plt.legend([blueLine,redLine],['cookies Ninja', 'cookies Default']) plt.ylim((0,1)) plt.xlabel('Number of cookies') plt.title("CDF cookies Ninja Plugin vs Default") plt.grid(True) plt.show() print("resource_id,num_fonts") data = [] data2 = [] with open('cookies_report.csv', newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=',') first = True for row in spamreader: if not first: data.append(row[4]) #Ninja cookies column data2.append(row[2]) #Default cookies column first = False data_array = np.asarray(data).astype(int) data_array2 = np.asarray(data2).astype(int) cdf(data_array, data_array2) #Plot known 10 domains vs number of cookies with open("cookies_report.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') #### How many cookies by saying yes #### firstLine = 0 dictDomainCookies = {} # Column 2 is cookies_default, column 1 is domain names for row in csv_reader: if firstLine == 0: firstLine += 1 else: if row[1] == "ups.com": dictDomainCookies["ups.com"] = int(row[2]) elif row[1] == "bing.com": dictDomainCookies["bing.com"] = int(row[2]) elif row[1] == "oracle.com": dictDomainCookies["oracle.com"] = int(row[2]) elif row[1] == "cnn.com": dictDomainCookies["cnn.com"] = int(row[2]) elif row[1] == "orange.fr": dictDomainCookies["orange.fr"] = int(row[2]) elif row[1] == "dell.com": dictDomainCookies["dell.com"] = int(row[2]) elif row[1] == "booking.com": dictDomainCookies["booking.com"] = int(row[2]) elif row[1] == "grammarly.com": dictDomainCookies["grammarly.com"] = int(row[2]) elif row[1] == "google.com": dictDomainCookies["google.com"] = int(row[2]) elif row[1] == "amazon.com": dictDomainCookies["amazon.com"] = int(row[2]) print("Dictionari cookies domains: ", dictDomainCookies) plt.bar(range(len(dictDomainCookies)),dictDomainCookies.values(), align='center') plt.xticks(range(len(dictDomainCookies)), list(dictDomainCookies.keys())) plt.ylabel('Number of cookies') plt.xlabel('Domains names') plt.title('Number cookies vs domains') plt.show() with open("cookies_report.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') firstLine = 0 mydict = {} myDictPercentage = {} myDictPercentageThird = {} mydictThird = {} mydictTotal = {} isEU = ['AT','BE','BG','HR','CY','CZ','DK','EE','FI','FR','DE','GR','HU','IE','IT','LV','LT','LU','MT','NL','PL','PT','RO','SK','SI','ES','SE'] #Colum 7 is location (countries) and column 6 is clicked and column 8 is first parties for row in csv_reader: if firstLine == 0: firstLine += 1 else: newStr = row[7].replace('[','') newStr2 = newStr.replace(']','') arrayCountry = eval('[' + newStr2 + ']') newStrPart = row[8].replace('[','') newStr2Part = newStrPart.replace(']','') arrayPart = eval('[' + newStr2Part + ']') #print(arrayCountry) #print(row[8]) for i in range(len(arrayCountry)): if row[6] == "False" and arrayPart[i] == True: mydict[arrayCountry[i]] = mydict.get(arrayCountry[i],0) + 1 mydictTotal[arrayCountry[i]] = mydictTotal.get(arrayCountry[i],0) + 1 elif row[6] == "True" and arrayPart[i] == True: mydict[arrayCountry[i]] = mydict.get(arrayCountry[i],0) mydictTotal[arrayCountry[i]] = mydictTotal.get(arrayCountry[i],0) + 1 elif row[6] == "False" and arrayPart[i] == False: mydictThird[arrayCountry[i]] = mydictThird.get(arrayCountry[i],0) + 1 mydictTotal[arrayCountry[i]] = mydictTotal.get(arrayCountry[i],0) + 1 elif row[6] == "True" and arrayPart[i] == False: mydictThird[arrayCountry[i]] = mydictThird.get(arrayCountry[i],0) mydictTotal[arrayCountry[i]] = mydictTotal.get(arrayCountry[i],0) + 1 print(mydict) print(mydictTotal) print(mydictThird) for x in mydictTotal.keys(): myDictPercentage.update({x:0}) myDictPercentageThird.update({x:0}) print(myDictPercentage) print(myDictPercentageThird) for x, y in mydict.items(): yTotal = mydictTotal[x] percentFalse = (y/yTotal) * 100 myDictPercentage.update({x:percentFalse}) print(myDictPercentage) for x, y in mydictThird.items(): yTotal = mydictTotal[x] percentFalse = (y/yTotal) * 100 myDictPercentageThird.update({x:percentFalse}) print(myDictPercentageThird) X_axis = np.arange(len(mydictTotal)) plt.bar(X_axis - 0.2, myDictPercentage.values(), 0.4, label = 'First parties') plt.bar(X_axis + 0.2, myDictPercentageThird.values(), 0.4, label = 'Third parties') plt.xticks(X_axis, mydictTotal.keys()) plt.xlabel("Country") plt.ylabel("Percentatge of NOT accepted") plt.title("Country vs acceptance") plt.legend() plt.show() csv_header = ["country","perNotAccept"] with open("countryCookiesNotFirst.csv", 'w', newline='') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(csv_header) for key in myDictPercentage.keys(): csv_file.write("%s,%s\n"%(key,myDictPercentage[key])) csv_header = ["country","perNotAccept"] with open("countryCookiesNotThird.csv", 'w', newline='') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(csv_header) for key in myDictPercentageThird.keys(): csv_file.write("%s,%s\n"%(key,myDictPercentageThird[key])) with open("cookies_report.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') #### Pie chart clicked vs not #### cookiesClicked = 0 cookiesNotClicked = 0 totalDomains = -1 # REMEMBER! Column 10 is accepted_pablo, if we add more columns remember to change this value for row in csv_reader: totalDomains += 1 if row[10] == "True": cookiesClicked += 1 elif row[10] == "False": cookiesNotClicked += 1 print("cookiesClicked: ", cookiesClicked) print("cookiesNotClicked: ", cookiesNotClicked) print("totalDomains: ", totalDomains) cookies = [cookiesClicked, cookiesNotClicked] nombres = ["Accepted", "Not asked/Not accepted"] plt.pie(cookies, labels=nombres, autopct="%0.1f %%") plt.axis("equal") plt.title("Pages able to accept cookies Computer Vision") plt.show() with open("cookies_report.csv") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') #### Pie chart same vs more cookies #### moreCookies = 0 sameCookies = 0 # Column 2 is cookies_default, column 9 is cookies_pablo for row in csv_reader: if row[10] == "True": if row[2] == row[9] or row[9] < row[2]: sameCookies += 1 elif row[9] > row[2]: moreCookies += 1 print("moreCookies: ", moreCookies) print("sameCookies: ", sameCookies) cookies = [moreCookies, sameCookies] nombres = ["More cookies", "Same Cookies"] plt.pie(cookies, labels=nombres, autopct="%0.1f %%") plt.axis("equal") plt.title("Domains with the same cookies after accept Computer Vision") plt.show() #CDF Computer Vision accept cookies vs default def cdf(data, data2): data_size=len(data) data_size2=len(data2) # Set bins edges data_set=sorted(set(data)) data_set2=sorted(set(data2)) bins=np.append(data_set, data_set[-1]+1) bins2=np.append(data_set2, data_set2[-1]+1) # Use the histogram function to bin the data counts, bin_edges = np.histogram(data, bins=bins, density=False) counts2, bin_edges2 = np.histogram(data2, bins=bins2, density=False) counts=counts.astype(float)/data_size counts2=counts2.astype(float)/data_size2 # Find the cdf cdf = np.cumsum(counts) cdf2 = np.cumsum(counts2) # Plot the cdf blueLine, = plt.plot(bin_edges[0:-1], cdf,linestyle='--', marker="o", color='b') redLine, = plt.plot(bin_edges2[0:-1], cdf2,linestyle='--', marker="o", color='r') plt.legend([blueLine,redLine],['cookies Computer Vision', 'cookies Default']) plt.ylim((0,1)) plt.xlabel('Number of cookies') plt.title("CDF cookies Computer Vision vs Default") plt.grid(True) plt.show() print("resource_id,num_fonts") data = [] data2 = [] with open('cookies_report.csv', newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=',') first = True for row in spamreader: if not first: data.append(row[9]) #Cookies Pablo column data2.append(row[2]) #Default cookies column first = False data_array = np.asarray(data).astype(int) data_array2 = np.asarray(data2).astype(int) cdf(data_array, data_array2) #CDF all def cdf(data, data2, data3, data4): data_size=len(data) data_size2=len(data2) data_size3=len(data3) data_size4=len(data4) # Set bins edges data_set=sorted(set(data)) data_set2=sorted(set(data2)) data_set3=sorted(set(data3)) data_set4=sorted(set(data4)) bins=np.append(data_set, data_set[-1]+1) bins2=np.append(data_set2, data_set2[-1]+1) bins3=np.append(data_set3, data_set3[-1]+1) bins4=np.append(data_set4, data_set4[-1]+1) # Use the histogram function to bin the data counts, bin_edges = np.histogram(data, bins=bins, density=False) counts2, bin_edges2 = np.histogram(data2, bins=bins2, density=False) counts3, bin_edges3 = np.histogram(data3, bins=bins3, density=False) counts4, bin_edges4 = np.histogram(data4, bins=bins4, density=False) counts=counts.astype(float)/data_size counts2=counts2.astype(float)/data_size2 counts3=counts3.astype(float)/data_size3 counts4=counts4.astype(float)/data_size4 # Find the cdf cdf = np.cumsum(counts) cdf2 = np.cumsum(counts2) cdf3 = np.cumsum(counts3) cdf4 = np.cumsum(counts4) # Plot the cdf blueLine, = plt.plot(bin_edges[0:-1], cdf,linestyle='--', marker="o", color='b') redLine, = plt.plot(bin_edges2[0:-1], cdf2,linestyle='--', marker="o", color='r') greenLine, = plt.plot(bin_edges3[0:-1], cdf3,linestyle='--', marker="o", color='g') orangeLine, = plt.plot(bin_edges4[0:-1], cdf4,linestyle='--', marker="o", color='y') plt.legend([blueLine,redLine,greenLine,orangeLine],['cookies Ninja', 'cookies Default','cookies Computer Vision','Cookies Selenium']) plt.ylim((0,1)) plt.xlabel('Number of cookies') plt.title("CDF cookies of all different methods") plt.grid(True) plt.show() print("resource_id,num_fonts") data = [] data2 = [] data3 = [] data4 = [] with open('cookies_report.csv', newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=',') first = True for row in spamreader: if not first: data.append(row[4]) #Ninja cookies column data2.append(row[2]) #Default cookies column data3.append(row[9]) #Cookies Pablo column data4.append(row[5]) #Cookies accepted column first = False data_array = np.asarray(data).astype(int) data_array2 = np.asarray(data2).astype(int) data_array3 =
np.asarray(data3)
numpy.asarray
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # pylint: disable=no-member """ TridentNet Training Script. This script is a simplified version of the training script in detectron2/tools. """ import math from typing import List, Tuple, Union, Set, DefaultDict from typing_extensions import Literal, TypedDict import pickle from pathlib import Path from collections import defaultdict import json import os import sys from tqdm import tqdm import torch from torch.utils.data import Dataset, DataLoader import torch.multiprocessing as mp from torch.multiprocessing import set_start_method import argtyped import cv2 import lmdb import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.colors as mcolors from PIL import Image from apex import amp import torch from torch.nn import functional as F sys.path.append("detectron2") from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import DefaultTrainer, default_setup from detectron2.structures import Instances from utils.extract_utils import get_image_blob from models import add_config from models.bua.box_regression import BUABoxes from models.bua.layers.nms import batched_nms # Only valid with fp32 inputs - give AMP the hint Mode = Literal["bbox_feats", "roi_feats", "bboxes"] class MatterportFeature(TypedDict): image_feat: List[Image.Image] view_ids: List[int] reverie_ids: List[int] image_h: int image_w: int fov: float boxes: List[List[int]] cls_probs: List[np.ndarray] class Arguments(argtyped.Arguments): config_file: Path = Path("configs/bua-caffe/extract-bua-caffe-r101.yaml") part_ids: List[int] = [0] num_parts: int = 1 extract_mode: Mode = "roi_feats" mode: str = 'caffe' overwrite: bool = False min_max_boxes: str = "min_max_default" output: Path = Path("output") bbox_dir: Path = Path("bbox_dir") connectivity: Path = Path("connectivity") visualize: bool = False preload: bool = False nms_thresh: float = 0.3 conf_thresh: float = 0.4 min_local_boxes: int = 5 max_local_boxes: int = 20 max_total_boxes: int = 100 num_sweeps: int = 3 views_per_sweep: int = 12 # number of total views from one pano viewpoint_size: int = 36 heading_inc: int = 30 # margin of error for deciding if an object is closer to the centre of another view angle_margin: int=5 # elevation on first sweep elevation_start: int =-30 # how much elevation increases each sweep elevation_inc: int =30 # DataLoader num_workers: int = 0 batch_size: int = 1 # Matterport LMDB containing view images (see pointer-reverie/scripts/matterport_images.py) matterport: Path = Path("matterport.lmdb") def set_min_max_boxes(min_max_boxes): if min_max_boxes == "min_max_default": return [] try: min_boxes = int(min_max_boxes.split(",")[0]) max_boxes = int(min_max_boxes.split(",")[1]) except: print("Illegal min-max boxes setting, using config default. ") return [] cmd = [ "MODEL.BUA.EXTRACTOR.MIN_BOXES", min_boxes, "MODEL.BUA.EXTRACTOR.MAX_BOXES", max_boxes, ] return cmd def switch_extract_mode(mode: Mode): if mode == "roi_feats": switch_cmd = ["MODEL.BUA.EXTRACTOR.MODE", 1] elif mode == "bboxes": switch_cmd = ["MODEL.BUA.EXTRACTOR.MODE", 2] elif mode == "bbox_feats": switch_cmd = [ "MODEL.BUA.EXTRACTOR.MODE", 3, "MODEL.PROPOSAL_GENERATOR.NAME", "PrecomputedProposals", ] else: print("Wrong extract mode! ") exit() return switch_cmd def setup(args: Arguments): """ Create configs and perform basic setups. """ cfg = get_cfg() add_config(args, cfg) cfg.merge_from_file(str(args.config_file)) # cfg.merge_from_list(args.opts) cfg.merge_from_list(switch_extract_mode(args.extract_mode)) cfg.merge_from_list(set_min_max_boxes(args.min_max_boxes)) cfg.freeze() default_setup(cfg, args) return cfg def get_detections_from_im( im: np.ndarray, model, cfg, fov: float, boxes = None ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: im = np.array(im) dataset_dict = get_image_blob(im, cfg.MODEL.PIXEL_MEAN) # extract bbox only if boxes is not None: boxes = boxes * dataset_dict["im_scale"] proposals = Instances(dataset_dict["image"].shape[-2:]) proposals.proposal_boxes = BUABoxes(boxes) dataset_dict["proposals"] = proposals with torch.no_grad(): if cfg.MODEL.BUA.ATTRIBUTE_ON: boxes, cls_scores, features_pooled, attr_scores = model( [dataset_dict] ) else: boxes, cls_scores, features_pooled = model([dataset_dict]) return boxes[0].tensor, cls_scores[0], features_pooled[0] def filter_bbox(boxes, prob, view_id: int, width: int, height: int, fov: float, args: Arguments): num_boxes, num_cls = boxes.shape # Keep only the best detections max_conf = torch.zeros((num_boxes)).to(prob.device) for cls_ind in range(1, num_cls): scores = prob[:, cls_ind] keep = batched_nms(boxes, scores, torch.arange(num_boxes), args.nms_thresh) mask = scores[keep] > max_conf[keep] max_conf[keep][mask] = scores[keep][mask] keep_boxes = max_conf >= args.conf_thresh if len(keep_boxes) < args.min_local_boxes: top_boxes = torch.topk(max_conf, args.min_local_boxes).indices keep_boxes = torch.zeros(num_boxes).bool().to(prob.device) keep_boxes[top_boxes] = True elif len(keep_boxes) > args.max_local_boxes: top_boxes = torch.topk(max_conf, args.max_local_boxes).indices keep_boxes = torch.zeros(num_boxes).bool().to(prob.device) keep_boxes[top_boxes] = True # Discard any box that would be better centered in another image # threshold for pixel distance from center of image focal_length = (height/2)/math.tan(math.radians(fov/2)) # focal length hor_thresh = focal_length * math.tan(math.radians(args.heading_inc/2 + args.angle_margin)) vert_thresh = focal_length * math.tan(math.radians(args.elevation_inc/2 + args.angle_margin)) center_x = 0.5*(boxes[:,0]+boxes[:,2]) center_y = 0.5*(boxes[:,1]+boxes[:,3]) reject = (center_x < width/2-hor_thresh) | (center_x > width/2+hor_thresh) if view_id >= args.views_per_sweep: # not lowest sweep reject |= (center_y > height/2+vert_thresh) if view_id < args.viewpoint_size - args.views_per_sweep: # not highest sweep reject |= (center_y < height/2-vert_thresh) keep_boxes = keep_boxes & ~reject return keep_boxes def get_ft_head_elev(bbox: torch.Tensor, view_id: torch.Tensor, width: int, height: int, fov: float): # Calculate the heading and elevation of the center of each observation center_x = 0.5 * (bbox[:, 0] + bbox[:, 2]) center_y = 0.5 * (bbox[:, 1] + bbox[:, 3]) focal_length = torch.tensor((height / 2) / math.tan(math.radians(fov / 2))).to(bbox.device) heading = torch.deg2rad((view_id % 12) * 30) ft_heading = heading + torch.atan2(center_x - width / 2, focal_length) # normalize featureHeading ft_heading = ft_heading % (math.pi * 2) assert (0 <= ft_heading).all() and (ft_heading <= math.pi * 2).all() # force it to be the positive remainder, so that 0 <= angle < 360 more_than_pi = ft_heading > math.pi ft_heading[more_than_pi] = (ft_heading - math.pi * 2)[more_than_pi] assert (-math.pi <= ft_heading).all() and (ft_heading <= math.pi).all() elevation = torch.deg2rad((view_id // 12) * 30) ft_elevation = elevation + torch.atan2( -center_y + height / 2, focal_length ) return ft_heading, ft_elevation def filter_panorama(boxes: torch.Tensor, probs: torch.Tensor, features: torch.Tensor, view_ids: torch.Tensor, max_boxes: int, width: int, height: int, fov: float) -> torch.Tensor: ft_heading, ft_elevation = get_ft_head_elev(boxes, view_ids, width, height, fov) # Remove the most redundant features (that have similar heading, elevation and # are close together to an existing feature in cosine distance) ext_features = features.unsqueeze(2) feat_dist = F.cosine_similarity(ext_features, ext_features.transpose(0, 2), dim=1) indices = torch.triu_indices(*feat_dist.shape, 1) heading_diff_tri = F.pdist(ft_heading.unsqueeze(1), 2) heading_diff_tri = torch.minimum(heading_diff_tri, 2*math.pi - heading_diff_tri) heading_diff = torch.zeros_like(feat_dist) heading_diff[indices[0], indices[1]] = heading_diff_tri elevation_diff_tri = F.pdist(ft_elevation.unsqueeze(1), 2) elevation_diff = torch.zeros_like(feat_dist) elevation_diff[indices[0], indices[1]] = elevation_diff_tri total_dist = feat_dist + heading_diff + elevation_diff # Could add weights # Discard diagonal and upper triangle by setting large distance dist = total_dist[indices[0], indices[1]] arg_ind = torch.argsort(dist) # Remove indices of the most similar features (in appearance and orientation) keep = set(range(feat_dist.shape[0])) ix = 0 while len(keep) > max_boxes: min_ind = arg_ind[ix] i, j = indices[:, min_ind].tolist() if i not in keep or j not in keep: ix += 1 continue if probs[i,1:].max() > probs[j,1:].max(): keep.remove(j) else: keep.remove(i) ix += 1 return torch.Tensor(list(keep)).long().to(boxes.device) def extract_feat(worker_id, viewpoint_lists, args: Arguments): part_id = args.part_ids[worker_id] viewpoint_list = viewpoint_lists[part_id] num_viewpoints = len(viewpoint_list) cfg = setup(args) print("Number of viewpoints on split{}: {}.".format(part_id, num_viewpoints)) num_gpus = torch.cuda.device_count() assert num_gpus != 0 device_id = part_id % num_gpus torch.cuda.set_device(device_id) if args.num_parts == 1: lmdb_path = args.output else: lmdb_path = args.output.parent / f"{args.output.stem}-{part_id}.lmdb" writer = LMDBWriter(str(lmdb_path), map_size=int(1e12), buffer_size=300, overwrite=args.overwrite) model = DefaultTrainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=False ) model.eval() done = set(tuple(bkey.decode().split("_")) for bkey in writer._keys) print('Done', len(done)) viewpoint_list = [v for v in viewpoint_list if v not in done] dataset = MatterportDataset(viewpoint_list, args) dataloader = DataLoader( dataset, num_workers=args.num_workers, batch_size=10, collate_fn=lambda x: x, ) batch: List[Tuple[MatterportFeature, DefaultDict, str, str]] for batch in tqdm(dataloader): for feats, bboxes_per_view_id, scan, viewpoint in batch: all_boxes = [] all_features = [] all_probs = [] all_view_ids = [] all_reverie_ids = [] for view_id, im in zip(feats['view_ids'], feats['image_feat']): if args.extract_mode == "bbox_feats": boxes = torch.Tensor([b["bbox"] for b in bboxes_per_view_id[view_id]]) all_reverie_ids += [b["obj_id"] for b in bboxes_per_view_id[view_id]] else: boxes = None detected_boxes, probs, features = get_detections_from_im(
np.array(im)
numpy.array
"""Using the FSWT to process anistropic images. In this demo, an anisotropic piecewise-constant image is transformed by the standard DWT and the fully-separable DWT. The 'Haar' wavelet gives a sparse representation for such piecewise constant signals (detail coefficients are only non-zero near edges). For such anistropic signals, the number of non-zero coefficients will be lower for the fully separable DWT than for the isotropic one. This example is inspired by the following publication where it is proven that the FSWT gives a sparser representation than the DWT for this class of anistropic images: .. <NAME>, <NAME>, <NAME> and <NAME>. Directionlets: Anisotropic Multidirectional Representation With Separable Filtering. IEEE Transactions on Image Processing, Vol. 15, No. 7, July 2006. """ import numpy as np import pywt from matplotlib import pyplot as plt def mondrian(shape=(256, 256), nx=5, ny=8, seed=4): """ Piecewise-constant image (reminiscent of Dutch painter <NAME>rian's geometrical period). """ rstate = np.random.RandomState(seed) min_dx = 0 while(min_dx < 3): xp = np.sort(np.round(rstate.rand(nx-1)*shape[0]).astype(np.int64)) xp = np.concatenate(((0, ), xp, (shape[0], ))) min_dx = np.min(np.diff(xp)) min_dy = 0 while(min_dy < 3): yp = np.sort(np.round(rstate.rand(ny-1)*shape[1]).astype(np.int64)) yp = np.concatenate(((0, ), yp, (shape[1], ))) min_dy = np.min(np.diff(yp)) img =
np.zeros(shape)
numpy.zeros
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort() tm.assert_numpy_array_equal(result, expected) def test_sortlevel(self): import random tuples = list(self.index) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) sorted_idx, _ = mi.sortlevel('A', sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(self): tuples = [('bar', 'one'), ('foo', 'two'), ('qux', 'two'), ('foo', 'one'), ('baz', 'two'), ('qux', 'one')] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_dims(self): pass def test_drop(self): dropped = self.index.drop([('foo', 'two'), ('qux', 'one')]) index = MultiIndex.from_tuples([('foo', 'two'), ('qux', 'one')]) dropped2 = self.index.drop(index) expected = self.index[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = self.index.drop(['bar']) expected = self.index[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop('foo') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([('bar', 'two')]) pytest.raises(KeyError, self.index.drop, [('bar', 'two')]) pytest.raises(KeyError, self.index.drop, index) pytest.raises(KeyError, self.index.drop, ['foo', 'two']) # partially correct argument mixed_index = MultiIndex.from_tuples([('qux', 'one'), ('bar', 'two')]) pytest.raises(KeyError, self.index.drop, mixed_index) # error='ignore' dropped = self.index.drop(index, errors='ignore') expected = self.index[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(['foo', 'two'], errors='ignore') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = self.index.drop(['foo', ('qux', 'one')]) expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ['foo', ('qux', 'one'), 'two'] pytest.raises(KeyError, self.index.drop, mixed_index) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(self): index = self.index[self.index.get_loc('foo')] dropped = index.droplevel(0) assert dropped.name == 'second' index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index.droplevel(0) assert dropped.names == ('two', 'three') dropped = index.droplevel('two') expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(self): index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index[:2].droplevel(['three', 'one']) expected = index[:2].droplevel(2).droplevel(0) assert dropped.equals(expected) dropped = index[:2].droplevel([]) expected = index[:2] assert dropped.equals(expected) with pytest.raises(ValueError): index[:2].droplevel(['one', 'two', 'three']) with pytest.raises(KeyError): index[:2].droplevel(['one', 'four']) def test_drop_not_lexsorted(self): # GH 12078 # define the lexsorted version of the multi-index tuples = [('a', ''), ('b1', 'c1'), ('b2', 'c2')] lexsorted_mi = MultiIndex.from_tuples(tuples, names=['b', 'c']) assert lexsorted_mi.is_lexsorted() # and the not-lexsorted version df = pd.DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) df = df.pivot_table(index='a', columns=['b', 'c'], values='d') df = df.reset_index() not_lexsorted_mi = df.columns assert not not_lexsorted_mi.is_lexsorted() # compare the results tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi) with tm.assert_produces_warning(PerformanceWarning): tm.assert_index_equal(lexsorted_mi.drop('a'), not_lexsorted_mi.drop('a')) def test_insert(self): # key contained in all levels new_index = self.index.insert(0, ('bar', 'two')) assert new_index.equal_levels(self.index) assert new_index[0] == ('bar', 'two') # key not contained in all levels new_index = self.index.insert(0, ('abc', 'three')) exp0 = Index(list(self.index.levels[0]) + ['abc'], name='first') tm.assert_index_equal(new_index.levels[0], exp0) exp1 = Index(list(self.index.levels[1]) + ['three'], name='second') tm.assert_index_equal(new_index.levels[1], exp1) assert new_index[0] == ('abc', 'three') # key wrong length msg = "Item must have length equal to number of levels" with tm.assert_raises_regex(ValueError, msg): self.index.insert(0, ('foo2',)) left = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1]], columns=['1st', '2nd', '3rd']) left.set_index(['1st', '2nd'], inplace=True) ts = left['3rd'].copy(deep=True) left.loc[('b', 'x'), '3rd'] = 2 left.loc[('b', 'a'), '3rd'] = -1 left.loc[('b', 'b'), '3rd'] = 3 left.loc[('a', 'x'), '3rd'] = 4 left.loc[('a', 'w'), '3rd'] = 5 left.loc[('a', 'a'), '3rd'] = 6 ts.loc[('b', 'x')] = 2 ts.loc['b', 'a'] = -1 ts.loc[('b', 'b')] = 3 ts.loc['a', 'x'] = 4 ts.loc[('a', 'w')] = 5 ts.loc['a', 'a'] = 6 right = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1], ['b', 'x', 2], ['b', 'a', -1], ['b', 'b', 3], ['a', 'x', 4], ['a', 'w', 5], ['a', 'a', 6]], columns=['1st', '2nd', '3rd']) right.set_index(['1st', '2nd'], inplace=True) # FIXME data types changes to float because # of intermediate nan insertion; tm.assert_frame_equal(left, right, check_dtype=False) tm.assert_series_equal(ts, right['3rd']) # GH9250 idx = [('test1', i) for i in range(5)] + \ [('test2', i) for i in range(6)] + \ [('test', 17), ('test', 18)] left = pd.Series(np.linspace(0, 10, 11), pd.MultiIndex.from_tuples(idx[:-2])) left.loc[('test', 17)] = 11 left.loc[('test', 18)] = 12 right = pd.Series(np.linspace(0, 12, 13), pd.MultiIndex.from_tuples(idx)) tm.assert_series_equal(left, right) def test_take_preserve_name(self): taken = self.index.take([3, 0, 1]) assert taken.names == self.index.names def test_take_fill_value(self): # GH 12631 vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) result = idx.take(np.array([1, 0, -1])) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), (np.nan, pd.NaT)] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(
np.array([1, 0, -1])
numpy.array
''' Created: 2022/02/11 Maintainer: <NAME> <<EMAIL>> adapted from https://github.com/ethz-asl/robotcar_tools/blob/master/python/interpolate_poses.py LICENSE: MIT ''' import transformations as tfs import numpy as np import argparse import bisect import transformations as tfs def main(kf_pose_fname, timestamps_fname): kf_pose = np.genfromtxt(kf_pose_fname) timestamps = np.genfromtxt(timestamps_fname) timestamps = np.squeeze(timestamps[:, 1]) * 1e6 pose_timestamps = kf_pose[:, 0] * 1e6 abs_poses = kf_pose[:, 1:] interpolated_pose = interpolate_poses(pose_timestamps.astype(np.int64).tolist(), abs_poses, timestamps.astype(np.int64).tolist(), int(timestamps[0])) np.savetxt(kf_pose_fname.replace(".txt", "_interp.txt"), np.array(interpolated_pose), fmt="%1.6f") def interpolate_poses(pose_timestamps, abs_poses, requested_timestamps, origin_timestamp): """Interpolate between absolute poses. Args: pose_timestamps (list[int]): Timestamps of supplied poses. Must be in ascending order. abs_poses (list[numpy.matrixlib.defmatrix.matrix]): SE3 matrices representing poses at the timestamps specified. requested_timestamps (list[int]): Timestamps for which interpolated timestamps are required. origin_timestamp (int): UNIX timestamp of origin frame. Poses will be reported relative to this frame. Returns: list[numpy.matrixlib.defmatrix.matrix]: SE3 matrix representing interpolated pose for each requested timestamp. Raises: ValueError: if pose_timestamps and abs_poses are not the same length ValueError: if pose_timestamps is not in ascending order """ requested_timestamps.insert(0, origin_timestamp) requested_timestamps = np.array(requested_timestamps) pose_timestamps = np.array(pose_timestamps) if len(pose_timestamps) != len(abs_poses): raise ValueError('Must supply same number of timestamps as poses') abs_quaternions = np.zeros((4, len(abs_poses))) abs_positions = np.zeros((3, len(abs_poses))) for i, pose in enumerate(abs_poses): if i > 0 and pose_timestamps[i - 1] >= pose_timestamps[i]: raise ValueError('Pose timestamps must be in ascending order') abs_quaternions[:, i] = pose[ 3:] # np.roll(pose[3:], -1) uncomment this if the quaternion is saved as [w, x, y, z] abs_positions[:, i] = pose[:3] upper_indices = [bisect.bisect(pose_timestamps, pt) for pt in requested_timestamps] lower_indices = [u - 1 for u in upper_indices] if max(upper_indices) >= len(pose_timestamps): upper_indices = [min(i, len(pose_timestamps) - 1) for i in upper_indices] fractions = (requested_timestamps - pose_timestamps[lower_indices]) // \ (pose_timestamps[upper_indices] - pose_timestamps[lower_indices]) quaternions_lower = abs_quaternions[:, lower_indices] quaternions_upper = abs_quaternions[:, upper_indices] d_array = (quaternions_lower * quaternions_upper).sum(0) linear_interp_indices = np.nonzero(d_array >= 1) sin_interp_indices = np.nonzero(d_array < 1) scale0_array = np.zeros(d_array.shape) scale1_array = np.zeros(d_array.shape) scale0_array[linear_interp_indices] = 1 - fractions[linear_interp_indices] scale1_array[linear_interp_indices] = fractions[linear_interp_indices] theta_array = np.arccos(np.abs(d_array[sin_interp_indices])) scale0_array[sin_interp_indices] = \ np.sin((1 - fractions[sin_interp_indices]) * theta_array) / np.sin(theta_array) scale1_array[sin_interp_indices] = \ np.sin(fractions[sin_interp_indices] * theta_array) / np.sin(theta_array) negative_d_indices = np.nonzero(d_array < 0) scale1_array[negative_d_indices] = -scale1_array[negative_d_indices] quaternions_interp = np.tile(scale0_array, (4, 1)) * quaternions_lower \ + np.tile(scale1_array, (4, 1)) * quaternions_upper positions_lower = abs_positions[:, lower_indices] positions_upper = abs_positions[:, upper_indices] positions_interp = np.multiply(np.tile((1 - fractions), (3, 1)), positions_lower) \ + np.multiply(np.tile(fractions, (3, 1)), positions_upper) poses_mat = np.zeros((4, 4 * len(requested_timestamps))) poses_mat[0, 0::4] = 1 - 2 *
np.square(quaternions_interp[2, :])
numpy.square
import codecs import json import pickle import os import string import sys import numpy as np cwd = os.getcwd() sys.path.append(cwd) import tqdm def get_desc(path): table = str.maketrans('', '', string.punctuation) with open(path, 'r', encoding='utf8') as f: desc = f.read() # Tokenize desc = desc.split() # Convert to lower case desc = [word.lower() for word in desc] # Remove punctuation desc = [word.translate(table) for word in desc] # Removing hanging letters desc = [word for word in desc if len(word) > 1] # Remove tokens with numbers in them desc = [word for word in desc if word.isalpha()] desc_final = 'startseq ' + ' '.join(desc) + ' endseq' return desc_final def add_to_vocab(vocabulary, desc): for word in desc.split(' '): vocabulary[word] = vocabulary.get(word, 0) + 1 return vocabulary def create_unique_vocab(vocabulary, threshold): unique_vocab = {word: vocabulary[word] for word in vocabulary.keys() if vocabulary[word] >= threshold_value} return unique_vocab # for folder in ["Urban_Outfitters", "RALPH_LAUREN"]: # var_path = os.path.join(cwd, "variables", folder) # with open(os.path.join(var_path, "dataset_class.p"), 'rb') as f: # dc = pickle.load(f) # dc.vocab_options = {"threshold": 10} # print("building_vocab") # # Rebuild vocabulary # dc.build_vocabulary() # # # Build embedding # dc.get_embeddings() # Redo the for webshop_name in ["RALPH_LAUREN", "Urban_Outfitters"]: var_path = os.path.join(cwd, "variables", webshop_name) desc_path = os.path.join(cwd, "Datasets", webshop_name, "Descriptions") train_imgs = [] main_img_path = os.path.join(cwd, "Datasets", webshop_name, "resized_imgs") for cat in os.listdir(os.path.join(main_img_path, "TRAIN")): for img in os.listdir(os.path.join(main_img_path, "TRAIN", cat)): train_imgs.append(img[:-4] + ".p") unique_descs = [] for i in train_imgs: if i[:-4] not in unique_descs: unique_descs.append(i[:-4] + ".txt") train_descs = [os.path.join(desc_path, x) for x in unique_descs] for threshold_value in [1, 3]: vocabulary = {} for path in tqdm.tqdm(train_descs): try: desc_final = get_desc(path) except FileNotFoundError: print(path) continue vocabulary = add_to_vocab(vocabulary, desc_final) # Save the vocabulary as a variable in case we want to reuse it with open(os.path.join(cwd, "variables", webshop_name, f"full_vocab_{threshold_value}.json"), 'w') as f: json.dump(vocabulary, f) # Remove words which occur infrequently unique_vocab = create_unique_vocab(vocabulary, threshold_value) # remove normal vocab, it is no longer needed # del self.vocabulary # Get the ixtword and wordtoix variables ix = 1 wordtoix = {} ixtoword = {} for word in unique_vocab: wordtoix[word] = ix ixtoword[ix] = word ix += 1 vocab_size = len(wordtoix) + 1 # save these dictionaries with open(os.path.join(cwd, "variables", webshop_name, "wordtoix_thr{}.json".format(threshold_value)), 'w') as f: json.dump(wordtoix, f) with open(os.path.join(cwd, "variables", webshop_name, "ixtoword_thr{}.json".format(threshold_value)), 'w') as f: json.dump(ixtoword, f) # Get embeddings: embedding_dict_glove = { "glove_300d_wiki": os.path.join(cwd, "variables", "glove.6B.300d.txt"), } embedding_dict_fasttext = { "fasttext_300d_wiki": os.path.join(cwd, "variables", "fasttext-wiki-news-300d-1M.vec") } # Get glove embeddings for key, value in embedding_dict_glove.items(): print(key, value) # Initialize the embedding_matrix if "300d" in value: embedding_dim = 300 elif "200d" in value: embedding_dim = 200 else: raise ValueError("This embedding dimension size is unsupported..") print("Starting the embedding of new glove vectors: {}".format(key)) embeddings_index = {} # build the index based on the known words f = open(value, encoding='UTF-8') for line in f: try: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs except ValueError as e: print(str(e), " LINE IS: ", line) f.close() embedding_matrix = np.zeros((vocab_size, embedding_dim)) print(embedding_matrix.shape) # Add the known words to create an embedding matrix which can be used in models for word, i in wordtoix.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector # Save the resulting embeddings: with open(os.path.join(cwd, "variables", webshop_name, key + "_thr{}_emb.p".format(threshold_value)), 'wb') as f: pickle.dump(embedding_matrix, f) # Get fasttext embeddings for key, value in embedding_dict_fasttext.items(): print(key, value) if "300d" in value: embedding_dim = 300 elif "200d" in value: embedding_dim = 200 else: raise ValueError("This embedding dimension size is unsupported..") print("Starting the embedding of a new fasttext matrix: {}".format(key)) # Build embedding index embeddings_index = {} f = codecs.open(value) for line in f: try: values = line.rstrip().rsplit(' ') word = values[0] coefs =
np.asarray(values[1:], dtype='float32')
numpy.asarray
""" Numerical python functions written for compatibility with MATLAB commands with the same names. Most numerical python functions can be found in the `numpy` and `scipy` libraries. What remains here is code for performing spectral computations. Spectral functions ------------------ `cohere` Coherence (normalized cross spectral density) `csd` Cross spectral density using Welch's average periodogram `detrend` Remove the mean or best fit line from an array `psd` Power spectral density using Welch's average periodogram `specgram` Spectrogram (spectrum over segments of time) `complex_spectrum` Return the complex-valued frequency spectrum of a signal `magnitude_spectrum` Return the magnitude of the frequency spectrum of a signal `angle_spectrum` Return the angle (wrapped phase) of the frequency spectrum of a signal `phase_spectrum` Return the phase (unwrapped angle) of the frequency spectrum of a signal `detrend_mean` Remove the mean from a line. `detrend_linear` Remove the best fit line from a line. `detrend_none` Return the original line. `stride_windows` Get all windows in an array in a memory-efficient manner """ import functools from numbers import Number import numpy as np from matplotlib import _api import matplotlib.cbook as cbook from matplotlib import docstring def window_hanning(x): """ Return x times the hanning window of len(x). See Also -------- window_none : Another window algorithm. """ return np.hanning(len(x))*x def window_none(x): """ No window function; simply return x. See Also -------- window_hanning : Another window algorithm. """ return x def detrend(x, key=None, axis=None): """ Return x with its trend removed. Parameters ---------- x : array or sequence Array or sequence containing the data. key : {'default', 'constant', 'mean', 'linear', 'none'} or function The detrending algorithm to use. 'default', 'mean', and 'constant' are the same as `detrend_mean`. 'linear' is the same as `detrend_linear`. 'none' is the same as `detrend_none`. The default is 'mean'. See the corresponding functions for more details regarding the algorithms. Can also be a function that carries out the detrend operation. axis : int The axis along which to do the detrending. See Also -------- detrend_mean : Implementation of the 'mean' algorithm. detrend_linear : Implementation of the 'linear' algorithm. detrend_none : Implementation of the 'none' algorithm. """ if key is None or key in ['constant', 'mean', 'default']: return detrend(x, key=detrend_mean, axis=axis) elif key == 'linear': return detrend(x, key=detrend_linear, axis=axis) elif key == 'none': return detrend(x, key=detrend_none, axis=axis) elif callable(key): x = np.asarray(x) if axis is not None and axis + 1 > x.ndim: raise ValueError(f'axis(={axis}) out of bounds') if (axis is None and x.ndim == 0) or (not axis and x.ndim == 1): return key(x) # try to use the 'axis' argument if the function supports it, # otherwise use apply_along_axis to do it try: return key(x, axis=axis) except TypeError: return np.apply_along_axis(key, axis=axis, arr=x) else: raise ValueError( f"Unknown value for key: {key!r}, must be one of: 'default', " f"'constant', 'mean', 'linear', or a function") def detrend_mean(x, axis=None): """ Return x minus the mean(x). Parameters ---------- x : array or sequence Array or sequence containing the data Can have any dimensionality axis : int The axis along which to take the mean. See numpy.mean for a description of this argument. See Also -------- detrend_linear : Another detrend algorithm. detrend_none : Another detrend algorithm. detrend : A wrapper around all the detrend algorithms. """ x = np.asarray(x) if axis is not None and axis+1 > x.ndim: raise ValueError('axis(=%s) out of bounds' % axis) return x - x.mean(axis, keepdims=True) def detrend_none(x, axis=None): """ Return x: no detrending. Parameters ---------- x : any object An object containing the data axis : int This parameter is ignored. It is included for compatibility with detrend_mean See Also -------- detrend_mean : Another detrend algorithm. detrend_linear : Another detrend algorithm. detrend : A wrapper around all the detrend algorithms. """ return x def detrend_linear(y): """ Return x minus best fit line; 'linear' detrending. Parameters ---------- y : 0-D or 1-D array or sequence Array or sequence containing the data axis : int The axis along which to take the mean. See numpy.mean for a description of this argument. See Also -------- detrend_mean : Another detrend algorithm. detrend_none : Another detrend algorithm. detrend : A wrapper around all the detrend algorithms. """ # This is faster than an algorithm based on linalg.lstsq. y = np.asarray(y) if y.ndim > 1: raise ValueError('y cannot have ndim > 1') # short-circuit 0-D array. if not y.ndim: return np.array(0., dtype=y.dtype) x = np.arange(y.size, dtype=float) C = np.cov(x, y, bias=1) b = C[0, 1]/C[0, 0] a = y.mean() - b*x.mean() return y - (b*x + a) def stride_windows(x, n, noverlap=None, axis=0): """ Get all windows of x with length n as a single array, using strides to avoid data duplication. .. warning:: It is not safe to write to the output array. Multiple elements may point to the same piece of memory, so modifying one value may change others. Parameters ---------- x : 1D array or sequence Array or sequence containing the data. n : int The number of data points in each window. noverlap : int, default: 0 (no overlap) The overlap between adjacent windows. axis : int The axis along which the windows will run. References ---------- `stackoverflow: Rolling window for 1D arrays in Numpy? <http://stackoverflow.com/a/6811241>`_ `stackoverflow: Using strides for an efficient moving average filter <http://stackoverflow.com/a/4947453>`_ """ if noverlap is None: noverlap = 0 if noverlap >= n: raise ValueError('noverlap must be less than n') if n < 1: raise ValueError('n cannot be less than 1') x = np.asarray(x) if x.ndim != 1: raise ValueError('only 1-dimensional arrays can be used') if n == 1 and noverlap == 0: if axis == 0: return x[np.newaxis] else: return x[np.newaxis].transpose() if n > x.size: raise ValueError('n cannot be greater than the length of x') # np.lib.stride_tricks.as_strided easily leads to memory corruption for # non integer shape and strides, i.e. noverlap or n. See #3845. noverlap = int(noverlap) n = int(n) step = n - noverlap if axis == 0: shape = (n, (x.shape[-1]-noverlap)//step) strides = (x.strides[0], step*x.strides[0]) else: shape = ((x.shape[-1]-noverlap)//step, n) strides = (step*x.strides[0], x.strides[0]) return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) def _spectral_helper(x, y=None, NFFT=None, Fs=None, detrend_func=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, mode=None): """ Private helper implementing the common parts between the psd, csd, spectrogram and complex, magnitude, angle, and phase spectrums. """ if y is None: # if y is None use x for y same_data = True else: # The checks for if y is x are so that we can use the same function to # implement the core of psd(), csd(), and spectrogram() without doing # extra calculations. We return the unaveraged Pxy, freqs, and t. same_data = y is x if Fs is None: Fs = 2 if noverlap is None: noverlap = 0 if detrend_func is None: detrend_func = detrend_none if window is None: window = window_hanning # if NFFT is set to None use the whole signal if NFFT is None: NFFT = 256 if mode is None or mode == 'default': mode = 'psd' _api.check_in_list( ['default', 'psd', 'complex', 'magnitude', 'angle', 'phase'], mode=mode) if not same_data and mode != 'psd': raise ValueError("x and y must be equal if mode is not 'psd'") # Make sure we're dealing with a numpy array. If y and x were the same # object to start with, keep them that way x = np.asarray(x) if not same_data: y = np.asarray(y) if sides is None or sides == 'default': if np.iscomplexobj(x): sides = 'twosided' else: sides = 'onesided' _api.check_in_list(['default', 'onesided', 'twosided'], sides=sides) # zero pad x and y up to NFFT if they are shorter than NFFT if len(x) < NFFT: n = len(x) x = np.resize(x, NFFT) x[n:] = 0 if not same_data and len(y) < NFFT: n = len(y) y = np.resize(y, NFFT) y[n:] = 0 if pad_to is None: pad_to = NFFT if mode != 'psd': scale_by_freq = False elif scale_by_freq is None: scale_by_freq = True # For real x, ignore the negative frequencies unless told otherwise if sides == 'twosided': numFreqs = pad_to if pad_to % 2: freqcenter = (pad_to - 1)//2 + 1 else: freqcenter = pad_to//2 scaling_factor = 1. elif sides == 'onesided': if pad_to % 2: numFreqs = (pad_to + 1)//2 else: numFreqs = pad_to//2 + 1 scaling_factor = 2. if not np.iterable(window): window = window(np.ones(NFFT, x.dtype)) if len(window) != NFFT: raise ValueError( "The window length must match the data's first dimension") result = stride_windows(x, NFFT, noverlap, axis=0) result = detrend(result, detrend_func, axis=0) result = result * window.reshape((-1, 1)) result = np.fft.fft(result, n=pad_to, axis=0)[:numFreqs, :] freqs = np.fft.fftfreq(pad_to, 1/Fs)[:numFreqs] if not same_data: # if same_data is False, mode must be 'psd' resultY = stride_windows(y, NFFT, noverlap) resultY = detrend(resultY, detrend_func, axis=0) resultY = resultY * window.reshape((-1, 1)) resultY = np.fft.fft(resultY, n=pad_to, axis=0)[:numFreqs, :] result = np.conj(result) * resultY elif mode == 'psd': result = np.conj(result) * result elif mode == 'magnitude': result = np.abs(result) / np.abs(window).sum() elif mode == 'angle' or mode == 'phase': # we unwrap the phase later to handle the onesided vs. twosided case result = np.angle(result) elif mode == 'complex': result /= np.abs(window).sum() if mode == 'psd': # Also include scaling factors for one-sided densities and dividing by # the sampling frequency, if desired. Scale everything, except the DC # component and the NFFT/2 component: # if we have a even number of frequencies, don't scale NFFT/2 if not NFFT % 2: slc = slice(1, -1, None) # if we have an odd number, just don't scale DC else: slc = slice(1, None, None) result[slc] *= scaling_factor # MATLAB divides by the sampling frequency so that density function # has units of dB/Hz and can be integrated by the plotted frequency # values. Perform the same scaling here. if scale_by_freq: result /= Fs # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2. result /= (np.abs(window)**2).sum() else: # In this case, preserve power in the segment, not amplitude result /= np.abs(window).sum()**2 t = np.arange(NFFT/2, len(x) - NFFT/2 + 1, NFFT - noverlap)/Fs if sides == 'twosided': # center the frequency range at zero freqs = np.roll(freqs, -freqcenter, axis=0) result = np.roll(result, -freqcenter, axis=0) elif not pad_to % 2: # get the last value correctly, it is negative otherwise freqs[-1] *= -1 # we unwrap the phase here to handle the onesided vs. twosided case if mode == 'phase': result = np.unwrap(result, axis=0) return result, freqs, t def _single_spectrum_helper( mode, x, Fs=None, window=None, pad_to=None, sides=None): """ Private helper implementing the commonality between the complex, magnitude, angle, and phase spectrums. """ _api.check_in_list(['complex', 'magnitude', 'angle', 'phase'], mode=mode) if pad_to is None: pad_to = len(x) spec, freqs, _ = _spectral_helper(x=x, y=None, NFFT=len(x), Fs=Fs, detrend_func=detrend_none, window=window, noverlap=0, pad_to=pad_to, sides=sides, scale_by_freq=False, mode=mode) if mode != 'complex': spec = spec.real if spec.ndim == 2 and spec.shape[1] == 1: spec = spec[:, 0] return spec, freqs # Split out these keyword docs so that they can be used elsewhere docstring.interpd.update( Spectral="""\ Fs : float, default: 2 The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, *freqs*, in cycles per time unit. window : callable or ndarray, default: `.window_hanning` A function or a vector of length *NFFT*. To create window vectors see `.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`, `numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. sides : {'default', 'onesided', 'twosided'}, optional Which sides of the spectrum to return. 'default' is one-sided for real data and two-sided for complex data. 'onesided' forces the return of a one-sided spectrum, while 'twosided' forces two-sided.""", Single_Spectrum="""\ pad_to : int, optional The number of points to which the data segment is padded when performing the FFT. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to the length of the input signal (i.e. no padding).""", PSD="""\ pad_to : int, optional The number of points to which the data segment is padded when performing the FFT. This can be different from *NFFT*, which specifies the number of data points used. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to *NFFT* NFFT : int, default: 256 The number of data points used in each block for the FFT. A power 2 is most efficient. This should *NOT* be used to get zero padding, or the scaling of the result will be incorrect; use *pad_to* for this instead. detrend : {'none', 'mean', 'linear'} or callable, default: 'none' The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in MATLAB, where the *detrend* parameter is a vector, in Matplotlib is it a function. The :mod:`~matplotlib.mlab` module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`, but you can use a custom function as well. You can also use a string to choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls `.detrend_mean`. 'linear' calls `.detrend_linear`. scale_by_freq : bool, default: True Whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MATLAB compatibility.""") @docstring.dedent_interpd def psd(x, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None): r""" Compute the power spectral density. The power spectral density :math:`P_{xx}` by Welch's average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute :math:`P_{xx}`. If len(*x*) < *NFFT*, it will be zero padded to *NFFT*. Parameters ---------- x : 1-D array or sequence Array or sequence containing the data %(Spectral)s %(PSD)s noverlap : int, default: 0 (no overlap) The number of points of overlap between segments. Returns ------- Pxx : 1-D array The values for the power spectrum :math:`P_{xx}` (real valued) freqs : 1-D array The frequencies corresponding to the elements in *Pxx* References ---------- <NAME> -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) See Also -------- specgram `specgram` differs in the default overlap; in not returning the mean of the segment periodograms; and in returning the times of the segments. magnitude_spectrum : returns the magnitude spectrum. csd : returns the spectral density between two signals. """ Pxx, freqs = csd(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq) return Pxx.real, freqs @docstring.dedent_interpd def csd(x, y, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None): """ Compute the cross-spectral density. The cross spectral density :math:`P_{xy}` by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*. Parameters ---------- x, y : 1-D arrays or sequences Arrays or sequences containing the data %(Spectral)s %(PSD)s noverlap : int, default: 0 (no overlap) The number of points of overlap between segments. Returns ------- Pxy : 1-D array The values for the cross spectrum :math:`P_{xy}` before scaling (real valued) freqs : 1-D array The frequencies corresponding to the elements in *Pxy* References ---------- Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) See Also -------- psd : equivalent to setting ``y = x``. """ if NFFT is None: NFFT = 256 Pxy, freqs, _ = _spectral_helper(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend_func=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode='psd') if Pxy.ndim == 2: if Pxy.shape[1] > 1: Pxy = Pxy.mean(axis=1) else: Pxy = Pxy[:, 0] return Pxy, freqs _single_spectrum_docs = """\ Compute the {quantity} of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal. Parameters ---------- x : 1-D array or sequence Array or sequence containing the data {Spectral} {Single_Spectrum} Returns ------- spectrum : 1-D array The {quantity}. freqs : 1-D array The frequencies corresponding to the elements in *spectrum*. See Also -------- psd Returns the power spectral density. complex_spectrum Returns the complex-valued frequency spectrum. magnitude_spectrum Returns the absolute value of the `complex_spectrum`. angle_spectrum Returns the angle of the `complex_spectrum`. phase_spectrum Returns the phase (unwrapped angle) of the `complex_spectrum`. specgram Can return the complex spectrum of segments within the signal. """ complex_spectrum = functools.partial(_single_spectrum_helper, "complex") complex_spectrum.__doc__ = _single_spectrum_docs.format( quantity="complex-valued frequency spectrum", **docstring.interpd.params) magnitude_spectrum = functools.partial(_single_spectrum_helper, "magnitude") magnitude_spectrum.__doc__ = _single_spectrum_docs.format( quantity="magnitude (absolute value) of the frequency spectrum", **docstring.interpd.params) angle_spectrum = functools.partial(_single_spectrum_helper, "angle") angle_spectrum.__doc__ = _single_spectrum_docs.format( quantity="angle of the frequency spectrum (wrapped phase spectrum)", **docstring.interpd.params) phase_spectrum = functools.partial(_single_spectrum_helper, "phase") phase_spectrum.__doc__ = _single_spectrum_docs.format( quantity="phase of the frequency spectrum (unwrapped phase spectrum)", **docstring.interpd.params) @docstring.dedent_interpd def specgram(x, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, mode=None): """ Compute a spectrogram. Compute and plot a spectrogram of data in x. Data are split into NFFT length segments and the spectrum of each section is computed. The windowing function window is applied to each segment, and the amount of overlap of each segment is specified with noverlap. Parameters ---------- x : array-like 1-D array or sequence. %(Spectral)s %(PSD)s noverlap : int, default: 128 The number of points of overlap between blocks. mode : str, default: 'psd' What sort of spectrum to use: 'psd' Returns the power spectral density. 'complex' Returns the complex-valued frequency spectrum. 'magnitude' Returns the magnitude spectrum. 'angle' Returns the phase spectrum without unwrapping. 'phase' Returns the phase spectrum with unwrapping. Returns ------- spectrum : array-like 2D array, columns are the periodograms of successive segments. freqs : array-like 1-D array, frequencies corresponding to the rows in *spectrum*. t : array-like 1-D array, the times corresponding to midpoints of segments (i.e the columns in *spectrum*). See Also -------- psd : differs in the overlap and in the return values. complex_spectrum : similar, but with complex valued frequencies. magnitude_spectrum : similar single segment when mode is 'magnitude'. angle_spectrum : similar to single segment when mode is 'angle'. phase_spectrum : similar to single segment when mode is 'phase'. Notes ----- detrend and scale_by_freq only apply when *mode* is set to 'psd'. """ if noverlap is None: noverlap = 128 # default in _spectral_helper() is noverlap = 0 if NFFT is None: NFFT = 256 # same default as in _spectral_helper() if len(x) <= NFFT: _api.warn_external("Only one segment is calculated since parameter " f"NFFT (={NFFT}) >= signal length (={len(x)}).") spec, freqs, t = _spectral_helper(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend_func=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode) if mode != 'complex': spec = spec.real # Needed since helper implements generically return spec, freqs, t @docstring.dedent_interpd def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): r""" The coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}} Parameters ---------- x, y Array or sequence containing the data %(Spectral)s %(PSD)s noverlap : int, default: 0 (no overlap) The number of points of overlap between segments. Returns ------- Cxy : 1-D array The coherence vector. freqs : 1-D array The frequencies for the elements in *Cxy*. See Also -------- :func:`psd`, :func:`csd` : For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ if len(x) < 2 * NFFT: raise ValueError( "Coherence is calculated by averaging over *NFFT* length " "segments. Your signal is too short for your choice of *NFFT*.") Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Cxy = np.abs(Pxy) ** 2 / (Pxx * Pyy) return Cxy, f class GaussianKDE: """ Representation of a kernel-density estimate using Gaussian kernels. Parameters ---------- dataset : array-like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `GaussianKDE` instance as only parameter and return a scalar. If None (default), 'scott' is used. Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. dim : int Number of dimensions. num_dp : int Number of datapoints. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of *dataset*, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of *covariance*. Methods ------- kde.evaluate(points) : ndarray Evaluate the estimated pdf on a provided set of points. kde(points) : ndarray Same as kde.evaluate(points) """ # This implementation with minor modification was too good to pass up. # from scipy: https://github.com/scipy/scipy/blob/master/scipy/stats/kde.py def __init__(self, dataset, bw_method=None): self.dataset =
np.atleast_2d(dataset)
numpy.atleast_2d
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Create a Lithology object with different properties.""" import numpy as np import xarray as xr from scipy.interpolate import interp1d from landlab import Component from landlab.layers import EventLayers, MaterialLayers from landlab.utils.return_array import return_array_at_node class Lithology(Component): """Create a Lithology object. A Lithology is a three dimentional representation of material operated on by landlab components. Material can be removed through erosion or added to through deposition. Rock types can have multiple attributes (e.g. age, erodability or other parameter values, etc). If the tracked properties are model grid fields, they will be updated to the surface values of the Lithology. If the properties are not grid fields then at-node grid fields will be created with their names. Lithology and its derived versions will make a at-node grid field called `rock_type__id` to store the rock type id. Lithology was designed to be used on its own and to be inherited from and improved. Currently one other Lithology variant exists: LithoLayers which makes it easy to specify parallel layers of rock with generic layer geometries. It is constructed by specifying a series of thicknesses and a series of rock type IDs. Thicknesses and IDs are both specified in order of closest to the surface to furthest from the surface. Thicknesses can either be a single value (corresponding to a layer of uniform thickness) or a number-of -nodes length array (corresponding to a non-uniform layer). Additionally, an attribute dictionary specifies the properties of each rock type. This dictionary is expected to have the form of: .. code-block:: python attrs = {'K_sp': {1: 0.001, 2: 0.0001}, 'D': {1: 0.01, 2: 0.001}} Where ``'K_sp'`` and ``'D'`` are properties to track, and ``1`` and ``2`` are rock type IDs. The rock type IDs can be any type that is valid as a python dictionary key. References ---------- **Required Software Citation(s) Specific to this Component** <NAME>., <NAME>., <NAME>., <NAME>. (2018). Lithology: A Landlab submodule for spatially variable rock properties. Journal of Open Source Software 3(30), 979 - 2. https://dx.doi.org/10.21105/joss.00979 **Additional References** None Listed """ _name = "Lithology" _cite_as = """@article{barnhart2018lithology, title = "Lithology: A Landlab submodule for spatially variable rock properties", journal = "Journal of Open Source Software", volume = "", pages = "", year = "2018", doi = "10.21105/joss.00979", author = "<NAME> and <NAME> and <NAME> and <NAME>", }""" _info = {} def __init__( self, grid, thicknesses, ids, attrs, layer_type="MaterialLayers", dz_advection=0, rock_id=None, ): """Create a new instance of Lithology. Parameters ---------- grid : Landlab ModelGrid thicknesses : ndarray of shape `(n_layers, )` or `(n_layers, n_nodes)` Values of layer thicknesses from surface to depth. Layers do not have to have constant thickness. Layer thickness can be zero, though the entirety of Lithology must have non-zero thickness. ids : ndarray of shape `(n_layers, )` or `(n_layers, n_nodes)` Values of rock type IDs corresponding to each layer specified in **thicknesses**. A single layer may have multiple rock types if specified by the user. attrs : dict Rock type property dictionary. See class docstring for example of required format. layer_type : str, optional Type of Landlab layers object used to store the layers. If MaterialLayers (default) is specified, then erosion removes material and does not create a layer of thickness zero. If EventLayers is used, then erosion removes material and creates layers of thickness zero. Thus, EventLayers may be appropriate if the user is interested in chronostratigraphy. dz_advection : float, `(n_nodes, )` shape array, or at-node field array optional Change in rock elevation due to advection by some external process. This can be changed using the property setter. Dimensions are in length, not length per time. rock_id : value or `(n_nodes, )` shape array, optional Rock type id for new material if deposited. This can be changed using the property setter. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.components import Lithology >>> mg = RasterModelGrid((3, 3)) >>> z = mg.add_zeros("topographic__elevation", at="node") Create a Lithology with uniform thicknesses that alternates between layers of type 1 and type 2 rock. >>> thicknesses = [1, 2, 4, 1] >>> ids = [1, 2, 1, 2] >>> attrs = {'K_sp': {1: 0.001, ... 2: 0.0001}} >>> lith = Lithology(mg, thicknesses, ids, attrs) After creating a Lithology, the model grid will have an at-node grid field set to the surface values of 'K_sp'. >>> mg.at_node['K_sp'] array([ 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001]) The surface values are also properties of the Lithology. >>> lith['K_sp'] array([ 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001]) We can access information about the Lithology like the total thickness or layer thicknesses. >>> lith.thickness array([ 8., 8., 8., 8., 8., 8., 8., 8., 8.]) >>> lith.dz array([[ 1., 1., 1., 1., 1., 1., 1., 1., 1.], [ 4., 4., 4., 4., 4., 4., 4., 4., 4.], [ 2., 2., 2., 2., 2., 2., 2., 2., 2.], [ 1., 1., 1., 1., 1., 1., 1., 1., 1.]]) This might look confusing -- that the layers are in reverse order, but it is OK. The last layers in the Lithology are those that are closest to the surface. The layers don't all have to have the same thickness as in the prior example. If the layers have non-uniform thickness, then they must be specified in an array of shape `(n_layer, n_nodes)`. In this case, the layer IDs must be specified in either an array of `(n_layer)` or `(n_layer, n_nodes)`. Here we make a layer that gets thicker as a function of the x value of the model grid. >>> layer_pattern = (0.5 * mg.x_of_node) + 1.0 >>> thicknesses = [1*layer_pattern, 2*layer_pattern, 4*layer_pattern] >>> ids = [1, 2, 1] >>> lith = Lithology(mg, thicknesses, ids, attrs) >>> lith.thickness array([ 7. , 10.5, 14. , 7. , 10.5, 14. , 7. , 10.5, 14. ]) >>> lith.dz array([[ 4. , 6. , 8. , 4. , 6. , 8. , 4. , 6. , 8. ], [ 2. , 3. , 4. , 2. , 3. , 4. , 2. , 3. , 4. ], [ 1. , 1.5, 2. , 1. , 1.5, 2. , 1. , 1.5, 2. ]]) """ super(Lithology, self).__init__(grid) try: self._last_elevation = self._grid["node"]["topographic__elevation"][ : ].copy() except KeyError: msg = ( "Lithology requires that topographic__elevation already " "exists as an at-node field." ) raise ValueError(msg) # save inital information about thicknesses, layers, attributes, and ids. self._init_thicknesses = np.asarray(thicknesses) self._attrs = attrs self._number_of_init_layers = self._init_thicknesses.shape[0] self._properties = list(attrs.keys()) self._rock_id_name = "rock_type__id" # assert that thicknesses and ids are correct and consistent shapes # if thickness is a 2d array. if self._init_thicknesses.ndim == 2: # assert that the 2nd dimension is the same as the number of nodes. if self._init_thicknesses.shape[1] != self._grid.number_of_nodes: msg = ( "Thicknesses provided to Lithology are ", "inconsistent with the ModelGrid.", ) raise ValueError(msg) # if IDs is a 2d array assert that it is the same size as thicknesses if np.asarray(ids).ndim == 2: if self._init_thicknesses.shape !=
np.asarray(ids)
numpy.asarray
import numpy as np from scipy import ndimage, signal import skimage.draw, skimage.transform import math from matplotlib import pyplot as plt class Segmentation: """ An implementation of "A new robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden Markov model" by <NAME>, <NAME>, <NAME> https://doi.org/10.1016/j.cmpb.2019.105231 Attributes ---------- w : int size of line detection window angle : int line detection angle step (degrees) k1 : float weight of line detection in combined image k2 : float weight of inverted green channel image in combined image t : float threshold block : int block size for searching seeds (tracing start points) L : int tracing segment lenght eps : float tracing segment lenght range t1 : int tracing direction range (degrees) e1 : int tracing end window size e2 : int tracing end window size a : int denoising window size p1 : float denoising parameter p2 : float denoising parameter img original image igc inverted green channel image basicimg image resulting from basic line detector weightedimg image resulting from weighted line detector combinedimg weightedimg combined with igc binthresholdimg binary thresholded combinedimg image lowthresholdimg thresholded combinedimg image (values less than t are set to 0) tracingimg image resulting from tracing vessel certerlines unionimg binthresholdimg combined with tracingimg Methods ------- basicLineDetector() Returns an image of detected lines. Shows the major vessel structure. The resulting image is stored in basicimg weightedLineDetector() Returns an image of detected lines. Shows the major vessel structure. The detector assigns a different weight for each pixel of dectected lines based on distance. The resulting image is stored in weightedimg combined(img1=None, img2=None) By default combines weightedimg and igc (weighted sum). The resulting image is stored in combinedimg binThreshold(img) Return a boolean image were each pixel from combinedimg (by default) is returned as True if greater than t and False otherwise. The resulting image is stored in binthresholdimg lowThreshold() Return a boolean image were each pixel from combinedimg (by default) is returned as 0 if less than t. The resulting image is stored in lowthresholdimg tracing() Returns a binary image of detected lines. Shows the major vessel centerlines. The resulting image is stored in tracingimg denoising(img) Sets to 0 pixels detected as noise due to the optic disk or dark regions. The resulting image is also returned union(img1=None, img2=None) Given two boolean images (binthresholdimg and tracingimg by default) returns their union (OR). The resulting image is stored in unionimg """ def __init__(self, imgPath:str, maskPath:str, w=15, angle=15, k1=.67, k2=.33, t=.31, block=11, L=7, eps=.5, t1=90, e1=7, e2=5, a=9, p1=.3, p2=.14): self.w = w # size of line detection window self.angle = angle # line detection angle step self.k1 = k1 # weight of line detection in combined image self.k2 = k2 # weight of inverted green channel image in combined image self.t = t # threshold self.block = block # block size for searching seeds (tracing start points) self.L = L # tracing segment lenght self.eps = eps # tracing segment lenght range self.t1 = t1 # tracing direction range self.e1 = e1 # tracing end window size self.e2 = e2 # tracing end window size self.a = a # denoising window size self.p1 = p1 # denoising parameter self.p2 = p2 # denoising parameter self.basicimg = None self.weightedimg = None self.combinedimg = None self.binthresholdimg = None self.lowthresholdimg = None self.tracingimg = None self.unionimg = None # get image self.img = plt.imread(imgPath) # generate inverted green channel image self.igc=1-self.img[:,:,1] self.Y,self.X = self.igc.shape # create mask self.mask = plt.imread(maskPath) self.mask = ~np.array(self.mask,dtype=bool) # apply mask # mean = self.igc.mean() # for x in range(self.X): # for y in range(self.Y): # if self.mask[y,x]: # self.igc[y,x]=mean self.igc = self.__normalizeData(self.igc) def __lineMask(self,a): def line(m, x, o, q): return m*(x-o)+q matrix = np.zeros((self.w, self.w), dtype=bool) if abs(a) <= 45: m = math.tan(math.radians(a)) for x in range(self.w): y = int(round(line(m,x,int((self.w-1)/2),int((self.w-1)/2)))) if y in range(self.w): matrix[self.w-1-y,x] = True else: a = (90-abs(a))*np.sign(a) m = math.tan(math.radians(a)) for x in range(self.w): y = int(round(line(m,x,int((self.w-1)/2),int((self.w-1)/2)))) if y in range(self.w): matrix[self.w-1-y,x] = True matrix = np.rot90(np.flip(matrix,0)) return matrix def __normalizeData(self,data): return (data - np.min(data)) / (np.max(data) - np.min(data)) def basicLineDetector(self): limit = int(np.ceil(self.w/2)) lineMasks = np.array([self.__lineMask(a) for a in range(-90,90,self.angle)]) def R_b(y,x): # creating window yIndex, xIndex = np.ogrid[y-int((self.w-1)/2):y+int((self.w+1)/2),x-int((self.w-1)/2):x+int((self.w+1)/2)] # calculating all lines averages lineAvg = np.array([self.igc[yIndex,xIndex][m].mean() for m in lineMasks]) Iw_avg = self.igc[yIndex,xIndex].mean() # window average Iw_max = lineAvg.max() # max line average return Iw_max-Iw_avg # generate filtered image filtered = np.zeros(self.igc.shape) # filtered image for x in range(limit,self.X-limit): for y in range(limit,self.Y-limit): if not self.mask[y,x]: value = R_b(y,x) if value > 0: filtered[y,x]=value # cut off borders self.mask = ndimage.binary_dilation(self.mask, iterations=limit) for x in range(self.X): for y in range(self.Y): if self.mask[y,x]: filtered[y,x]=0 filtered = self.__normalizeData(filtered) self.basicimg = filtered return self.basicimg def weightedLineDetector(self): limit = int(np.ceil(self.w/2)) lineMasks = np.array([self.__lineMask(a) for a in range(-90,90,self.angle)]) def R_w(y,x): # creating window yIndex, xIndex = np.ogrid[y-int((self.w-1)/2):y+int((self.w+1)/2),x-int((self.w-1)/2):x+int((self.w+1)/2)] # calculating weights weights = np.concatenate((np.arange(1,limit),np.arange(limit,0,-1))) # calculating all lines averages lineAvg = np.array([np.average(self.igc[yIndex,xIndex][m],weights=weights) for m in lineMasks]) Iw_avg = self.igc[yIndex,xIndex].mean() # window average Iw_max = lineAvg.max() # max line average return Iw_max-Iw_avg # generate filtered image filtered = np.zeros(self.igc.shape) # filtered image for x in range(limit,self.X-limit): for y in range(limit,self.Y-limit): if not self.mask[y,x]: value = R_w(y,x) if value > 0: filtered[y,x]=value # cut off borders self.mask = ndimage.binary_dilation(self.mask, iterations=1) for x in range(self.X): for y in range(self.Y): if self.mask[y,x]: filtered[y,x]=0 filtered = self.__normalizeData(filtered) self.weightedimg = filtered return self.weightedimg def combined(self,img1=None, img2=None): if img1 is None: img1 = self.weightedimg if img1 is None: img1 = self.weightedLineDetector() if img2 is None: img2 = self.igc combined = self.__normalizeData(self.k1*img1 + self.k2*img2) #combined = self.k1*img1 + self.k2*img2 # cut off borders for x in range(self.X): for y in range(self.Y): if self.mask[y,x]: combined[y,x]=0 self.combinedimg = combined return self.combinedimg def binThreshold(self, img=None): if img is None: img = self.combinedimg if img is None: img = self.combined() self.binthresholdimg = img>self.t return self.binthresholdimg def lowThreshold(self, img=None): if img is None: img = self.combinedimg if img is None: img = self.combined() self.lowthresholdimg = self.__normalizeData(np.clip(img,self.t,None)) return self.lowthresholdimg def __seeds(self): self.seedx = [] self.seedy = [] if self.lowthresholdimg is None: self.lowThreshold() img = self.lowthresholdimg # img = self.igc low = img.min() for x in np.arange(0,self.X-self.block,self.block): for y in np.arange(0,self.Y-self.block,self.block): i = img[y:y+self.block,x:x+self.block].argmax() sy, sx = np.unravel_index(i,(self.block,self.block)) sx+=x sy+=y if not self.mask[sy,sx] and img[sy,sx] != low: self.seedx.append(sx) self.seedy.append(sy) self.seedx = np.array(self.seedx) self.seedy = np.array(self.seedy) return (self.seedx,self.seedy) def tracing(self): if self.lowthresholdimg is None: self.lowThreshold() img = self.lowthresholdimg # img = self.igc def circleMask(): size = int(self.L*2+self.eps*2) center = int(self.L+self.eps-.5) mask = np.zeros((size,size)) mask[skimage.draw.circle(center, center, self.L+self.eps)]=1 mask[skimage.draw.circle(center, center, self.L-self.eps)]=0 return np.array(mask,dtype=bool) def angleMask(a): ar = math.radians(a) t1r = math.radians(self.t1) size = int(self.L*2+self.eps*2) mask = np.zeros((size,size)) center = int(self.L+self.eps-.5) x=np.array(center) y=np.array(center) for r in np.linspace(ar-t1r,ar+t1r,int(self.t1/10)): x = np.append(x,np.cos(r)*(self.L+self.eps)+center) y = np.append(y,-np.sin(r)*(self.L+self.eps)+center) mask[skimage.draw.polygon(y, x)]=1 return np.array(mask,dtype=bool) def endMask(a): mask = np.ones((self.e2,self.e1)) mask = skimage.transform.rotate(mask,a,resize=True) return
np.array(mask,dtype=bool)
numpy.array
#!/usr/bin/env python import general_robotics_toolbox as rox import numpy as np import pytest import sys if (sys.version_info > (3, 0)): xrange = range #Numeric precision reduced for literals eps = 1e-6 #np.finfo(np.float64).eps #inches to meters conversion factor #(use Pint package for any real programs) in_2_m = 0.0254 def test_hat(): k=[1,2,3] k_hat=rox.hat(k) k_hat_t=np.array([[0, -3, 2], [3, 0, -1], [-2, 1,0]]) np.testing.assert_allclose(k_hat, k_hat_t) def _rot_test(k, theta, rot_t): rot=rox.rot(k, theta) np.testing.assert_allclose(rot, rot_t, atol=1e-5) def test_rot(): rot_1_t=np.array([[1,0,0], [0,0,1], [0,-1,0]]).T _rot_test(np.array([1,0,0]), np.pi/2.0, rot_1_t) rot_2_t=np.array([[0,0,-1], [0,1,0], [1,0,0]]).T _rot_test(np.array([0,1,0]), np.pi/2.0, rot_2_t) rot_3_t=np.array([[0,1,0], [-1,0,0], [0,0,1]]).T _rot_test(np.array([0,0,1]), np.pi/2.0, rot_3_t) #Random rotation rot_4=np.array([[-0.5057639, -0.1340537,0.8521928], \ [0.6456962,-0.7139224,0.2709081], \ [0.5720833,0.6872731,0.4476342]]) _rot_test(np.array([0.4490221,0.30207945,0.84090853]), 2.65949884, rot_4) def _R2rot_test(k1, theta1): R = rox.rot(k1,theta1) k2, theta2 = rox.R2rot(R) if abs(theta1-theta2) > (theta1 + theta2): k2 = -k2 theta2 = -theta2 np.testing.assert_allclose(theta1,theta2, atol=1e-6) if (abs(theta1) < 1e-9): return if ((np.abs(theta1) - np.pi) < 1e-9): if np.linalg.norm(k1+k2) < 1e-6: np.testing.assert_allclose(k1,-k2, atol=1e-6) return np.testing.assert_allclose(k1,k2, atol=1e-6) return np.testing.assert_allclose(k1,k2, atol=1e-6) def test_R2rot(): _R2rot_test(np.array([1,0,0]), np.pi/2.0) _R2rot_test(np.array([0,1,0]), np.pi/2.0) _R2rot_test(np.array([0,0,1]), np.pi/2.0) _R2rot_test(np.array([0.4490221,0.30207945,0.84090853]), 2.65949884) #Singularities _R2rot_test([1,2,3]/np.linalg.norm([1,2,3]), 1e-10) _R2rot_test([2,-1,3]/np.linalg.norm([2,-1,3]), np.pi + 1e-10) _R2rot_test([-2,-1,3]/np.linalg.norm([-2,-1,3]), np.pi + 1e-10) _R2rot_test([2,-1,-3]/
np.linalg.norm([2,-1,-3])
numpy.linalg.norm
#! /usr/bin/env python """ This node publishes the joint states to make a square trajectory with the SCARA's end-effector @author: <NAME> (<EMAIL>) """ import rospy import rospkg rospack = rospkg.RosPack() import sys sys.path.insert(0, rospack.get_path('first_assignment')+"/scripts") from sensor_msgs.msg import JointState from geometry_msgs.msg import Pose, PoseArray from IK_function import scara_IK import numpy as np class SquareTrajectoryPublisher(): """docstring for SquareTrajectoryPublisher""" def __init__(self): self._publisher = None self._path_publisher = rospy.Publisher('desired_path', PoseArray, queue_size=10) self._path = PoseArray() self._path.header.frame_id = 'base' self._dt = 0.1 self._v = 0.05 #the 4 vertices of the square self._vertices = [ [0.27, -0.15, 0], [0.57, -0.15, 0.1], [0.57, 0.15, 0.1], [0.27, 0.15, 0] ] self._joint_names = ['rotational1', 'rotational2', 'translation'] self._current_segment = 0 self._current_idx = 0 self._waypoints = None self.compute_waypoints() def set_topic_name(self, name): self._publisher = rospy.Publisher(name, JointState, queue_size=10) def next_segment(self): if self._current_segment is 3: self._current_segment = 0 else: self._current_segment += 1 self._current_idx = 0 def return_list_of_waypoints(self, p1, p2, dp, it): waypoints = list() current_p = p1 waypoints.append(current_p) p = Pose() p.position.x = current_p[0] p.position.y = current_p[1] p.position.z = current_p[2] p.orientation.w = 0.707 p.orientation.y = 0.707 self._path.poses.append(p) for i in range(1, int(abs(it))): current_p = current_p + dp waypoints.append(current_p) p = Pose() p.position.x = current_p[0] p.position.y = current_p[1] p.position.z = current_p[2] p.orientation.w = 0.707 p.orientation.y = 0.707 self._path.poses.append(p) waypoints.append(p2) return waypoints def compute_waypoints(self): ds = self._v*self._dt v1 = np.array(self._vertices[0]) v2 = np.array(self._vertices[1]) v3 =
np.array(self._vertices[2])
numpy.array
import numpy as np, torch, torch.nn as nn, torch.optim as optim import argparse, time, pandas as pd, os from tqdm import tqdm from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader from torch.utils.data.sampler import SubsetRandomSampler from sklearn.metrics import mean_absolute_error from scipy.stats import pearsonr from model import RegressionModel, MaskedMSELoss, BiModalAttention from dataloader import MOSEIRegression np.random.seed(393) torch.cuda.device([0]) def get_train_valid_sampler(trainset, valid=0.1): size = len(trainset) idx = range(size) split = int(valid*size) return SubsetRandomSampler(idx[split:]), SubsetRandomSampler(idx[:split]) def get_MOSEI_loaders(path, batch_size=128, valid=0.1, num_workers=0, pin_memory=False): trainset = MOSEIRegression(path=path) train_sampler, valid_sampler = get_train_valid_sampler(trainset, valid) train_loader = DataLoader(trainset, batch_size=batch_size, sampler=train_sampler, collate_fn=trainset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) valid_loader = DataLoader(trainset, batch_size=batch_size, sampler=valid_sampler, collate_fn=trainset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) testset = MOSEIRegression(path=path, train=False) test_loader = DataLoader(testset, batch_size=batch_size, collate_fn=testset.collate_fn, num_workers=num_workers, pin_memory=pin_memory) return train_loader, valid_loader, test_loader def train_or_eval_model(model, loss_function, dataloader, epoch, optimizer=None, train=False): losses, preds, labels, masks = [], [], [], [] assert not train or optimizer!=None if train: model.train() else: model.eval() for data in dataloader: if train: optimizer.zero_grad() textf, visuf, acouf, qmask, umask, label = [d.cuda() for d in data] if cuda else data pred = model(textf, acouf, visuf, textf, qmask, umask) labels_ = label.view(-1) umask_ = umask.view(-1) loss = loss_function(pred, labels_, umask_) preds.append(pred.data.cpu().numpy()) labels.append(labels_.data.cpu().numpy()) masks.append(umask_.cpu().numpy()) losses.append(loss.item()*masks[-1].sum()) if train: loss.backward() optimizer.step() if preds!=[]: preds = np.concatenate(preds) labels = np.concatenate(labels) masks =
np.concatenate(masks)
numpy.concatenate
""" Simplicial Complexes for manim """ from manimlib.imports import * import numpy as np class SimplicialFiltration(VGroup): def __init__( self, points, simplices, times, tri_opacity=0.2, **kwargs ): super().__init__(**kwargs) self.current_time = -np.inf self.pts = points self.tri_opacity=tri_opacity self.time = [] self.dims = [] self.simplices = simplices for (s, t) in zip(simplices, times): self.add_simplex(s, t, **kwargs) def time_steps(self): return
np.unique(self.time)
numpy.unique
import open3d as o3d import numpy as np import random from scipy.spatial.distance import cdist import time try: import pymesh except Exception as e: print('pymesh cannot be imported') ENGINE = 'corefinement'#'igl' PRINT = False def myprint(*args, **kwargs): if PRINT: print(*args, **kwargs) def gaussian_dist(mean, sigma, clip_r=None, attempt=100): # clip_r: None: sample @ [(mean - sigma), (mean + sigma)] ~ 0.7 # clip_r: float: sample @ [(mean - clip_r * sigma), (mean + clip_r * sigma)] ~ 1 if clip_r is None: return random.gauss(0, 1) * sigma + mean else: ns_list = np.random.randn(attempt) samples = ns_list * sigma + mean truncated_locs = np.argwhere((samples >= mean - sigma * clip_r) & (samples <= mean + sigma * clip_r)) assert len(truncated_locs) > 0, 'No samples within {} attempts'.format(attempt) return samples[np.min(truncated_locs)] def uniform_dist(high, low): return random.uniform(low, high) def face_mapping_pymesh(m1, m2, outputm): tic = time.time() v1 = m1.vertices v2 = m2.vertices f1 = m1.faces f2 = m2.faces + v1.shape[0] m = pymesh.meshio.form_mesh(np.vstack([v1, v2]), np.vstack([f1, f2])) m.add_attribute("source_face") m.set_attribute("source_face", np.arange(f1.shape[0]+f2.shape[0])) pymesh.map_face_attribute(m, outputm, 'source_face') source_face = outputm.get_attribute('source_face') return source_face def mesh_boolean(mesh1, mesh2, operation, engine): if engine == 'igl': mesh = pymesh.boolean(mesh1, mesh2, operation=operation, engine=engine) else: tic = time.time() mesh = pymesh.boolean(mesh1, mesh2, operation=operation, engine=engine) myprint(time.time() - tic, 'pure_boolean time') source_face = face_mapping_pymesh(mesh1, mesh2, mesh) mesh.add_attribute("source_face") mesh.set_attribute("source_face", source_face) return mesh class Primitive(object): #instance label: face_source #semantic label: face_label DEFAULT_ATTRIBUTES = ['face_area', 'face_centroid', 'face_normal', 'vertex_normal', 'face_index','vertex_area','face_index','vertex_index' ] EXTRA_ATTRIBUTES = [ 'face_source','face_color', 'vertex_color', 'vertex_source', 'face_label', 'vertex_label'] ATTRIBUTES_NAME = DEFAULT_ATTRIBUTES + EXTRA_ATTRIBUTES LABEL = 0 RDOF = -1e5 DOF = -1e5 def __init__(self, vertex=None, face=None, *args, **kwargs): self.mesh = None if (vertex is None) or (face is None): #deuplicate one if len(args)>0 and isinstance(args[0], pymesh.Mesh): mesh = args[0] elif "mesh" in kwargs.keys() and isinstance(kwargs["mesh"], pymesh.Mesh): mesh = kwargs["mesh"] else: raise TypeError("missing required positional argument") self.mesh = mesh else:# create one from elements self.mesh = pymesh.meshio.form_mesh(vertex, face) for attr in self.ATTRIBUTES_NAME: if attr in kwargs.keys():self.__init_attributes(attr, kwargs[attr]) self.__init_attributes('face_label', np.ones(self.mesh.num_faces, ) * self.LABEL) self.__init_attributes('face_source', np.zeros(self.mesh.num_faces, )) def __get_mesh_attr(self, name): if name.startswith('face'): return self.mesh.get_face_attribute(name) elif name.startswith('vertex'): return self.mesh.get_vertex_attribute(name) def __getattr__(self, name): # after get attribute if self.mesh.has_attribute(name): return self.__get_mesh_attr(name) elif name in ["faces", "vertices", "bbox"]: return getattr(self.mesh, name) elif name in self.DEFAULT_ATTRIBUTES: self.mesh.add_attribute(name) return self.__get_mesh_attr(name) else: raise AttributeError("pymesh.Mesh does not have attribute \"{}\"".format(name)) def __init_attributes(self, attr, vals): mesh_attr = getattr(self, attr, None) if mesh_attr is None: self.mesh.add_attribute(attr) self.mesh.set_attribute(attr, vals) @staticmethod def get_rotation_matrix(*args): if len(args) >= 2: return Primitive._get_rotation_matrix_from_axis_angle(args[0],args[1]) elif len(args) == 1: return Primitive._get_rotation_matrix_from_euler_angles(angles) else: assert False @staticmethod def _get_rotation_matrix_from_axis_angle(axis,angle): rot = pymesh.Quaternion.fromAxisAngle(axis, angle) return rot.to_matrix() @staticmethod def _get_rotation_matrix_from_euler_angles(angles): rot = open3d.geometry.get_rotation_matrix_from_xyz(angles) return rot def get_attributes_dict(self): d = {} for attr in self.ATTRIBUTES_NAME: if self.mesh.has_attribute(attr): d.update({attr:self.mesh.get_attribute(attr)}) return d def rigid_transform(self, axis=[1.,0.,0.],angle=0., offset=[0.,0.,0.]): rot = self.get_rotation_matrix(axis, angle) center = self.get_center() vertices = self.mesh.vertices vertices = np.dot(rot, (vertices - center).T).T + center + offset d = self.get_attributes_dict() self.__init__(vertex=np.squeeze(vertices), face=self.mesh.faces, **d) def get_center(self, center_type="mean_vertex"):#"mean_vertex" assert center_type in ['bbox', "mean_vertex" ], '{} is not a valid center type'.format(center_type) if center_type == "bbox": bbox = self.mesh.bbox return 0.5 * (bbox[0] + bbox[1]) elif center_type == "mean_vertex": return np.mean(self.mesh.vertices, axis=0) def scale(self, scale_factor=1.0): vertices = self.mesh.vertices * scale_factor d = self.get_attributes_dict() self.__init__(vertices, self.mesh.faces, **d) def normalize(self, norm_center=None, center_type="bbox"): #np.array([0.0, 0.0, 0.0]), ): # norm_center-0.5 ~ norm_center+0.5 coordinate, # the point located on norm center depends on the center_type center = self.get_center(center_type) bbox = self.mesh.bbox center_min_bound = np.max(center - bbox[0]) center_max_bound = np.max(bbox[1] - center) half_bound = np.max([center_min_bound, center_max_bound]) self.scale(0.5 /(half_bound)) if not(norm_center is None): self.rigid_transform(offset=norm_center - self.get_center()) def __add__(self, other): assert isinstance(other, Primitive), 'Should use {} to perform this operation'.format('Primitive') output_mesh = mesh_boolean(self.mesh, other.mesh, operation="union", engine=ENGINE) m = self.__assign_label_and_create(output_mesh, other) return m def __mul__(self, other): assert isinstance(other, Primitive), 'Should use {} to perform this operation'.format('Primitive') output_mesh = mesh_boolean(self.mesh, other.mesh, operation="intersection",engine=ENGINE) return self.__assign_label_and_create(output_mesh, other) def __sub__(self, other): assert isinstance(other, Primitive), 'Should use {} to perform this operation'.format('Primitive') output_mesh = mesh_boolean(self.mesh, other.mesh, operation="difference",engine=ENGINE) return self.__assign_label_and_create(output_mesh, other) def __assign_label_and_create(self, output_mesh, other): if True: #ENGINE == 'igl': face_indices = output_mesh.get_attribute("source_face").astype(int) attr_dict = {} for attr_name in self.ATTRIBUTES_NAME: if attr_name.startswith('face'): if self.mesh.has_attribute(attr_name) and other.mesh.has_attribute(attr_name): self_attr = self.mesh.get_attribute(attr_name) other_attr = other.mesh.get_attribute(attr_name) if attr_name == 'face_source': other_attr = other_attr + np.max(self_attr) + 1 output_attr = np.concatenate([self_attr, other_attr])[face_indices] attr_dict.update({attr_name:output_attr}) return Primitive(output_mesh.vertices, output_mesh.faces, **attr_dict) else: return Primitive(output_mesh.vertices, output_mesh.faces, ) def save(self, filename): pymesh.meshio.save_mesh(filename, self.mesh, *list(self.get_attributes_dict().keys())) def save_raw(self, filename): pymesh.meshio.save_mesh_raw(filename, self.mesh.vertices, self.mesh.faces) @staticmethod def load(file_name): mesh = pymesh.meshio.load_mesh(file_name) print(mesh) return Primitive(mesh=mesh) @staticmethod def cal_faces_area(vertices, faces): x = vertices[faces] a = x[:, 0, :] - x[:, 1, :] b = x[:, 0, :] - x[:, 2, :] cross = np.cross(a, b) return 0.5 * np.linalg.norm(cross, axis=1) def sample_points(self, num_points, return_attributes=[]): assert isinstance(return_attributes, list), 'input argument \'return_attributes\' should be list not other type.' attr_values = [] for attr in return_attributes: attr_values.append(getattr(self, 'face_' + attr, None)) assert not (attr_values[-1] is None), '\'{}\' is not a valid face-based attribute.'.format(attr) face_vs = self.mesh.vertices[self.mesh.faces] area_p = self.cal_faces_area(self.mesh.vertices, self.mesh.faces) area_p = area_p / np.sum(area_p) face_indices = np.random.choice(np.arange(self.mesh.num_faces), num_points, p=area_p) r1, r2 = np.random.rand(int(num_points)),np.random.rand(int(num_points)) rd_pos = np.asarray([1-np.sqrt(r1),np.sqrt(r1)*(1-r2), np.sqrt(r1)*r2 ]).T pts = np.tile(rd_pos[:,0],(3,1)).T * face_vs[face_indices, 0] + \ np.tile(rd_pos[:,1],(3,1)).T * face_vs[face_indices, 1] + \ np.tile(rd_pos[:,2],(3,1)).T * face_vs[face_indices, 2] results = [pts] + [a[face_indices] for a in attr_values] return tuple(results) @staticmethod def random(*args, **kwargs): return Primitive(*args, **kwargs) def cal_dof(self): return self.RDOF + self.DOF class Sphere(Primitive): RDOF = 0 DOF = 1 LABEL = 1 GEN_FUNC =o3d.geometry.TriangleMesh.create_sphere def __init__(self, *args, **kwargs): super(Sphere, self).__init__( *args, **kwargs) @staticmethod def random(res=20): res = int(uniform_dist(low=res - 5, high=res + 5)) o3d_mesh = Sphere.GEN_FUNC(radius=0.5, resolution=res) o3d_v = np.asarray(o3d_mesh.vertices) o3d_f = np.asarray(o3d_mesh.triangles) return Sphere(vertex=o3d_v,face=o3d_f) class Cylinder(Primitive): RDOF = 2 DOF = 2 GEN_FUNC = o3d.geometry.TriangleMesh.create_cylinder RATIO_MAX= 5 LABEL = 2 def __init__(self,*args, **kwargs): super(Cylinder, self).__init__(*args, **kwargs) @staticmethod def random(resolution=25, split=4): low, high = np.arctan(1.0 / Cylinder.RATIO_MAX), np.arctan(Cylinder.RATIO_MAX) theta = uniform_dist(low, high) h, d =
np.sin(theta)
numpy.sin
############################################## # # # Ferdinand 0.40, <NAME>, LLNL # # # # gnd,endf,fresco,azure,hyrma # # # ############################################## from fudge import reactionSuite as reactionSuiteModule from fudge import styles as stylesModule from fudge import physicalQuantity as physicalQuantityModule from fudge.reactions import reaction as reactionModule from fudge.reactionData import crossSection as crossSectionModule from fudge.processing.resonances.getCoulombWavefunctions import * from xData.Documentation import documentation as documentationModule from xData.Documentation import computerCode as computerCodeModule import fudge.resonances.resonances as resonancesModule import fudge.resonances.scatteringRadius as scatteringRadiusModule import fudge.resonances.resolved as resolvedResonanceModule import fudge.resonances.common as commonResonanceModule import fudge.resonances.scatteringRadius as scatteringRadiusModule import fudge.covariances.modelParameters as covarianceModelParametersModule import fudge.covariances.covarianceSection as covarianceSectionModule import fudge.covariances.covarianceSuite as covarianceSuiteModule from PoPs import database as databaseModule from PoPs import misc as miscModule from PoPs.families import gaugeBoson as gaugeBosonModule from PoPs.families import baryon as baryonModule from PoPs.families import nucleus as nucleusModule from PoPs.families import nuclide as nuclideModule from PoPs.quantities import spin as spinModule from PoPs.groups.misc import * from numpy import zeros from pqu import PQU as PQUModule from xData import table as tableModule import xData.constant as constantModule import xData.link as linkModule import xData.xDataArray as arrayModule import xData.axes as axesModule #from f90nml import read import f90nml.parser from zeroReaction import * from getCoulomb import * # import masses import masses import os,pwd,time import fractions import numpy fmscal = 0.0478450 etacns = 0.1574855 amu = 931.494013 oneHalf = fractions.Fraction( '1/2' ) one = fractions.Fraction( '1' ) zero = fractions.Fraction( '0' ) spinUnit = spinModule.baseUnit ############################################## read_sfresco def read_fresco(inFile, amplitudes,Lvals,CNspec,nonzero,noCov, verbose,debug): # print('amplitudes:',amplitudes,' and nonzero:',nonzero) srch = open(inFile,'r') els = srch.readline().split("'") #print 'els=',els name_frin = els[1] name_frout= els[3] if verbose: print('in,out =',name_frin,',',name_frout) np,nd = [int(x) for x in srch.readline().split()][0:2] print(np,'parameters and',nd,'fitted data sets') srch.readline() # blank line header = srch.readline() srch.readline() # NAMELIST line srch.seek(0) namelists = f90nml.read(inFile) fresco = namelists['fresco'] partitions = namelists['partition'] states = namelists['states'] pots = namelists['pot'] variables = namelists['variable'][0:np] if np>0 else [] try: Covariances = namelists['Cov'] except: Covariances = None if nd>0: try: datanml = namelists['data'] #[0:nd] except: nd = 0 datanml = None rmatch = fresco['rmatch'] elab = fresco['elab'] emin,emax = elab[0],elab[1] Rm_global = rmatch Rm_radius = scatteringRadiusModule.scatteringRadius( constantModule.constant1d(Rm_global, domainMin=emin, domainMax=emax, axes=axesModule.axes(labelsUnits={1: ('energy_in', 'MeV'), 0: ('radius', 'fm')})) ) if verbose: print('np,nd,emin,emax=',np,nd,emin,emax) try: s = states[0] # fail if only one 'states' namelist except: #print 'Rewrite states namelist from ',states states = [states] # so put it in list of 1 if debug: print('\nfresco =',fresco) for i in range(0,len(partitions)-1): print('\npartitions ',i,' =',partitions[i]) try: for i in range(0,len(states)): print('\nstates ',i,' =',states[i]) except: print('\nstates only =',states) states = [states] for i in range(0,len(states)): print('\nstates ',i,' =',states[i]) #for i in range(0,len(pots)-1): print '\npots ',i,' =',pots[i] #for i in range(0,len(variables)): print '\nvariables =',variables[i] try: pel = fresco['pel'] except: pel=1 try: exl = fresco['exl'] except:exl=1 if debug: print('pel,exl =',pel,exl) domain = stylesModule.projectileEnergyDomain(emin,emax,'MeV') style = stylesModule.evaluated( 'eval', '', physicalQuantityModule.temperature( 300, 'K' ), domain, 'from '+inFile , '0.1.0' ) PoPs_data = databaseModule.database( 'fresco', '1.0.0' ) resonanceReactions = commonResonanceModule.resonanceReactions() computePenetrability = True MTchannels = [] approximation = 'Full R-Matrix' #print ' Btype =',fresco['btype'],' bndx = ',fresco['bndx'][0] BV = None if fresco['btype']=='S': BC = resolvedResonanceModule.BoundaryCondition.EliminateShiftFunction elif fresco['btype']=='L': BC = resolvedResonanceModule.BoundaryCondition.NegativeOrbitalMomentum elif fresco['btype']=='A': BC = resolvedResonanceModule.BoundaryCondition.Brune elif fresco['btype']=='B': # and isinstance(fresco['bndx'][0],float): BC = resolvedResonanceModule.BoundaryCondition.Given BV = float(fresco['bndx'][0]) else: print('Unrecognized btype =',fresco['btype'],'with bndx =',fresco['bndx']) if debug: print("btype,bndx so BC=",fresco['btype'],fresco.get('bndx',None),' so BC=',BC,'BV=',BV) rela = fresco.get('rela','') relref = fresco.get('relref',1) KRL = relref if len(rela)>0 else 0 #amplitudes = amplitudes # for RWA in Mev**(1/2) for gnd LRP = 2 # do not reconstruct resonances pointwise (for now) jtmax = fresco['jtmax'] itcm = len(states)-1+1 # = ITCM (the -1 is for the final empty namelist) rrc=[[None for j in range(itcm)] for i in range(itcm)] # initialize array ZAdict = {}; p1p2 = {} ic=0 inc = partitions[ic] itstart = 0 itfin = itstart + inc['nex']-1 cm2lab = 0 spinUnit = spinModule.baseUnit gchannelName = None CNspin, CNparity = CNspec CNparity = 1 if CNparity in ['P','p'] else -1 Q_offset = 0.0 #if debug: print 'itsart,itfin=',itstart,itfin for it in range(len(states)): # ignore final empty namelist) if it>itfin: ic+=1 # next partition inc = partitions[ic] itstart = itfin+1 if debug: print(ic,' inc[]=',inc) itfin = itstart + inc['nex']-1 #if debug: print 'itsart,itfin=',itstart,itfin p,pMass,pZ = inc['namep'],inc['massp'],inc['zp'] t,tMass,tZ = inc['namet'],inc['masst'],inc['zt'] # Use standard GND names: pA = int(pMass+0.5) tA = int(tMass+0.5) p = idFromZAndA(pZ,pA) if p not in ['photon','gamma'] else 'photon' t = idFromZAndA(tZ,tA) Qvalue = inc['qval'] try: prmax = partitions[ic]['prmax'] except: prmax = rmatch ia=it-itstart tex = nuclideIDFromIsotopeSymbolAndIndex(t,ia) rr = '%s + %s' % (p,tex) # label for resonanceReaction rrc[ic][ia] = rr if debug: print("rrc [",ic,',',ia,'] =',rrc[ic][ia]) state = states[it] try: jp,ptyp,ep = state['jp'],state['ptyp'],state['ep'] except: pass try: jt,ptyt,et = state['jt'],state['ptyt'],state['et'] except: print('Cannot find target info in ',state,'\n Stop') raise SystemExit pp = ptyp pt = ptyt Jp = int(jp) if abs(jp - int(jp))<0.1 else '%i/2' % int(2*jp) Jt = int(jt) if abs(jt - int(jt))<0.1 else '%i/2' % int(2*jt) # convert parities in namelist from fresco (-1,1) to gnd (-+) strings: state['ptyp'] = pp state['ptyt'] = pt QI = Qvalue - ep - et channelName = '%s + %s' % (p,tex) ZAdict[rr] = (float(pMass),float(tMass),float(pZ),float(tZ),float(QI),float(prmax)) p1 = (1-pp)//2; p2 = (1-pt)//2 # 0 or 1 for + or - parities p1p2[(ic+1,ia+1)] = (p1,p2) # save for later access from ic, and ia if debug: print('p1p2[(',ic+1,ia+1,')] = (',p1,p2,')') MT = 5 if p=='photon': MT = 102 elif p=='n' : MT = 50+ia elif p=='H1' : MT = 600+ia elif p=='H2' : MT = 650+ia elif p=='H3' : MT = 700+ia elif p=='He3' : MT = 750+ia elif p=='He4' : MT = 800+ia if verbose: print(ic,ia,' projectile=',p,pMass,pZ,Jp,ptyp, ', target=',tex,tMass,tZ,Jt,ptyt, ' Q=',Qvalue,' MT=',MT,' prmax =',prmax) if pZ==0 and pMass == 0 : # g projectile = miscModule.buildParticleFromRawData( gaugeBosonModule.particle, p, mass = ( 0, 'amu' ), spin = (Jp,spinUnit ), parity = (ptyp,'' ), charge = (0,'e') ) CNspin = Jt CNparity = ptyt elif pZ<1 and pMass < 1.5 and p != 'H1' : # n or p projectile = miscModule.buildParticleFromRawData( baryonModule.particle, p, mass = (pMass,'amu' ), spin = (Jp,spinUnit ), parity = (ptyp,'' ), charge = (pZ,'e') ) else: # nucleus in its gs nucleus = miscModule.buildParticleFromRawData( nucleusModule.particle, p, index = 0, energy = ( 0.0, 'MeV' ) , spin=(Jp,spinUnit), parity=(ptyp,''), charge=(pZ,'e')) projectile = miscModule.buildParticleFromRawData( nuclideModule.particle, p, nucleus = nucleus, mass=(pMass,'amu')) PoPs_data.add( projectile ) # Some state of target at energy 'et': if verbose: print("Build PoPs for target ",tex,Jt,ptyt,tZ,tMass,ia,et) nucleus = miscModule.buildParticleFromRawData( nucleusModule.particle, tex, index = ia, energy = (et,'MeV' ) , spin=(Jt,spinUnit), parity=(ptyt,''), charge=(tZ,'e') ) target = miscModule.buildParticleFromRawData( nuclideModule.particle, tex, nucleus = nucleus, mass=(tMass,'amu')) #print target.toXML() PoPs_data.add( target ) if ic==pel-1 and ia==exl-1: if verbose: print(' -- that was the incident channel of',p,tex) elastics = (p,tex) Q_offset = QI MT = 2 cm2lab = (tMass + pMass)/tMass try: prmax = partitions[ic]['prmax'] except: prmax = rmatch # Create zero background cross section # MTchannels.append((rr,zeroReaction(rr,MT, QI, [projectile,target], None, emin,emax,'MeV', debug), channelName,prmax,p)) MTchannels.append((rr,(rr,MT, QI, projectile,target, emin,emax), channelName,prmax,p)) compoundA = pA + tA compoundZ = pZ + tZ cMass = masses.getMassFromZA( compoundZ*1000 + compoundA ) compoundName = idFromZAndA(compoundZ,compoundA) if CNspin is None or CNparity is None: ptyt = 1; Jt=0 print('\n WARNING: %s spin and parity set to %s,%s by default. If neeed, please fix PoPs data in final file by hand!!!\n' % (compoundName,Jt,ptyt)) else: Jt = CNspin ptyt = CNparity print('\n%s spin and parity set to %s,%s. If needed, please fix PoPs data in final file by hand!!!\n' % (compoundName,Jt,ptyt)) CNnucleus = miscModule.buildParticleFromRawData( nucleusModule.particle, compoundName, index = 0, energy = (0,'MeV' ), spin=(Jt,spinUnit), parity=(ptyt,'')) CNtarget = miscModule.buildParticleFromRawData( nuclideModule.particle, compoundName, nucleus = CNnucleus, mass=(cMass,'amu')) PoPs_data.add( CNtarget ) # Check if any damping and hence need for Reich-Moore channel damped = False changeAmp = False; changed=0 for v in variables: if v['kind']==3: damped = damped or v.get('damp',0.0) > 1e-20 if v['kind']==4: is_rwa = v.get('rwa',True) # same default as frescox changeAmp = changeAmp or (is_rwa != amplitudes) if is_rwa != amplitudes: changed += 1 if v['kind']==7: damped = damped or v.get('damp',0.0) > 1e-20 if changeAmp: print(" Need to change ",changed," reduced width amplitudes with formal widths ") if damped: approximation = 'Reich_Moore' print(" Create Reich-Moore channel 'photon' from damping") level = 0 compoundNameIndex = nuclideIDFromIsotopeSymbolAndIndex(compoundName,level) gchannelName = '%s + photon' % compoundName Q = (pMass + tMass - cMass)*amu rrcap = gchannelName print("Reich-Moore particle pair: ",gchannelName,' with CN mass %.5f so Q=%.3f, label=%s' % (cMass,Q,rrcap)) # gData = { '0' : [ 0.0, .0, 1, None, 1, +1 ] } gammaParticle = miscModule.buildParticleFromRawData( gaugeBosonModule.particle, 'photon', mass = ( 0, 'amu' ), spin = ( zero, spinUnit ), parity = ( 1, '' ), charge = ( 0, 'e' )) PoPs_data.add(gammaParticle) nucleus = miscModule.buildParticleFromRawData( nucleusModule.particle, compoundNameIndex, index = level, energy = ( 0.0, 'MeV' ) , spin=(zero,spinUnit), parity=(1,''), charge=(compoundZ,'e') ) compoundParticle = miscModule.buildParticleFromRawData( nuclideModule.particle, compoundNameIndex, nucleus = nucleus, mass=(cMass,'amu') ) #print PoPs_data.toXML() PoPs_data.add(compoundParticle) # if verbose: print PoPs_data.toXML() # Create background ReichMoore cross section (zero to start with) MT_capture = 102 # label = 'capture' label = rrcap capture = zeroReaction(label,MT_capture, Q, [gammaParticle,compoundParticle], 'damping', emin,emax,'MeV', debug) # MTchannels.append((rrcap, capture, gchannelName,None,'photon')) MTchannels.append((rrcap, (label,MT_capture, Q, gammaParticle,compoundParticle, emin,emax), gchannelName,None,'photon')) # After making all the channels, and gnd is generated for the elastic channel, now add them to gnd p,tex = elastics gnd = reactionSuiteModule.reactionSuite( p, tex, 'fresco R-matrix fit', PoPs = PoPs_data, style = style, interaction='nuclear') for rr,reacInfo,channelName,prmax,p in MTchannels: # Get zero background cross section and link to it #reaction,channelName,prmax = MTchannels[rr] rr,MT, QI, pn,tn, emi,ema = reacInfo reaction = zeroReaction(rr, MT, QI - Q_offset, [pn,tn], None, emi,ema,'MeV', debug) gnd.reactions.add(reaction) eliminated = channelName == gchannelName reactionLink = linkModule.link(reaction) computeShiftFactor = BC != resolvedResonanceModule.BoundaryCondition.EliminateShiftFunction and not eliminated computePenetrability = not eliminated # Should be False also for fission channels (but they are not specified yet) TEMPORARY rreac = commonResonanceModule.resonanceReaction ( label=rr, reactionLink=reactionLink, ejectile=p, computePenetrability=computePenetrability, computeShiftFactor=computeShiftFactor, Q=None, eliminated=eliminated ) if prmax is not None and prmax != Rm_global: rreac.scatteringRadius = scatteringRadiusModule.scatteringRadius( constantModule.constant1d(prmax, domainMin=emin, domainMax=emax, axes=axesModule.axes(labelsUnits={1: ('energy_in', 'MeV'), 0: ('radius', 'fm')})) ) resonanceReactions.add(rreac) if debug: print("RR <"+rr+"> is "+channelName) if cm2lab<1e-5: print("Missed elastic channel for cm2lab factor!") raise SystemExit if Lvals is not None: print("Remake channels in each pair for L values up to ",Lvals) # Now read and collate the reduced channel partial waves and their reduced width amplitudes # next we have NJS spin groups, each containing channels and resonances spinGroups = resolvedResonanceModule.spinGroups() JpiList = [] for i in range(0,len(variables)): v = variables[i] if v['kind']==3: pi = v['par'] J = v['jtot'] Jpi = J,pi if Jpi not in JpiList: JpiList.append(Jpi) if debug: print(" List of Jpi",JpiList) NJS = len(JpiList) JpiMissing = [] frac = J-int(J) # to fix whether integer or half-integer spins! NJ = int(jtmax-frac+0.1)+1 for i in range(NJ): J = frac + i for pi in [-1,1]: if (J,pi) not in JpiList: JpiMissing.append( (J,pi) ) NJM = len(JpiMissing) if NJM>0: print("Spin-parity groups with no poles:",JpiMissing) kvar = 0 # ; ivar2G = {}; G2ivar = []; kvarData = [] # if debug: print(resonanceReactions.toXML()) for spinGroupIndex in range(NJS+NJM): J,piv = JpiList [ spinGroupIndex ] if spinGroupIndex < NJS else JpiMissing[spinGroupIndex-NJS] JJ = resolvedResonanceModule.spin( J ) pi= resolvedResonanceModule.spin( piv) x = (1-pi)//2 if verbose: print('\n',spinGroupIndex,': J,pi,x =',JJ,pi,x) # Previously we got channel quantum numbers from looking at which combinations have poles. # But this is not good from physics, as we have to be careful to cater for channels even without poles. # So now (Oct 9, 2017) I re-organize how to make list of channels. # chans = set() itc = 0 for rreac in resonanceReactions: if not rreac.eliminated: icch=0; iach=0 for ic in range(len(rrc)): # find icch,iach for this reaction pair for ia in range(len(rrc[ic])): if rreac.label==rrc[ic][ia]: icch=ic+1; iach=ia+1 if debug: print(" pair:",rreac.label," at ic,ia",icch,iach) p = rreac.ejectile t = rreac.residual projectile = PoPs_data[p]; target = PoPs_data[t]; if hasattr(projectile, 'nucleus'): projectile = projectile.nucleus if hasattr(target, 'nucleus'): target = target.nucleus jp,pt = projectile.spin[0].float('hbar'), projectile.parity[0].value jt,tt = target.spin[0].float('hbar'), target.parity[0].value smin = abs(jt-jp) smax = jt+jp s2min = int(2*smin+0.5) s2max = int(2*smax+0.5) for s2 in range(s2min,s2max+1,2): sch = s2*0.5 lmin = int(abs(sch-JJ) +0.5) lmax = int(sch+JJ +0.5) if Lvals is not None: lmax = min(lmax,Lvals[itc]) for lch in range(lmin,lmax+1): if pi != pt*tt*(-1)**lch: continue chans.add((icch,iach,lch,sch)) if debug: print(' Partial wave channels IC,IA,L,S:',icch,iach,lch,sch) itc += 1 channelList = sorted(chans) NCH = len(channelList) if debug: print(' channels =',chans,' (',NCH,')') if debug: print(' channelList =',channelList,' (',NCH,')') columnHeaders = [ tableModule.columnHeader(0, name="energy", unit="MeV") ] width_units = 'MeV' ## 'MeV**{1/2}' if amplitudes else 'MeV' # wrong units given to GND: correct later if needed channelNames = [] channels = resolvedResonanceModule.channels() firstp =1 if damped: columnHeaders.append( tableModule.columnHeader(1, name=gchannelName, unit= width_units) ) Sch = resolvedResonanceModule.spin( 0.0 ) channels.add( resolvedResonanceModule.channel('1', rrcap, columnIndex=1, L=0, channelSpin=Sch) ) firstp = 2 for chidx in range(NCH): icch,iach,lch,sch = channelList[chidx] rr = rrc[icch-1][iach-1] if debug: print("From ic,ia =",icch,iach," find channel ",rr) thisChannel = resonanceReactions[rr] channelName = "%s width" % thisChannel.label jdx = 2 while True: if channelName not in channelNames: channelNames.append( channelName ); break channelName = '%s width_%d' % (thisChannel.label, jdx) jdx += 1 columnHeaders.append( tableModule.columnHeader(chidx+firstp, name=channelName, unit= width_units) ) Sch = resolvedResonanceModule.spin( sch ) channels.add( resolvedResonanceModule.channel(str(chidx+firstp), rr, columnIndex=chidx+firstp, L=lch, channelSpin=Sch) ) if debug: print(str(chidx), str(chidx), int(lch), float(sch), chidx+firstp) terms = set() # for this J,pi spin group damping = {} for i in range(0,len(variables)): v = variables[i] ivare = v.get('ivar',None) if ivare is not None and ivare!=i+1 and Covariances is not None: print("Variable namelists out of order. Expect %i but found %i" % (i+1,ivare)) if v['kind']==3: Jv = v['jtot'] if Jv==J and v['par']==pi: term = v['term'] terms.add((term,v['energy'],ivare)) if damping.get(term,None) is None: damping[term] = 0.0 try: d = v['damp'] except: d = 0. damping[term] += d if debug: print(i,':',v,'for term',term,' damping',d) if v['kind']==7: term = v['term'] if damping.get(term,None) is None: damping[term] = 0.0 try: d = v['damp'] except: d = 0. damping[term] += d if debug: print(i,':',v,'for term',term,' damping',d) terms = sorted(terms) if debug: print(' terms =',terms) resonances = [] for term,energy,ivare in terms: # G2ivar.append(ivare) # energies come before widths, in GNDS kvar += 1 # ; ivar2G[ivare] = kvar if debug: print('Jpi',JJ,pi,'kvar=',kvar,'for E=',energy) kvarData.append([J,piv,'E',energy]) energy += Q_offset row = [energy*cm2lab] if damped: damp = damping.get(term,0.0)*cm2lab row.append(damp) kvar += 1 # ; ivar2G[ivare] = kvar kvarData.append([JJ,piv,'d',damp]) if debug: print('kvar=',kvar,'for damping=',damp) else: damp = 0.0 for ch in channelList: found = False ic,ia,lch,sch = ch for i in range(0,len(variables)): v = variables[i] #print v['kind'],4 , v['term'],term , v['icch'],ch[0] , v['iach'],ch[1] , v['lch'],ch[2] , v['sch'],ch[3] if v['kind']==4 and v['term']==term and v['icch']==ic and v['iach']==ia and v['lch']==lch and v['sch']==sch: #print ' After ch',ch,' widths =',v['width'] p1,p2 = p1p2[(ic,ia)] phaz = p1 + p2 + lch - x if phaz % 2 == 1: # should be even. If not: stop print('Error: ic,ia,p1,p2,lch,x,phaz=',ic,ia,p1,p2,lch,x,phaz) sys.exit(1) phase = (-1)**(phaz//2) w = v['width'] * phase # convert to phase from Fresco, which has explicit i^L Huby phases. if debug: print(' E= %.3f MeV, damp=%.2e width=%.4e l=%i S=%.1f p1,p2,phaz,s=%i,%i,%i: %i %i' % (energy, damp, w,lch,sch,p1,p2,x,phaz,phase)) try: is_rwa = v['rwa'] except: is_rwa = True # same as Frescox if is_rwa != amplitudes: # fix to give correct output: rwa or formal width rr = rr = rrc[ch[0]-1][ch[1]-1] pMass,tMass,pZ,tZ,QI,prmax = ZAdict[ rr ] e_ch = energy + QI - Q_offset penetrability,shift,dSdE,W = getCoulomb_PSdSW( abs(e_ch),lch, prmax, pMass,tMass,pZ,tZ, fmscal,etacns, False) # CWF at abs(e_ch) if debug: print('p,t =',p,tex,'QI=',QI,': call coulombPenetrationFactor(L=',lch,'e_ch=',e_ch,') =',penetrability,dSdE,W) # find gamma or Gamma_formal from the G_obs in the AZR input # Gamma_formal = G_obs * shifty_denom # gamma = sqrt(Gamma_formal/(2*P)) if amplitudes: # GND to have rwa from Gammaf width = ( abs(w) /(2. * penetrability) ) **0.5 if w < 0: width = -width if debug: print(" Converting Gammaf",w," to rwa",width) else: # GND to have Gammaf from rwa width = 2.0 * w*w * penetrability if w < 0: width = -width if debug: print(" Converting rwa",w," to Gammaf",width,'ampl:',amplitudes) else: width = w width *= cm2lab**0.5 if amplitudes else cm2lab if nonzero is not None and abs(width)<1e-20: print('Change',width,'to',nonzero) width = nonzero # else: # print('No change',width,'to',nonzero,'as',abs(width),1e-20,abs(width)<1e-20) row.append(width) found = True # ivar = v.get('ivar',None) # G2ivar.append(ivar) kvar += 1; # ivar2G[ivar] = kvar if debug: print('kvar=',kvar,'for width=',width,'from',v['width']) kvarData.append([J,piv,energy,damp,width,ic-1,ia-1,lch,sch]) nfv = 0 if nonzero is None else nonzero if not found: row.append(nfv) resonances.append(row) if debug: print('Col headers:',len(columnHeaders)) print('Make table for',J,pi,[len(row) for row in resonances],'\n',resonances) table = tableModule.table( columns=columnHeaders, data=resonances ) spinGroups.add( resolvedResonanceModule.spinGroup(str(spinGroupIndex), JJ, pi, channels, resolvedResonanceModule.resonanceParameters(table)) ) # for J,pi in JpiMissing: # JJ = resolvedResonanceModule.spin( J ) # spinGroupIndex += 1 # if verbose: print spinGroupIndex,': add empty J,pi =',JJ,pi # table = tableModule.table( columns=None, data=None ) # channels = resolvedResonanceModule.channels() # spinGroups.add( resolvedResonanceModule.spinGroup(str(spinGroupIndex), JJ, pi, channels, # resolvedResonanceModule.resonanceParameters(table)) ) RMatrix = resolvedResonanceModule.RMatrix( 'eval', approximation, resonanceReactions, spinGroups, boundaryCondition=BC, boundaryConditionValue=BV, relativisticKinematics=KRL, reducedWidthAmplitudes=bool(amplitudes), supportsAngularReconstruction=True, calculateChannelRadius=False ) docnew = RMatrix.documentation docLines = [' ','Converted from SFRESCO search file %s' % inFile,time.ctime(),pwd.getpwuid(os.getuid())[4],' ',' '] computerCode = computerCodeModule.ComputerCode( label = 'R-matrix fit', name = 'sfrescox', version = '7.1-6-gad5c8e') #, date = time.ctime() ) computerCode.note.body = '\n'.join( docLines ) listallvars = namelists.toString(['variable']) dataLines = [] for i in range(len(variables)): if variables[i]['kind'] in [5,6]: vnew = listallvars[i].replace(' = ','=') vnew = ' '.join(vnew.split()).replace(" ',","',") dataLines += [vnew] for datanml in namelists.toString(['data']): dnew = datanml.replace(' = ','=').replace('.false.','F').replace('.true.','T') dnew = ' '.join(dnew.split()).replace(" ',","',") dataLines += [dnew] fresco_text = '\n'.join(namelists.toString(['fresco'])) inputDataSpecs= computerCodeModule.InputDeck( 'Fresco input 1', inFile, ('\n %s\n' % time.ctime() ) + fresco_text +'\n' ) computerCode.inputDecks.add( inputDataSpecs ) inputDataSpecs= computerCodeModule.InputDeck( 'Fitted_data 1', inFile, ('\n %s\n' % time.ctime() ) + ('\n'.join( dataLines ))+'\n' ) computerCode.inputDecks.add( inputDataSpecs ) # print('computerCode:\n', computerCode.toXML( ) ) docnew.computerCodes.add( computerCode ) resolved = resolvedResonanceModule.resolved( emin,emax,'MeV' ) resolved.add( RMatrix ) scatteringRadius = Rm_radius unresolved = None resonances = resonancesModule.resonances( scatteringRadius, resolved, unresolved ) gnd.resonances = resonances if Covariances is not None and not noCov: nvar_covs = Covariances[0]['nvariables'] icor2ivar = Covariances[0]['variables'] nRvariables = kvar if verbose: print('nvar_covs=',nvar_covs,' varying:',icor2ivar,' for nRvars:',nRvariables) nvar_Rcovs = 0; R2icor = []; icor2R = [] for icor0 in range(nvar_covs): icor = icor0+1 # from 1..nvar_covs varnum = icor2ivar[icor0] kind = variables[varnum-1]['kind'] if debug: print("Variable",varnum," has kind",kind,"at",icor) if kind==3 or kind==4 or kind==7: nvar_Rcovs += 1 R2icor += [icor] icor2R += [nvar_Rcovs] else: icor2R += [None] print("\nCovariance matrix varies",nvar_Rcovs,"R-matrix parameters within nRvars:",nRvariables) if nvar_Rcovs > nRvariables: sys.exit(1) if verbose: print(' icor2ivar:',icor2ivar, len(icor2ivar)) print(' R to icor:',R2icor , len(R2icor)) print(' icor to R',icor2R, len(icor2R)) # print ' GND to ivar',G2ivar, len(G2ivar) # print ' ivar to GND',ivar2G #, len(ivar2G) matrix = zeros([nRvariables,nRvariables]) covar_matrix = zeros([nvar_Rcovs,nvar_Rcovs]) for covs in Covariances[1:]: row = covs['row']-1 ivar = icor2ivar[row] if verbose: print('Row:',covs['row'],'Fresco var#',varnum,'of kind',variables[varnum-1]['kind']) if icor2R[row] is not None: for i in range(nvar_Rcovs): ivar_c = icor2ivar[R2icor[i]-1] # print "matrix[",ivar,ivar_c,"] = covs[",R2icor[i]-1,"] from R=",R2icor[i],i matrix[ivar-1,ivar_c-1] = covs['emat'][R2icor[i]-1] covar_matrix[row,i] = matrix[ivar-1,ivar_c-1] # data for computation covData = open('fresco-covData.dat','w') print('# covariance data from',inFile, file=covData) print(nvar_Rcovs, '#, J,pi,<type>,<value>,partition,excitation,L,S, variable, source', file=covData) print('# i Jtot,parity,L,S') for i in range(nvar_Rcovs): ifv = icor2ivar[R2icor[i]-1] v = variables[ifv] # print(i,variables[ifv],' '.join([str(v) for v in kvarData[ifv]]), ifv , file=covData) name = v['name'] kind = v['kind'] # print(ifv, v) datas = [] if kind==3: energy = v['energy'] datas = [energy] if kind==4: width = v['width'] ic = v['icch']-1; ia = v['iach']-1; L = v['lch']; S = v['sch'] datas = [width, ic, ia, L, S] print(i,name,','.join([str(d) for d in datas]), ifv , file=covData) for i in range(nvar_Rcovs): line = ' '.join([str(covar_matrix[i,j]) for j in range(nvar_Rcovs)]) print(i,line, file=covData) # store into GNDS (need links to each spinGroup) parameters = covarianceModelParametersModule.parameters() startIndex = 0 for spinGroup in resonances.resolved.evaluated: nParams = spinGroup.resonanceParameters.table.nColumns * spinGroup.resonanceParameters.table.nRows if nParams == 0: continue parameters.add( covarianceModelParametersModule.parameterLink( label = spinGroup.label, link = spinGroup.resonanceParameters.table, root="$reactions", matrixStartIndex=startIndex, nParameters=nParams )) startIndex += nParams if debug: print(parameters.toXML(),'\n') print(type(matrix)) print('matrix:\n',matrix) if True: correlation = zeros([nRvariables,nRvariables]) if debug: print("Cov shape",matrix.shape,", Corr shape",correlation.shape) # print "\nCov diagonals:",[matrix[i,i] for i in range(nRvariables)] # print "\nCov diagonals:\n",numpy.array_repr(numpy.diagonal(matrix),max_line_width=100,precision=3) print("Diagonal uncertainties:\n",numpy.array_repr(numpy.sqrt(
numpy.diagonal(matrix)
numpy.diagonal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 25 19:10:13 2019 @author: chiara """ import os import numpy as np # scientific calculation import pandas as pd # data analysis import matplotlib.pyplot as plt # data plot #import matplotlib #from datetime import datetime,date # date objects import seaborn as sns # data plot # import statsmodels.api as sm #import networkx as nx from sklearn.ensemble import RandomForestRegressor # Set working paths mainPath="/home/chiara/kaggle/1C_PYproject/scripts/" os.chdir(mainPath) #from my_functions_1c import my_prepareTrain import my_functions_1c as ct ######################## filePath="/home/chiara/kaggle/1C_PYproject/data/competitive-data-science-predict-future-sales/"+"sales_train_v2.csv" data=pd.read_csv(filePath, index_col=False) data.head(5) data.shape data.tail(5) ######################## LOAD DATA TRAIN filePath="working_data/"+"1C_small_training.csv" data=pd.read_csv(filePath, index_col=False) data=data.drop("Unnamed: 0",axis=1) data.keys() data.head() dataTrain=ct.my_prepareTrain(data) #921400 rows x 9 columns dataTrain.keys() #["date_block_num","item_id","shop_id","item_freq","shop_freq", # "category_freq", "month","item_price","month_cnt"] dataTrain.reset_index() dataTrain.iloc[10:20,0:5] dataTrain.plot(subplots=True) ############################################################################## ############################################################################## ############# CHECKS/SUMMARIES ## is the item price fixed among shops? over months? # price is not fixed among shops # price is not fixed among months dataPriceXShop=dataTrain[{"date_block_num","item_id","shop_id","item_price"}] dataPriceXShop.head() dataPriceXShop.shape dataItemXShop_price=pd.pivot_table(dataPriceXShop, index=["date_block_num","item_id"], values="item_price",columns=["shop_id"]) dataItemXShop_price #[135451 rows x 55 columns] dataItemXShop_price.keys() dataItemXShop_price.index dataItemXShop_price.loc[(33,33)] # all shops priced item 33 199, but shop 49 priced it 159 dataItemXShop_price.loc[(12,33)] # which items are consistent/present among shops? over months? 33-12+1 # 22 months nan_indices=dataItemXShop_price.isnull() #dataItemXShop_count=pd.pivot_table(nan_indices, # index="item_id",columns=[""] dataItemXShop_count=nan_indices.groupby("item_id").sum() #over months dataItemXShop_count.max(axis=1).idxmax() #item 30 occurs 22 times in at least 1 shop dataItemXShop_count.max(axis=1).max() dataItemXShop_count.max(axis=1).idxmin() ##item 0 occurs 1 times in at least 1 shop dataItemXShop_count.max(axis=1).min() itemPresence=dataItemXShop_count.sum(axis=1)/55 #stability of item presence on average itemPresence.plot(kind="hist",bins=22,figsize=(10,5), title="Number of item occurrences in 22 month period") #sort_values(ascending=False). # most items appear only once sns.set(rc={'figure.figsize':(10,12)}) fig, ax = plt.subplots(1, 1) sns.heatmap(dataItemXShop_count,ax=ax) ax.set_title("Monthly appeareances of items in shops") fig ###### dataItemXMonth_price=pd.pivot_table(dataTrain[{"date_block_num","item_id","item_price"}], index=["item_id"],values="item_price", columns=["date_block_num"],aggfunc={np.min,np.max}) dataItemXMonth_price.keys() # item 22167 dataItemXMonth_price.loc[(22167)] # item 22167 varys min price from 284 to 155 nan_indices2=dataItemXMonth_price.iloc[:,range(0,22)].isnull() #sum(nan_indices2.values.tolist()==nan_indices.values.tolist()) nan_indices2.iloc[0:10,0:10] #itemXmonths nan_indices.iloc[0:10,0:10] #itemXshops #### # each month, in how many shops each item occurs? dataItemXMonth_count=pd.pivot_table(dataTrain[{"date_block_num","item_id","shop_id"}], index=["item_id"],values="shop_id", columns=["date_block_num"],aggfunc=pd.value_counts) dataItemXMonth_count.iloc[17000:17005,0:5] dataItemXMonth_count=dataItemXMonth_count.applymap(lambda x: np.nansum(x)) dataItemXMonth_count.keys() dataItemXMonth_count.iloc[0:40,].transpose().plot.line() sns.set(rc={'figure.figsize':(10,12)}) fig, ax = plt.subplots(1, 1) sns.heatmap(dataItemXMonth_count,ax=ax) ax.set_title("Item appearences in each month") fig # most items appear only a few times. # none item has a regular high appearence # #dataItemXMonth_count=dataItemXMonth_count.reset_index() #dataItemXMonth_count.columns=["item_id",12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,33] #dataItemXMonth_count.iloc[0:5,].transpose().plot.line() #dataItemXMonth_count.keys() #### # how many items each shop sell each month? dataShopXMonth_count=pd.pivot_table(dataTrain[{"date_block_num","item_id","shop_id"}], index=["shop_id"],values="item_id", columns=["date_block_num"],aggfunc="count") dataShopXMonth_perc=dataShopXMonth_count.applymap(lambda x: (x/17054)*100) #dataShopXMonth_count.max().max() sns.set(rc={'figure.figsize':(10,12)}) fig, ax = plt.subplots(1, 2) sns.heatmap(dataShopXMonth_count,ax=ax[0]) sns.heatmap(dataShopXMonth_perc,ax=ax[1]) ax[0].set_title("Items sold in each shop for month") ax[1].set_title("% of items sold in each shop for month") fig # shop 9,11,13,17,20,25,29,30,31..have more variety # only 20% of items are sold in each shop, # and none is continuosly sold ############################################################################### ############################################################################### ############################### CREATE DF for prediction dataTrain.plot(subplots=True) # *keys # date_block_num * # item_id * # shop_id * # category_freq <- # item_price # item_freq <- # shop_freq <- # month # month_cnt !!!!TARGET dataTrain.keys() dataTrain.set_index(["date_block_num","shop_id","item_id"]) dataTrain.iloc[20:30,2:8] #sum(dataTrain["item_freq"]==dataTrain["shop_freq"]) ## Calculate correlation between variables # all variables are highly correlated with "month_cnt" except the price CC=dataTrain[["item_price","month_cnt","month"]].corr()#"item_freq", CC # item_freq category_id item_price month_cnt #item_freq 1.000000 -0.073820 0.067416 0.521578 #category_id -0.073820 1.000000 -0.228345 -0.010741 #item_price 0.067416 -0.228345 1.000000 0.022186 #month_cnt 0.521578 -0.010741 0.022186 1.000000 # Transform it in a links data frame (3 columns only): links = C.stack().reset_index() links.columns =["var1","var2","corr_val"] # remove self correlation (cor(A,A)=1) links_filtered=links.loc[ (links['var1'] != links['var2']) ] links_filtered # Build your graph #G = nx.Graph() G = nx.path_graph(0) graph = {"freq":["price","count"],"price":["freq","count"], "count":["price","freq"]} leng=1 #[('freq', 'price'), ('freq', 'count'), ('price', 'count')] values=[0.067,0.522,0.022] for vertex, edges in graph.items(): G.add_node("%s" % vertex) # leng+=1 for edge in edges: G.add_node("%s" % edge) G.add_edge("%s" % vertex, "%s" % edge, weight = leng) # print("'%s' connects with '%s'" % (vertex,edge)) # Create positions of all nodes and save them #pos = nx.spring_layout(G) pos={"price": [1.5,1.5],"freq": [0.5,1.5],"count": [1,1]} labels ={('freq', 'price'): values[0], ('freq', 'count'): values[1], ('price', 'count'): values[2]} # Draw the graph according to node positions nx.draw(G, pos, with_labels=True,node_size=3000) # Create edge labels #labels = {edg: str(values[G.edges[edg]]) for edg in G.edges} # Draw edge labels according to node positions pos_lab={"price": [1.25,1.25],"freq": [0.75,1.25],"count": [1,1.5]} nx.draw_networkx_edge_labels(G, pos,font_color='red',edge_labels=labels) plt.axis('off') plt.show() ################ #import statsmodels.formula.api as smf # Instantiate a gamma family model with the default link function. #poisson_model = sm.GLM(data.endog, data.exog, family=sm.families.Gamma()) #form="month_cnt ~ date_block_num + item_id + shop_id + item_freq + category_id + month + item_price" #form="month_cnt ~ date_block_num + item_freq + month + item_price" #poisson_model = smf.glm(formula=form, data=dataTrain, family=sm.families.Poisson()) #poisson_fit = poisson_model.fit() #dir(poisson_fit.mle_settings) #poisson_fit.use_t #print(poisson_fit.summary()) # # Generalized Linear Model Regression Results #============================================================================== #Dep. Variable: month_cnt No. Observations: 921400 #Model: GLM Df Residuals: 921392 #Model Family: Poisson Df Model: 7 #Link Function: log Scale: 1.0000 #Method: IRLS Log-Likelihood:* -inf #Date: Fri, 15 Nov 2019 Deviance: * 8.7344e+05 #Time: 18:15:41 Pearson chi2: 3.83e+06 #No. Iterations: 7 *non-defined for Poisson family #Covariance Type: nonrobust * non defined for scale=1 #================================================================================== # coef std err z P>|z| [0.025 0.975] #---------------------------------------------------------------------------------- #Intercept 0.5517 0.003 163.637 0.000 0.545 0.558 #date_block_num 0.0013 0.000 10.540 0.000 0.001 0.002 #item_id -9.174e-06 1.23e-07 -74.511 0.000 -9.41e-06 -8.93e-06 #shop_id -0.0012 4.26e-05 -27.026 0.000 -0.001 -0.001 #item_freq 0.1936 8.63e-05 2244.772 0.000 0.193 0.194 #category_id -0.0055 4.5e-05 -123.243 0.000 -0.006 -0.005 #month 0.0017 0.000 7.667 0.000 0.001 0.002 #item_price 1.289e-05 3.19e-07 40.347 0.000 1.23e-05 1.35e-05 #================================================================================== # item_id, category_id have small weight # Generalized Linear Model Regression Results #============================================================================== #Dep. Variable: month_cnt No. Observations: 921400 #Model: GLM Df Residuals: 921395 #Model Family: Poisson Df Model: 4 #Link Function: log Scale: 1.0000 #Method: IRLS Log-Likelihood: -inf #Date: Fri, 15 Nov 2019 Deviance: 9.1019e+05 #Time: 18:40:30 Pearson chi2: 3.78e+06 #No. Iterations: 7 #Covariance Type: nonrobust #================================================================================== # coef std err z P>|z| [0.025 0.975] #---------------------------------------------------------------------------------- #Intercept 0.2137 0.003 81.395 0.000 0.209 0.219 #date_block_num 0.0004 0.000 3.000 0.003 0.000 0.001 #item_freq 0.1881 8.02e-05 2346.055 0.000 0.188 0.188 #month 0.0024 0.000 11.216 0.000 0.002 0.003 #item_price 2.899e-05 2.82e-07 102.951 0.000 2.84e-05 2.95e-05 #================================================================================== # item_freq is obviously the larger coeff filePath="working_data/"+"1C_ctrl_training.csv" data2=pd.read_csv(filePath, index_col=False) data2=data2.drop(["Unnamed: 0",'Unnamed: 0.1', 'Unnamed: 0.1.1'],axis=1) data2.keys() data2.head() dataCtrl=ct.my_prepareTrain(data2) dataCtrl.keys() dataCtrlHM=ct.my_summaryHistoricFunc(dataCtrl,f_mean=True,f_sum=False) #takes almost 10 minutes #dataCtrl=pd.get_dummies(dataCtrl) dataCtrl.reset_index() dataCtrlHM.reset_index() C=pd.merge(dataCtrl,dataCtrlHM,how="left",on=["date_block_num","item_id","shop_id"]) #target=dataCtrl["month_cnt"] #dataCtrl=dataCtrl.drop("month_cnt",axis=1) #predictions=poisson_fit.predict(exog=dataCtrl, transform=True) #err=abs(target-predictions) #err.plot() #err.mean() #err.max() #err.min() # #rmse=my_rmse(target,predictions) #15.141159663472205 ## not that bad...i should see the mean, std of the counts #poisson_fit.params #poisson_fit dataTrainHM=ct.my_summaryHistoricFunc(dataTrain,f_mean=True,f_sum=False) #15:54-15:09 #dataTrainHM=ct.my_summaryHistoMean(dataTrain) #takes almost 10 minutes #dataTrain=pd.get_dummies(dataTrain) dataTrain.reset_index() dataTrainHM.reset_index() D=pd.merge(dataTrain,dataTrainHM,how="left",on=["date_block_num","item_id","shop_id"]) #D=D.drop("histo_f_cnt",axis=1) CC=D.corr() CC["month_cnt"] sum(abs(CC.values)>0.4) #models_param=[["month_cnt ~ date_block_num + item_freq + month + item_price","GLM","poisson"], # ["month_cnt ~ date_block_num + item_id + shop_id + item_freq + category_id + month + item_price","GLM","poisson"] # ] models_param=[[D.keys(),"GLM","poisson"]]#,[D.keys(),"GLM","poisson"] i=0 modelRes=pd.DataFrame(columns=["model","formula","family","aic", "scale","log-likel","deviance","chi2", "mean_err_perc","sign_pval_perc", "rmse_in","rmse_out","acc_in","acc_out"]) for i in range(0,len(models_param)): aux=ct.my_compareFitModels(D,models_param[i][0],models_param[i][1],models_param[i][2],C) modelRes=modelRes.append(aux,sort=False).reset_index() #18:1018:13 modelRes.iloc[0:1,0:11] [y,X]=ct.my_df2arry_endo_exog(D,"month_cnt") model = sm.GLM(y,X, family=sm.families.Poisson()) fitModel=model.fit(method='nm', maxiter=100, maxfun=100)#18:15-18:16 predictions=fitModel.predict(exog=X, transform=True) err=abs(y-predictions) acc=100*(len([e for e in err if e<1])/len(err)) # <1:53,74% <2: 88,28% acc err.mean() #rmse_in=ct.my_calculateAccuracy(dataTrain,"month_cnt",fitModel) #rmse_out=ct.my_calculateAccuracy(dataTest,"month_cnt",fitModel) import my_functions_1c as ct fitModel.summary() #Dep. Variable: y No. Observations: 921400 #Model: GLM Df Residuals: 921393 #Model Family: Poisson Df Model: 6 #Link Function: log Scale: 1.0000 #Method: nm Log-Likelihood: -inf #Date: Sat, 30 Nov 2019 Deviance: 1.0246e+07 #Time: 18:24:07 Pearson chi2: 2.08e+07 #No. Iterations: 556 #Covariance Type: nonrobust #============================================================================== # coef std err z P>|z| [0.025 0.975] #------------------------------------------------------------------------------ #x1 0.0211 8.18e-05 258.570 0.000 0.021 0.021 #x2 -1.245e-05 9.22e-08 -134.923 0.000 -1.26e-05 -1.23e-05 #x3 0.0075 3.68e-05 204.837 0.000 0.007 0.008 #x4 -0.0013 3.61e-05 -35.865 0.000 -0.001 -0.001 #x5 0.0181 0.000 97.250 0.000 0.018 0.018 #x6 4.68e-05 2.6e-07 180.244 0.000 4.63e-05 4.73e-05 #x7 0.0112 1.04e-06 1.07e+04 0.000 0.011 0.011 #============================================================================== [y,X]=ct.my_df2arry_endo_exog(D,"month_cnt") rfModel=RandomForestRegressor(n_estimators=500,max_depth=10,random_state=18) rfFit=rfModel.fit(X,y) #17:09-17:26 pred=rfFit.predict(X) #17:26-17:27 err=abs(y-pred) err2=y-pred np.mean(err) #1.3330819427844776
np.max(err)
numpy.max
import os import time import torch import numpy as np def env_factory(path, verbose=False, **kwargs): from functools import partial """ Returns an *uninstantiated* environment constructor. Since environments containing cpointers (e.g. Mujoco envs) can't be serialized, this allows us to pass their constructors to Ray remote functions instead (since the gym registry isn't shared across ray subprocesses we can't simply pass gym.make() either) Note: env.unwrapped.spec is never set, if that matters for some reason. """ if 'digit' in path.lower(): if not os.path.isdir('digit'): print("You appear to be missing a './digit' directory.") print("You can clone the cassie environment repository with:") print("git clone https://github.com/siekmanj/digit") exit(1) from digit.digit import DigitEnv path = path.lower() if 'random_dynamics' in path or 'dynamics_random' in path or 'randomdynamics' in path or 'dynamicsrandom' in path: dynamics_randomization = True else: dynamics_randomization = False if 'impedance' in path: impedance = True else: impedance = False if 'standing' in path: standing = True else: standing = False if 'footpos' in path: footpos = True else: footpos = False if 'perception' in path: perception = True else: perception = False if 'stairs' in path: stairs = True else: stairs = False if 'hop_only' in path: hop_only = True else: hop_only = False if 'walk_only' in path: walk_only = True else: walk_only = False if 'height' in path: height = True else: height = False return partial(DigitEnv, dynamics_randomization=dynamics_randomization, impedance=impedance, standing=standing, footpos=footpos, perception=perception, stairs=stairs, hop_only=hop_only, walk_only=walk_only, height=height) if 'cassie' in path.lower(): if not os.path.isdir('cassie'): print("You appear to be missing a './cassie' directory.") print("You can clone the cassie environment repository with:") print("git clone https://github.com/siekmanj/cassie") exit(1) from cassie.cassie import CassieEnv_v2 path = path.lower() if 'random_dynamics' in path or 'dynamics_random' in path or 'randomdynamics' in path or 'dynamicsrandom' in path: dynamics_randomization = True else: dynamics_randomization = False if 'nodelta' in path or 'no_delta' in path: no_delta = True else: no_delta = False no_delta = True if 'stateest' in path or 'state_est' in path: state_est = True else: state_est = False state_est = True if 'clock_based' in path or 'clockbased' in path: clock = True else: clock = False if 'statehistory' in path or 'state_history' in path: history=1 else: history=0 if 'legacy' in path: legacy = True else: legacy = False legacy = False if 'impedance' in path: impedance = True else: impedance = False if 'height' in path: height = True else: height = False if verbose: print("Created cassie env with arguments:") print("\tdynamics randomization: {}".format(dynamics_randomization)) print("\tstate estimation: {}".format(state_est)) print("\tno delta: {}".format(no_delta)) print("\tclock based: {}".format(clock)) print("\timpedance control: {}".format(impedance)) print("\theight control: {}".format(height)) return partial(CassieEnv_v2, 'walking', clock=clock, state_est=state_est, no_delta=no_delta, dynamics_randomization=dynamics_randomization, history=history, legacy=legacy, impedance=impedance, height=height) import gym spec = gym.envs.registry.spec(path) _kwargs = spec._kwargs.copy() _kwargs.update(kwargs) try: if callable(spec._entry_point): cls = spec._entry_point(**_kwargs) else: cls = gym.envs.registration.load(spec._entry_point) except AttributeError: if callable(spec.entry_point): cls = spec.entry_point(**_kwargs) else: cls = gym.envs.registration.load(spec.entry_point) return partial(cls, **_kwargs) def eval_policy(policy, min_timesteps=1000, max_traj_len=1000, visualize=True, env=None, verbose=True): env_name = env with torch.no_grad(): if env_name is None: env = env_factory(policy.env_name)() else: env = env_factory(env_name)() if verbose: print("Policy is a: {}".format(policy.__class__.__name__)) reward_sum = 0 env.dynamics_randomization = False total_t = 0 episodes = 0 obs_states = {} mem_states = {} while total_t < min_timesteps: state = env.reset() done = False timesteps = 0 eval_reward = 0 episodes += 1 if hasattr(policy, 'init_hidden_state'): policy.init_hidden_state() #speeds = [(0, 0), (0.5, 0), (2.0, 0)] speeds = list(zip(np.array(range(0, 350)) / 100, np.zeros(350))) pelvis_vel = 0 while not done and timesteps < max_traj_len: if (hasattr(env, 'simrate') or hasattr(env, 'dt')) and visualize: start = time.time() action = policy.forward(torch.Tensor(state)).detach().numpy() state, reward, done, _ = env.step(action) if visualize: env.render() eval_reward += reward timesteps += 1 total_t += 1 if hasattr(policy, 'get_quantized_states'): obs, mem = policy.get_quantized_states() obs_states[obs] = True mem_states[mem] = True print(policy.get_quantized_states(), len(obs_states), len(mem_states)) if visualize: if hasattr(env, 'simrate'): # assume 30hz (hack) end = time.time() delaytime = max(0, 1000 / 30000 - (end-start)) time.sleep(delaytime) if hasattr(env, 'dt'): while time.time() - start < env.dt: time.sleep(0.0005) reward_sum += eval_reward if verbose: print("Eval reward: ", eval_reward) return reward_sum / episodes def interactive_eval(policy_name, env=None): from copy import deepcopy import termios, sys import tty import select with torch.no_grad(): policy = torch.load(policy_name) m_policy = torch.load(policy_name) #args, run_args = self.args, self.run_args #run_args = run_args print("GOT ENV", env) if env is None: env_name = policy.env_name else: env_name = env print("env name: ", env_name) env = env_factory(env_name)() env.dynamics_randomization = False env.evaluation_mode = True #if self.run_args.pca: # from util.pca import PCA_Plot # pca_plot = PCA_Plot(policy, env) #if self.run_args.pds: # from util.pds import PD_Plot # pd_plot = PD_Plot(policy, env) # print("DOING PDS??") if hasattr(policy, 'init_hidden_state'): policy.init_hidden_state() m_policy.init_hidden_state() old_settings = termios.tcgetattr(sys.stdin) env.render() render_state = True slowmo = True try: tty.setcbreak(sys.stdin.fileno()) state = env.reset() env.speed = 0 env.side_speed = 0 env.phase_add = 50 env.period_shift = [0, 0.5] #env.ratio = [0.4, 0.6] env.eval_mode = True done = False timesteps = 0 eval_reward = 0 mirror = False def isData(): return select.select([sys.stdin], [], [], 0) == ([sys.stdin], [], []) while render_state: if isData(): c = sys.stdin.read(1) if c == 'w': env.speed = np.clip(env.speed + 0.1, env.min_speed, env.max_speed) if c == 's': env.speed = np.clip(env.speed - 0.1, env.min_speed, env.max_speed) if c == 'q': env.orient_add -= 0.005 * np.pi if c == 'e': env.orient_add += 0.005 * np.pi if c == 'a': env.side_speed = np.clip(env.side_speed + 0.05, env.min_side_speed, env.max_side_speed) if c == 'd': env.side_speed = np.clip(env.side_speed - 0.05, env.min_side_speed, env.max_side_speed) if c == 'r': state = env.reset() if hasattr(policy, 'init_hidden_state'): policy.init_hidden_state() m_policy.init_hidden_state() print("Resetting environment via env.reset()") env.speed = 0 env.side_speed = 0 env.phase_add = env.simrate env.period_shift = [0, 0.5] if c == 't': env.phase_add = np.clip(env.phase_add + 1, int(env.simrate * env.min_step_freq), int(env.simrate * env.max_step_freq)) if c == 'g': env.phase_add = np.clip(env.phase_add - 1, int(env.simrate * env.min_step_freq), int(env.simrate * env.max_step_freq)) if c == 'y': env.height = np.clip(env.height + 0.01, env.min_height, env.max_height) if c == 'h': env.height = np.clip(env.height - 0.01, env.min_height, env.max_height) if c == 'm': mirror = not mirror if c == 'o': # increase ratio of phase 1 env.ratio[0] = np.clip(env.ratio[0] + 0.01, 0, env.max_swing_ratio) env.ratio[1] = 1 - env.ratio[0] if c == 'l': env.ratio[0] =
np.clip(env.ratio[0] - 0.01, 0, env.max_swing_ratio)
numpy.clip
from pathlib import Path import matplotlib.pyplot as plt from scipy import ndimage import yaml import numpy as np import os, sys def rotation_axis_to_xyz(rotation_axis, invert=False, setting='xds'): """Convert rotation axis angle to XYZ vector compatible with 'xds', or 'dials' Set invert to 'True' for anti-clockwise rotation """ if invert: rotation_axis += np.pi rot_x = np.cos(rotation_axis) rot_y = np.sin(rotation_axis) rot_z = 0 if setting == 'dials': return rot_x, -rot_y, rot_z elif setting == 'xds': return rot_x, rot_y, rot_z else: raise ValueError("Must be one of {'dials', 'xds'}") def rotation_matrix(axis, theta): """Calculates the rotation matrix around axis of angle theta (radians)""" # axis = axis/np.sqrt(np.dot(axis,axis)) l = np.sqrt(np.dot(axis, axis)) axis = axis/l a = np.cos(theta/2) b, c, d = -1*axis*np.sin(theta/2) return np.array([[a*a+b*b-c*c-d*d, 2*(b*c-a*d), 2*(b*d+a*c)], [ 2*(b*c+a*d), a*a+c*c-b*b-d*d, 2*(c*d-a*b)], [ 2*(b*d-a*c), 2*(c*d+a*b), a*a+d*d-b*b-c*c]]) def make_2d_rotmat(theta): """Take angle in radians, and return 2D rotation matrix""" R = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) return R def random_sample(arr, n): """Select random sample of `n` rows from array""" indices = np.random.choice(arr.shape[0], n, replace=False) return arr[indices] def xyz2cyl(arr): """Take a set of reflections in XYZ and convert to polar (cylindrical) coordinates""" sx, sy, sz = arr.T out = np.empty((len(arr), 2)) np.hypot(sx, sy, out=out[:,0]) np.arctan2(sz, out[:,0], out=out[:,1])
np.arctan2(sy, sx, out=out[:,0])
numpy.arctan2
import numpy as np import scipy as sp import pandas as pd from sklearn.base import BaseEstimator, RegressorMixin from modules.KernelRegWrapper import KernelRegWrapper class DependentKernelReg(BaseEstimator, RegressorMixin): """ A sklearn-style NW kernel regression with dependent bandwidth matrix and multi-variate normal kernel. """ def __init__(self, kernel="exp", bw_init="scott"): self.outp = None self.regressors = None self.kernel = kernel self.bw_init = bw_init self.kernel_params = None self.params = [] def fit(self, X, y): self.regressors = X self.outp = y cov_mat = np.cov(X, rowvar=False) n = X.shape[0] d = X.shape[1] H_init = 1 if self.bw_init == "scott": H_init = 1.06 * n ** (-1. / (d + 4)) elif self.bw_init == "silverman": H_init = (n * (d+2) / 4.) ** (-1. / (d + 4)) if self.regressors.shape[1] == 1: H = H_init * np.sqrt(cov_mat) else: H = H_init * sp.linalg.sqrtm(cov_mat) self.params = {"sample_size": n, "no_of_regressors": d, "bw_matrix": H} if self.kernel == "exp": if self.regressors.shape[1] == 1: H_inv = H**(-1) H_det = H else: H_inv = np.linalg.inv(H) H_det = np.linalg.det(H) H_const = 1. / ((np.sqrt(2 * np.pi) ** d) * H_det) #0.5)) self.kernel_params = {"H": H, "invH": H_inv, "detH": H_det, "dim": d, "const": H_const} return self def exp_kernel(self, X): if isinstance(X, pd.DataFrame): X = X.to_numpy() if self.regressors.shape[1] == 1: powa = -0.5 * (self.kernel_params["invH"] ** 2) * (X * X).sum(-1) else: xtimesH = np.matmul(X, self.kernel_params["invH"]) powa = -0.5 * (xtimesH * xtimesH).sum(-1) # equiv. to (invH * X)^T (invH *X) # powa = np.expand_dims(powa, axis=0) weight = self.kernel_params["const"] *
np.exp(powa)
numpy.exp
import numpy as np import utils class ssdu_masks(): """ Parameters ---------- rho: split ratio for training and loss mask. \ rho = |\Lambda|/|\Omega| small_acs_block: keeps a small acs region fully-sampled for training masks if there is no acs region, the small acs block should be set to zero input_data: input k-space, nrow x ncol x ncoil input_mask: input mask, nrow x ncol Gaussian_selection: -divides acquired points into two disjoint sets based on Gaussian distribution -Gaussian selection function has the parameter 'std_scale' for the standard deviation of the distribution. We recommend to keep it as 2<=std_scale<=4. Uniform_selection: divides acquired points into two disjoint sets based on uniform distribution Returns ---------- trn_mask: used in data consistency units of the unrolled network loss_mask: used to define the loss in k-space """ def __init__(self, rho=0.4, small_acs_block=(4, 4)): self.rho = rho self.small_acs_block = small_acs_block def Gaussian_selection(self, input_data, input_mask, std_scale=4, num_iter=1): nrow, ncol = input_data.shape[0], input_data.shape[1] center_kx = int(utils.find_center_ind(input_data, axes=(1, 2))) center_ky = int(utils.find_center_ind(input_data, axes=(0, 2))) if num_iter == 0: print(f'\n Gaussian selection is processing, rho = {self.rho:.2f}, center of kspace: center-kx: {center_kx}, center-ky: {center_ky}') temp_mask = np.copy(input_mask) temp_mask[center_kx - self.small_acs_block[0] // 2:center_kx + self.small_acs_block[0] // 2, center_ky - self.small_acs_block[1] // 2:center_ky + self.small_acs_block[1] // 2] = 0 loss_mask = np.zeros_like(input_mask) count = 0 while count <= np.int(np.ceil(
np.sum(input_mask[:])
numpy.sum
import time import numpy as np from sklearn.metrics import f1_score, accuracy_score import torch import torch.nn as nn from tqdm import tqdm import segmentation_models_pytorch as smp def train( train_dataloader: torch.utils.data.dataloader, model: nn.Module, loss_function: nn.Module, optimizer: torch.optim.Optimizer, device: torch.device, scheduler=None, ): """[Perfom one training epoch] Args: train_dataloader (torch.utils.data.dataloader): [Pytorch dataloader] model (nn.Module): [Unet based model] loss_function (nn.Module): [] optimizer (torch.optim.Optimizer): [] device (torch.device): [Training was done on multi GPU] scheduler ([type], optional): [description]. Defaults to None. """ model.train() total_loss = 0 for step, batch in tqdm(enumerate(train_dataloader)): if step % 50 == 0 and not step == 0: print(" Batch {:>5,} of {:>5,}.".format(step, len(train_dataloader))) data = batch["data"].to(device) label = batch["label"].to(device) model.zero_grad() preds = model(data) loss = loss_function(preds, label) total_loss = total_loss + loss.item() loss.backward() optimizer.step() # scheduler.step() def evaluate( dataloader: torch.utils.data.dataloader, model: nn.Module, loss_function: nn.Module, optimizer: torch.optim.Optimizer, device: torch.device, ): """[Perform one evaluation step] Args: dataloader (torch.utils.data.dataloader): [Pytorch dataloader] model (nn.Module): [Unet based model] loss_function (nn.Module): [] optimizer (torch.optim.Optimizer): [] device (torch.device): [] Returns: [tuple]: [Loss and metric over all the dataloader] """ iou = smp.utils.metrics.IoU( threshold=0.5 ) # Metric choosen is IOU, could be DICE or Logloss print("\nEvaluating...") model.eval() total_loss = 0 total_metric = 0 total_preds = [] total_labels = [] for step, batch in enumerate(dataloader): # Progress update every 50 batches. if step % 10 == 0 and not step == 0: # Report progress. print(" Batch {:>5,} of {:>5,}.".format(step, len(dataloader))) data = batch["data"].to(device) label = batch["label"].to(device) with torch.no_grad(): preds = model(data) loss = loss_function(preds, label) metric = iou(preds, label) total_loss = total_loss + loss.item() total_metric = total_metric + metric.item() preds = preds.detach().cpu().numpy() labels = label.detach().cpu().numpy() total_preds.append(preds) total_labels.append(labels) # compute the validation loss of the epoch avg_loss = total_loss / len(dataloader) avg_metric = total_metric / len(dataloader) total_preds = np.concatenate(total_preds, axis=0) total_labels =
np.concatenate(total_labels, axis=0)
numpy.concatenate
import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal import pytest import scipy.sparse as sp from lightfm import LightFM import lightfm import lightfm.model import lightfm.inference as inference mattypes = sp.coo_matrix, sp.lil_matrix, sp.csr_matrix, sp.csc_matrix dtypes = np.int32, np.int64, np.float32, np.float64 def test_empty_matrix(): no_users, no_items = 10, 100 train = sp.coo_matrix((no_users, no_items), dtype=np.int32) model = LightFM() model.fit_partial(train) def test_matrix_types(): no_users, no_items = 10, 100 no_features = 20 for mattype in mattypes: for dtype in dtypes: train = mattype((no_users, no_items), dtype=dtype) user_features = mattype((no_users, no_features), dtype=dtype) item_features = mattype((no_items, no_features), dtype=dtype) model = LightFM() model.fit_partial(train, user_features=user_features, item_features=item_features) model.predict( np.random.randint(0, no_users, 10).astype(np.int32), np.random.randint(0, no_items, 10).astype(np.int32), user_features=user_features, item_features=item_features, ) model.predict_rank(train, user_features=user_features, item_features=item_features) def test_coo_with_duplicate_entries(): # Calling .tocsr on a COO matrix with duplicate entries # changes its data arrays in-place, leading to out-of-bounds # array accesses in the WARP code. # Reported in https://github.com/lyst/lightfm/issues/117. rows, cols = 1000, 100 mat = sp.random(rows, cols) mat.data[:] = 1 # Duplicate entries in the COO matrix mat.data = np.concatenate((mat.data, mat.data[:1000])) mat.row = np.concatenate((mat.row, mat.row[:1000])) mat.col = np.concatenate((mat.col, mat.col[:1000])) for loss in ('warp', 'bpr', 'warp-kos'): model = LightFM(loss=loss) model.fit(mat) def test_predict(): no_users, no_items = 10, 100 train = sp.coo_matrix((no_users, no_items), dtype=np.int32) model = LightFM() model.fit_partial(train) for uid in range(no_users): scores_arr = model.predict(np.repeat(uid, no_items), np.arange(no_items)) scores_int = model.predict(uid, np.arange(no_items)) assert np.allclose(scores_arr, scores_int) def test_input_dtypes(): no_users, no_items = 10, 100 no_features = 20 for dtype in dtypes: train = sp.coo_matrix((no_users, no_items), dtype=dtype) user_features = sp.coo_matrix((no_users, no_features), dtype=dtype) item_features = sp.coo_matrix((no_items, no_features), dtype=dtype) model = LightFM() model.fit_partial(train, user_features=user_features, item_features=item_features) model.predict( np.random.randint(0, no_users, 10).astype(np.int32), np.random.randint(0, no_items, 10).astype(np.int32), user_features=user_features, item_features=item_features, ) def test_not_enough_features_fails(): no_users, no_items = 10, 100 no_features = 20 train = sp.coo_matrix((no_users, no_items), dtype=np.int32) user_features = sp.csr_matrix((no_users - 1, no_features), dtype=np.int32) item_features = sp.csr_matrix((no_items - 1, no_features), dtype=np.int32) model = LightFM() with pytest.raises(Exception): model.fit_partial(train, user_features=user_features, item_features=item_features) def test_feature_inference_fails(): # On predict if we try to use feature inference and supply # higher ids than the number of features that were supplied to fit # we should complain no_users, no_items = 10, 100 no_features = 20 train = sp.coo_matrix((no_users, no_items), dtype=np.int32) user_features = sp.csr_matrix((no_users, no_features), dtype=np.int32) item_features = sp.csr_matrix((no_items, no_features), dtype=np.int32) model = LightFM() model.fit_partial(train, user_features=user_features, item_features=item_features) with pytest.raises(ValueError): model.predict(np.array([no_features], dtype=np.int32), np.array([no_features], dtype=np.int32)) def test_return_self(): no_users, no_items = 10, 100 train = sp.coo_matrix((no_users, no_items), dtype=np.int32) model = LightFM() assert model.fit_partial(train) is model assert model.fit(train) is model def test_param_sanity(): with pytest.raises(AssertionError): LightFM(no_components=-1) with pytest.raises(AssertionError): LightFM(user_alpha=-1.0) with pytest.raises(AssertionError): LightFM(item_alpha=-1.0) with pytest.raises(ValueError): LightFM(max_sampled=-1.0) def test_sample_weight(): model = LightFM() train = sp.coo_matrix(np.array([[0, 1], [0, 1]])) with pytest.raises(ValueError): # Wrong number of weights sample_weight = sp.coo_matrix(np.zeros((2, 2))) model.fit(train, sample_weight=sample_weight) with pytest.raises(ValueError): # Wrong shape sample_weight = sp.coo_matrix(np.zeros(2)) model.fit(train, sample_weight=sample_weight) with pytest.raises(ValueError): # Wrong order of entries model.fit(train, sample_weight=sample_weight) sample_weight = sp.coo_matrix((train.data, (train.row, train.col))) model.fit(train, sample_weight=sample_weight) model = LightFM(loss='warp-kos') with pytest.raises(NotImplementedError): model.fit(train, sample_weight=np.ones(1)) def test_predict_ranks(): no_users, no_items = 10, 100 train = sp.rand(no_users, no_items, format='csr', random_state=42) model = LightFM() model.fit_partial(train) # Compute ranks for all items rank_input = sp.csr_matrix(np.ones((no_users, no_items))) ranks = model.predict_rank(rank_input, num_threads=2).todense() assert np.all(ranks.min(axis=1) == 0) assert np.all(ranks.max(axis=1) == no_items - 1) for row in range(no_users): assert np.all(np.sort(ranks[row]) == np.arange(no_items)) # Train set exclusions. All ranks should be zero # if train interactions is dense. ranks = model.predict_rank(rank_input, train_interactions=rank_input).todense() assert np.all(ranks == 0) # Max rank should be num_items - 1 - number of positives # in train in that row ranks = model.predict_rank(rank_input, train_interactions=train).todense() assert np.all( np.squeeze(np.array(ranks.max(axis=1))) == no_items - 1 - np.squeeze(np.array(train.getnnz(axis=1))) ) # Make sure ranks are computed pessimistically when # there are ties (that is, equal predictions for every # item will assign maximum rank to each). model.user_embeddings = np.zeros_like(model.user_embeddings) model.item_embeddings = np.zeros_like(model.item_embeddings) model.user_biases = np.zeros_like(model.user_biases) model.item_biases = np.zeros_like(model.item_biases) ranks = model.predict_rank(rank_input, num_threads=2).todense() assert np.all(ranks.min(axis=1) == 99) assert np.all(ranks.max(axis=1) == 99) # Wrong input dimensions with pytest.raises(ValueError): model.predict_rank(sp.csr_matrix((5, 5)), num_threads=2) def test_exception_on_divergence(): no_users, no_items = 1000, 1000 train = sp.rand(no_users, no_items, format='csr', random_state=42) model = LightFM(learning_rate=10000000.0, loss='warp') with pytest.raises(ValueError): model.fit(train, epochs=10) def test_sklearn_api(): model = LightFM() params = model.get_params() model2 = LightFM(**params) params2 = model2.get_params() assert params == params2 model.set_params(**params) params['invalid_param'] = 666 with pytest.raises(ValueError): model.set_params(**params) def test_predict_not_fitted(): model = LightFM() with pytest.raises(ValueError): model.predict(np.arange(10), np.arange(10)) with pytest.raises(ValueError): model.predict_rank(1) with pytest.raises(ValueError): model.get_user_representations() with pytest.raises(ValueError): model.get_item_representations() def test_nan_features(): no_users, no_items = 1000, 1000 train = sp.rand(no_users, no_items, format='csr', random_state=42) features = sp.identity(no_items) features.data *= np.nan model = LightFM(loss='warp') with pytest.raises(ValueError): model.fit(train, epochs=10, user_features=features, item_features=features) def test_nan_interactions(): no_users, no_items = 1000, 1000 train = sp.rand(no_users, no_items, format='csr', random_state=42) train.data *= np.nan model = LightFM(loss='warp') with pytest.raises(ValueError): model.fit(train) def test_precompute_representation(): n_users = 10 ** 3 n_user_features = 100 no_component = 50 user_features = sp.random(n_users, n_user_features, density=.1) feature_embeddings = np.random.uniform(size=(n_user_features, no_component)) feature_biases = np.random.uniform(size=n_user_features) features = user_features representation, representation_biases = inference._precompute_representation( features, feature_embeddings, feature_biases, ) assert representation.shape == (n_users, no_component) assert representation_biases.shape == (n_users, ) def test_batch_predict(): no_components = 2 ds = RandomDataset(density=1.0) model = LightFM(no_components=no_components) model.fit_partial(ds.train, user_features=ds.user_features, item_features=ds.item_features) model.batch_setup( item_chunks={0: ds.item_ids}, user_features=ds.user_features, item_features=ds.item_features, ) user_repr = inference._user_repr item_repr = inference._item_repr assert np.sum(user_repr) assert user_repr.shape == (ds.no_users, no_components) assert np.sum(item_repr) assert item_repr.shape == (no_components, ds.no_items) zeros = 0 for uid in range(ds.no_users): original_scores = model.predict( np.repeat(uid, ds.no_items), np.arange(ds.no_items), user_features=ds.user_features, item_features=ds.item_features, ) # Check scores _, batch_predicted_scores = model.predict_for_user(user_id=uid, top_k=0, item_ids=ds.item_ids) assert_array_almost_equal(original_scores, batch_predicted_scores) # Check ids original_ids =
np.argsort(-original_scores)
numpy.argsort
import matplotlib.pyplot as plt import numpy as np def plot_chains(chain, fileout=None, tracers=0, labels=None, delay=0, ymax=200000, thin=100, num_xticks=7, truths=None): if chain.ndim < 3: print("You must include a multiple chains") return n_chains, length, n_var = chain.shape print(n_chains, length, n_var) if (labels is not None) and (len(labels) != n_var): print("You must provide the correct number of variable labels.") return if (truths is not None) and (len(truths) != n_var): print("You must provide the correct number of truths.") return fig, ax = plt.subplots(int(n_var/2) + n_var%2, 2, figsize=(8, 0.8*n_var)) plt.subplots_adjust(left=0.09, bottom=0.07, right=0.96, top=0.96, hspace=0) color = np.empty(n_chains, dtype=str) color[:] = 'k' alpha = 0.01 * np.ones(n_chains) zorder = np.ones(n_chains) if tracers > 0: idx = np.random.choice(n_chains, tracers, replace=False) color[idx] = 'r' alpha[idx] = 1.0 zorder[idx] = 2.0 for i in range(n_var): ix = int(i/2) iy = i%2 for j in range(n_chains): xvals = (np.arange(length)*thin - delay) / 1000.0 ax[ix,iy].plot(xvals, chain[j,:,i], color=color[j], alpha=alpha[j], rasterized=True, zorder=zorder[j]) if ymax is None: ymax = (length*thin-delay) ax[ix,iy].set_xlim(-delay/1000.0, ymax/1000.0) ax[ix,iy].set_xticks(np.linspace(-delay/1000.0,ymax/1000.0,num_xticks)) ax[ix,iy].set_xticklabels([]) # Add y-axis labels if provided by use if labels is not None: ax[ix,iy].set_ylabel(labels[i]) if delay != 0: ax[ix,iy].axvline(0, color='k', linestyle='dashed', linewidth=2.0, zorder=9) if truths is not None: ax[ix,iy].axhline(truths[i], color='C0', linestyle='dashed', linewidth=2.0, zorder=10) # plt.tight_layout() ax[-1,0].set_xticklabels(np.linspace(-delay/1000.0,ymax/1000.0,num_xticks).astype('i8').astype('U')) ax[-1,1].set_xticklabels(
np.linspace(-delay/1000.0,ymax/1000.0,num_xticks)
numpy.linspace
## @ingroup Methods-Noise-Certification # flyover_noise.py # # Created: Oct 2020, <NAME> # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- import numpy as np from SUAVE.Methods.Noise.Fidelity_One.Noise_Tools.compute_noise import compute_noise # ---------------------------------------------------------------------- # Flyover noise # ---------------------------------------------------------------------- ## @ingroup Methods-Noise-Certification def flyover_noise(analyses,noise_configs): """This method calculates flyover noise of a turbofan aircraft Assumptions: N/A Source: N/A Inputs: analyses - data structure of SUAVE analyses [None] noise_configs - data structure for SUAVE vehicle configurations [None] Outputs: SPL - sound pressure level [dB] Properties Used: N/A """ # Update number of control points for noise mission = analyses.missions.takeoff takeoff_initialization = mission.evaluate() n_points = np.ceil(takeoff_initialization.segments.climb.conditions.frames.inertial.time[-1] /0.5 +1) mission.npoints_takeoff_sign = np.sign(n_points) mission.segments.climb.state.numerics.number_control_points = int(np.minimum(200, np.abs(n_points))[0]) # Set up analysis noise_segment = mission.segments.climb noise_segment.analyses.noise.settings.sideline = False noise_segment.analyses.noise.settings.flyover = True noise_settings = noise_segment.analyses.noise.settings noise_config = noise_configs.takeoff noise_analyses = noise_segment.analyses noise_config.engine_flag = True noise_config.print_output = 0 noise_config.output_file = 'Noise_Flyover_climb.dat' noise_config.output_file_engine = 'Noise_Flyover_climb_Engine.dat' noise_config.engine_flag = True if mission.npoints_takeoff_sign == -1: noise_result_takeoff_FL_clb = 500. + noise_segment.missions.sideline_takeoff.segments.climb.state.numerics.number_control_points else: noise_result_takeoff_FL_clb = compute_noise(noise_config,noise_analyses,noise_segment,noise_settings) noise_segment = mission.segments.cutback noise_config = noise_configs.cutback noise_config.print_output = 0 noise_config.engine_flag = True noise_config.output_file = 'Noise_Flyover_cutback.dat' noise_config.output_file_engine = 'Noise_Flyover_cutback_Engine.dat' if mission.npoints_takeoff_sign == -1: noise_result_takeoff_FL_cutback = 500. + noise_segment.missions.sideline_takeoff.segments.climb.state.numerics.number_control_points else: noise_result_takeoff_FL_cutback = compute_noise(noise_config,noise_analyses,noise_segment,noise_settings) noise_result_takeoff_FL = 10. *
np.log10(10**(noise_result_takeoff_FL_clb/10)+10**(noise_result_takeoff_FL_cutback/10))
numpy.log10
""" CS131 - Computer Vision: Foundations and Applications Assignment 2 Author: <NAME> (<EMAIL>) Date created: 07/2017 Last modified: 10/18/2017 Python Version: 3.5+ """ import numpy as np def conv(image, kernel): """ An implementation of convolution filter. This function uses element-wise multiplication and np.sum() to efficiently compute weighted sum of neighborhood at each pixel. Args: image: numpy array of shape (Hi, Wi). kernel: numpy array of shape (Hk, Wk). Returns: out: numpy array of shape (Hi, Wi). """ Hi, Wi = image.shape Hk, Wk = kernel.shape out = np.zeros((Hi, Wi)) # For this assignment, we will use edge values to pad the images. # Zero padding will make derivatives at the image boundary very big, # whereas we want to ignore the edges at the boundary. pad_width0 = Hk // 2 pad_width1 = Wk // 2 pad_width = ((pad_width0,pad_width0),(pad_width1,pad_width1)) padded = np.pad(image, pad_width, mode='edge') kernel_flipped = np.zeros(kernel.shape) for x in range(Hk): for y in range(Wk): kernel_flipped[x,y] = kernel[Hk-x-1,Wk-y-1] kernel_flipped_vec = kernel_flipped.reshape([1,Hk*Wk]) for i in range(Hi): for j in range(Wi): out[i,j] = np.dot(kernel_flipped_vec,padded[i:i+Hk,j:j+Wk].reshape([Hk*Wk,1])) return out def gaussian_kernel(size, sigma): """ Implementation of Gaussian Kernel. This function follows the gaussian kernel formula, and creates a kernel matrix. Hints: - Use np.pi and np.exp to compute pi and exp. Args: size: int of the size of output matrix. sigma: float of sigma to calculate kernel. Returns: kernel: numpy array of shape (size, size). """ kernel = np.zeros((size, size)) k = (size-1)/2 for i in range(size): for j in range(size): kernel[i,j] = np.exp(-( (i-k)**2 + (j-k)**2 )/(2*(sigma**2)) ) kernel = 1/(2*np.pi*(sigma**2))*kernel return kernel def partial_x(img): """ Computes partial x-derivative of input img. Hints: - You may use the conv function in defined in this file. Args: img: numpy array of shape (H, W). Returns: out: x-derivative image. """ out = None ### YOUR CODE HERE kernel = np.array([1.,0.,-1.],ndmin = 2)/2. out = conv(img, kernel) ### END YOUR CODE return out def partial_y(img): """ Computes partial y-derivative of input img. Hints: - You may use the conv function in defined in this file. Args: img: numpy array of shape (H, W). Returns: out: y-derivative image. """ out = None ### YOUR CODE HERE kernel = np.array([[1.],[0.] ,[-1.]], ndmin = 2)/2. out = conv(img, kernel) ### END YOUR CODE return out def gradient(img): """ Returns gradient magnitude and direction of input img. Args: img: Grayscale image. Numpy array of shape (H, W). Returns: G: Magnitude of gradient at each pixel in img. Numpy array of shape (H, W). theta: Direction(in degrees, 0 <= theta < 360) of gradient at each pixel in img. Numpy array of shape (H, W). Hints: - Use np.sqrt and np.arctan2 to calculate square root and arctan """ G = np.zeros(img.shape) theta = np.zeros(img.shape) ### YOUR CODE HERE Gx = partial_x(img) Gy = partial_y(img) #print(Gx) #print(Gy) G = np.sqrt(Gx**2+Gy**2) theta = np.arctan2(Gy,Gx)*180/np.pi #print(theta) theta[(theta >= -180) & (theta < 0)] += 360 #print(theta) ### END YOUR CODE return G, theta def non_maximum_suppression(G, theta): """ Performs non-maximum suppression. This function performs non-maximum suppression along the direction of gradient (theta) on the gradient magnitude image (G). Args: G: gradient magnitude image with shape of (H, W). theta: direction of gradients with shape of (H, W). Returns: out: non-maxima suppressed image. """ H, W = G.shape out = np.zeros((H, W)) # Round the gradient direction to the nearest 45 degrees theta = np.floor((theta + 22.5) / 45) * 45 # edge padding pad_width0 = 1 pad_width1 = 1 pad_width = ((pad_width0,pad_width0),(pad_width1,pad_width1)) G_padded = np.pad(G, pad_width, mode='constant',constant_values = (0,0)) theta_padded = np.pad(theta, pad_width, mode='constant',constant_values = (0,0)) ### BEGIN YOUR CODE for i in range(H): for j in range(W): G_patch = G_padded[i:i+3,j:j+3] theta_patch = theta_padded[i:i+3,j:j+3] theta_current = theta[i,j] #indice = ((theta_patch == theta_current) | (theta_patch == theta_current + 180 - 2*(theta_current>=180))) #print("indice",indice) #pnDirection = G_patch[indice] if theta_current == 0 or theta_current == 180 or theta_current == 360: indice = ((1,2),(1,0)) elif theta_current == 45 or theta_current == 225: indice = ((0,0),(2,2)) elif theta_current == 90 or theta_current == 270: indice = ((0,1),(2,1)) else: indice = ((0,2),(2,0)) G_pnDirection = np.array([ [ G_patch[indice[0]] ], [ G_patch[indice[1]] ] ]) ''' if i == 244 and j == 411: print("G_patch",G_patch) print("theta_patch",theta_patch) print("G_pnDirection",G_pnDirection) print("G[i,j]",G[i,j]-G_pnDirection.max()) ''' ''' if i == 1 and j == 2: print("G_patch",G_patch) print("theta_patch",theta_patch) print("G_pnDirection",G_pnDirection) ''' if G[i,j] < G_pnDirection.max() or np.abs(G[i,j]- G_pnDirection.max()<1e-10): out[i,j] = 0 else: out[i,j] = G[i,j] ### END YOUR CODE return out def double_thresholding(img, high, low): """ Args: img: numpy array of shape (H, W) representing NMS edge response. high: high threshold(float) for strong edges. low: low threshold(float) for weak edges. Returns: strong_edges: Boolean array representing strong edges. Strong edeges are the pixels with the values greater than the higher threshold. weak_edges: Boolean array representing weak edges. Weak edges are the pixels with the values smaller or equal to the higher threshold and greater than the lower threshold. """ strong_edges = np.zeros(img.shape, dtype=np.bool) weak_edges = np.zeros(img.shape, dtype=np.bool) ### YOUR CODE HERE strong_edges = img>high weak_edges = (img<=high) & (img>low) ### END YOUR CODE return strong_edges, weak_edges def get_neighbors(y, x, H, W): """ Return indices of valid neighbors of (y, x). Return indices of all the valid neighbors of (y, x) in an array of shape (H, W). An index (i, j) of a valid neighbor should satisfy the following: 1. i >= 0 and i < H 2. j >= 0 and j < W 3. (i, j) != (y, x) Args: y, x: location of the pixel. H, W: size of the image. Returns: neighbors: list of indices of neighboring pixels [(i, j)]. """ neighbors = [] for i in (y-1, y, y+1): for j in (x-1, x, x+1): if i >= 0 and i < H and j >= 0 and j < W: if (i == y and j == x): continue neighbors.append((i, j)) return neighbors def link_edges(strong_edges, weak_edges): """ Find weak edges connected to strong edges and link them. Iterate over each pixel in strong_edges and perform breadth first search across the connected pixels in weak_edges to link them. Here we consider a pixel (a, b) is connected to a pixel (c, d) if (a, b) is one of the eight neighboring pixels of (c, d). Args: strong_edges: binary image of shape (H, W). weak_edges: binary image of shape (H, W). Returns: edges: numpy boolean array of shape(H, W). """ H, W = strong_edges.shape indices = np.stack(np.nonzero(strong_edges)).T edges = np.zeros((H, W), dtype=np.bool) # Make new instances of arguments to leave the original # references intact weak_edges = np.copy(weak_edges) edges =
np.copy(strong_edges)
numpy.copy
def datacens_workflow_percent(SinkTag="func_preproc", wf_name="data_censoring"): """ Modified version of CPAC.scrubbing.scrubbing + CPAC.generate_motion_statistics.generate_motion_statistics + CPAC.func_preproc.func_preproc `source: https://fcp-indi.github.io/docs/developer/_modules/CPAC/scrubbing/scrubbing.html` `source: https://fcp-indi.github.io/docs/developer/_modules/CPAC/generate_motion_statistics/generate_motion_statistics.html` `source: https://fcp-indi.github.io/docs/developer/_modules/CPAC/func_preproc/func_preproc.html` Description: Do the data censoring on the 4D functional data. First, it calculates the framewise displacement according to Power's method. Second, it indexes the volumes which FD is in the upper part in percent(determined by the threshold variable which is 5% by default). Thirdly, it excludes those volumes and one volume before and 2 volumes after the indexed volume. The workflow returns a 4D scrubbed functional data. Workflow inputs: :param func: The reoriented,motion occrected, nuissance removed and bandpass filtered functional file. :param FD: the frame wise displacement calculated by the MotionCorrecter.py script :param threshold: threshold of FD volumes which should be excluded :param SinkDir: :param SinkTag: The output directory in which the returned images (see workflow outputs) could be found in a subdirectory directory specific for this workflow.. Workflow outputs: :return: datacens_workflow - workflow <NAME> <EMAIL> 2018 References ---------- .. [1] <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142-2154. doi:10.1016/j.neuroimage.2011.10.018 .. [2] <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2012). Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. NeuroImage. doi:10.1016/j.neuroimage.2012.03.017 .. [3] <NAME>., <NAME>., <NAME>., <NAME>., 2002. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825-841. """ import os import nipype import nipype.pipeline as pe import nipype.interfaces.utility as utility import nipype.interfaces.io as io import PUMI.utils.globals as globals import PUMI.utils.QC as qc SinkDir = os.path.abspath(globals._SinkDir_ + "/" + SinkTag) if not os.path.exists(SinkDir): os.makedirs(SinkDir) # Identitiy mapping for input variables inputspec = pe.Node(utility.IdentityInterface(fields=['func', 'FD', 'threshold']), name='inputspec') inputspec.inputs.threshold = 5 #TODO_ready check CPAC.generate_motion_statistics.generate_motion_statistics script. It may use the FD of Jenkinson to index volumes which violate the upper threhold limit, no matter what we set. # - we use the power method to calculate FD # Determine the indices of the upper part (which is defined by the threshold, deafult 5%) of values based on their FD values calc_upprperc = pe.MapNode(utility.Function(input_names=['in_file', 'threshold'], output_names=['frames_in_idx', 'frames_out_idx', 'percentFD', 'out_file', 'nvol'], function=calculate_upperpercent), iterfield=['in_file'], name='calculate_upperpercent') # Generate the weird input for the scrubbing procedure which is done in afni craft_scrub_input = pe.MapNode(utility.Function(input_names=['scrub_input', 'frames_in_1D_file'], output_names=['scrub_input_string'], function=get_indx), iterfield=['scrub_input', 'frames_in_1D_file'], name='scrubbing_craft_input_string') # Scrub the image scrubbed_preprocessed = pe.MapNode(utility.Function(input_names=['scrub_input'], output_names=['scrubbed_image'], function=scrub_image), iterfield=['scrub_input'], name='scrubbed_preprocessed') myqc = qc.timecourse2png("timeseries", tag="040_censored") outputspec = pe.Node(utility.IdentityInterface(fields=['scrubbed_image', 'FD']), name='outputspec') # save data out with Datasink ds=pe.Node(interface=io.DataSink(),name='ds') ds.inputs.base_directory=SinkDir #TODO_ready: some plot for qualitiy checking # Create workflow analysisflow = pe.Workflow(wf_name) ###Calculating mean Framewise Displacement (FD) as Power et al., 2012 # Calculating frames to exclude and include after scrubbing analysisflow.connect(inputspec, 'FD', calc_upprperc, 'in_file') analysisflow.connect(inputspec, 'threshold', calc_upprperc, 'threshold') # Create the proper format for the scrubbing procedure analysisflow.connect(calc_upprperc, 'frames_in_idx', craft_scrub_input, 'frames_in_1D_file') analysisflow.connect(calc_upprperc, 'out_file', ds, 'percentFD') # TODO save this in separet folder for QC analysisflow.connect(inputspec, 'func', craft_scrub_input, 'scrub_input') # Do the scubbing analysisflow.connect(craft_scrub_input, 'scrub_input_string', scrubbed_preprocessed, 'scrub_input') # Output analysisflow.connect(scrubbed_preprocessed, 'scrubbed_image', outputspec, 'scrubbed_image') analysisflow.connect(inputspec, 'FD', outputspec, 'FD') #TODO: scrub FD file, as well # Save a few files #analysisflow.connect(scrubbed_preprocessed, 'scrubbed_image', ds, 'scrubbed_image') #analysisflow.connect(calc_upprperc, 'percentFD', ds, 'scrubbed_image.@numberofvols') analysisflow.connect(scrubbed_preprocessed, 'scrubbed_image', myqc, 'inputspec.func') return analysisflow def datacens_workflow_threshold(SinkTag="func_preproc", wf_name="data_censoring", ex_before=1, ex_after=2): """ Modified version of CPAC.scrubbing.scrubbing + CPAC.generate_motion_statistics.generate_motion_statistics + CPAC.func_preproc.func_preproc `source: https://fcp-indi.github.io/docs/developer/_modules/CPAC/scrubbing/scrubbing.html` `source: https://fcp-indi.github.io/docs/developer/_modules/CPAC/generate_motion_statistics/generate_motion_statistics.html` `source: https://fcp-indi.github.io/docs/developer/_modules/CPAC/func_preproc/func_preproc.html` Description: Do the data censoring on the 4D functional data. First, it calculates the framewise displacement according to Power's method. Second, it indexes the volumes which FD is in the upper part in percent(determined by the threshold variable which is 5% by default). Thirdly, it excludes those volumes and one volume before and 2 volumes after the indexed volume. The workflow returns a 4D scrubbed functional data. Workflow inputs: :param func: The reoriented,motion occrected, nuissance removed and bandpass filtered functional file. :param FD: the frame wise displacement calculated by the MotionCorrecter.py script :param threshold: threshold of FD volumes which should be excluded :param SinkDir: :param SinkTag: The output directory in which the returned images (see workflow outputs) could be found in a subdirectory directory specific for this workflow.. Workflow outputs: :return: datacens_workflow - workflow <NAME> <EMAIL> 2018 References ---------- .. [1] <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142-2154. doi:10.1016/j.neuroimage.2011.10.018 .. [2] <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2012). Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. NeuroImage. doi:10.1016/j.neuroimage.2012.03.017 .. [3] <NAME>., <NAME>., <NAME>., <NAME>., 2002. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825-841. """ import os import nipype import nipype.pipeline as pe import nipype.interfaces.utility as utility import nipype.interfaces.io as io import PUMI.utils.utils_convert as utils_convert import PUMI.utils.globals as globals import PUMI.utils.QC as qc SinkDir = os.path.abspath(globals._SinkDir_ + "/" + SinkTag) if not os.path.exists(SinkDir): os.makedirs(SinkDir) # Identitiy mapping for input variables inputspec = pe.Node(utility.IdentityInterface(fields=['func', 'FD', 'threshold']), name='inputspec') inputspec.inputs.threshold = 0.2 #mm #TODO_ready check CPAC.generate_motion_statistics.generate_motion_statistics script. It may use the FD of Jenkinson to index volumes which violate the upper threhold limit, no matter what we set. # - we use the power method to calculate FD above_thr = pe.MapNode(utility.Function(input_names=['in_file', 'threshold', 'frames_before', 'frames_after'], output_names=['frames_in_idx', 'frames_out_idx', 'percentFD', 'percent_scrubbed_file', 'fd_scrubbed_file', 'nvol'], function=above_threshold), iterfield=['in_file'], name='above_threshold') above_thr.inputs.frames_before = ex_before above_thr.inputs.frames_after = ex_after # Save outputs which are important ds_fd_scrub = pe.Node(interface=io.DataSink(), name='ds_fd_scrub') ds_fd_scrub.inputs.base_directory = SinkDir ds_fd_scrub.inputs.regexp_substitutions = [("(\/)[^\/]*$", "FD_scrubbed.csv")] pop_perc_scrub = pe.Node(interface=utils_convert.List2TxtFileOpen, name='pop_perc_scrub') # save data out with Datasink ds_pop_perc_scrub = pe.Node(interface=io.DataSink(), name='ds_pop_perc_scrub') ds_pop_perc_scrub.inputs.regexp_substitutions = [("(\/)[^\/]*$", "pop_percent_scrubbed.txt")] ds_pop_perc_scrub.inputs.base_directory = SinkDir # Generate the weird input for the scrubbing procedure which is done in afni craft_scrub_input = pe.MapNode(utility.Function(input_names=['scrub_input', 'frames_in_1D_file'], output_names=['scrub_input_string'], function=get_indx), iterfield=['scrub_input', 'frames_in_1D_file'], name='scrubbing_craft_input_string') # Scrub the image scrubbed_preprocessed = pe.MapNode(utility.Function(input_names=['scrub_input'], output_names=['scrubbed_image'], function=scrub_image), iterfield=['scrub_input'], name='scrubbed_preprocessed') myqc = qc.timecourse2png("timeseries", tag="040_censored") outputspec = pe.Node(utility.IdentityInterface(fields=['scrubbed_image', 'FD_scrubbed']), name='outputspec') # save data out with Datasink ds=pe.Node(interface=io.DataSink(),name='ds') ds.inputs.base_directory=SinkDir #TODO_ready: some plot for qualitiy checking # Create workflow analysisflow = pe.Workflow(wf_name) ###Calculating mean Framewise Displacement (FD) as Power et al., 2012 # Calculating frames to exclude and include after scrubbing analysisflow.connect(inputspec, 'FD', above_thr, 'in_file') analysisflow.connect(inputspec, 'threshold', above_thr, 'threshold') # Create the proper format for the scrubbing procedure analysisflow.connect(above_thr, 'frames_in_idx', craft_scrub_input, 'frames_in_1D_file') analysisflow.connect(above_thr, 'percent_scrubbed_file', ds, 'percentFD') # TODO save this in separate folder for QC analysisflow.connect(inputspec, 'func', craft_scrub_input, 'scrub_input') # Do the scubbing analysisflow.connect(craft_scrub_input, 'scrub_input_string', scrubbed_preprocessed, 'scrub_input') # Output analysisflow.connect(scrubbed_preprocessed, 'scrubbed_image', outputspec, 'scrubbed_image') analysisflow.connect(above_thr, 'fd_scrubbed_file', outputspec, 'FD_scrubbed') #TODO_ready: scrub FD file, as well analysisflow.connect(above_thr, 'fd_scrubbed_file', ds_fd_scrub, 'FD_scrubbed') analysisflow.connect(above_thr, 'percent_scrubbed_file', pop_perc_scrub, 'in_list') analysisflow.connect(pop_perc_scrub, 'txt_file', ds_pop_perc_scrub, 'pop') # Save a few files analysisflow.connect(scrubbed_preprocessed, 'scrubbed_image', ds, 'scrubbed_image') #analysisflow.connect(above_thr, 'percentFD', ds, 'scrubbed_image.@numberofvols') analysisflow.connect(scrubbed_preprocessed, 'scrubbed_image', myqc, 'inputspec.func') return analysisflow def spikereg_workflow(SinkTag="func_preproc", wf_name="data_censoring_despike"): """ Description: Calculates volumes to be excluded, creates the despike regressor matrix Workflow inputs: :param FD: the frame wise displacement calculated by the MotionCorrecter.py script :param threshold: threshold of FD volumes which should be excluded :param SinkDir: :param SinkTag: The output directory in which the returned images (see workflow outputs) could be found in a subdirectory directory specific for this workflow.. Workflow outputs: :return: spikereg_workflow - workflow <NAME> <EMAIL> 2018 References ---------- .. [1] <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142-2154. doi:10.1016/j.neuroimage.2011.10.018 .. [2] <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2012). Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. NeuroImage. doi:10.1016/j.neuroimage.2012.03.017 .. [3] <NAME>., <NAME>., <NAME>., <NAME>., 2002. Improved optimization for the robust and accuratedef datacens_workflow(SinkTag="func_preproc", wf_name="data_censoring"): """ import os import nipype import nipype.pipeline as pe import nipype.interfaces.utility as utility import nipype.interfaces.io as io import PUMI.utils.globals as globals import PUMI.utils.QC as qc SinkDir = os.path.abspath(globals._SinkDir_ + "/" + SinkTag) if not os.path.exists(SinkDir): os.makedirs(SinkDir) # Identitiy mapping for input variables inputspec = pe.Node(utility.IdentityInterface(fields=['func', 'FD', 'threshold',]), name='inputspec') inputspec.inputs.threshold = 5 #TODO_ready check CPAC.generate_motion_statistics.generate_motion_statistics script. It may use the FD of Jenkinson to index volumes which violate the upper threhold limit, no matter what we set. # - we use the power method to calculate FD # Determine the indices of the upper part (which is defined by the threshold, deafult 5%) of values based on their FD values calc_upprperc = pe.MapNode(utility.Function(input_names=['in_file', 'threshold'], output_names=['frames_in_idx', 'frames_out_idx', 'percentFD', 'out_file', 'nvol'], function=calculate_upperpercent), iterfield=['in_file'], name='calculate_upperpercent') #create despiking matrix, to be included into nuisance correction despike_matrix = pe.MapNode(utility.Function(input_names=['frames_excluded', 'total_vols'], output_names=['despike_mat'], function=create_despike_regressor_matrix), iterfield=['frames_excluded', 'total_vols'], name='create_despike_matrix') outputspec = pe.Node(utility.IdentityInterface(fields=['despike_mat', 'FD']), name='outputspec') # save data out with Datasink ds=pe.Node(interface=io.DataSink(),name='ds') ds.inputs.base_directory=SinkDir #TODO_ready: some plot for qualitiy checking # Create workflow analysisflow = pe.Workflow(wf_name) ###Calculating mean Framewise Displacement (FD) as Power et al., 2012 # Calculating frames to exclude and include after scrubbing analysisflow.connect(inputspec, 'FD', calc_upprperc, 'in_file') analysisflow.connect(inputspec, 'threshold', calc_upprperc, 'threshold') # Create the proper format for the scrubbing procedure analysisflow.connect(calc_upprperc, 'frames_out_idx', despike_matrix, 'frames_excluded') analysisflow.connect(calc_upprperc, 'nvol', despike_matrix, 'total_vols') analysisflow.connect(calc_upprperc, 'out_file', ds, 'percentFD') # TODO save this in separet folder for QC # Output analysisflow.connect(despike_matrix, 'despike_mat', outputspec, 'despike_mat') analysisflow.connect(inputspec, 'FD', outputspec, 'FD') return analysisflow def above_threshold(in_file, threshold=0.2, frames_before=1, frames_after=2): import os import numpy as np from numpy import loadtxt, savetxt powersFD_data = loadtxt(in_file, skiprows=1) np.insert(powersFD_data, 0, 0) # TODO_ready: why do we need this: see output of nipype.algorithms.confounds.FramewiseDisplacement frames_in_idx = np.argwhere(powersFD_data < threshold)[:, 0] frames_out = np.argwhere(powersFD_data >= threshold)[:, 0] extra_indices = [] for i in frames_out: # remove preceding frames if i > 0: count = 1 while count <= frames_before: extra_indices.append(i - count) count += 1 # remove following frames count = 1 while count <= frames_after: if i+count < len(powersFD_data): # do not censor unexistent data extra_indices.append(i + count) count += 1 indices_out = list(set(frames_out) | set(extra_indices)) indices_out.sort() frames_out_idx = indices_out frames_in_idx = np.setdiff1d(frames_in_idx, indices_out) FD_scrubbed = powersFD_data[frames_in_idx] fd_scrubbed_file = os.path.join(os.getcwd(), 'FD_scrubbed.csv') savetxt(fd_scrubbed_file, FD_scrubbed, delimiter=",") frames_in_idx_str = ','.join(str(x) for x in frames_in_idx) frames_in_idx = frames_in_idx_str.split() percentFD = (len(frames_out_idx) * 100 / (len(powersFD_data) + 1)) # % of frames censored percent_scrubbed_file = os.path.join(os.getcwd(), 'percent_scrubbed.txt') f = open(percent_scrubbed_file, 'w') f.write("%.3f" % (percentFD)) f.close() nvol = len(powersFD_data) return frames_in_idx, frames_out_idx, percentFD, percent_scrubbed_file, fd_scrubbed_file, nvol def calculate_upperpercent(in_file,threshold, frames_before=1, frames_after=2): import os import numpy as np from numpy import loadtxt # Receives the FD file to calculate the upper percent of violating volumes powersFD_data = loadtxt(in_file, skiprows=1) np.insert(powersFD_data, 0, 0) # TODO_ready: why do we need this: see output of nipype.algorithms.confounds.FramewiseDisplacement sortedpwrsFDdata = sorted(powersFD_data) limitvalueindex = int(len(sortedpwrsFDdata) * threshold / 100) limitvalue = sortedpwrsFDdata[len(sortedpwrsFDdata) - limitvalueindex] frames_in_idx = np.argwhere(powersFD_data < limitvalue)[:,0] frames_out = np.argwhere(powersFD_data >= limitvalue)[:, 0] extra_indices = [] for i in frames_out: # remove preceding frames if i > 0: count = 1 while count <= frames_before: extra_indices.append(i - count) count += 1 # remove following frames count = 1 while count <= frames_after: if i+count < len(powersFD_data): # do not censor unexistent data extra_indices.append(i + count) count += 1 indices_out = list(set(frames_out) | set(extra_indices)) indices_out.sort() frames_out_idx=indices_out frames_in_idx=
np.setdiff1d(frames_in_idx, indices_out)
numpy.setdiff1d
import numpy from SLIX import toolbox, io, visualization import matplotlib from matplotlib import pyplot as plt import pytest import shutil import os matplotlib.use('agg') class TestVisualization: def test_visualize_unit_vectors(self): example = io.imread('tests/files/demo.nii') peaks = toolbox.significant_peaks(example, use_gpu=False) centroid = toolbox.centroid_correction(example, peaks, use_gpu=False) direction = toolbox.direction(peaks, centroid, use_gpu=False) unit_x, unit_y = toolbox.unit_vectors(direction, use_gpu=False) visualization.unit_vectors(unit_x, unit_y, thinout=10) plt.savefig('tests/output/vis/unit_vectors.tiff', dpi=100, bbox_inches='tight') orig = io.imread('tests/files/vis/unit_vectors.tiff') to_compare = io.imread('tests/output/vis/unit_vectors.tiff') if numpy.all(numpy.isclose(orig - to_compare, 0)): assert True else: io.imwrite('tests/output/vis/unit_vectors-diff.tiff', orig - to_compare) assert False def test_visualize_unit_vector_distribution(self): example = io.imread('tests/files/demo.nii') peaks = toolbox.significant_peaks(example, use_gpu=False) centroid = toolbox.centroid_correction(example, peaks, use_gpu=False) direction = toolbox.direction(peaks, centroid, use_gpu=False) unit_x, unit_y = toolbox.unit_vectors(direction, use_gpu=False) visualization.unit_vector_distribution(unit_x, unit_y, thinout=15, vector_width=5, alpha=0.01) plt.savefig('tests/output/vis/unit_vector_distribution.tiff', dpi=100, bbox_inches='tight') orig = io.imread('tests/files/vis/unit_vector_distribution.tiff') to_compare = io.imread('tests/output/vis/unit_vector_distribution.tiff') if numpy.all(numpy.isclose(orig - to_compare, 0)): assert True else: io.imwrite('tests/output/vis/unit_vector_distribution-diff.tiff', orig - to_compare) assert False def test_visualize_parameter_map(self): example = io.imread('tests/files/demo.nii') prominence = toolbox.mean_peak_prominence(example, kind_of_normalization=1, use_gpu=False) visualization.parameter_map(prominence, colorbar=False) plt.savefig('tests/output/vis/parameter_map.tiff', dpi=100, bbox_inches='tight') orig = io.imread('tests/files/vis/parameter_map.tiff') to_compare = io.imread('tests/output/vis/parameter_map.tiff') assert numpy.all(numpy.isclose(orig - to_compare, 0)) def test_visualize_direction_one_dir(self): image = numpy.arange(0, 180) hsv_image = visualization.direction(image) assert numpy.all(hsv_image[0, :] == [1, 0, 0]) assert numpy.all(hsv_image[30, :] == [1, 1, 0]) assert numpy.all(hsv_image[60, :] == [0, 1, 0]) assert numpy.all(hsv_image[90, :] == [0, 1, 1]) assert numpy.all(hsv_image[120, :] == [0, 0, 1]) assert numpy.all(hsv_image[150, :] == [1, 0, 1]) def test_visualize_direction_multiple_dir(self): first_dir = numpy.arange(0, 180)[..., numpy.newaxis, numpy.newaxis] second_dir = (first_dir + 30) % 180 second_dir[0:45] = -1 third_dir = (first_dir + 60) % 180 third_dir[0:90] = -1 fourth_dir = (first_dir + 90) % 180 fourth_dir[0:135] = -1 stack_direction = numpy.concatenate((first_dir, second_dir, third_dir, fourth_dir), axis=-1) hsv_image = visualization.direction(stack_direction) print(hsv_image) # Check first direction assert numpy.all(hsv_image[0, 0, :] == [1, 0, 0]) assert numpy.all(hsv_image[1, 1, :] == [1, 0, 0]) assert numpy.all(hsv_image[0, 1, :] == [1, 0, 0]) assert numpy.all(hsv_image[1, 0, :] == [1, 0, 0]) assert numpy.all(hsv_image[60, 0, :] == [1, 1, 0]) assert numpy.all(hsv_image[61, 1, :] == [1, 1, 0]) assert
numpy.all(hsv_image[60, 1, :] == [1, 1, 0])
numpy.all
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import numpy as np from oneflow.compatible import single_client as flow from oneflow.compatible.single_client import typing as oft # @flow.unittest.skip_unless_1n2d() # TODO(zhangwenxiao, jiangxuefei): refine in multi-client @unittest.skipIf(True, "skip for now because of single-client tensor_list removed") class TestDynamicReshape(flow.unittest.TestCase): def test_dynamic_reshape(test_case): data_shape = (10, 10, 10) flow.config.gpu_device_num(2) func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) func_config.default_logical_view(flow.scope.mirrored_view()) @flow.global_function(type="train", function_config=func_config) def DynamicReshapeJob(x: oft.ListNumpy.Placeholder(data_shape)): reshape_out1 = flow.reshape(x, (-1, 20)) my_model = flow.get_variable( "my_model", shape=(20, 32), dtype=flow.float, initializer=flow.random_uniform_initializer(minval=-10, maxval=10), trainable=True, ) my_model = flow.cast_to_current_logical_view(my_model) mm_out = flow.matmul(reshape_out1, my_model) reshape_out2 = flow.reshape(mm_out, (-1, 8, 4)) flow.optimizer.SGD( flow.optimizer.PiecewiseConstantScheduler([], [1e-4]), momentum=0 ).minimize(reshape_out2) return reshape_out1 data = [
np.random.rand(*data_shape)
numpy.random.rand
import os, time, sys, platform import numpy as np import array, random import glob from scipy.io import wavfile dataset_link = "https://storage.cloud.google.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz" filedir = "D:\\speech_commands_v0.01/" if platform.system().lower() != "windows": filedir = "/usr/local/speech_commands_v0.01/" commands = ['yes', 'no', 'up', 'down', 'left', 'right', 'on', 'off', 'stop', 'go'] for command in commands: if (os.path.exists(filedir + command)): continue print("Please download the speech commands dataset from " + dataset_link + " and extract it into " + filedir) os._exit(0) random.seed(2) X_SIZE = 16000 train_in_bytes = bytearray() train_in_head = np.zeros(8).astype('int32') train_in_head[1:4] = [X_SIZE, 1, 1] train_in_bytes += train_in_head.tobytes() train_out_bytes = bytearray() train_out_head = np.zeros(8).astype('int32') train_out_head[1:4] = [1, 1, 1] train_out_bytes += train_out_head.tobytes() test_in_bytes = bytearray() test_in_bytes += train_in_head.tobytes() test_out_bytes = bytearray() test_out_bytes += train_out_head.tobytes() Y =
np.array([0])
numpy.array
#!/usr/bin/env python u""" fit.py Written by <NAME> (05/2021) Utilities for calculating average fits from ATL03 Geolocated Photon Data PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html scipy: Scientific Tools for Python https://docs.scipy.org/doc/ scikit-learn: Machine Learning in Python http://scikit-learn.org/stable/index.html https://github.com/scikit-learn/scikit-learn UPDATE HISTORY: Written 05/2021 """ import operator import itertools import numpy as np import scipy.stats import scipy.signal import scipy.optimize import sklearn.neighbors # PURPOSE: compress complete list of valid indices into a set of ranges def compress_list(i,n): """ Compress complete list of valid indices into a set of ranges Arguments --------- i: indices to compress n: largest gap between indices to accept for range """ for a,b in itertools.groupby(enumerate(i), lambda v: ((v[1]-v[0])//n)*n): group = list(map(operator.itemgetter(1),b)) yield (group[0], group[-1]) # PURPOSE: centers the transmit-echo-path histogram reported by ATL03 # using an iterative edit to distinguish between signal and noise def extract_tep_histogram(tep_hist_time,tep_hist,tep_range_prim): """ Centers the transmit-echo-path histogram reported by ATL03 using an iterative edit to distinguish between signal and noise """ # ATL03 recommends subset between 15-30 ns to avoid secondary # using primary histogram range values from ATL03 tep attributes i, = np.nonzero((tep_hist_time >= tep_range_prim[0]) & (tep_hist_time < tep_range_prim[1])) t_tx = np.copy(tep_hist_time[i]) n_tx = len(t_tx) # noise samples of tep_hist (first 5ns and last 10 ns) ns,ne = (tep_range_prim[0]+5e-9,tep_range_prim[1]-10e-9) noise, = np.nonzero((t_tx <= ns) | (t_tx >= ne)) noise_p1 = [] # signal samples of tep_hist signal = sorted(set(np.arange(n_tx)) - set(noise)) # number of iterations n_iter = 0 while (set(noise) != set(noise_p1)) & (n_iter < 10): # value of noise in tep histogram tep_noise_value = np.sqrt(np.sum(tep_hist[i][noise]**2)/n_tx) p_tx = np.abs(np.copy(tep_hist[i]) - tep_noise_value) # calculate centroid of tep_hist t0_tx = np.sum(t_tx[signal]*p_tx[signal])/np.sum(p_tx[signal]) # calculate cumulative distribution function TX_cpdf = np.cumsum(p_tx[signal]/np.sum(p_tx[signal])) # linearly interpolate to 16th and 84th percentile for RDE TX16,TX84 = np.interp([0.16,0.84],TX_cpdf,t_tx[signal]-t0_tx) # calculate width of transmitted pulse (RDE) W_TX = 0.5*(TX84 - TX16) # recalculate noise noise_p1 = np.copy(noise) ns,ne = (t0_tx-6.0*W_TX,t0_tx+6.0*W_TX) noise, = np.nonzero((t_tx <= ns) | (t_tx >= ne)) signal = sorted(set(np.arange(n_tx)) - set(noise)) # add 1 to counter n_iter += 1 # valid primary TEP return has full-width at half max < 3 ns mx = np.argmax(p_tx[signal]) halfmax = np.max(p_tx[signal])/2.0 H1 = np.interp(halfmax,p_tx[signal][:mx],t_tx[signal][:mx]) H2 = np.interp(halfmax,p_tx[signal][:mx:-1],t_tx[signal][:mx:-1]) FWHM = H2 - H1 # return values return (t_tx[signal]-t0_tx,p_tx[signal],W_TX,FWHM,ns,ne) # PURPOSE: calculate the interquartile range (Pritchard et al, 2009) and # robust dispersion estimator (Smith et al, 2017) of the model residuals def filter_elevation(r0): """ Calculates the interquartile range (Pritchard et al, 2009) and robust dispersion estimator (Smith et al, 2017) of the model residuals Arguments --------- r0: height residuals """ # calculate percentiles for IQR and RDE # IQR: first and third quartiles (25th and 75th percentiles) # RDE: 16th and 84th percentiles # median: 50th percentile Q1,Q3,P16,P84,MEDIAN = np.percentile(r0,[25,75,16,84,50]) # calculate interquartile range IQR = Q3 - Q1 # calculate robust dispersion estimator (RDE) RDE = P84 - P16 # IQR pass: residual-(median value) is within 75% of IQR # RDE pass: residual-(median value) is within 50% of P84-P16 return (0.75*IQR,0.5*RDE,MEDIAN) # PURPOSE: try fitting a surface to the signal photons with progressively # less confidence if no valid surface is found def try_surface_fit(x, y, z, confidence_mask, dist_along, SURF_TYPE='linear', ITERATE=25, CONFIDENCE=[4,3,2,1,0]): """ Try fitting a surface to the signal photons with progressively less confidence if no valid surface is found """ # try with progressively less confidence for i,conf in enumerate(CONFIDENCE): ind, = np.nonzero(confidence_mask >= conf) centroid = dict(x=dist_along, y=np.mean(y[ind])) try: surf = reduce_surface_fit(x[ind], y[ind], z[ind], centroid, ind, SURF_TYPE=SURF_TYPE, ITERATE=ITERATE) except (ValueError, np.linalg.linalg.LinAlgError): pass else: return (i+1,surf,centroid) # if still no values found: return infinite values # will need to attempt a backup algorithm surf = dict(error=np.full(1,np.inf)) centroid = None return (None,surf,centroid) # PURPOSE: iteratively fit a polynomial surface to the elevation data to # reduce to within a valid window def reduce_surface_fit(x, y, z, centroid, ind, SURF_TYPE='linear', ITERATE=25): """ Iteratively fit a polynomial surface to the elevation data to reduce to within a valid surface window """ # calculate x and y relative to centroid point rel_x = x - centroid['x'] # Constant Term Z0 = np.ones_like((z)) if (SURF_TYPE == 'linear'):# linear fit SURFMAT = np.transpose([Z0,rel_x]) elif (SURF_TYPE == 'quadratic'):# quadratic fit SURFMAT = np.transpose([Z0,rel_x,rel_x**2]) # number of points for fit and number of terms in fit n_max,n_terms = np.shape(SURFMAT) # run only if number of points is above number of terms FLAG1 = ((n_max - n_terms) > 10) # maximum allowable window size H_win_max = 20.0 # minimum allowable window size H_win_min = 3.0 # set initial window to the full z range window = z.max() - z.min() window_p1 = np.copy(window) # initial indices for reducing to window filt = np.arange(n_max) filt_p1 = np.copy(filt) filt_p2 = np.copy(filt_p1) if FLAG1: # save initial indices for fitting all photons for confidence level indices = ind.copy() # run fit program for polynomial type fit = fit_surface(x, y, z, centroid, SURF_TYPE=SURF_TYPE) # number of iterations performed n_iter = 1 # save beta coefficients beta_mat = np.copy(fit['beta']) error_mat = np.copy(fit['error']) # residuals of model fit resid = z - np.dot(SURFMAT,beta_mat) # standard deviation of the residuals resid_std = np.std(resid) # save MSE and DOF for error analysis MSE = np.copy(fit['MSE']) DOF = np.copy(fit['DOF']) # Root mean square error RMSE = np.sqrt(fit['MSE']) # Normalized root mean square error NRMSE = RMSE/(np.max(z)-np.min(z)) # IQR pass: residual-(median value) is within 75% of IQR # RDE pass: residual-(median value) is within 50% of P84-P16 IQR,RDE,MEDIAN = filter_elevation(resid) # checking if any residuals are outside of the window window = np.max([H_win_min,6.0*RDE,0.5*window_p1]) filt, = np.nonzero(np.abs(resid-MEDIAN) <= (window/2.0)) # save iteration of window window_p1 = np.copy(window) # run only if number of points is above number of terms n_rem = np.count_nonzero(np.abs(resid-MEDIAN) <= (window/2.0)) FLAG1 = ((n_rem - n_terms) > 10) # maximum number of iterations to prevent infinite loops FLAG2 = (n_iter <= ITERATE) # compare indices over two iterations to prevent false stoppages FLAG3 = (set(filt) != set(filt_p1)) | (set(filt_p1) != set(filt_p2)) # iterate until there are no additional removed photons while FLAG1 & FLAG2 & FLAG3: # fit selected photons for window x_filt,y_filt,z_filt,indices = (x[filt],y[filt],z[filt],ind[filt]) # run fit program for polynomial type fit = fit_surface(x_filt,y_filt,z_filt,centroid,SURF_TYPE=SURF_TYPE) # add to number of iterations performed n_iter += 1 # save model coefficients beta_mat = np.copy(fit['beta']) error_mat = np.copy(fit['error']) # save MSE and DOF for error analysis MSE = np.copy(fit['MSE']) DOF = np.copy(fit['DOF']) # Root mean square error RMSE = np.sqrt(fit['MSE']) # Normalized root mean square error NRMSE = RMSE/(np.max(z_filt)-np.min(z_filt)) # save number of points n_max = len(z_filt) # residuals of model fit resid = z - np.dot(SURFMAT,beta_mat) # standard deviation of the residuals resid_std = np.std(resid) # IQR pass: residual-(median value) is within 75% of IQR # RDE pass: residual-(median value) is within 50% of P84-P16 IQR,RDE,MEDIAN = filter_elevation(resid) # checking if any residuals are outside of the window window = np.max([H_win_min,6.0*RDE,0.5*window_p1]) # filter out using median statistics and refit filt_p2 = np.copy(filt_p1) filt_p1 = np.copy(filt) filt, = np.nonzero(np.abs(resid-MEDIAN) <= (window/2.0)) # save iteration of window window_p1 = np.copy(window) # run only if number of points is above number of terms n_rem = np.count_nonzero(np.abs(resid-MEDIAN) <= (window/2.0)) FLAG1 = ((n_rem - n_terms) > 10) # maximum number of iterations to prevent infinite loops FLAG2 = (n_iter <= ITERATE) # compare indices over two iterations to prevent false stoppages FLAG3 = (set(filt) != set(filt_p1)) | (set(filt_p1) != set(filt_p2)) # return reduced model fit FLAG3 = (set(filt) == set(filt_p1)) if FLAG1 & FLAG3 & (window <= H_win_max): return {'beta':beta_mat, 'error':error_mat, 'MSE':MSE, 'NRMSE':NRMSE, 'DOF':DOF, 'count':n_max, 'indices':indices, 'iterations':n_iter, 'window':window, 'RDE':RDE} else: raise ValueError('No valid data points found') # PURPOSE: fit a polynomial surface to the elevation data def fit_surface(x, y, z, centroid, SURF_TYPE='linear'): """ Fit a polynomial surface to the elevation data """ # calculate x and y relative to centroid point rel_x = x - centroid['x'] # Constant Term Z0 = np.ones_like((z)) # Surface design matrix if (SURF_TYPE == 'linear'):# linear fit SURFMAT = np.transpose([Z0,rel_x]) elif (SURF_TYPE == 'quadratic'):# quadratic fit SURFMAT = np.transpose([Z0,rel_x,rel_x**2]) # number of points for fit and number of terms in fit n_max,n_terms = np.shape(SURFMAT) # Standard Least-Squares fitting (the [0] denotes coefficients output) beta_mat = np.linalg.lstsq(SURFMAT,z,rcond=-1)[0] # modelled surface elevation model = np.dot(SURFMAT,beta_mat) # residual of fit res = z - model # nu = Degrees of Freedom = number of measurements-number of parameters nu = n_max - n_terms # Mean square error # MSE = (1/nu)*sum((Y-X*B)**2) MSE = np.dot(np.transpose(z - model),(z - model))/nu # elevation surface error analysis Hinv = np.linalg.inv(np.dot(np.transpose(SURFMAT),SURFMAT)) # Taking the diagonal components of the cov matrix hdiag = np.diag(Hinv) # Default is 95% confidence interval alpha = 1.0 - (0.95) # Student T-Distribution with D.O.F. nu # t.ppf parallels tinv in matlab tstar = scipy.stats.t.ppf(1.0-(alpha/2.0),nu) # beta_err = t(nu,1-alpha/2)*standard error std_error = np.sqrt(MSE*hdiag) model_error = np.dot(SURFMAT,tstar*std_error) return {'beta':beta_mat, 'error':tstar*std_error, 'model':model, 'model_error': model_error, 'residuals':res, 'MSE':MSE, 'DOF':nu} # PURPOSE: try fitting a function to the signal photon histograms # with progressively less confidence if no valid fit is found def try_histogram_fit(x, y, z, confidence_mask, dist_along, dt, FIT_TYPE='gaussian', ITERATE=25, BACKGROUND=0, CONFIDENCE=[2,1,0]): """ Try fitting a function to the signal photon histograms with progressively less confidence if no valid fit is found """ # try with progressively less confidence for i,conf in enumerate(CONFIDENCE): ind, = np.nonzero(confidence_mask >= conf) centroid = dict(x=dist_along, y=np.mean(y[ind])) try: surf = reduce_histogram_fit(x[ind], y[ind], z[ind], ind, dt, FIT_TYPE=FIT_TYPE, ITERATE=ITERATE, PEAKS=2, BACKGROUND=BACKGROUND) except (ValueError, RuntimeError, SyntaxError): pass else: return (i+1,surf,centroid) # if still no values found: return infinite values # will need to attempt a backup algorithm surf = dict(error=np.full(1,np.inf)) centroid = None return (None,surf,centroid) # PURPOSE: iteratively use decomposition fitting to the elevation data to # reduce to within a valid window def reduce_histogram_fit(x, y, z, ind, dt, FIT_TYPE='gaussian', ITERATE=25, PEAKS=2, BACKGROUND=0): """ Iteratively use decomposition fitting to the elevation data to reduce to within a valid surface window """ # speed of light c = 299792458.0 # use same delta time as calculating first photon bias # so that the residuals will be the same dz = dt*c # number of background photons in each bin N_BG = dz*BACKGROUND # create a histogram of the heights zmin,zmax = (z.min(),z.max()) z_full = np.arange(zmin,zmax+dz,dz) nz = len(z_full) # maximum allowable window size H_win_max = 20.0 # minimum allowable window size H_win_min = 3.0 # set initial window to the full z range window = zmax - zmin window_p1 = np.copy(window) # number of data points n_max = len(z) # number of terms in fit if (FIT_TYPE == 'gaussian'):# gaussian fit n_terms = 3 elif (FIT_TYPE == 'general'):# generalized gaussian fit n_terms = 4 # run only if number of histogram points is above number of terms FLAG1 = ((nz - n_terms) > 10) # using kernel density functions from scikit-learn neighbors # gaussian kernels will reflect more accurate distributions of the data # with less sensitivity to sampling width than histograms (tophat kernels) kde = sklearn.neighbors.KernelDensity(bandwidth=dz,kernel='gaussian') kde.fit(z[:,None]) # kde score_samples outputs are normalized log density functions hist = np.exp(kde.score_samples(z_full[:,None]) + np.log(n_max*dz)) # smooth histogram before determining differentials gw = scipy.signal.gaussian(nz,4) hist_smooth = scipy.signal.convolve(hist, gw/gw.sum(), mode='same') # First differentials to find zero crossings # histogram 1st differential dhist = np.zeros((nz)) # forward differentiation for starting point dhist[0] = hist_smooth[1] - hist_smooth[0] # backward differentiation for end point dhist[-1] = hist_smooth[-1] - hist_smooth[-2] # centered differentiation for all others dhist[1:-1] = (hist_smooth[2:] - hist_smooth[0:-2])/2.0 # find positive peaks above amplitude threshold (percent of max) # by calculating the histogram differentials # signal amplitude threshold greater than 10% of max or 5.5xbackground rate AmpThreshold = 0.10 HistThreshold = np.max([5.5*N_BG, AmpThreshold*np.max(hist_smooth)]) n_peaks = np.count_nonzero((np.sign(dhist[0:-1]) >= 0) & (np.sign(dhist[1:]) < 0) & ((hist_smooth[0:-1] > HistThreshold) | (hist_smooth[1:] > HistThreshold))) n_peaks = np.min([n_peaks,PEAKS]) peak_index, = np.nonzero((np.sign(dhist[0:-1]) >= 0) & (np.sign(dhist[1:]) < 0) & ((hist_smooth[0:-1] > HistThreshold) | (hist_smooth[1:] > HistThreshold))) # initial indices for reducing to window filt = np.arange(n_max) filt_p1 = np.copy(filt) filt_p2 = np.copy(filt_p1) if FLAG1 and (n_peaks > 0): # save initial indices for fitting all photons for confidence level indices = ind.copy() # sort peak index by amplitude of peaks (descending from max to min) # and truncate to a finite number of peaks sorted_peaks = np.argsort(hist[peak_index])[::-1] peak_index = peak_index[sorted_peaks][:n_peaks] # amplitude of the maximum peak max_amp = hist[peak_index][0] # cumulative probability distribution function of initial histogram hist_cpdf = np.cumsum(hist/np.sum(hist)) # IQR: first and third quartiles (25th and 75th percentiles) # RDE: 16th and 84th percentiles Q1,Q3,P16,P84 = np.interp([0.25,0.75,0.16,0.84],hist_cpdf,z_full) # create priors list priors = [] lower_bound = [] upper_bound = [] for i,p in enumerate(peak_index): if (FIT_TYPE == 'gaussian'): # Fit Gaussian functions to photon event histogram # a*: amplitude of waveform # r*: range from differential index # w*: width as 0.75*IQR priors.append([hist[p],z_full[p],0.75*(Q3-Q1)]) # bounds of each parameter # amplitude: 0 to histogram max+5.5xbackground rate # range: zmin to zmax # width: sz to half width of z lower_bound.extend([0,zmin,dz]) upper_bound.extend([max_amp+5.5*N_BG,zmax,(zmax-zmin)/2.0]) elif (FIT_TYPE == 'general'): # Fit Generalized Gaussian functions to photon event histogram # a*: amplitude of waveform # r*: range from differential index # w*: width as 0.75*IQR # p*: shape parameter = gaussian sqrt(2) priors.append([hist[p],z_full[p],0.75*(Q3-Q1),np.sqrt(2)]) # bounds of each parameter # amplitude: 0 to histogram max+5.5xbackground rate # range: zmin to zmax # width: sz to half width of z # shape: positive lower_bound.extend([0,zmin,dz,0]) upper_bound.extend([max_amp+5.5*N_BG,zmax,(zmax-zmin)/2.0,np.inf]) # run optimized curve fit with Levenberg-Marquardt algorithm fit = fit_histogram(z_full,hist,priors,lower_bound,upper_bound, FIT_TYPE=FIT_TYPE) # number of iterations performed n_iter = 1 # height fits and height fit errors height = fit['height'].copy() amplitude = fit['amplitude'].copy() height_errors = fit['error'].copy() # minimum and maximum heights min_peak = np.min(fit['height']) max_peak = np.max(fit['height']) # save MSE and DOF for error analysis MSE = np.copy(fit['MSE']) DOF = np.copy(fit['DOF']) # Root mean square error RMSE = np.sqrt(fit['MSE']) # Normalized root mean square error NRMSE = RMSE/(zmax-zmin) # histogram fit model = np.copy(fit['model']) # histogram fit residuals resid = np.copy(fit['residuals']) # cumulative probability distribution function of initial histogram cpdf = np.cumsum(fit['residuals']/np.sum(fit['residuals'])) # interpolate residuals to percentiles of interest for statistics Q1,Q3,MEDIAN,P16,P84 = np.interp([0.25,0.75,0.5,0.16,0.84],cpdf,z_full) # IQR: first and third quartiles (25th and 75th percentiles) # RDE: 16th and 84th percentiles IQR = 0.75*(Q3-Q1) RDE = 0.50*(P84-P16) # checking if any residuals are outside of the window window = np.max([H_win_min,6.0*RDE,0.5*window_p1]) filt, = np.nonzero((z > (min_peak-window/2.0)) & (z < (max_peak+window/2.0))) # run only if number of points is above number of terms n_rem = np.count_nonzero((z > (min_peak-window/2.0)) & (z < (max_peak+window/2.0))) nz = (np.max(z[filt])-np.min(z[filt]))//dz + 1 FLAG1 = ((nz - n_terms) > 10) & ((n_rem - n_terms) > 10) # maximum number of iterations to prevent infinite loops FLAG2 = (n_iter <= ITERATE) # compare indices over two iterations to prevent false stoppages FLAG3 = (set(filt) != set(filt_p1)) | (set(filt_p1) != set(filt_p2)) # iterate until there are no additional removed photons while FLAG1 & FLAG2 & FLAG3: # fit selected photons for window x_filt,y_filt,z_filt,indices = (x[filt],y[filt],z[filt],ind[filt]) zmin,zmax = (z_filt.min(),z_filt.max()) z_full = np.arange(zmin,zmax+dz,dz) nz = len(z_full) # using kernel density functions from scikit-learn neighbors # gaussian kernels will reflect more accurate distributions of the data # with less sensitivity to sampling width than histograms (tophat kernels) kde = sklearn.neighbors.KernelDensity(bandwidth=dz,kernel='gaussian') kde.fit(z_filt[:,None]) # kde score_samples outputs are normalized log density functions hist = np.exp(kde.score_samples(z_full[:,None]) + np.log(nz*dz)) # smooth histogram before determining differentials gw = scipy.signal.gaussian(nz,4) hist_smooth = scipy.signal.convolve(hist, gw/gw.sum(), mode='same') # First differentials to find zero crossings # histogram 1st differential dhist = np.zeros((nz)) # forward differentiation for starting point dhist[0] = hist_smooth[1] - hist_smooth[0] # backward differentiation for end point dhist[-1] = hist_smooth[-1] - hist_smooth[-2] # centered differentiation for all others dhist[1:-1] = (hist_smooth[2:] - hist_smooth[0:-2])/2.0 # find positive peaks above amplitude threshold (percent of max) # by calculating the histogram differentials # signal amplitude threshold greater than 10% of max or 5.5xbackground rate HistThreshold = np.max([5.5*N_BG, AmpThreshold*np.max(hist_smooth)]) n_peaks = np.count_nonzero((np.sign(dhist[0:-1]) >= 0) & (np.sign(dhist[1:]) < 0) & ((hist_smooth[0:-1] > HistThreshold) | (hist_smooth[1:] > HistThreshold))) n_peaks = np.min([n_peaks,PEAKS]) peak_index, = np.nonzero((np.sign(dhist[0:-1]) >= 0) & (np.sign(dhist[1:]) < 0) & ((hist_smooth[0:-1] > HistThreshold) | (hist_smooth[1:] > HistThreshold))) # sort peak index by amplitude of peaks (descending from max to min) # and truncate to a finite number of peaks sorted_peaks = np.argsort(hist[peak_index])[::-1] peak_index = peak_index[sorted_peaks][:n_peaks] # amplitude of the maximum peak max_amp = hist[peak_index][0] # cumulative probability distribution function of initial histogram hist_cpdf = np.cumsum(hist/np.sum(hist)) # IQR: first and third quartiles (25th and 75th percentiles) # RDE: 16th and 84th percentiles Q1,Q3,P16,P84 = np.interp([0.25,0.75,0.16,0.84],hist_cpdf,z_full) # create priors list priors = [] lower_bound = [] upper_bound = [] for i,p in enumerate(peak_index): if (FIT_TYPE == 'gaussian'): # Fit Gaussian functions to photon event histogram # a*: amplitude of waveform # r*: range from differential index # w*: width as 0.75*IQR priors.append([hist[p],z_full[p],0.75*(Q3-Q1)]) # bounds of each parameter # amplitude: 0 to histogram max+5.5xbackground rate # range: zmin to zmax # width: sz to half width of z lower_bound.extend([0,zmin,dz]) upper_bound.extend([max_amp+5.5*N_BG,zmax,(zmax-zmin)/2.0]) elif (FIT_TYPE == 'general'): # Fit Generalized Gaussian functions to photon event histogram # a*: amplitude of waveform # r*: range from differential index # w*: width as 0.75*IQR # p*: shape parameter = gaussian sqrt(2) priors.append([hist[p],z_full[p],0.75*(Q3-Q1),np.sqrt(2)]) # bounds of each parameter # amplitude: 0 to histogram max+5.5xbackground rate # range: zmin to zmax # width: sz to half width of z # shape: positive lower_bound.extend([0,zmin,dz,0]) upper_bound.extend([max_amp+5.5*N_BG,zmax,(zmax-zmin)/2.0,np.inf]) # run optimized curve fit with Levenberg-Marquardt algorithm fit = fit_histogram(z_full,hist,priors,lower_bound,upper_bound, FIT_TYPE=FIT_TYPE) # add to number of iterations performed n_iter += 1 # height fits and height fit errors height = fit['height'].copy() amplitude = fit['amplitude'].copy() height_errors = fit['error'].copy() # minimum and maximum heights min_peak = np.min(fit['height']) max_peak = np.max(fit['height']) # save MSE and DOF for error analysis MSE = np.copy(fit['MSE']) DOF = np.copy(fit['DOF']) # Root mean square error RMSE = np.sqrt(fit['MSE']) # Normalized root mean square error NRMSE = RMSE/(zmax-zmin) # histogram fit model = np.copy(fit['model']) # histogram fit residuals resid = np.copy(fit['residuals']) # cumulative probability distribution function of initial histogram cpdf = np.cumsum(resid/np.sum(resid)) # interpolate residuals to percentiles of interest for statistics Q1,Q3,MEDIAN,P16,P84 = np.interp([0.25,0.75,0.5,0.16,0.84],cpdf,z_full) # IQR: first and third quartiles (25th and 75th percentiles) # RDE: 16th and 84th percentiles IQR = 0.75*(Q3-Q1) RDE = 0.50*(P84-P16) # checking if any residuals are outside of the window window = np.max([H_win_min,6.0*RDE,0.5*window_p1]) # filter out using median statistics and refit filt_p2 = np.copy(filt_p1) filt_p1 = np.copy(filt) filt, = np.nonzero((z > (min_peak-window/2.0)) & (z < (max_peak+window/2.0))) # save iteration of window window_p1 = np.copy(window) # run only if number of points is above number of terms n_rem = np.count_nonzero((z > (min_peak-window/2.0)) & (z < (max_peak+window/2.0))) nz = (np.max(z[filt])-np.min(z[filt]))//dz + 1 FLAG1 = ((nz - n_terms) > 10) & ((n_rem - n_terms) > 10) # maximum number of iterations to prevent infinite loops FLAG2 = (n_iter <= ITERATE) # compare indices over two iterations to prevent false stoppages FLAG3 = (set(filt) != set(filt_p1)) | (set(filt_p1) != set(filt_p2)) # return reduced model fit FLAG3 = (set(filt) == set(filt_p1)) if FLAG1 & FLAG3 & (window <= H_win_max) & (n_peaks > 0): # calculate time with respect to mean of fit heights t_full = -2*(z_full-np.mean(height))/c # return values return {'height':height, 'error':height_errors, 'amplitude':amplitude, 'MSE':MSE, 'NRMSE':NRMSE, 'residuals':resid, 'time': t_full, 'model':model, 'DOF':DOF, 'count':n_max, 'indices':indices, 'iterations':n_iter, 'window':window, 'RDE':RDE, 'peaks':n_peaks} else: raise ValueError('No valid fit found') # PURPOSE: optimially fit a function to the photon event histogram # with Levenberg-Marquardt algorithm def fit_histogram(z, hist, priors, lower_bound, upper_bound, FIT_TYPE=None): """ Optimially fit a function to the photon event histogram with Levenberg-Marquardt algorithm """ # create lists for the initial parameters # parameters, and functions for each maximum plist = [] flist = [] n_peaks = len(priors) # function formatting string and parameter list for each fit type if (FIT_TYPE == 'gaussian'): # summation of gaussian functions with: # peak amplitudes a* # peak ranges r* (mean) # peak widths w* (standard deviation) # Gaussian function formatting string and parameters function = 'a{0:d}*np.exp(-(x-r{0:d})**2.0/(2*w{0:d}**2))' parameters = 'a{0:d}, r{0:d}, w{0:d}' elif (FIT_TYPE == 'general'): # summation of generalized gaussian functions with: # peak amplitudes a* # peak ranges r* (mean) # peak widths w* (standard deviation) # shape parameter p* (gaussian=sqrt(2)) # Generalized Gaussian function formatting string and parameters function = 'a{0:d}*np.exp(-np.abs(x-r{0:d})**(p{0:d}**2.0)/(2*w{0:d}**2))' parameters = 'a{0:d}, r{0:d}, w{0:d}, p{0:d}' # fit decomposition functions to photon event histograms for n,p in enumerate(priors): # parameter list for peak n plist.append(parameters.format(n)) # function definition list for peak n flist.append(function.format(n)) # initial parameters for iteration n p0 = np.concatenate((priors),axis=0) # variables for iteration n lambda_parameters = ', '.join([p for p in plist]) # full function for iteration n lambda_function = ' + '.join([f for f in flist]) # tuple for parameter bounds (lower and upper) bounds = (lower_bound, upper_bound) # create lambda function for iteration n # lambda functions are inline definitions # with the parameters, variables and function definition fsum = eval('lambda x, {0}: {1}'.format(lambda_parameters, lambda_function)) # optimized curve fit with Levenberg-Marquardt algorithm # with the initial guess parameters p0 and parameter bounds popt, pcov = scipy.optimize.curve_fit(fsum,z,hist,p0=p0,bounds=bounds) # modelled histogram fit model = fsum(z, *popt) # 1 standard deviation errors in parameters perr = np.sqrt(np.diag(pcov)) # number of points for fit and number of terms in fit n_max = len(hist) n_terms = len(p0) # extract function outputs if (FIT_TYPE == 'gaussian'): # Gaussian function outputs n = np.arange(n_peaks)*3 peak_amplitude = popt[n] peak_height = popt[n+1] peak_height_error = perr[n+1] peak_stdev = popt[n+2] elif (FIT_TYPE == 'general'): # Generalized Gaussian function outputs n = np.arange(n_peaks)*4 peak_amplitude = popt[n] peak_height = popt[n+1] peak_height_error = perr[n+1] peak_stdev = popt[n+2] # residual of fit res = hist - model # nu = Degrees of Freedom = number of measurements-number of parameters nu = n_max - n_terms # Mean square error # MSE = (1/nu)*sum((Y-X*B)**2) MSE = np.dot(np.transpose(hist - model),(hist - model))/nu # Default is 95% confidence interval alpha = 1.0 - (0.95) # Student T-Distribution with D.O.F. nu # t.ppf parallels tinv in matlab tstar = scipy.stats.t.ppf(1.0-(alpha/2.0),nu) return {'height':peak_height, 'amplitude':peak_amplitude, 'error':tstar*peak_height_error, 'stdev': peak_stdev, 'model':model, 'residuals':np.abs(res), 'MSE':MSE, 'DOF':nu} # PURPOSE: calculate delta_time, latitude and longitude of the segment center def fit_geolocation(var, distance_along_X, X_atc): """ Calculate the average of photon event variables by fitting with respect to the center of the along-track coordinates """ # calculate x relative to centroid point rel_x = distance_along_X - X_atc # design matrix XMAT = np.transpose([np.ones_like((distance_along_X)),rel_x]) # Standard Least-Squares fitting (the [0] denotes coefficients output) beta_mat = np.linalg.lstsq(XMAT,var,rcond=-1)[0] # return the fitted geolocation return beta_mat[0] # PURPOSE: calculate the average value from two segments def segment_mean(var, **kwargs): """ Calculate the average value from two segments with possible invalid values """ # verify that data is masked array if not isinstance(var, np.ma.MaskedArray): var = np.ma.array(var) # set default keyword arguments kwargs.setdefault('fill_value',var.fill_value) # verify mask is set for fill values or nan points var.mask = ((var.data == var.fill_value) | np.isnan(var.data)) # update and replace fill values var.data[var.mask] = var.fill_value # calculate segment means ave = np.ma.mean([var[0:-1],var[1:]],axis=0) # update and replace fill values ave.fill_value = kwargs['fill_value'] ave.data[ave.mask] = ave.fill_value return ave # PURPOSE: estimate mean and median first photon bias corrections def calc_first_photon_bias(temporal_residuals,n_pulses,n_pixels,dead_time,dt, METHOD='direct',ITERATE=20): """ Estimate mean and median first photon bias corrections """ # create a histogram of the temporal residuals t_full = np.arange(temporal_residuals.min(),temporal_residuals.max()+dt,dt) nt = len(t_full) # number of input photon events cnt = len(temporal_residuals) # using kernel density functions from scikit-learn neighbors # gaussian kernels will reflect more accurate distributions of the data # with less sensitivity to sampling width than histograms (tophat kernels) kde = sklearn.neighbors.KernelDensity(bandwidth=dt,kernel='gaussian') kde.fit(temporal_residuals[:,None]) # kde score_samples outputs are normalized log density functions hist = np.exp(kde.score_samples(t_full[:,None]) + np.log(cnt*dt)) N0_full = hist/(n_pulses*n_pixels) # centroid of initial histogram hist_centroid = np.sum(t_full*hist)/
np.sum(hist)
numpy.sum
''' Spatial pyramid kernel implementation with Python. Automates the process of reading the data and executes the SVM with the specified kernel parameters through the terminal. __authors__ = <NAME>, <NAME> and <NAME> ''' ##################################################################################################### # IMPORTING LIBRARIES ##################################################################################################### import argparse import numpy as np import pandas as pd from time import time from functools import wraps from collections import Counter from sklearn import svm from sklearn.model_selection import train_test_split ##################################################################################################### # UTILITY FUNCTIONS ##################################################################################################### def print_duration(start, end): ''' Display the duration of an execution in the format -> 00:00:00.00 ---------- PARAMETERS - start, end: time.time() object representing CPU time at a certain moment ---------- RETURNS - None ''' hours, rem = divmod(end - start, 3600) minutes, seconds = divmod(rem, 60) print("{:0>2}:{:0>2}:{:05.2f}\n".format(int(hours), int(minutes), seconds)) def timing(f): ''' Decorator used to claculate the time used to compute a function ---------- PARAMETERS - f: executable function ---------- RETURNS - returns a wrapper for time calculation for the function f ''' @wraps(f) def wrapper(*args, **kwargs): start = time() result = f(*args, **kwargs) end = time() # Display the elapsed time in pretty format -> 00:00:00.00 print(f"Elapsed time for {f.__name__}(): ", end = "") print_duration(start, end) return result return wrapper @timing def read_data(data_path): ''' Read a .csv file from the specified path ---------- PARAMETERS - data_path: string with the name of the file to be read (notice that data_path only contains the name of the file, and thus the file must be located in the same directory as this 'histogram_svm.py' script) ---------- RETURNS - a pd.DataFrame with the representation of the data ''' # Specify dtypes and column names length = int(data_path.split('.')[0][2:])**2 dtypes = {'pixel-' + str(i): 'uint8' for i in range(1, length +1)} dtypes.update({'label' : 'category'}) colnames = list(dtypes.keys()) print('-' * 60) print(f"Reading {data_path}...") data = pd.read_csv( data_path, header = None, names = colnames, dtype = dtypes ) # Output some metrics of the data file print(f"train.cv file has {data.shape[0]} rows and {data.shape[1]} columns") print(f"Memory usage: {round(data.memory_usage().sum() / 1024**2, 3)} Mb") print('-' * 60) return data @timing def quantization(data, n_bins): ''' Returns the dataframe with all the values quantized into n_bins levels. --------- PARAMETERS - data: pd.DataFrame to be quantized (without the response value 'target') - n_bins: integer representing the number of levels of the quantization --------- RETURNS - a pd.DataFrame with all the values quantized ''' print('-' * 60) print(f"Quantizing into {n_bins} levels...") print('-' * 60) # Hence (as the colormap is grayspace) we only have 255 levels l = 255 // n_bins # Define the mapping ranges mapping = {range((i*l), (i*l + l)): i for i in range(n_bins)} # Apply the quantization elementwise in the dataframe return data.applymap(lambda x: next((v for k, v in mapping.items() if x in k), 0)) ##################################################################################################### # HISTOGRAM KERNEL FUNCTION ##################################################################################################### def histogram_kernel_wrapper(L: int = 0): # Global wrapper variables (# parameters, and image resolution (res x res)) length, res = 0, 0 def divide_image(im, l): ''' Divide the image into equally sized blocks ---------- PARAMETERS - im: flattened numpy.ndarray representing an image - l: integer representing the level of divisions that should be performed ---------- RETURNS - an array with a flattened numpy.ndarray of every block at every position ''' # Compute resolution of each block newres = res // (2**l) # Unflatten the image array to its original size im = np.reshape(im, newshape = (res, res)) # Split the image into 2^2l sub-blocks splits = (im.reshape(res // newres, newres, -1, newres) .swapaxes(1, 2) .reshape(-1, newres, newres)) # Return the flattened split of the image return [split.flatten() for split in splits] def compute_all_histograms(X): ''' ''' # We will have a total of L+1 different histograms hist = [] for i in range(L + 1): hist_i = [] # Compute the histogram for every image for j in range(X.shape[0]): # No splitting required if l = 0 if i == 0: hist_i.append(Counter(X[j])) # Else compute the image splits, and calculate the histogram for each block else: splits = divide_image(X[j], i) # For every block for k in range(len(splits)): splits[k] = Counter(splits[k]) hist_i.append(splits) # Append the histogram calculation of l = i to the global list hist.append(hist_i) return hist def K(h1, h2): ''' Compute the histogram-based-kernel value between two images ---------- PARAMETERS - im1, im2: flattened numpy.ndarray representing an image of the collection - L: integer representing the level of divisions that should be performed ---------- RETURNS - a float representing the value of the kernel between images 'im1' and 'im2' ''' # For I_0 k_ij = (1/2**L) * (sum((h1[0] & h2[0]).values()) / length) # For every level of partitioning (I_1, I_2, ..., I_L): for l in range(1, L + 1): # Factor in the l-th iteration factor = 1 / (2**(L - l + 1)) # Compute and add histogram intersection of every block for k in range(len(h1[l])): k_ij += factor * (sum((h1[l][k] & h2[l][k]).values()) / length) return k_ij def hist_kernel(X, Y): ''' Histogram kernel function -> computes the Gram Matrix of the kernel ---------- PARAMETERS - X,Y: numpy.ndarray representing the data (notice that while training, Y = X, and thus the Gram Matrix is symmetric) ---------- RETURNS - Gram_matrix: numpy.ndarray representing the Gram_matrix of the histogram kernel ''' # Update image resolution nonlocal length length = X.shape[1] nonlocal res res = int(np.sqrt(length)) # Initialize the Gram matrix with zeros (allocate memory) Gram_matrix = np.zeros((X.shape[0], Y.shape[0])) # If X == Y, i.e. we are training the SVM, the Gram Matrix will be symmetric, and # thus we can halve the total number of computations, as G[i,j] = G[j,i] if X.shape[0] == Y.shape[0]: # Construct the histogram matrices histograms = compute_all_histograms(X) for i in range(X.shape[0]): # Get all the histograms (for all particions) of image i h1 = [histograms[k][i] for k in range(L + 1)] for j in range(i, X.shape[0]): # Get all the istograms (for all particions) of image j h2 = [histograms[k][j] for k in range(L + 1)] # Compute the intersection of image i and image j (histograms) Gram_matrix[i, j] = K(h1, h2) Gram_matrix[j, i] = Gram_matrix[i, j].copy() # Otherwise, the matrix is not symmetric, we cannot reuse computations else: # Construct the histogram matrices # Hence that they are not the same if we are not in training histogramsX = compute_all_histograms(X) histogramsY = compute_all_histograms(Y) for i in range(X.shape[0]): # Get all the histograms (for all particions) for image i h1 = [histogramsX[k][i] for k in range(L + 1)] for j in range(Y.shape[0]): # Get all the histograms (for all particions) for image j h2 = [histogramsY[k][j] for k in range(L + 1)] # Compute the intersection of image i and image j (histograms) Gram_matrix[i, j] = K(h1, h2) return Gram_matrix return hist_kernel ##################################################################################################### # MAIN PROGRAM (fit and predict with the SVM) ##################################################################################################### if __name__ == '__main__': # Parser arguments (arguments taken by the script) parser = argparse.ArgumentParser( description = 'Compute the histogram kernel SVM.') parser.add_argument( '--data', type = str, help = 'File from where to read image data.') parser.add_argument( '--quantization', type = int, default = None, help = 'Quantization level for the histograms.') parser.add_argument( '--L', type = int, default = 3, help = 'Level of image splitting in the kernel.') parser.add_argument( '--train_frac', type = float, default = .25, help = 'Fraction of train samples to be taken from data.') parser.add_argument( '--test_frac', type = float, default = .1, help = 'Fraction of test samples to be taken from data.') # Get the arguments args = parser.parse_args() data_path = args.data # path to data file n_bins = args.quantization; L = args.L # kernel parameters train_frac = args.train_frac; test_frac = args.test_frac # train_test splitting print(f"Histogram-kernel SVM with L = {L} and quantization = {n_bins}") print(f"train size = {6379 // int(train_frac**(-1))}, test size = {6379 // int(test_frac**(-1))}") # Read the data df = read_data(data_path) # Split the target (label) from data Y = np.array(df.label) df = df.drop(columns = ['label']) # Check if quantization is required if n_bins is not None: df = quantization(df, n_bins) # Convert data to a numpy ndarray X =
np.array(df)
numpy.array
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Model-Test Coverage Metrics. """ from abc import abstractmethod from collections import defaultdict import math import numpy as np from mindspore import Tensor from mindspore import Model from mindspore.train.summary.summary_record import _get_summary_tensor_data from mindarmour.utils._check_param import check_model, check_numpy_param, check_int_positive, \ check_param_type, check_value_positive from mindarmour.utils.logger import LogUtil LOGGER = LogUtil.get_instance() TAG = 'CoverageMetrics' class CoverageMetrics: """ The abstract base class for Neuron coverage classes calculating coverage metrics. As we all known, each neuron output of a network will have a output range after training (we call it original range), and test dataset is used to estimate the accuracy of the trained network. However, neurons' output distribution would be different with different test datasets. Therefore, similar to function fuzz, model fuzz means testing those neurons' outputs and estimating the proportion of original range that has emerged with test datasets. Reference: `DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems <https://arxiv.org/abs/1803.07519>`_ Args: model (Model): The pre-trained model which waiting for testing. incremental (bool): Metrics will be calculate in incremental way or not. Default: False. batch_size (int): The number of samples in a fuzz test batch. Default: 32. """ def __init__(self, model, incremental=False, batch_size=32): self._model = check_model('model', model, Model) self.incremental = check_param_type('incremental', incremental, bool) self.batch_size = check_int_positive('batch_size', batch_size) self._activate_table = defaultdict(list) @abstractmethod def get_metrics(self, dataset): """ Calculate coverage metrics of given dataset. Args: dataset (numpy.ndarray): Dataset used to calculate coverage metrics. Raises: NotImplementedError: It is an abstract method. """ msg = 'The function get_metrics() is an abstract method in class `CoverageMetrics`, and should be' \ ' implemented in child class.' LOGGER.error(TAG, msg) raise NotImplementedError(msg) def _init_neuron_activate_table(self, data): """ Initialise the activate table of each neuron in the model with format: {'layer1': [n1, n2, n3, ..., nn], 'layer2': [n1, n2, n3, ..., nn], ...} Args: data (numpy.ndarray): Data used for initialising the activate table. Return: dict, return a activate_table. """ self._model.predict(Tensor(data)) layer_out = _get_summary_tensor_data() if not layer_out: msg = 'User must use TensorSummary() operation to specify the middle layer of the model participating in ' \ 'the coverage calculation.' LOGGER.error(TAG, msg) raise ValueError(msg) activate_table = defaultdict() for layer, value in layer_out.items(): activate_table[layer] = np.zeros(value.shape[1], np.bool) return activate_table def _get_bounds(self, train_dataset): """ Update the lower and upper boundaries of neurons' outputs. Args: train_dataset (numpy.ndarray): Training dataset used for determine the neurons' output boundaries. Return: - numpy.ndarray, upper bounds of neuron' outputs. - numpy.ndarray, lower bounds of neuron' outputs. """ upper_bounds = defaultdict(list) lower_bounds = defaultdict(list) batches = math.ceil(train_dataset.shape[0] / self.batch_size) for i in range(batches): inputs = train_dataset[i * self.batch_size: (i + 1) * self.batch_size] self._model.predict(Tensor(inputs)) layer_out = _get_summary_tensor_data() for layer, tensor in layer_out.items(): value = tensor.asnumpy() value = np.mean(value, axis=tuple([i for i in range(2, len(value.shape))])) min_value = np.min(value, axis=0) max_value = np.max(value, axis=0) if np.any(upper_bounds[layer]): max_flag = upper_bounds[layer] > max_value min_flag = lower_bounds[layer] < min_value upper_bounds[layer] = upper_bounds[layer] * max_flag + max_value * (1 - max_flag) lower_bounds[layer] = lower_bounds[layer] * min_flag + min_value * (1 - min_flag) else: upper_bounds[layer] = max_value lower_bounds[layer] = min_value return upper_bounds, lower_bounds def _activate_rate(self): """ Calculate the activate rate of neurons. """ total_neurons = 0 activated_neurons = 0 for _, value in self._activate_table.items(): activated_neurons += np.sum(value) total_neurons += len(value) activate_rate = activated_neurons / total_neurons return activate_rate class NeuronCoverage(CoverageMetrics): """ Calculate the neurons activated coverage. Neuron is activated when its output is greater than the threshold. Neuron coverage equals the proportion of activated neurons to total neurons in the network. Args: model (Model): The pre-trained model which waiting for testing. threshold (float): Threshold used to determined neurons is activated or not. Default: 0.1. incremental (bool): Metrics will be calculate in incremental way or not. Default: False. batch_size (int): The number of samples in a fuzz test batch. Default: 32. """ def __init__(self, model, threshold=0.1, incremental=False, batch_size=32): super(NeuronCoverage, self).__init__(model, incremental, batch_size) threshold = check_param_type('threshold', threshold, float) self.threshold = check_value_positive('threshold', threshold) def get_metrics(self, dataset): """ Get the metric of neuron coverage: the proportion of activated neurons to total neurons in the network. Args: dataset (numpy.ndarray): Dataset used to calculate coverage metrics. Returns: float, the metric of 'neuron coverage'. Examples: >>> nc = NeuronCoverage(model, threshold=0.1) >>> nc_metrics = nc.get_metrics(test_data) """ dataset = check_numpy_param('dataset', dataset) batches = math.ceil(dataset.shape[0] / self.batch_size) if not self.incremental or not self._activate_table: self._activate_table = self._init_neuron_activate_table(dataset[0:1]) for i in range(batches): inputs = dataset[i * self.batch_size: (i + 1) * self.batch_size] self._model.predict(Tensor(inputs)) layer_out = _get_summary_tensor_data() for layer, tensor in layer_out.items(): value = tensor.asnumpy() value = np.mean(value, axis=tuple([i for i in range(2, len(value.shape))])) activate = np.sum(value > self.threshold, axis=0) > 0 self._activate_table[layer] = np.logical_or(self._activate_table[layer], activate) neuron_coverage = self._activate_rate() return neuron_coverage class TopKNeuronCoverage(CoverageMetrics): """ Calculate the top k activated neurons coverage. Neuron is activated when its output has the top k largest value in that hidden layers. Top k neurons coverage equals the proportion of activated neurons to total neurons in the network. Args: model (Model): The pre-trained model which waiting for testing. top_k (int): Neuron is activated when its output has the top k largest value in that hidden layers. Default: 3. incremental (bool): Metrics will be calculate in incremental way or not. Default: False. batch_size (int): The number of samples in a fuzz test batch. Default: 32. """ def __init__(self, model, top_k=3, incremental=False, batch_size=32): super(TopKNeuronCoverage, self).__init__(model, incremental=incremental, batch_size=batch_size) self.top_k = check_int_positive('top_k', top_k) def get_metrics(self, dataset): """ Get the metric of Top K activated neuron coverage. Args: dataset (numpy.ndarray): Dataset used to calculate coverage metrics. Returns: float, the metrics of 'top k neuron coverage'. Examples: >>> tknc = TopKNeuronCoverage(model, top_k=3) >>> metrics = tknc.get_metrics(test_data) """ dataset = check_numpy_param('dataset', dataset) batches = math.ceil(dataset.shape[0] / self.batch_size) if not self.incremental or not self._activate_table: self._activate_table = self._init_neuron_activate_table(dataset[0:1]) for i in range(batches): inputs = dataset[i * self.batch_size: (i + 1) * self.batch_size] self._model.predict(Tensor(inputs)) layer_out = _get_summary_tensor_data() for layer, tensor in layer_out.items(): value = tensor.asnumpy() if len(value.shape) > 2: value = np.mean(value, axis=tuple([i for i in range(2, len(value.shape))])) top_k_value = np.sort(value)[:, -self.top_k].reshape(value.shape[0], 1) top_k_value = np.sum((value - top_k_value) >= 0, axis=0) > 0 self._activate_table[layer] = np.logical_or(self._activate_table[layer], top_k_value) top_k_neuron_coverage = self._activate_rate() return top_k_neuron_coverage class SuperNeuronActivateCoverage(CoverageMetrics): """ Get the metric of 'super neuron activation coverage'. :math:`SNAC = |UpperCornerNeuron|/|N|`. SNAC refers to the proportion of neurons whose neurons output value in the test set exceeds the upper bounds of the corresponding neurons output value in the training set. Args: model (Model): The pre-trained model which waiting for testing. train_dataset (numpy.ndarray): Training dataset used for determine the neurons' output boundaries. incremental (bool): Metrics will be calculate in incremental way or not. Default: False. batch_size (int): The number of samples in a fuzz test batch. Default: 32. """ def __init__(self, model, train_dataset, incremental=False, batch_size=32): super(SuperNeuronActivateCoverage, self).__init__(model, incremental=incremental, batch_size=batch_size) train_dataset = check_numpy_param('train_dataset', train_dataset) self.upper_bounds, self.lower_bounds = self._get_bounds(train_dataset=train_dataset) def get_metrics(self, dataset): """ Get the metric of 'strong neuron activation coverage'. Args: dataset (numpy.ndarray): Dataset used to calculate coverage metrics. Returns: float, the metric of 'strong neuron activation coverage'. Examples: >>> snac = SuperNeuronActivateCoverage(model, train_dataset) >>> metrics = snac.get_metrics(test_data) """ dataset = check_numpy_param('dataset', dataset) if not self.incremental or not self._activate_table: self._activate_table = self._init_neuron_activate_table(dataset[0:1]) batches = math.ceil(dataset.shape[0] / self.batch_size) for i in range(batches): inputs = dataset[i * self.batch_size: (i + 1) * self.batch_size] self._model.predict(Tensor(inputs)) layer_out = _get_summary_tensor_data() for layer, tensor in layer_out.items(): value = tensor.asnumpy() if len(value.shape) > 2: value = np.mean(value, axis=tuple([i for i in range(2, len(value.shape))])) activate = np.sum(value > self.upper_bounds[layer], axis=0) > 0 self._activate_table[layer] = np.logical_or(self._activate_table[layer], activate) snac = self._activate_rate() return snac class NeuronBoundsCoverage(SuperNeuronActivateCoverage): """ Get the metric of 'neuron boundary coverage' :math:`NBC = (|UpperCornerNeuron| + |LowerCornerNeuron|)/(2*|N|)`, where :math:`|N|` is the number of neurons, NBC refers to the proportion of neurons whose neurons output value in the test dataset exceeds the upper and lower bounds of the corresponding neurons output value in the training dataset. Args: model (Model): The pre-trained model which waiting for testing. train_dataset (numpy.ndarray): Training dataset used for determine the neurons' output boundaries. incremental (bool): Metrics will be calculate in incremental way or not. Default: False. batch_size (int): The number of samples in a fuzz test batch. Default: 32. """ def __init__(self, model, train_dataset, incremental=False, batch_size=32): super(NeuronBoundsCoverage, self).__init__(model, train_dataset, incremental=incremental, batch_size=batch_size) def get_metrics(self, dataset): """ Get the metric of 'neuron boundary coverage'. Args: dataset (numpy.ndarray): Dataset used to calculate coverage metrics. Returns: float, the metric of 'neuron boundary coverage'. Examples: >>> nbc = NeuronBoundsCoverage(model, train_dataset) >>> metrics = nbc.get_metrics(test_data) """ dataset = check_numpy_param('dataset', dataset) if not self.incremental or not self._activate_table: self._activate_table = self._init_neuron_activate_table(dataset[0:1]) batches = math.ceil(dataset.shape[0] / self.batch_size) for i in range(batches): inputs = dataset[i * self.batch_size: (i + 1) * self.batch_size] self._model.predict(Tensor(inputs)) layer_out = _get_summary_tensor_data() for layer, tensor in layer_out.items(): value = tensor.asnumpy() if len(value.shape) > 2: value = np.mean(value, axis=tuple([i for i in range(2, len(value.shape))])) outer = np.logical_or(value > self.upper_bounds[layer], value < self.lower_bounds[layer]) activate = np.sum(outer, axis=0) > 0 self._activate_table[layer] = np.logical_or(self._activate_table[layer], activate) nbc = self._activate_rate() return nbc class KMultisectionNeuronCoverage(SuperNeuronActivateCoverage): """ Get the metric of 'k-multisection neuron coverage'. KMNC measures how thoroughly the given set of test inputs covers the range of neurons output values derived from training dataset. Args: model (Model): The pre-trained model which waiting for testing. train_dataset (numpy.ndarray): Training dataset used for determine the neurons' output boundaries. segmented_num (int): The number of segmented sections of neurons' output intervals. Default: 100. incremental (bool): Metrics will be calculate in incremental way or not. Default: False. batch_size (int): The number of samples in a fuzz test batch. Default: 32. """ def __init__(self, model, train_dataset, segmented_num=100, incremental=False, batch_size=32): super(KMultisectionNeuronCoverage, self).__init__(model, train_dataset, incremental=incremental, batch_size=batch_size) self.segmented_num = check_int_positive('segmented_num', segmented_num) self.intervals = defaultdict(list) for keys in self.upper_bounds.keys(): self.intervals[keys] = (self.upper_bounds[keys] - self.lower_bounds[keys]) / self.segmented_num def _init_k_multisection_table(self, data): """ Initial the activate table.""" self._model.predict(Tensor(data)) layer_out = _get_summary_tensor_data() activate_section_table = defaultdict() for layer, value in layer_out.items(): activate_section_table[layer] = np.zeros((value.shape[1], self.segmented_num), np.bool) return activate_section_table def get_metrics(self, dataset): """ Get the metric of 'k-multisection neuron coverage'. Args: dataset (numpy.ndarray): Dataset used to calculate coverage metrics. Returns: float, the metric of 'k-multisection neuron coverage'. Examples: >>> kmnc = KMultisectionNeuronCoverage(model, train_dataset, segmented_num=100) >>> metrics = kmnc.get_metrics(test_data) """ dataset = check_numpy_param('dataset', dataset) if not self.incremental or not self._activate_table: self._activate_table = self._init_k_multisection_table(dataset[0:1]) batches = math.ceil(dataset.shape[0] / self.batch_size) for i in range(batches): inputs = dataset[i * self.batch_size: (i + 1) * self.batch_size] self._model.predict(Tensor(inputs)) layer_out = _get_summary_tensor_data() for layer, tensor in layer_out.items(): value = tensor.asnumpy() value = np.mean(value, axis=tuple([i for i in range(2, len(value.shape))])) hits =
np.floor((value - self.lower_bounds[layer]) / self.intervals[layer])
numpy.floor
""" Collection of tests for unified gradient functions """ # global import pytest import numpy as np from numbers import Number # local import ivy import ivy.numpy import ivy_tests.helpers as helpers from ivy.core.container import Container # variable @pytest.mark.parametrize( "object_in", [[], [0.], [1], [True], [[1., 2.]]]) @pytest.mark.parametrize( "dtype_str", ['float16', 'float32', 'float64']) def test_variable(object_in, dtype_str, dev_str, call): if call is helpers.tf_graph_call: # cannot create variables as part of compiled tf graph pytest.skip() if call in [helpers.mx_call] and dtype_str == 'int16': # mxnet does not support int16 pytest.skip() if len(object_in) == 0 and call is helpers.mx_call: # mxnet does not support 0-dimensional variables pytest.skip() # smoke test ret = ivy.variable(ivy.array(object_in, dtype_str, dev_str)) # type test if call is not helpers.np_call: assert ivy.is_variable(ret) # cardinality test assert ret.shape == np.array(object_in).shape # value test assert np.allclose(call(ivy.variable, ivy.array(object_in, dtype_str, dev_str)), np.array(object_in).astype(dtype_str)) # compilation test if call in [helpers.torch_call]: # pytorch scripting does not support string devices return if not ivy.wrapped_mode(): helpers.assert_compilable(ivy.variable) # is_variable @pytest.mark.parametrize( "object_in", [[], [0.], [1], [True], [[1., 2.]]]) @pytest.mark.parametrize( "dtype_str", ['float16', 'float32', 'float64']) def test_is_variable(object_in, dtype_str, dev_str, call): if call is helpers.tf_graph_call: # cannot create variables as part of compiled tf graph pytest.skip() if call in [helpers.mx_call] and dtype_str == 'int16': # mxnet does not support int16 pytest.skip() if len(object_in) == 0 and call is helpers.mx_call: # mxnet does not support 0-dimensional variables pytest.skip() # smoke test non_var = ivy.array(object_in, dtype_str, dev_str) var = ivy.variable(ivy.array(object_in, dtype_str, dev_str)) non_var_res = ivy.is_variable(non_var) var_res = ivy.is_variable(var) # type test assert ivy.is_array(non_var) if call is not helpers.np_call: assert ivy.is_variable(var) if call in [helpers.np_call, helpers.jnp_call]: # numpy and jax do not support flagging variables pytest.skip() # value test assert non_var_res is False assert var_res is True # compilation test if not ivy.wrapped_mode(): helpers.assert_compilable(ivy.is_variable) # variable data @pytest.mark.parametrize( "object_in", [[], [0.], [1], [True], [[1., 2.]]]) @pytest.mark.parametrize( "dtype_str", ['float16', 'float32', 'float64']) def test_variable_data(object_in, dtype_str, dev_str, call): if call is helpers.tf_graph_call: # cannot create variables as part of compiled tf graph pytest.skip() if call in [helpers.mx_call] and dtype_str == 'int16': # mxnet does not support int16 pytest.skip() if len(object_in) == 0 and call is helpers.mx_call: # mxnet does not support 0-dimensional variables pytest.skip() # smoke test var = ivy.variable(ivy.array(object_in, dtype_str, dev_str)) var_data = ivy.variable_data(var) # type test if call is not helpers.np_call: # numpy does not support variables assert ivy.is_variable(var) if call is not helpers.mx_call: # jax variables and their data are the same instance assert not ivy.is_variable(var_data, exclusive=True) assert ivy.is_array(var_data) # cardinality test assert var_data.shape == var.shape # value test assert np.allclose(ivy.to_numpy(var), ivy.to_numpy(var_data)) # stop_gradient @pytest.mark.parametrize( "x_raw", [[0.]]) @pytest.mark.parametrize( "dtype_str", ['float32']) @pytest.mark.parametrize( "tensor_fn", [('array', ivy.array), ('var', helpers.var_fn)]) def test_stop_gradient(x_raw, dtype_str, tensor_fn, dev_str, call): # smoke test fn_name, tensor_fn = tensor_fn x = tensor_fn(x_raw, dtype_str, dev_str) ret = ivy.stop_gradient(x) # type test if fn_name == 'array': assert ivy.is_array(ret) elif call is not helpers.np_call: # Numpy does not support variables, is_variable() always returns False assert ivy.is_variable(ret) # cardinality test assert ret.shape == x.shape # value test if call is not helpers.tf_graph_call: # Tf graph mode cannot create variables as part of the computation graph assert np.array_equal(call(ivy.stop_gradient, x), ivy.numpy.array(x_raw, dtype_str)) # compilation test if call in [helpers.torch_call]: # pytorch scripting does not support attribute setting return if not ivy.wrapped_mode(): helpers.assert_compilable(ivy.stop_gradient) # execute_with_gradients @pytest.mark.parametrize( "func_n_xs_n_ty_n_te_n_tg", [(lambda xs_in: (xs_in['w'] * xs_in['w'])[0], Container({'w': [3.]}),
np.array(9.)
numpy.array
import numpy as np from plico_interferometer import interferometer from plico_dm import deformableMirror from astropy.io import fits from functools import reduce import matplotlib.pyplot as plt from arte.types.mask import CircularMask from arte.utils.zernike_generator import ZernikeGenerator from tesi_ao.mems_command_to_position_linearization_measurer import CommandToPositionLinearizationMeasurer from tesi_ao.mems_command_to_position_linearization_analyzer import CommandToPositionLinearizationAnalyzer from tesi_ao.mems_command_linearization import MemsCommandLinearization def create_devices(): wyko = interferometer('172.16.17.32', 7300) bmc = deformableMirror('192.168.3.11', 7000) return wyko, bmc # def _2dgaussian(self, X, amplitude, x0, y0, sigmax, sigmay, offset): # y, x = X # z = np.zeros((len(y), len(x)), dtype='float') # N = amplitude # *0.5 / (np.pi * sigmax * sigmay) # for xi in np.arange(len(x)): # a = 0.5 * ((xi - x0) / sigmax)**2 # for yi in np.arange(len(y)): # b = 0.5 * ((yi - y0) / sigmay)**2 # # z[yi, xi] = N * np.exp(-(a + b)) + offset # return z.ravel() # # def _gaussian_fitting(self, act_idx, cmd_index): # wf = self._wfs[act_idx, cmd_index] # wf2 = self._wfs[act_idx, 2] # b, t, l, r = self._get_max_roi(act_idx) # wfroi = wf[b:t, l:r] # wfroi2 = wf2[b:t, l:r] # coord_max = np.argwhere(np.abs(wfroi2) == np.max(np.abs(wfroi2)))[0] # x0 = coord_max[1] # y0 = coord_max[0] # #z = wfroi[wfroi.data != 0.] # # #z = wfroi # # NvalidX = (wfroi.mask[y0, :] == False).sum() # NvalidY = (wfroi.mask[:, x0] == False).sum() # x = np.arange(NvalidX, dtype='float') # y = np.arange(NvalidY, dtype='float') # # Z = [] # for yi in range(wfroi.shape[0]): # for xi in range(wfroi.shape[1]): # if(wfroi[yi, xi].data != 0.): # Z.append(wfroi[yi, xi]) # # Z = np.array(Z, dtype='float') # # Z = wfroi.compressed() # # A0 = self._max_wavefront(act_idx, cmd_index) # # sigma0 = 25. # sigmax = sigma0 # sigmay = sigma0 # offset = 0. # starting_values = [A0, x0, y0, sigmax, sigmay, offset] # X = y, x # # #err_z = Z.std() * np.ones(len(x) * len(y)) # # fpar, fcov = curve_fit(self._2dgaussian, X, Z, # p0=starting_values, absolute_sigma=True) # #err_fpar = np.sqrt(np.diag(fcov)) # print('1curve_fit done') # error = (Z - self._2dgaussian(X, *fpar)) # starting_values = [fpar[0], fpar[1], # fpar[2], fpar[3], fpar[4], fpar[5]] # fpar, fcov = curve_fit( # self._2dgaussian, X, Z, p0=starting_values, sigma=error, absolute_sigma=True) # print('2curve_fit done') # return fpar[0] # # def _compute_gaussian_amplitude_deflection(self): # self._max_deflection = np.zeros( # (self._cmd_vector.shape[0], self._cmd_vector.shape[1])) # for act in range(self._cmd_vector.shape[0]): # for cmd_idx in range(self._cmd_vector.shape[1]): # self._max_deflection[act, cmd_idx] = self._gaussian_fitting( # act, cmd_idx) # # def compute_gaussian_linearization(self): # self._compute_gaussian_amplitude_deflection() # # return MemsCommandLinearization( # self._actuators_list, # self._cmd_vector, # self._max_deflection, # self._reference_shape_tag) # def plot_interpolated_function(mcl): # ''' # F_int(pos)=cmd # ''' # plt.figure() # plt.clf() # for idx, act in enumerate(mcl._actuators_list): # a = np.min(mcl._deflection[act]) # b = np.max(mcl._deflection[act]) # xx = np.linspace(a, b, 1000) # plt.plot(mcl._finter[act](xx), xx / 1.e-9, '.-') # plt.xlabel('Command [au]', size=25) # plt.ylabel('Deflection [nm]', size=25) # plt.title('Calibration curve per actuator', size=25) # plt.grid() def _plot_acquired_measures(mcl): plt.figure() plt.clf() for idx, act in enumerate(mcl._actuators_list): plt.plot(mcl._cmd_vector[idx], mcl._deflection[idx] / 1.e-9, '.-') plt.xlabel('Command [au]', size=25) plt.ylabel('Deflection [nm]', size=25) plt.title('Acquired Measures per actuator', size=25) plt.grid() # def plot_single_curve(mcl, act): # ''' # F_int(pos)=cmd # ''' # plt.figure() # plt.clf() # a = np.min(mcl._deflection[act]) # b = np.max(mcl._deflection[act]) # xx = np.linspace(a, b, 1000) # plt.plot(mcl._cmd_vector[act], mcl._deflection[act] / # 1.e-9, 'or', label='sampling points') # plt.plot(mcl._finter[act](xx), xx / 1.e-9, '-', label='finter') # plt.title('Calibration Curve: act#%d' % act, size=25) # plt.xlabel('Commands [au]', size=25) # plt.ylabel('Deflection [nm]', size=25) # plt.grid() # plt.legend(loc='best') def _plot_pos_vs_cmd(mcl, act): ''' F_int(cmd)=pos ''' plt.figure() plt.clf() plt.plot(mcl._cmd_vector[act], mcl._deflection[act] / 1.e-9, 'or', label='sampling points') plt.title('act=%d' % act, size=25) plt.ylabel('pos[nm]') plt.xlabel('cmd[au]') plt.grid() a = np.min(mcl._cmd_vector[act]) b = np.max(mcl._cmd_vector[act]) vv = np.linspace(a, b, 1000) plt.plot(vv, mcl._finter[act](vv) / 1.e-9, '-', label='finter') plt.legend(loc='best') def _plot_all_int_funcs(mcl): plt.figure() plt.clf() for idx, act in enumerate(mcl._actuators_list): a = np.min(mcl._cmd_vector[act]) b = np.max(mcl._cmd_vector[act]) vv = np.linspace(a, b, 1000) plt.plot(vv, mcl._finter[act](vv) / 1.e-9, '.-', label='finter') plt.xlabel('Command [au]', size=25) plt.ylabel('Deflection [nm]', size=25) plt.title('Calibration curve per actuator', size=25) plt.grid() class PupilMaskBuilder(): def __init__(self, wfmask): self._wfmask = wfmask # is the interferometer mask! def get_circular_mask(self, radius, center): mask = CircularMask(self._wfmask.shape, maskRadius=radius, maskCenter=center) return mask # .mask() def get_centred_circular_mask_wrt_interferometer_mask(self): # TODO: controllare che i dati a False siano una mappa rettangolare # prendo un generico pixel che sia a False per ricostruire base # e altezza della mappa rettangolare a False yFalsePixel = np.where(self._wfmask == False)[0][0] xFalsePixel = np.where(self._wfmask == False)[1][0] HeightInPixels = (self._wfmask[:, xFalsePixel] == False).sum() WidthInPixels = (self._wfmask[yFalsePixel, :] == False).sum() offsetX = (self._wfmask[yFalsePixel, 0:xFalsePixel] == True).sum() offsetY = (self._wfmask[0:yFalsePixel, xFalsePixel] == True).sum() # center of False map and origin of circular pupil in pixel yc0 = offsetY + 0.5 * HeightInPixels xc0 = offsetX + 0.5 * WidthInPixels MaxRadiusInPixel = min(WidthInPixels, HeightInPixels) * 0.5 cmask = self.get_circular_mask(MaxRadiusInPixel, (yc0, xc0)) return cmask def get_barycenter_of_false_pixels(self): N_of_pixels = self._wfmask.shape[0] * self._wfmask.shape[1] True_pixels = self._wfmask.sum() False_pixels = N_of_pixels - True_pixels coord_yi = np.where(self._wfmask == False)[0] coord_xi = np.where(self._wfmask == False)[1] yc = coord_yi.sum() / float(False_pixels) xc = coord_xi.sum() / float(False_pixels) return yc, xc def get_number_of_false_pixels_along_barycenter_axis(self): y, x = self.get_barycenter_of_false_pixels() y = int(y) x = int(x) n_pixels_along_x = (self._wfmask[y, :] == False).sum() n_pixels_along_y = (self._wfmask[:, x] == False).sum() return n_pixels_along_y, n_pixels_along_x def get_number_of_false_pixels_along_pixel_axis(self, yp, xp): y = int(yp) x = int(xp) n_pixels_along_x = (self._wfmask[y, :] == False).sum() n_pixels_along_y = (self._wfmask[:, x] == False).sum() return n_pixels_along_y, n_pixels_along_x def get_number_of_false_pixels_along_frame_axis(self): n_pixels_along_x_axis = np.zeros( self._wfmask.shape[1]) # shape[1]== len(y_axis) n_pixels_along_y_axis = np.zeros( self._wfmask.shape[0]) # shape[0]== len(x_axis) n_pixels_along_x_axis = (self._wfmask == False).sum(axis=1) n_pixels_along_y_axis = (self._wfmask == False).sum(axis=0) return n_pixels_along_y_axis, n_pixels_along_x_axis def build_max_radius_and_pupil_in_imask(self): self._max_radius_in_imask, self._max_pupil_in_imask = self.get_centred_circular_mask_wrt_interferometer_mask() # da provare sul file cplm_all_fixed fatto il 17/3 class ModeGenerator(): NORM_AT_THIS_CMD = 19 # such that wyko noise and saturation are avoided VISIBLE_AT_THIS_CMD = 19 # related cmd for actuators visibility in the given mask THRESHOLD_RMS = 0.5 # threshold for nasty actuators outside a given mask def __init__(self, cpla, mcl): self._cpla = cpla self._mcl = mcl self._n_of_act = self._cpla._wfs.shape[0] self._build_intersection_mask() def _build_intersection_mask(self): self._imask = reduce(lambda a, b: np.ma.mask_or( a, b), self._cpla._wfs[:, self.NORM_AT_THIS_CMD].mask) def _check_actuators_visibility(self, cmd=None): if cmd is None: cmd = self.VISIBLE_AT_THIS_CMD self._rms_wf = np.zeros(self._n_of_act) for act in range(self._n_of_act): self._rms_wf[act] = np.ma.array(data=self._cpla._wfs[act, cmd], mask=self._pupil_mask).std() def _show_actuators_visibility(self): plt.figure() plt.clf() plt.ion() plt.plot(self._rms_wf / 1.e-9, 'o', label='cmd=%d' % self.VISIBLE_AT_THIS_CMD) plt.xlabel('#N actuator', size=25) plt.ylabel('Wavefront rms [nm]', size=25) plt.grid() plt.legend(loc='best') def _build_valid_actuators_list(self, cmd=None): self._check_actuators_visibility(cmd) self._acts_in_pupil = np.where( self._rms_wf > self.THRESHOLD_RMS * self._rms_wf.max())[0] self._n_of_selected_acts = len(self._acts_in_pupil) def _normalize_influence_function(self, act): return (self._cpla._wfs[act, self.NORM_AT_THIS_CMD][self._pupil_mask == False] / self._mcl._deflection[act, self.NORM_AT_THIS_CMD]).data def _build_interaction_matrix(self): if self._acts_in_pupil is None: selected_act_list = self._cpla._actuators_list else: selected_act_list = self._acts_in_pupil self._im = np.column_stack([self._normalize_influence_function( act) for act in selected_act_list]) def _build_reconstruction_matrix(self): self._rec = np.linalg.pinv(self._im) def compute_reconstructor(self, mask_obj=None): # TODO: check that mask.shape is equal to self._imask.shape # WARNING: zernike_generator uses the pupil mask as the object!!! # while self._pupil_mask is a bool array! if mask_obj is None: mask = self._imask # bool array else: self._pupil_mask_obj = mask_obj mask = self._pupil_mask_obj.mask() assert self._imask.shape == mask.shape, f"mask has not the same dimension of self._imask!\nGot:{mask.shape}\nShould be:{self._imask.shape}" self._pupil_mask = np.ma.mask_or(self._imask, mask) self._build_valid_actuators_list() self._build_interaction_matrix() self._build_reconstruction_matrix() def generate_mode(self, wfmap): self._wfmode = np.ma.array(data=wfmap, mask=self._pupil_mask) def generate_zernike_mode(self, j, AmpInMeters): zg = ZernikeGenerator(self._pupil_mask_obj) self._wfmode = np.zeros(self._pupil_mask.shape) self._wfmode = np.ma.array(data=self._wfmode, mask=self._pupil_mask) z_mode = zg.getZernike(j) a = (z_mode.mask == False).sum() b = (self._wfmode.mask == False).sum() assert a == b, f"zerike valid points: {a} wfmode valid points: {b}\nShould be equal!" # should be useless unmasked_index_wf = np.ma.where(self._wfmode.mask == False) unmasked_index_zernike = np.ma.where(z_mode.mask == False) self._wfmode[unmasked_index_wf[0], unmasked_index_wf[1] ] = z_mode.data[unmasked_index_zernike[0], unmasked_index_zernike[1]] self._wfmode = self._wfmode * AmpInMeters def generate_tilt(self): self._wfmode = np.tile(np.linspace(-100.e-9, 100.e-9, 640), (486, 1)) self._wfmode = np.ma.array(data=self._wfmode, mask=self._pupil_mask) def get_position_cmds_from_wf(self, wfmap=None): if wfmap is None: wfmap = self._wfmode pos = np.dot(self._rec, wfmap[self._pupil_mask == False]) # check and clip cmds # should I clip voltage or stroke cmds? # act's stroke increases when moved with its neighbour self._clip_recorder = np.zeros((self._n_of_selected_acts, 2)) for idx in range(len(pos)): max_stroke = np.max( self._mcl._deflection[self._acts_in_pupil[idx]]) min_stroke = np.min( self._mcl._deflection[self._acts_in_pupil[idx]]) if(pos[idx] > max_stroke): pos[idx] = max_stroke self._clip_recorder[idx ] = self._acts_in_pupil[idx], pos[idx] print('act%d reached max stroke' % self._acts_in_pupil[idx]) if(pos[idx] < min_stroke): pos[idx] = min_stroke self._clip_recorder[idx ] = self._acts_in_pupil[idx], pos[idx] print('act%d reached min stroke' % self._acts_in_pupil[idx]) return pos def build_fitted_wavefront(self, wfmap=None): if wfmap is None: wfmap = self._wfmode pos_from_wf = self.get_position_cmds_from_wf(wfmap) self._wffitted = np.zeros( (self._cpla._wfs.shape[2], self._cpla._wfs.shape[3])) self._wffitted[self._pupil_mask == False] = np.dot( self._im, pos_from_wf) self._wffitted = np.ma.array( data=self._wffitted, mask=self._pupil_mask) def plot_generated_and_expected_wf(self): plt.figure() plt.clf() plt.imshow(self._wfmode / 1.e-9) plt.colorbar(label='[nm]') plt.title('Generated Mode', size=25) plt.figure() plt.clf() plt.imshow(self._wffitted / 1.e-9) plt.colorbar(label='[nm]') plt.title('Fitted Mode', size=25) plt.figure() plt.clf() plt.imshow((self._wffitted - self._wfmode) / 1.e-9) plt.colorbar(label='[nm]') plt.title('Mode difference', size=25) print("Expectations:") amp = self._wffitted.std() amp = amp / 1.e-9 print("mode amplitude: %g nm rms " % amp) fitting_error = (self._wffitted - self._wfmode).std() fitting_error = fitting_error / 1.e-9 print("fitting error: %g nm rms " % fitting_error) def vector_to_map(self, wf_vector): mappa = np.zeros( (self._cpla._wfs.shape[2], self._cpla._wfs.shape[3])) mappa[self._pupil_mask == False] = wf_vector return np.ma.array(data=mappa, mask=self._pupil_mask) def _show_clipped_act(self): for idx in range(self._n_of_selected_acts): if(self._clip_recorder[idx][-1] != 0): print('Act %d' % self._clip_recorder[idx][0] + ' clipped to %g [m]' % self._clip_recorder[idx][-1]) # class ShapeReconstructionCommands(): # ''' # the aim of this class is to get new flat reference # shape commands for DM, erasing any membrane deformations # as far as possible # ''' # TIME_OUT = 10 # # def __init__(self, interferometer, mems_deformable_mirror): # self._interf = interferometer # self._bmc = mems_deformable_mirror # # def _get_new_reference_cmds(self, mcl, mg): # # Nacts = self._bmc.get_number_of_actuators() # cmd0 = np.zeros(Nacts) # self._bmc.set_shape(cmd0) # wf_meas = self._interf.wavefront(timeout_in_sec=self.TIME_OUT) # mg._imask = wf_meas.mask # mg.compute_reconstructor() # # compute positions from reconstructor # pos = np.dot(mg._rec, wf_meas.compressed()) # pos_of_all_acts = np.zeros(Nacts) # pos_of_all_acts[mg._acts_in_pupil] = pos # # compute position from bmc cmds # bmc_cmds = self._bmc.get_shape() # bmc_pos = np.zeros(Nacts) # for i in range(Nacts): # bmc_pos[i] = mcl._finter[i](bmc_cmds[i]) # # compute required cmd # delta_pos = bmc_pos - pos_of_all_acts # delta_cmd = np.zeros(Nacts) # for i in range(Nacts): # delta_cmd[i] = mcl._sampled_p2c(i, delta_pos[i]) # self._bmc.set_shape(delta_cmd) # return delta_cmd class ModeMeasurer(): # fraction of valid pixels in wf measures: avoids nasty maps THRESHOLD_RATIO = 0.99 fnpath = 'prova/static_zernike_modes/' ffmt = '.png' AmpInNanometer = 100 TIME_OUT = 10 # s def __init__(self, interferometer, mems_deformable_mirror): self._interf = interferometer self._bmc = mems_deformable_mirror def execute_measure(self, mcl, mg, pos=None): if pos is None: pos = mg.get_position_cmds_from_wf() flat_cmd = np.zeros(self._bmc.get_number_of_actuators()) self._bmc.set_shape(flat_cmd) #ref_cmd = self._bmc.get_reference_shape() expected_valid_points = (mg._pupil_mask == False).sum() wfflat = self._interf.wavefront(timeout_in_sec=self.TIME_OUT) wfflat = np.ma.array(data=wfflat, mask=mg._pupil_mask) # avoid nasty wf maps measured_valid_points = (wfflat.mask == False).sum() ratio = measured_valid_points / expected_valid_points while(ratio < self.THRESHOLD_RATIO): print('Warning: Nasty map acquired!Reloading...') wfflat = self._interf.wavefront(timeout_in_sec=self.TIME_OUT) wfflat = np.ma.array(data=wfflat, mask=mg._pupil_mask) measured_valid_points = (wfflat.mask == False).sum() ratio = measured_valid_points / expected_valid_points act_list = mg._acts_in_pupil cmd = np.zeros(self._bmc.get_number_of_actuators()) # TODO: clip voltage! assert len(act_list) == len( pos), "Error: act_list and pos must have the same shape!" for idx, act in enumerate(act_list): cmd[int(act)] = mcl.linear_p2c(int(act), pos[idx]) # for idx in range(len(pos)): # cmd[act_list[idx]] = mcl.linear_p2c(act_list[idx], pos[idx]) # giustamente se clippo in tensione... # ValueError: A value in x_new is above the interpolation range. # volt_control = cmd[act_list[idx]] + ref_cmd[act_list[idx]] # if(volt_control > 1.): # print('act%d reaches min stroke!' % act_list[idx]) # cmd[act_list[idx]] = 1. - ref_cmd[act_list[idx]] # if(volt_control < 0.): # print('act%d reaches max stroke!' % act_list[idx]) # cmd[act_list[idx]] = 0. - ref_cmd[act_list[idx]] self._bmc.set_shape(cmd) #_get_wavefront_flat_subtracted wfflatsub = self._interf.wavefront( timeout_in_sec=self.TIME_OUT) - wfflat self._wfmeas = wfflatsub - np.ma.median(wfflatsub) self._wfmeas = np.ma.array(data=self._wfmeas, mask=mg._pupil_mask) # avoid nasty wf maps measured_valid_points = (self._wfmeas.mask == False).sum() ratio = measured_valid_points / expected_valid_points while(ratio < self.THRESHOLD_RATIO): print('Warning: Nasty map acquired!Reloading...') wfflatsub = self._interf.wavefront( timeout_in_sec=self.TIME_OUT) - wfflat self._wfmeas = wfflatsub - np.ma.median(wfflatsub) self._wfmeas = np.ma.array(data=self._wfmeas, mask=mg._pupil_mask) measured_valid_points = (self._wfmeas.mask == False).sum() ratio = measured_valid_points / expected_valid_points def plot_expected_and_measured_mode(self, wfexpected): plt.figure() plt.clf() plt.ion() plt.imshow(self._wfmeas / 1.e-9) plt.colorbar(label='[nm]') plt.title('Observed Mode', size=25) plt.figure() plt.clf() plt.ion() plt.imshow((self._wfmeas - wfexpected) / 1.e-9) plt.colorbar(label='[nm]') plt.title('Difference Observed-Expected', size=25) print("Observation:") amp_mode = self._wfmeas.std() amp_mode = amp_mode / 1.e-9 print("mode amplitude: %g nm rms " % amp_mode) fitting_meas_error = (self._wfmeas - wfexpected).std() fitting_meas_error = fitting_meas_error / 1.e-9 print("fitting error: %g nm rms " % fitting_meas_error) def _test_modes_measure(self, mcl, mg, Nmodes): j_modes = np.arange(2, Nmodes + 1, dtype='int') Nmodes = len(j_modes) a_j = self.AmpInNanometer * 1.e-9 A = self.AmpInNanometer expected_modes_stat = np.zeros((Nmodes, 1, 2)) measured_modes_stat = np.zeros((Nmodes, 1, 2)) for idx, j in enumerate(j_modes): j = int(j) mg.generate_zernike_mode(j, a_j) mg.build_fitted_wavefront() exp_wf_rms = mg._wfmode.std() exp_fitting_error = (mg._wffitted - mg._wfmode).std() self.execute_measure(mcl, mg) meas_wf_rms = self._wfmeas.std() meas_fitting_error = (self._wfmeas - mg._wfmode).std() plt.ioff() plt.figure() plt.clf() plt.imshow(mg._wfmode / 1.e-9) plt.colorbar(label='[nm]') plt.title('Generated Mode') plt.savefig(fname=self.fnpath + 'Z%d' % j + '_1gen' + '_A%d' % A + self.ffmt, bbox_inches='tight') plt.close() plt.figure() plt.clf() plt.imshow((mg._wffitted) / 1.e-9) plt.colorbar(label='[nm]') plt.title('Fitted') plt.savefig(fname=self.fnpath + 'Z%d' % j + '_2fitted' + '_A%d' % A + self.ffmt, bbox_inches='tight') plt.close() plt.figure() plt.clf() plt.imshow((mg._wffitted - mg._wfmode) / 1.e-9) plt.colorbar(label='[nm]') a = exp_fitting_error / 1.e-9 plt.title('Fitted - Generated: rms %g nm' % a) plt.savefig(fname=self.fnpath + 'Z%d' % j + '_3fitgendiff' + '_A%d' % A + self.ffmt, bbox_inches='tight') plt.close() plt.figure() plt.clf() plt.imshow((self._wfmeas) / 1.e-9) plt.colorbar(label='[nm]') plt.title('Observed Mode') plt.savefig(fname=self.fnpath + 'Z%d' % j + '_4obs' + '_A%d' % A + self.ffmt, bbox_inches='tight') plt.close() plt.figure() plt.clf() plt.imshow((self._wfmeas - mg._wfmode) / 1.e-9) plt.colorbar(label='[nm]') a = meas_fitting_error / 1.e-9 plt.title('Observed - Generated: rms %g nm' % a) plt.savefig(fname=self.fnpath + 'Z%d' % j + '_5obsgendiff' + '_A%d' % A + self.ffmt, bbox_inches='tight') plt.close() expected_modes_stat[idx, 0, 0] = exp_wf_rms expected_modes_stat[idx, 0, 1] = exp_fitting_error measured_modes_stat[idx, 0, 0] = meas_wf_rms measured_modes_stat[idx, 0, 1] = meas_fitting_error return expected_modes_stat, measured_modes_stat class SuitableActuatorsInPupilAnalyzer(): # TODO: data la pupilla e dati i modi che si vogliono generare, # determinare la lista degli attuatori/threshold che minimizzano il fitting error osservato # dei modi che si vogliono generare # to be continued... # white spectra THRESHOLD_SPAN = np.array([0.01, 0.1, 0.2, 0.3, 0.4, 0.5]) Aj_SPAN = 100.e-9 * np.arange(1, 6) # meters def __init__(self, mcl, mg, mm, pupil_mask_obj): self._calibration = mcl self._mode_generator = mg self._mode_measurer = mm self._pupil_mask = pupil_mask_obj def _test_measure(self, NumOfZmodes): # except Z1 jmodes = np.arange(2, NumOfZmodes + 1) self._generated_jmodes = jmodes num_of_gen_modes = len(jmodes) num_of_threshold = len(self.THRESHOLD_SPAN) num_of_ampj = len(self.Aj_SPAN) frame_shape = self._pupil_mask.mask().shape # per un dato threshold, modo e ampiezza misuro il # fitting error aspettato e misurato self._fitting_sigmas = np.zeros( (num_of_threshold, num_of_ampj, num_of_gen_modes, 2)) self._wfs_gen = np.ma.zeros( (num_of_threshold, num_of_ampj, num_of_gen_modes, frame_shape[0], frame_shape[1])) self._wfs_fitted = np.ma.zeros( (num_of_threshold, num_of_ampj, num_of_gen_modes, frame_shape[0], frame_shape[1])) self._wfs_meas = np.ma.zeros( (num_of_threshold, num_of_ampj, num_of_gen_modes, frame_shape[0], frame_shape[1])) self._valid_act_per_thres = [] for thres_idx, threshold in enumerate(self.THRESHOLD_SPAN): print("Threshold set to:%g" % threshold) self._mode_generator.THRESHOLD_RMS = threshold self._mode_generator.compute_reconstructor( mask_obj=self._pupil_mask) self._valid_act_per_thres.append( self._mode_generator._acts_in_pupil) for amp_idx, aj in enumerate(self.Aj_SPAN): print("Generating Zmodes with amplitude[m] set to: %g" % aj) for j_idx, j in enumerate(jmodes): self._mode_generator.generate_zernike_mode(int(j), aj) self._mode_generator.build_fitted_wavefront() # expected_amplitude = (self._mode_generator._wffitted).std() expected_fitting_error = ( self._mode_generator._wffitted - self._mode_generator._wfmode).std() self._mode_measurer.execute_measure( self._calibration, self._mode_generator) # measured_amplitude = (self._mode_measurer._wfmeas).std() measured_fitting_error = ( self._mode_measurer._wfmeas - self._mode_generator._wfmode).std() self._fitting_sigmas[thres_idx, amp_idx, j_idx] = expected_fitting_error, measured_fitting_error self._wfs_gen[thres_idx, amp_idx, j_idx] = self._mode_generator._wfmode self._wfs_fitted[thres_idx, amp_idx, j_idx] = self._mode_generator._wffitted self._wfs_meas[thres_idx, amp_idx, j_idx] = self._mode_measurer._wfmeas def _show_fitting_errors_for(self, threshold, amplitude, jmode): thres_idx = np.where(self.THRESHOLD_SPAN == threshold)[0][0] amp_idx = np.where(self.Aj_SPAN == amplitude)[0][0] j_idx = np.where(self._generated_jmodes == jmode)[0][0] print("Threshold = {}; Amplitude[m] = {}; Mode = Z{}".format( threshold, amplitude, jmode)) print("Expected fitting error[m] = {} \nMeasured fitting error[m] = {} ".format( self._fitting_sigmas[thres_idx, amp_idx, j_idx, 0], self._fitting_sigmas[thres_idx, amp_idx, j_idx, 1])) def _test_recontruct_zmodes_up_to(self, NumOfZmodes, threshold, AmplitudeInMeters): ''' per fissato threshold e AmplitudeInMeters, ricostruisce i primi NumOfZmodes modi di zernike che il mems, potenzialmente, e in grado di riprodurre ''' jmodes = np.arange(2, NumOfZmodes + 1) self._expected_fitting_error = np.zeros(len(jmodes)) self._mode_generator.THRESHOLD_RMS = threshold self._mode_generator.compute_reconstructor( mask_obj=self._pupil_mask) for idx, j in enumerate(jmodes): self._mode_generator.generate_zernike_mode( int(j), AmplitudeInMeters) self._mode_generator.build_fitted_wavefront() self._expected_fitting_error[idx] = ( self._mode_generator._wffitted - self._mode_generator._wfmode).std() print(self._mode_generator._acts_in_pupil) print('Suitable actuators #N = %d' % len(self._mode_generator._acts_in_pupil)) plt.figure() plt.clf() plt.plot(jmodes, self._expected_fitting_error / 1.e-9, 'bo-', label='expected') plt.title('expected fitting error for: amp = %g[m]' % AmplitudeInMeters + ' threshold = %g' % threshold, size=25) plt.xlabel(r'$Z_j$', size=25) plt.ylabel(r'$WF_{fit}-WF_{gen} rms [nm]$', size=25) plt.grid() plt.legend(loc='best') return self._expected_fitting_error def _test_compute_exp_fitting_err_up_to(self, NumOfZmodes, AmplitudeInMeters): ''' voglio capire fino a quale modo Zj potenzialmente il mems e in grado di riprodurre al variare del numero di attuatori(threshold della visibilita) e al variare dell ampiezza del modo ''' jmodes = np.arange(2, NumOfZmodes + 1) num_of_jmodes = len(jmodes) num_of_threshold = len(self.THRESHOLD_SPAN) num_of_valid_acts = np.zeros(len(self.THRESHOLD_SPAN)) fitting_error = np.zeros((num_of_threshold, num_of_jmodes)) for thres_idx, threshold in enumerate(self.THRESHOLD_SPAN): self._mode_generator.THRESHOLD_RMS = threshold self._mode_generator.compute_reconstructor( mask_obj=self._pupil_mask) num_of_valid_acts[thres_idx] = len( self._mode_generator._acts_in_pupil) for j_idx, j in enumerate(jmodes): self._mode_generator.generate_zernike_mode( int(j), AmplitudeInMeters) self._mode_generator.build_fitted_wavefront() fitting_error[thres_idx, j_idx] = ( self._mode_generator._wffitted - self._mode_generator._wfmode).std() plt.figure() plt.clf() plt.title('expected fitting error for: amp = %g[m]' % AmplitudeInMeters) self._test_plot_exp_fitting_err(fitting_error, num_of_valid_acts) return fitting_error, num_of_valid_acts def _test_plot_exp_fitting_err(self, fitting_error, num_of_valid_acts): jmodes = 2 + np.arange(fitting_error.shape[1]) for thres_idx, thres in enumerate(self.THRESHOLD_SPAN): plt.plot(jmodes, fitting_error[thres_idx] / 1.e-9, 'o-', label='thres=%g' % thres + '#Nact=%d' % num_of_valid_acts[thres_idx]) plt.xlabel(r'$Z_j$', size=25) plt.ylabel(r'$WF_{fit}-WF_{gen} rms [nm]$', size=25) plt.grid() plt.legend(loc='best') def _plot_fitting_errors_for(self, threshold, amplitude): thres_idx = np.where(self.THRESHOLD_SPAN == threshold)[0][0] amp_idx = np.where(self.Aj_SPAN == amplitude)[0][0] plt.figure() plt.clf() exp_fitting_err = self._fitting_sigmas[thres_idx, amp_idx, :, 0] meas_fitting_err = self._fitting_sigmas[thres_idx, amp_idx, :, 1] exp_fitting_err = exp_fitting_err / 1.e-9 meas_fitting_err = meas_fitting_err / 1.e-9 plt.plot(self._generated_jmodes, exp_fitting_err, 'bo-', label='expected') plt.plot(self._generated_jmodes, meas_fitting_err, 'ro-', label='measured') plt.legend(loc='best') plt.title('fitting error: amp[m]=%g' % amplitude + ' threshold=%g' % threshold, size=25) plt.xlabel('Zmode j index', size=25) plt.ylabel('WF rms [nm]', size=25) def save_results(self, fname): # syntax error see astropy hdr = fits.Header() #hdr['CMASK'] = self._pupil_mask #hdr['AMP_INM'] = self.Aj_SPAN fits.writeto(fname, self._fitting_sigmas, hdr) fits.append(fname, self.THRESHOLD_SPAN) fits.append(fname, self.Aj_SPAN) fits.append(fname, self._generated_jmodes) fits.append(fname, self._pupil_mask.mask().astype(int)) fits.append(fname, self._wfs_gen) fits.append(fname, self._wfs_fitted) fits.append(fname, self._wfs_meas) #fits.append(fname, self._valid_act_per_thres) @staticmethod def load(fname): header = fits.getheader(fname) hduList = fits.open(fname) sigma_data = hduList[0].data thres_data = hduList[1].data amp_data = hduList[2].data jmodes_data = hduList[3].data cmask2d = hduList[4].data.astype(bool) wfs_gen_data = hduList[5].data wfs_fit_data = hduList[6].data wfs_meas_data = hduList[7].data wfs_mask = np.ma.zeros(wfs_gen_data.shape) wfs_mask[:, :, :] = cmask2d ma_wfsgen = np.ma.array(data=wfs_gen_data, mask=wfs_mask) ma_wfsfit = np.ma.array(data=wfs_fit_data, mask=wfs_mask) ma_wfsmeas = np.ma.array(data=wfs_meas_data, mask=wfs_mask) #valid_act_data = hduList[4].data return{'sigmas': sigma_data, 'thres': thres_data, 'amp': amp_data, 'jmode': jmodes_data, 'wfsmask': wfs_mask, 'wfsgen': ma_wfsgen, 'wfsfit': ma_wfsfit, 'wfsmeas': ma_wfsmeas #'valid_acts': valid_act_data } class _test_saipa_load(): def __init__(self, fname): res = SuitableActuatorsInPupilAnalyzer.load(fname) self._sigmas = res['sigmas'] self._threshold_span = res['thres'] self._amplitude_span = res['amp'] self._jmodes = res['jmode'] self._wfs_mask = res['wfsmask'] self._wfs_gen = res['wfsgen'] self._wfs_fitted = res['wfsfit'] self._wfs_meas = res['wfsmeas'] self._wfs_mask = res['wfsmask'] #self._act_list_per_thres = res['valid_acts'] def _test_plot_meas_vs_exp_fitting_errors(self): for amp_idx, amplitude in enumerate(self._amplitude_span): plt.figure() plt.clf() for thres_idx, threshold in enumerate(self._threshold_span): exp_fitting_err = self._sigmas[thres_idx, amp_idx, :, 0] meas_fitting_err = self._sigmas[thres_idx, amp_idx, :, 1] exp_fitting_err = exp_fitting_err / 1.e-9 meas_fitting_err = meas_fitting_err / 1.e-9 plt.plot(self._jmodes, exp_fitting_err, '.--', label='exp: threshold=%g' % threshold) plt.plot(self._jmodes, meas_fitting_err, 'o-', label='meas: threshold=%g' % threshold, color=plt.gca().lines[-1].get_color()) plt.legend(loc='best') plt.title('fitting error: amp[m]=%g' % amplitude, size=25) plt.xlabel(r'$Z_j$', size=25) plt.ylabel(r'$WF_-WF_{gen} rms [nm]$', size=25) plt.grid() class TestSvd(): def __init__(self, mg): self.mg = mg # mg = ModeGenerator self.u, self.s, self.vh = np.linalg.svd( self.mg._im, full_matrices=False) def autovettori(self, eigenvalue_index): wf = np.zeros((486, 640)) wf[self.mg._imask == False] = np.dot( self.mg._im, self.vh.T[:, eigenvalue_index]) return np.ma.array(wf, mask=self.mg._imask) def rec(self, eigenvalue_to_use): large = np.zeros(self.s.shape).astype(bool) large[eigenvalue_to_use] = True s = np.divide(1, self.s, where=large) s[~large] = 0 res = np.matmul(np.transpose(self.vh), np.multiply( s[..., np.newaxis], np.transpose(self.u))) return res def animate(self, interval=100): import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig = plt.figure() self._ani_index = 0 im = plt.imshow(self.autovettori(0), animated=True) def updatefig(*args): self._ani_index += 1 im.set_array(self.autovettori(self._ani_index % 140)) plt.title("Eigenmode %d" % self._ani_index) return im, self._ani = animation.FuncAnimation( fig, updatefig, interval=interval, blit=True) plt.show() class TestRepeatedMeasures(): ffmt = '.fits' fpath = 'prova/misure_ripetute/trm_' def __init__(self, interferometer, mems_deformable_mirror): self._interf = interferometer self._bmc = mems_deformable_mirror def _execute_repeated_measure(self, act_list, Ntimes): act_list =
np.array(act_list)
numpy.array
"""Functions for working with features in a raster dataset.""" import logging import warnings import math import os import numpy as np import rasterio from rasterio._features import _shapes, _sieve, _rasterize, _bounds from rasterio.crs import CRS from rasterio.dtypes import validate_dtype, can_cast_dtype, get_minimum_dtype from rasterio.enums import MergeAlg from rasterio.env import ensure_env from rasterio.rio.helpers import coords from rasterio.transform import Affine from rasterio.transform import IDENTITY, guard_transform from rasterio.windows import Window from rasterio import warp log = logging.getLogger(__name__) @ensure_env def geometry_mask( geometries, out_shape, transform, all_touched=False, invert=False): """Create a mask from shapes. By default, mask is intended for use as a numpy mask, where pixels that overlap shapes are False. Parameters ---------- geometries : iterable over geometries (GeoJSON-like objects) out_shape : tuple or list Shape of output numpy ndarray. transform : Affine transformation object Transformation from pixel coordinates of `source` to the coordinate system of the input `shapes`. See the `transform` property of dataset objects. all_touched : boolean, optional If True, all pixels touched by geometries will be burned in. If false, only pixels whose center is within the polygon or that are selected by Bresenham's line algorithm will be burned in. invert: boolean, optional If True, mask will be True for pixels that overlap shapes. False by default. Returns ------- out : numpy ndarray of type 'bool' Result """ fill, mask_value = (0, 1) if invert else (1, 0) return rasterize( geometries, out_shape=out_shape, transform=transform, all_touched=all_touched, fill=fill, default_value=mask_value).astype('bool') @ensure_env def shapes(source, mask=None, connectivity=4, transform=IDENTITY): """Yield (polygon, value for each set of adjacent pixels of the same value. Parameters ---------- source : array or dataset object opened in 'r' mode or Band or tuple(dataset, bidx) Data type must be one of rasterio.int16, rasterio.int32, rasterio.uint8, rasterio.uint16, or rasterio.float32. mask : numpy ndarray or rasterio Band object, optional Values of False or 0 will be excluded from feature generation Must evaluate to bool (rasterio.bool_ or rasterio.uint8) connectivity : int, optional Use 4 or 8 pixel connectivity for grouping pixels into features transform : Affine transformation, optional If not provided, feature coordinates will be generated based on pixel coordinates Yields ------- tuple A pair of (polygon, value) for each feature found in the image. Polygons are GeoJSON-like dicts and the values are the associated value from the image, in the data type of the image. Note: due to floating point precision issues, values returned from a floating point image may not exactly match the original values. Notes ----- The amount of memory used by this algorithm is proportional to the number and complexity of polygons produced. This algorithm is most appropriate for simple thematic data. Data with high pixel-to-pixel variability, such as imagery, may produce one polygon per pixel and consume large amounts of memory. """ transform = guard_transform(transform) for s, v in _shapes(source, mask, connectivity, transform): yield s, v @ensure_env def sieve(source, size, out=None, mask=None, connectivity=4): """Replace small polygons in `source` with value of their largest neighbor. Polygons are found for each set of neighboring pixels of the same value. Parameters ---------- source : array or dataset object opened in 'r' mode or Band or tuple(dataset, bidx) Must be of type rasterio.int16, rasterio.int32, rasterio.uint8, rasterio.uint16, or rasterio.float32 size : int minimum polygon size (number of pixels) to retain. out : numpy ndarray, optional Array of same shape and data type as `source` in which to store results. mask : numpy ndarray or rasterio Band object, optional Values of False or 0 will be excluded from feature generation Must evaluate to bool (rasterio.bool_ or rasterio.uint8) connectivity : int, optional Use 4 or 8 pixel connectivity for grouping pixels into features Returns ------- out : numpy ndarray Result Notes ----- GDAL only supports values that can be cast to 32-bit integers for this operation. The amount of memory used by this algorithm is proportional to the number and complexity of polygons found in the image. This algorithm is most appropriate for simple thematic data. Data with high pixel-to-pixel variability, such as imagery, may produce one polygon per pixel and consume large amounts of memory. """ if out is None: out = np.zeros(source.shape, source.dtype) _sieve(source, size, out, mask, connectivity) return out @ensure_env def rasterize( shapes, out_shape=None, fill=0, out=None, transform=IDENTITY, all_touched=False, merge_alg=MergeAlg.replace, default_value=1, dtype=None): """Return an image array with input geometries burned in. Parameters ---------- shapes : iterable of (geometry, value) pairs or iterable over geometries. `geometry` can either be an object that implements the geo interface or GeoJSON-like object. out_shape : tuple or list with 2 integers Shape of output numpy ndarray. fill : int or float, optional Used as fill value for all areas not covered by input geometries. out : numpy ndarray, optional Array of same shape and data type as `source` in which to store results. transform : Affine transformation object, optional Transformation from pixel coordinates of `source` to the coordinate system of the input `shapes`. See the `transform` property of dataset objects. all_touched : boolean, optional If True, all pixels touched by geometries will be burned in. If false, only pixels whose center is within the polygon or that are selected by Bresenham's line algorithm will be burned in. merge_alg : str, optional Merge algorithm to use. One of: MergeAlg.replace (default): the new value will overwrite the existing value. MergeAlg.add: the new value will be added to the existing raster. default_value : int or float, optional Used as value for all geometries, if not provided in `shapes`. dtype : rasterio or numpy data type, optional Used as data type for results, if `out` is not provided. Returns ------- out : numpy ndarray Results Notes ----- Valid data types for `fill`, `default_value`, `out`, `dtype` and shape values are rasterio.int16, rasterio.int32, rasterio.uint8, rasterio.uint16, rasterio.uint32, rasterio.float32, rasterio.float64. """ valid_dtypes = ( 'int16', 'int32', 'uint8', 'uint16', 'uint32', 'float32', 'float64' ) def format_invalid_dtype(param): return '{0} dtype must be one of: {1}'.format( param, ', '.join(valid_dtypes) ) def format_cast_error(param, dtype): return '{0} cannot be cast to specified dtype: {1}'.format(param, dtype) if fill != 0: fill_array = np.array([fill]) if not validate_dtype(fill_array, valid_dtypes): raise ValueError(format_invalid_dtype('fill')) if dtype is not None and not can_cast_dtype(fill_array, dtype): raise ValueError(format_cast_error('fill', dtype)) if default_value != 1: default_value_array = np.array([default_value]) if not validate_dtype(default_value_array, valid_dtypes): raise ValueError(format_invalid_dtype('default_value')) if dtype is not None and not can_cast_dtype(default_value_array, dtype): raise ValueError(format_cast_error('default_vaue', dtype)) if dtype is not None and np.dtype(dtype).name not in valid_dtypes: raise ValueError(format_invalid_dtype('dtype')) valid_shapes = [] shape_values = [] for index, item in enumerate(shapes): if isinstance(item, (tuple, list)): geom, value = item else: geom = item value = default_value geom = getattr(geom, '__geo_interface__', None) or geom # geom must be a valid GeoJSON geometry type and non-empty if not is_valid_geom(geom): raise ValueError( 'Invalid geometry object at index {0}'.format(index) ) if geom['type'] == 'GeometryCollection': # GeometryCollections need to be handled as individual parts to # avoid holes in output: # https://github.com/mapbox/rasterio/issues/1253. # Only 1-level deep since GeoJSON spec discourages nested # GeometryCollections for part in geom['geometries']: valid_shapes.append((part, value)) else: valid_shapes.append((geom, value)) shape_values.append(value) if not valid_shapes: raise ValueError('No valid geometry objects found for rasterize') shape_values = np.array(shape_values) if not validate_dtype(shape_values, valid_dtypes): raise ValueError(format_invalid_dtype('shape values')) if dtype is None: dtype = get_minimum_dtype(np.append(shape_values, fill)) elif not can_cast_dtype(shape_values, dtype): raise ValueError(format_cast_error('shape values', dtype)) if out is not None: if np.dtype(out.dtype).name not in valid_dtypes: raise ValueError(format_invalid_dtype('out')) if not can_cast_dtype(shape_values, out.dtype): raise ValueError(format_cast_error('shape values', out.dtype.name)) elif out_shape is not None: if len(out_shape) != 2: raise ValueError('Invalid out_shape, must be 2D') out = np.empty(out_shape, dtype=dtype) out.fill(fill) else: raise ValueError('Either an out_shape or image must be provided') if min(out.shape) == 0: raise ValueError("width and height must be > 0") transform = guard_transform(transform) _rasterize(valid_shapes, out, transform, all_touched, merge_alg) return out def bounds(geometry, north_up=True, transform=None): """Return a (left, bottom, right, top) bounding box. From Fiona 1.4.8. Modified to return bbox from geometry if available. Parameters ---------- geometry: GeoJSON-like feature (implements __geo_interface__), feature collection, or geometry. Returns ------- tuple Bounding box: (left, bottom, right, top) """ geometry = getattr(geometry, '__geo_interface__', None) or geometry if 'bbox' in geometry: return tuple(geometry['bbox']) geom = geometry.get('geometry') or geometry return _bounds(geom, north_up=north_up, transform=transform) def geometry_window(dataset, shapes, pad_x=0, pad_y=0, north_up=True, rotated=False, pixel_precision=3): """Calculate the window within the raster that fits the bounds of the geometry plus optional padding. The window is the outermost pixel indices that contain the geometry (floor of offsets, ceiling of width and height). If shapes do not overlap raster, a WindowError is raised. Parameters ---------- dataset: dataset object opened in 'r' mode Raster for which the mask will be created. shapes: iterable over geometries. A geometry is a GeoJSON-like object or implements the geo interface. Must be in same coordinate system as dataset. pad_x: float Amount of padding (as fraction of raster's x pixel size) to add to left and right side of bounds. pad_y: float Amount of padding (as fraction of raster's y pixel size) to add to top and bottom of bounds. north_up: bool If True (default), the origin point of the raster's transform is the northernmost point and y pixel values are negative. rotated: bool If true, some rotation terms exist in the dataset transform (this requires special attention.) pixel_precision: int Number of places of rounding precision for evaluating bounds of shapes. Returns ------- window: rasterio.windows.Window instance """ if pad_x: pad_x = abs(pad_x * dataset.res[0]) if pad_y: pad_y = abs(pad_y * dataset.res[1]) if not rotated: all_bounds = [bounds(shape, north_up=north_up) for shape in shapes] lefts, bottoms, rights, tops = zip(*all_bounds) left = min(lefts) - pad_x right = max(rights) + pad_x if north_up: bottom = min(bottoms) - pad_y top = max(tops) + pad_y else: bottom = max(bottoms) + pad_y top = min(tops) - pad_y else: # get the bounds in the pixel domain by specifying a transform to the bounds function all_bounds_px = [bounds(shape, transform=~dataset.transform) for shape in shapes] # get left, right, top, and bottom as above lefts, bottoms, rights, tops = zip(*all_bounds_px) left = min(lefts) - pad_x right = max(rights) + pad_x top = min(tops) - pad_y bottom = max(bottoms) + pad_y # do some clamping if there are any values less than zero or greater than dataset shape left = max(0, left) top = max(0, top) right = min(dataset.shape[1], right) bottom = min(dataset.shape[0], bottom) # convert the bounds back to the CRS domain left, top = (left, top) * dataset.transform right, bottom = (right, bottom) * dataset.transform window = dataset.window(left, bottom, right, top) window = window.round_offsets(op='floor', pixel_precision=pixel_precision) window = window.round_shape(op='ceil', pixel_precision=pixel_precision) # Make sure that window overlaps raster raster_window = Window(0, 0, dataset.width, dataset.height) # This will raise a WindowError if windows do not overlap window = window.intersection(raster_window) return window def is_valid_geom(geom): """ Checks to see if geometry is a valid GeoJSON geometry type or GeometryCollection. Geometries must be non-empty, and have at least x, y coordinates. Note: only the first coordinate is checked for validity. Parameters ---------- geom: an object that implements the geo interface or GeoJSON-like object Returns ------- bool: True if object is a valid GeoJSON geometry type """ geom_types = {'Point', 'MultiPoint', 'LineString', 'MultiLineString', 'Polygon', 'MultiPolygon'} if 'type' not in geom: return False try: geom_type = geom['type'] if geom_type not in geom_types.union({'GeometryCollection'}): return False except TypeError: return False if geom_type in geom_types: if 'coordinates' not in geom: return False coords = geom['coordinates'] if geom_type == 'Point': # Points must have at least x, y return len(coords) >= 2 if geom_type == 'MultiPoint': # Multi points must have at least one point with at least x, y return len(coords) > 0 and len(coords[0]) >= 2 if geom_type == 'LineString': # Lines must have at least 2 coordinates and at least x, y for # a coordinate return len(coords) >= 2 and len(coords[0]) >= 2 if geom_type == 'MultiLineString': # Multi lines must have at least one LineString return (len(coords) > 0 and len(coords[0]) >= 2 and len(coords[0][0]) >= 2) if geom_type == 'Polygon': # Polygons must have at least 1 ring, with at least 4 coordinates, # with at least x, y for a coordinate return (len(coords) > 0 and len(coords[0]) >= 4 and len(coords[0][0]) >= 2) if geom_type == 'MultiPolygon': # Muti polygons must have at least one Polygon return (len(coords) > 0 and len(coords[0]) > 0 and len(coords[0][0]) >= 4 and len(coords[0][0][0]) >= 2) if geom_type == 'GeometryCollection': if 'geometries' not in geom: return False if not len(geom['geometries']) > 0: # While technically valid according to GeoJSON spec, an empty # GeometryCollection will cause issues if used in rasterio return False for g in geom['geometries']: if not is_valid_geom(g): return False # short-circuit and fail early return True def dataset_features( src, bidx=None, sampling=1, band=True, as_mask=False, with_nodata=False, geographic=True, precision=-1): """Yield GeoJSON features for the dataset The geometries are polygons bounding contiguous regions of the same raster value. Parameters ---------- src: Rasterio Dataset bidx: int band index sampling: int (DEFAULT: 1) Inverse of the sampling fraction; a value of 10 decimates band: boolean (DEFAULT: True) extract features from a band (True) or a mask (False) as_mask: boolean (DEFAULT: False) Interpret band as a mask and output only one class of valid data shapes? with_nodata: boolean (DEFAULT: False) Include nodata regions? geographic: str (DEFAULT: True) Output shapes in EPSG:4326? Otherwise use the native CRS. precision: int (DEFAULT: -1) Decimal precision of coordinates. -1 for full float precision output Yields ------ GeoJSON-like Feature dictionaries for shapes found in the given band """ if bidx is not None and bidx > src.count: raise ValueError('bidx is out of range for raster') img = None msk = None # Adjust transforms. transform = src.transform if sampling > 1: # Determine the target shape (to decimate) shape = (int(math.ceil(src.height / sampling)), int(math.ceil(src.width / sampling))) # Calculate independent sampling factors x_sampling = src.width / shape[1] y_sampling = src.height / shape[0] # Decimation of the raster produces a georeferencing # shift that we correct with a translation. transform *= Affine.translation( src.width % x_sampling, src.height % y_sampling) # And follow by scaling. transform *= Affine.scale(x_sampling, y_sampling) # Most of the time, we'll use the valid data mask. # We skip reading it if we're extracting every possible # feature (even invalid data features) from a band. if not band or (band and not as_mask and not with_nodata): if sampling == 1: msk = src.read_masks(bidx) else: msk_shape = shape if bidx is None: msk = np.zeros( (src.count,) + msk_shape, 'uint8') else: msk =
np.zeros(msk_shape, 'uint8')
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 26 08:48:00 2018 @author: prmiles """ from pymcmcstat.structures.ParameterSet import ParameterSet from pymcmcstat.samplers.Metropolis import Metropolis import test.general_functions as gf import unittest from mock import patch import numpy as np # -------------------------- # Evaluation # -------------------------- class UnpackSet(unittest.TestCase): def test_unpack_set(self): CL = {'theta':1.0, 'ss': 1.0, 'prior':0.0, 'sigma2': 0.0} parset = ParameterSet(theta = CL['theta'], ss = CL['ss'], prior = CL['prior'], sigma2 = CL['sigma2']) MA = Metropolis() oldpar, ss, oldprior, sigma2 = MA.unpack_set(parset) NL = {'theta':oldpar, 'ss': ss, 'prior':oldprior, 'sigma2': sigma2} self.assertDictEqual(CL,NL) # -------------------------- class CalculatePosteriorRatio(unittest.TestCase): @classmethod def setup_size_2(cls): MA = Metropolis() ss1 = np.array([1., 2.]) ss2 =
np.array([1.1, 2.4])
numpy.array
import numpy as np import progressbar import os from sklearn.model_selection import train_test_split ALL_CPU = -1 def read_dataset_and_reshape_for_conv(X_list=None, y_list=None, X_paths=None, y_paths=None, validation_size=None): """ Reads X and y from given paths and reshapes them for applying in convolutional networks. If X_list and y_list are given, X_paths and y_paths are ignored. Reshaping is done by splitting different letters in separate channels, eg. letter 'A' has it's own channel, letter 'C' has it's own channel, etc. :param X_list: list of X pileup dataset :type X_list: list of np.ndarray :param y_list: list of y pileup dataset :type y_list: list of np.ndarray :param X_paths: list of paths to X data :type X_paths: list of str :param y_paths: list of paths to y data :type y_paths: list of str :param validation_size: specifies percentage of dataset used for validation :type validation_size: float :return: If validation_size is None, returns just X and y reshaped. If validation_size is float, returns a tuple in following order: (X, y, X_train, X_validate, y_train, y_validate). :rtype: tuple of np.ndarray """ if validation_size is not None: if validation_size < 0 or validation_size > 1.0: raise ValueError('Validation size must be float from [0, 1], but {}' ' given.'.format(validation_size)) if X_paths is not None: if not len(X_paths) == 1: raise ValueError( 'Validation size can only be provided if there is only ' 'one X path and y_path.') if not ((X_list is None and y_list is None) or (X_paths is None and y_paths is None)): raise ValueError('Either X_list and y_list or X_paths and y_paths ' 'must be provided!') if X_list is None and y_list is None: X_list = [np.load(X_path) for X_path in X_paths] y_list = [np.load(y_path) for y_path in y_paths] reshaped_X_list, reshaped_y_list = list(), list() for X, y in zip(X_list, y_list): print('X shape before reshaping:', X.shape) print('y shape before reshaping:', y.shape) new_X = list() neighbourhood_size = X[0].shape[0] # Number of columns is equal to the number of letters in dataset (A, C, # G, T, I, D, ...). num_columns = X[0].shape[1] num_data = X.shape[0] with progressbar.ProgressBar(max_value=num_data) as progress_bar: for i, xi in enumerate(X): new_xi = np.dstack( [xi[:, col_index].reshape(neighbourhood_size, 1) for col_index in range(num_columns)] ) new_X.append(new_xi) progress_bar.update(i) new_X = np.array(new_X) X = new_X print('X shape after reshaping:', X.shape) print('y shape after reshaping:', y.shape) reshaped_X_list.append(X), reshaped_y_list.append(y) if validation_size is None: return reshaped_X_list, reshaped_y_list else: # There is only one X and y (because, all datasets are concatenated # for training). X, y = reshaped_X_list[0], reshaped_y_list[0] print('Splitting to train and validation set.') X_train, X_validate, y_train, y_validate = train_test_split( X, y, test_size=validation_size) print('X_train shape:', X_train.shape) print('X_validate shape:', X_validate.shape) print('y_train:', y_train.shape) print('y_validate:', y_validate.shape) return X, y, X_train, X_validate, y_train, y_validate def _calc_empty_rows(X): """ Calculates which rows in X are empty rows (i.e. all numbers in that row are equal to 0). :param X: 2-D data :type X: np.ndarray :return: 1-D array with 1s on positions which correspond to empty rows. :rtype: np.ndarray """ empty_row = np.zeros((1, X.shape[1])) # size is second axis of X empty_rows = [int(v) for v in np.all(empty_row == X, axis=1)] return empty_rows def create_dataset_with_neighbourhood(neighbourhood_size, mode, X_list=None, y_list=None, X_paths=None, y_paths=None, save_directory_path=None): """ Creates datasets by mixing all pileups with given neighbourhood_size. If X_list and y_list are given, X_paths and y_paths are ignored. Datasets are concatenated after extracting neighbourhood_size positions in given datasets separately if 'training' mode is selected. If 'inference' mode is selected, X_paths are assumed to be paths to different contigs of same Dataset at i-th position in X_paths should match given labels at i-th position in y_paths. If save_directory_path is provided, generated pileups are stored in that directory. :param neighbourhood_size: number of neighbours to use from one size (eg. if you set this parameter to 3, it will take 3 neighbours from both sides so total number of positions in one example will be 7 - counting the middle position) :type neighbourhood_size: int :param mode: either 'training' or 'inference' string, representing the mode for pileups generation :type mode: str :param X_list: list of X pileup dataset :type X_list: list of np.ndarray :param y_list: list of y pileup dataset :type y_list: list of np.ndarray :param X_paths: list of paths to X pileup dataset :type X_paths: list of str :param y_paths: list of paths to y pileup dataset :type y_paths: list of str :param save_directory_path: path to directory for storing dataset :type save_directory_path: str :return: :rtype tuple of np.ndarray or tuple of np.array and list of str """ _check_mode(mode) if not ((X_list is None and y_list is None) or (X_paths is None and y_paths is None)): raise ValueError('Either X_list and y_list or X_paths and y_paths ' 'must be provided!') # If training mode is selected, all pileups will be concatenated. if mode == 'training': total_pileups = 1 else: if X_list is not None: total_pileups = len(X_list) else: total_pileups = len(X_paths) X_save_paths, y_save_paths = None, None if save_directory_path is not None: X_save_paths, y_save_paths = _generate_save_paths(neighbourhood_size, save_directory_path, total_pileups) X_neighbourhood_list, y_neighbourhood_list = list(), list() if X_list is None and y_list is None: X_list = [np.load(X_path) for X_path in X_paths] y_list = [np.load(y_path) for y_path in y_paths] total_length = np.sum([curr_X.shape[0] for curr_X in X_list]) progress_counter = 0 with progressbar.ProgressBar(max_value=total_length) as progress_bar: for pileup_pair_id, (curr_X, curr_y) in enumerate(zip(X_list, y_list)): # Removing last column which contains everything which was not # 'A' nor 'C' nor 'G' nor 'T'. curr_y = curr_y[:, :-1] new_curr_X, new_curr_y = list(), list() empty_rows = _calc_empty_rows(curr_X) print('Creating dataset with neighbourhood ...') # TODO(ajuric): Check if this can be speed up. for i in range(curr_X.shape[0]): progress_bar.update(progress_counter) progress_counter += 1 if empty_rows[i] == 1: continue # current row is empty row if i < neighbourhood_size or \ i >= curr_X.shape[0] - neighbourhood_size: # Current position is not suitable to build an example. continue zeros_to_left =
np.sum(empty_rows[i - neighbourhood_size:i])
numpy.sum
import os import datetime import json from PIL import Image import numpy as np from glob import glob from PIL import Image, ImageDraw from scipy import ndimage, misc import scipy.misc import imageio import cv2 # http://scikit-image.org/docs/dev/auto_examples/filters/plot_denoise.html from skimage.util import random_noise """ IMAGE PROCESSING - read_dataset_image_path - read_dataset_images - read_lst_images - read_image - get_noisy_data """ def get_noisy_data(data): lst_noisy = [] sigma = 0.155 for image in data: noisy = random_noise(image, var=sigma ** 2) lst_noisy.append(noisy) return np.array(lst_noisy) def read_dataset_image_path(s_dataset_url, n_number_count=None): lst_dir_inner_images_path = [] for s_dir_path in glob(os.path.join(s_dataset_url, "*")): for s_image_path in glob(os.path.join(s_dir_path, "*")): lst_dir_inner_images_path.append(s_image_path) if n_number_count is not None: if len(lst_dir_inner_images_path) >= n_number_count: return np.array(lst_dir_inner_images_path) return lst_dir_inner_images_path def read_image_w_noise(s_image_path): tmp_image = read_image(s_image_path) sigma = 0.155 noisy = random_noise(tmp_image, var=sigma ** 2) return np.array(noisy) def read_lst_images_w_noise2(lst_images_path, nd_patch_size, n_patch_step): lst_images = [] for image_path in lst_images_path: lst_images.append(read_image_w_noise(image_path)) return np.array(lst_images) def read_lst_images_w_noise(lst_images_path, nd_patch_size, n_patch_step): lst_slices = [] lst_location = [] for image_path in lst_images_path: tmp_img = read_image_w_noise(image_path) tmp_slices, tmp_location_slice = get_image_patches( [tmp_img], nd_patch_size, n_patch_step ) lst_slices.extend(tmp_slices) lst_location.extend(tmp_location_slice) return np.array(lst_slices), lst_location def read_lst_images(lst_images_path, nd_patch_size, n_patch_step, b_work_on_patch=True): if b_work_on_patch: lst_slices = [] lst_location = [] for image_path in lst_images_path: tmp_img = read_image(image_path) tmp_slices, tmp_location_slice = get_image_patches( [tmp_img], nd_patch_size, n_patch_step ) lst_slices.extend(tmp_slices) lst_location.extend(tmp_location_slice) return lst_slices, lst_location else: lst_images = [read_image(image_path) for image_path in lst_images_path] return np.array(lst_images) def read_dataset_images(s_dataset_url, nd_img_size, n_number_count): lst_images = [] for s_dir_path in glob(os.path.join(s_dataset_url, "*")): for s_image_path in glob(os.path.join(s_dir_path, "*")): lst_images.append(read_image(s_image_path, nd_img_size)) if n_number_count is not None: if len(lst_images) >= n_number_count: return np.array(lst_images) return np.array(lst_images) def read_image(s_image_path): tmp_image = cv2.imread(s_image_path) tmp_image = cv2.cvtColor(tmp_image, cv2.COLOR_BGR2GRAY) tmp_image = ( tmp_image[ int(0.125 * 1080) : int(0.875 * 1080), int(0.125 * 720) : int(0.875 * 720) ] / 127.5 - 1.0 ) tmp_image = cv2.resize(tmp_image, (180, 270), interpolation=cv2.INTER_NEAREST) tmp_image = tmp_image[..., np.newaxis] return np.array(tmp_image) def get_patch_video(lst_images, nd_patch_size, nd_stride, n_depth): lst_video_slice = [] lst_video_location = [] n_video_numbers = len(lst_images) // n_depth flag = True n_video_slices_number = 0 for i in range(0, n_video_numbers): tmp_video = read_lst_images(lst_images[i * n_depth : ((i + 1) * n_depth)]) lst_tmp_video, lst_tmp_location = get_image_patches( tmp_video, nd_patch_size, nd_stride ) if flag: flag = False n_video_slices_number = len(lst_tmp_video) lst_video_slice.extend(lst_tmp_video) lst_video_location.extend(lst_tmp_location) print("video patches is ready ({} patches)".format(len(lst_video_slice))) return np.array(lst_video_slice), lst_video_location def get_image_patches(image_src, nd_patch_size, nd_stride): image_src = np.array(image_src) lst_patches = [] lst_locations = [] n_stride_h = nd_stride[0] n_stride_w = nd_stride[1] tmp_frame = image_src[0].shape n_frame_h = tmp_frame[0] n_frame_w = tmp_frame[1] # for i in range(0,n_frame_h,n_stride_h): # np.array(lst_patches[10])[0,:,:] flag_permission_h = flag_permission_w = True i = 0 while i < n_frame_h and flag_permission_h: flag_permission_w = True start_h = i end_h = i + nd_patch_size[0] if end_h > n_frame_h: end_h = n_frame_h start_h = n_frame_h - nd_patch_size[0] # break # for j in range(0,n_frame_w,n_stride_w): j = 0 while j < n_frame_w and flag_permission_w: start_w = j end_w = j + nd_patch_size[1] if end_w > n_frame_w: end_w = n_frame_w start_w = n_frame_w - nd_patch_size[1] # break # print(start_w,end_w,'**',start_h,end_h) tmp_slices = np.array(image_src[:, start_h:end_h, start_w:end_w]) lst_patches.append(tmp_slices) lst_locations.append([start_h, start_w]) j += n_stride_w if j > n_frame_w: flag_permission_w = False j = n_frame_w - nd_patch_size[1] i += n_stride_h if i > n_frame_h: flag_permission_h = False i = n_frame_h - nd_patch_size[0] return np.array(lst_patches), lst_locations def kh_isDirExist(path): if not os.path.exists(path): os.makedirs(path) print("path ", path, " is created") return def kh_crop(img, nStartX, nEndX, nStartY, nEndY): return img[nStartY:nEndY, nStartX:nEndX] def kh_extractPatches(sImg, nStride=1, ndSliceSize=(10, 10), bSaveImages=False): i = 0 j = 0 imgArray = np.zeros([Image.open(sImg[0]).size[1], Image.open(sImg[0]).size[0], 3]) while i < len(sImg): # read Images imgTmp1 = Image.open(sImg[i]) imgTmp2 = Image.open(sImg[i + 1]) # Image to Numpy array imgArray1 = np.array(imgTmp1) imgArray2 = np.array(imgTmp1) A = imgArray1 A = (A - np.mean(A)) / np.std(A) imgArray1 = A A = imgArray2 A = (A - np.mean(A)) / np.std(A) imgArray2 = A imgArray[:, :, j] = np.add(imgArray1, imgArray2) / 2 i = i + 2 j = j + 1 # ========================================================= nImgArrayH = imgArray.shape[0] nImgArrayW = imgArray.shape[1] best_rg = imgArray[100 : nImgArrayH - 14, 0:nImgArrayW] # best_rg = imgArray[0:nImgArrayH, 0:nImgArrayW] ndMainSize = (best_rg.shape[0], best_rg.shape[1]) ndSliceSizeWidth = ndSliceSize[0] ndSliceSizeHeight = ndSliceSize[1] # Copy master path = os.path.dirname(sImg[0]) base = os.path.basename(sImg[0]) # slice the image to 1000 x 1000 tiles slice_size = ndSliceSizeWidth lst_fNamesTmp = [] lst_Patches = [] beforeViewedX = [] beforeViewedY = [] for y in range(0, nImgArrayH - ndSliceSizeHeight + 1, nStride): for x in range(0, nImgArrayW - ndSliceSizeWidth + 1, nStride): # fname = os.path.join(path, sPrefixOutput+"/p-%d-%d-%s" % (x, y, base)) # basePosition = "%s--[%d,%d]--(%d,%d)" % (sFileAddress,ndSliceSizeWidth,ndSliceSizeHeight,x, y) # print("Creating tile:" + basePosition) minX = x minY = y if (x + slice_size) >= nImgArrayW: minX = x - slice_size - 1 else: minX = x if (y + slice_size) >= nImgArrayH: minY = y - slice_size - 1 else: minY = y mx = min(x + slice_size, nImgArrayW) my = min(y + slice_size, nImgArrayH) if (mx or x) > nImgArrayW and (my or y) > nImgArrayH: continue sSaveBasePatchImg = "./" # +'/' + base basePosition = "(%d,%d)" % (minX, minY) saveAddress = ( sSaveBasePatchImg + "/" + path[(len(path) - 8) : len(path)] + "_" + base[0:3] + "_" + basePosition ) # buffer = Image.new("RGB", [slice_size, slice_size], (255, 255, 255)) # buffer = Image.new("YCbCr", [slice_size, slice_size]) # tile = imgTmp.crop((minX, minY, mx, my)) crp = kh_crop(imgArray, minX, mx, minY, my) tile = np.resize(crp, [slice_size, slice_size, 3]) # tmpArr=np.array(tile) # tile = Image.fromarray(tmpArr) # buffer.paste(tile.resize(ndSliceSize), (0, 0)) if bSaveImages: kh_isDirExist(sSaveBasePatchImg) # buffer.save(saveAddress, "JPEG") npTile = np.array(tile.resize(ndSliceSize)) scipy.misc.imsave(saveAddress + ".jpg", npTile) if True: # basePosition not in lst_fNamesTmp: lst_fNamesTmp.append(basePosition) # Image to Numpy array # imgBuffer = np.array(buffer) # imgBuffer = np.expand_dims(np.array(tile.resize(ndSliceSize)), axis=-1) # expand_tile = np.expand_dims(tile,-1) # buffer = Image.new("RGB", [slice_size, slice_size], (100, 10, 100)) # buffer.paste(Image.fromarray(tile)) # img = np.zeros([ndSliceSizeWidth, ndSliceSizeHeight, 3]) # img[:, :, 0] = tile # img[:, :, 1] = tile # img[:, :, 2] = tile lst_Patches.append(tile) # print('add => ', saveAddress) else: print("it is copy => ", basePosition) if bSaveImages: # buffer = Image.new("RGB", [ndMainSize[1], ndMainSize[0]], (255, 255, 255)) # buffer.paste(imgTmp, (0, 0)) npImgTmp =
np.array(tile)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 評価用のテストパターン作成ツール集 """ import os import cv2 import matplotlib.pyplot as plt import numpy as np from colour.colorimetry import CMFS, ILLUMINANTS from colour.models import XYZ_to_xy, xy_to_XYZ, XYZ_to_RGB, RGB_to_XYZ from colour.models import xy_to_xyY, xyY_to_XYZ, Lab_to_XYZ from colour.models import BT709_COLOURSPACE from colour.utilities import normalise_maximum from colour import models from colour import RGB_COLOURSPACES, COLOURCHECKERS from scipy.spatial import Delaunay from scipy.ndimage.filters import convolve import math import transfer_functions as tf CMFS_NAME = 'CIE 1931 2 Degree Standard Observer' D65_WHITE = ILLUMINANTS[CMFS_NAME]['D65'] YCBCR_CHECK_MARKER = [0, 0, 0] UNIVERSAL_COLOR_LIST = ["#F6AA00", "#FFF100", "#03AF7A", "#005AFF", "#4DC4FF", "#804000"] def preview_image(img, order='rgb', over_disp=False): if order == 'rgb': cv2.imshow('preview', img[:, :, ::-1]) elif order == 'bgr': cv2.imshow('preview', img) elif order == 'mono': cv2.imshow('preview', img) else: raise ValueError("order parameter is invalid") if over_disp: cv2.resizeWindow('preview', ) cv2.waitKey(0) cv2.destroyAllWindows() def equal_devision(length, div_num): """ # 概要 length を div_num で分割する。 端数が出た場合は誤差拡散法を使って上手い具合に分散させる。 """ base = length / div_num ret_array = [base for x in range(div_num)] # 誤差拡散法を使った辻褄合わせを適用 # ------------------------------------------- diff = 0 for idx in range(div_num): diff += math.modf(ret_array[idx])[0] if diff >= 1.0: diff -= 1.0 ret_array[idx] = int(math.floor(ret_array[idx]) + 1) else: ret_array[idx] = int(math.floor(ret_array[idx])) # 計算誤差により最終点が +1 されない場合への対処 # ------------------------------------------- diff = length - sum(ret_array) if diff != 0: ret_array[-1] += diff # 最終確認 # ------------------------------------------- if length != sum(ret_array): raise ValueError("the output of equal_division() is abnormal.") return ret_array def do_matrix(img, mtx): """ img に対して mtx を適用する。 """ base_shape = img.shape r, g, b = img[..., 0], img[..., 1], img[..., 2] ro = r * mtx[0][0] + g * mtx[0][1] + b * mtx[0][2] go = r * mtx[1][0] + g * mtx[1][1] + b * mtx[1][2] bo = r * mtx[2][0] + g * mtx[2][1] + b * mtx[2][2] out_img = np.dstack((ro, go, bo)).reshape(base_shape) return out_img def _get_cmfs_xy(): """ xy色度図のプロットのための馬蹄形の外枠のxy値を求める。 Returns ------- array_like xy coordinate for chromaticity diagram """ # 基本パラメータ設定 # ------------------ cmf = CMFS.get(CMFS_NAME) d65_white = D65_WHITE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = XYZ_to_xy(cmf.values, d65_white) return cmf_xy def get_primaries(name='ITU-R BT.2020'): """ prmary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like prmaries. [[rx, ry], [gx, gy], [bx, by], [rx, ry]] """ primaries = RGB_COLOURSPACES[name].primaries primaries = np.append(primaries, [primaries[0, :]], axis=0) rgb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) return primaries, rgb def xy_to_rgb(xy, name='ITU-R BT.2020', normalize='maximum', specific=None): """ xy値からRGB値を算出する。 いい感じに正規化もしておく。 Parameters ---------- xy : array_like xy value. name : string color space name. normalize : string normalize method. You can select 'maximum', 'specific' or None. Returns ------- array_like rgb value. the value is normalized. """ illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' large_xyz_to_rgb_matrix = get_xyz_to_rgb_matrix(name) if normalize == 'specific': xyY = xy_to_xyY(xy) xyY[..., 2] = specific large_xyz = xyY_to_XYZ(xyY) else: large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。必要であれば。 """ if normalize == 'maximum': rgb = normalise_maximum(rgb, axis=-1) else: if(np.sum(rgb > 1.0) > 0): print("warning: over flow has occured at xy_to_rgb") if(np.sum(rgb < 0.0) > 0): print("warning: under flow has occured at xy_to_rgb") rgb[rgb < 0] = 0 rgb[rgb > 1.0] = 1.0 return rgb def get_white_point(name): """ white point を求める。CIE1931ベース。 """ if name != "DCI-P3": illuminant = RGB_COLOURSPACES[name].illuminant white_point = ILLUMINANTS[CMFS_NAME][illuminant] else: white_point = ILLUMINANTS[CMFS_NAME]["D65"] return white_point def get_secondaries(name='ITU-R BT.2020'): """ secondary color の座標を求める Parameters ---------- name : str a name of the color space. Returns ------- array_like secondaries. the order is magenta, yellow, cyan. """ secondary_rgb = np.array([[1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0]]) illuminant_XYZ = D65_WHITE illuminant_RGB = D65_WHITE chromatic_adaptation_transform = 'CAT02' rgb_to_xyz_matrix = get_rgb_to_xyz_matrix(name) large_xyz = RGB_to_XYZ(secondary_rgb, illuminant_RGB, illuminant_XYZ, rgb_to_xyz_matrix, chromatic_adaptation_transform) xy = XYZ_to_xy(large_xyz, illuminant_XYZ) return xy, secondary_rgb.reshape((3, 3)) # def plot_chromaticity_diagram( # rate=480/755.0*2, xmin=0.0, xmax=0.8, ymin=0.0, ymax=0.9, **kwargs): # # キーワード引数の初期値設定 # # ------------------------------------ # monitor_primaries = kwargs.get('monitor_primaries', None) # secondaries = kwargs.get('secondaries', None) # test_scatter = kwargs.get('test_scatter', None) # intersection = kwargs.get('intersection', None) # # プロット用データ準備 # # --------------------------------- # xy_image = get_chromaticity_image( # xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # cmf_xy = _get_cmfs_xy() # bt709_gamut, _ = get_primaries(name=cs.BT709) # bt2020_gamut, _ = get_primaries(name=cs.BT2020) # dci_p3_gamut, _ = get_primaries(name=cs.P3_D65) # ap0_gamut, _ = get_primaries(name=cs.ACES_AP0) # ap1_gamut, _ = get_primaries(name=cs.ACES_AP1) # xlim = (min(0, xmin), max(0.8, xmax)) # ylim = (min(0, ymin), max(0.9, ymax)) # ax1 = pu.plot_1_graph(fontsize=20 * rate, # figsize=((xmax - xmin) * 10 * rate, # (ymax - ymin) * 10 * rate), # graph_title="CIE1931 Chromaticity Diagram", # graph_title_size=None, # xlabel=None, ylabel=None, # axis_label_size=None, # legend_size=18 * rate, # xlim=xlim, ylim=ylim, # xtick=[x * 0.1 + xmin for x in # range(int((xlim[1] - xlim[0])/0.1) + 1)], # ytick=[x * 0.1 + ymin for x in # range(int((ylim[1] - ylim[0])/0.1) + 1)], # xtick_size=17 * rate, # ytick_size=17 * rate, # linewidth=4 * rate, # minor_xtick_num=2, # minor_ytick_num=2) # ax1.plot(cmf_xy[..., 0], cmf_xy[..., 1], '-k', lw=3.5*rate, label=None) # ax1.plot((cmf_xy[-1, 0], cmf_xy[0, 0]), (cmf_xy[-1, 1], cmf_xy[0, 1]), # '-k', lw=3.5*rate, label=None) # ax1.plot(bt709_gamut[:, 0], bt709_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[0], label="BT.709", lw=2.75*rate) # ax1.plot(bt2020_gamut[:, 0], bt2020_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[1], label="BT.2020", lw=2.75*rate) # ax1.plot(dci_p3_gamut[:, 0], dci_p3_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[2], label="DCI-P3", lw=2.75*rate) # ax1.plot(ap1_gamut[:, 0], ap1_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[3], label="ACES AP1", lw=2.75*rate) # ax1.plot(ap0_gamut[:, 0], ap0_gamut[:, 1], # c=UNIVERSAL_COLOR_LIST[4], label="ACES AP0", lw=2.75*rate) # if monitor_primaries is not None: # ax1.plot(monitor_primaries[:, 0], monitor_primaries[:, 1], # c="#202020", label="???", lw=3*rate) # if secondaries is not None: # xy, rgb = secondaries # ax1.scatter(xy[..., 0], xy[..., 1], s=700*rate, marker='s', c=rgb, # edgecolors='#404000', linewidth=2*rate) # if test_scatter is not None: # xy, rgb = test_scatter # ax1.scatter(xy[..., 0], xy[..., 1], s=300*rate, marker='s', c=rgb, # edgecolors='#404040', linewidth=2*rate) # if intersection is not None: # ax1.scatter(intersection[..., 0], intersection[..., 1], # s=300*rate, marker='s', c='#CCCCCC', # edgecolors='#404040', linewidth=2*rate) # ax1.imshow(xy_image, extent=(xmin, xmax, ymin, ymax)) # plt.legend(loc='upper right') # plt.savefig('temp_fig.png', bbox_inches='tight') # plt.show() def get_chromaticity_image(samples=1024, antialiasing=True, bg_color=0.9, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0): """ xy色度図の馬蹄形の画像を生成する Returns ------- ndarray rgb image. """ """ 色域設定。sRGBだと狭くて少し変だったのでBT.2020に設定。 若干色が薄くなるのが難点。暇があれば改良したい。 """ # color_space = models.BT2020_COLOURSPACE # color_space = models.S_GAMUT3_COLOURSPACE color_space = models.ACES_CG_COLOURSPACE # 馬蹄形のxy値を算出 # -------------------------- cmf_xy = _get_cmfs_xy() """ 馬蹄の内外の判別をするために三角形で領域分割する(ドロネー図を作成)。 ドロネー図を作れば後は外積計算で領域の内外を判別できる(たぶん)。 なお、作成したドロネー図は以下のコードでプロット可能。 1点補足しておくと、```plt.triplot``` の第三引数は、 第一、第二引数から三角形を作成するための **インデックス** のリスト になっている。[[0, 1, 2], [2, 4, 3], ...]的な。 ```python plt.figure() plt.triplot(xy[:, 0], xy[:, 1], triangulation.simplices.copy(), '-o') plt.title('triplot of Delaunay triangulation') plt.show() ``` """ triangulation = Delaunay(cmf_xy) """ ```triangulation.find_simplex()``` で xy がどのインデックスの領域か 調べることができる。戻り値が ```-1``` の場合は領域に含まれないため、 0以下のリストで領域判定の mask を作ることができる。 """ xx, yy\ = np.meshgrid(np.linspace(xmin, xmax, samples), np.linspace(ymax, ymin, samples)) xy = np.dstack((xx, yy)) mask = (triangulation.find_simplex(xy) < 0).astype(np.float) # アンチエイリアシングしてアルファチャンネルを滑らかに # ------------------------------------------------ if antialiasing: kernel = np.array([ [0, 1, 0], [1, 2, 1], [0, 1, 0], ]).astype(np.float) kernel /= np.sum(kernel) mask = convolve(mask, kernel) # ネガポジ反転 # -------------------------------- mask = 1 - mask[:, :, np.newaxis] # xy のメッシュから色を復元 # ------------------------ illuminant_XYZ = D65_WHITE illuminant_RGB = color_space.whitepoint chromatic_adaptation_transform = 'XYZ Scaling' large_xyz_to_rgb_matrix = color_space.XYZ_to_RGB_matrix xy[xy == 0.0] = 1.0 # ゼロ割対策 large_xyz = xy_to_XYZ(xy) rgb = XYZ_to_RGB(large_xyz, illuminant_XYZ, illuminant_RGB, large_xyz_to_rgb_matrix, chromatic_adaptation_transform) """ そのままだとビデオレベルが低かったりするので、 各ドット毎にRGB値を正規化&最大化する。 """ rgb[rgb == 0] = 1.0 # ゼロ割対策 rgb = normalise_maximum(rgb, axis=-1) # mask 適用 # ------------------------------------- mask_rgb = np.dstack((mask, mask, mask)) rgb *= mask_rgb # 背景色をグレーに変更 # ------------------------------------- bg_rgb = np.ones_like(rgb) bg_rgb *= (1 - mask_rgb) * bg_color rgb += bg_rgb rgb = rgb ** (1/2.2) return rgb def get_csf_color_image(width=640, height=480, lv1=np.uint16(np.array([1.0, 1.0, 1.0]) * 1023 * 0x40), lv2=np.uint16(np.array([1.0, 1.0, 1.0]) * 512 * 0x40), stripe_num=18): """ 長方形を複数個ズラして重ねることでCSFパターンっぽいのを作る。 入力信号レベルは16bitに限定する。 Parameters ---------- width : numeric. width of the pattern image. height : numeric. height of the pattern image. lv1 : numeric video level 1. this value must be 10bit. lv2 : numeric video level 2. this value must be 10bit. stripe_num : numeric number of the stripe. Returns ------- array_like a cms pattern image. """ width_list = equal_devision(width, stripe_num) height_list = equal_devision(height, stripe_num) h_pos_list = equal_devision(width // 2, stripe_num) v_pos_list = equal_devision(height // 2, stripe_num) lv1_16bit = lv1 lv2_16bit = lv2 img = np.zeros((height, width, 3), dtype=np.uint16) width_temp = width height_temp = height h_pos_temp = 0 v_pos_temp = 0 for idx in range(stripe_num): lv = lv1_16bit if (idx % 2) == 0 else lv2_16bit temp_img = np.ones((height_temp, width_temp, 3), dtype=np.uint16) # temp_img *= lv temp_img[:, :] = lv ed_pos_h = h_pos_temp + width_temp ed_pos_v = v_pos_temp + height_temp img[v_pos_temp:ed_pos_v, h_pos_temp:ed_pos_h] = temp_img width_temp -= width_list[stripe_num - 1 - idx] height_temp -= height_list[stripe_num - 1 - idx] h_pos_temp += h_pos_list[idx] v_pos_temp += v_pos_list[idx] return img def plot_xyY_color_space(name='ITU-R BT.2020', samples=1024, antialiasing=True): """ SONY の HDR説明資料にあるような xyY の図を作る。 Parameters ---------- name : str name of the target color space. Returns ------- None """ # 馬蹄の領域判別用データ作成 # -------------------------- primary_xy, _ = get_primaries(name=name) triangulation = Delaunay(primary_xy) xx, yy\ = np.meshgrid(np.linspace(0, 1, samples), np.linspace(1, 0, samples)) xy =
np.dstack((xx, yy))
numpy.dstack
# -*- coding: utf-8 -*- """base class for columns""" from ELDAmwl.component.interface import ILogger from ELDAmwl.utils.constants import NC_FILL_BYTE from ELDAmwl.utils.constants import NC_FILL_INT from zope import component import numpy as np import xarray as xr class Columns(object): """ base column class (2 dimensional: (time, level)) """ def __init__(self): self.ds = xr.Dataset( {'data': (['time', 'level'], np.empty((0, 0))), 'err': (['time', 'level'],
np.empty((0, 0))
numpy.empty
import os import glob import random from PIL import Image import numpy as np import trimesh from lib.data.core import Field from lib.common import random_crop_occ class IndexField(Field): ''' Basic index field.''' # def load(self, model_path, idx, category): def load(self, model_path, idx, start_idx=0, dataset_folder=None, **kwargs): ''' Loads the index field. Args: model_path (str): path to model idx (int): ID of data point start_idx (int): id of sequence start dataset_folder (str): dataset folder ''' return idx def check_complete(self, files): ''' Check if field is complete. Args: files: files ''' return True class PointsSubseqField(Field): ''' Points subsequence field class. Args: folder_name (str): points folder name transform (transform): transform seq_len (int): length of sequence all_steps (bool): whether to return all time steps fixed_time_step (int): if and which fixed time step to use unpackbits (bool): whether to unpack bits scale_type (str, optional): Specifies the type of transformation to apply to the point cloud: ``'cr'`` | ``'oflow'``. ``'cr'``: transform the point cloud to align with the output, ``'oflow'``: scale the point cloud w.r.t. the first point cloud of the sequence spatial_completion (bool): whether to remove some points for 4D spatial completion experiment ''' def __init__(self, folder_name, transform=None, seq_len=17, all_steps=False, fixed_time_step=None, unpackbits=False, scale_type=None, spatial_completion=False, **kwargs): self.folder_name = folder_name self.transform = transform self.seq_len = seq_len self.all_steps = all_steps self.sample_padding = 0.1 self.fixed_time_step = fixed_time_step self.unpackbits = unpackbits self.scale_type = scale_type self.spatial_completion = spatial_completion if scale_type is not None: assert scale_type in ['oflow', 'cr'] def get_loc_scale(self, mesh): ''' Returns location and scale of mesh. Args: mesh (trimesh): mesh ''' bbox = mesh.bounding_box.bounds # Compute location and scale with padding of 0.1 loc = (bbox[0] + bbox[1]) / 2 scale = (bbox[1] - bbox[0]).max() / (1 - self.sample_padding) return loc, scale def normalize_mesh(self, mesh, loc, scale): ''' Normalize mesh. Args: mesh (trimesh): mesh loc (tuple): location for normalization scale (float): scale for normalization ''' # Transform input mesh mesh.apply_translation(-loc) mesh.apply_scale(1 / scale) return mesh def load_files(self, model_path, start_idx): ''' Loads the model files. Args: model_path (str): path to model start_idx (int): id of sequence start ''' folder = os.path.join(model_path, self.folder_name) files = glob.glob(os.path.join(folder, '*.npz')) files.sort() files = files[start_idx:start_idx+self.seq_len] return files def load_all_steps(self, files, loc0, scale0, loc_global, scale_global, dataset_folder): ''' Loads data for all steps. Args: files (list): list of files points_dict (dict): points dictionary for first step of sequence loc0 (tuple): location of first time step mesh scale0 (float): scale of first time step mesh ''' p_list = [] o_list = [] t_list = [] for i, f in enumerate(files): points_dict = np.load(f) # Load points points = points_dict['points'] if (points.dtype == np.float16): # break symmetry (nec. for some version) points = points.astype(np.float32) points += 1e-4 * np.random.randn(*points.shape) occupancies = points_dict['occupancies'] if self.unpackbits: occupancies = np.unpackbits(occupancies)[:points.shape[0]] occupancies = occupancies.astype(np.float32) loc = points_dict['loc'].astype(np.float32) scale = points_dict['scale'].astype(np.float32) model_id, _, frame_id = f.split('/')[-3:] # Remove some points for 4D spatial completion experiment if self.spatial_completion: data_folder = os.path.join(dataset_folder, 'test', 'D-FAUST', model_id) mask_folder = os.path.join(dataset_folder, 'spatial_mask', model_id) if not os.path.exists(mask_folder): os.makedirs(mask_folder) mask_file = os.path.join(mask_folder, frame_id.replace('.npz', '.npy')) if os.path.exists(mask_file): mask = np.load(mask_file) else: pcl = np.load(os.path.join(data_folder, 'pcl_seq', frame_id))['points'] mask, _, _ = random_crop_occ(points, pcl) np.save(mask_file, mask) points = points[mask, :] occupancies = occupancies[mask] if self.scale_type is not None: # Transform to loc0, scale0 if self.scale_type == 'oflow': points = (loc + scale * points - loc0) / scale0 # Align the testing data of the original D-FAUST with the output of our model if self.scale_type == 'cr': trans = np.load(os.path.join(dataset_folder, 'smpl_params', model_id, frame_id))['trans'] loc -= trans points = (loc + scale * points - loc_global) / scale_global points = points.astype(np.float32) time = np.array(i / (self.seq_len - 1), dtype=np.float32) p_list.append(points) o_list.append(occupancies) t_list.append(time) if not self.spatial_completion: data = { None: np.stack(p_list), 'occ': np.stack(o_list), 'time': np.stack(t_list), } else: data = { None: p_list, 'occ': o_list, 'time': np.stack(t_list), } return data def load_single_step(self, files, points_dict, loc0, scale0): ''' Loads data for a single step. Args: files (list): list of files points_dict (dict): points dictionary for first step of sequence loc0 (tuple): location of first time step mesh scale0 (float): scale of first time step mesh ''' if self.fixed_time_step is None: # Random time step time_step = np.random.choice(self.seq_len) else: time_step = int(self.fixed_time_step) if time_step != 0: points_dict = np.load(files[time_step]) # Load points points = points_dict['points'].astype(np.float32) occupancies = points_dict['occupancies'] if self.unpackbits: occupancies = np.unpackbits(occupancies)[:points.shape[0]] occupancies = occupancies.astype(np.float32) if self.scale_type == 'oflow': loc = points_dict['loc'].astype(np.float32) scale = points_dict['scale'].astype(np.float32) # Transform to loc0, scale0 points = (loc + scale * points - loc0) / scale0 if self.seq_len > 1: time = np.array( time_step / (self.seq_len - 1), dtype=np.float32) else: time = np.array([1], dtype=np.float32) data = { None: points, 'occ': occupancies, 'time': time, } return data def load(self, model_path, idx, c_idx=None, start_idx=0, dataset_folder=None, **kwargs): ''' Loads the points subsequence field. Args: model_path (str): path to model idx (int): ID of data point start_idx (int): id of sequence start dataset_folder (str): dataset folder ''' files = self.load_files(model_path, start_idx) # Load loc and scale from t_0, we use the global loc and scale calculated from the whole training set points_dict = np.load(files[0]) loc0 = points_dict['loc'].astype(np.float32) scale0 = points_dict['scale'].astype(np.float32) loc_global = np.array([-0.005493, -0.1888, 0.07587]).astype(np.float32) scale_global = 2.338 if self.all_steps: data = self.load_all_steps(files, loc0, scale0, loc_global, scale_global, dataset_folder) else: data = self.load_single_step(files, points_dict, loc0, scale0) if self.transform is not None: data = self.transform(data) return data class PointCloudSubseqField(Field): ''' Point cloud subsequence field class. Args: folder_name (str): points folder name transform (transform): transform seq_len (int): length of sequence only_end_points (bool): whether to only return end points scale_type (str, optional): Specifies the type of transformation to apply to the input point cloud: ``'cr'`` | ``'oflow'``. ``'cr'``: transform the point cloud the original scale and location of SMPL model, ``'oflow'``: scale the point cloud w.r.t. the first point cloud of the sequence ''' def __init__(self, folder_name, transform=None, seq_len=17, only_end_points=False, scale_type=None, eval_mode=False): self.folder_name = folder_name self.transform = transform self.seq_len = seq_len self.only_end_points = only_end_points self.scale_type = scale_type self.eval_mode = eval_mode if scale_type is not None: assert scale_type in ['oflow', 'cr'] def return_loc_scale(self, mesh): ''' Returns location and scale of mesh. Args: mesh (trimesh): mesh ''' bbox = mesh.bounding_box.bounds # Compute location and scale loc = (bbox[0] + bbox[1]) / 2 scale = (bbox[1] - bbox[0]).max() / (1 - 0) return loc, scale def apply_normalization(self, mesh, loc, scale): ''' Normalizes the mesh. Args: mesh (trimesh): mesh loc (tuple): location for normalization scale (float): scale for normalization ''' mesh.apply_translation(-loc) mesh.apply_scale(1/scale) return mesh def load_files(self, model_path, start_idx): ''' Loads the model files. Args: model_path (str): path to model start_idx (int): id of sequence start ''' folder = os.path.join(model_path, self.folder_name) files = glob.glob(os.path.join(folder, '*.npz')) files.sort() files = files[start_idx:start_idx+self.seq_len] if self.only_end_points: files = [files[0], files[-1]] return files def load_single_file(self, file_path): ''' Loads a single file. Args: file_path (str): file path ''' pointcloud_dict = np.load(file_path) points = pointcloud_dict['points'].astype(np.float32) loc = pointcloud_dict['loc'].astype(np.float32) scale = pointcloud_dict['scale'].astype(np.float32) return points, loc, scale def get_time_values(self): ''' Returns the time values. ''' if self.seq_len > 1: time = \ np.array([i/(self.seq_len - 1) for i in range(self.seq_len)], dtype=np.float32) else: time = np.array([1]).astype(np.float32) return time def load(self, model_path, idx, c_idx=None, start_idx=0, dataset_folder=None, **kwargs): ''' Loads the point cloud sequence field. Args: model_path (str): path to model idx (int): ID of data point c_idx (int): index of category start_idx (int): id of sequence start dataset_folder (str): dataset folder ''' pc_seq = [] # Get file paths files = self.load_files(model_path, start_idx) # Load first pcl file _, loc0, scale0 = self.load_single_file(files[0]) loc_global = np.array([-0.005493, -0.1888, 0.07587]).astype(np.float32) scale_global = 2.338 for f in files: points, loc, scale = self.load_single_file(f) if self.scale_type is not None: # Transform mesh to loc0 / scale0 if self.scale_type == 'oflow': points = (loc + scale * points - loc0) / scale0 # Transform to original scale and location of SMPL model if self.scale_type == 'cr': points = loc + scale * points model_id, _, frame_id = f.split('/')[-3:] trans = np.load(os.path.join(dataset_folder, 'smpl_params', model_id, frame_id))['trans'] points = points - trans # Only for evaluation, align the output with the testing data in D-FAUST if self.eval_mode: points = (points - loc_global) / scale_global pc_seq.append(points) data = { None:
np.stack(pc_seq)
numpy.stack
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data =
np.array([])
numpy.array
# -*- coding: utf-8 -*- """ Created on Sat Jan 8 21:39:07 2022 @author: rainn """ import numpy as np from PIL import Image # from https://stackoverflow.com/questions/34913005/color-space-mapping-ycbcr-to-rgb def ycbcr2rgb(im): xform = np.array([[1, 0, 1.402], [1, -0.34414, -.71414], [1, 1.772, 0]]) rgb = im.astype(float) rgb[:,:,[1,2]] -= 128 rgb = rgb.dot(xform.T) np.putmask(rgb, rgb > 255, 255) np.putmask(rgb, rgb < 0, 0) return np.uint8(rgb) # from https://stackoverflow.com/questions/16388110/double-the-length-of-a-python-numpy-array-with-interpolated-new-values def ntrpl8(Y): N = len(Y) X = np.arange(0, 2*N, 2) X_new = np.arange(2*N) # Where you want to interpolate Y_new =
np.interp(X_new, X, Y)
numpy.interp
from __future__ import print_function, division, absolute_import import numpy as np import six.moves as sm from .. import imgaug as ia class HeatmapsOnImage(object): """ Object representing heatmaps on images. Parameters ---------- arr : (H,W) ndarray or (H,W,C) ndarray Array representing the heatmap(s). Must be of dtype float32. If multiple heatmaps are provided, then ``C`` is expected to denote their number. shape : tuple of int Shape of the image on which the heatmap(s) is/are placed. NOT the shape of the heatmap(s) array, unless it is identical to the image shape (note the likely difference between the arrays in the number of channels). If there is not a corresponding image, use the shape of the heatmaps array. min_value : float, optional Minimum value for the heatmaps that `arr` represents. This will usually be ``0.0``. max_value : float, optional Maximum value for the heatmaps that `arr` represents. This will usually be ``1.0``. """ def __init__(self, arr, shape, min_value=0.0, max_value=1.0): """Construct a new HeatmapsOnImage object.""" ia.do_assert(ia.is_np_array(arr), "Expected numpy array as heatmap input array, got type %s" % (type(arr),)) # TODO maybe allow 0-sized heatmaps? in that case the min() and max() must be adjusted ia.do_assert(arr.shape[0] > 0 and arr.shape[1] > 0, "Expected numpy array as heatmap with height and width greater than 0, got shape %s." % ( arr.shape,)) ia.do_assert(arr.dtype.type in [np.float32], "Heatmap input array expected to be of dtype float32, got dtype %s." % (arr.dtype,)) ia.do_assert(arr.ndim in [2, 3], "Heatmap input array must be 2d or 3d, got shape %s." % (arr.shape,)) ia.do_assert(len(shape) in [2, 3], "Argument 'shape' in HeatmapsOnImage expected to be 2d or 3d, got shape %s." % (shape,)) ia.do_assert(min_value < max_value) if np.min(arr.flat[0:50]) < min_value - np.finfo(arr.dtype).eps \ or np.max(arr.flat[0:50]) > max_value + np.finfo(arr.dtype).eps: import warnings warnings.warn( ("Value range of heatmap was chosen to be (%.8f, %.8f), but " "found actual min/max of (%.8f, %.8f). Array will be " "clipped to chosen value range.") % ( min_value, max_value, np.min(arr), np.max(arr))) arr =
np.clip(arr, min_value, max_value)
numpy.clip
from sklearn.metrics import roc_curve, roc_auc_score import tensorflow as tf from tensorflow import keras from keras.models import load_model import mtcnn from os import listdir from os.path import isdir from PIL import Image from matplotlib import pyplot from numpy import savez_compressed from numpy import asarray from numpy import load from numpy import expand_dims from mtcnn.mtcnn import MTCNN from typing import Tuple from typing import List from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import Normalizer from sklearn.svm import SVC from random import choice import matplotlib.pyplot as plt import numpy as np import time from PIL import Image import requests from io import BytesIO import pickle from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_predict import seaborn as sns import pandas as pd TRAIN_SET_PATH = r"C:\Users\thiag\OneDrive\Área de Trabalho\virtual_environments\ufc_project\ufc_2fighters\2-ufc-fighters\train" TESTE_SET_PATH = r'C:\Users\thiag\OneDrive\Área de Trabalho\virtual_environments\ufc_project\ufc_2fighters\2-ufc-fighters\test' PATH_TO_LOAD_FACENET_MODEL = r"C:\Users\thiag\OneDrive\Área de Trabalho\virtual_environments\ufc_project\ufc_2fighters\FaceNet\model\facenet_keras.h5" FACES_PATH = '2-ufc-fighters/' TRAINED_MODEL = 'trained_model.sav' TRAINED_OUT_ENCODER = 'trained_out_encoder.sav' URL_TEST = 'https://i.pinimg.com/originals/8b/95/b5/8b95b5db2d2b315dd75ddeddfe388538.jpg' UFC_PROJECT_PATH = r'C:\Users\thiag\OneDrive\Área de Trabalho\virtual_environments\ufc_project\ufc_2fighters' facenet_model = load_model(PATH_TO_LOAD_FACENET_MODEL, compile=False) detector = MTCNN() def extract_image_from_path(filename: str) -> np.ndarray: """Receives a path to an image, open it and convert it to RGB. Finally, returns it as a numpy array. Args: filename (str): path to the photo in disk. Returns: np.ndarray: photo in a numpy array format. """ image = Image.open(filename).convert('RGB') pixels = np.asarray(image) return pixels def extract_face_from_image_array(image_array: np.ndarray) -> np.ndarray: """Receives a photo represented in a numpy array. Then, makes use of the method detect_faces of the neural network MTCNN. This method returns the position of the bounding box. It, then, returns the numpy array containing only the faces in the image. Args: image_array (np.ndarray): numpy array representation of the photo. Returns: np.ndarray: numpy array representation of the photo containing only the face found in the photo by the neural network MTCNN. """ faces = detector.detect_faces(image_array) x1, y1, width, height = faces[0]['box'] # Fixing a bug, since sometimes the positions may come as negative numbers x1, y1 = abs(x1), abs(y1) x2, y2 = x1 + width, y1 + height face = image_array[y1:y2, x1:x2] return face def resize_extracted_face(image_array: np.ndarray, required_size: Tuple[int, int] = (160, 160)) -> np.ndarray: """Receives the a numpy array representation of the image, and returns it reshaped by the requireded size. Args: image_array (np.ndarray): numpy array representation of the photo. required_size (Tuple[int, int], optional): Image size. Defaults to (160, 160). Returns: np.ndarray: Resized image. """ image = Image.fromarray(image_array).resize(required_size) face_array =
asarray(image)
numpy.asarray
import copy import logging from abc import ABC from collections import namedtuple from enum import Enum import numpy as np import open3d as o3d from hydra.conf import dataclass, MISSING, ConfigStore, field # Hydra and OmegaConf from omegaconf import DictConfig, OmegaConf # Project Imports from slam.backend import Backend from slam.common.modules import _with_cv2, _with_o3d from slam.common.pointcloud import grid_sample from slam.common.pose import transform_pointcloud from slam.common.utils import assert_debug, check_tensor, ObjectLoaderEnum # ---------------------------------------------------------------------------------------------------------------------- @dataclass class LoopClosureConfig: """Configuration for a LoopClosure Algorithm""" type: str = MISSING class LoopClosure(ABC): """An abstract class for a LoopClosure Algorithm The Loop Closure Algorithm searches the data_dict for KeyFrames Which are typically aggregated PointCloud from Odometry Algorithms And Return optionally some constraints on the trajectory Loop Closure Algorithms typically need to store a lot of information """ def __init__(self, config: LoopClosureConfig, **kwargs): self.config = config def init(self): """Cleans and Initializes the Loop Closure Algorithm""" self.clean() def clean(self): """Delete all previous data of the LoopClosure""" raise NotImplementedError("") def process_next_frame(self, data_dict: dict): raise NotImplementedError("") def update_positions(self, trajectory: np.ndarray): """Updates trajectory Args: trajectory (np.ndarray): The absolute poses making the trajectory `(N, 4, 4)` """ pass @staticmethod def pointcloud_key() -> str: """Returns the key in the keyframe dict for a new pointcloud""" return "lc_pointcloud" @staticmethod def relative_pose_key() -> str: """Returns the key in the keyframe dict for a new pose""" return "lc_relative_pose" # ---------------------------------------------------------------------------------------------------------------------- if _with_cv2: import cv2 from slam.common.registration import ElevationImageRegistration if _with_o3d: import open3d as o3d @dataclass class EILoopClosureConfig: """Configuration for a ElevationImageLoopClosure Algorithm""" type: str = "elevation_image" local_map_size: int = 50 # The number of frames in the stored local map overlap: int = 20 # The number of frames overlapping in the stored local map debug: bool = False max_num_candidates: int = 10 # Maximum number of candidates to inspect max_distance: float = 100 # Limit the maximum distance to search for loops min_id_distance: int = 200 # Do not try to detect loop closure between temporally close poses stride: int = 1 icp_distance_threshold: float = 1.0 with_icp_refinement: bool = _with_o3d # Only activated if open3d can be loaded ei_registration_config: DictConfig = field(default_factory=lambda: OmegaConf.create({ "features": "akaze", "pixel_size": 0.1, "z_min": -3.0, "z_max": 5, "sigma": 0.1, "im_height": 1200, "im_width": 1200, "color_map": "jet", "inlier_threshold": 50, "distance_threshold": 2.0, "flip_z_axis": False })) @dataclass class MapData: local_map_data: list = field(default_factory=lambda: []) last_inserted_pose: np.ndarray = field(default_factory=lambda: np.eye(4, dtype=np.float64)) current_frame_id: int = 0 all_frames_absolute_poses: list = field(default_factory=lambda: []) maps_absolute_poses: np.ndarray = field(default_factory=lambda: np.zeros((0, 4, 4), dtype=np.float64)) maps_frame_ids: list = field(default_factory=lambda: []) current_map_pcs: list = field(default_factory=lambda: []) # Store the pointclouds current_map_poses: list = field(default_factory=lambda: []) # Absolute poses current_map_frameids: list = field(default_factory=lambda: []) LocalMapData = namedtuple("LocalMapData", ['keypoints', 'descriptors', 'pointcloud', 'frame_id']) if _with_o3d: import open3d as o3d def draw_registration_result(source, target, transformation): source_temp = copy.deepcopy(source) target_temp = copy.deepcopy(target) source_temp.paint_uniform_color([1, 0.706, 0]) target_temp.paint_uniform_color([0, 0.651, 0.929]) source_temp.transform(transformation) o3d.visualization.draw_geometries([source_temp, target_temp], zoom=0.4459, front=[0.9288, -0.2951, -0.2242], lookat=[1.6784, 2.0612, 1.4451], up=[-0.3402, -0.9189, -0.1996]) class ElevationImageLoopClosure(LoopClosure): """ An Implementation of a Loop Detection and Estimation Algorithm """ def __init__(self, config: EILoopClosureConfig, **kwargs): super().__init__(config, **kwargs) self.registration_2D = ElevationImageRegistration(config.ei_registration_config) self.with_window = config.debug self.winname = "Loop Closure Map" if config.debug: cv2.namedWindow(self.winname, cv2.WINDOW_KEEPRATIO | cv2.WINDOW_NORMAL) self.data = MapData() self.maps_saved_data: list = [] def serialize(self) -> MapData: # Return MapData (convert cv2.KeyPoint which are not handled by the pickling protocol) def convert_tuple(nt: namedtuple): keypoints, descriptors, pointcloud, frame_id = nt return ([(kpt.pt, kpt.size, kpt.angle, kpt.response, kpt.octave, kpt.class_id) for kpt in keypoints], descriptors, pointcloud, frame_id) self.data.local_map_data = [convert_tuple(nt) for nt in self.maps_saved_data] return self.data def update_positions(self, trajectory: np.ndarray): check_tensor(trajectory, [self.data.current_frame_id, 4, 4]) if self.data.current_frame_id == 0: return num_saved_poses = len(self.data.all_frames_absolute_poses) self.data.all_frames_absolute_poses = [trajectory[idx] for idx in range(num_saved_poses)] self.data.maps_absolute_poses = np.array([trajectory[frame_id] for frame_id in self.data.maps_frame_ids]) self.data.last_inserted_pose = trajectory[-1] num_poses_in_current_map = len(self.data.current_map_pcs) for idx in range(num_poses_in_current_map): self.data.current_map_poses[-idx] = trajectory[-idx] def load(self, map_data: MapData): # Return MapData (convert cv2.KeyPoint which are not handled by the pickling protocol) def convert_tuple(_tuple): keypoints, descriptors, pointcloud, frame_id = _tuple return LocalMapData( [cv2.KeyPoint(kpt[0][0], kpt[0][1], kpt[1], kpt[2], kpt[3], kpt[4], kpt[5]) for kpt in keypoints], descriptors, pointcloud, frame_id) self.data = map_data self.maps_saved_data = [convert_tuple(_tuple) for _tuple in map_data.local_map_data] def __del__(self): if self.with_window: cv2.destroyWindow(self.winname) def clean(self): self.data.current_map_pcs.clear() self.data.current_map_poses.clear() self.data.current_map_frameids.clear() self.data.all_frames_absolute_poses.clear() self.data.maps_frame_ids.clear() self.data.last_inserted_pose = np.eye(4, dtype=np.float64) self.data.current_frame_id = 0 self.data.maps_absolute_poses = np.zeros((0, 4, 4), dtype=np.float64) self.maps_saved_data.clear() def _compute_transform(self, initial_transform, candidate_pc, target_pc): if not _with_o3d: return initial_transform assert isinstance(self.config, EILoopClosureConfig) # Refine the transform by an ICP on the point cloud source = o3d.geometry.PointCloud() source.points = o3d.utility.Vector3dVector(candidate_pc) target = o3d.geometry.PointCloud() target.points = o3d.utility.Vector3dVector(target_pc) result = o3d.pipelines.registration.registration_icp( source, target, self.config.icp_distance_threshold, initial_transform.astype(np.float64), o3d.pipelines.registration.TransformationEstimationPointToPoint()) return np.linalg.inv(result.transformation), candidate_pc, target_pc def _match_candidates(self, candidate_ids, feat, desc, points, frame_id, data_dict: dict): assert isinstance(self.config, EILoopClosureConfig) for candidate in candidate_ids: cd_feat, cd_desc, cd_pc_image, cd_frame_id = self.maps_saved_data[candidate] transform, points_2D, inlier_matches = self.registration_2D.align_2d(feat, desc, cd_feat, cd_desc, None, None) if self.config.debug: logging.info(f"Found {len(inlier_matches)}") if transform is not None: if self.config.with_icp_refinement and _with_o3d: cd_points = cd_pc_image.reshape(-1, 3) cd_points = cd_points[
np.linalg.norm(cd_points, axis=1)
numpy.linalg.norm
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the # Apode Project (https://github.com/mchalela/apode). # Copyright (c) 2020, <NAME> and <NAME> # License: MIT # Full Text: https://github.com/ngrion/apode/blob/master/LICENSE.txt from apode import datasets from apode.basic import ApodeData import numpy as np import pandas as pd import pytest # ============================================================================= # TESTS COMMON # ============================================================================= def test_default_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("headcount", pline=pline) method_result = ad.poverty.headcount(pline=pline) assert call_result == method_result def test_invalid(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(AttributeError): ad.poverty("foo") def test_get_pline_none(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) # pline is None pline = 0.5 * np.median(ad.data.values) assert ad.poverty.headcount(pline=None) == ad.poverty.headcount( pline=pline ) def test_get_pline_factor(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) # factor < 0: with pytest.raises(ValueError): ad.poverty.hagenaars(pline=pline, factor=-3) with pytest.raises(ValueError): ad.poverty.chakravarty(pline=pline, factor=-3) with pytest.raises(ValueError): ad.poverty.hagenaars(pline=None, factor=-3) with pytest.raises(ValueError): ad.poverty.chakravarty(pline=None, factor=-3) def test_get_pline_median(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) factor = 0.3 pline = factor * np.median(ad.data.values) assert ad.poverty.headcount( pline="median", factor=factor ) == ad.poverty.headcount(pline=pline) def test_get_pline_mean(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) factor = 0.3 pline = factor * np.mean(ad.data.values) assert ad.poverty.headcount( pline="mean", factor=factor ) == ad.poverty.headcount(pline=pline) def test_get_pline_quantile(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) # pline = "quantile" q = 0.3 factor = 0.3 pline = factor * np.quantile(ad.data.values, q) assert ad.poverty.chakravarty( pline="quantile", factor=factor, q=q ) == ad.poverty.chakravarty(pline=pline) assert ad.poverty.hagenaars( pline="quantile", factor=factor, q=q ) == ad.poverty.hagenaars(pline=pline) # pline = "quantile", q out of range with pytest.raises(ValueError): ad.poverty.hagenaars(pline="quantile", q=1.2) with pytest.raises(ValueError): ad.poverty.hagenaars(pline="quantile", q=-0.2) # ============================================================================= # TESTS HEADCOUNT # ============================================================================= def test_headcount_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.headcount(pline=pline) == 0.27 def test_headcount_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("headcount", pline=pline) == 0.27 def test_headcount_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("headcount", pline=pline) method_result = ad.poverty.headcount(pline=pline) assert call_result == method_result def test_headcount_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("headcount", pline=-1) with pytest.raises(ValueError): ad.poverty("headcount", pline=0) def test_headcount_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=100, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("headcount", pline=pline_min) == 0 assert ad.poverty("headcount", pline=pline_max) == 1 def test_headcount_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="headcount", pline=pline) == ad2.poverty( method="headcount", pline=pline ) def test_headcount_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("headcount", pline=pline) == ad2.poverty( "headcount", pline=pline ) def test_headcount_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("headcount", pline=pline) == ad2.poverty( "headcount", pline=pline * k ) # ============================================================================= # TESTS GAP # ============================================================================= def test_gap_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.gap(pline=pline) == 0.13715275200855706 def test_gap_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("gap", pline=pline) == 0.13715275200855706 def test_gap_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("gap", pline=pline) method_result = ad.poverty.gap(pline=pline) assert call_result == method_result def test_gap_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("gap", pline=-1) def test_gap_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("gap", pline=pline_min) == 0 assert ad.poverty("gap", pline=pline_max) <= 1 def test_gap_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="gap", pline=pline) == ad2.poverty( method="gap", pline=pline ) def test_gap_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") np.testing.assert_allclose( ad.poverty("gap", pline=pline), ad2.poverty("gap", pline=pline) ) def test_gap_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("gap", pline=pline) == ad2.poverty( "gap", pline=pline * k ) # ============================================================================= # TESTS SEVERITY # ============================================================================= def test_severity_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.severity(pline=pline) == 0.0925444945807559 def test_severity_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("severity", pline=pline) == 0.0925444945807559 def test_severity_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("severity", pline=pline) method_result = ad.poverty.severity(pline=pline) assert call_result == method_result def test_severity_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("severity", pline=-1) def test_severity_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("severity", pline=pline_min) == 0 assert ad.poverty("severity", pline=pline_max) <= 1 def test_severity_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="severity", pline=pline) == ad2.poverty( method="severity", pline=pline ) def test_severity_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") np.testing.assert_allclose( ad.poverty("severity", pline=pline), ad2.poverty("severity", pline=pline), ) def test_severity_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("severity", pline=pline) == ad2.poverty( "severity", pline=pline * k ) # ============================================================================= # TESTS FGT # ============================================================================= def test_fgt_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.fgt(pline=pline) == 0.27 def test_fgt_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("fgt", pline=pline) == 0.27 def test_fgt_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("fgt", pline=pline) method_result = ad.poverty.fgt(pline=pline) assert call_result == method_result def test_fgt_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("fgt", pline=-1) with pytest.raises(ValueError): ad.poverty("fgt", pline=0) def test_fgt_valid_alpha(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty.fgt(pline=1, alpha=-2) def test_fgt_alpha_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) assert ad.poverty.fgt(pline=pline, alpha=1) == 0.26003924372489007 assert ad.poverty.fgt(pline=pline, alpha=0) == 0.4766666666666667 assert ad.poverty.fgt(pline=pline, alpha=10) == 0.049479474144909996 def test_fgt_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("fgt", pline=pline_min) == 0 assert ad.poverty("fgt", pline=pline_max) <= 1 def test_fgt_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="fgt", pline=pline) == ad2.poverty( method="fgt", pline=pline ) def test_fgt_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("fgt", pline=pline) == ad2.poverty("fgt", pline=pline) def test_fgt_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("fgt", pline=pline) == ad2.poverty( "fgt", pline=pline * k ) # ============================================================================= # TESTS SEN # ============================================================================= def test_sen_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.sen(pline=pline) == 0.1826297337125855 def test_sen_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("sen", pline=pline) == 0.1826297337125855 def test_sen_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("sen", pline=pline) method_result = ad.poverty.sen(pline=pline) assert call_result == method_result def test_sen_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("sen", pline=-1) with pytest.raises(ValueError): ad.poverty("sen", pline=0) def test_sen_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("sen", pline=pline_min) == 0 assert ad.poverty("sen", pline=pline_max) <= 1 def test_sen_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="sen", pline=pline) == ad2.poverty( method="sen", pline=pline ) def test_sen_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("sen", pline=pline) == ad2.poverty( "sen", pline=pline * k ) # ============================================================================= # TESTS SST # ============================================================================= def test_sst_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.sst(pline=pline) == 0.24950968072455512 def test_sst_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("sst", pline=pline) == 0.24950968072455512 def test_sst_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("sst", pline=pline) method_result = ad.poverty.sst(pline=pline) assert call_result == method_result def test_sst_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("sst", pline=-1) with pytest.raises(ValueError): ad.poverty("sst", pline=0) # @pytest.mark.xfail def test_sst_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("sst", pline=pline_min) == 0 assert ad.poverty("sst", pline=pline_max) <= 1 # CHECK, fails def test_sst_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="sst", pline=pline) == ad2.poverty( method="sst", pline=pline ) def test_sst_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("sst", pline=pline) == ad2.poverty( "sst", pline=pline * k ) # ============================================================================= # TESTS WATTS # ============================================================================= def test_watts_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.watts(pline=pline) == 0.2724322042654472 def test_watts_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("watts", pline=pline) == 0.2724322042654472 def test_watts_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("watts", pline=pline) method_result = ad.poverty.watts(pline=pline) assert call_result == method_result def test_watts_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("watts", pline=-1) with pytest.raises(ValueError): ad.poverty("watts", pline=0) def test_watts_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 assert ad.poverty("watts", pline=pline_min) == 0 def test_watts_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="watts", pline=pline) == ad2.poverty( method="watts", pline=pline ) def test_watts_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") np.testing.assert_allclose( ad.poverty("watts", pline=pline), ad2.poverty("watts", pline=pline) ) def test_watts_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("watts", pline=pline) == ad2.poverty( "watts", pline=pline * k ) # ============================================================================= # TESTS CUH # ============================================================================= def test_cuh_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.cuh(pline=pline) == 0.18341653809400216 def test_cuh_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.cuh(pline=pline) == 0.18341653809400216 def test_cuh_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("cuh", pline=pline) method_result = ad.poverty.cuh(pline=pline) assert call_result == method_result def test_cuh_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("cuh", pline=-1) with pytest.raises(ValueError): ad.poverty("cuh", pline=0) def test_cuh_valid_alpha(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) with pytest.raises(ValueError): ad.poverty(method="cuh", pline=pline, alpha=-2) with pytest.raises(ValueError): ad.poverty(method="cuh", pline=pline, alpha=2) def test_cuh_alpha_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) assert ( ad.poverty(method="cuh", pline=pline, alpha=0.4) == 0.3739168025918481 ) assert ( ad.poverty(method="cuh", pline=pline, alpha=0) == 0.14377616581364483 ) def test_cuh_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=100, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("cuh", pline=pline_min) == 0 # CHECK, Fails assert ad.poverty("cuh", pline=pline_max) <= 1 def test_cuh_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="cuh", pline=pline) == ad2.poverty( method="cuh", pline=pline ) def test_cuh_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("cuh", pline=pline) == ad2.poverty( "cuh", pline=pline * k ) # ============================================================================= # TESTS TAKAYAMA # ============================================================================= def test_takayama_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) # assert ad.poverty.takayama(pline=pline) == 0.13021647687646376 np.testing.assert_allclose( ad.poverty.takayama(pline=pline), 0.13021647687646376, ) def test_takayama_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) # assert ad.poverty("takayama", pline=pline) == 0.13021647687646376 np.testing.assert_allclose( ad.poverty("takayama", pline=pline), 0.13021647687646376, ) def test_takayama_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("takayama", pline=pline) method_result = ad.poverty.takayama(pline=pline) assert call_result == method_result def test_takayama_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("takayama", pline=-1) with pytest.raises(ValueError): ad.poverty("takayama", pline=0) def test_takayama_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("takayama", pline=pline_min) == 0 assert ad.poverty("takayama", pline=pline_max) <= 1 # CHE¶CK, fails def test_takayama_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="takayama", pline=pline) == ad2.poverty( method="takayama", pline=pline ) def test_takayama_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") np.testing.assert_allclose( ad.poverty("takayama", pline=pline), ad2.poverty("takayama", pline=pline), ) def test_takayama_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("takayama", pline=pline) == ad2.poverty( "takayama", pline=pline * k ) def test_takayama_avoid_zero_div_error(): # u = 0 df = pd.DataFrame({"x": np.zeros(10)}) ad = ApodeData(df, income_column="x") pline = 0.2 assert ad.poverty.takayama(pline=pline) == 0 # n = 0 # df = pd.DataFrame({"x": []}) # ad = ApodeData(df, income_column="x") # assert ad.poverty.takayama(pline=pline) == 0 # ============================================================================= # TESTS KAKWANI # ============================================================================= def test_kakwani_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) # assert ad.poverty.kakwani(pline=pline) == 0.2027705302170293 np.testing.assert_allclose( ad.poverty.kakwani(pline=pline), 0.2027705302170293 ) def test_kakwani_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) # assert ad.poverty("kakwani", pline=pline) == 0.2027705302170293 np.testing.assert_allclose( ad.poverty("kakwani", pline=pline), 0.2027705302170293 ) def test_kakwani_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("kakwani", pline=pline) method_result = ad.poverty.kakwani(pline=pline) assert call_result == method_result def test_kakwani_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("kakwani", pline=-1) with pytest.raises(ValueError): ad.poverty("kakwani", pline=0) def test_kakwani_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("kakwani", pline=pline_min) == 0 assert ad.poverty("kakwani", pline=pline_max) <= 1 def test_kakwani_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="kakwani", pline=pline) == ad2.poverty( method="kakwani", pline=pline ) def test_kakwani_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("kakwani", pline=pline) == ad2.poverty( "kakwani", pline=pline * k ) # ============================================================================= # TESTS THON # ============================================================================= def test_thon_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.thon(pline=pline) == 0.24913640189161163 def test_thon_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("thon", pline=pline) == 0.24913640189161163 def test_thon_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("thon", pline=pline) method_result = ad.poverty.thon(pline=pline) assert call_result == method_result def test_thon_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("thon", pline=-1) with pytest.raises(ValueError): ad.poverty("thon", pline=0) def test_thon_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("thon", pline=pline_min) == 0 assert ad.poverty("thon", pline=pline_max) <= 1 def test_thon_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="thon", pline=pline) == ad2.poverty( method="thon", pline=pline ) def test_thon_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("thon", pline=pline) == ad2.poverty( "thon", pline=pline * k ) # ============================================================================= # TESTS BD # ============================================================================= def test_bd_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.bd(pline=pline) == 0.2170854187584956 def test_bd_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("bd", pline=pline) == 0.2170854187584956 assert ad.poverty("bd", pline=30) == 0.9950410832744983 def test_bd_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("bd", pline=pline) method_result = ad.poverty.bd(pline=pline) assert call_result == method_result def test_bd_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("bd", pline=-1) with pytest.raises(ValueError): ad.poverty("bd", pline=0) def test_bd_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min =
np.min(ad.data.values)
numpy.min
"""General Kalman filter Description: ------------ Kalman filter and the modified Bryson-Frazier smoother is covered in the book "Factorization Methods for Discrete Sequential Estimation" by Bierman :cite:`bierman2006`. However, there are some typos but a corrected version of the algorithm is listed in :cite:`gibbs2011`. """ # External library imports import numpy as np import h5py # Standard library import import os # Midgard imports from midgard.math.unit import Unit # Where imports from where.lib import log from where.lib import config class KalmanFilter(object): """A general Kalman filter See for instance https://en.wikipedia.org/wiki/Kalman_filter#Details for information about a general Kalman filter. We use the Modified Bryson-Frazier smoother, which is described at https://en.wikipedia.org/wiki/Kalman_filter#Modified_Bryson.E2.80.93Frazier_smoother Notation: h: Partial derivatives # num_obs x n x 1 x: Predicted state estimate (x-tilde) # num_obs x n x 1 x_hat: Updated state estimate (x-hat) # num_obs x n x 1 sigma: Residual covariance # num_obs innovation: Measurement residual # num_obs z: Observed residual # num_obs r: Observation noise covariance # num_obs Q: Process noise covariance # dict() k: Kalman gain # num_obs x n x 1 p: Predicted estimate covariance (p-tilde) # n x n (not stored) p_hat: Updated estimate covariance (p-hat) # num_obs x n x n phi: State transition # n x n (not stored) x_smooth: Smoothed state estimates # num_obs x n x 1 lam: (lambda) # num_obs x n x 1 """ def __init__(self, h, z=None, apriori_stdev=None, phi=None, r=None, Q=None, param_names=None): """Initialize the Kalman filter Args: h (Numpy array): Partial derivatives (num_obs x n x 1) z (Numpy array): Observations (num_obs) apriori_stdev (Numpy array): Apriori standard deviation (n) phi (Numpy array): State transition (num_obs x n x n) r (Numpy array): Observation noise covariance (num_obs) Q (Numpy array): Process noise covariance (num_obs x n x n) """ self.h = h self.num_obs, self.n, _ = self.h.shape self.apriori_stdev = np.ones(self.n) if apriori_stdev is None else apriori_stdev self.z = np.zeros((self.num_obs)) if z is None else z self.phi = np.eye(self.n).repeat(self.num_obs).reshape(self.n, self.n, -1).T if phi is None else phi self.r = np.ones((self.num_obs)) if r is None else r self.Q = dict() if Q is None else Q self.x_hat = np.zeros((self.num_obs, self.n, 1)) self.x_hat_ferr = np.zeros((self.num_obs, self.n)) self.x_smooth = np.zeros((self.num_obs, self.n, 1)) self.param_names = param_names if param_names else [] self.p_hat_file_path = config.files.path("output_covariance_matrix") self.p_hat_file = h5py.File(self.p_hat_file_path, "w") self.p_hat_file.attrs["labels"] = ", ".join(self.param_names) self.p_hat_file.close() def filter(self): """Run the Kalman filter forward and backward """ # Initialize x_tilde = np.zeros((self.n, 1)) p_tilde = np.diag(self.apriori_stdev ** 2) sigma = np.zeros(self.num_obs) innovation = np.zeros(self.num_obs) k = np.zeros((self.num_obs, self.n, 1)) lam = np.zeros((self.n, 1)) # Makes calculations easier to read (and gives a slight speed-up) h = self.h z = self.z phi = self.phi r = self.r Q = self.Q x_hat = self.x_hat x_smooth = self.x_smooth I = np.eye(self.n) # Run filter forward over all observations for epoch in range(self.num_obs): innovation[epoch] = z[epoch] - h[epoch].T @ x_tilde sigma[epoch] = (h[epoch].T @ p_tilde @ h[epoch]) + r[epoch] k[epoch] = p_tilde @ h[epoch] / sigma[epoch] x_hat[epoch] = x_tilde + k[epoch] * innovation[epoch] p_hat = (I - k[epoch] @ h[epoch].T) @ p_tilde x_tilde = phi[epoch] @ x_hat[epoch] p_tilde = phi[epoch] @ p_hat @ phi[epoch].T for (idx1, idx2), noise in Q.get(epoch, {}).items(): p_tilde[idx1, idx2] += noise self._set_p_hat(epoch, p_hat) self.x_hat_ferr[epoch, :] = np.sqrt(np.diagonal(p_hat)) # Run smoother backwards over all observations for epoch in range(self.num_obs - 1, -1, -1): # TODO smooth covariance matrix p_hat = self._get_p_hat(epoch) x_smooth[epoch] = x_hat[epoch] + p_hat.T @ lam lam = ( phi[epoch - 1].T @ h[epoch] * innovation[epoch] / sigma[epoch] + phi[epoch - 1].T @ (I - k[epoch] @ h[epoch].T).T @ lam ) def update_dataset(self, dset, param_names, normal_idx, num_unknowns): """Update the given dataset with results from the filtering Args: dset (Dataset): The dataset. param_names (List): Strings with names of parameters. Used to form field names. normal_idx (Slice): Slice denoting which parameters should be used for the normal equations. num_unknowns (Int): Number of unknowns. """ # Update dataset with state and estimation fields and calculate new residuals self._add_fields(dset, param_names) dset.residual[:] = dset.est - (dset.obs - dset.calc) num_unknowns += dset.meta.get("num_clock_coeff", 0) # Calculate normal equations, and add statistics about estimation to dataset N, b = self._normal_equations(normal_idx, dset.num_obs - 1) g = self.x_hat[dset.num_obs - 1, normal_idx, :] deg_freedom = dset.num_obs - num_unknowns v = dset.residual[:, None] P = np.diag(1 / self.r[: dset.num_obs]) sq_sum_residuals = np.asscalar(v.T @ P @ v) sq_sum_omc_terms =
np.asscalar(2 * b.T @ g - g.T @ N @ g)
numpy.asscalar
import matplotlib.pyplot as plt from helpers import d2df import pandas as pd import numpy as np from matplotlib.patches import Rectangle def plotMain(type, dict_structure, processed, *args): # This function plots the contents of the analysed files. # Two input values for "type" are accepted: # - "off" [default]: does not print anything # - "prompt": prompts the user for what s/he wants to print # - "csv": reads info on what is to be read from a csv file if type == "prompt": plot_info = plotPrompt(dict_structure) data_type = "processed" elif type == "prompt_raw": hd = args[0] plot_info = plotPromptRaw(dict_structure,hd) data_type = "raw" elif type == "csv": filename = args[0] plot_info = plotFromCSV(dict_structure) data_type = "processed" else: print("Either the -type- input was not correct, or you don't wish to print anything. No printout") return plottingFunction(plot_info, processed, data_type) def plotPrompt(dict_structure): # This function prompts the user for the required inputs to plot. # Two alternatives are available: # - The default is "automatic". It is the one that is set by default. The input needs to be provided using a # specific format # - The alternative is "simple", that is activated either typing "S" or "s" or "Simple" or "simple". This helps the # user plotting by specifically asking for the required input # # This function outputs an object structured in this way: # - The main object is a LIST. # - Every list element is a DICTIONARY, representing a different plot. There are two fields: # --- A "plot_mode" field, which is just a STRING # --- A "variables" field, which is a LIST of DICTIONARIES. Each element is a different line in the plot # - Each line is identified by the following fields: # --- System # --- Component # --- Flow # --- Property output = [] accepted_plot_mode = ["sankey", "hist", "timeSeries"] input1 = input("Provide input for advanced plotting. If you wish to switch to simple mode, type ""s"" ") if input1 == "s" or input1 == "S" or input1 == "Simple" or input1 == "simple": output.append({}) output[0]["variables"] = [] while True: plot_mode = input("Switched to simple mode. Please enter the plot type. Available choices are: ""sankey"", ""hist"", ""timeSeries"" ") if plot_mode in accepted_plot_mode: output[0]["plot_mode"] = plot_mode break else: print("The input you gave (" + plot_mode + ") for the plot type is not correct! Maybe there was a typo? Try again!") while True: # We start here a loop to allow for printing more things in the same figure line_info = {} while True: plot_system = input("Now input what system you like to plot for. Available are choices are ""ME#"" (#=1,2,3,4), ""AE#"" (#=1,2,3,4), and ""Other"" ") if plot_system in dict_structure["systems"]: line_info["system"] = plot_system break else: print("The input you gave (" + plot_system + ") for the system name is not correct! Maybe there was a typo? Try again!") while True: plot_unit = input("Now input what component of the chosen system you like to plot for:") if plot_unit in dict_structure["systems"][line_info["system"]]["units"]: line_info["unit"] = plot_unit break else: print("The input you gave (" + plot_unit + ") for the component name is not correct! Maybe there was a typo? Try again!") while True: plot_flow = input("Now input what flow of the chosen component you like to plot for:") if plot_flow in dict_structure["systems"][line_info["system"]]["untis"][line_info["unit"]]["flows"]: line_info["flow"] = plot_flow break else: print("The input you gave (" + plot_flow + ") for the flow name is not correct! Maybe there was a typo? Try again!") while True: plot_property = input("Finally, input what property of the chosen flow you like to plot for:") if plot_property in dict_structure["systems"][line_info["system"]]["untis"][line_info["unit"]]["flows"][line_info["flow"]]["properties"]: line_info["property"] = plot_property break else: print("The input you gave (" + plot_property + ") for the property name is not correct! Maybe there was a typo? Try again!") output[0]["variables"].append(line_info) plot_cycle = input("Thanks! We have everything we need! Do you wish to add anything more to the same plot? if so, type ""y"". Otherwise, type any other character ") if plot_cycle == "y": print("Cool! Let's add a line to the plot, shall we?") else: print("OK, so no more inputs. Here comes the plot!") break else: # The automatic reading is based on the following structure # - First you give the plot type, followed by "->" # - Then you give the inputs in the order as above: system, component, flow, property. Separated by a comma "," # - To plot more than one variable in the same plot, a new entry is added with ";" as separator # - To add a new plot, the separator to be used is "%" # Example: "hist->ME1,TC,EG_in,T;ME1,TC,EG_out,T%timeSeries->ME1,TC,EG_in,T;ME1,TC,EG_out,T" split1 = input1.split("%") for plot in split1: plot_info = {} plot_info["variables"] = [] split2 = plot.split("->") plot_mode = split2[0] if plot_mode in accepted_plot_mode: plot_info["plot_mode"] = plot_mode else: print("The input you gave (" + plot_mode + ") for the plot type is not correct! Maybe there was a typo? Try again!") break split3 = split2[1].split(";") for line in split3: line_info = {} split4 = line.split(",") plot_system = split4[0] plot_unit = split4[1] plot_flow = split4[2] plot_property = split4[3] if plot_system in dict_structure["systems"]: line_info["system"] = plot_system else: print("The input you gave (" + plot_system + ") for the system name is not correct! Maybe there was a typo? Try again!") break if plot_unit in dict_structure["systems"][line_info["system"]]["units"]: line_info["unit"] = plot_unit else: print("The input you gave (" + plot_unit + ") for the component name is not correct! Maybe there was a typo? Try again!") break if plot_flow in dict_structure["systems"][line_info["system"]]["units"][line_info["unit"]]["flows"]: line_info["flow"] = plot_flow else: print("The input you gave (" + plot_flow + ") for the flow name is not correct! Maybe there was a typo? Try again!") break if plot_property in dict_structure["systems"][line_info["system"]]["units"][line_info["unit"]]["flows"][line_info["flow"]]["properties"]: line_info["property"] = plot_property else: print("The input you gave (" + plot_property + ") for the property name is not correct! Maybe there was a typo? Try again!") break plot_info["variables"].append(line_info) output.append(plot_info) return output def plotPromptRaw(structure, hd): output = [] accepted_plot_mode = ["sankey", "hist", "timeSeries"] output.append({}) output[0]["variables"] = [] while True: plot_mode = input( "Please enter the plot type. Available choices are: ""sankey"", ""hist"", ""timeSeries"" ") if plot_mode in accepted_plot_mode: output[0]["plot_mode"] = plot_mode break else: print( "The input you gave (" + plot_mode + ") for the plot type is not correct! Maybe there was a typo? Try again!") while True: # We start here a loop to allow for printing more things in the same figure while True: plot_var = input("Now input what variable you like to plot for. ") if hd[plot_var] in structure.keys(): output[0]["variables"].append(hd[plot_var]) break else: print("The input you gave (" + plot_var + ") for the plot type is not correct! Maybe there was a typo? Try again!") plot_cycle = input( "Thanks! We have everything we need! Do you wish to add anything more to the same plot? if so, type ""y"". Otherwise, type any other character ") if plot_cycle == "y": print("Cool! Let's add a line to the plot, shall we?") else: print("OK, so no more inputs. Here comes the plot!") break return output def plotFromCSV(filename): # Plots a list of things defined in a CSV files print("Still to be defined") def plottingFunction(plot_info, processed, data_type): # Here we go if data_type == "processed": for figure in plot_info: if figure["plot_mode"] == "sankey": print("Plot Sankey diagram...as if this was easy") else: fig = plt.figure() for plot in figure["variables"]: x = processed[d2df(plot["system"], plot["unit"], plot["flow"], plot["property"])] if figure["plot_mode"] == "hist": num_bins = 50 # the histogram of the data n, bins, patches = plt.hist(x, num_bins, normed=1, alpha=0.5) # add a 'best fit' line plt.xlabel(plot["property"]+" of "+plot["flow"]+" of "+plot["unit"]+" in "+plot["system"]) plt.ylabel('Probability') if figure["plot_mode"] == "timeSeries": plt.plot(x) plt.ylabel("Time [YYY:MM]") plt.ylabel(plot["property"] + " of " + plot["flow"] + " of " + plot["unit"] + " in " + plot["system"]) plt.show() elif data_type == "raw": for figure in plot_info: if figure["plot_mode"] == "sankey": print("Plot Sankey diagram...as if this was easy") else: fig = plt.figure() for plot in figure["variables"]: x = processed[plot] if figure["plot_mode"] == "hist": num_bins = 50 # the histogram of the data n, bins, patches = plt.hist(x, num_bins, normed=1, alpha=0.5) # add a 'best fit' line plt.xlabel("Variable of interest") plt.ylabel('Probability') if figure["plot_mode"] == "timeSeries": x.plot() else: print("Data type is wrong. It should be either -raw- or -processed-") def predefinedPlots(processed, dataset_raw, CONSTANTS, dict_structure, filenames): for filename in filenames: fig, ax = plt.subplots() ### TIME SERIES ### if filename == "TimeSeries:Heat_vs_time": # Contribution from the HRSGs temp = (processed["ME2:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["ME3:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE1:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE2:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE3:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE4:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]) hrsg = temp.resample("D").sum() * 60 * 15 # Contribution from the HTHR temp = processed["HTHR:HTHR13:HRWater_in:mdot"] * CONSTANTS["General"]["CP_WATER"] * (processed["HTHR:HTHR13:HRWater_out:T"] - processed["HTHR:HTHR24:HRWater_in:T"]) hthr = temp.resample("D").sum() * 60 * 15 # Maximum theoretical contribution from the HT systems engine_set = {"ME1" , "ME2" , "ME3" , "ME4" , "AE1" , "AE2" , "AE3" , "AE4"} temp = (sum((processed[d2df(idx, "CAC_HT", "HTWater_out", "T")] - processed[d2df(idx, "JWC", "HTWater_in", "T")]) * processed[d2df(idx, "CAC_HT", "HTWater_out", "mdot")] * CONSTANTS["General"]["CP_WATER"] for idx in engine_set)) hthr_max = temp.resample("D").sum() * 60 * 15 # Contribution from the auxiliary boilers boilers_measured = (dataset_raw["Boiler_Port"].resample("D").mean() + dataset_raw["Boiler_starbord"].resample("D").mean()) * CONSTANTS["General"]["HFO"]["LHV"] boilers_calculated = processed["Steam:Boiler1:FuelPh_in:mdot"].resample("D").sum() * 60 * 15 * CONSTANTS["General"]["HFO"]["LHV"] # Total demand total = processed["Demands:Heat:Total:Edot"].resample("D").sum() * 60 * 15 # Actual plotting ax.plot(hrsg, 'k-', label="HRSG") ax.plot(hthr, 'b-', label="HTHR") # plt.plot(hthr_max, 'b:', label="HTHR max") ax.plot(boilers_measured, 'r-', label="Boilers (M)") ax.plot(boilers_calculated, 'r:', label="Boilers (C)") ax.plot(total, 'g-', label='Total heating demand') plt.legend() if filename == "TimeSeries:TypicalWinterDay": ax.plot(processed["Demands:Mechanical:Total:Edot"]["2014-01-31"], "g-", label = "Propulsion power") ax.plot(processed["Demands:Electricity:Total:Edot"]["2014-01-31"], "b--", label="Electric power") ax.plot(processed["Demands:Heat:Total:Edot"]["2014-01-31"], "r:", label="Heat") fig.autofmt_xdate() plt.xlabel("Time [MM-DD HH]") plt.ylabel("Power [kW]") plt.legend() if filename == "TimeSeries:TypicalSummerDay": ax.plot(processed["Demands:Mechanical:Total:Edot"]["2014-07-31"], "g-", label = "Propulsion power") ax.plot(processed["Demands:Electricity:Total:Edot"]["2014-07-31"], "b--", label="Electric power") ax.plot(processed["Demands:Heat:Total:Edot"]["2014-07-31"], "r:", label="Heat") fig.autofmt_xdate() plt.xlabel("Time, [MM-DD HH]") plt.ylabel("Power [kW]") plt.legend() if filename == "TimeSeries:El+Tair_vs_time": # Plotting with two different y axis ax.plot(processed["Demands:Electricity:Total:Edot"]["2014-04-01":"2014-11-01"].resample('D').mean(), "b--", label="Electric power") ax.set_xlabel('Time [YYYY:MM]') ax.set_ylabel('Power [kW]') plt.legend() # Adding the second axis ax2 = ax.twinx() ax2.plot(processed["T_air"]["2014-04-01":"2014-11-01"].resample('D').mean(), 'r--', label="Ambient air temperature") ax2.set_ylabel('Temperature [K]') plt.legend() if filename == "TimeSeries:HeatBalance": # Contribution from the HRSGs Qdot_hrsg = (processed["ME2:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["ME3:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE1:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE2:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE3:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE4:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]) # Contribution from the HTHR Qdot_hthr = processed["HTHR:HTHR13:HRWater_in:mdot"] * CONSTANTS["General"]["CP_WATER"] * (processed["HTHR:HTHR13:HRWater_out:T"] - processed["HTHR:HTHR24:HRWater_in:T"]) Qdot_ab = processed["Steam:Boiler1:FuelPh_in:mdot"] * CONSTANTS["General"]["HFO"]["LHV"] * CONSTANTS["OtherUnits"]["BOILER"]["ETA_DES"] Qdot_dumped = processed["Steam:HotWell:LTWater_in:mdot"] * ( processed["Steam:HotWell:LTWater_out:T"] - processed["Steam:HotWell:LTWater_in:T"] ) * CONSTANTS["General"]["CP_WATER"] Qdot_balance = Qdot_hrsg + Qdot_hthr + Qdot_ab - processed["Demands:Heat:Total:Edot"] - Qdot_dumped Qdot_balance.plot() ax.plot(Qdot_balance.cumsum()) plt.title("Heat balance") plt.xlabel("Time") plt.ylabel("Heat balance [kW]") if filename == "TimeSeries:HeatGenerationStacked": Qdot_hrsg = (processed["ME2:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["ME3:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE1:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE2:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE3:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE4:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]).resample('D').mean() Qdot_hthr = (processed["HTHR:HTHR13:HRWater_in:mdot"] * CONSTANTS["General"]["CP_WATER"] * ( processed["HTHR:HTHR13:HRWater_out:T"] - processed["HTHR:HTHR24:HRWater_in:T"])).resample('D').mean() Qdot_ab = (processed["Steam:Boiler1:Steam_HotWell_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]).resample('D').mean() x = Qdot_ab.index ax.stackplot(x, Qdot_hrsg, Qdot_hthr, Qdot_ab, colors = ("0.66", "0.33", "0")) # label = ["HRSG", "HTHR", "Aux boiler"] p1 = Rectangle((0, 0), 1, 1, fc="0.66") p2 = Rectangle((0, 0), 1, 1, fc="0.33") p3 = Rectangle((0, 0), 1, 1, fc="0") plt.legend([p1, p2, p3], ["HRSG", "HTHR", "Aux boiler"]) plt.xlabel("Time [YYYY-MM]") plt.ylabel("Power [kW]") ### PIE CHARTS ### if filename == "Pie:TotalEnergySimple": quantities = [processed["Demands:Mechanical:Total:Edot"].sum() , processed["Demands:Electricity:Total:Edot"].sum() , processed["Demands:Heat:Total:Edot"].sum()] labels = ["Mechanical Power" , "Electric Power" , "Thermal Power"] explode = (0.05 , 0.05 , 0.05) ax.pie(quantities, labels=labels, explode=explode, autopct='%1.1f%%', shadow=True,) if filename == "Pie:DemandFull": quantities = [processed["Demands:Mechanical:Propeller1:Edot"].sum() , processed["Demands:Mechanical:Propeller2:Edot"].sum(), processed["Demands:Electricity:HVAC:Edot"].sum() , processed["Demands:Electricity:Thrusters:Edot"].sum(), processed["Demands:Electricity:Other:Edot"].sum(), processed["Demands:Heat:HVACpreheater:Edot"].sum(), processed["Demands:Heat:HVACreheater:Edot"].sum(), processed["Demands:Heat:HotWaterHeater:Edot"].sum(), processed["Demands:Heat:MachinerySpaceHeaters:Edot"].sum(), processed["Demands:Heat:OtherTanks:Edot"].sum(), processed["Demands:Heat:TankHeating:Edot"].sum(), processed["Demands:Heat:HFOheater:Edot"].sum(), processed["Demands:Heat:HFOtankHeating:Edot"].sum(), processed["Demands:Heat:Galley:Edot"].sum()] labels = ["Propeller-1" , "Propeller-2" , "HVAC", "Thrusters", "Other users", "HVAC Preheater", "HVAC Reheater", "Hot water heater", "Machinery space heaters", "Other tanks heating", "Fuel tanks heating", "HFO tanks heating", "HFO pre-injection heating", "Galley"] #explode = [0, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2] explode = [] for idx in range(len(labels)): explode.append((1-(quantities[idx]/sum(quantities))) * 0.05) colors = ["green", "green", "blue", "blue", "blue", "sandybrown","sandybrown","sandybrown", "red","red","red","red","red","red"] patches, texts, autotexts = ax.pie(quantities, labels=labels, explode=explode, autopct='%1.1f%%', colors=colors, pctdistance=0.9) [_.set_fontsize(14) for _ in texts] [_.set_fontsize(14) for _ in autotexts] if filename == "Pie:GenerationFull": quantities = [processed["ME1:Cyl:FuelPh_in:mdot"].sum(), processed["ME2:Cyl:FuelPh_in:mdot"].sum(), processed["ME3:Cyl:FuelPh_in:mdot"].sum(), processed["ME4:Cyl:FuelPh_in:mdot"].sum(), processed["AE1:Cyl:FuelPh_in:mdot"].sum(), processed["AE2:Cyl:FuelPh_in:mdot"].sum(), processed["AE3:Cyl:FuelPh_in:mdot"].sum(), processed["AE4:Cyl:FuelPh_in:mdot"].sum(), processed["Steam:Boiler1:FuelPh_in:mdot"].sum()] labels = ["ME1", "ME2", "ME3", "ME4", "AE1", "AE2", "AE3", "AE4", "AB"] colors = ["0.33", "0.33", "0.33", "0.33", "0.66", "0.66", "0.66", "0.66", "black"] ax.pie(quantities, labels=labels, explode=(0.05, )*len(labels), autopct='%1.1f%%', colors=colors) if filename == "Pie:HeatDemand": quantities = [] labels = [] explode = [] for demand in dict_structure["systems"]["Demands"]["units"]["Heat"]["flows"]: quantities.append(processed[d2df("Demands","Heat",demand,"Edot")].sum()) labels.append(demand) explode.append(0.05) ax.pie(quantities, labels=labels, explode=tuple(explode), autopct='%1.1f%%', shadow=True) if filename == "Pie:HeatGeneration": quantities = [] quantities.append((processed["ME2:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]).sum()) quantities.append((processed["ME3:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]).sum()) quantities.append((processed["AE1:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]).sum()) quantities.append((processed["AE2:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]).sum()) quantities.append((processed["AE3:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]).sum()) quantities.append((processed["AE4:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]).sum()) quantities.append((processed["HTHR:HTHR13:HRWater_in:mdot"] * CONSTANTS["General"]["CP_WATER"] * ( processed["HTHR:HTHR13:HRWater_out:T"] - processed["HTHR:HTHR13:HRWater_in:T"])).sum()) quantities.append((processed["HTHR:HTHR13:HRWater_in:mdot"] * CONSTANTS["General"]["CP_WATER"] * ( processed["HTHR:HTHR24:HRWater_out:T"] - processed["HTHR:HTHR24:HRWater_in:T"])).sum()) quantities.append((processed["Steam:Boiler1:Steam_HotWell_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]).sum()) labels = ["HRSG - ME2", "HRSG - ME3", "HRSG - AE1", "HRSG - AE2", "HRSG - AE3", "HRSG - AE4", "HTHR - ER13", "HTHR - ER24", "Aux Boiler"] explode = (0.05, ) * len(labels) colors = ("0.33", "0.33", "0.33", "0.33", "0.33", "0.33", "0.66", "0.66", "1.0") ax.pie(quantities, labels=labels, explode=tuple(explode), autopct='%1.1f%%', shadow=True, colors=colors) if filename == "Pie:OperationalMode": quantities = [] labels = [] colors = [] temp = pd.Series(processed["operationalMode"].values, dtype="category") for category in temp.cat.categories: quantities.append(sum(temp == category)) labels.append(category) colors.append("gray") patches = ax.pie(quantities, labels=labels, explode=(0.05, 0.05, 0.05, 0.05), autopct='%1.1f%%', shadow=True, colors=colors)[0] patches[0].set_hatch('/') patches[1].set_hatch('\\') patches[2].set_hatch('x') ### HISTOGRAMS ### if filename == "Hist:WHR": temp = processed["HTHR:HTHR13:HRWater_in:mdot"] * CONSTANTS["General"]["CP_WATER"] * (processed["HTHR:HTHR13:HRWater_out:T"] - processed["HTHR:HTHR24:HRWater_in:T"]) temp2 = (processed["ME2:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["ME3:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE1:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE2:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE3:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"] + processed["AE4:HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]) ax.hist(temp, 50, normed=1, alpha=0.5, label="HTHR") ax.hist(temp2, 50, normed=1, alpha=0.5, label="HRSG") plt.legend() if filename == "Hist:AuxEngines": temp1 = [] for engine in {"AE1", "AE2", "AE3", "AE4"}: temp1.append(processed[engine+":Cyl:Power_out:Edot"][processed[engine+":on"]]/CONSTANTS["AuxEngines"]["MCR"]) ax.hist(tuple(temp1), normed=False, alpha=0.8, label=["AE1", "AE2", "AE3", "AE4"]) plt.legend() plt.xlabel("Engine load") plt.ylabel("Number of observations") if filename == "Hist:MainEngines": temp1 = [] for engine in {"ME1", "ME2", "ME3", "ME4"}: temp1.append(processed[engine + ":Cyl:Power_out:Edot"][processed[engine + ":on"]] / CONSTANTS["MainEngines"]["MCR"]) ax.hist(tuple(temp1), normed=False, alpha=0.8, label=["ME1", "ME2", "ME3", "ME4"]) plt.legend() plt.xlabel("Engine load") plt.ylabel("Number of observations") ### SCATTER PLOTS ### if filename == "Scatter:Pmech_vs_Vship": enginesOn = processed["ME1:on"].astype(int) + processed["ME2:on"].astype(int) + processed["ME3:on"].astype(int) + processed["ME4:on"].astype(int) for idx in range(5): ax.scatter( dataset_raw["SHIPS SPEED:79025:knot:Average:900"][enginesOn==idx], processed["Demands:Mechanical:Total:Edot"][enginesOn==idx], label=(str(idx) + "Engines on")) plt.legend() ### BAR CHARTS ### if filename == "Bar:PercentageWHR": # Exhaust gas Qdot_hrsg = 0 Qdot_eg = 0 Qdot_eg160 = 0 Bdot_hrsg = 0 Bdot_eg = 0 Bdot_eg160diff = 0 Qdot_hthr = (processed["HTHR:HTHR13:HRWater_out:Edot"] - processed["HTHR:HTHR24:HRWater_in:Edot"]).sum() Qdot_ht = 0 Qdot_lt = 0 Bdot_hthr = (processed["HTHR:HTHR13:HRWater_out:Bdot"] - processed["HTHR:HTHR24:HRWater_in:Bdot"]).sum() Bdot_ht = 0 Bdot_lt = 0 for system in {"AE1", "AE2", "AE3", "AE4", "ME1" , "ME2", "ME3", "ME4"}: # Exhaust gas, Energy if system in {"AE1", "AE2", "AE3", "AE4", "ME2", "ME3"}: Qdot_hrsg = Qdot_hrsg + (processed[system+":HRSG:Steam_in:mdot"] * CONSTANTS["Steam"]["DH_STEAM"]).sum() Bdot_hrsg = Bdot_hrsg + (processed[system + ":HRSG:Steam_out:Bdot"] - processed[system + ":HRSG:Steam_in:Bdot"]).sum() Qdot_eg = Qdot_eg + processed[system+":Turbine:Mix_out:Edot"].sum() Qdot_eg160 = Qdot_eg160 + (processed[system+":Turbine:Mix_out:mdot"] * CONSTANTS["General"]["CP_EG"] * (processed[system+":Turbine:Mix_out:T"] - 160-273.15)).sum() # Exhaust gas, Exergy Bdot_eg = Bdot_eg + processed[system + ":Turbine:Mix_out:Bdot"].sum() Bdot_eg160diff = Bdot_eg160diff + (processed[system + ":Turbine:Mix_out:mdot"] * CONSTANTS["General"]["CP_EG"] * np.log((160+237.15)/(processed["T_0"])) * ((160+237.15-processed["T_0"]) /
np.log((160+237.15)/(processed["T_0"]))
numpy.log
import os import numpy as np import mdtraj as md from simtk import unit from foldamers.cg_model.cgmodel import CGModel from foldamers.utilities.plot import plot_distribution # These functions calculate and plot bond angle and torsion distributions from a CGModel object and pdb trajectory def calc_bond_angle_distribution( cgmodel,pdbfile,nbins=90,plotfile="angle_hist" ): """ Calculate and plot all bond angle distributions from a CGModel object and pdb trajectory :param cgmodel: CGModel() object :type cgmodel: class :param pdbfile: path to pdb trajectory file :type pdbfile: str :param nbins: number of bins spanning the range of 0 to 180 degrees, default = 90 :type nbins: int :param plotfile: Base filename for saving bond angle distribution pdf plots :type plotfile: str """ # Load in a trajectory pdb file: traj = md.load(pdbfile) nframes = traj.n_frames # Get angle list angle_list = CGModel.get_bond_angle_list(cgmodel) ang_types = [] # List of angle types for each angle in angle_list ang_array = np.zeros((len(angle_list),3)) # Relevant angle types are added to a dictionary as they are discovered ang_dict = {} # Create an inverse dictionary for getting angle string name from integer type inv_ang_dict = {} # Counter for number of angle types found: i_angle_type = 0 # Assign angle types: for i in range(len(angle_list)): ang_array[i,0] = angle_list[i][0] ang_array[i,1] = angle_list[i][1] ang_array[i,2] = angle_list[i][2] particle_types = [ CGModel.get_particle_type_name(cgmodel,angle_list[i][0]), CGModel.get_particle_type_name(cgmodel,angle_list[i][1]), CGModel.get_particle_type_name(cgmodel,angle_list[i][2]) ] string_name = "" reverse_string_name = "" for particle in particle_types: string_name += f"{particle}_" string_name = string_name[:-1] for particle in reversed(particle_types): reverse_string_name += f"{particle}_" reverse_string_name = reverse_string_name[:-1] if (string_name in ang_dict.keys()) == False: # New angle type found, add to angle dictionary i_angle_type += 1 ang_dict[string_name] = i_angle_type ang_dict[reverse_string_name] = i_angle_type # For inverse dict we will use only the forward name based on first encounter inv_ang_dict[str(i_angle_type)] = string_name print(f"adding new angle type {i_angle_type}: {string_name} to dictionary") print(f"adding reverse version {i_angle_type}: {reverse_string_name} to dictionary") ang_types.append(ang_dict[string_name]) # Sort angles by type into separate sub arrays for mdtraj compute_angles ang_sub_arrays = {} for i in range(i_angle_type): ang_sub_arrays[str(i+1)] = np.zeros((ang_types.count(i+1),3)) # Counter vector for all angle types n_i = np.zeros((i_angle_type,1), dtype=int) for i in range(len(angle_list)): ang_sub_arrays[str(ang_types[i])][n_i[ang_types[i]-1],:] = ang_array[i,:] n_i[ang_types[i]-1] += 1 # Create dictionary for saving angle histogram data: angle_hist_data = {} # Set bin edges: angle_bin_edges = np.linspace(0,180,nbins+1) angle_bin_centers = np.zeros((len(angle_bin_edges)-1,1)) for i in range(len(angle_bin_edges)-1): angle_bin_centers[i] = (angle_bin_edges[i]+angle_bin_edges[i+1])/2 for i in range(i_angle_type): # Compute all angle values in trajectory # This returns an [nframes x n_angles] array ang_val_array = md.compute_angles(traj,ang_sub_arrays[str(i+1)]) # Reshape arrays and convert to degrees: ang_val_array = (180/np.pi)*np.reshape(ang_val_array, (nframes*n_i[i][0],1)) # Histogram and plot results: n_out, bin_edges_out = np.histogram( ang_val_array, bins=angle_bin_edges,density=True) angle_hist_data[f"{inv_ang_dict[str(i+1)]}_density"]=n_out angle_hist_data[f"{inv_ang_dict[str(i+1)]}_bin_centers"]=angle_bin_centers plot_distribution( inv_ang_dict, angle_hist_data, xlabel="Bond angle (degrees)", ylabel="Probability density", xlim=[0,180], figure_title="Angle distributions", file_name=f"{plotfile}", marker_string='o-r', ) return angle_hist_data def calc_torsion_distribution( cgmodel,pdbfile,nbins=180,plotfile="torsion_hist" ): """ Calculate and plot all torsion distributions from a CGModel object and pdb trajectory :param cgmodel: CGModel() object :type cgmodel: class :param pdbfile: path to pdb trajectory file :type pdbfile: str :param nbins: number of bins spanning the range of -180 to 180 degrees, default = 180 :type nbins: int :param plotfile: Base filename for saving torsion distribution pdf plots :type plotfile: str """ # Load in a trajectory pdb file: traj = md.load(pdbfile) nframes = traj.n_frames # Get torsion list torsion_list = CGModel.get_torsion_list(cgmodel) torsion_types = [] # List of torsion types for each torsion in torsion_list torsion_array = np.zeros((len(torsion_list),4)) # Relevant torsion types are added to a dictionary as they are discovered torsion_dict = {} # Create an inverse dictionary for getting torsion string name from integer type inv_torsion_dict = {} # Counter for number of torsion types found: i_torsion_type = 0 # Assign torsion types: for i in range(len(torsion_list)): torsion_array[i,0] = torsion_list[i][0] torsion_array[i,1] = torsion_list[i][1] torsion_array[i,2] = torsion_list[i][2] torsion_array[i,3] = torsion_list[i][3] particle_types = [ CGModel.get_particle_type_name(cgmodel,torsion_list[i][0]), CGModel.get_particle_type_name(cgmodel,torsion_list[i][1]), CGModel.get_particle_type_name(cgmodel,torsion_list[i][2]), CGModel.get_particle_type_name(cgmodel,torsion_list[i][3]) ] string_name = "" reverse_string_name = "" for particle in particle_types: string_name += f"{particle}_" string_name = string_name[:-1] for particle in reversed(particle_types): reverse_string_name += f"{particle}_" reverse_string_name = reverse_string_name[:-1] if (string_name in torsion_dict.keys()) == False: # New torsion type found, add to torsion dictionary i_torsion_type += 1 torsion_dict[string_name] = i_torsion_type torsion_dict[reverse_string_name] = i_torsion_type # For inverse dict we will use only the forward name based on first encounter inv_torsion_dict[str(i_torsion_type)] = string_name print(f"adding new torsion type {i_torsion_type}: {string_name} to dictionary") print(f"adding reverse version {i_torsion_type}: {reverse_string_name} to dictionary") torsion_types.append(torsion_dict[string_name]) # Sort torsions by type into separate sub arrays for mdtraj compute_dihedrals torsion_sub_arrays = {} for i in range(i_torsion_type): torsion_sub_arrays[str(i+1)] = np.zeros((torsion_types.count(i+1),4)) # Counter vector for all angle types n_i =
np.zeros((i_torsion_type,1), dtype=int)
numpy.zeros
import numpy as np import pytest from hamcrest import * from src.data_preprocessing import * # @pytest.mark.parametrize("data_in", GET_MODEL_REFERENCE_DATA) def test_intersect(): box_a =
np.array([[100, 100], [400, 400]])
numpy.array
import matplotlib.pyplot as plt import numpy as np # Functions x = np.linspace(0,np.pi) y_1 = np.sin(x) y_2 = np.sin(x) + np.random.normal(0,0.1,50) y_3 = np.sin(x) +
np.random.uniform(-0.1,0.1,50)
numpy.random.uniform
import os import hashlib import numpy as np from pybullet_envs import env_bases from pybullet_envs import scene_abstract from d4rl.pointmaze_bullet import bullet_robot from d4rl.pointmaze import maze_model from d4rl import offline_env class MazeRobot(bullet_robot.MJCFBasedRobot): def __init__(self, maze_spec): model = maze_model.point_maze(maze_spec) maze_hash = hashlib.md5(maze_spec.encode('ascii')).hexdigest() filename = os.path.join(offline_env.DATASET_PATH, 'tmp_bullet_xml', maze_hash+'.xml') if not os.path.exists(filename): os.makedirs(os.path.dirname(filename), exist_ok=True) with model.asfile() as f: model_xml = f.read() with open(filename, 'w') as f: f.write(model_xml) self.dt = 0.0165 self.last_qpos = None super(MazeRobot, self).__init__(model_xml=filename, robot_name='maze2d', action_dim=2, obs_dim=4, self_collision=True) @property def qpos(self): x = self.particle.get_position()[0:2] return x @property def qvel(self): #vx = self.particle.speed()[0:2] #vx = np.array([self.ball_x.get_velocity(), self.ball_y.get_velocity()], dtype=np.float32) vx = (self.qpos - self.last_qpos) / self.dt return vx def calc_state(self): #import pdb; pdb.set_trace() return np.concatenate([self.qpos - 1.0, self.qvel]) def set_state(self, qpos, qvel): self.particle.reset_position(np.array([qpos[0], qpos[1], 0.0])) self.particle.reset_velocity(np.array([qvel[0], qvel[1], 0.0])) self.last_qpos = self.qpos #self.ball_x.set_velocity(qvel[0]) #self.ball_y.set_velocity(qvel[1]) def get_obs(self): return self.calc_state() def robot_specific_reset(self, bullet_client): self._p = bullet_client self.particle = self.parts["particle"] self.ball_x = self.jdict["ball_x"] self.ball_y = self.jdict["ball_y"] #u = self.np_random.uniform(low=-.1, high=.1) #self.j1.reset_current_position(u if not self.swingup else 3.1415 + u, 0) self.ball_x.set_motor_torque(0) self.ball_y.set_motor_torque(0) self.last_qpos = self.qpos def apply_action(self, a): assert (np.isfinite(a).all()) self.last_qpos = self.qpos self.ball_x.set_motor_torque(a[0]*10) self.ball_y.set_motor_torque(a[1]*10) class Maze2DBulletEnv(env_bases.MJCFBaseBulletEnv, offline_env.OfflineEnv): def __init__(self, maze_spec, reward_type='dense', reset_target=False, **kwargs): self.robot = MazeRobot(maze_spec) env_bases.MJCFBaseBulletEnv.__init__(self, self.robot) offline_env.OfflineEnv.__init__(self, **kwargs) self.stateId = -1 self.reset_target = reset_target self.str_maze_spec = maze_spec self.maze_arr = maze_model.parse_maze(maze_spec) self.reward_type = reward_type self.reset_locations = list(zip(*np.where(self.maze_arr == maze_model.EMPTY))) self.reset_locations.sort() self._target = np.array([0.0,0.0]) # Set the default goal (overriden by a call to set_target) # Try to find a goal if it exists self.goal_locations = list(zip(*np.where(self.maze_arr == maze_model.GOAL))) if len(self.goal_locations) == 1: self.set_target(self.goal_locations[0]) elif len(self.goal_locations) > 1: raise ValueError("More than 1 goal specified!") else: # If no goal, use the first empty tile self.set_target(np.array(self.reset_locations[0]).astype(self.observation_space.dtype)) self.empty_and_goal_locations = self.reset_locations + self.goal_locations def create_single_player_scene(self, bullet_client): return scene_abstract.SingleRobotEmptyScene(bullet_client, gravity=9.8, timestep=0.0165, frame_skip=1) def reset(self): if (self.stateId >= 0): self._p.restoreState(self.stateId) r = env_bases.MJCFBaseBulletEnv.reset(self) if (self.stateId < 0): self.stateId = self._p.saveState() self.reset_model() ob = self.robot.calc_state() return ob def step(self, action): action =
np.clip(action, -1.0, 1.0)
numpy.clip
import photutils from astropy.io import fits, ascii import sys import os from pkg_resources import resource_filename import matplotlib.pyplot as plt import glob from photutils import CircularAperture, CircularAnnulus from photutils import RectangularAperture from photutils import centroid_2dg, aperture_photometry import photutils import numpy as np from astropy.time import Time import astropy.units as u import pdb from copy import deepcopy import yaml import warnings from scipy.stats import binned_statistic from astropy.table import Table import multiprocessing from multiprocessing import Pool import time import logging import urllib import tqdm from .phot_pipeline import get_baseDir def gauss_2d(x,y,x0,y0,sigx=1.0,sigy=1.0,norm=1.0): """ A 2D Gaussian function """ arg = -1.0 * ((x - x0)**2/(2. * sigx**2) + (y - y0)**2/(2. * sigy**2)) ## only evaluate exponential where it will avoid ## undeflow errors for tiny results high_pts = arg >= -15. z = np.zeros_like(x,dtype=float) z[high_pts] = np.exp(arg[high_pts]) /(2. * np.pi * sigx * sigy) return z * norm def make_gauss_star(dimen=30,cen=[15,15],flux=1.0): x = np.arange(dimen) y = np.arange(dimen) #x = np.linspace(-halfdimen, halfdimen,) #y = np.linspace(-halfdimen, halfdimen) x, y = np.meshgrid(x, y) # get 2D variables instead of 1D z = gauss_2d(x, y, cen[0],cen[1],norm=flux) return z def sim_phot_w_large_shift(): nImg = 10 dimen = 30 xcen = np.linspace(4,25,nImg) ycen = np.linspace(25,4,nImg) time_start = Time('2020-05-04T00:00:00.0',format='fits') time_obs = time_start + np.arange(nImg) * 10.0 * u.second outDir = os.path.join(get_baseDir(), 'example_tshirt_data', 'sim_data','drift_phot') np.random.seed(0) fileNames = [] for ind in np.arange(nImg): z = make_gauss_star(dimen=dimen,cen=[xcen[ind],ycen[ind]],flux=100.0) noise =
np.random.randn(dimen,dimen)
numpy.random.randn
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 27 15:10:36 2020 @author: chitra """ import time _start_time = time.time() def tick(): global _start_time _start_time = time.time() def tock(): t_sec = round(time.time() - _start_time) (t_min, t_sec) = divmod(t_sec,60) (t_hour,t_min) = divmod(t_min,60) print('Time passed: {}hour:{}min:{}sec'.format(t_hour,t_min,t_sec)) import numpy as np import pyblp import pandas as pd # the standard deviation of log income is constant across years, but it has year-varying means # 0.375 is calibrated to match OG diversion of 2nd choice data def solve_nl_nevo(df,rho=0.375): groups = df.groupby(['market_ids', 'nesting_ids']) df['demand_instruments20'] = groups['shares'].transform(np.size) nl_formulation = pyblp.Formulation('0 + prices') problem = pyblp.Problem(nl_formulation, df) res=problem.solve(rho=rho,optimization=pyblp.Optimization('return')) og=res.extract_diagonals(res.compute_diversion_ratios()).mean() print(og) return problem,res def draw_blp_agents(ndraws=10000): log_income_sd = 1.72 log_income_means = { 1971: 2.01156, 1972: 2.06526, 1973: 2.07843, 1974: 2.05775, 1975: 2.02915, 1976: 2.05346, 1977: 2.06745, 1978: 2.09805, 1979: 2.10404, 1980: 2.07208, 1981: 2.06019, 1982: 2.06561, 1983: 2.07672, 1984: 2.10437, 1985: 2.12608, 1986: 2.16426, 1987: 2.18071, 1988: 2.18856, 1989: 2.21250, 1990: 2.18377, } # construct agent data year-by-year market_ids = [] weights = [] nodes = [] income = [] for index, (year, log_income_mean) in enumerate(log_income_means.items()): integration = pyblp.Integration('halton', ndraws, {'discard': 1000 + index * ndraws,'seed': index}) untransformed_agents = pyblp.build_integration(integration, 6) market_ids.append(np.repeat(year, untransformed_agents.weights.size)) weights.append(untransformed_agents.weights) nodes.append(untransformed_agents.nodes[:, :-1]) income.append(np.exp(log_income_mean + log_income_sd * untransformed_agents.nodes[:, -1])) # concatenate the constructed agent data agent_data = { 'market_ids': np.concatenate(market_ids), 'weights': np.concatenate(weights), 'nodes': np.vstack(nodes), 'income': np.concatenate(income), } # Make this a dataframe agents=agent_data.copy() del agents['nodes'] del agents['weights'] agent_df=pd.DataFrame.from_dict(agents) for index, vi in enumerate(np.vstack(nodes).T): agent_df[f'nodes{index}'] = vi agent_df['weights']=np.concatenate(weights).flatten() return agent_df def save_pyblp_results(results, problem,filename): ## add in all the other things we could potentially be interested in res_dict = results.to_dict() res_dict['diversion_ratios'] = results.compute_diversion_ratios() res_dict['quality_diversion_ratios'] = results.compute_diversion_ratios(name=None) res_dict['own_diversion'] = results.extract_diagonals(res_dict['diversion_ratios']) res_dict['long_run_diversion_ratios'] = results.compute_long_run_diversion_ratios() res_dict['objective'] = results.objective.item() res_dict['objective_scaled'] = results.objective.item()/problem.N res_dict['elasticities'] = results.compute_elasticities() res_dict['aggregate_elasticities'] = results.compute_aggregate_elasticities() res_dict['diag_elasticities'] = results.extract_diagonals(res_dict['elasticities']) res_dict['consumer_surplus'] = results.compute_consumer_surpluses() res_dict['markups'] =results.compute_markups() res_dict['probabilities'] = results.compute_probabilities() np.save(filename, res_dict, allow_pickle =True) def load_pyblp_dict(filename): dict = np.load(filename, allow_pickle=True) return dict # this ONLY works for the base! def load_blp_base(problem, filename): base_res = np.load(filename, allow_pickle=True) dict_W = base_res.item().get('W') dict_delta = base_res.item().get('delta') dict_gamma = base_res.item().get('gamma') dict_beta = base_res.item().get('beta') dict_sigma = base_res.item().get('sigma') dict_pi = base_res.item().get('pi') ## Use these to quickly get the exact results as estimation fast_options = dict( method='1s', check_optimality='gradient', costs_bounds=(0.001, None), W_type='clustered', se_type='clustered', initial_update=False, iteration=pyblp.Iteration('squarem', {'atol': 1e-14}), optimization=pyblp.Optimization('return'), scale_objective=False, W=dict_W, delta=dict_delta, beta=dict_beta, gamma=dict_gamma, sigma = dict_sigma, pi = dict_pi ) results_fast = problem.solve(**fast_options) return results_fast def get_params_nevo(results_dict, w=None): elasticities = results_dict.item().get('diag_elasticities') agg_elas = results_dict.item().get('aggregate_elasticities') diversion0 = results_dict.item().get('own_diversion') div = results_dict.item().get('diversion_ratios') div[np.isnan(div)]=0 div[div==diversion0]=0 div.sort(axis=1) top5=div[:,-5:].sum(axis=1) price_param = results_dict.item().get('beta').item() price_param_se = results_dict.item().get('beta_se').item() cs = results_dict.item().get('consumer_surplus')*100 markups=results_dict.item().get('markups') # CRM: Adding the interactions as pi if results_dict.item().get('sigma').shape[0] == 0: sigmas = np.zeros(5) sigma_ses = np.zeros((5,5)) else: sigma_ses = results_dict.item().get('sigma_se') sigmas=np.abs(np.diag(results_dict.item().get('sigma'))) if results_dict.item().get('pi').shape[0] == 0 : pis = np.zeros((5,5)) pi_ses = np.zeros((5,5)) else: pis = results_dict.item().get('pi') pi_ses = results_dict.item().get('pi_se') objective = results_dict.item().get('objective') objective_scaled = results_dict.item().get('objective_scaled') return {'sigma_cons': sigmas[0], 'sigma_price': sigmas[1], 'sigma_sugar': sigmas[2], 'sigma_mushy': sigmas[3], 'sigma_cons_se': sigma_ses[0,0], 'sigma_price_se': sigma_ses[1,1], 'sigma_sugar_se': sigma_ses[2,2], 'sigma_mushy_se': sigma_ses[3,3], 'pi_cons_inc': pis[0,0], 'pi_cons_inc2': pis[0,1], 'pi_cons_age': pis[0,2], 'pi_price_inc': pis[1,0], 'pi_price_inc2': pis[1,1], 'pi_price_child': pis[1,3], 'pi_sugar_inc': pis[2,0], 'pi_sugar_age': pis[2,2], 'pi_mushy_inc': pis[3,0], 'pi_mushy_age': pis[3,2], 'pi_cons_inc_se': pi_ses[0,0], 'pi_cons_inc2_se': pi_ses[0,1], 'pi_cons_age_se': pi_ses[0,2], 'pi_price_inc_se': pi_ses[1,0], 'pi_price_inc2_se': pi_ses[1,1], 'pi_price_child_se': pi_ses[1,3], 'pi_sugar_inc_se': pi_ses[2,0], 'pi_sugar_age_se': pi_ses[2,2], 'pi_mushy_inc_se': pi_ses[3,0], 'pi_mushy_age_se': pi_ses[3,2], 'price_coeff': price_param, 'price_se': price_param_se, 'median_own_elas':np.median(elasticities), 'median_agg_elas': np.median(agg_elas), 'mean_og_div': np.average(diversion0,weights=w), 'median_og_div': np.median(diversion0), 'mean_top5_div': np.average(top5[:,None],weights=w), 'mean_markup': np.average(markups,weights=w), 'median_cs': np.median(cs), 'objective': objective, 'objective_scaled': objective_scaled, } def get_params_blp(results_dict, w=None): elasticities = results_dict.item().get('diag_elasticities') agg_elas = results_dict.item().get('aggregate_elasticities') diversion0 = results_dict.item().get('own_diversion') div = results_dict.item().get('diversion_ratios') # set missing and outside good diversion =0 div[np.isnan(div)]=0 div[div==diversion0]=0 div.sort(axis=1) top5=div[:,-5:].sum(axis=1) # why the difference? weird if results_dict.item().get('pi').shape[1]>0: price_param = results_dict.item().get('pi')[1][0] else: price_param = results_dict.item().get('beta')[1][0] price_se = results_dict.item().get('beta_se')[1][0] cs = results_dict.item().get('consumer_surplus') markups = results_dict.item().get('markups') objective = results_dict.item().get('objective') objective_scaled = results_dict.item().get('objective_scaled') betas = results_dict.item().get('beta')[:,0] beta_ses = results_dict.item().get('beta_se')[:,0] sigmas=np.abs(np.diag(results_dict.item().get('sigma'))) sigma_ses = np.abs(np.diag(results_dict.item().get('sigma_se'))) if sigmas.shape[0] == 0: sigmas = np.zeros(6) sigma_ses = sigmas other_sigmas=sigmas[-4:] other_sigma_ses=sigma_ses[-4:] # if pis are suppressed or not if results_dict.item().get('pi').shape[1] == 0: pis = np.zeros((results_dict.item().get('pi').shape[0],results_dict.item().get('pi').shape[0])) else: pis = results_dict.item().get('pi')[:,0] if results_dict.item().get('pi_se').shape[1] == 0: pi_ses = np.zeros(5) else: pi_ses = results_dict.item().get('pi_se')[:,0] if results_dict.item().get('gamma').shape[0] == 0: gammas = np.zeros(6) gamma_ses = gammas else: gammas = results_dict.item().get('gamma')[:,0] gamma_ses = results_dict.item().get('gamma_se')[:,0] # defining the sigmas is weird sigma_cons = sigmas[0] sigma_hpwt = other_sigmas[0] sigma_air = other_sigmas[1] sigma_mpd = other_sigmas[2] sigma_size = other_sigmas[3] sigma_cons_se = sigma_ses[0] sigma_hpwt_se = other_sigma_ses[0] sigma_air_se = other_sigma_ses[1] sigma_mpd_se = other_sigma_ses[2] sigma_size_se = other_sigma_ses[3] return { 'coeff_cons':betas[0], 'coeff_hpwt':betas[1], 'coeff_air':betas[2], 'coeff_mpd':betas[3], 'coeff_size':betas[4], 'se_cons':beta_ses[0], 'se_hpwt':beta_ses[1], 'se_air':beta_ses[2], 'se_mpd':beta_ses[3], 'se_size':beta_ses[4], 'sigma_cons':sigma_cons, 'sigma_hpwt':sigma_hpwt, 'sigma_air':sigma_air, 'sigma_mpd':sigma_mpd, 'sigma_size':sigma_size, 'sigma_cons_se':sigma_cons_se, 'sigma_hpwt_se':sigma_hpwt_se, 'sigma_air_se':sigma_air_se, 'sigma_mpd_se':sigma_mpd_se, 'sigma_size_se':sigma_size_se, #not TOTALLY sure this should be absolute value 'price_term':price_param, 'price_se': price_se, 'gamma_cons':gammas[0], 'gamma_hpwt':gammas[1], 'gamma_air':gammas[2], 'gamma_mpg':gammas[3], 'gamma_size':gammas[4], 'gamma_trend':gammas[5], 'gamma_cons_se':gamma_ses[0], 'gamma_hpwt_se':gamma_ses[1], 'gamma_air_se':gamma_ses[2], 'gamma_mpg_se':gamma_ses[3], 'gamma_size_se':gamma_ses[4], 'gamma_trend_se':gamma_ses[5], 'median_own_elas':np.median(elasticities), 'median_agg_elas': np.median(agg_elas), 'mean_own_elas:': np.average(elasticities,weights=w), 'median_og_div': np.median(diversion0), 'mean_og_div': np.average(diversion0,weights=w), 'median_top5_div': np.median(top5[:,None]), 'mean_top5_div': np.average(top5[:,None],weights=w), 'median_markup': np.median(markups), 'mean_markup': np.average(markups,weights=w), 'median_cs': np.median(cs), 'objective': objective, 'objective_scaled': objective_scaled, } def make_df(x,stub): df=pd.DataFrame(x) df.columns=[stub+str(x) for x in df.columns] return df # for each market, do the WTP calculations def do_single_market(results,product_data,ids): prodlist = product_data[product_data.market_ids.isin(ids)]['product_ids'].unique() base=results.compute_consumer_surpluses(keep_all=False,market_id=ids) wtp=np.vstack([base-results.compute_consumer_surpluses(eliminate_product_ids=[x],keep_all=False,market_id=ids) for x in prodlist]).flatten() div0=np.diag(results.compute_diversion_ratios(market_id=ids)) shares=product_data[product_data.market_ids.isin(ids)]['shares'].values df=pd.DataFrame(np.vstack([wtp,div0,shares]).transpose(),columns=['wtp','div0','shares']) df['market_ids']=ids[0] df['product_ids']=product_data[product_data.market_ids.isin(ids)]['product_ids'].values return df def do_single_market_indiv(results,product_data,ids): # get the relevant market and product IDs mktslice = product_data[product_data.market_ids.isin(ids)].copy() prodlist = mktslice['product_ids'].unique() # compute consumer surplus in the market WITH every product base=results.compute_consumer_surpluses(keep_all=True,market_id=ids) # WTP is surplus WITH (base) MINUS surplus without (eliminate) wtp=np.vstack([base-results.compute_consumer_surpluses(eliminate_product_ids=[x],keep_all=True,market_id=ids) for x in prodlist]) # get diversion ratios div0=np.diag(results.compute_diversion_ratios(market_id=ids)) # get market share for i j t sijt = results.compute_probabilities(market_id=ids) # Dij,0 div_i0=((1-sijt.sum(axis=0)[None,:])/(1-sijt)) shares=sijt.mean(axis=1) df=pd.concat([make_df(wtp,'wtp_'), make_df(sijt,'sijt_'), make_df(div_i0,'divi0_')],axis=1) df['market_ids']=ids[0] df['product_ids']=product_data[product_data.market_ids.isin(ids)]['product_ids'].values return df def reshape_wtp(wide_df): wide_df2=wide_df.set_index(['market_ids','product_ids']) tmp=wide_df2.filter(regex='wtp_').stack() draw_ids=np.array([int(str1.split('_')[1]) for str1 in tmp.index.get_level_values(2)]) long_df=pd.concat([ tmp.reset_index(level=2,drop=True), wide_df2.filter(regex='sijt_').stack().reset_index(level=2,drop=True), wide_df2.filter(regex='divi0_').stack().reset_index(level=2,drop=True) ],axis=1) long_df.columns=['wtp','shares','div0'] long_df['draw_ids']=draw_ids return long_df def outreg(beta, sigma,names=None): # assume everything is in the right order # i won't do any rearranging here # create a new table by drawing from each paramnames = beta.index paramnames_se = sigma.index modelnames = beta.columns # first, cut off each at three decimal places tab_beta = beta.round(decimals=3) tab_sigma= sigma.round(decimals=3) # fill in NAs and Zeroes: tab_sigma = tab_sigma.fillna('--') #tab_sigma = tab_sigma.fillna('--') tab_beta = tab_beta.replace(0, '--') tab_beta = tab_beta.replace(0.0, '--') #tab_beta = tab_beta.astype(str) tab_sigma = tab_sigma.astype(str) # replace the ZEROES with '--' # which requires first converting to string tab_new = pd.DataFrame() # strip the rownames for i in range(0, len(beta)): name_p = paramnames[i] name_s = paramnames_se[i] new_beta = tab_beta.loc[name_p] new_sigma = '(' + tab_sigma.loc[name_s] + ')' #new_sigma = f'({tab_sigma.loc[name_s] + ')' tab_new = tab_new.append(new_beta) tab_new = tab_new.append(new_sigma) # reset the index according to the paramnames if names == None: names = paramnames tab_new=tab_new.replace('(0.0)', '--') tab_new=tab_new.replace('(--)', '--') indexcol = [] for i in range(0, len(beta)): print(names[i]) indexcol = np.append(indexcol,names[i]) # for the beta indexcol =
np.append(indexcol,' ')
numpy.append
import numpy as np from rpi_d3m_primitives.featSelect.RecognizePC_BayesFactor import RecognizePC_BayesFactor from rpi_d3m_primitives.featSelect.tian_checkDataSize import checkDataSize from rpi_d3m_primitives.featSelect.helperFunctions import joint from rpi_d3m_primitives.featSelect.conditionalMI import cmi from rpi_d3m_primitives.featSelect.HypothesisTest import Bayesian_Factor_conditional as BF_CI def STMB_BayesFactor(train_data, targets, bayesfactors): numf = train_data.shape[1] # feature number #targets = data[:, targetindex] # selected index data # %% Recognize Target PC CanMB = np.arange(numf) # candidates PCD, Sepset_t, cutSetSize = RecognizePC_BayesFactor(targets, CanMB, train_data, bayesfactors) spouse = [[]]*numf #print("===========PC Result==========") #print(PCD) # print(Sepset_t) # print(cutSetSize) #scores = [] Des = [[]]*PCD.size datasizeFlag = 0 #%% Find Markov blanket for yind in range(PCD.size): flag = 0 y = PCD[yind] searchset = np.setdiff1d(CanMB, PCD) for xind in range(searchset.size): x = searchset[xind] col = set(Sepset_t[x]).union(set([y])) cmbVector = joint(train_data[:, np.array(list(col))]) # datasizeFlag = checkDataSize(train_data[:, x], targets, cmbVector) #print("datasizeFlag",x,datasizeFlag) if datasizeFlag != 1: Independency = BF_CI(train_data[:,x], targets, cmbVector, bayesfactors) if Independency == 0: # V structure for s in np.setdiff1d(np.union1d(PCD,[x]), np.array([y])): Independency = BF_CI(train_data[:,y], targets, train_data[:,s], bayesfactors) if Independency == 1: temp = set(Des[yind]).union(set([y])) Des[yind] = np.array(list(temp)) flag = 1 break else: temp = set(spouse[y]).union(set([x])) spouse[y]= np.array(list(temp)) if flag == 1: break des = [item for sublist in Des for item in sublist] PCD = np.setdiff1d(PCD, des) #print(PCD) #assert(1==2) #%% Shrink spouse NonS = [] S = [] for i in np.setdiff1d(np.arange(numf), PCD): spouse[i] = [] # empty for y in np.arange(len(spouse)): if spouse[y] != []: S.append( y) # Y has spouses # shrink spousecan = spouse[y] for sind in np.arange(spousecan.size): s = spousecan[sind] col = set([y]).union(set(spousecan),set(PCD)) cmbVector = joint(train_data[:, np.setdiff1d(np.array(list(col)), s)]) # datasizeFlag = checkDataSize(train_data[:, s], targets, cmbVector) if datasizeFlag != 1: Independency = BF_CI(train_data[:,s], targets, cmbVector, bayesfactors) if Independency == 1: NonS = set(NonS).union(set([s])) spouse[y] = np.setdiff1d(spousecan, np.array(list(NonS))) NonS = [] b = [] for i in range(len(spouse)): if len(spouse[i]) > 0: b = set(b).union(set(spouse[i])) # remove false spouse from PC M = PCD # setdiff(PCD,S); % M has no spouses in PCD set PCsize = M.size testSet = set(S).union(set(b)) #testSet = np.array(list(temp)) C = np.zeros(shape = (PCsize, 1)) for x in M: col = set(PCD).union(set(testSet)) cmbVector = joint(train_data[:, np.setdiff1d(np.array(list(col)), x)]) # datasizeFlag = checkDataSize(train_data[:, x], targets, cmbVector) if datasizeFlag != 1: Independency = BF_CI(train_data[:,x], targets, cmbVector, bayesfactors) if Independency == 1: PCD =
np.setdiff1d(PCD, x)
numpy.setdiff1d