prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Importando bibliotecas necessárias # Biblioteca numérica import numpy # Visualisar imagens from matplotlib import pyplot # Biblioteca para leitura de CSV from pandas import read_csv # Uma das inúmeras funções do SKlear úteis para limpar o dataset from sklearn.preprocessing import MinMaxScaler # Importação de camadas do Keras from keras.models import Sequential # Dense é a rede "tradicional", neurônios simples from keras.layers import Dense, Input # Recurrent é a classe mais simples de redes neurais recorrentes. from keras.layers import SimpleRNN # LSTM é uma classe de redes neurais recorrentes mais avençadas que as RNN comuns from keras.layers import LSTM # Função usada para gerar o conjunto de dados da serie from tensorflow import initializers def create_dataset(dados_da_serie): # Lista de amostras entrada_rede_neural_X, saida_rede_neural_Y = [], [] # Para cada ponto dos dados no tempo, adiciono a lista o valor no ponto (Tanto para X quanto para Y) # Isso ocorre porque a partir do ponto anterior eu devo predizer exatamente o valor posterior. for i in range(len(dados_da_serie) - 2): dado_em_um_determinado_ponto = dados_da_serie[(i + 1), 0] entrada_rede_neural_X.append([dado_em_um_determinado_ponto]) saida_rede_neural_Y.append(dado_em_um_determinado_ponto) return entrada_rede_neural_X, saida_rede_neural_Y def visualizar_resultados(modelo): pyplot.subplot(211) pyplot.title('Perda da rede(treinamento)') # Plota os valores de perda da rede em cada época. pyplot.plot(modelo.history['loss'], color='blue') pyplot.subplot(212) pyplot.title('Erro médio absoluto') # Plota os valores de acurácia da rede em cada época. pyplot.plot(modelo.history['mean_absolute_error'], color='blue') pyplot.show('figura') pyplot.close() # Carregamento dos dados da tabela dados_tabela = read_csv('tabela/tabela.csv', usecols=[1], engine='python') conjunto_de_dados = dados_tabela.values # Conversão para float32 conjunto_de_dados = conjunto_de_dados.astype('float32') # Separação os dados em dois conjuntos, teste(40%) e trainamento(60%) tamanho_conjunto_treinamento = int(len(conjunto_de_dados) * 0.60) tamanho_conjunto_testes = len(conjunto_de_dados) - tamanho_conjunto_treinamento dados_para_treinamento = conjunto_de_dados[0:tamanho_conjunto_treinamento, :] dados_para_testes = conjunto_de_dados[tamanho_conjunto_treinamento:len(conjunto_de_dados), :] # Criando o dataset trainamento e teste conjunto_de_trainamento_entrada_rede, conjunto_treinamento_saida_rede = create_dataset(dados_para_treinamento) conjunto_de_testes_entrada_rede, conjunto_de_testes_saida_rede = create_dataset(dados_para_testes) # Convertendo lista de amostras para numpy array conjunto_de_trainamento_entrada_rede = numpy.array(conjunto_de_trainamento_entrada_rede) conjunto_treinamento_saida_rede =
numpy.array(conjunto_treinamento_saida_rede)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Feb 27 13:21:28 2021 @author: <NAME> """ import keyboard import time import pickle import torch import random import cv2 import numpy as np import copy as scp from PIL import Image from matplotlib import style from dataclasses import dataclass from operator import add from collections import deque style.use("ggplot") @dataclass class filter_options: ''' Chapter 3.4.5 ''' circle_diameter : float = 250 phis : np.array = np.array([2*np.pi/3-np.pi/2, 4*np.pi/3-np.pi/2, 3*np.pi/2]) diameters : np.array = np.array([80, 80]) @dataclass class slot: position : np.array = np.array([0, 0]) index : tuple = (0,0) is_used: bool = False class Ruetris: #colors for visualisation with cv piece_colors = [ (254, 254, 254), #white for free space (0, 0, 0), #black for deadzones (255, 255, 0), #color one for block one (147, 88, 254), #same for other pieces (54, 175, 144), (255, 0, 0), (102, 217, 238), (254, 151, 32), (0, 0, 255) ] #array with geometry of pieces as numpy arrays ''' Chapter 3.2 ''' pieces = [ np.array([[2, 2], #Smashboy [2, 2]]), np.array([[0, 3, 0], #Teewee [3, 3, 3]]), np.array([[0, 4, 4], #Rhode Island Z [4, 4, 0]]), np.array([[5, 5, 0], #Cleveland Z [0, 5, 5]]), np.array([[6, 6, 6, 6]]), #Hero np.array([[0, 0, 7], #<NAME> [7, 7, 7]]), np.array([[8, 0, 0], #<NAME> [8, 8, 8]]) ] #constructor def __init__(self, opt): self.table_dia = opt.table_dia self.block_size = opt.block_size self.state_report = opt.state_report self.filter_opt = filter_options() self.action_input = opt.action_method self.rnd_pos = opt.rnd_pos self.rnd_rot = opt.rnd_rot self.reward_action_dict = opt.reward_action_dict self.c1 = opt.c1 self.c2 = opt.c2 self.c3 = opt.c3 self.c4 = opt.c4 self.create_supervised_data = opt.create_supervised_data #self.supervised_data_size = opt.supervised_data_size self.cli_print = opt.print_state_2_cli self.create_slot_list() self.num_of_cells = int(np.sqrt(len(self.slot_list))) self.centre_idx = (self.num_of_cells//2, self.num_of_cells//2) self.update_slot_indizes() #now that we know matrix dimension self.deadzoneFilter() #extra_board for visualization of numbers self.info_frame = np.ones((self.num_of_cells * self.block_size, self.num_of_cells * int(self.block_size / 2), 3), dtype=np.uint8) * np.array([62, 11, 78], dtype=np.uint8) self.text_color = (255, 255, 255) self.reset() ''' Kind of observation: Chapter 3.4.2.3 ''' if self.state_report=='reduced': self.state_dim = 4**2+4 elif self.state_report=='full_bool': self.state_dim = self.num_of_cells**2*2 elif self.state_report=='full_float': self.state_dim = self.num_of_cells**2 ''' Kind of interactin: Chapter 3.4.2.2 ''' self.action_dim = 9 if self.action_input=='controller' else 1 def create_slot_list(self): self.slot_list = [] Finished = False layer_num = 1 k = 1 idx = 0 self.slot_list.append(slot()) #centre right = np.array([self.block_size, 0]) up = np.array([0, self.block_size]) left = np.array([-self.block_size, 0]) down = np.array([0, -self.block_size]) while not Finished: for i in range(layer_num*8): if i == 0: pos = self.slot_list[idx].position + right elif i // (k+1) == 0: pos = self.slot_list[idx].position + up elif i // (k+1) == 1: pos = self.slot_list[idx].position + left elif i // (k+1) == 2: pos = self.slot_list[idx].position + down elif i // (k+1) == 3: pos = self.slot_list[idx].position + right self.slot_list.append(slot(position=pos)) idx += 1 if np.linalg.norm(self.slot_list[idx].position)/np.sqrt(2) >= self.table_dia/2: Finished = True else: k += 2 layer_num += 1 def update_slot_indizes(self): Finished = False layer_num = 1 k = 1 idx = 0 self.slot_list[idx].index = self.centre_idx right = (0, 1) up = (-1, 0) left = (0, -1) down = (1, 0) while not Finished: for i in range(layer_num*8): if i == 0: idx_tuple = tuple(map(add, self.slot_list[idx].index, right)) elif i // (k+1) == 0: idx_tuple = tuple(map(add, self.slot_list[idx].index, up)) elif i // (k+1) == 1: idx_tuple = tuple(map(add, self.slot_list[idx].index, left)) elif i // (k+1) == 2: idx_tuple = tuple(map(add, self.slot_list[idx].index, down)) elif i // (k+1) == 3: idx_tuple = tuple(map(add, self.slot_list[idx].index, right)) idx += 1 self.slot_list[idx].index = idx_tuple if idx == len(self.slot_list)-1: Finished = True else: k += 2 layer_num += 1 def create_playboard(self): ''' Figure 3.19 ''' self.playboard = np.zeros((self.num_of_cells, self.num_of_cells), dtype=float) #empty out playboard for slot in self.slot_list: self.playboard[slot.index] = slot.is_used def create_pieceboard(self, piece, piece_pos): ''' Figure 3.20 ''' pieceboard = np.zeros((self.num_of_cells, self.num_of_cells), dtype=float) for i,row in enumerate(piece): for j,entry in enumerate(row): pieceboard[i + piece_pos["i"]][j + piece_pos["j"]] =\ 1.0 if bool(entry) else 0.0 return pieceboard def reset(self): self.create_playboard() self.piece, self.piece_pos = self.new_piece() self.score = 0 self.wasted_places = 0 self.holes = self.get_holes(self.playboard) self.parts_on_board = 0 self.gameover = False return self.get_state(self.playboard, self.piece, self.piece_pos) def get_state(self, playboard, piece, piece_pos, cli_print=False): ''' Kind of observation: Chapter 3.4.2.3 ''' if self.state_report == 'full_bool': pieceboard = self.create_pieceboard(piece, piece_pos) flat_state = np.append(playboard.flatten(), pieceboard.flatten(), axis=0) if cli_print: print(playboard) print(pieceboard) return torch.FloatTensor(flat_state) elif self.state_report == 'full_float': if cli_print: print(self.get_full_float_state(playboard, piece, piece_pos)) print('\n') return torch.FloatTensor(self.get_full_float_state(\ playboard, piece, piece_pos).flatten()) elif self.state_report == 'reduced': distances_vec = self.calc_distances(playboard, piece, piece_pos) if cli_print: print(distances_vec) return torch.FloatTensor(np.array(distances_vec).flatten()) def get_state_no_piece(self, playboard): ''' Kind of observation, but with no piece: Chapter 3.4.2.3 ''' if self.state_report == 'full_bool': pieceboard = np.zeros(playboard.shape) #no information about piece flat_state = np.append(playboard.flatten(), pieceboard.flatten(), axis=0) return torch.FloatTensor(flat_state) elif self.state_report == 'full_float': return torch.FloatTensor(playboard.flatten()) elif self.state_report == 'reduced': flat_state = np.zeros(20) #and no information for reduced return torch.FloatTensor(flat_state) def get_full_float_state(self, playboard, piece, piece_pos): ''' Figure 3.21 ''' float_board = scp.copy(playboard) for i,row in enumerate(piece): for j,entry in enumerate(row): condition_A = bool(playboard[i + piece_pos["i"]][j + piece_pos["j"]]) condition_B = bool(entry) if condition_B and condition_A: float_board[i + piece_pos["i"]][j + piece_pos["j"]] = -1.0 elif condition_B and not condition_A: float_board[i + piece_pos["i"]][j + piece_pos["j"]] = 0.5 return float_board def get_state_action_dict(self): ''' All possible storage positions: Figure 3.24 ''' state_action_dict = {} piece = scp.copy(self.piece) if self.piece_idx == 0: #smashboy num_rotations = 1 elif self.piece_idx == 2 or self.piece_idx == 3 or self.piece_idx == 4: num_rotations = 2 else: num_rotations = 4 for rot in range(num_rotations): valid_i = self.num_of_cells - len(piece) valid_j = self.num_of_cells - len(piece[0]) for x in range((valid_i+1)*(valid_j+1)): i = x // (valid_j+1) j = x % (valid_j+1) pos = {'i': i, 'j': j} out_of_boundary, overlapping = self.check_action(pos, piece) if not out_of_boundary and not overlapping: state_action_dict[(i, j, rot)] = \ self.get_state(self.playboard, piece, pos) if not \ self.reward_action_dict else self.action_place_dummy(self.playboard, piece, pos) _, piece = self.rot_action('right', piece) return state_action_dict def action_place_dummy(self, board, piece, pos): ''' Calculation of rewards without changing state of environment. This is for the 'Benchmark-Agent' Chapter 3.4.2.5 ''' score_inc = 0 next_board = scp.deepcopy(board) for i,row in enumerate(piece): for j,entry in enumerate(row): if bool(entry): index = (i+pos['i'], j+pos['j']) next_board[index] = 1 distances_vec = self.calc_distances(board, piece, pos) n_neighbours = distances_vec[0:16].count(0) x_i_norm = sum(distances_vec[16:])/4 current_wasted_places = self.calc_wasted_places(next_board) n_wasted_places = current_wasted_places - self.wasted_places score_inc += self.eval_measurements(x_i_norm, n_wasted_places, n_neighbours) return score_inc def calc_distances(self, playboard, piece, piece_pos): ''' Chapter 3.4.2.1 and Figure 3.12 ''' distances_vec = [] base_vec = [] for i,row in enumerate(piece): for j,entry in enumerate(row): if bool(entry): distances_vec.append(self.count4directions(i,j, playboard, piece_pos)) base_vec.append(self.distance2base(i,j, piece_pos)) flat_distances = [distance for sublist in distances_vec for distance in sublist] return flat_distances + base_vec def count4directions(self, i, j, playboard, piece_pos): ''' Chapter 3.4.2.3, Figure 3.22 and 3.23 ''' start_idx = (i + piece_pos['i'], j + piece_pos['j']) directions = [(1,0), (0,1), (-1,0), (0,-1)] if playboard[start_idx] \ else [(-1,0), (0,-1), (1,0), (0,1)] looking_for = not playboard[start_idx] distances = [] for direction in directions: distance = 1 if playboard[start_idx] else 0 idx_tuple = tuple(map(add, start_idx, direction)) while True: is_i_min = not idx_tuple[0]>=0 is_j_min = not idx_tuple[1]>=0 is_i_max = not idx_tuple[0]<self.num_of_cells is_j_max = not idx_tuple[1]<self.num_of_cells condition = is_i_min or is_j_min or is_i_max or is_j_max if condition or playboard[idx_tuple]==looking_for: c = self.num_of_cells distances.append(-distance/c if playboard[start_idx] \ else distance/c) break else: distance += 1 idx_tuple = tuple(map(add, idx_tuple, direction)) return distances def distance2base(self, i, j, piece_pos): #manhatten-distance or squared-distance would speed up things ''' Equation 3.1 ''' target_idx = (i + piece_pos['i'], j + piece_pos['j']) for slot in self.slot_list: if slot.index == target_idx: return
np.linalg.norm(slot.position)
numpy.linalg.norm
from itertools import product import numpy as np from numpy.linalg import norm from numpy.testing import (assert_, assert_allclose, assert_equal, suppress_warnings) from pytest import raises as assert_raises from scipy.sparse import issparse, lil_matrix from scipy.sparse.linalg import aslinearoperator from scipy.optimize import least_squares from scipy.optimize._lsq.least_squares import IMPLEMENTED_LOSSES from scipy.optimize._lsq.common import EPS, make_strictly_feasible def fun_trivial(x, a=0): return (x - a)**2 + 5.0 def jac_trivial(x, a=0.0): return 2 * (x - a) def fun_2d_trivial(x): return np.array([x[0], x[1]]) def jac_2d_trivial(x): return np.identity(2) def fun_rosenbrock(x): return np.array([10 * (x[1] - x[0]**2), (1 - x[0])]) def jac_rosenbrock(x): return np.array([ [-20 * x[0], 10], [-1, 0] ]) def jac_rosenbrock_bad_dim(x): return np.array([ [-20 * x[0], 10], [-1, 0], [0.0, 0.0] ]) def fun_rosenbrock_cropped(x): return fun_rosenbrock(x)[0] def jac_rosenbrock_cropped(x): return jac_rosenbrock(x)[0] # When x is 1-D array, return is 2-D array. def fun_wrong_dimensions(x): return np.array([x, x**2, x**3]) def jac_wrong_dimensions(x, a=0.0): return np.atleast_3d(jac_trivial(x, a=a)) def fun_bvp(x): n = int(np.sqrt(x.shape[0])) u = np.zeros((n + 2, n + 2)) x = x.reshape((n, n)) u[1:-1, 1:-1] = x y = u[:-2, 1:-1] + u[2:, 1:-1] + u[1:-1, :-2] + u[1:-1, 2:] - 4 * x + x**3 return y.ravel() class BroydenTridiagonal: def __init__(self, n=100, mode='sparse'): np.random.seed(0) self.n = n self.x0 = -np.ones(n) self.lb = np.linspace(-2, -1.5, n) self.ub = np.linspace(-0.8, 0.0, n) self.lb += 0.1 * np.random.randn(n) self.ub += 0.1 * np.random.randn(n) self.x0 += 0.1 * np.random.randn(n) self.x0 = make_strictly_feasible(self.x0, self.lb, self.ub) if mode == 'sparse': self.sparsity = lil_matrix((n, n), dtype=int) i = np.arange(n) self.sparsity[i, i] = 1 i = np.arange(1, n) self.sparsity[i, i - 1] = 1 i = np.arange(n - 1) self.sparsity[i, i + 1] = 1 self.jac = self._jac elif mode == 'operator': self.jac = lambda x: aslinearoperator(self._jac(x)) elif mode == 'dense': self.sparsity = None self.jac = lambda x: self._jac(x).toarray() else: assert_(False) def fun(self, x): f = (3 - x) * x + 1 f[1:] -= x[:-1] f[:-1] -= 2 * x[1:] return f def _jac(self, x): J = lil_matrix((self.n, self.n)) i = np.arange(self.n) J[i, i] = 3 - 2 * x i = np.arange(1, self.n) J[i, i - 1] = -1 i = np.arange(self.n - 1) J[i, i + 1] = -2 return J class ExponentialFittingProblem: """Provide data and function for exponential fitting in the form y = a + exp(b * x) + noise.""" def __init__(self, a, b, noise, n_outliers=1, x_range=(-1, 1), n_points=11, random_seed=None): np.random.seed(random_seed) self.m = n_points self.n = 2 self.p0 = np.zeros(2) self.x = np.linspace(x_range[0], x_range[1], n_points) self.y = a + np.exp(b * self.x) self.y += noise * np.random.randn(self.m) outliers = np.random.randint(0, self.m, n_outliers) self.y[outliers] += 50 * noise * np.random.rand(n_outliers) self.p_opt = np.array([a, b]) def fun(self, p): return p[0] + np.exp(p[1] * self.x) - self.y def jac(self, p): J = np.empty((self.m, self.n)) J[:, 0] = 1 J[:, 1] = self.x * np.exp(p[1] * self.x) return J def cubic_soft_l1(z): rho = np.empty((3, z.size)) t = 1 + z rho[0] = 3 * (t**(1/3) - 1) rho[1] = t ** (-2/3) rho[2] = -2/3 * t**(-5/3) return rho LOSSES = list(IMPLEMENTED_LOSSES.keys()) + [cubic_soft_l1] class BaseMixin: def test_basic(self): # Test that the basic calling sequence works. res = least_squares(fun_trivial, 2., method=self.method) assert_allclose(res.x, 0, atol=1e-4) assert_allclose(res.fun, fun_trivial(res.x)) def test_args_kwargs(self): # Test that args and kwargs are passed correctly to the functions. a = 3.0 for jac in ['2-point', '3-point', 'cs', jac_trivial]: with suppress_warnings() as sup: sup.filter(UserWarning, "jac='(3-point|cs)' works equivalently to '2-point' for method='lm'") res = least_squares(fun_trivial, 2.0, jac, args=(a,), method=self.method) res1 = least_squares(fun_trivial, 2.0, jac, kwargs={'a': a}, method=self.method) assert_allclose(res.x, a, rtol=1e-4) assert_allclose(res1.x, a, rtol=1e-4) assert_raises(TypeError, least_squares, fun_trivial, 2.0, args=(3, 4,), method=self.method) assert_raises(TypeError, least_squares, fun_trivial, 2.0, kwargs={'kaboom': 3}, method=self.method) def test_jac_options(self): for jac in ['2-point', '3-point', 'cs', jac_trivial]: with suppress_warnings() as sup: sup.filter(UserWarning, "jac='(3-point|cs)' works equivalently to '2-point' for method='lm'") res = least_squares(fun_trivial, 2.0, jac, method=self.method) assert_allclose(res.x, 0, atol=1e-4) assert_raises(ValueError, least_squares, fun_trivial, 2.0, jac='oops', method=self.method) def test_nfev_options(self): for max_nfev in [None, 20]: res = least_squares(fun_trivial, 2.0, max_nfev=max_nfev, method=self.method) assert_allclose(res.x, 0, atol=1e-4) def test_x_scale_options(self): for x_scale in [1.0, np.array([0.5]), 'jac']: res = least_squares(fun_trivial, 2.0, x_scale=x_scale) assert_allclose(res.x, 0) assert_raises(ValueError, least_squares, fun_trivial, 2.0, x_scale='auto', method=self.method) assert_raises(ValueError, least_squares, fun_trivial, 2.0, x_scale=-1.0, method=self.method) assert_raises(ValueError, least_squares, fun_trivial, 2.0, x_scale=None, method=self.method) assert_raises(ValueError, least_squares, fun_trivial, 2.0, x_scale=1.0+2.0j, method=self.method) def test_diff_step(self): # res1 and res2 should be equivalent. # res2 and res3 should be different. res1 = least_squares(fun_trivial, 2.0, diff_step=1e-1, method=self.method) res2 = least_squares(fun_trivial, 2.0, diff_step=-1e-1, method=self.method) res3 = least_squares(fun_trivial, 2.0, diff_step=None, method=self.method) assert_allclose(res1.x, 0, atol=1e-4) assert_allclose(res2.x, 0, atol=1e-4) assert_allclose(res3.x, 0, atol=1e-4) assert_equal(res1.x, res2.x) assert_equal(res1.nfev, res2.nfev) def test_incorrect_options_usage(self): assert_raises(TypeError, least_squares, fun_trivial, 2.0, method=self.method, options={'no_such_option': 100}) assert_raises(TypeError, least_squares, fun_trivial, 2.0, method=self.method, options={'max_nfev': 100}) def test_full_result(self): # MINPACK doesn't work very well with factor=100 on this problem, # thus using low 'atol'. res = least_squares(fun_trivial, 2.0, method=self.method) assert_allclose(res.x, 0, atol=1e-4) assert_allclose(res.cost, 12.5) assert_allclose(res.fun, 5) assert_allclose(res.jac, 0, atol=1e-4) assert_allclose(res.grad, 0, atol=1e-2) assert_allclose(res.optimality, 0, atol=1e-2) assert_equal(res.active_mask, 0) if self.method == 'lm': assert_(res.nfev < 30) assert_(res.njev is None) else: assert_(res.nfev < 10) assert_(res.njev < 10) assert_(res.status > 0) assert_(res.success) def test_full_result_single_fev(self): # MINPACK checks the number of nfev after the iteration, # so it's hard to tell what he is going to compute. if self.method == 'lm': return res = least_squares(fun_trivial, 2.0, method=self.method, max_nfev=1) assert_equal(res.x, np.array([2])) assert_equal(res.cost, 40.5) assert_equal(res.fun, np.array([9])) assert_equal(res.jac, np.array([[4]])) assert_equal(res.grad, np.array([36])) assert_equal(res.optimality, 36) assert_equal(res.active_mask, np.array([0])) assert_equal(res.nfev, 1) assert_equal(res.njev, 1) assert_equal(res.status, 0) assert_equal(res.success, 0) def test_rosenbrock(self): x0 = [-2, 1] x_opt = [1, 1] for jac, x_scale, tr_solver in product( ['2-point', '3-point', 'cs', jac_rosenbrock], [1.0, np.array([1.0, 0.2]), 'jac'], ['exact', 'lsmr']): with suppress_warnings() as sup: sup.filter(UserWarning, "jac='(3-point|cs)' works equivalently to '2-point' for method='lm'") res = least_squares(fun_rosenbrock, x0, jac, x_scale=x_scale, tr_solver=tr_solver, method=self.method) assert_allclose(res.x, x_opt) def test_rosenbrock_cropped(self): x0 = [-2, 1] if self.method == 'lm': assert_raises(ValueError, least_squares, fun_rosenbrock_cropped, x0, method='lm') else: for jac, x_scale, tr_solver in product( ['2-point', '3-point', 'cs', jac_rosenbrock_cropped], [1.0, np.array([1.0, 0.2]), 'jac'], ['exact', 'lsmr']): res = least_squares( fun_rosenbrock_cropped, x0, jac, x_scale=x_scale, tr_solver=tr_solver, method=self.method) assert_allclose(res.cost, 0, atol=1e-14) def test_fun_wrong_dimensions(self): assert_raises(ValueError, least_squares, fun_wrong_dimensions, 2.0, method=self.method) def test_jac_wrong_dimensions(self): assert_raises(ValueError, least_squares, fun_trivial, 2.0, jac_wrong_dimensions, method=self.method) def test_fun_and_jac_inconsistent_dimensions(self): x0 = [1, 2] assert_raises(ValueError, least_squares, fun_rosenbrock, x0, jac_rosenbrock_bad_dim, method=self.method) def test_x0_multidimensional(self): x0 = np.ones(4).reshape(2, 2) assert_raises(ValueError, least_squares, fun_trivial, x0, method=self.method) def test_x0_complex_scalar(self): x0 = 2.0 + 0.0*1j assert_raises(ValueError, least_squares, fun_trivial, x0, method=self.method) def test_x0_complex_array(self): x0 = [1.0, 2.0 + 0.0*1j] assert_raises(ValueError, least_squares, fun_trivial, x0, method=self.method) def test_bvp(self): # This test was introduced with fix #5556. It turned out that # dogbox solver had a bug with trust-region radius update, which # could block its progress and create an infinite loop. And this # discrete boundary value problem is the one which triggers it. n = 10 x0 = np.ones(n**2) if self.method == 'lm': max_nfev = 5000 # To account for Jacobian estimation. else: max_nfev = 100 res = least_squares(fun_bvp, x0, ftol=1e-2, method=self.method, max_nfev=max_nfev) assert_(res.nfev < max_nfev) assert_(res.cost < 0.5) def test_error_raised_when_all_tolerances_below_eps(self): # Test that all 0 tolerances are not allowed. assert_raises(ValueError, least_squares, fun_trivial, 2.0, method=self.method, ftol=None, xtol=None, gtol=None) def test_convergence_with_only_one_tolerance_enabled(self): if self.method == 'lm': return # should not do test x0 = [-2, 1] x_opt = [1, 1] for ftol, xtol, gtol in [(1e-8, None, None), (None, 1e-8, None), (None, None, 1e-8)]: res = least_squares(fun_rosenbrock, x0, jac=jac_rosenbrock, ftol=ftol, gtol=gtol, xtol=xtol, method=self.method) assert_allclose(res.x, x_opt) class BoundsMixin: def test_inconsistent(self): assert_raises(ValueError, least_squares, fun_trivial, 2.0, bounds=(10.0, 0.0), method=self.method) def test_infeasible(self): assert_raises(ValueError, least_squares, fun_trivial, 2.0, bounds=(3., 4), method=self.method) def test_wrong_number(self): assert_raises(ValueError, least_squares, fun_trivial, 2., bounds=(1., 2, 3), method=self.method) def test_inconsistent_shape(self): assert_raises(ValueError, least_squares, fun_trivial, 2.0, bounds=(1.0, [2.0, 3.0]), method=self.method) # 1-D array wont't be broadcasted assert_raises(ValueError, least_squares, fun_rosenbrock, [1.0, 2.0], bounds=([0.0], [3.0, 4.0]), method=self.method) def test_in_bounds(self): for jac in ['2-point', '3-point', 'cs', jac_trivial]: res = least_squares(fun_trivial, 2.0, jac=jac, bounds=(-1.0, 3.0), method=self.method) assert_allclose(res.x, 0.0, atol=1e-4) assert_equal(res.active_mask, [0]) assert_(-1 <= res.x <= 3) res = least_squares(fun_trivial, 2.0, jac=jac, bounds=(0.5, 3.0), method=self.method) assert_allclose(res.x, 0.5, atol=1e-4) assert_equal(res.active_mask, [-1]) assert_(0.5 <= res.x <= 3) def test_bounds_shape(self): for jac in ['2-point', '3-point', 'cs', jac_2d_trivial]: x0 = [1.0, 1.0] res = least_squares(fun_2d_trivial, x0, jac=jac) assert_allclose(res.x, [0.0, 0.0]) res = least_squares(fun_2d_trivial, x0, jac=jac, bounds=(0.5, [2.0, 2.0]), method=self.method) assert_allclose(res.x, [0.5, 0.5]) res = least_squares(fun_2d_trivial, x0, jac=jac, bounds=([0.3, 0.2], 3.0), method=self.method) assert_allclose(res.x, [0.3, 0.2]) res = least_squares( fun_2d_trivial, x0, jac=jac, bounds=([-1, 0.5], [1.0, 3.0]), method=self.method) assert_allclose(res.x, [0.0, 0.5], atol=1e-5) def test_rosenbrock_bounds(self): x0_1 = np.array([-2.0, 1.0]) x0_2 = np.array([2.0, 2.0]) x0_3 = np.array([-2.0, 2.0]) x0_4 = np.array([0.0, 2.0]) x0_5 = np.array([-1.2, 1.0]) problems = [ (x0_1, ([-np.inf, -1.5], np.inf)), (x0_2, ([-np.inf, 1.5], np.inf)), (x0_3, ([-np.inf, 1.5], np.inf)), (x0_4, ([-np.inf, 1.5], [1.0, np.inf])), (x0_2, ([1.0, 1.5], [3.0, 3.0])), (x0_5, ([-50.0, 0.0], [0.5, 100])) ] for x0, bounds in problems: for jac, x_scale, tr_solver in product( ['2-point', '3-point', 'cs', jac_rosenbrock], [1.0, [1.0, 0.5], 'jac'], ['exact', 'lsmr']): res = least_squares(fun_rosenbrock, x0, jac, bounds, x_scale=x_scale, tr_solver=tr_solver, method=self.method) assert_allclose(res.optimality, 0.0, atol=1e-5) class SparseMixin: def test_exact_tr_solver(self): p = BroydenTridiagonal() assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac, tr_solver='exact', method=self.method) assert_raises(ValueError, least_squares, p.fun, p.x0, tr_solver='exact', jac_sparsity=p.sparsity, method=self.method) def test_equivalence(self): sparse = BroydenTridiagonal(mode='sparse') dense = BroydenTridiagonal(mode='dense') res_sparse = least_squares( sparse.fun, sparse.x0, jac=sparse.jac, method=self.method) res_dense = least_squares( dense.fun, dense.x0, jac=sparse.jac, method=self.method) assert_equal(res_sparse.nfev, res_dense.nfev) assert_allclose(res_sparse.x, res_dense.x, atol=1e-20) assert_allclose(res_sparse.cost, 0, atol=1e-20) assert_allclose(res_dense.cost, 0, atol=1e-20) def test_tr_options(self): p = BroydenTridiagonal() res = least_squares(p.fun, p.x0, p.jac, method=self.method, tr_options={'btol': 1e-10}) assert_allclose(res.cost, 0, atol=1e-20) def test_wrong_parameters(self): p = BroydenTridiagonal() assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac, tr_solver='best', method=self.method) assert_raises(TypeError, least_squares, p.fun, p.x0, p.jac, tr_solver='lsmr', tr_options={'tol': 1e-10}) def test_solver_selection(self): sparse = BroydenTridiagonal(mode='sparse') dense = BroydenTridiagonal(mode='dense') res_sparse = least_squares(sparse.fun, sparse.x0, jac=sparse.jac, method=self.method) res_dense = least_squares(dense.fun, dense.x0, jac=dense.jac, method=self.method) assert_allclose(res_sparse.cost, 0, atol=1e-20) assert_allclose(res_dense.cost, 0, atol=1e-20) assert_(issparse(res_sparse.jac)) assert_(isinstance(res_dense.jac, np.ndarray)) def test_numerical_jac(self): p = BroydenTridiagonal() for jac in ['2-point', '3-point', 'cs']: res_dense = least_squares(p.fun, p.x0, jac, method=self.method) res_sparse = least_squares( p.fun, p.x0, jac,method=self.method, jac_sparsity=p.sparsity) assert_equal(res_dense.nfev, res_sparse.nfev) assert_allclose(res_dense.x, res_sparse.x, atol=1e-20) assert_allclose(res_dense.cost, 0, atol=1e-20) assert_allclose(res_sparse.cost, 0, atol=1e-20) def test_with_bounds(self): p = BroydenTridiagonal() for jac, jac_sparsity in product( [p.jac, '2-point', '3-point', 'cs'], [None, p.sparsity]): res_1 = least_squares( p.fun, p.x0, jac, bounds=(p.lb, np.inf), method=self.method,jac_sparsity=jac_sparsity) res_2 = least_squares( p.fun, p.x0, jac, bounds=(-np.inf, p.ub), method=self.method, jac_sparsity=jac_sparsity) res_3 = least_squares( p.fun, p.x0, jac, bounds=(p.lb, p.ub), method=self.method, jac_sparsity=jac_sparsity) assert_allclose(res_1.optimality, 0, atol=1e-10) assert_allclose(res_2.optimality, 0, atol=1e-10) assert_allclose(res_3.optimality, 0, atol=1e-10) def test_wrong_jac_sparsity(self): p = BroydenTridiagonal() sparsity = p.sparsity[:-1] assert_raises(ValueError, least_squares, p.fun, p.x0, jac_sparsity=sparsity, method=self.method) def test_linear_operator(self): p = BroydenTridiagonal(mode='operator') res = least_squares(p.fun, p.x0, p.jac, method=self.method) assert_allclose(res.cost, 0.0, atol=1e-20) assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac, method=self.method, tr_solver='exact') def test_x_scale_jac_scale(self): p = BroydenTridiagonal() res = least_squares(p.fun, p.x0, p.jac, method=self.method, x_scale='jac') assert_allclose(res.cost, 0.0, atol=1e-20) p = BroydenTridiagonal(mode='operator') assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac, method=self.method, x_scale='jac') class LossFunctionMixin: def test_options(self): for loss in LOSSES: res = least_squares(fun_trivial, 2.0, loss=loss, method=self.method) assert_allclose(res.x, 0, atol=1e-15) assert_raises(ValueError, least_squares, fun_trivial, 2.0, loss='hinge', method=self.method) def test_fun(self): # Test that res.fun is actual residuals, and not modified by loss # function stuff. for loss in LOSSES: res = least_squares(fun_trivial, 2.0, loss=loss, method=self.method) assert_equal(res.fun, fun_trivial(res.x)) def test_grad(self): # Test that res.grad is true gradient of loss function at the # solution. Use max_nfev = 1, to avoid reaching minimum. x = np.array([2.0]) # res.x will be this. res = least_squares(fun_trivial, x, jac_trivial, loss='linear', max_nfev=1, method=self.method) assert_equal(res.grad, 2 * x * (x**2 + 5)) res = least_squares(fun_trivial, x, jac_trivial, loss='huber', max_nfev=1, method=self.method) assert_equal(res.grad, 2 * x) res = least_squares(fun_trivial, x, jac_trivial, loss='soft_l1', max_nfev=1, method=self.method) assert_allclose(res.grad, 2 * x * (x**2 + 5) / (1 + (x**2 + 5)**2)**0.5) res = least_squares(fun_trivial, x, jac_trivial, loss='cauchy', max_nfev=1, method=self.method) assert_allclose(res.grad, 2 * x * (x**2 + 5) / (1 + (x**2 + 5)**2)) res = least_squares(fun_trivial, x, jac_trivial, loss='arctan', max_nfev=1, method=self.method) assert_allclose(res.grad, 2 * x * (x**2 + 5) / (1 + (x**2 + 5)**4)) res = least_squares(fun_trivial, x, jac_trivial, loss=cubic_soft_l1, max_nfev=1, method=self.method) assert_allclose(res.grad, 2 * x * (x**2 + 5) / (1 + (x**2 + 5)**2)**(2/3)) def test_jac(self): # Test that res.jac.T.dot(res.jac) gives Gauss-Newton approximation # of Hessian. This approximation is computed by doubly differentiating # the cost function and dropping the part containing second derivative # of f. For a scalar function it is computed as # H = (rho' + 2 * rho'' * f**2) * f'**2, if the expression inside the # brackets is less than EPS it is replaced by EPS. Here, we check # against the root of H. x = 2.0 # res.x will be this. f = x**2 + 5 # res.fun will be this. res = least_squares(fun_trivial, x, jac_trivial, loss='linear', max_nfev=1, method=self.method) assert_equal(res.jac, 2 * x) # For `huber` loss the Jacobian correction is identically zero # in outlier region, in such cases it is modified to be equal EPS**0.5. res = least_squares(fun_trivial, x, jac_trivial, loss='huber', max_nfev=1, method=self.method) assert_equal(res.jac, 2 * x * EPS**0.5) # Now, let's apply `loss_scale` to turn the residual into an inlier. # The loss function becomes linear. res = least_squares(fun_trivial, x, jac_trivial, loss='huber', f_scale=10, max_nfev=1) assert_equal(res.jac, 2 * x) # 'soft_l1' always gives a positive scaling. res = least_squares(fun_trivial, x, jac_trivial, loss='soft_l1', max_nfev=1, method=self.method) assert_allclose(res.jac, 2 * x * (1 + f**2)**-0.75) # For 'cauchy' the correction term turns out to be negative, and it # replaced by EPS**0.5. res = least_squares(fun_trivial, x, jac_trivial, loss='cauchy', max_nfev=1, method=self.method) assert_allclose(res.jac, 2 * x * EPS**0.5) # Now use scaling to turn the residual to inlier. res = least_squares(fun_trivial, x, jac_trivial, loss='cauchy', f_scale=10, max_nfev=1, method=self.method) fs = f / 10 assert_allclose(res.jac, 2 * x * (1 - fs**2)**0.5 / (1 + fs**2)) # 'arctan' gives an outlier. res = least_squares(fun_trivial, x, jac_trivial, loss='arctan', max_nfev=1, method=self.method) assert_allclose(res.jac, 2 * x * EPS**0.5) # Turn to inlier. res = least_squares(fun_trivial, x, jac_trivial, loss='arctan', f_scale=20.0, max_nfev=1, method=self.method) fs = f / 20 assert_allclose(res.jac, 2 * x * (1 - 3 * fs**4)**0.5 / (1 + fs**4)) # cubic_soft_l1 will give an outlier. res = least_squares(fun_trivial, x, jac_trivial, loss=cubic_soft_l1, max_nfev=1) assert_allclose(res.jac, 2 * x * EPS**0.5) # Turn to inlier. res = least_squares(fun_trivial, x, jac_trivial, loss=cubic_soft_l1, f_scale=6, max_nfev=1) fs = f / 6 assert_allclose(res.jac, 2 * x * (1 - fs**2 / 3)**0.5 * (1 + fs**2)**(-5/6)) def test_robustness(self): for noise in [0.1, 1.0]: p = ExponentialFittingProblem(1, 0.1, noise, random_seed=0) for jac in ['2-point', '3-point', 'cs', p.jac]: res_lsq = least_squares(p.fun, p.p0, jac=jac, method=self.method) assert_allclose(res_lsq.optimality, 0, atol=1e-2) for loss in LOSSES: if loss == 'linear': continue res_robust = least_squares( p.fun, p.p0, jac=jac, loss=loss, f_scale=noise, method=self.method) assert_allclose(res_robust.optimality, 0, atol=1e-2) assert_(norm(res_robust.x - p.p_opt) < norm(res_lsq.x - p.p_opt)) class TestDogbox(BaseMixin, BoundsMixin, SparseMixin, LossFunctionMixin): method = 'dogbox' class TestTRF(BaseMixin, BoundsMixin, SparseMixin, LossFunctionMixin): method = 'trf' def test_lsmr_regularization(self): p = BroydenTridiagonal() for regularize in [True, False]: res = least_squares(p.fun, p.x0, p.jac, method='trf', tr_options={'regularize': regularize}) assert_allclose(res.cost, 0, atol=1e-20) class TestLM(BaseMixin): method = 'lm' def test_bounds_not_supported(self): assert_raises(ValueError, least_squares, fun_trivial, 2.0, bounds=(-3.0, 3.0), method='lm') def test_m_less_n_not_supported(self): x0 = [-2, 1] assert_raises(ValueError, least_squares, fun_rosenbrock_cropped, x0, method='lm') def test_sparse_not_supported(self): p = BroydenTridiagonal() assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac, method='lm') def test_jac_sparsity_not_supported(self): assert_raises(ValueError, least_squares, fun_trivial, 2.0, jac_sparsity=[1], method='lm') def test_LinearOperator_not_supported(self): p = BroydenTridiagonal(mode="operator") assert_raises(ValueError, least_squares, p.fun, p.x0, p.jac, method='lm') def test_loss(self): res = least_squares(fun_trivial, 2.0, loss='linear', method='lm') assert_allclose(res.x, 0.0, atol=1e-4) assert_raises(ValueError, least_squares, fun_trivial, 2.0, method='lm', loss='huber') def test_basic(): # test that 'method' arg is really optional res = least_squares(fun_trivial, 2.0) assert_allclose(res.x, 0, atol=1e-10) def test_small_tolerances_for_lm(): for ftol, xtol, gtol in [(None, 1e-13, 1e-13), (1e-13, None, 1e-13), (1e-13, 1e-13, None)]: assert_raises(ValueError, least_squares, fun_trivial, 2.0, xtol=xtol, ftol=ftol, gtol=gtol, method='lm') def test_fp32_gh12991(): # checks that smaller FP sizes can be used in least_squares # this is the minimum working example reported for gh12991 np.random.seed(1) x = np.linspace(0, 1, 100).astype("float32") y =
np.random.random(100)
numpy.random.random
""" Module: Potential This module shall be used to implement subclasses of Potentials that formulate a potential as an Function with N-Dimensions. This module contains all available potentials. """ import numpy as np import sympy as sp from ensembler.util import ensemblerTypes as t from ensembler.util.ensemblerTypes import Number, Union, Iterable # Base Classes from ensembler.potentials._basicPotentials import _potentialNDCls class harmonicOscillatorPotential(_potentialNDCls): """ ND harmonic oscillator potential """ name: str = "harmonicOscilator" nDimensions: int = sp.symbols("nDimensions") position: sp.Matrix = sp.Matrix([sp.symbols("r")]) r_shift: sp.Matrix = sp.Matrix([sp.symbols("r_shift")]) Voff: sp.Matrix = sp.Matrix([sp.symbols("V_off")]) k: sp.Matrix = sp.Matrix([sp.symbols("k")]) V_dim = 0.5 * k * (position - r_shift) ** 2 + Voff i = sp.Symbol("i") V_functional = sp.Sum(V_dim[i, 0], (i, 0, nDimensions)) def __init__(self, k: np.array = np.array([1.0, 1.0, 1.0]), r_shift: np.array = np.array([0.0, 0.0, 0.0]), Voff: np.array = np.array([0.0, 0.0, 0.0]), nDimensions: int = 3): """ __init__ Constructs an harmonic Oscillator with an on runtime defined dimensionality. Parameters ---------- k: List[float], optional force constants, as many as nDim, defaults to [1.0, 1.0, 1.0] x_shift: List[float], optional shift of the minimum in the x Axis, as many as nDim, defaults to [0.0, 0.0, 0.0] y_shift: List[float], optional shift on the y Axis, as many as nDim, defaults to [0.0, 0.0, 0.0] nDim dimensionality of the harmoic oscillator object. default: 3 """ self.constants = {self.nDimensions:nDimensions} self.constants.update({"k_" + str(j): k[j] for j in range(self.constants[self.nDimensions])}) self.constants.update({"r_shift" + str(j): r_shift[j] for j in range(self.constants[self.nDimensions])}) self.constants.update({"V_off_" + str(j): Voff[j] for j in range(self.constants[self.nDimensions])}) super().__init__(nDimensions=nDimensions) def _initialize_functions(self): """ Build up the nDimensionssymbolic definitions """ # Parameters nDimensions= self.constants[self.nDimensions] self.position = sp.Matrix([sp.symbols("r_" + str(i)) for i in range(nDimensions)]) self.r_shift = sp.Matrix([sp.symbols("r_shift" + str(i)) for i in range(nDimensions)]) self.V_off = sp.Matrix([sp.symbols("V_off_" + str(i)) for i in range(nDimensions)]) self.k = sp.Matrix([sp.symbols("k_" + str(i)) for i in range(nDimensions)]) # Function self.V_dim = 0.5 * sp.matrix_multiply_elementwise(self.k, ( (self.position - self.r_shift).applyfunc(lambda x: x ** 2))) # +self.Voff self.V_functional = sp.Sum(self.V_dim[self.i, 0], (self.i, 0, self.nDimensions - 1)) class envelopedPotential(_potentialNDCls): """ This implementation of exponential Coupling for EDS is a more numeric robust and variable implementation, it allows N states. Therefore the computation of energies and the deviation is not symbolic. Here N-states are coupled by the log-sum-exp resulting in a new reference state $V_R$, $V_R = -1/{\beta} * \ln(\sum_i^Ne^(-\beta*s*(V_i-E^R_i)))$ This potential coupling is for example used in EDS. """ name = "Enveloping Potential" T, kb, position = sp.symbols("T kb r") beta = 1 / (kb * T) Vis = sp.Matrix(["V_i"]) Eoffis = sp.Matrix(["Eoff_i"]) sis = sp.Matrix(["s_i"]) i, nStates = sp.symbols("i N") V_functional = -1 / (beta * sis[0, 0]) * sp.log( sp.Sum(sp.exp(-beta * sis[i, 0] * (Vis[i, 0] - Eoffis[i, 0])), (i, 0, nStates))) def __init__(self, V_is: t.List[_potentialNDCls] = ( harmonicOscillatorPotential(nDimensions=2), harmonicOscillatorPotential(r_shift=[3,3], nDimensions=2)), s: float = 1.0, eoff: t.List[float] = None, T: float = 1, kb: float = 1): """ __init__ This function constructs a enveloped potential, enveloping all given states. Parameters ---------- V_is: List[_potential1DCls], optional The states(potential classes) to be enveloped (default: [harmonicOscillatorPotential(), harmonicOscillatorPotential(x_shift=3)]) s: float, optional the smoothing parameter, lowering the barriers between the states eoff: List[float], optional the energy offsets of the individual states in the reference potential. These can be used to allow a more uniform sampling. (default: seta ll to 0) T: float, optional the temperature of the reference state (default: 1 = T) kb: float, optional the boltzman constant (default: 1 = kb) """ self.constants = {self.T: T, self.kb: kb} nStates = len(V_is) self._Eoff_i = [0 for x in range(nStates)] self._s = [0 for x in range(nStates)] self._V_is = [0 for x in range(nStates)] # for calculate implementations self.V_is = V_is self.s_i = s self.Eoff_i = eoff super().__init__(nDimensions=V_is[0].constants[V_is[0].nDimensions], nStates=len(V_is)) def _initialize_functions(self): """ build the symbolic functionality. """ # for sympy Sympy Updates - Check!: self.statePotentials = {"state_" + str(j): self.V_is[j] for j in range(self.constants[self.nStates])} Eoffis = {"Eoff_" + str(i): self.Eoff_i[i] for i in range(self.constants[self.nStates])} sis = {"s_" + str(i): self.s_i[i] for i in range(self.constants[self.nStates])} keys = zip(sorted(self.statePotentials.keys()), sorted(Eoffis.keys()), sorted(sis.keys())) self.states = sp.Matrix([sp.symbols(l) * (sp.symbols(j) - sp.symbols(k)) for j, k, l in keys]) self.constants.update({**{state: value.V for state, value in self.statePotentials.items()}, **Eoffis, **sis}) self.V_functional = -1 / (self.beta * self.sis[0, 0]) * sp.log( sp.Sum(sp.exp(-self.beta * self.states[self.i, 0]), (self.i, 0, self.nStates - 1))) self._update_functions() # also make sure that states are up to work: [V._update_functions() for V in self.V_is] if (all([self.s_i[0] == s for s in self.s_i[1:]])): self.ene = self._calculate_energies_singlePos_overwrite_oneS else: self.ene = self._calculate_energies_singlePos_overwrite_multiS self.force = self._calculate_dvdpos_singlePos_overwrite @property def V_is(self) -> t.List[_potentialNDCls]: """ V_is are the state potential classes enveloped by the reference state. Returns ------- V_is: t.List[_potential1DCls] """ return self._V_is @V_is.setter def V_is(self, V_is: t.List[_potentialNDCls]): if (isinstance(V_is, Iterable) and all([isinstance(Vi, _potentialNDCls) for Vi in V_is])): self._V_is = V_is self.constants.update({self.nStates: len(V_is)}) else: raise IOError("Please give the enveloped potential for V_is only 1D-Potential classes in a list.") def set_Eoff(self, Eoff: Union[Number, Iterable[Number]]): """ This function is setting the Energy offsets of the states enveloped by the reference state. Parameters ---------- Eoff: Union[Number, Iterable[Number]] """ self.Eoff_i = Eoff @property def Eoff(self) -> t.List[Number]: """ The Energy offsets are used to bias the single states in the reference potential by a constant offset. Therefore each state of the enveloping potential has its own energy offset. Returns ------- Eoff:t.List[Number] """ return self.Eoff_i @Eoff.setter def Eoff(self, Eoff: Union[Number, Iterable[Number], None]): self.Eoff_i = Eoff @property def Eoff_i(self) -> t.List[Number]: """ The Energy offsets are used to bias the single states in the reference potential by a constant offset. Therefore each state of the enveloping potential has its own energy offset. Returns ------- Eoff:t.List[Number] """ return self._Eoff_i @Eoff_i.setter def Eoff_i(self, Eoff: Union[Number, Iterable[Number], None]): if (isinstance(Eoff, type(None))): self._Eoff_i = [0.0 for state in range(self.constants[self.nStates])] Eoffis = {"Eoff_" + str(i): self.Eoff_i[i] for i in range(self.constants[self.nStates])} self.constants.update({**Eoffis}) elif (len(Eoff) == self.constants[self.nStates]): self._Eoff_i = Eoff Eoffis = {"Eoff_" + str(i): self.Eoff_i[i] for i in range(self.constants[self.nStates])} self.constants.update({**Eoffis}) else: raise IOError( "Energy offset Vector and state potentials don't have the same length!\n states in Eoff " + str( len(Eoff)) + "\t states in Vi" + str(len(self.V_is))) def set_s(self, s: Union[Number, Iterable[Number]]): """ set_s is a function used to set an smoothing parameter. Parameters ---------- s:Union[Number, Iterable[Number]] Returns ------- """ self.s_i = s @property def s(self) -> t.List[Number]: return self.s_i @s.setter def s(self, s: Union[Number, Iterable[Number]]): self.s_i = s @property def s_i(self) -> t.List[Number]: return self._s @s_i.setter def s_i(self, s: Union[Number, Iterable[Number]]): if (isinstance(s, Number)): self._s = [s for x in range(self.constants[self.nStates])] sis = {"s_" + str(i): self.s_i[i] for i in range(self.constants[self.nStates])} self.constants.update({**sis}) elif (len(s) == self.constants[self.nStates]): self._s = s sis = {"s_" + str(i): self.s_i[i] for i in range(self.constants[self.nStates])} self.constants.update({**sis}) else: raise IOError("s Vector/Number and state potentials don't have the same length!\n states in s " + str( len(s)) + "\t states in Vi" + str(len(self.V_is))) self._update_functions() def _calculate_energies_singlePos_overwrite_multiS(self, positions) -> np.array: sum_prefactors, _ = self._logsumexp_calc_gromos(positions) beta = self.constants[self.T] * self.constants[self.kb] # kT - *self.constants[self.T] Vr = (-1 / (beta)) * sum_prefactors return np.squeeze(Vr) def _calculate_energies_singlePos_overwrite_oneS(self, positions) -> np.array: sum_prefactors, _ = self._logsumexp_calc(positions) beta = self.constants[self.T] * self.constants[self.kb] Vr = (-1 / (beta * self.s_i[0])) * sum_prefactors return np.squeeze(Vr) def _calculate_dvdpos_singlePos_overwrite(self, positions: (t.Iterable[float])) -> np.array: """ Parameters ---------- positions Returns ------- """ positions = np.array(positions, ndmin=2) # print("Pos: ", position) V_R_part, V_Is_ene = self._logsumexp_calc_gromos(positions) V_R_part = np.array(V_R_part, ndmin=2).T # print("V_R_part: ", V_R_part.shape, V_R_part) # print("V_I_ene: ",V_Is_ene.shape, V_Is_ene) V_Is_dhdpos = np.array([-statePot.force(positions) for statePot in self.V_is], ndmin=1).T # print("V_I_force: ",V_Is_dhdpos.shape, V_Is_dhdpos) adapt = np.concatenate([V_R_part for s in range(self.constants[self.nStates])], axis=1) # print("ADAPT: ",adapt.shape, adapt) scaling = np.exp(V_Is_ene - adapt) # print("scaling: ", scaling.shape, scaling) dVdpos_state = np.multiply(scaling, V_Is_dhdpos) # np.array([(ene/V_R_part) * force for ene, force in zip(V_Is_ene, V_Is_dhdpos)]) # print("state_contributions: ",dVdpos_state.shape, dVdpos_state) dVdpos = np.sum(dVdpos_state, axis=1) # print("forces: ",dVdpos.shape, dVdpos) return np.squeeze(dVdpos) def _logsumexp_calc(self, position): prefactors = [] beta = self.constants[self.T] * self.constants[self.kb] for state in range(self.constants[self.nStates]): prefactor = np.array(-beta * self.s_i[state] * (self.V_is[state].ene(position) - self.Eoff_i[state]), ndmin=1).T prefactors.append(prefactor) prefactors = np.array(prefactors, ndmin=2).T from scipy.special import logsumexp # print("Prefactors", prefactors) sum_prefactors = logsumexp(prefactors, axis=1) # print("logexpsum: ", np.squeeze(sum_prefactors)) return np.squeeze(sum_prefactors), np.array(prefactors, ndmin=2).T def _logsumexp_calc_gromos(self, position): """ code from gromos: Parameters ---------- position Returns ------- """ prefactors = [] beta = self.constants[self.T] * self.constants[self.kb] # kT - *self.constants[self.T] partA = np.array(-beta * self.s_i[0] * (self.V_is[0].ene(position) - self.Eoff_i[0]), ndmin=1) partB = np.array(-beta * self.s_i[1] * (self.V_is[1].ene(position) - self.Eoff_i[1]), ndmin=1) partAB = np.array([partA, partB]).T log_prefac = 1 + np.exp(np.min(partAB, axis=1) -
np.max(partAB, axis=1)
numpy.max
""" Tests for the model. """ import unittest import sys from numpy.testing import assert_array_almost_equal, assert_array_equal import numpy as np from numpy import random from pyhacrf import Hacrf from pyhacrf.state_machine import GeneralStateMachine, DefaultStateMachine from pyhacrf.pyhacrf import _GeneralModel, _AdjacentModel from pyhacrf import StringPairFeatureExtractor TEST_PRECISION = 3 class TestHacrf(unittest.TestCase): def test_initialize_parameters(self): start_states = [0] transitions = [(0, 0, (1, 1)), (0, 1, (0, 1)), (0, 0, (1, 0))] states_to_classes = {0: 'a'} state_machine = GeneralStateMachine(start_states=start_states, transitions=transitions, states_to_classes=states_to_classes) n_features = 3 actual_parameters = Hacrf._initialize_parameters(state_machine, n_features) expected_parameter_shape = (5, 3) self.assertEqual(actual_parameters.shape, expected_parameter_shape) def test_fit_predict(self): incorrect = ['helloooo', 'freshh', 'ffb', 'h0me', 'wonderin', 'relaionship', 'hubby', 'krazii', 'mite', 'tropic'] correct = ['hello', 'fresh', 'facebook', 'home', 'wondering', 'relationship', 'husband', 'crazy', 'might', 'topic'] training = zip(incorrect, correct) fe = StringPairFeatureExtractor(match=True, numeric=True) xf = fe.fit_transform(training) model = Hacrf() model.fit(xf, [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) expected_parameters = np.array([[-10.76945326, 144.03414923, 0.], [31.84369748, -106.41885651, 0.], [-52.08919467, 4.56943665, 0.], [31.01495044, -13.0593297, 0.], [49.77302218, -6.42566204, 0.], [-28.69877796, 24.47127009, 0.], [-85.34524911, 21.87370646, 0.], [106.41949333, 6.18587125, 0.]]) print(model.parameters) assert_array_almost_equal(model.parameters, expected_parameters, decimal=TEST_PRECISION) expected_probas = np.array([[1.00000000e+000, 3.51235685e-039], [1.00000000e+000, 4.79716208e-039], [1.00000000e+000, 2.82744641e-139], [1.00000000e+000, 6.49580729e-012], [9.99933798e-001, 6.62022561e-005], [8.78935957e-005, 9.99912106e-001], [4.84538335e-009, 9.99999995e-001], [1.25170233e-250, 1.00000000e+000], [2.46673086e-010, 1.00000000e+000], [1.03521293e-033, 1.00000000e+000]]) actual_predict_probas = model.predict_proba(xf) print(actual_predict_probas) assert_array_almost_equal(actual_predict_probas, expected_probas, decimal=TEST_PRECISION) expected_predictions = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) actual_predictions = model.predict(xf) assert_array_almost_equal(actual_predictions, expected_predictions, decimal=TEST_PRECISION) def test_fit_predict_regularized(self): incorrect = ['helloooo', 'freshh', 'ffb', 'h0me', 'wonderin', 'relaionship', 'hubby', 'krazii', 'mite', 'tropic'] correct = ['hello', 'fresh', 'facebook', 'home', 'wondering', 'relationship', 'husband', 'crazy', 'might', 'topic'] training = zip(incorrect, correct) fe = StringPairFeatureExtractor(match=True, numeric=True) xf = fe.fit_transform(training) model = Hacrf(l2_regularization=10.0) model.fit(xf, [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) print(model.parameters) expected_parameters = np.array([[-0.0569188, 0.07413339, 0.], [0.00187709, -0.06377866, 0.], [-0.01908823, 0.00586189, 0.], [0.01721114, -0.00636556, 0.], [0.01578279, 0.0078614, 0.], [-0.0139057, -0.00862948, 0.], [-0.00623241, 0.02937325, 0.], [0.00810951, -0.01774676, 0.]]) assert_array_almost_equal(model.parameters, expected_parameters, decimal=TEST_PRECISION) expected_probas = np.array([[0.5227226, 0.4772774], [0.52568993, 0.47431007], [0.4547091, 0.5452909], [0.51179222, 0.48820778], [0.46347576, 0.53652424], [0.45710098, 0.54289902], [0.46159657, 0.53840343], [0.42997978, 0.57002022], [0.47419724, 0.52580276], [0.50797852, 0.49202148]]) actual_predict_probas = model.predict_proba(xf) print(actual_predict_probas) assert_array_almost_equal(actual_predict_probas, expected_probas, decimal=TEST_PRECISION) expected_predictions = np.array([0, 0, 1, 0, 1, 1, 1, 1, 1, 0]) actual_predictions = model.predict(xf) assert_array_almost_equal(actual_predictions, expected_predictions, decimal=TEST_PRECISION) class TestGeneralModel(unittest.TestCase): def test_build_lattice(self): n_states = 4 # Because 3 is the max start_states = [0, 1] transitions = [(0, 0, (1, 1)), (0, 1, (0, 1)), (0, 0, (1, 0)), (0, 3, lambda i, j, k: (0, 2))] states_to_classes = {0: 0, 1: 1, 3: 3} state_machine = GeneralStateMachine(start_states, transitions, states_to_classes) x = np.zeros((2, 3, 9)) # # ________ # 1. . . # 1 0 - 10 - 31 # # | /_______ # 0. . . # 0 10 -- 1 3 # 0 1 2 # 0 1 2 # # 1(0, 1), 3(0, 2), 1(1, 1), 1(0, 0) should be pruned because they represent partial alignments. # Only nodes that are reachable by stepping back from (1, 2) must be included in the lattice. actual_lattice = state_machine.build_lattice(x) expected_lattice = np.array([(0, 0, 0, 1, 0, 0, 2 + n_states), (0, 0, 0, 1, 1, 0, 0 + n_states), (1, 0, 0, 1, 2, 3, 3 + n_states), (1, 1, 0, 1, 2, 1, 1 + n_states)]) assert_array_equal(actual_lattice, expected_lattice) def test_build_lattice_jumps(self): n_states = 2 # Because 1 is the max start_states = [0, 1] transitions = [(0, 0, (1, 1)), (0, 1, (0, 2)), (0, 0, (1, 0))] states_to_classes = {0: 0, 1: 1} state_machine = GeneralStateMachine(start_states, transitions, states_to_classes) x = np.zeros((2, 3, 9)) # # ________ # 1. . . # 1 0 . 1 # # | _______ # 0. . . # 0 10 / . 1 # 0 1 2 # 0 1 2 # # 1(0, 2) should be pruned because they represent partial alignments. # Only nodes that are reachable by stepping back from (1, 2) must be included in the lattice. actual_lattice = state_machine.build_lattice(x) expected_lattice = np.array([(0, 0, 0, 1, 0, 0, 2 + n_states), (1, 0, 0, 1, 2, 1, 1 + n_states)]) assert_array_equal(actual_lattice, expected_lattice) def test_forward_single(self): start_states = [0, 1] transitions = [(0, 0, (1, 1)), (0, 1, (0, 1)), (0, 0, (1, 0)), (0, 2, lambda i, j, k: (0, 2))] states_to_classes = {0: 'a', 1: 'a', 2: 'b'} # Dummy state_machine = GeneralStateMachine(start_states, transitions, states_to_classes) parameters = np.array(range(-7, 7), dtype='float64').reshape((7, 2)) # parameters = # 0([[-7, -6], # 1 [-5, -4], # 2 [-3, -2], # 3 [-1, 0], # 4 [ 1, 2], # 5 [ 3, 4], # 6 [ 5, 6]]) x = np.array([[[0, 1], [1, 0], [2, 1]], [[0, 1], [1, 0], [1, 0]]], dtype=np.float64) y = 'a' # Expected lattice: # # ________ # 1. . . # 1 0 __0 - 21 # # | / # 0. . . # 0 0 # 0 1 2 # 0 1 2 expected_alpha = { (0, 0, 0): np.exp(-6), (0, 0, 0, 1, 0, 0, 5): np.exp(-6) * np.exp(4), (0, 0, 0, 1, 1, 0, 3): np.exp(-6) * np.exp(-1), (1, 0, 0):
np.exp(-6)
numpy.exp
import unittest import numpy as np from .storage import SequenceStorage as ExperienceReplay, SequenceSampler, BatchSequenceStorage, LambdaSampler, PlusOneSampler, merge_batches class SequenceStorageTest(unittest.TestCase): def assertNumpyArrayEqual(self, a1, a2, msg = 'Arrays must be equal'): if not np.array_equal(a1, a2): self.fail(msg=f"{a1} != {a2} : " + msg) def testShouldStoreAll(self): replay = ExperienceReplay(4, samplers = (SequenceSampler(2),)) replay.insert(1, 0, 0.0, False) replay.insert(5, 0, 0.0, False) replay.insert(2, 0, 0.0, False) replay.insert(4, 0, 0.0, False) replay.insert(6, 0, 0.0, False) replay.insert(7, 0, 0.0, False) self.assertEqual(replay[0][0], 2) self.assertEqual(replay[1][0], 4) self.assertEqual(replay[2][0], 6) self.assertEqual(replay[3][0], 7) def testNegativeIndex(self): replay = ExperienceReplay(4, samplers = (SequenceSampler(2),)) replay.insert(1, 0, 0.0, False) replay.insert(5, 0, 0.0, False) replay.insert(2, 0, 0.0, False) replay.insert(4, 0, 0.0, False) replay.insert(6, 0, 0.0, False) replay.insert(7, 0, 0.0, False) self.assertEqual(replay[-4][0], 2) self.assertEqual(replay[-3][0], 4) self.assertEqual(replay[-2][0], 6) self.assertEqual(replay[-1][0], 7) def testLength(self): replay = ExperienceReplay(4, samplers = (SequenceSampler(2),)) self.assertEqual(len(replay), 0) replay.insert(1, 0, 0.0, False) self.assertEqual(len(replay), 1) replay.insert(2, 0, 0.0, False) self.assertEqual(len(replay), 2) replay.insert(4, 0, 0.0, False) self.assertEqual(len(replay), 3) replay.insert(6, 0, 0.0, False) self.assertEqual(len(replay), 4) replay.insert(7, 0, 0.0, False) self.assertEqual(len(replay), 4) def testSamplerStats(self): replay = ExperienceReplay(4, samplers = (LambdaSampler(2, lambda _, get: get(-1)[0] % 2 == 0),)) replay.insert(1, 0, 0.0, False) replay.insert(2, 0, 0.0, False) replay.insert(4, 0, 0.0, False) replay.insert(6, 0, 0.0, False) replay.insert(7, 0, 0.0, False) self.assertEqual(replay.selector_lengths[0], 2) def testSamplerStatsRemove(self): replay = ExperienceReplay(4, samplers = (LambdaSampler(2, lambda _, get: get(-1)[0] % 2 == 0),)) replay.insert(6, 0, 0.0, False) self.assertNumpyArrayEqual(replay.selector_data[:, 0], [False, False, False, False]) replay.insert(2, 0, 0.0, False) self.assertNumpyArrayEqual(replay.selector_data[:, 0], [False, True, False, False]) replay.insert(4, 0, 0.0, False) self.assertNumpyArrayEqual(replay.selector_data[:, 0], [False, True, True, False]) replay.insert(6, 0, 0.0, False) self.assertNumpyArrayEqual(replay.selector_data[:, 0], [False, True, True, True]) replay.insert(7, 0, 0.0, False) self.assertEqual(replay.selector_lengths[0], 2) self.assertNumpyArrayEqual(replay.selector_data[:, 0], [False, False, True, True]) def testSamplingWithEpisodeEnd(self): import numpy numpy.random.seed(1) replay = ExperienceReplay(4, samplers = (LambdaSampler(2, lambda _, get: get(-1)[0] % 2 == 0),)) replay.insert(6, 0, 0.0, False) replay.insert(2, 0, 0.0, True) replay.insert(4, 0, 0.0, False) replay.insert(6, 0, 0.0, True) replay.insert(7, 0, 0.0, False) wasSampled = set() wasFirst = set() for _ in range(100): batch = replay.sample(0) wasSampled.add(batch[0][1]) wasFirst.add(batch[0][0]) self.assertEqual(batch[0].shape[0], 2) self.assertSetEqual(wasFirst, set([4])) self.assertSetEqual(wasSampled, set([6])) def testResampling(self): import numpy numpy.random.seed(1) replay = ExperienceReplay(4, samplers = (LambdaSampler(2, lambda _, get: get(-1)[0] % 2 == 0),)) replay.insert(6, 0, 0.0, False) replay.insert(2, 0, 0.0, False) replay.insert(4, 0, 0.0, False) replay.insert(6, 0, 0.0, False) replay.insert(7, 0, 0.0, False) toBeSampled = set([4, 6]) wasSampled = set() wasFirst = set() for _ in range(100): batch = replay.sample(0) wasSampled.add(batch[0][1]) wasFirst.add(batch[0][0]) self.assertEqual(batch[0].shape[0], 2) self.assertEqual(len(toBeSampled - wasSampled), 0, 'something was not sampled') self.assertEqual(len(wasSampled), len(toBeSampled), 'something was not supposed to be sampled') self.assertSetEqual(wasFirst, set([2,4])) def testPlusOneSampling(self): import numpy numpy.random.seed(1) replay = ExperienceReplay(4, samplers = (PlusOneSampler(2),)) replay.insert(6, 0, 0.0, False) replay.insert(2, 0, 0.0, True) replay.insert(4, 0, 0.0, False) replay.insert(6, 0, 0.0, True) replay.insert(7, 0, 0.0, False) wasSampled = set() wasFirst = set() for _ in range(100): batch = replay.sample(0) wasSampled.add(batch[0][-1]) wasFirst.add(batch[0][0]) self.assertEqual(batch[0].shape[0], 3) self.assertSetEqual(wasFirst, set([4])) self.assertSetEqual(wasSampled, set([7])) def testPlusOneResampling(self): import numpy numpy.random.seed(1) replay = ExperienceReplay(4, samplers = (PlusOneSampler(2),)) replay.insert(6, 0, 0.0, False) replay.insert(2, 0, 0.0, True) replay.insert(4, 0, 0.0, False) replay.insert(6, 0, 0.0, False) replay.insert(7, 0, 0.0, False) wasSampled = set() wasFirst = set() for _ in range(100): batch = replay.sample(0) wasSampled.add(batch[0][-1]) wasFirst.add(batch[0][0]) self.assertEqual(batch[0].shape[0], 3) self.assertSetEqual(wasFirst, set([4])) self.assertSetEqual(wasSampled, set([7])) def testPlusOneShortMemory(self): import numpy numpy.random.seed(1) replay = ExperienceReplay(4, samplers = (PlusOneSampler(2),)) replay.insert(1, 0, 0.0, False) replay.insert(2, 0, 0.0, True) for _ in range(100): batch = replay.sample(0) self.assertIsNone(batch) class BatchSequenceStorageTest(unittest.TestCase): def testStore(self): replay = BatchSequenceStorage(2, 4, samplers = [SequenceSampler(2)]) replay.insert(np.array([1,2]), np.array([1,1]), np.array([1.0, 1.0]), np.array([False, False])) replay.insert(np.array([3,4]), np.array([1,1]), np.array([1.0, 1.0]), np.array([False, False])) replay.insert(np.array([5,6]), np.array([1,1]), np.array([1.0, 1.0]), np.array([False, False])) replay.insert(np.array([7,8]), np.array([1,1]), np.array([1.0, 1.0]), np.array([False, False])) def testSampleShape(self): replay = BatchSequenceStorage(2, 4, samplers = [SequenceSampler(2)]) replay.insert(np.array([1,2]), np.array([1,1]),
np.array([1.0, 1.0])
numpy.array
#!/usr/bin/python # -*- coding: utf-8 -*- # # PyKOALA: KOALA data processing and analysis # by <NAME> and <NAME> # Extra work by <NAME> (MQ PACE student) # Plus Taylah and Matt (sky subtraction) from __future__ import absolute_import, division, print_function from past.utils import old_div version = "Version 0.72 - 13th February 2020" import copy import os.path as pth import sys from astropy.convolution import Gaussian2DKernel, interpolate_replace_nans from astropy.io import fits from astropy.wcs import WCS import matplotlib.pyplot as plt import matplotlib.colors as colors import numpy as np from scipy import interpolate from scipy.ndimage.interpolation import shift import scipy.signal as sig from .constants import C, PARSEC as pc from .utils.cube_alignment import offset_between_cubes, compare_cubes, align_n_cubes from .utils.flux import search_peaks, fluxes, dfluxes, substract_given_gaussian from .utils.io import read_table, save_rss_fits, save_fits_file from .utils.moffat import fit_Moffat from .utils.plots import ( plot_redshift_peaks, plot_weights_for_getting_smooth_spectrum, plot_correction_in_fibre_p_fibre, plot_suspicious_fibres_graph, plot_skyline_5578, plot_offset_between_cubes, plot_response, plot_telluric_correction, plot_plot ) from .utils.sky_spectrum import scale_sky_spectrum, median_filter from .utils.spectrum_tools import rebin_spec_shift, smooth_spectrum from .utils.utils import ( FitsExt, FitsFibresIFUIndex, coord_range, median_absolute_deviation, ) from ._version import get_versions __version__ = get_versions()["version"] del get_versions # ----------------------------------------------------------------------------- # Define constants # ----------------------------------------------------------------------------- DATA_PATH = pth.join(pth.dirname(__file__), "data") # ----------------------------------------------------------------------------- # Define COLOUR scales # ----------------------------------------------------------------------------- fuego_color_map = colors.LinearSegmentedColormap.from_list( "fuego", ( (0.25, 0, 0), (0.5, 0, 0), (1, 0, 0), (1, 0.5, 0), (1, 0.75, 0), (1, 1, 0), (1, 1, 1), ), N=256, gamma=1.0, ) fuego_color_map.set_bad("lightgray") plt.register_cmap(cmap=fuego_color_map) projo = [0.25, 0.5, 1, 1.0, 1.00, 1, 1] pverde = [0.00, 0.0, 0, 0.5, 0.75, 1, 1] pazul = [0.00, 0.0, 0, 0.0, 0.00, 0, 1] # ----------------------------------------------------------------------------- # RSS CLASS # ----------------------------------------------------------------------------- class RSS(object): """ Collection of row-stacked spectra (RSS). Attributes ---------- wavelength: np.array(float) Wavelength, in Angstroms. intensity: np.array(float) Intensity :math:`I_\lambda` per unit wavelength. variance: np.array(float) Variance :math:`\sigma^2_\lambda` per unit wavelength (note the square in the definition of the variance). """ # ----------------------------------------------------------------------------- def __init__(self): self.description = "Undefined row-stacked spectra (RSS)" self.n_spectra = 0 self.n_wave = 0 self.wavelength = np.zeros((0)) self.intensity = np.zeros((0, 0)) self.intensity_corrected = self.intensity self.variance = np.zeros_like(self.intensity) self.RA_centre_deg = 0.0 self.DEC_centre_deg = 0.0 self.offset_RA_arcsec = np.zeros((0)) self.offset_DEC_arcsec = np.zeros_like(self.offset_RA_arcsec) self.ALIGNED_RA_centre_deg = 0.0 # Added by ANGEL, 6 Sep self.ALIGNED_DEC_centre_deg = 0.0 # Added by ANGEL, 6 Sep self.relative_throughput = np.ones((0)) # Added by ANGEL, 16 Sep # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def compute_integrated_fibre( self, list_spectra="all", valid_wave_min=0, valid_wave_max=0, min_value=0.1, plot=False, title=" - Integrated values", warnings=True, text="...", correct_negative_sky=False, ): """ Compute the integrated flux of a fibre in a particular range, valid_wave_min to valid_wave_max. Parameters ---------- list_spectra: float (default "all") list with the number of fibres for computing integrated value if using "all" it does all fibres valid_wave_min, valid_wave_max : float the integrated flux value will be computed in the range [valid_wave_min, valid_wave_max] (default = , if they all 0 we use [self.valid_wave_min, self.valid_wave_max] min_value: float (default 0) For values lower than min_value, we set them as min_value plot : Boolean (default = False) Plot title : string Title for the plot text: string A bit of extra text warnings : Boolean (default = False) Write warnings, e.g. when the integrated flux is negative correct_negative_sky : Boolean (default = False) Corrects negative values making 0 the integrated flux of the lowest fibre Example ---------- integrated_fibre_6500_6600 = star1r.compute_integrated_fibre(valid_wave_min=6500, valid_wave_max=6600, title = " - [6500,6600]", plot = True) """ print("\n Computing integrated fibre values {}".format(text)) if list_spectra == "all": list_spectra = list(range(self.n_spectra)) if valid_wave_min == 0: valid_wave_min = self.valid_wave_min if valid_wave_max == 0: valid_wave_max = self.valid_wave_max self.integrated_fibre = np.zeros(self.n_spectra) region = np.where( (self.wavelength > valid_wave_min) & (self.wavelength < valid_wave_max) ) waves_in_region = len(region[0]) n_negative_fibres = 0 negative_fibres = [] for i in range(self.n_spectra): self.integrated_fibre[i] = np.nansum(self.intensity_corrected[i, region]) if self.integrated_fibre[i] < 0: if warnings: print( " WARNING: The integrated flux in fibre {:4} is negative, flux/wave = {:10.2f}, (probably sky), CHECK !".format( i, self.integrated_fibre[i]/waves_in_region )) n_negative_fibres = n_negative_fibres + 1 # self.integrated_fibre[i] = min_value negative_fibres.append(i) if len(negative_fibres) != 0: print("\n> Number of fibres with integrated flux < 0 : {:4}, that is the {:5.2f} % of the total !".format( n_negative_fibres, n_negative_fibres * 100.0 / self.n_spectra )) negative_fibres_sorted = [] integrated_intensity_sorted = np.argsort( self.integrated_fibre/waves_in_region ) for fibre_ in range(n_negative_fibres): negative_fibres_sorted.append(integrated_intensity_sorted[fibre_]) # print "\n> Checking results using",n_negative_fibres,"fibres with the lowest integrated intensity" # print " which are :",negative_fibres_sorted if correct_negative_sky: min_sky_value = self.integrated_fibre[negative_fibres_sorted[0]] min_sky_value_per_wave = min_sky_value/waves_in_region print( "\n> Correcting negative values making 0 the integrated flux of the lowest fibre, which is {:4} with {:10.2f} counts/wave".format( negative_fibres_sorted[0], min_sky_value_per_wave )) # print self.integrated_fibre[negative_fibres_sorted[0]] self.integrated_fibre = self.integrated_fibre - min_sky_value for i in range(self.n_spectra): self.intensity_corrected[i] = ( self.intensity_corrected[i] - min_sky_value_per_wave ) else: print( "\n> Adopting integrated flux = {:5.2f} for all fibres with negative integrated flux (for presentation purposes)".format( min_value )) for i in negative_fibres_sorted: self.integrated_fibre[i] = min_value # for i in range(self.n_spectra): # if self.integrated_fibre[i] < 0: # if warnings: print " WARNING: The integrated flux in fibre {:4} STILL is negative, flux/wave = {:10.2f}, (probably sky), CHECK !".format(i,self.integrated_fibre[i]/waves_in_region) if plot: # print"\n Plotting map with integrated values:" self.RSS_map( self.integrated_fibre, norm=colors.PowerNorm(gamma=1.0 / 4.0), title=title, ) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def identify_el( self, high_fibres=10, brightest_line="Ha", cut=1.5, fibre=0, broad=1.0, verbose=True, plot=True, ): """ Identify fibres with highest intensity (high_fibres=10). Add all in a single spectrum. Identify emission features. These emission features should be those expected in all the cube! Also, choosing fibre=number, it identifies el in a particular fibre. Parameters ---------- high_fibres: float (default 10) use the high_fibres highest intensity fibres for identifying brightest_line : string (default "Ha") string name with the emission line that is expected to be the brightest in integrated spectrum cut: float (default 1.5) The peak has to have a cut higher than cut to be considered as emission line fibre: integer (default 0) If fibre is given, it identifies emission lines in the given fibre broad: float (default 1.0) Broad (FWHM) of the expected emission lines verbose : boolean (default = True) Write results plot : boolean (default = False) Plot results Example ---------- self.el=self.identify_el(high_fibres=10, brightest_line = "Ha", cut=2., verbose=True, plot=True, fibre=0, broad=1.5) """ if fibre == 0: integrated_intensity_sorted = np.argsort(self.integrated_fibre) region = [] for fibre in range(high_fibres): region.append(integrated_intensity_sorted[-1 - fibre]) if verbose: print("\n> Identifying emission lines using the {} fibres with the highest integrated intensity".format(high_fibres)) print(" which are : {}".format(region)) combined_high_spectrum = np.nansum(self.intensity_corrected[region], axis=0) else: combined_high_spectrum = self.intensity_corrected[fibre] if verbose: print("\n> Identifying emission lines in fibre {}".format(fibre)) # Search peaks peaks, peaks_name, peaks_rest, continuum_limits = search_peaks( self.wavelength, combined_high_spectrum, plot=plot, cut=cut, brightest_line=brightest_line, verbose=False, ) p_peaks_l = [] p_peaks_fwhm = [] # Do Gaussian fit and provide center & FWHM (flux could be also included, not at the moment as not abs. flux-cal done) if verbose: print("\n Emission lines identified:") for eline in range(len(peaks)): lowlow = continuum_limits[0][eline] lowhigh = continuum_limits[1][eline] highlow = continuum_limits[2][eline] highhigh = continuum_limits[3][eline] resultado = fluxes( self.wavelength, combined_high_spectrum, peaks[eline], verbose=False, broad=broad, lowlow=lowlow, lowhigh=lowhigh, highlow=highlow, highhigh=highhigh, plot=plot, fcal=False, ) p_peaks_l.append(resultado[1]) p_peaks_fwhm.append(resultado[5]) if verbose: print(" {:3}. {:7s} {:8.2f} centered at {:8.2f} and FWHM = {:6.2f}".format( eline + 1, peaks_name[eline], peaks_rest[eline], p_peaks_l[eline], p_peaks_fwhm[eline], )) return [peaks_name, peaks_rest, p_peaks_l, p_peaks_fwhm] # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def correct_high_cosmics_and_defects( self, step=50, correct_high_cosmics=False, fibre_p=0, remove_5578=False, # if fibre_p=fibre plots the corrections in that fibre clip_high=100, warnings=False, plot=True, plot_suspicious_fibres=True, verbose=False, fig_size=12, ): """ Task for correcting high cosmics and CCD defects using median values of nearby pixels. 2dFdr corrects for (the majority) of the cosmic rays, usually correct_high_cosmics = False. ANGEL COMMENT: Check, probably can be improved using MATT median running + plotting outside Parameters ---------- rect_high_cosmics: boolean (default = False) Correct ONLY CCD defects re_p: integer (default = 0) Plots the corrections in fibre fibre_p ove_5578: boolean (default = False) Removes skyline 5578 (blue spectrum) using Gaussian fit ND CHECK: This also MODIFIES the throughput correction correcting for flux_5578_medfilt /median_flux_5578_medfilt step: integer (default = 50) Number of points for calculating median value clip_high : float (default = 100) Minimum value of flux/median in a pixel to be consider as a cosmic if s[wave] > clip_high*fit_median[wave] -> IT IS A COSMIC verbose: boolean (default = False) Write results warnings: boolean (default = False) Write warnings plot: boolean (default = False) Plot results plot_suspicious_fibres: boolean (default = False) Plots fibre(s) that could have a cosmic left (but it could be OK) IF self.integrated_fibre[fibre]/median_running[fibre] > max_value -> SUSPICIOUS FIBRE Example ---------- self.correct_high_cosmics_and_defects(correct_high_cosmics=False, step=40, remove_5578 = True, clip_high=120, plot_suspicious_fibres=True, warnings=True, verbose=False, plot=True) """ print("\n> Correcting for high cosmics and CCD defects...") wave_min = self.valid_wave_min # CHECK ALL OF THIS... wave_max = self.valid_wave_max wlm = self.wavelength if correct_high_cosmics == False: print(" Only CCD defects (nan and negative values) are considered.") else: print(" Using clip_high = {} for high cosmics".format(clip_high)) print(" IMPORTANT: Be sure that any emission or sky line is fainter than clip_high/continuum !! ") flux_5578 = [] # For correcting sky line 5578 if requested if wave_min < 5578 and remove_5578: print(" Sky line 5578 will be removed using a Gaussian fit...") integrated_fibre_uncorrected = self.integrated_fibre print(" ") output_every_few = np.sqrt(self.n_spectra) + 1 next_output = -1 max_ratio_list = [] for fibre in range(self.n_spectra): if fibre > next_output: sys.stdout.write("\b" * 30) sys.stdout.write( " Cleaning... {:5.2f}% completed".format( fibre * 100.0 / self.n_spectra ) ) sys.stdout.flush() next_output = fibre + output_every_few s = self.intensity_corrected[fibre] running_wave = [] running_step_median = [] cuts = np.int(self.n_wave/step) # using np.int instead of // for improved readability for cut in range(cuts): if cut == 0: next_wave = wave_min else: next_wave = np.nanmedian( (wlm[np.int(cut * step)] + wlm[np.int((cut + 1) * step)])/2 ) if next_wave < wave_max: running_wave.append(next_wave) # print("SEARCHFORME1", step, running_wave[cut]) region = np.where( (wlm > running_wave[cut] - np.int(step/2)) # step/2 doesn't need to be an int, but probably & (wlm < running_wave[cut] + np.int(step/2)) # want it to be so the cuts are uniform. ) # print('SEARCHFORME3', region) running_step_median.append( np.nanmedian(self.intensity_corrected[fibre, region]) ) running_wave.append(wave_max) region = np.where((wlm > wave_max - step) & (wlm < wave_max)) running_step_median.append( np.nanmedian(self.intensity_corrected[fibre, region]) ) for i in range(len(running_step_median)): if np.isnan(running_step_median[i]) == True: if i < 10: running_step_median[i] = np.nanmedian(running_step_median[0:9]) if i > 10: running_step_median[i] = np.nanmedian( running_step_median[-9:-1] ) a7x, a6x, a5x, a4x, a3x, a2x, a1x, a0x = np.polyfit( running_wave, running_step_median, 7 ) fit_median = ( a0x + a1x * wlm + a2x * wlm ** 2 + a3x * wlm ** 3 + a4x * wlm ** 4 + a5x * wlm ** 5 + a6x * wlm ** 6 + a7x * wlm ** 7 ) if fibre == fibre_p: espectro_old = copy.copy(self.intensity_corrected[fibre, :]) espectro_fit_median = fit_median for wave in range(self.n_wave): # (1,self.n_wave-3): if s[wave] < 0: s[wave] = fit_median[wave] # Negative values for median values if np.isnan(s[wave]) == True: s[wave] = fit_median[wave] # nan for median value if ( correct_high_cosmics and fit_median[wave] > 0 ): # NEW 15 Feb 2019, v7.1 2dFdr takes well cosmic rays if s[wave] > clip_high * fit_median[wave]: if verbose: print(" " "CLIPPING HIGH = {} in fibre {} w = {} value= {} v/median= {}".format(clip_high, fibre, wlm[wave], s[wave], s[wave]/fit_median[wave])) # " median=",fit_median[wave] s[wave] = fit_median[wave] if fibre == fibre_p: espectro_new = copy.copy(s) max_ratio_list.append(np.nanmax(s/fit_median)) self.intensity_corrected[fibre, :] = s # Removing Skyline 5578 using Gaussian fit if requested if wave_min < 5578 and remove_5578: resultado = fluxes( wlm, s, 5578, plot=False, verbose=False ) # fmin=-5.0E-17, fmax=2.0E-16, # resultado = [rms_cont, fit[0], fit_error[0], gaussian_flux, gaussian_flux_error, fwhm, fwhm_error, flux, flux_error, ew, ew_error, spectrum ] self.intensity_corrected[fibre] = resultado[11] flux_5578.append(resultado[3]) sys.stdout.write("\b" * 30) sys.stdout.write(" Cleaning... 100.00 completed") sys.stdout.flush() max_ratio = np.nanmax(max_ratio_list) print("\n Maximum value found of flux/continuum = {}".format(max_ratio)) if correct_high_cosmics: print(" Recommended value for clip_high = {} , here we used {}".format(int(max_ratio + 1), clip_high)) # Plot correction in fibre p_fibre if fibre_p > 0: plot_correction_in_fibre_p_fibre(fig_size, wlm, espectro_old, espectro_fit_median, espectro_new, fibre_p, clip_high) # print" " if correct_high_cosmics == False: text = "for spectra corrected for defects..." title = " - Throughput + CCD defects corrected" else: text = "for spectra corrected for high cosmics and defects..." title = " - Throughput + high-C & D corrected" self.compute_integrated_fibre( valid_wave_min=wave_min, valid_wave_max=wave_max, text=text, plot=plot, title=title, ) if plot: print(" Plotting integrated fibre values before and after correcting for high cosmics and CCD defects:\n") plt.figure(figsize=(fig_size, fig_size / 2.5)) plt.plot(integrated_fibre_uncorrected, "r", label="Uncorrected", alpha=0.5) plt.ylabel("Integrated Flux") plt.xlabel("Fibre") plt.ylim( [np.nanmin(self.integrated_fibre), np.nanmax(self.integrated_fibre)] ) plt.title(self.description) # Check if integrated value is high median_running = [] step_f = 10 max_value = 2.0 # For stars this is not accurate, as i/m might be between 5 and 100 in the fibres with the star skip = 0 suspicious_fibres = [] for fibre in range(self.n_spectra): if fibre < step_f: median_value = np.nanmedian( self.integrated_fibre[0: np.int(step_f)] ) skip = 1 if fibre > self.n_spectra - step_f: median_value = np.nanmedian( self.integrated_fibre[-1 - np.int(step_f): -1] ) skip = 1 if skip == 0: median_value = np.nanmedian( self.integrated_fibre[ fibre - np.int(step_f/2): fibre + np.int(step_f/2) # np.int is used instead of // of readability ] ) median_running.append(median_value) if self.integrated_fibre[fibre]/median_running[fibre] > max_value: print(" Fibre {} has a integrated/median ratio of {} -> Might be a cosmic left!".format(fibre, self.integrated_fibre[fibre]/median_running[fibre])) label = np.str(fibre) plt.axvline(x=fibre, color="k", linestyle="--") plt.text(fibre, self.integrated_fibre[fibre] / 2.0, label) suspicious_fibres.append(fibre) skip = 0 plt.plot(self.integrated_fibre, label="Corrected", alpha=0.6) plt.plot(median_running, "k", label="Median", alpha=0.6) plt.legend(frameon=False, loc=1, ncol=3) plt.minorticks_on() #plt.show() #plt.close() if plot_suspicious_fibres == True and len(suspicious_fibres) > 0: # Plotting suspicious fibres.. figures = plot_suspicious_fibres_graph( self, suspicious_fibres, fig_size, wave_min, wave_max, intensity_corrected_fiber=self.intensity_corrected) if remove_5578 and wave_min < 5578: print(" Skyline 5578 has been removed. Checking throughput correction...") flux_5578_medfilt = sig.medfilt(flux_5578, np.int(5)) median_flux_5578_medfilt = np.nanmedian(flux_5578_medfilt) extra_throughput_correction = flux_5578_medfilt/median_flux_5578_medfilt # plt.plot(extra_throughput_correction) # plt.show() # plt.close() if plot: fig = plot_skyline_5578(fig_size, flux_5578, flux_5578_medfilt) print(" Variations in throughput between {} and {} ".format( np.nanmin(extra_throughput_correction), np.nanmax(extra_throughput_correction) )) print(" Applying this extra throughtput correction to all fibres...") for i in range(self.n_spectra): self.intensity_corrected[i, :] = ( self.intensity_corrected[i, :]/extra_throughput_correction[i] ) self.relative_throughput = ( self.relative_throughput * extra_throughput_correction ) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def clean_sky_residuals( self, extra_w=1.3, step=25, dclip=3.0, wave_min=0, wave_max=0, verbose=False, plot=False, fig_size=12, fibre=0, ): """ This task HAVE TO BE USED WITH EXTREME CARE as it has not been properly tested!!! It CAN DELETE REAL (faint) ABSORPTION/EMISSION features in spectra!!! Use the "1dfit" option for getting a better sky substraction ANGEL is keeping this here just in case it is eventually useful... Parameters ---------- extra_w step dclip wave_min wave_max verbose plot fig_size fibre Returns ------- """ # verbose=True wlm = self.wavelength if wave_min == 0: wave_min = self.valid_wave_min if wave_max == 0: wave_max = self.valid_wave_max # Exclude ranges with emission lines if needed exclude_ranges_low = [] exclude_ranges_high = [] exclude_ranges_low_ = [] exclude_ranges_high_ = [] if self.el[1][0] != 0: # print " Emission lines identified in the combined spectrum:" for el in range(len(self.el[0])): # print " {:3}. - {:7s} {:8.2f} centered at {:8.2f} and FWHM = {:6.2f}".format(el+1,self.el[0][el],self.el[1][el],self.el[2][el],self.el[3][el]) if ( self.el[0][el] == "Ha" or self.el[1][el] == 6583.41 ): # Extra extend for Ha and [N II] 6583 extra = extra_w * 1.6 else: extra = extra_w exclude_ranges_low_.append( self.el[2][el] - self.el[3][el] * extra ) # center-1.3*FWHM/2 exclude_ranges_high_.append( self.el[2][el] + self.el[3][el] * extra ) # center+1.3*FWHM/2 # print self.el[0][el],self.el[1][el],self.el[2][el],self.el[3][el],exclude_ranges_low[el],exclude_ranges_high[el],extra # Check overlapping ranges skip_next = 0 for i in range(len(exclude_ranges_low_) - 1): if skip_next == 0: if exclude_ranges_high_[i] > exclude_ranges_low_[i + 1]: # Ranges overlap, now check if next range also overlaps if i + 2 < len(exclude_ranges_low_): if exclude_ranges_high_[i + 1] > exclude_ranges_low_[i + 2]: exclude_ranges_low.append(exclude_ranges_low_[i]) exclude_ranges_high.append(exclude_ranges_high_[i + 2]) skip_next = 2 if verbose: print("Double overlap {} {}".format(exclude_ranges_low[-1], exclude_ranges_high[-1])) else: exclude_ranges_low.append(exclude_ranges_low_[i]) exclude_ranges_high.append(exclude_ranges_high_[i + 1]) skip_next = 1 if verbose: print("Overlap {} {}".format(exclude_ranges_low[-1], exclude_ranges_high[-1])) else: exclude_ranges_low.append(exclude_ranges_low_[i]) exclude_ranges_high.append(exclude_ranges_high_[i]) if verbose: print("Overlap {} {}".format(exclude_ranges_low[-1], exclude_ranges_high[-1])) else: if skip_next == 1: skip_next = 0 if skip_next == 2: skip_next = 1 if verbose: print(exclude_ranges_low_[i], exclude_ranges_high_[i], skip_next) if skip_next == 0: exclude_ranges_low.append(exclude_ranges_low_[-1]) exclude_ranges_high.append(exclude_ranges_high_[-1]) if verbose: print(exclude_ranges_low_[-1], exclude_ranges_high_[-1], skip_next) # print "\n> Cleaning sky residuals in range [",wave_min,",",wave_max,"] avoiding emission lines... " print("\n> Cleaning sky residuals avoiding emission lines... ") if verbose: print(" Excluded ranges using emission line parameters:") for i in range(len(exclude_ranges_low_)): print(exclude_ranges_low_[i], exclude_ranges_high_[i]) print(" Excluded ranges considering overlaps: ") for i in range(len(exclude_ranges_low)): print(exclude_ranges_low[i], exclude_ranges_high[i]) print(" ") else: exclude_ranges_low.append(20000.0) exclude_ranges_high.append(30000.0) print("\n> Cleaning sky residuals...") say_status = 0 if fibre != 0: f_i = fibre f_f = fibre + 1 print(" Checking fibre {} (only this fibre is corrected, use fibre = 0 for all)...".format(fibre)) plot = True else: f_i = 0 f_f = self.n_spectra for fibre in range(f_i, f_f): # (self.n_spectra): if fibre == say_status: print(" Checking fibre {} ...".format(fibre)) say_status = say_status + 100 s = self.intensity_corrected[fibre] fit_median = smooth_spectrum( wlm, s, step=step, wave_min=wave_min, wave_max=wave_max, weight_fit_median=1.0, plot=False, ) old = [] if plot: for i in range(len(s)): old.append(s[i]) disp = s - fit_median dispersion = np.nanmedian(np.abs(disp)) rango = 0 imprimir = 1 for i in range(len(wlm) - 1): # if wlm[i] > wave_min and wlm[i] < wave_max : # CLEAN ONLY IN VALID WAVEVELENGTHS if ( wlm[i] >= exclude_ranges_low[rango] and wlm[i] <= exclude_ranges_high[rango] ): if verbose == True and imprimir == 1: print(" Excluding range [ {} , {} ] as it has an emission line".format( exclude_ranges_low[rango], exclude_ranges_high[rango])) if imprimir == 1: imprimir = 0 # print " Checking ", wlm[i]," NOT CORRECTED ",s[i], s[i]-fit_median[i] else: if np.isnan(s[i]) == True: s[i] = fit_median[i] # nan for median value if ( disp[i] > dispersion * dclip and disp[i + 1] < -dispersion * dclip ): s[i] = fit_median[i] s[i + 1] = fit_median[i + 1] # "P-Cygni-like structures if verbose: print(" Found P-Cygni-like feature in {}".format(wlm[i])) if disp[i] > dispersion * dclip or disp[i] < -dispersion * dclip: s[i] = fit_median[i] if verbose: print(" Clipping feature in {}".format(wlm[i])) if wlm[i] > exclude_ranges_high[rango] and imprimir == 0: if verbose: print(" Checked {} End range {} {} {}".format( wlm[i], rango, exclude_ranges_low[rango], exclude_ranges_high[rango] ) ) rango = rango + 1 imprimir = 1 if rango == len(exclude_ranges_low): rango = len(exclude_ranges_low) - 1 # print " Checking ", wlm[i]," CORRECTED IF NEEDED",s[i], s[i]-fit_median[i] # if plot: # for i in range(6): # plt.figure(figsize=(fig_size, fig_size/2.5)) # plt.plot(wlm,old-fit_median, "r-", alpha=0.4) # plt.plot(wlm,fit_median-fit_median,"g-", alpha=0.5) # plt.axhline(y=dispersion*dclip, color="g", alpha=0.5) # plt.axhline(y=-dispersion*dclip, color="g", alpha=0.5) # plt.plot(wlm,s-fit_median, "b-", alpha=0.7) # # for exclude in range(len(exclude_ranges_low)): # plt.axvspan(exclude_ranges_low[exclude], exclude_ranges_high[exclude], facecolor='g', alpha=0.15,zorder=3) # # plt.ylim(-100,200) # if i == 0: plt.xlim(wlm[0]-10,wlm[-1]+10) # if i == 1: plt.xlim(wlm[0],6500) # THIS IS FOR 1000R # if i == 2: plt.xlim(6500,6700) # if i == 3: plt.xlim(6700,7000) # if i == 4: plt.xlim(7000,7300) # if i == 5: plt.xlim(7300,wlm[-1]) # plt.minorticks_on() # plt.xlabel("Wavelength [$\AA$]") # plt.ylabel("Flux / continuum") # plt.show() # plt.close() if plot: for i in range(6): plt.figure(figsize=(fig_size, fig_size / 2.5)) plt.plot(wlm, old, "r-", alpha=0.4) plt.plot(wlm, fit_median, "g-", alpha=0.5) # plt.axhline(y=dispersion*dclip, color="g", alpha=0.5) # plt.axhline(y=-dispersion*dclip, color="g", alpha=0.5) plt.plot(wlm, s, "b-", alpha=0.7) for exclude in range(len(exclude_ranges_low)): plt.axvspan( exclude_ranges_low[exclude], exclude_ranges_high[exclude], facecolor="g", alpha=0.15, zorder=3, ) plt.ylim(-300, 300) if i == 0: plt.xlim(wlm[0] - 10, wlm[-1] + 10) if i == 1: plt.xlim(wlm[0], 6500) # THIS IS FOR 1000R if i == 2: plt.xlim(6500, 6700) if i == 3: plt.xlim(6700, 7000) if i == 4: plt.xlim(7000, 7300) if i == 5: plt.xlim(7300, wlm[-1]) plt.minorticks_on() plt.xlabel("Wavelength [$\AA$]") plt.ylabel("Flux / continuum") # plt.show() # plt.close() self.intensity_corrected[fibre, :] = s # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def fit_and_substract_sky_spectrum( self, sky, w=1000, spectra=1000, # If rebin == True, it fits all wavelengths to be at the same wavelengths that SKY spectrum... rebin=False, brightest_line="Ha", brightest_line_wavelength=6563.0, maxima_sigma=3.0, ymin=-50, ymax=1000, wmin=0, wmax=0, auto_scale_sky=False, warnings=False, verbose=False, plot=False, fig_size=12, fibre=0, ): """ Given a 1D sky spectrum, this task fits sky lines of each spectrum individually and substracts sky Needs the observed wavelength (brightest_line_wavelength) of the brightest emission line (brightest_line) . w is the wavelength spec the 2D spectra Parameters ---------- sky w spectra rebin brightest_line brightest_line_wavelength maxima_sigma ymin ymax wmin wmax auto_scale_sky warnings verbose plot fig_size fibre Returns ------- """ if brightest_line_wavelength == 6563: print("\n\n> WARNING: This is going to FAIL as the wavelength of the brightest emission line has not been included !!!") print(" USING brightest_line_wavelength = 6563 as default ...\n\n") brightest_line_wavelength_rest = 6562.82 if brightest_line == "O3" or brightest_line == "O3b": brightest_line_wavelength_rest = 5006.84 if brightest_line == "Hb" or brightest_line == "hb": brightest_line_wavelength_rest = 4861.33 print(" Using {:3} at rest wavelength {:6.2f} identified by the user at {:6.2f} to avoid fitting emission lines...".format( brightest_line, brightest_line_wavelength_rest, brightest_line_wavelength )) redshift = brightest_line_wavelength/brightest_line_wavelength_rest - 1.0 if w == 1000: w = self.wavelength if spectra == 1000: spectra = copy.deepcopy(self.intensity_corrected) if wmin == 0: wmin = w[0] if wmax == 0: wmax = w[-1] # Read file with sky emission lines sky_lines_file = "sky_lines.dat" ( sl_center, sl_name, sl_fnl, sl_lowlow, sl_lowhigh, sl_highlow, sl_highhigh, sl_lmin, sl_lmax, ) = read_table(sky_lines_file, ["f", "s", "f", "f", "f", "f", "f", "f", "f"]) number_sl = len(sl_center) # MOST IMPORTANT EMISSION LINES IN RED # 6300.30 [OI] -0.263 30.0 15.0 20.0 40.0 # 6312.10 [SIII] -0.264 30.0 18.0 5.0 20.0 # 6363.78 [OI] -0.271 20.0 4.0 5.0 30.0 # 6548.03 [NII] -0.296 45.0 15.0 55.0 75.0 # 6562.82 Ha -0.298 50.0 25.0 35.0 60.0 # 6583.41 [NII] -0.300 62.0 42.0 7.0 35.0 # 6678.15 HeI -0.313 20.0 6.0 6.0 20.0 # 6716.47 [SII] -0.318 40.0 15.0 22.0 45.0 # 6730.85 [SII] -0.320 50.0 30.0 7.0 35.0 # 7065.28 HeI -0.364 30.0 7.0 7.0 30.0 # 7135.78 [ArIII] -0.374 25.0 6.0 6.0 25.0 # 7318.39 [OII] -0.398 30.0 6.0 20.0 45.0 # 7329.66 [OII] -0.400 40.0 16.0 10.0 35.0 # 7751.10 [ArIII] -0.455 30.0 15.0 15.0 30.0 # 9068.90 [S-III] -0.594 30.0 15.0 15.0 30.0 el_list_no_z = [ 6300.3, 6312.10, 6363.78, 6548.03, 6562.82, 6583.41, 6678.15, 6716.47, 6730.85, 7065.28, 7135.78, 7318.39, 7329.66, 7751.1, 9068.9, ] el_list = (redshift + 1) * np.array(el_list_no_z) # [OI] [SIII] [OI] Ha+[NII] HeI [SII] HeI [ArIII] [OII] [ArIII] [SIII] el_low_list_no_z = [ 6296.3, 6308.1, 6359.8, 6544.0, 6674.2, 6712.5, 7061.3, 7131.8, 7314.4, 7747.1, 9063.9, ] el_high_list_no_z = [ 6304.3, 6316.1, 6367.8, 6590.0, 6682.2, 6736.9, 7069.3, 7139.8, 7333.7, 7755.1, 9073.9, ] el_low_list = (redshift + 1) * np.array(el_low_list_no_z) el_high_list = (redshift + 1) * np.array(el_high_list_no_z) # Double Skylines dsky1 = [ 6257.82, 6465.34, 6828.22, 6969.70, 7239.41, 7295.81, 7711.50, 7750.56, 7853.391, 7913.57, 7773.00, 7870.05, 8280.94, 8344.613, 9152.2, 9092.7, 9216.5, 8827.112, 8761.2, 0, ] # 8760.6, 0]# dsky2 = [ 6265.50, 6470.91, 6832.70, 6978.45, 7244.43, 7303.92, 7715.50, 7759.89, 7860.662, 7921.02, 7780.43, 7879.96, 8288.34, 8352.78, 9160.9, 9102.8, 9224.8, 8836.27, 8767.7, 0, ] # 8767.2, 0] # say_status = 0 # plot=True # verbose = True # warnings = True self.wavelength_offset_per_fibre = [] self.sky_auto_scale = [] if fibre != 0: f_i = fibre f_f = fibre + 1 print(" Checking fibre {} (only this fibre is corrected, use fibre = 0 for all)...".format(fibre)) plot = True verbose = True warnings = True else: f_i = 0 f_f = self.n_spectra for fibre in range(f_i, f_f): # (self.n_spectra): if fibre == say_status: print(" Checking fibre {:4} ... ({:6.2f} % completed) ...".format( fibre, fibre * 100.0 / self.n_spectra ) ) say_status = say_status + 20 # Gaussian fits to the sky spectrum sl_gaussian_flux = [] sl_gaussian_sigma = [] sl_gauss_center = [] skip_sl_fit = [] # True emission line, False no emission line j_lines = 0 el_low = el_low_list[j_lines] el_high = el_high_list[j_lines] sky_sl_gaussian_fitted = copy.deepcopy(sky) di = 0 if verbose: print("\n> Performing Gaussian fitting to sky lines in sky spectrum...") for i in range(number_sl): if sl_center[i] > el_high: while sl_center[i] > el_high: j_lines = j_lines + 1 if j_lines < len(el_low_list) - 1: el_low = el_low_list[j_lines] el_high = el_high_list[j_lines] # print "Change to range ",el_low,el_high else: el_low = w[-1] + 1 el_high = w[-1] + 2 if sl_fnl[i] == 0: plot_fit = False else: plot_fit = True if sl_center[i] == dsky1[di]: warnings_ = False if sl_fnl[i] == 1: warnings_ = True if verbose: print(" Line {} blended with {}".format(sl_center[i], dsky2[di])) resultado = dfluxes( w, sky_sl_gaussian_fitted, sl_center[i], dsky2[di], lowlow=sl_lowlow[i], lowhigh=sl_lowhigh[i], highlow=sl_highlow[i], highhigh=sl_highhigh[i], lmin=sl_lmin[i], lmax=sl_lmax[i], fmin=0, fmax=0, broad1=2.1 * 2.355, broad2=2.1 * 2.355, plot=plot_fit, verbose=False, plot_sus=False, fcal=False, warnings=warnings_, ) # Broad is FWHM for Gaussian sigm a= 1, di = di + 1 else: resultado = fluxes( w, sky_sl_gaussian_fitted, sl_center[i], lowlow=sl_lowlow[i], lowhigh=sl_lowhigh[i], highlow=sl_highlow[i], highhigh=sl_highhigh[i], lmin=sl_lmin[i], lmax=sl_lmax[i], fmin=0, fmax=0, broad=2.1 * 2.355, plot=plot_fit, verbose=False, plot_sus=False, fcal=False, warnings=warnings, ) # Broad is FWHM for Gaussian sigm a= 1, sl_gaussian_flux.append(resultado[3]) sky_sl_gaussian_fitted = resultado[11] sl_gauss_center.append(resultado[1]) sl_gaussian_sigma.append(resultado[5] / 2.355) if el_low < sl_center[i] < el_high: if verbose: print(" SKY line {} in EMISSION LINE !".format(sl_center[i])) skip_sl_fit.append(True) else: skip_sl_fit.append(False) # print " Fitted wavelength for sky line ",sl_center[i]," : ",resultado[1]," ",resultado[5] if plot_fit: if verbose: print(" Fitted wavelength for sky line {} : {} sigma = {}".format( sl_center[i], sl_gauss_center[i], sl_gaussian_sigma[i]) ) wmin = sl_lmin[i] wmax = sl_lmax[i] # Gaussian fit to object spectrum object_sl_gaussian_flux = [] object_sl_gaussian_sigma = [] ratio_object_sky_sl_gaussian = [] dif_center_obj_sky = [] spec = spectra[fibre] object_sl_gaussian_fitted = copy.deepcopy(spec) object_sl_gaussian_center = [] di = 0 if verbose: print("\n> Performing Gaussian fitting to sky lines in fibre {} of object data...".format(fibre)) for i in range(number_sl): if sl_fnl[i] == 0: plot_fit = False else: plot_fit = True if skip_sl_fit[i]: if verbose: print(" SKIPPING SKY LINE {} as located within the range of an emission line!".format( sl_center[i])) object_sl_gaussian_flux.append( float("nan") ) # The value of the SKY SPECTRUM object_sl_gaussian_center.append(float("nan")) object_sl_gaussian_sigma.append(float("nan")) dif_center_obj_sky.append(float("nan")) else: if sl_center[i] == dsky1[di]: warnings_ = False if sl_fnl[i] == 1: warnings_ = True if verbose: print(" Line {} blended with {}".format(sl_center[i], dsky2[di])) resultado = dfluxes( w, object_sl_gaussian_fitted, sl_center[i], dsky2[di], lowlow=sl_lowlow[i], lowhigh=sl_lowhigh[i], highlow=sl_highlow[i], highhigh=sl_highhigh[i], lmin=sl_lmin[i], lmax=sl_lmax[i], fmin=0, fmax=0, broad1=sl_gaussian_sigma[i] * 2.355, broad2=sl_gaussian_sigma[i] * 2.355, plot=plot_fit, verbose=False, plot_sus=False, fcal=False, warnings=warnings_, ) di = di + 1 if ( resultado[3] > 0 and resultado[5] / 2.355 < maxima_sigma and resultado[13] > 0 and resultado[14] / 2.355 < maxima_sigma ): # and resultado[5] < maxima_sigma: # -100000.: #0: use_sigma = resultado[5] / 2.355 object_sl_gaussian_flux.append(resultado[3]) object_sl_gaussian_fitted = resultado[11] object_sl_gaussian_center.append(resultado[1]) object_sl_gaussian_sigma.append(use_sigma) dif_center_obj_sky.append( object_sl_gaussian_center[i] - sl_gauss_center[i] ) else: if verbose: print(" Bad fit for {}! ignoring it...".format(sl_center[i])) object_sl_gaussian_flux.append(float("nan")) object_sl_gaussian_center.append(float("nan")) object_sl_gaussian_sigma.append(float("nan")) dif_center_obj_sky.append(float("nan")) skip_sl_fit[i] = True # We don't substract this fit else: resultado = fluxes( w, object_sl_gaussian_fitted, sl_center[i], lowlow=sl_lowlow[i], lowhigh=sl_lowhigh[i], highlow=sl_highlow[i], highhigh=sl_highhigh[i], lmin=sl_lmin[i], lmax=sl_lmax[i], fmin=0, fmax=0, broad=sl_gaussian_sigma[i] * 2.355, plot=plot_fit, verbose=False, plot_sus=False, fcal=False, warnings=warnings, ) # Broad is FWHM for Gaussian sigma= 1, # print sl_center[i],sl_gaussian_sigma[i], resultado[5]/2.355, maxima_sigma if ( resultado[3] > 0 and resultado[5] / 2.355 < maxima_sigma ): # and resultado[5] < maxima_sigma: # -100000.: #0: object_sl_gaussian_flux.append(resultado[3]) object_sl_gaussian_fitted = resultado[11] object_sl_gaussian_center.append(resultado[1]) object_sl_gaussian_sigma.append(resultado[5] / 2.355) dif_center_obj_sky.append( object_sl_gaussian_center[i] - sl_gauss_center[i] ) else: if verbose: print(" Bad fit for {}! ignoring it...".format(sl_center[i])) object_sl_gaussian_flux.append(float("nan")) object_sl_gaussian_center.append(float("nan")) object_sl_gaussian_sigma.append(float("nan")) dif_center_obj_sky.append(float("nan")) skip_sl_fit[i] = True # We don't substract this fit ratio_object_sky_sl_gaussian.append( old_div(object_sl_gaussian_flux[i], sl_gaussian_flux[i]) ) # TODO: to remove once sky_line_fitting is active and we can do 1Dfit # Scale sky lines that are located in emission lines or provided negative values in fit # reference_sl = 1 # Position in the file! Position 1 is sky line 6363.4 # sl_ref_ratio = sl_gaussian_flux/sl_gaussian_flux[reference_sl] if verbose: print("\n> Correcting skylines for which we couldn't get a Gaussian fit...\n") for i in range(number_sl): if skip_sl_fit[i] == True: # Use known center, sigma of the sky and peak gauss_fix = sl_gaussian_sigma[i] small_center_correction = 0.0 # Check if center of previous sky line has a small difference in wavelength small_center_correction = np.nanmedian(dif_center_obj_sky[0:i]) if verbose: print("- Small correction of center wavelength of sky line {} : {}".format( sl_center[i], small_center_correction)) object_sl_gaussian_fitted = substract_given_gaussian( w, object_sl_gaussian_fitted, sl_center[i] + small_center_correction, peak=0, sigma=gauss_fix, flux=0, search_peak=True, lowlow=sl_lowlow[i], lowhigh=sl_lowhigh[i], highlow=sl_highlow[i], highhigh=sl_highhigh[i], lmin=sl_lmin[i], lmax=sl_lmax[i], plot=False, verbose=verbose, ) # Substract second Gaussian if needed !!!!! for di in range(len(dsky1) - 1): if sl_center[i] == dsky1[di]: if verbose: print(" This was a double sky line, also substracting {} at {}".format( dsky2[di], np.array(dsky2[di]) + small_center_correction)) object_sl_gaussian_fitted = substract_given_gaussian( w, object_sl_gaussian_fitted, np.array(dsky2[di]) + small_center_correction, peak=0, sigma=gauss_fix, flux=0, search_peak=True, lowlow=sl_lowlow[i], lowhigh=sl_lowhigh[i], highlow=sl_highlow[i], highhigh=sl_highhigh[i], lmin=sl_lmin[i], lmax=sl_lmax[i], plot=False, verbose=verbose, ) # wmin,wmax = 6100,6500 # ymin,ymax= -100,400 # # wmin,wmax = 6350,6700 # wmin,wmax = 7100,7700 # wmin,wmax = 7600,8200 # wmin,wmax = 8200,8500 # wmin,wmax = 7350,7500 # wmin,wmax=6100, 8500 #7800, 8000#6820, 6850 #6700,7000 #6300,6450#7500 # wmin,wmax = 8700,9300 # ymax=800 if plot: plt.figure(figsize=(11, 4)) plt.plot(w, spec, "y", alpha=0.7, label="Object") plt.plot( w, object_sl_gaussian_fitted, "k", alpha=0.5, label="Obj - sky fitted", ) plt.plot(w, sky_sl_gaussian_fitted, "r", alpha=0.5, label="Sky fitted") plt.plot(w, spec - sky, "g", alpha=0.5, label="Obj - sky") plt.plot( w, object_sl_gaussian_fitted - sky_sl_gaussian_fitted, "b", alpha=0.9, label="Obj - sky fitted - rest sky", ) plt.xlim(wmin, wmax) plt.ylim(ymin, ymax) ptitle = "Fibre " + np.str(fibre) # +" with rms = "+np.str(rms[i]) plt.title(ptitle) plt.xlabel("Wavelength [$\AA$]") plt.ylabel("Flux [counts]") plt.legend(frameon=True, loc=2, ncol=5) plt.minorticks_on() for i in range(len(el_list)): plt.axvline(x=el_list[i], color="k", linestyle="--", alpha=0.5) for i in range(number_sl): if sl_fnl[i] == 1: plt.axvline( x=sl_center[i], color="brown", linestyle="-", alpha=1 ) else: plt.axvline( x=sl_center[i], color="y", linestyle="--", alpha=0.6 ) for i in range(len(dsky2) - 1): plt.axvline(x=dsky2[i], color="orange", linestyle="--", alpha=0.6) # plt.show() # plt.close() offset = np.nanmedian( np.array(object_sl_gaussian_center) - np.array(sl_gauss_center) ) if verbose: # reference_sl = 1 # Position in the file! # sl_ref_ratio = sl_gaussian_flux/sl_gaussian_flux[reference_sl] # print "\n n line fsky fspec fspec/fsky l_obj-l_sky fsky/6363.4 sigma_sky sigma_fspec" # #print "\n n c_object c_sky c_obj-c_sky" # for i in range(number_sl): # if skip_sl_fit[i] == False: print "{:2} {:6.1f} {:8.2f} {:8.2f} {:7.4f} {:5.2f} {:6.3f} {:6.3f} {:6.3f}" .format(i+1,sl_center[i],sl_gaussian_flux[i],object_sl_gaussian_flux[i],ratio_object_sky_sl_gaussian[i],object_sl_gaussian_center[i]-sl_gauss_center[i],sl_ref_ratio[i],sl_gaussian_sigma[i],object_sl_gaussian_sigma[i]) # #if skip_sl_fit[i] == False: print "{:2} {:9.3f} {:9.3f} {:9.3f}".format(i+1, object_sl_gaussian_center[i], sl_gauss_center[i], dif_center_obj_sky[i]) # print("\n> Median center offset between OBJ and SKY : {} A\n> Median gauss for the OBJECT {} A".format(offset, np.nanmedian(object_sl_gaussian_sigma))) print("> Median flux OBJECT / SKY = {}".format(np.nanmedian(ratio_object_sky_sl_gaussian))) self.wavelength_offset_per_fibre.append(offset) # plt.plot(object_sl_gaussian_center, ratio_object_sky_sl_gaussian, "r+") if auto_scale_sky: if verbose: print("\n> As requested, using this value to scale sky spectrum before substraction... ") auto_scale = np.nanmedian(ratio_object_sky_sl_gaussian) self.sky_auto_scale.append(np.nanmedian(ratio_object_sky_sl_gaussian)) # self.sky_emission = auto_scale * self.sky_emission else: auto_scale = 1.0 self.sky_auto_scale.append(1.0) if rebin: if verbose: print("\n> Rebinning the spectrum of fibre {} to match sky spectrum...".format(fibre)) f = object_sl_gaussian_fitted f_new = rebin_spec_shift(w, f, offset) else: f_new = object_sl_gaussian_fitted self.intensity_corrected[fibre] = ( f_new - auto_scale * sky_sl_gaussian_fitted ) # check offset center wavelength # good_sl_center=[] # good_sl_center_dif=[] # plt.figure(figsize=(14, 4)) # for i in range(number_sl): # if skip_sl_fit[i] == False: # plt.plot(sl_center[i],dif_center_obj_sky[i],"g+", alpha=0.7, label="Object") # good_sl_center.append(sl_center[i]) # good_sl_center_dif.append(dif_center_obj_sky[i]) # # a1x,a0x = np.polyfit(good_sl_center, good_sl_center_dif, 1) # fx = a0x + a1x*w # #print a0x, a1x # offset = np.nanmedian(good_sl_center_dif) # print "median =",offset # plt.plot(w,fx,"b", alpha=0.7, label="Fit") # plt.axhline(y=offset, color='r', linestyle='--') # plt.xlim(6100,9300) # #plt.ylim(ymin,ymax) # ptitle = "Fibre "+np.str(fibre)#+" with rms = "+np.str(rms[i]) # plt.title(ptitle) # plt.xlabel("Wavelength [$\AA$]") # plt.ylabel("c_obj - c_sky") # #plt.legend(frameon=True, loc=2, ncol=4) # plt.minorticks_on() # plt.show() # plt.close() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def do_extinction_curve( self, observatory_file=pth.join(DATA_PATH, "ssoextinct.dat"), plot=True ): """ Parameters ---------- observatory_file plot Returns ------- """ print("\n> Computing extinction at given airmass...") # Read data data_observatory = np.loadtxt(observatory_file, unpack=True) extinction_curve_wavelengths = data_observatory[0] extinction_curve = data_observatory[1] extinction_corrected_airmass = 10 ** (0.4 * self.airmass * extinction_curve) # Make fit tck = interpolate.splrep( extinction_curve_wavelengths, extinction_corrected_airmass, s=0 ) self.extinction_correction = interpolate.splev(self.wavelength, tck, der=0) # Plot if plot: plt.figure(figsize=(10, 5)) plt.plot(extinction_curve_wavelengths, extinction_corrected_airmass, "+") plt.xlim(np.min(self.wavelength), np.max(self.wavelength)) cinco_por_ciento = 0.05 * ( np.max(self.extinction_correction) - np.min(self.extinction_correction) ) plt.ylim( np.min(self.extinction_correction) - cinco_por_ciento, np.max(self.extinction_correction) + cinco_por_ciento, ) plt.plot(self.wavelength, self.extinction_correction, "g") plt.minorticks_on() plt.title("Correction for extinction using airmass = {}".format(self.airmass)) plt.ylabel("Flux correction") plt.xlabel("Wavelength [$\AA$]") # plt.show() # plt.close() # Correct for extinction at given airmass print(" Airmass = {}".format(self.airmass)) print(" Observatory file with extinction curve : {}".format(observatory_file)) for i in range(self.n_spectra): self.intensity_corrected[i, :] = ( self.intensity_corrected[i, :] * self.extinction_correction ) print(" Intensities corrected for extinction stored in self.intensity_corrected !") # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def find_sky_emission( self, intensidad=[0, 0], plot=True, n_sky=200, sky_fibres=[1000], sky_wave_min=0, sky_wave_max=0, norm=colors.LogNorm(), ): """ Parameters ---------- intensidad plot n_sky sky_fibres sky_wave_min sky_wave_max norm Returns ------- """ if sky_wave_min == 0: sky_wave_min = self.valid_wave_min if sky_wave_max == 0: sky_wave_max = self.valid_wave_max if np.nanmedian(intensidad) == 0: intensidad = self.intensity_corrected ic = 1 else: ic = 0 if sky_fibres[0] == 1000: # As it was original # sorted_by_flux = np.argsort(flux_ratio) ORIGINAL till 21 Jan 2019 # NEW 21 Jan 2019: Assuming cleaning of cosmics and CCD defects, we just use the spaxels with the LOWEST INTEGRATED VALUES self.compute_integrated_fibre( valid_wave_min=sky_wave_min, valid_wave_max=sky_wave_max, plot=False ) sorted_by_flux = np.argsort( self.integrated_fibre ) # (self.integrated_fibre) print("\n> Identifying sky spaxels using the lowest integrated values in the [ {} , {}] range ...".format(sky_wave_min, sky_wave_max)) # if plot: # # print "\n Plotting fluxes and flux ratio: " # plt.figure(figsize=(10, 4)) # plt.plot(flux_ratio[sorted_by_flux], 'r-', label='flux ratio') # plt.plot(flux_sky[sorted_by_flux], 'c-', label='flux sky') # plt.plot(flux_object[sorted_by_flux], 'k-', label='flux object') # plt.axvline(x=n_sky) # plt.xlabel("Spaxel") # plt.ylabel("Flux") # plt.yscale('log') # plt.legend(frameon=False, loc=4) # plt.show() # Angel routine: just take n lowest spaxels! optimal_n = n_sky print(" We use the lowest {} fibres for getting sky. Their positions are:".format(optimal_n)) # Compute sky spectrum and plot it self.sky_fibres = sorted_by_flux[:optimal_n] self.sky_emission = np.nanmedian( intensidad[sorted_by_flux[:optimal_n]], axis=0 ) print(" List of fibres used for sky saved in self.sky_fibres") else: # We provide a list with sky positions print(" We use the list provided to get the sky spectrum") print(" sky_fibres = {}".format(sky_fibres)) self.sky_fibres = np.array(sky_fibres) self.sky_emission = np.nanmedian(intensidad[self.sky_fibres], axis=0) if plot: self.RSS_map( self.integrated_fibre, None, self.sky_fibres, title=" - Sky Spaxels" ) # flux_ratio # print " Combined sky spectrum:" plt.figure(figsize=(10, 4)) plt.plot(self.wavelength, self.sky_emission, "c-", label="sky") plt.yscale("log") plt.ylabel("FLux") plt.xlabel("Wavelength [$\AA$]") plt.xlim(self.wavelength[0] - 10, self.wavelength[-1] + 10) plt.axvline(x=self.valid_wave_min, color="k", linestyle="--") plt.axvline(x=self.valid_wave_max, color="k", linestyle="--") plt.ylim([np.nanmin(intensidad), np.nanmax(intensidad)]) plt.minorticks_on() plt.title("{} - Combined Sky Spectrum".format(self.description)) plt.legend(frameon=False) # plt.show() # plt.close() # Substract sky in all intensities self.intensity_sky_corrected = np.zeros_like(self.intensity) for i in range(self.n_spectra): if ic == 1: self.intensity_corrected[i, :] = ( self.intensity_corrected[i, :] - self.sky_emission ) if ic == 0: self.intensity_sky_corrected[i, :] = ( self.intensity_corrected[i, :] - self.sky_emission ) last_sky_fibre = self.sky_fibres[-1] # Plot median value of fibre vs. fibre if plot: median_sky_corrected = np.zeros(self.n_spectra) for i in range(self.n_spectra): if ic == 1: median_sky_corrected[i] = np.nanmedian( self.intensity_corrected[i, :], axis=0 ) if ic == 0: median_sky_corrected[i] = np.nanmedian( self.intensity_sky_corrected[i, :], axis=0 ) plt.figure(figsize=(10, 4)) plt.plot(median_sky_corrected) plt.plot( [0, 1000], [ median_sky_corrected[last_sky_fibre], median_sky_corrected[last_sky_fibre], ], "r", ) plt.minorticks_on() plt.ylabel("Median Flux") plt.xlabel("Fibre") plt.yscale("log") plt.ylim([np.nanmin(median_sky_corrected), np.nanmax(median_sky_corrected)]) plt.title(self.description) plt.legend(frameon=False) # plt.show() # plt.close() print(" Sky spectrum obtained and stored in self.sky_emission !! ") print(" Intensities corrected for sky emission and stored in self.intensity_corrected !") # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def find_relative_throughput( self, ymin=10000, ymax=200000, # nskyflat=False, kernel_sky_spectrum=5, wave_min_scale=0, wave_max_scale=0, plot=True, ): """ Determine the relative transmission of each spectrum using a skyflat. Parameters ---------- ymin ymax kernel_sky_spectrum wave_min_scale wave_max_scale plot Returns ------- """ # These are for the normalized flat: # fit_skyflat_degree=0, step=50, wave_min_flat=0, wave_max_flat=0): print("\n> Using this skyflat to find relative throughput (a scale per fibre)...") # Check grating to chose wavelength range to get median values if wave_min_scale == 0 and wave_max_scale == 0: if self.grating == "1000R": wave_min_scale = 6600.0 wave_max_scale = 6800.0 print(" For 1000R, we use the median value in the [6600, 6800] range.") if self.grating == "1500V": wave_min_scale = 5100.0 wave_max_scale = 5300.0 print(" For 1500V, we use the median value in the [5100, 5300] range.") if self.grating == "580V": wave_min_scale = 4700.0 wave_max_scale = 4800.0 print(" For 580V, we use the median value in the [4700, 4800] range.") if self.grating == "385R": wave_min_scale = 6600.0 wave_max_scale = 6800.0 print(" For 385R, we use the median value in the [6600, 6800] range.") # print(" For {}, we use the median value in the [{}, {}] range.".format( # self.grating, wave_min_scale, wave_max_scale)) else: if wave_min_scale == 0: wave_min_scale = self.wavelength[0] if wave_max_scale == 0: wave_max_scale = self.wavelength[-1] print(" As given by the user, we use the median value in the [{} , {}] range.".format(wave_min_scale, wave_max_scale)) median_region = np.zeros(self.n_spectra) for i in range(self.n_spectra): region = np.where( (self.wavelength > wave_min_scale) & (self.wavelength < wave_max_scale) ) median_region[i] = np.nanmedian(self.intensity[i, region]) median_value_skyflat = np.nanmedian(median_region) self.relative_throughput = median_region/median_value_skyflat print(" Median value of skyflat in the [ {} , {}] range = {}".format(wave_min_scale, wave_max_scale, median_value_skyflat)) print(" Individual fibre corrections: min = {} max = {}".format(np.nanmin(self.relative_throughput), np.nanmax(self.relative_throughput))) if plot: plt.figure(figsize=(10, 4)) x = list(range(self.n_spectra)) plt.plot(x, self.relative_throughput) # plt.ylim(0.5,4) plt.minorticks_on() plt.xlabel("Fibre") plt.ylabel("Throughput using scale") plt.title("Throughput correction using scale") # plt.show() # plt.close() # print "\n Plotting spectra WITHOUT considering throughput correction..." plt.figure(figsize=(10, 4)) for i in range(self.n_spectra): plt.plot(self.wavelength, self.intensity[i, ]) plt.xlabel("Wavelength [$\AA$]") plt.title("Spectra WITHOUT considering any throughput correction") plt.xlim(self.wavelength[0] - 10, self.wavelength[-1] + 10) plt.ylim(ymin, ymax) plt.minorticks_on() # plt.show() # plt.close() # print " Plotting spectra CONSIDERING throughput correction..." plt.figure(figsize=(10, 4)) for i in range(self.n_spectra): # self.intensity_corrected[i,] = self.intensity[i,] * self.relative_throughput[i] plot_this = self.intensity[i, ]/self.relative_throughput[i] plt.plot(self.wavelength, plot_this) plt.ylim(ymin, ymax) plt.minorticks_on() plt.xlabel("Wavelength [$\AA$]") plt.title("Spectra CONSIDERING throughput correction (scale)") plt.xlim(self.wavelength[0] - 10, self.wavelength[-1] + 10) plt.axvline(x=wave_min_scale, color="k", linestyle="--") plt.axvline(x=wave_max_scale, color="k", linestyle="--") # plt.show() # plt.close() print("\n> Using median value of skyflat considering a median filter of {} ...".format(kernel_sky_spectrum)) # LUKE median_sky_spectrum = np.nanmedian(self.intensity, axis=0) self.response_sky_spectrum = np.zeros_like(self.intensity) rms = np.zeros(self.n_spectra) plot_fibres = [100, 500, 501, 900] pf = 0 for i in range(self.n_spectra): self.response_sky_spectrum[i] = ( (self.intensity[i]/self.relative_throughput[i])/median_sky_spectrum ) filter_response_sky_spectrum = sig.medfilt( self.response_sky_spectrum[i], kernel_size=kernel_sky_spectrum ) rms[i] = np.nansum( np.abs(self.response_sky_spectrum[i] - filter_response_sky_spectrum) )/np.nansum(self.response_sky_spectrum[i]) if plot: if i == plot_fibres[pf]: plt.figure(figsize=(10, 4)) plt.plot( self.wavelength, self.response_sky_spectrum[i], alpha=0.3, label="Response Sky", ) plt.plot( self.wavelength, filter_response_sky_spectrum, alpha=0.7, linestyle="--", label="Filtered Response Sky", ) plt.plot( self.wavelength, self.response_sky_spectrum[i]/filter_response_sky_spectrum, alpha=1, label="Normalized Skyflat", ) plt.xlim(self.wavelength[0] - 50, self.wavelength[-1] + 50) plt.ylim(0.95, 1.05) ptitle = "Fibre {} with rms = {}".format(i, rms[i]) plt.title(ptitle) plt.xlabel("Wavelength [$\AA$]") plt.legend(frameon=False, loc=3, ncol=1) # plt.show() # plt.close() if pf < len(plot_fibres) - 1: pf = pf + 1 print(" median rms = {} min rms = {} max rms = {}".format(np.nanmedian(rms), np.nanmin(rms),np.nanmax(rms))) # if plot: # plt.figure(figsize=(10, 4)) # for i in range(self.n_spectra): # #plt.plot(self.wavelength,self.intensity[i,]/median_sky_spectrum) # plot_this = self.intensity[i,] / self.relative_throughput[i] /median_sky_spectrum # plt.plot(self.wavelength, plot_this) # plt.xlabel("Wavelength [$\AA$]") # plt.title("Spectra CONSIDERING throughput correction (scale) / median sky spectrum") # plt.xlim(self.wavelength[0]-10,self.wavelength[-1]+10) # plt.ylim(0.7,1.3) # plt.minorticks_on() # plt.show() # plt.close() # # plt.plot(self.wavelength, median_sky_spectrum, color='r',alpha=0.7) # plt.plot(self.wavelength, filter_median_sky_spectrum, color='blue',alpha=0.7) # plt.show() # plt.close() # # plt.plot(self.wavelength, median_sky_spectrum/filter_median_sky_spectrum, color='r',alpha=0.7) # plt.show() # plt.close() # for i in range(2): # response_sky_spectrum_ = self.intensity[500+i,] / self.relative_throughput[500+i] /median_sky_spectrum # filter_response_sky_spectrum = sig.medfilt(response_sky_spectrum_,kernel_size=kernel_sky_spectrum) # rms=np.nansum(np.abs(response_sky_spectrum_ - filter_response_sky_spectrum))/np.nansum(response_sky_spectrum_) # for i in range(5): # filter_response_sky_spectrum_ = (self.intensity[500+i,] / self.relative_throughput[500+i] ) / median_sky_spectrum # filter_response_sky_spectrum = sig.medfilt(filter_response_sky_spectrum_,kernel_size=kernel_sky_spectrum) # # plt.plot(self.wavelength, filter_response_sky_spectrum,alpha=0.7) # plt.ylim(0.95,1.05) # plt.show() # plt.close() print("\n> Relative throughput using skyflat scaled stored in self.relative_throughput !!") # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def get_telluric_correction( self, n_fibres=10, correct_from=6850.0, correct_to=10000.0, apply_tc=False, step=10, combined_cube=False, weight_fit_median=0.5, exclude_wlm=[ [6450, 6700], [6850, 7050], [7130, 7380], ], # This is range for 1000R wave_min=0, wave_max=0, plot=True, fig_size=12, verbose=False, ): """ # TODO BLAKE: always use false, use plots to make sure it's good. prob just save as a different file. Get telluric correction using a spectrophotometric star Parameters ---------- n_fibres: integer number of fibers to add for obtaining spectrum correct_from : float wavelength from which telluric correction is applied (default = 6850) apply_tc : boolean (default = False) apply telluric correction to data exclude_wlm=[[6450,6700],[6850,7050], [7130,7380]]: Wavelength ranges not considering for normalising stellar continuum Example ---------- telluric_correction_star1 = star1r.get_telluric_correction(n_fibres=15) """ print("\n> Obtaining telluric correction using spectrophotometric star...") if combined_cube: wlm = self.combined_cube.wavelength else: wlm = self.wavelength if wave_min == 0: wave_min = wlm[0] if wave_max == 0: wave_max = wlm[-1] if combined_cube: if self.combined_cube.seeing == 0: self.combined_cube.half_light_spectrum( 5, plot=plot, min_wave=wave_min, max_wave=wave_max ) estrella = self.combined_cube.integrated_star_flux else: integrated_intensity_sorted = np.argsort(self.integrated_fibre) intensidad = self.intensity_corrected region = [] for fibre in range(n_fibres): region.append(integrated_intensity_sorted[-1 - fibre]) estrella = np.nansum(intensidad[region], axis=0) smooth_med_star = smooth_spectrum( wlm, estrella, wave_min=wave_min, wave_max=wave_max, step=step, weight_fit_median=weight_fit_median, exclude_wlm=exclude_wlm, plot=plot, verbose=verbose, ) telluric_correction = np.ones(len(wlm)) for l in range(len(wlm)): if wlm[l] > correct_from and wlm[l] < correct_to: telluric_correction[l] = smooth_med_star[l]/estrella[l] # TODO: should be float, check when have star data if plot: plt.figure(figsize=(fig_size, fig_size / 2.5)) if combined_cube: print(" Telluric correction for this star ({}) :".format(self.combined_cube.object)) plt.plot(wlm, estrella, color="b", alpha=0.3) plt.plot(wlm, estrella * telluric_correction, color="g", alpha=0.5) plt.ylim(np.nanmin(estrella), np.nanmax(estrella)) else: print(" Example of telluric correction using fibres {} and {} :".format(region[0], region[1])) plt.plot(wlm, intensidad[region[0]], color="b", alpha=0.3) plt.plot( wlm, intensidad[region[0]] * telluric_correction, color="g", alpha=0.5, ) plt.plot(wlm, intensidad[region[1]], color="b", alpha=0.3) plt.plot( wlm, intensidad[region[1]] * telluric_correction, color="g", alpha=0.5, ) plt.ylim( np.nanmin(intensidad[region[1]]), np.nanmax(intensidad[region[0]]) ) # CHECK THIS AUTOMATICALLY plt.axvline(x=wave_min, color="k", linestyle="--") plt.axvline(x=wave_max, color="k", linestyle="--") plt.xlim(wlm[0] - 10, wlm[-1] + 10) plt.xlabel("Wavelength [$\AA$]") if exclude_wlm[0][0] != 0: for i in range(len(exclude_wlm)): plt.axvspan( exclude_wlm[i][0], exclude_wlm[i][1], color="r", alpha=0.1 ) plt.minorticks_on() # plt.show() # plt.close() if apply_tc: # Check this print(" Applying telluric correction to this star...") if combined_cube: self.combined_cube.integrated_star_flux = ( self.combined_cube.integrated_star_flux * telluric_correction ) for i in range(self.combined_cube.n_rows): for j in range(self.combined_cube.n_cols): self.combined_cube.data[:, i, j] = ( self.combined_cube.data[:, i, j] * telluric_correction ) else: for i in range(self.n_spectra): self.intensity_corrected[i, :] = ( self.intensity_corrected[i, :] * telluric_correction ) return telluric_correction # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def plot_spectrum(self, spectrum_number, sky=True, xmin=0, xmax=0, ymax=0, ymin=0): """ Plot spectrum of a particular spaxel. Parameters ---------- spectrum_number: spaxel to show spectrum. sky: if True substracts the sky Example ------- >>> rss1.plot_spectrum(550, sky=True) """ if sky: spectrum = self.intensity_corrected[spectrum_number] else: spectrum = self.intensity_corrected[spectrum_number] + self.sky_emission plt.plot(self.wavelength, spectrum) # error = 3*np.sqrt(self.variance[spectrum_number]) # plt.fill_between(self.wavelength, spectrum-error, spectrum+error, alpha=.1) if xmin != 0 or xmax != 0 or ymax != 0 or ymin != 0: if xmin == 0: xmin = self.wavelength[0] if xmax == 0: xmax = self.wavelength[-1] if ymin == 0: ymin = np.nanmin(spectrum) if ymax == 0: ymax = np.nanmax(spectrum) plt.minorticks_on() plt.xlabel("Wavelength [$\AA$]") plt.ylabel("Relative Flux") plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) # plt.show() # plt.close() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def plot_spectra( self, list_spectra="all", wavelength_range=[0], xmin="", xmax="", ymax=1000, ymin=-100, fig_size=10, save_file="", sky=True, ): """ Plot spectrum of a list pf spaxels. Parameters ---------- list_spectra: spaxels to show spectrum. Default is all. save_file: (Optional) Save plot in file "file.extension" fig_size: Size of the figure (in x-axis), default: fig_size=10 Example ------- >>> rss1.plot_spectra([1200,1300]) """ plt.figure(figsize=(fig_size, fig_size / 2.5)) if list_spectra == "all": list_spectra = list(range(self.n_spectra)) if len(wavelength_range) == 2: plt.xlim(wavelength_range[0], wavelength_range[1]) if xmin == "": xmin = np.nanmin(self.wavelength) if xmax == "": xmax = np.nanmax(self.wavelength) # title = "Spectrum of spaxel {} in {}".format(spectrum_number, self.description) # plt.title(title) plt.minorticks_on() plt.xlabel("Wavelength [$\AA$]") plt.ylabel("Relative Flux") plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) for i in list_spectra: self.plot_spectrum(i, sky) if save_file == "": #plt.show() pass else: plt.savefig(save_file) plt.close() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def plot_combined_spectrum( self, list_spectra="all", sky=True, median=False, xmin="", xmax="", ymax="", ymin="", fig_size=10, save_file="", plot=True, ): """ Plot combined spectrum of a list and return the combined spectrum. Parameters ---------- list_spectra: spaxels to show combined spectrum. Default is all. sky: if True substracts the sky Example ------- >>> rss1.plot_spectrum(550, sky=True) """ if list_spectra == "all": list_spectra = list(range(self.n_spectra)) spectrum = np.zeros_like(self.intensity_corrected[list_spectra[0]]) value_list = [] # Note: spectrum of fibre is located in position fibre-1, e.g., spectrum of fibre 1 -> intensity_corrected[0] if sky: for fibre in list_spectra: value_list.append(self.intensity_corrected[fibre - 1]) else: for fibre in list_spectra: value_list.append( self.intensity_corrected[fibre - 1] + self.sky_emission ) if median: spectrum = np.nanmedian(value_list, axis=0) else: spectrum = np.nansum(value_list, axis=0) if plot: plt.figure(figsize=(fig_size, fig_size / 2.5)) if xmin == "": xmin = np.nanmin(self.wavelength) if xmax == "": xmax = np.nanmax(self.wavelength) if ymin == "": ymin = np.nanmin(spectrum) if ymax == "": ymax = np.nanmax(spectrum) plt.plot(self.wavelength, spectrum) if len(list_spectra) == list_spectra[-1] - list_spectra[0] + 1: title = "{} - Combined spectrum in range [{},{}]".format( self.description, list_spectra[0], list_spectra[-1] ) else: title = "Combined spectrum using requested fibres" plt.title(title) plt.minorticks_on() plt.xlabel("Wavelength [$\AA$]") plt.ylabel("Relative Flux") plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) if save_file == "": #plt.show() pass else: plt.savefig(save_file) plt.close() return spectrum # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def flux_between(self, lambda_min, lambda_max, list_spectra=[]): """ Parameters ---------- lambda_min lambda_max list_spectra Returns ------- """ index_min = np.searchsorted(self.wavelength, lambda_min) index_max = np.searchsorted(self.wavelength, lambda_max) + 1 if len(list_spectra) == 0: list_spectra = list(range(self.n_spectra)) n_spectra = len(list_spectra) fluxes = np.empty(n_spectra) variance = np.empty(n_spectra) for i in range(n_spectra): fluxes[i] = np.nanmean(self.intensity[list_spectra[i], index_min:index_max]) variance[i] = np.nanmean( self.variance[list_spectra[i], index_min:index_max] ) return fluxes * (lambda_max - lambda_min), variance * (lambda_max - lambda_min) # WARNING: Are we overestimating errors? # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def median_between(self, lambda_min, lambda_max, list_spectra=[]): """ Parameters ---------- lambda_min lambda_max list_spectra Returns ------- """ index_min = np.searchsorted(self.wavelength, lambda_min) index_max = np.searchsorted(self.wavelength, lambda_max) + 1 if len(list_spectra) == 0: list_spectra = list(range(self.n_spectra)) n_spectra = len(list_spectra) medians = np.empty(n_spectra) for i in range(n_spectra): medians[i] = np.nanmedian( self.intensity[list_spectra[i], index_min:index_max] ) return medians # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def line_flux( self, left_min, left_max, line_min, line_max, right_min, right_max, list_spectra=[], ): """ Parameters ---------- left_min left_max line_min line_max right_min right_max list_spectra Returns ------- """ # TODO: can remove old_div once this function is understood, currently not called in whole module. if len(list_spectra) == 0: list_spectra = list(range(self.n_spectra)) line, var_line = self.flux_between(line_min, line_max, list_spectra) left, var_left = old_div(self.flux_between(left_min, left_max, list_spectra), ( left_max - left_min )) right, var_right = old_div(self.flux_between(right_min, right_max, list_spectra), ( left_max - left_min )) wavelength_left = old_div((left_min + left_max), 2) wavelength_line = old_div((line_min + line_max), 2) wavelength_right = old_div((right_min + right_max), 2) continuum = left + old_div((right - left) * (wavelength_line - wavelength_left), ( wavelength_right - wavelength_left )) var_continuum = old_div((var_left + var_right), 2) return ( line - continuum * (line_max - line_min), var_line + var_continuum * (line_max - line_min), ) # WARNING: Are we overestimating errors? # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def RSS_map( self, variable, norm=colors.LogNorm(), list_spectra=[], title=" - RSS map", color_bar_text="Integrated Flux [Arbitrary units]", ): """ Plot map showing the offsets, coloured by variable. Parameters ---------- variable norm list_spectra title color_bar_text Returns ------- """ if len(list_spectra) == 0: list_spectra = list(range(self.n_spectra)) plt.figure(figsize=(10, 10)) plt.scatter( self.offset_RA_arcsec[list_spectra], self.offset_DEC_arcsec[list_spectra], c=variable[list_spectra], cmap=fuego_color_map, norm=norm, s=260, marker="h", ) plt.title(self.description + title) plt.xlim( np.nanmin(self.offset_RA_arcsec) - 0.7, np.nanmax(self.offset_RA_arcsec) + 0.7, ) plt.ylim( np.nanmin(self.offset_DEC_arcsec) - 0.7, np.nanmax(self.offset_DEC_arcsec) + 0.7, ) plt.xlabel("$\Delta$ RA [arcsec]") plt.ylabel("$\Delta$ DEC [arcsec]") plt.minorticks_on() plt.grid(which="both") plt.gca().invert_xaxis() cbar = plt.colorbar() plt.clim(np.nanmin(variable[list_spectra]), np.nanmax(variable[list_spectra])) cbar.set_label(color_bar_text, rotation=90, labelpad=40) cbar.ax.tick_params() # plt.show() # plt.close() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def RSS_image( self, image=[0], norm=colors.Normalize(), cmap="seismic_r", clow=0, chigh=0, labelpad=10, title=" - RSS image", color_bar_text="Integrated Flux [Arbitrary units]", fig_size=13.5, ): """ Plot RSS image coloured by variable. cmap = "binary_r" nice greyscale Parameters ---------- image norm cmap clow chigh labelpad title color_bar_text fig_size Returns ------- """ if np.nanmedian(image) == 0: image = self.intensity_corrected if clow == 0: clow = np.nanpercentile(image, 5) if chigh == 0: chigh = np.nanpercentile(image, 95) if cmap == "seismic_r": max_abs = np.nanmax([np.abs(clow), np.abs(chigh)]) clow = -max_abs chigh = max_abs plt.figure(figsize=(fig_size, fig_size / 2.5)) plt.imshow(image, norm=norm, cmap=cmap, clim=(clow, chigh)) plt.title(self.description + title) plt.minorticks_on() plt.gca().invert_yaxis() # plt.colorbar() cbar = plt.colorbar() cbar.set_label(color_bar_text, rotation=90, labelpad=labelpad) cbar.ax.tick_params() # plt.show() # plt.close() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def plot_corrected_vs_uncorrected_spectrum(self, high_fibres=10, fig_size=12): """ Parameters ---------- high_fibres fig_size Returns ------- """ integrated_intensity_sorted = np.argsort(self.integrated_fibre) region = [] for fibre_ in range(high_fibres): region.append(integrated_intensity_sorted[-1 - fibre_]) plt.figure(figsize=(fig_size, fig_size / 2.5)) I = np.nansum(self.intensity[region], axis=0) plt.plot(self.wavelength, I, "r-", label="Uncorrected", alpha=0.3) Ic = np.nansum(self.intensity_corrected[region], axis=0) I_ymin = np.nanmin([np.nanmin(I), np.nanmin(Ic)]) I_ymax = np.nanmax([np.nanmax(I), np.nanmax(Ic)]) I_rango = I_ymax - I_ymin plt.plot(self.wavelength, Ic, "g-", label="Corrected", alpha=0.4) plt.ylabel("Flux") plt.xlabel("Wavelength [$\AA$]") plt.minorticks_on() plt.xlim(self.wavelength[0] - 10, self.wavelength[-1] + 10) plt.axvline(x=self.valid_wave_min, color="k", linestyle="--") plt.axvline(x=self.valid_wave_max, color="k", linestyle="--") plt.ylim([I_ymin - (I_rango/10), I_ymax + (I_rango/10)]) plt.title( self.object + " - Combined spectrum - " + "{}".format(high_fibres) + " fibres with highest intensity" ) plt.legend(frameon=False, loc=4, ncol=2) # plt.show() # plt.close() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Idea: take a RSS dominated by skylines. Read it (only throughput correction). For each fibre, fit Gaussians to ~10 skylines. # Compare with REST wavelengths. Get a median value per fibre. Perform a second-order fit to all median values. # Correct for that using a reference fibre (1). Save results to be applied to the rest of files of the night (assuming same configuration). def fix_2dfdr_wavelengths( self, sol=[0, 0, 0], fibre=0, maxima_sigma=2.5, maxima_offset=1.5, xmin=7740, xmax=7770, ymin=0, ymax=1000, plot=True, verbose=True, warnings=True, ): """ Parameters ---------- sol fibre maxima_sigma maxima_offset xmin xmax ymin ymax plot verbose warnings Returns ------- """ print("\n> Fixing 2dfdr wavelengths using skylines.") w = self.wavelength if sol[0] == 0: # Solutions are not given # Read file with sky emission line sky_lines_file = "sky_lines_rest.dat" ( sl_center, sl_name, sl_fnl, sl_lowlow, sl_lowhigh, sl_highlow, sl_highhigh, sl_lmin, sl_lmax, ) = read_table( sky_lines_file, ["f", "s", "f", "f", "f", "f", "f", "f", "f"] ) number_sl = len(sl_center) # Fitting Gaussians to skylines... say_status = 0 self.wavelength_offset_per_fibre = [] wave_median_offset = [] print("\n> Performing a Gaussian fit to selected, bright skylines... (this will FAIL if RSS is not corrected for CCD defects...)") if fibre != 0: f_i = fibre f_f = fibre + 1 print(" Checking fibre {} (only this fibre is corrected, use fibre = 0 for all)...".format(fibre)) verbose = True warnings = True else: f_i = 0 f_f = self.n_spectra verbose = False for fibre in range(f_i, f_f): # (self.n_spectra): spectrum = self.intensity_corrected[fibre] if fibre == say_status: print(" Checking fibre {:4} ... ({:6.2f} % completed) ...".format( fibre, fibre * 100.0 / self.n_spectra )) say_status = say_status + 20 # Gaussian fits to the sky spectrum sl_gaussian_flux = [] sl_gaussian_sigma = [] sl_gauss_center = [] sl_offset = [] sl_offset_good = [] if verbose: print("\n> Performing Gaussian fitting to bright sky lines in all fibres of rss file...") for i in range(number_sl): if sl_fnl[i] == 0: plot_fit = False else: plot_fit = True resultado = fluxes( w, spectrum, sl_center[i], lowlow=sl_lowlow[i], lowhigh=sl_lowhigh[i], highlow=sl_highlow[i], highhigh=sl_highhigh[i], lmin=sl_lmin[i], lmax=sl_lmax[i], fmin=0, fmax=0, broad=2.1 * 2.355, plot=plot_fit, verbose=False, plot_sus=False, fcal=False, warnings=warnings, ) # Broad is FWHM for Gaussian sigm a= 1, sl_gaussian_flux.append(resultado[3]) sl_gauss_center.append(resultado[1]) sl_gaussian_sigma.append(resultado[5] / 2.355) sl_offset.append(sl_gauss_center[i] - sl_center[i]) if ( sl_gaussian_flux[i] < 0 or np.abs(sl_center[i] - sl_gauss_center[i]) > maxima_offset or sl_gaussian_sigma[i] > maxima_sigma ): if verbose: print(" Bad fitting for {} ... ignoring this fit...".format(sl_center[i])) else: sl_offset_good.append(sl_offset[i]) if verbose: print(" Fitted wavelength for sky line {:8.3f}: center = {:8.3f} sigma = {:6.3f} offset = {:7.3f} ".format( sl_center[i], sl_gauss_center[i], sl_gaussian_sigma[i], sl_offset[i], )) median_offset_fibre = np.nanmedian(sl_offset_good) wave_median_offset.append(median_offset_fibre) if verbose: print("\n> Median offset for fibre {:3} = {:7.3f}".format( fibre, median_offset_fibre )) # Second-order fit ... xfibre = list(range(0, self.n_spectra)) a2x, a1x, a0x = np.polyfit(xfibre, wave_median_offset, 2) print("\n> Fitting a second-order polynomy a0x + a1x * fibre + a2x * fibre**2:") else: print("\n> Solution to the second-order polynomy a0x + a1x * fibre + a2x * fibre**2 have been provided:") a0x = sol[0] a1x = sol[1] a2x = sol[2] xfibre = list(range(0, self.n_spectra)) print(" a0x = {} a1x = {} a2x = {}".format(a0x, a1x, a2x)) self.wavelength_parameters = [a0x, a1x, a2x] # Save solutions fx = a0x + a1x * np.array(xfibre) + a2x * np.array(xfibre) ** 2 if plot: plt.figure(figsize=(10, 4)) if sol[0] == 0: plt.plot(xfibre, wave_median_offset) pf = wave_median_offset else: pf = fx plt.plot(xfibre, fx, "r") plot_plot( xfibre, pf, ptitle="Second-order fit to individual offsets", xmin=-20, xmax=1000, xlabel="Fibre", ylabel="offset", ) # Applying results print("\n> Applying results to all fibres...") for fibre in xfibre: f = self.intensity_corrected[fibre] w_shift = fx[fibre] self.intensity_corrected[fibre] = rebin_spec_shift(w, f, w_shift) # Check results if plot: plt.figure(figsize=(10, 4)) for i in [0, 300, 600, 950]: plt.plot(w, self.intensity[i]) plot_plot( w, self.intensity[0], ptitle="Before corrections, fibres 0, 300, 600, 950", xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, ) plt.figure(figsize=(10, 4)) for i in [0, 300, 600, 950]: plt.plot(w, self.intensity_corrected[i]) plot_plot( w, self.intensity_corrected[0], ptitle="Checking wavelength corrections in fibres 0, 300, 600, 950", xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, ) print("\n> Small fixing of the 2dFdr wavelengths done!") return # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # KOALA_RSS CLASS # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- class KOALA_RSS(RSS): """ This class reads the FITS files returned by `2dfdr <https://aat.anu.edu.au/science/instruments/current/AAOmega/reduction>`_ and performs basic analysis tasks (see description under each method). Parameters ---------- filename : string FITS file returned by 2dfdr, containing the Raw Stacked Spectra. The code makes sure that it contains 1000 spectra with 2048 wavelengths each. Example ------- >>> pointing1 = KOALA_RSS('data/16jan20058red.fits') > Reading file "data/16jan20058red.fits" ... 2048 wavelength points between 6271.33984375 and 7435.43408203 1000 spaxels These numbers are the right ones for KOALA! DONE! """ # ----------------------------------------------------------------------------- def __init__( self, filename, save_rss_to_fits_file="", rss_clean=False, # TASK_KOALA_RSS apply_throughput=True, skyflat="", plot_skyflat=False, flat="", nskyflat=True, correct_ccd_defects=False, correct_high_cosmics=False, clip_high=100, step_ccd=50, remove_5578=False, plot_suspicious_fibres=False, fix_wavelengths=False, sol=[0, 0, 0], sky_method="self", n_sky=50, sky_fibres=[1000], # do_sky=True sky_spectrum=[0], sky_rss=[0], scale_sky_rss=0, scale_sky_1D=1.0, is_sky=False, win_sky=151, auto_scale_sky=False, correct_negative_sky=False, sky_wave_min=0, sky_wave_max=0, cut_sky=5.0, fmin=1, fmax=10, individual_sky_substraction=False, fibre_list=[100, 200, 300, 400, 500, 600, 700, 800, 900], do_extinction=True, telluric_correction=[0], id_el=False, high_fibres=10, brightest_line="Ha", cut=1.5, broad=1.0, plot_id_el=False, id_list=[0], brightest_line_wavelength=0, clean_sky_residuals=False, dclip=3.0, extra_w=1.3, step_csr=25, fibre=0, valid_wave_min=0, valid_wave_max=0, warnings=True, verbose=False, plot=True, norm=colors.LogNorm(), fig_size=12, ): """ Parameters ---------- filename save_rss_to_fits_file rss_clean apply_throughput skyflat plot_skyflat flat nskyflat correct_ccd_defects correct_high_cosmics clip_high step_ccd remove_5578 plot_suspicious_fibres fix_wavelengths sol sky_method n_sky sky_fibres sky_spectrum sky_rss scale_sky_rss scale_sky_1D is_sky win_sky auto_scale_sky correct_negative_sky sky_wave_min sky_wave_max cut_sky fmin fmax individual_sky_substraction fibre_list do_extinction telluric_correction id_el high_fibres brightest_line cut broad plot_id_el id_list brightest_line_wavelength clean_sky_residuals dclip extra_w step_csr fibre valid_wave_min valid_wave_max warnings verbose plot norm fig_size """ # Just read file if rss_clean = True if rss_clean: apply_throughput = False correct_ccd_defects = False fix_wavelengths = False sol = [0, 0, 0] sky_method = "none" do_extinction = False telluric_correction = [0] id_el = False clean_sky_residuals = False plot = False correct_negative_sky = False # Create RSS object super(KOALA_RSS, self).__init__() print("\n> Reading file", '"' + filename + '"', "...") RSS_fits_file = fits.open(filename) # Open file self.rss_list = [] # General info: self.object = RSS_fits_file[FitsExt.main].header["OBJECT"] self.description = self.object + " - " + filename self.RA_centre_deg = RSS_fits_file[FitsExt.fibres_ifu].header["CENRA"] * 180/np.pi self.DEC_centre_deg = RSS_fits_file[FitsExt.fibres_ifu].header["CENDEC"] * 180/np.pi self.exptime = RSS_fits_file[FitsExt.main].header["EXPOSED"] # WARNING: Something is probably wrong/inaccurate here! # Nominal offsets between pointings are totally wrong! # Read good/bad spaxels all_spaxels = list(range(len(RSS_fits_file[FitsExt.fibres_ifu].data))) quality_flag = [RSS_fits_file[FitsExt.fibres_ifu].data[i][FitsFibresIFUIndex.quality_flag] for i in all_spaxels] good_spaxels = [i for i in all_spaxels if quality_flag[i] == 1] bad_spaxels = [i for i in all_spaxels if quality_flag[i] == 0] # for i in range(1): # print i, RSS_fits_file[2] # # Create wavelength, intensity, and variance arrays only for good spaxels wcsKOALA = WCS(RSS_fits_file[FitsExt.main].header) # variance = RSS_fits_file[1].data[good_spaxels] index_wave = np.arange(RSS_fits_file[FitsExt.main].header["NAXIS1"]) wavelength = wcsKOALA.dropaxis(1).wcs_pix2world(index_wave, 0)[0] intensity = RSS_fits_file[FitsExt.main].data[good_spaxels] print("\n Number of spectra in this RSS = {}, number of good spectra = {} , number of bad spectra ={}".format( len(RSS_fits_file[FitsExt.main].data), len(good_spaxels), len(bad_spaxels))) print(" Bad fibres = {}".format(bad_spaxels)) # Read errors using RSS_fits_file[1] # self.header1 = RSS_fits_file[1].data # CHECK WHEN DOING ERRORS !!! # Read spaxel positions on sky using RSS_fits_file[2] self.header2_data = RSS_fits_file[FitsExt.fibres_ifu].data # CAREFUL !! header 2 has the info of BAD fibres, if we are reading from our created RSS files we have to do it in a different way... # print RSS_fits_file[2].data if len(bad_spaxels) == 0: offset_RA_arcsec_ = [] offset_DEC_arcsec_ = [] for i in range(len(good_spaxels)): offset_RA_arcsec_.append(self.header2_data[i][FitsFibresIFUIndex.ra_offset]) offset_DEC_arcsec_.append(self.header2_data[i][FitsFibresIFUIndex.dec_offset]) offset_RA_arcsec = np.array(offset_RA_arcsec_) offset_DEC_arcsec = np.array(offset_DEC_arcsec_) variance = np.zeros_like(intensity) # CHECK FOR ERRORS else: offset_RA_arcsec = np.array( [RSS_fits_file[FitsExt.fibres_ifu].data[i][FitsFibresIFUIndex.ra_offset] for i in good_spaxels] ) offset_DEC_arcsec = np.array( [RSS_fits_file[FitsExt.fibres_ifu].data[i][FitsFibresIFUIndex.dec_offset] for i in good_spaxels] ) self.ID = np.array( [RSS_fits_file[FitsExt.fibres_ifu].data[i][FitsFibresIFUIndex.spec_id] for i in good_spaxels] ) # These are the good fibres variance = RSS_fits_file[FitsExt.var].data[good_spaxels] # CHECK FOR ERRORS self.ZDSTART = RSS_fits_file[FitsExt.main].header["ZDSTART"] # Zenith distance (degrees?) self.ZDEND = RSS_fits_file[FitsExt.main].header["ZDEND"] # KOALA-specific stuff self.PA = RSS_fits_file[FitsExt.main].header["TEL_PA"] # Position angle? self.grating = RSS_fits_file[FitsExt.main].header["GRATID"] # Check RED / BLUE arm for AAOmega if RSS_fits_file[FitsExt.main].header["SPECTID"] == "RD": AAOmega_Arm = "RED" if RSS_fits_file[FitsExt.main].header["SPECTID"] == "BL": AAOmega_Arm = "BLUE" # For WCS self.CRVAL1_CDELT1_CRPIX1 = [] self.CRVAL1_CDELT1_CRPIX1.append(RSS_fits_file[FitsExt.main].header["CRVAL1"]) # see https://idlastro.gsfc.nasa.gov/ftp/pro/astrom/aaareadme.txt maybe? self.CRVAL1_CDELT1_CRPIX1.append(RSS_fits_file[FitsExt.main].header["CDELT1"]) self.CRVAL1_CDELT1_CRPIX1.append(RSS_fits_file[FitsExt.main].header["CRPIX1"]) # SET RSS # FROM HERE IT WAS self.set_data before ------------------------------------------ self.wavelength = wavelength self.n_wave = len(wavelength) # Check that dimensions match KOALA numbers if self.n_wave != 2048 and len(all_spaxels) != 1000: print("\n *** WARNING *** : These numbers are NOT the standard ones for KOALA") print("\n> Setting the data for this file:") if variance.shape != intensity.shape: print("\n* ERROR: * the intensity and variance matrices are {} and {} respectively\n".format(intensity.shape, variance.shape)) raise ValueError n_dim = len(intensity.shape) if n_dim == 2: self.intensity = intensity self.variance = variance elif n_dim == 1: self.intensity = intensity.reshape((1, self.n_wave)) self.variance = variance.reshape((1, self.n_wave)) else: print("\n* ERROR: * the intensity matrix supplied has {} dimensions\n".format(n_dim)) raise ValueError self.n_spectra = self.intensity.shape[0] self.n_wave = len(self.wavelength) print(" Found {} spectra with {} wavelengths".format( self.n_spectra, self.n_wave ), "between {:.2f} and {:.2f} Angstrom".format( self.wavelength[0], self.wavelength[-1] )) if self.intensity.shape[1] != self.n_wave: print("\n* ERROR: * spectra have {} wavelengths rather than {}".format(self.intensity.shape[1], self.n_wave)) raise ValueError if ( len(offset_RA_arcsec) != self.n_spectra or len(offset_DEC_arcsec) != self.n_spectra ): print("\n* ERROR: * offsets (RA, DEC) = ({},{}) rather than {}".format( len(self.offset_RA_arcsec), len(self.offset_DEC_arcsec), self.n_spectra ) ) raise ValueError else: self.offset_RA_arcsec = offset_RA_arcsec self.offset_DEC_arcsec = offset_DEC_arcsec # Check if NARROW (spaxel_size = 0.7 arcsec) # or WIDE (spaxel_size=1.25) field of view # (if offset_max - offset_min > 31 arcsec in both directions) if ( np.max(offset_RA_arcsec) - np.min(offset_RA_arcsec) > 31 or np.max(offset_DEC_arcsec) - np.min(offset_DEC_arcsec) > 31 ): self.spaxel_size = 1.25 field = "WIDE" else: self.spaxel_size = 0.7 field = "NARROW" # Get min and max for rss self.RA_min, self.RA_max, self.DEC_min, self.DEC_max = coord_range([self]) self.DEC_segment = ( self.DEC_max - self.DEC_min ) * 3600.0 # +1.25 for converting to total field of view self.RA_segment = (self.RA_max - self.RA_min) * 3600.0 # +1.25 # UPDATE THIS TO BE VALID TO ALL GRATINGS! # ALSO CONSIDER WAVELENGTH RANGE FOR SKYFLATS AND OBJECTS if valid_wave_min == 0 and valid_wave_max == 0: self.valid_wave_min = np.min(self.wavelength) self.valid_wave_max = np.max(self.wavelength) # if self.grating == "1000R": # self.valid_wave_min = 6600. # CHECK ALL OF THIS... # self.valid_wave_max = 6800. # print " For 1000R, we use the [6200, 7400] range." # if self.grating == "1500V": # self.valid_wave_min = np.min(self.wavelength) # self.valid_wave_max = np.max(self.wavelength) # print " For 1500V, we use all the range." # if self.grating == "580V": # self.valid_wave_min = 3650. # self.valid_wave_max = 5700. # print " For 580V, we use the [3650, 5700] range." # if self.grating == "1500V": # self.valid_wave_min = 4620. #4550 # self.valid_wave_max = 5350. #5350 # print " For 1500V, we use the [4550, 5350] range." else: self.valid_wave_min = valid_wave_min self.valid_wave_max = valid_wave_max print(" As specified, we use the [ {} , {} ] range.".format(self.valid_wave_min, self.valid_wave_max)) # Plot RSS_image if plot: self.RSS_image(image=self.intensity, cmap="binary_r") # Deep copy of intensity into intensity_corrected self.intensity_corrected = copy.deepcopy(self.intensity) # Divide by flatfield if needed if flat != "": print("\n> Dividing the data by the flatfield provided...") self.intensity_corrected = (self.intensity_corrected/flat.intensity_corrected) # todo: check division per pixel works. # Check if apply relative throughput & apply it if requested if apply_throughput: if plot_skyflat: plt.figure(figsize=(10, 4)) for i in range(self.n_spectra): plt.plot(self.wavelength, self.intensity[i, ]) plt.ylim(0, 200 * np.nanmedian(self.intensity)) plt.minorticks_on() plt.xlabel("Wavelength [$\AA$]") plt.title("Spectra WITHOUT CONSIDERING throughput correction") # plt.show() # plt.close() print("\n> Applying relative throughput correction using median skyflat values per fibre...") self.relative_throughput = skyflat.relative_throughput self.response_sky_spectrum = skyflat.response_sky_spectrum for i in range(self.n_spectra): self.intensity_corrected[i, :] = ( self.intensity_corrected[i, :]/self.relative_throughput[i] ) if nskyflat: print("\n IMPORTANT: We are dividing intensity data by the sky.response_sky_spectrum !!! ") print(" This is kind of a flat, the changes are between {} and {}".format( np.nanmin(skyflat.response_sky_spectrum), np.nanmax(skyflat.response_sky_spectrum))) print(" ") self.intensity_corrected = ( self.intensity_corrected/self.response_sky_spectrum ) if plot_skyflat: plt.figure(figsize=(10, 4)) for i in range(self.n_spectra): plt.plot(self.wavelength, self.intensity_corrected[i, ]) plt.ylim(0, 200 * np.nanmedian(self.intensity_corrected)) plt.minorticks_on() plt.xlabel("Wavelength [$\AA$]") plt.title("Spectra CONSIDERING throughput correction (median value per fibre)") # plt.show() # plt.close() print(" Intensities corrected for relative throughput stored in self.intensity_corrected !") text_for_integrated_fibre = "after throughput correction..." title_for_integrated_fibre = " - Throughput corrected" else: if rss_clean == False: print("\n> Intensities NOT corrected for relative throughput") self.relative_throughput = np.ones(self.n_spectra) text_for_integrated_fibre = "..." title_for_integrated_fibre = "" # Compute integrated map after throughput correction & plot if requested self.compute_integrated_fibre( plot=plot, title=title_for_integrated_fibre, text=text_for_integrated_fibre, warnings=warnings, correct_negative_sky=correct_negative_sky, valid_wave_min=valid_wave_min, valid_wave_max=valid_wave_max, ) plot_integrated_fibre_again = 0 # Check if we need to plot it again # Compare corrected vs uncorrected spectrum # self.plot_corrected_vs_uncorrected_spectrum(high_fibres=high_fibres, fig_size=fig_size) # Cleaning high cosmics and defects if sky_method == "1D" or sky_method == "2D": # If not it will not work when applying scale for sky substraction... remove_5578 = False if correct_ccd_defects: if plot: plot_integrated_fibre_again = plot_integrated_fibre_again + 1 self.correct_high_cosmics_and_defects( correct_high_cosmics=correct_high_cosmics, step=step_ccd, remove_5578=remove_5578, clip_high=clip_high, plot_suspicious_fibres=plot_suspicious_fibres, warnings=warnings, verbose=verbose, plot=plot, ) # Compare corrected vs uncorrected spectrum if plot: self.plot_corrected_vs_uncorrected_spectrum( high_fibres=high_fibres, fig_size=fig_size ) # Fixing small wavelengths if sol[0] != 0: self.fix_2dfdr_wavelengths(sol=sol) else: if fix_wavelengths: self.fix_2dfdr_wavelengths() # else: # print "\n> We don't fix 2dfdr wavelengths on this rss." # SKY SUBSTRACTION sky_method # # Several options here: (1) "1D" : Consider a single sky spectrum, scale it and substract it # (2) "2D" : Consider a 2D sky. i.e., a sky image, scale it and substract it fibre by fibre # (3) "self" : Obtain the sky spectrum using the n_sky lowest fibres in the RSS file (DEFAULT) # (4) "none" : None sky substraction is performed # (5) "1Dfit": Using an external 1D sky spectrum, fits sky lines in both sky spectrum AND all the fibres if sky_method != "none" and is_sky == False: plot_integrated_fibre_again = plot_integrated_fibre_again + 1 # (5) if sky_method == "1Dfit": print("\n> Fitting sky lines in both a provided sky spectrum AND all the fibres") print(" This process takes ~20 minutes for 385R!\n") if scale_sky_1D != 0: print(" Sky spectrum scaled by {}".format(scale_sky_1D)) sky = np.array(sky_spectrum) * scale_sky_1D print(" Sky spectrum provided = {}".format(sky)) self.sky_emission = sky self.fit_and_substract_sky_spectrum( sky, brightest_line_wavelength=brightest_line_wavelength, brightest_line=brightest_line, maxima_sigma=3.0, ymin=-50, ymax=1000, wmin=0, wmax=0, auto_scale_sky=auto_scale_sky, warnings=False, verbose=False, plot=False, fig_size=12, fibre=fibre, ) # (1) If a single sky_spectrum is provided: if sky_method == "1D": if sky_spectrum[0] != 0: print("\n> Sustracting the sky using the sky spectrum provided, checking the scale OBJ/SKY...") if scale_sky_1D == 0: self.sky_emission = scale_sky_spectrum( self.wavelength, sky_spectrum, self.intensity_corrected, cut_sky=cut_sky, fmax=fmax, fmin=fmin, fibre_list=fibre_list, ) else: self.sky_emission = sky_spectrum * scale_sky_1D print(" As requested, we scale the given 1D spectrum by {}".format(scale_sky_1D)) if individual_sky_substraction: print("\n As requested, performing individual sky substraction in each fibre...") else: print("\n Substracting sky to all fibres using scaled sky spectrum provided...") # For blue spectra, remove 5578 in the sky spectrum... if self.valid_wave_min < 5578: resultado = fluxes( self.wavelength, self.sky_emission, 5578, plot=False, verbose=False, ) # fmin=-5.0E-17, fmax=2.0E-16, # resultado = [rms_cont, fit[0], fit_error[0], gaussian_flux, gaussian_flux_error, fwhm, fwhm_error, flux, flux_error, ew, ew_error, spectrum ] self.sky_emission = resultado[11] for i in range(self.n_spectra): # Clean 5578 if needed in RSS data if self.valid_wave_min < 5578: resultado = fluxes( self.wavelength, self.intensity_corrected[i], 5578, plot=False, verbose=False, ) # fmin=-5.0E-17, fmax=2.0E-16, # resultado = [rms_cont, fit[0], fit_error[0], gaussian_flux, gaussian_flux_error, fwhm, fwhm_error, flux, flux_error, ew, ew_error, spectrum ] self.intensity_corrected[i] = resultado[11] if individual_sky_substraction: # Do this INDIVIDUALLY for each fibre if i == 100: print(" Substracting sky in fibre 100...") if i == 200: print(" Substracting sky in fibre 200...") if i == 300: print(" Substracting sky in fibre 300...") if i == 400: print(" Substracting sky in fibre 400...") if i == 500: print(" Substracting sky in fibre 500...") if i == 600: print(" Substracting sky in fibre 600...") if i == 700: print(" Substracting sky in fibre 700...") if i == 800: print(" Substracting sky in fibre 800...") if i == 900: print(" Substracting sky in fibre 900...") sky_emission = scale_sky_spectrum( self.wavelength, sky_spectrum, self.intensity_corrected, cut_sky=cut_sky, fmax=fmax, fmin=fmin, fibre_list=[i], verbose=False, plot=False, warnings=False, ) self.intensity_corrected[i, :] = ( self.intensity_corrected[i, :] - sky_emission ) # sky_spectrum * self.exptime/sky_exptime else: self.intensity_corrected[i, :] = ( self.intensity_corrected[i, :] - self.sky_emission ) # sky_spectrum * self.exptime/sky_exptime if plot: plt.figure(figsize=(fig_size, fig_size / 2.5)) plt.plot(self.wavelength, sky_spectrum) plt.minorticks_on() plt.axvline(x=self.valid_wave_min, color="k", linestyle="--") plt.axvline(x=self.valid_wave_max, color="k", linestyle="--") plt.xlim(self.wavelength[0] - 10, self.wavelength[-1] + 10) plt.title("Sky spectrum provided (Scaled)") plt.xlabel("Wavelength [$\AA$]") # plt.show() # plt.close() print(" Intensities corrected for sky emission and stored in self.intensity_corrected !") self.sky_emission = sky_spectrum else: print("\n> Sustracting the sky using the sky spectrum requested but any sky spectrum provided !") sky_method = "self" n_sky = 50 # (2) If a 2D sky, sky_rss, is provided if sky_method == "2D": # if np.nanmedian(sky_rss.intensity_corrected) != 0: if scale_sky_rss != 0: print("\n> Using sky image provided to substract sky, considering a scale of", scale_sky_rss, "...") self.sky_emission = scale_sky_rss * sky_rss.intensity_corrected self.intensity_corrected = ( self.intensity_corrected - self.sky_emission ) else: print("\n> Using sky image provided to substract sky, computing the scale using sky lines") # check scale fibre by fibre self.sky_emission = copy.deepcopy(sky_rss.intensity_corrected) scale_per_fibre = np.ones((self.n_spectra)) scale_per_fibre_2 = np.ones((self.n_spectra)) lowlow = 15 lowhigh = 5 highlow = 5 highhigh = 15 if self.grating == "580V": print(" For 580V we use bright skyline at 5578 AA ...") sky_line = 5578 sky_line_2 = 0 if self.grating == "1000R": # print " For 1000R we use skylines at 6300.5 and 6949.0 AA ..." ### TWO LINES GIVE WORSE RESULTS THAN USING ONLY 1... print(" For 1000R we use skyline at 6949.0 AA ...") sky_line = 6949.0 # 6300.5 lowlow = 22 # for getting a good continuuem in 6949.0 lowhigh = 12 highlow = 36 highhigh = 52 sky_line_2 = 0 # 6949.0 #7276.5 fails lowlow_2 = 22 # for getting a good continuuem in 6949.0 lowhigh_2 = 12 highlow_2 = 36 highhigh_2 = 52 if sky_line_2 != 0: print(" ... first checking {} ...".format(sky_line)) for fibre_sky in range(self.n_spectra): skyline_spec = fluxes( self.wavelength, self.intensity_corrected[fibre_sky], sky_line, plot=False, verbose=False, lowlow=lowlow, lowhigh=lowhigh, highlow=highlow, highhigh=highhigh, ) # fmin=-5.0E-17, fmax=2.0E-16, # resultado = [rms_cont, fit[0], fit_error[0], gaussian_flux, gaussian_flux_error, fwhm, fwhm_error, flux, flux_error, ew, ew_error, spectrum ] self.intensity_corrected[fibre_sky] = skyline_spec[11] skyline_sky = fluxes( self.wavelength, self.sky_emission[fibre_sky], sky_line, plot=False, verbose=False, lowlow=lowlow, lowhigh=lowhigh, highlow=highlow, highhigh=highhigh, ) # fmin=-5.0E-17, fmax=2.0E-16, scale_per_fibre[fibre_sky] = old_div(skyline_spec[3], skyline_sky[3]) # TODO: get data for 2D and test if can remove self.sky_emission[fibre_sky] = skyline_sky[11] if sky_line_2 != 0: print(" ... now checking {} ...".format(sky_line_2)) for fibre_sky in range(self.n_spectra): skyline_spec = fluxes( self.wavelength, self.intensity_corrected[fibre_sky], sky_line_2, plot=False, verbose=False, lowlow=lowlow_2, lowhigh=lowhigh_2, highlow=highlow_2, highhigh=highhigh_2, ) # fmin=-5.0E-17, fmax=2.0E-16, # resultado = [rms_cont, fit[0], fit_error[0], gaussian_flux, gaussian_flux_error, fwhm, fwhm_error, flux, flux_error, ew, ew_error, spectrum ] self.intensity_corrected[fibre_sky] = skyline_spec[11] skyline_sky = fluxes( self.wavelength, self.sky_emission[fibre_sky], sky_line_2, plot=False, verbose=False, lowlow=lowlow_2, lowhigh=lowhigh_2, highlow=highlow_2, highhigh=highhigh_2, ) # fmin=-5.0E-17, fmax=2.0E-16, scale_per_fibre_2[fibre_sky] = ( old_div(skyline_spec[3], skyline_sky[3]) # TODO: get data for 2D and test if can remove ) self.sky_emission[fibre_sky] = skyline_sky[11] # Median value of scale_per_fibre, and apply that value to all fibres if sky_line_2 == 0: scale_sky_rss = np.nanmedian(scale_per_fibre) self.sky_emission = self.sky_emission * scale_sky_rss else: scale_sky_rss = np.nanmedian( old_div((scale_per_fibre + scale_per_fibre_2), 2) # TODO: get data for 2D and test if can remove ) # Make linear fit scale_sky_rss_1 = np.nanmedian(scale_per_fibre) scale_sky_rss_2 = np.nanmedian(scale_per_fibre_2) print( " Median scale for line 1 : {} range [ {}, {} ]]".format( scale_sky_rss_1, np.nanmin(scale_per_fibre), np.nanmax(scale_per_fibre) ) ) print( " Median scale for line 2 : {} range [ {}, {} ]]".format( scale_sky_rss_2, np.nanmin(scale_per_fibre_2), np.nanmax(scale_per_fibre_2) ) ) b = old_div((scale_sky_rss_1 - scale_sky_rss_2), ( sky_line - sky_line_2 # TODO: get data for 2D and test if can remove )) a = scale_sky_rss_1 - b * sky_line # ,a+b*sky_line,a+b*sky_line_2 print(" Appling linear fit with a = {} b = {} to all fibres in sky image...".format(a, b)) for i in range(self.n_wave): self.sky_emission[:, i] = self.sky_emission[:, i] * ( a + b * self.wavelength[i] ) if plot: plt.figure(figsize=(fig_size, fig_size / 2.5)) label1 = "$\lambda$" + np.str(sky_line) plt.plot(scale_per_fibre, alpha=0.5, label=label1) plt.minorticks_on() plt.ylim(np.nanmin(scale_per_fibre), np.nanmax(scale_per_fibre)) plt.axhline(y=scale_sky_rss, color="k", linestyle="--") if sky_line_2 == 0: text = ( "Scale OBJECT / SKY using sky line $\lambda$ {}".format(sky_line)) print(" Scale per fibre in the range [{} , {} ], median value is {}".format(np.nanmin(scale_per_fibre), np.nanmax(scale_per_fibre), scale_sky_rss)) print(" Using median value to scale sky emission provided...") if sky_line_2 != 0: text = ( "Scale OBJECT / SKY using sky lines $\lambda$ {} and $\lambda$".format(sky_line, sky_line_2)) label2 = "$\lambda$ {}".format(sky_line_2) plt.plot(scale_per_fibre_2, alpha=0.5, label=label2) plt.axhline(y=scale_sky_rss_1, color="k", linestyle=":") plt.axhline(y=scale_sky_rss_2, color="k", linestyle=":") plt.legend(frameon=False, loc=1, ncol=2) plt.title(text) plt.xlabel("Fibre") # plt.show() # plt.close() self.intensity_corrected = ( self.intensity_corrected - self.sky_emission ) # (3) No sky spectrum or image is provided, obtain the sky using the n_sky lowest fibres if sky_method == "self": print("\n Using {} lowest intensity fibres to create a sky...".format(n_sky)) self.find_sky_emission( n_sky=n_sky, plot=plot, sky_fibres=sky_fibres, sky_wave_min=sky_wave_min, sky_wave_max=sky_wave_max, ) # print "\n AFTER SKY SUBSTRACTION:" # self.compute_integrated_fibre(plot=False, warnings=warnings) #title =" - Throughput corrected", text="after throughput correction..." # count_negative = 0 # for i in range(self.n_spectra): # if self.integrated_fibre[i] < 0.11 : # #print " Fibre ",i," has an integrated flux of ", self.integrated_fibre[i] # count_negative=count_negative+1 # print self.integrated_fibre # print " Number of fibres with NEGATIVE integrated value AFTER SKY SUBSTRACTION = ", count_negative # If this RSS is an offset sky, perform a median filter to increase S/N if is_sky: print("\n> This RSS file is defined as SKY... applying median filter with window {} ...".format(win_sky)) medfilt_sky = median_filter( self.intensity_corrected, self.n_spectra, self.n_wave, win_sky=win_sky ) self.intensity_corrected = copy.deepcopy(medfilt_sky) print(" Median filter applied, results stored in self.intensity_corrected !") # Get airmass and correct for extinction AFTER SKY SUBTRACTION ZD = (self.ZDSTART + self.ZDEND)/2 self.airmass = 1/np.cos(np.radians(ZD)) self.extinction_correction = np.ones(self.n_wave) if do_extinction: self.do_extinction_curve(pth.join(DATA_PATH, "ssoextinct.dat"), plot=plot) # Check if telluric correction is needed & apply if telluric_correction[0] != 0: plot_integrated_fibre_again = plot_integrated_fibre_again + 1 print("\n> Applying telluric correction...") if plot: plt.figure(figsize=(fig_size, fig_size / 2.5)) plt.plot(self.wavelength, telluric_correction) plt.minorticks_on() plt.axvline(x=self.valid_wave_min, color="k", linestyle="--") plt.axvline(x=self.valid_wave_max, color="k", linestyle="--") plt.xlim(self.wavelength[0] - 10, self.wavelength[-1] + 10) plt.ylim(0.9, 2) plt.title("Telluric correction") plt.xlabel("Wavelength [$\AA$]") # plt.show() # plt.close() if plot: integrated_intensity_sorted = np.argsort(self.integrated_fibre) region = [ integrated_intensity_sorted[-1], integrated_intensity_sorted[0], ] print(" Example of telluric correction using fibres {} and {} :".format(region[0], region[1])) plt.figure(figsize=(fig_size, fig_size / 2.5)) plt.plot( self.wavelength, self.intensity_corrected[region[0]], color="r", alpha=0.3, ) plt.plot( self.wavelength, self.intensity_corrected[region[1]], color="r", alpha=0.3, ) for i in range(self.n_spectra): self.intensity_corrected[i, :] = ( self.intensity_corrected[i, :] * telluric_correction ) if plot: plt.plot( self.wavelength, self.intensity_corrected[region[0]], color="b", alpha=0.5, ) plt.plot( self.wavelength, self.intensity_corrected[region[1]], color="g", alpha=0.5, ) plt.minorticks_on() plt.axvline(x=self.valid_wave_min, color="k", linestyle="--") plt.axvline(x=self.valid_wave_max, color="k", linestyle="--") plt.xlim(self.wavelength[0] - 10, self.wavelength[-1] + 10) plt.ylim( np.nanmin(self.intensity_corrected[region[1]]), np.nanmax(self.intensity_corrected[region[0]]), ) # CHECK THIS AUTOMATICALLY plt.xlabel("Wavelength [$\AA$]") # plt.show() # plt.close() # Check if identify emission lines is requested & do if id_el: if brightest_line_wavelength == 0: self.el = self.identify_el( high_fibres=high_fibres, brightest_line=brightest_line, cut=cut, verbose=True, plot=plot_id_el, fibre=0, broad=broad, ) print("\n Emission lines identified saved in self.el !!") else: brightest_line_rest_wave = 6562.82 print("\n As given, line {} at rest wavelength = {} is at {}".format(brightest_line, brightest_line_rest_wave, brightest_line_wavelength)) self.el = [ [brightest_line], [brightest_line_rest_wave], [brightest_line_wavelength], [7.2], ] # PUTAAA sel.el=[peaks_name,peaks_rest, p_peaks_l, p_peaks_fwhm] else: self.el = [[0], [0], [0], [0]] # Check if id_list provided if id_list[0] != 0: if id_el: print("\n> Checking if identified emission lines agree with list provided") # Read list with all emission lines to get the name of emission lines emission_line_file = "data/lineas_c89_python.dat" el_center, el_name = read_table(emission_line_file, ["f", "s"]) # Find brightest line to get redshift for i in range(len(self.el[0])): if self.el[0][i] == brightest_line: obs_wave = self.el[2][i] redshift = (self.el[2][i] - self.el[1][i])/self.el[1][i] print(" Brightest emission line {} foud at {} , redshift = {}".format(brightest_line, obs_wave, redshift)) el_identified = [[], [], [], []] n_identified = 0 for line in id_list: id_check = 0 for i in range(len(self.el[1])): if line == self.el[1][i]: if verbose: print(" Emission line {} {} has been identified".format(self.el[0][i], self.el[1][i])) n_identified = n_identified + 1 id_check = 1 el_identified[0].append(self.el[0][i]) # Name el_identified[1].append(self.el[1][i]) # Central wavelength el_identified[2].append( self.el[2][i] ) # Observed wavelength el_identified[3].append(self.el[3][i]) # "FWHM" if id_check == 0: for i in range(len(el_center)): if line == el_center[i]: el_identified[0].append(el_name[i]) print(" Emission line {} {} has NOT been identified, adding...".format(el_name[i], line)) el_identified[1].append(line) el_identified[2].append(line * (redshift + 1)) el_identified[3].append(4 * broad) self.el = el_identified print(" Number of emission lines identified = {} of a total of {} provided. self.el updated accordingly".format(n_identified, len(id_list))) else: print("\n> List of emission lines provided but no identification was requested") # Clean sky residuals if requested if clean_sky_residuals: plot_integrated_fibre_again = plot_integrated_fibre_again + 1 self.clean_sky_residuals( extra_w=extra_w, step=step_csr, dclip=dclip, verbose=verbose, fibre=fibre, wave_min=valid_wave_min, wave_max=valid_wave_max, ) # set_data was till here... ------------------------------------------------------------------- if fibre != 0: plot_integrated_fibre_again = 0 # Plot corrected values if plot == True and rss_clean == False: # plot_integrated_fibre_again > 0 : self.compute_integrated_fibre( plot=plot, title=" - Intensities Corrected", warnings=warnings, text="after all corrections have been applied...", valid_wave_min=valid_wave_min, valid_wave_max=valid_wave_max, correct_negative_sky=correct_negative_sky, ) integrated_intensity_sorted = np.argsort(self.integrated_fibre) region = [] for fibre_ in range(high_fibres): region.append(integrated_intensity_sorted[-1 - fibre_]) print("\n> Checking results using {} fibres with the highest integrated intensity".format(high_fibres)) print(" which are : {}".format(region)) plt.figure(figsize=(fig_size, fig_size / 2.5)) I = np.nansum(self.intensity[region], axis=0) plt.plot(self.wavelength, I, "r-", label="Uncorrected", alpha=0.3) Ic = np.nansum(self.intensity_corrected[region], axis=0) plt.axhline(y=0, color="k", linestyle=":") plt.plot(self.wavelength, Ic, "g-", label="Corrected", alpha=0.4) plt.ylabel("Flux") plt.xlabel("Wavelength [$\AA$]") plt.minorticks_on() plt.xlim(self.wavelength[0] - 10, self.wavelength[-1] + 10) plt.axvline(x=self.valid_wave_min, color="k", linestyle="--") plt.axvline(x=self.valid_wave_max, color="k", linestyle="--") yy1 = np.nanpercentile(Ic, 0) yy2 = np.nanpercentile(Ic, 99) rango = yy2 - yy1 plt.ylim(yy1 - rango * 0.05, yy2) plt.title("{} - Combined spectrum - {} fibres with highest intensity".format(self.object, high_fibres)) plt.legend(frameon=False, loc=4, ncol=2) # plt.show() # plt.close() region = [] for fibre_ in range(high_fibres): region.append(integrated_intensity_sorted[fibre_]) print("\n> Checking results using {} fibres with the lowest integrated intensity".format(high_fibres)) print(" which are : {}".format(region)) plt.figure(figsize=(fig_size, fig_size / 2.5)) I = np.nansum(self.intensity[region], axis=0) plt.plot(self.wavelength, I, "r-", label="Uncorrected", alpha=0.3) Ic = np.nansum(self.intensity_corrected[region], axis=0) I_ymin = np.nanmin([np.nanmin(I), np.nanmin(Ic)]) I_ymax = np.nanmax([np.nanmax(I), np.nanmax(Ic)]) I_med = np.nanmedian(Ic) I_rango = I_ymax - I_ymin plt.axhline(y=0, color="k", linestyle=":") plt.plot(self.wavelength, Ic, "g-", label="Corrected", alpha=0.4) plt.ylabel("Flux") plt.xlabel("Wavelength [$\AA$]") plt.minorticks_on() plt.xlim(self.wavelength[0] - 10, self.wavelength[-1] + 10) plt.axvline(x=self.valid_wave_min, color="k", linestyle="--") plt.axvline(x=self.valid_wave_max, color="k", linestyle="--") # plt.ylim([I_ymin-I_rango/18,I_ymax-I_rango*0.65]) plt.ylim([I_med - I_rango * 0.65, I_med + I_rango * 0.65]) plt.title("{} - Combined spectrum - {} fibres with lowest intensity".format(self.object, high_fibres)) plt.legend(frameon=False, loc=4, ncol=2) # plt.show() # plt.close() # Plot RSS_image if plot: self.RSS_image() if rss_clean: self.RSS_image() # Print summary and information from header print("\n> Summary of reading rss file ''{}'' :".format(filename)) print("\n This is a KOALA '{}' file, using grating '{}' in AAOmega".format(AAOmega_Arm, self.grating)) print(" Object: {}".format(self.object)) print(" Field of view: {} (spaxel size = {} arcsec)".format(field, self.spaxel_size)) print(" Center position: (RA, DEC) = ({:.3f}, {:.3f}) degrees".format( self.RA_centre_deg, self.DEC_centre_deg )) print(" Field covered [arcsec] = {:.1f} x {:.1f}".format( self.RA_segment + self.spaxel_size, self.DEC_segment + self.spaxel_size )) print(" Position angle (PA) = {:.1f} degrees".format(self.PA)) print(" ") if rss_clean: print(" This was a CLEAN RSS file, no correction was applied!") print(" Values stored in self.intensity_corrected are the same that those in self.intensity") else: if flat != "": print(" Intensities divided by the given flatfield") if apply_throughput: print(" Intensities corrected for throughput !") else: print(" Intensities NOT corrected for throughput") if correct_ccd_defects == True and correct_high_cosmics == True: print(" Intensities corrected for high cosmics and CCD defects !") if correct_ccd_defects == True and correct_high_cosmics == False: print(" Intensities corrected for CCD defects (but NOT for high cosmics) !") if correct_ccd_defects == False and correct_high_cosmics == False: print(" Intensities NOT corrected for high cosmics and CCD defects") if sol[0] != 0: print(" All fibres corrected for small wavelength shifts using wavelength solution provided!") else: if fix_wavelengths: print(" Wavelengths corrected for small shifts using Gaussian fit to selected bright skylines in all fibres!") else: print(" Wavelengths NOT corrected for small shifts") if is_sky: print(" This is a SKY IMAGE, median filter with window {} applied !".format(win_sky)) else: if sky_method == "none": print(" Intensities NOT corrected for sky emission") if sky_method == "self": print(" Intensities corrected for sky emission using {} spaxels with lowest values !".format(n_sky)) if sky_method == "1D": print(" Intensities corrected for sky emission using (scaled) spectrum provided ! ") if sky_method == "1Dfit": print(" Intensities corrected for sky emission fitting Gaussians to both 1D sky spectrum and each fibre ! ") if sky_method == "2D": print(" Intensities corrected for sky emission using sky image provided scaled by {} !".format(scale_sky_rss)) if telluric_correction[0] != 0: print(" Intensities corrected for telluric absorptions !") else: print(" Intensities NOT corrected for telluric absorptions") if do_extinction: print(" Intensities corrected for extinction !") else: print(" Intensities NOT corrected for extinction") if correct_negative_sky: print(" Intensities CORRECTED (if needed) for negative integrate flux values!") if id_el: print(" ", len( self.el[0] ), "emission lines identified and stored in self.el !") print(" ", self.el[0]) if clean_sky_residuals == True and fibre == 0: print(" Intensities cleaned for sky residuals !") if clean_sky_residuals == True and fibre != 0: print(" Only fibre {} has been corrected for sky residuals".format(fibre)) if clean_sky_residuals == False: print(" Intensities NOT corrected for sky residuals") print(" All applied corrections are stored in self.intensity_corrected !") if save_rss_to_fits_file != "": save_rss_fits(self, fits_file=save_rss_to_fits_file) print("\n> KOALA RSS file read !") # ----------------------------------------------------------------------------- # INTERPOLATED CUBE CLASS # ----------------------------------------------------------------------------- class Interpolated_cube(object): # TASK_Interpolated_cube """ Constructs a cube by accumulating RSS with given offsets. """ # ----------------------------------------------------------------------------- def __init__( self, RSS, pixel_size_arcsec, kernel_size_arcsec, centre_deg=[], size_arcsec=[], aligned_coor=False, plot=False, flux_calibration=[0], zeros=False, ADR=False, force_ADR=False, offsets_files="", offsets_files_position="", shape=[], rss_file="", warnings=False, ): # Angel added aligned_coor 6 Sep, flux_calibration, zeros 27 Oct; # added ADR 28 Feb offsets_files, shape for defining shape of cube # warnings (when cubing) added 13 Jan 2019 """ Parameters ---------- RSS pixel_size_arcsec kernel_size_arcsec centre_deg size_arcsec aligned_coor plot flux_calibration zeros ADR force_ADR offsets_files offsets_files_position shape rss_file warnings """ self.RSS = RSS self.n_wave = RSS.n_wave self.pixel_size_arcsec = pixel_size_arcsec self.kernel_size_arcsec = kernel_size_arcsec self.kernel_size_pixels = ( float(kernel_size_arcsec/pixel_size_arcsec) ) # must be a float number! self.wavelength = RSS.wavelength self.description = RSS.description + " - CUBE" self.object = RSS.object self.PA = RSS.PA self.grating = RSS.grating self.CRVAL1_CDELT1_CRPIX1 = RSS.CRVAL1_CDELT1_CRPIX1 self.total_exptime = RSS.exptime self.rss_list = RSS.rss_list self.RA_segment = RSS.RA_segment self.offsets_files = offsets_files # Offsets between files when align cubes self.offsets_files_position = ( offsets_files_position # Position of this cube when aligning ) self.valid_wave_min = RSS.valid_wave_min self.valid_wave_max = RSS.valid_wave_max self.seeing = 0.0 self.flux_cal_step = 0.0 self.flux_cal_min_wave = 0.0 self.flux_cal_max_wave = 0.0 if zeros: print("\n> Creating empty cube using information provided in rss file: ") print(" {}".format(self.description)) else: print("\n> Creating cube from file rss file: {}".format(self.description)) print(" Pixel size = {} arcsec".format(self.pixel_size_arcsec)) print(" kernel size = {} arcsec".format(self.kernel_size_arcsec)) # centre_deg = [RA,DEC] if we need to give new RA, DEC centre if len(centre_deg) == 2: self.RA_centre_deg = centre_deg[0] self.DEC_centre_deg = centre_deg[1] else: self.RA_centre_deg = RSS.RA_centre_deg self.DEC_centre_deg = RSS.DEC_centre_deg if aligned_coor == True: self.xoffset_centre_arcsec = ( self.RA_centre_deg - RSS.ALIGNED_RA_centre_deg ) * 3600.0 self.yoffset_centre_arcsec = ( self.DEC_centre_deg - RSS.ALIGNED_DEC_centre_deg ) * 3600.0 print(self.RA_centre_deg) print(RSS.ALIGNED_RA_centre_deg) print((self.RA_centre_deg - RSS.ALIGNED_RA_centre_deg) * 3600.0) print("\n\n\n\n") if zeros == False: print(" Using ALIGNED coordenates for centering cube...") else: self.xoffset_centre_arcsec = ( self.RA_centre_deg - RSS.RA_centre_deg ) * 3600.0 self.yoffset_centre_arcsec = ( self.DEC_centre_deg - RSS.DEC_centre_deg ) * 3600.0 if len(size_arcsec) == 2: self.n_cols = np.int((size_arcsec[0]/self.pixel_size_arcsec)) + 2 * np.int( (self.kernel_size_arcsec/self.pixel_size_arcsec) ) self.n_rows = np.int((size_arcsec[1]/self.pixel_size_arcsec)) + 2 * np.int( (self.kernel_size_arcsec/self.pixel_size_arcsec) ) else: self.n_cols = ( 2 * ( np.int( (np.nanmax( np.abs(RSS.offset_RA_arcsec - self.xoffset_centre_arcsec) )/self.pixel_size_arcsec) ) + np.int(self.kernel_size_pixels) ) + 3 ) # -3 ### +1 added by Angel 25 Feb 2018 to put center in center self.n_rows = ( 2 * ( np.int( (np.nanmax( np.abs(RSS.offset_DEC_arcsec - self.yoffset_centre_arcsec) )/self.pixel_size_arcsec) ) + np.int(self.kernel_size_pixels) ) + 3 ) # -3 ### +1 added by Angel 25 Feb 2018 to put center in center if self.n_cols % 2 != 0: self.n_cols += 1 # Even numbers to have [0,0] in the centre if self.n_rows % 2 != 0: self.n_rows += 1 # If we define a specific shape if len(shape) == 2: self.n_rows = shape[0] self.n_cols = shape[1] # Define zeros self._weighted_I = np.zeros((self.n_wave, self.n_rows, self.n_cols)) self._weight = np.zeros_like(self._weighted_I) self.flux_calibration = np.zeros(self.n_wave) # self.offset_from_center_x_arcsec = 0. # self.offset_from_center_y_arcsec = 0. if zeros: self.data = np.zeros_like(self._weighted_I) else: print("\n Smooth cube, (RA, DEC)_centre = ({}, {}) degree".format( self.RA_centre_deg, self.DEC_centre_deg )) print(" Size = {} columns (RA) x {} rows (DEC); {:.2f} x {:.2f} arcsec".format( self.n_cols, self.n_rows, (self.n_cols + 1) * pixel_size_arcsec, (self.n_rows + 1) * pixel_size_arcsec, )) sys.stdout.write(" Adding {} spectra... ".format(RSS.n_spectra)) sys.stdout.flush() output_every_few = np.sqrt(RSS.n_spectra) + 1 next_output = -1 for i in range(RSS.n_spectra): if i > next_output: sys.stdout.write("\b" * 6) sys.stdout.write("{:5.2f}%".format(i * 100.0 / RSS.n_spectra)) sys.stdout.flush() next_output = i + output_every_few offset_rows = (( RSS.offset_DEC_arcsec[i] - self.yoffset_centre_arcsec )/pixel_size_arcsec) offset_cols = (( -RSS.offset_RA_arcsec[i] + self.xoffset_centre_arcsec )/pixel_size_arcsec) corrected_intensity = RSS.intensity_corrected[i] self.add_spectrum( corrected_intensity, offset_rows, offset_cols, warnings=warnings ) self.data = self._weighted_I/self._weight self.trace_peak(plot=plot) # Check flux calibration if np.nanmedian(flux_calibration) == 0: fcal = False else: self.flux_calibration = flux_calibration fcal = True # This should be in 1 line of step of loop, I couldn't get it # Yago HELP !! for x in range(self.n_rows): for y in range(self.n_cols): self.data[:, x, y] = ( (((self.data[:, x, y]/self.flux_calibration)/1e16)/self.RSS.exptime) ) # plt.plot(self.wavelength,self.data[:,x,y]) # # ylabel="Flux [ erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]" # Correct for Atmospheric Differential Refraction (ADR) if requested if ADR: self.ADR_correction(plot=plot, force_ADR=force_ADR) else: print("\n> Data NO corrected for Atmospheric Differential Refraction (ADR).") # Get integrated maps (all waves and valid range), locate peaks, plots self.get_integrated_map_and_plot(plot=plot, fcal=fcal) # For calibration stars, we get an integrated star flux and a seeing self.integrated_star_flux = np.zeros_like(self.wavelength) if fcal: print("\n> Absolute flux calibration included in this interpolated cube.") else: print("\n> This interpolated cube does not include an absolute flux calibration.") print("> Interpolated cube done!\n") # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def ADR_correction(self, plot=True, force_ADR=False): """ Correct for Atmospheric Diferential Refraction (ADR) Parameters ---------- plot force_ADR Returns ------- """ self.data_ADR = copy.deepcopy(self.data) do_ADR = True # First we check if it is needed (unless forced)... if ( self.ADR_x_max < self.pixel_size_arcsec/2 and self.ADR_y_max < self.pixel_size_arcsec/2 ): print("\n> Atmospheric Differential Refraction (ADR) correction is NOT needed.") print(" The computed max ADR values ({:.2f},{:.2f}) are smaller than half the pixel size of {:.2f} arcsec".format( self.ADR_x_max, self.ADR_y_max, self.pixel_size_arcsec )) do_ADR = False if force_ADR: print(' However we proceed to do the ADR correction as indicated: "force_ADR = True" ...') do_ADR = True if do_ADR: print("\n> Correcting for Atmospheric Differential Refraction (ADR)...") sys.stdout.flush() output_every_few = np.sqrt(self.n_wave) + 1 next_output = -1 for l in range(self.n_wave): if l > next_output: sys.stdout.write("\b" * 36) sys.stdout.write( " Moving plane {:5}/{:5}... {:5.2f}%".format( l, self.n_wave, l * 100.0 / self.n_wave ) ) sys.stdout.flush() next_output = l + output_every_few tmp = copy.deepcopy(self.data_ADR[l, :, :]) mask = copy.deepcopy(tmp) * 0.0 mask[np.where(np.isnan(tmp))] = 1 # make mask where Nans are kernel = Gaussian2DKernel(5) tmp_nonan = interpolate_replace_nans(tmp, kernel) # need to see if there are still nans. This can happen in the padded parts of the grid # where the kernel is not large enough to cover the regions with NaNs. if np.isnan(np.sum(tmp_nonan)): tmp_nonan = np.nan_to_num(tmp_nonan) tmp_shift = shift( tmp_nonan, [ (-2 * self.ADR_y[l]/self.pixel_size_arcsec), (-2 * self.ADR_x[l]/self.pixel_size_arcsec), ], cval=np.nan, ) mask_shift = shift( mask, [ (-2 * self.ADR_y[l]/self.pixel_size_arcsec), (-2 * self.ADR_x[l]/self.pixel_size_arcsec), ], cval=np.nan, ) tmp_shift[mask_shift > 0.5] = np.nan self.data_ADR[l, :, :] = copy.deepcopy(tmp_shift) # print(l,tmp.shape,2*self.ADR_y[l],2*self.ADR_x[l],np.sum(tmp_nonan),np.sum(tmp),np.sum(tmp_shift)) # for y in range(self.n_rows): # for x in range(self.n_cols): # # mal = 0 # if np.int(np.round(x+2*self.ADR_x[l]/self.pixel_size_arcsec)) < self.n_cols : # if np.int(np.round(y+2*self.ADR_y[l]/self.pixel_size_arcsec)) < self.n_rows : # # print self.data.shape,x,"->",np.int(np.round(x+self.ADR_x[i]/self.pixel_size_arcsec))," ",y,"->",np.int(np.round(y+self.ADR_y[i]/self.pixel_size_arcsec)) # self.data_ADR[l,y,x]=self.data[l, np.int(np.round(y+2*self.ADR_y[l]/self.pixel_size_arcsec )), np.int(np.round(x+2*self.ADR_x[l]/self.pixel_size_arcsec)) ] # else: mal = 1 # else: mal = 1 # if mal == 1: # if l == 0 : print self.data.shape,x,"->",np.int(np.round(x+self.ADR_x[i]/self.pixel_size_arcsec))," ",y,"->",np.int(np.round(y+self.ADR_y[i]/self.pixel_size_arcsec))," bad data !" # Check values tracing ADR data ... self.trace_peak(ADR=True, plot=plot) # SAVE DATA !!!! # In prep... # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def get_integrated_map_and_plot( self, min_wave=[0], max_wave=[0], plot=True, fcal=False ): # CHECK """ Integrated map and plot Parameters ---------- min_wave max_wave plot fcal Returns ------- """ # Integrated map between good wavelengths if min_wave == [0]: min_wave = self.valid_wave_min if max_wave == [0]: max_wave = self.valid_wave_max self.integrated_map_all = np.nansum(self.data, axis=0) self.integrated_map = np.nansum( self.data[ np.searchsorted(self.wavelength, min_wave): np.searchsorted( self.wavelength, max_wave ) ], axis=0, ) # Search for peak of emission in integrated map and compute offsets from centre self.max_y, self.max_x = np.unravel_index( self.integrated_map.argmax(), self.integrated_map.shape ) self.spaxel_RA0 = np.int(self.n_cols/2) + 1 # Using np.int for readability self.spaxel_DEC0 = np.int(self.n_rows/2) + 1 # Using np.int for readability self.offset_from_center_x_arcsec_integrated = ( self.max_x - self.spaxel_RA0 + 1 ) * self.pixel_size_arcsec # Offset from center using INTEGRATED map self.offset_from_center_y_arcsec_integrated = ( self.max_y - self.spaxel_DEC0 + 1 ) * self.pixel_size_arcsec # Offset from center using INTEGRATED map if plot: self.plot_spectrum_integrated_cube(fcal=fcal) self.plot_spectrum_cube(self.max_y, self.max_x, fcal=fcal) print("\n> Created integrated map between {:5.2f} and {:5.2f}.".format( min_wave, max_wave )) print(" The peak of the emission in integrated image is in spaxel [ {} , {} ]".format(self.max_x, self.max_y)) print(" The peak of the emission tracing all wavelengths is in spaxel [ {} , {} ]".format( np.round(self.x_peak_median, 2), np.round(self.y_peak_median, 2))) self.offset_from_center_x_arcsec_tracing = ( self.x_peak_median - self.spaxel_RA0 + 1 ) * self.pixel_size_arcsec # Offset from center using INTEGRATED map self.offset_from_center_y_arcsec_tracing = ( self.y_peak_median - self.spaxel_DEC0 + 1 ) * self.pixel_size_arcsec # Offset from center using INTEGRATED map if plot: self.plot_map( norm=colors.Normalize(), spaxel=[self.max_x, self.max_y], spaxel2=[self.x_peak_median, self.y_peak_median], fcal=fcal, ) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def add_spectrum(self, intensity, offset_rows, offset_cols, warnings=False): """ Add one single spectrum to the datacube Parameters ---------- intensity: np.array(float) Spectrum. offset_rows, offset_cols: float Offset with respect to the image centre, in pixels. kernel_FWHM_pixels: float FWHM of the interpolating kernel, in pixels """ kernel_centre_x = 0.5 * self.n_cols + offset_cols x_min = int(kernel_centre_x - self.kernel_size_pixels) x_max = int(kernel_centre_x + self.kernel_size_pixels) + 1 n_points_x = x_max - x_min x = ( (np.linspace(x_min - kernel_centre_x, x_max - kernel_centre_x, n_points_x)/self.kernel_size_pixels) ) x[0] = -1.0 x[-1] = 1.0 weight_x = np.diff(((3.0 * x - x ** 3 + 2.0)/4)) kernel_centre_y = 0.5 * self.n_rows + offset_rows y_min = int(kernel_centre_y - self.kernel_size_pixels) y_max = int(kernel_centre_y + self.kernel_size_pixels) + 1 n_points_y = y_max - y_min y = ( (np.linspace(y_min - kernel_centre_y, y_max - kernel_centre_y, n_points_y)/self.kernel_size_pixels) ) y[0] = -1.0 y[-1] = 1.0 weight_y = np.diff(((3.0 * y - y ** 3 + 2.0)/4)) if x_min < 0 or x_max >= self.n_cols or y_min < 0 or y_max >= self.n_rows: if warnings: print("**** WARNING **** : Spectra outside field of view: {} {} {}".format(x_min, kernel_centre_x, x_max)) print(" : {} {} {}".format(y_min, kernel_centre_y, y_max)) else: bad_wavelengths = np.argwhere(np.isnan(intensity)) intensity[bad_wavelengths] = 0.0 ones = np.ones_like(intensity) ones[bad_wavelengths] = 0.0 self._weighted_I[:, y_min: y_max - 1, x_min: x_max - 1] += ( intensity[:, np.newaxis, np.newaxis] * weight_y[np.newaxis, :, np.newaxis] * weight_x[np.newaxis, np.newaxis, :] ) self._weight[:, y_min: y_max - 1, x_min: x_max - 1] += ( ones[:, np.newaxis, np.newaxis] * weight_y[np.newaxis, :, np.newaxis] * weight_x[np.newaxis, np.newaxis, :] ) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def plot_spectrum_cube( self, x, y, lmin=0, lmax=0, fmin=1e-30, fmax=1e30, fcal=False, fig_size=10.0, fig_size_y=0.0, save_file="", title="", z=0.0, ): # Angel added 8 Sep """ Plot spectrum of a particular spaxel. Parameters ---------- x, y: coordenates of spaxel to show spectrum. fcal: Use flux calibration, default fcal=False.\n If fcal=True, cube.flux_calibration is used. save_file: (Optional) Save plot in file "file.extension" fig_size: Size of the figure (in x-axis), default: fig_size=10 Example ------- >>> cube.plot_spectrum_cube(20, 20, fcal=True) """ if np.isscalar(x): if fcal == False: spectrum = self.data[:, x, y] ylabel = "Flux [relative units]" else: spectrum = self.data[:, x, y] * 1e16 # /self.flux_calibration / 1E16 # ylabel="Flux [ 10$^{-16}$ * erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]" ylabel = "Flux [ 10$^{-16}$ erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]" else: print(" Adding spaxel 1 = [ {} , {} ]".format(x[0], y[0])) spectrum = self.data[:, x[0], y[0]] for i in range(len(x) - 1): spectrum = spectrum + self.data[:, x[i + 1], y[i + 1]] print(" Adding spaxel {} = [ {} , {}]".format(i + 2, x[i + 1],[i + 1])) ylabel = "Flux [relative units]" if fcal: spectrum = (spectrum/self.flux_calibration)/1e16 ylabel = "Flux [ erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]" # Set limits if fmin == 1e-30: fmin = np.nanmin(spectrum) if fmax == 1e30: fmax = np.nanmax(spectrum) if lmin == 0: lmin = self.wavelength[0] if lmax == 0: lmax = self.wavelength[-1] if fig_size_y == 0.0: fig_size_y = fig_size / 3.0 plt.figure(figsize=(fig_size, fig_size_y)) plt.plot(self.wavelength, spectrum) plt.minorticks_on() plt.ylim(fmin, fmax) plt.xlim(lmin, lmax) if title == "": title = "Spaxel ({} , {}) in {}".format(x, y, self.description) plt.title(title) plt.xlabel("Wavelength [$\AA$]") plt.ylabel(ylabel) # Identify lines if z != 0: elines = [ 3727.00, 3868.75, 3967.46, 3889.05, 4026.0, 4068.10, 4101.2, 4340.47, 4363.21, 4471.48, 4658.10, 4686.0, 4711.37, 4740.16, 4861.33, 4958.91, 5006.84, 5197.82, 6300.30, 6312.10, 6363.78, 6548.03, 6562.82, 6583.41, 6678.15, 6716.47, 6730.85, 7065.28, 7135.78, 7281.35, 7320, 7330, ] # elines=[3727.00, 3868.75, 3967.46, 3889.05, 4026., 4068.10, 4101.2, 4340.47, 4363.21, 4471.48, 4658.10, 4861.33, 4958.91, 5006.84, 5197.82, 6300.30, 6312.10, 6363.78, 6548.03, 6562.82, 6583.41, 6678.15, 6716.47, 6730.85, 7065.28, 7135.78, 7320, 7330 ] for i in elines: plt.plot([i * (1 + z), i * (1 + z)], [fmin, fmax], "g:", alpha=0.95) alines = [3934.777, 3969.588, 4308, 5175] # ,4305.61, 5176.7] # POX 4 # alines=[3934.777,3969.588,4308,5170] #,4305.61, 5176.7] for i in alines: plt.plot([i * (1 + z), i * (1 + z)], [fmin, fmax], "r:", alpha=0.95) if save_file == "": #plt.show() pass else: plt.savefig(save_file) #plt.close() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def plot_spectrum_integrated_cube( self, lmin=0, lmax=0, fmin=1e-30, fmax=1e30, fcal=False, fig_size=10, save_file="", ): # Angel added 8 Sep """ Plot integrated spectrum Parameters ---------- fcal: Use flux calibration, default fcal=False.\n If fcal=True, cube.flux_calibration is used. save_file: (Optional) Save plot in file "file.extension" fig_size: Size of the figure (in x-axis), default: fig_size=10 Example ------- >>> cube.plot_spectrum_cube(20, 20, fcal=True) """ spectrum = np.nansum(np.nansum(self.data, axis=1), axis=1) if fcal == False: ylabel = "Flux [relative units]" else: spectrum = spectrum * 1e16 # ylabel="Flux [ 10$^{-16}$ * erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]" ylabel = "Flux [ 10$^{-16}$ erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]" # Set limits if fmin == 1e-30: fmin = np.nanmin(spectrum) if fmax == 1e30: fmax = np.nanmax(spectrum) if lmin == 0: lmin = self.wavelength[0] if lmax == 0: lmax = self.wavelength[-1] plt.figure(figsize=(fig_size, fig_size / 2.5)) plt.plot(self.wavelength, spectrum) plt.minorticks_on() plt.ylim(fmin, fmax) plt.xlim(lmin, lmax) title = "Integrated spectrum in {}".format(self.description) plt.title(title) plt.xlabel("Wavelength [$\AA$]") plt.ylabel(ylabel) if save_file == "": #plt.show() pass else: plt.savefig(save_file) #plt.close() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def plot_weight( self, norm=colors.Normalize(), cmap="gist_gray", fig_size=10, save_file="" ): """ Plot weitgh map." Example ---------- >>> cube1s.plot_weight() """ interpolated_map = np.mean(self._weight, axis=0) self.plot_map( interpolated_map, norm=norm, fig_size=fig_size, cmap=cmap, save_file=save_file, description=self.description + " - Weight map", ) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def plot_wavelength( self, wavelength, w2=0.0, cmap=fuego_color_map, fig_size=10, norm=colors.PowerNorm(gamma=1.0 / 4.0), save_file="", fcal=False, ): """ Plot map at a particular wavelength or in a wavelength range Parameters ---------- wavelength: float wavelength to be mapped. norm: Colour scale, default = colors.PowerNorm(gamma=1./4.) Normalization scale Lineal scale: norm=colors.Normalize(). Log scale:norm=colors.LogNorm() cmap: Color map used, default cmap=fuego_color_map Velocities: cmap="seismic" save_file: (Optional) Save plot in file "file.extension" """ if w2 == 0.0: interpolated_map = self.data[np.searchsorted(self.wavelength, wavelength)] description = "{} - {} $\AA$".format(self.description, wavelength) else: interpolated_map = np.nansum( self.data[ np.searchsorted(self.wavelength, wavelength): np.searchsorted( self.wavelength, w2 ) ], axis=0, ) description = "{} - Integrating [{}-{}] $\AA$".format( self.description, wavelength, w2 ) self.plot_map( mapa=interpolated_map, norm=norm, fig_size=fig_size, cmap=cmap, save_file=save_file, description=description, fcal=fcal, ) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def plot_map( self, mapa="", norm=colors.Normalize(), cmap="fuego", fig_size=10, fcal=False, save_file="", description="", contours=True, clabel=False, spaxel=0, spaxel2=0, spaxel3=0, ): """ Show a given map. Parameters ---------- map: np.array(float) Map to be plotted. If not given, it plots the integrated map. norm: Normalization scale, default is lineal scale. Lineal scale: norm=colors.Normalize(). Log scale: norm=colors.LogNorm() Power law: norm=colors.PowerNorm(gamma=1./4.) cmap: (default cmap="fuego"). Color map used. Weight: cmap = "gist_gray" Velocities: cmap="seismic". Try also "inferno", spaxel,spaxel2,spaxel3: [x,y] positions of spaxels to show with a green circle, blue square and red triangle """ if description == "": description = self.description if mapa == "": mapa = self.integrated_map description = description + " - Integrated Map" fig, ax = plt.subplots(figsize=(fig_size, fig_size)) cax = ax.imshow( mapa, origin="lower", interpolation="none", norm=norm, cmap=cmap, extent=( -0.5 * self.n_cols * self.pixel_size_arcsec, 0.5 * self.n_cols * self.pixel_size_arcsec, -0.5 * self.n_rows * self.pixel_size_arcsec, +0.5 * self.n_rows * self.pixel_size_arcsec, ), ) if contours: CS = plt.contour( mapa, extent=( -0.5 * self.n_cols * self.pixel_size_arcsec, 0.5 * self.n_cols * self.pixel_size_arcsec, -0.5 * self.n_rows * self.pixel_size_arcsec, +0.5 * self.n_rows * self.pixel_size_arcsec, ), ) if clabel: plt.clabel(CS, inline=1, fontsize=10) ax.set_title(description, fontsize=14) plt.tick_params(labelsize=12) plt.xlabel("$\Delta$ RA [arcsec]", fontsize=12) plt.ylabel("$\Delta$ DEC [arcsec]", fontsize=12) plt.legend(loc="upper right", frameon=False) plt.minorticks_on() plt.grid(which="both", color="white") # plt.gca().invert_xaxis() #MAMA if spaxel != 0: print(" The center of the cube is in spaxel [ {} , {} ]".format(self.spaxel_RA0, self.spaxel_DEC0)) plt.plot([0], [0], "+", ms=13, color="black", mew=4) plt.plot([0], [0], "+", ms=10, color="white", mew=2) offset_from_center_x_arcsec = ( spaxel[0] - self.spaxel_RA0 + 1.5 ) * self.pixel_size_arcsec offset_from_center_y_arcsec = ( spaxel[1] - self.spaxel_DEC0 + 1.5 ) * self.pixel_size_arcsec print(" - Green circle: {}, Offset from center [arcsec] : {} {}".format(spaxel, offset_from_center_x_arcsec, offset_from_center_y_arcsec)) plt.plot( [offset_from_center_x_arcsec], [offset_from_center_y_arcsec], "o", color="green", ms=7, ) if spaxel2 != 0: offset_from_center_x_arcsec = ( spaxel2[0] - self.spaxel_RA0 + 1.5 ) * self.pixel_size_arcsec offset_from_center_y_arcsec = ( spaxel2[1] - self.spaxel_DEC0 + 1.5 ) * self.pixel_size_arcsec print(" - Blue square: {} , Offset from center [arcsec] : {} , {}".format(np.round(spaxel2, 2), np.round(offset_from_center_x_arcsec, 3), np.round(offset_from_center_y_arcsec, 3))) plt.plot( [offset_from_center_x_arcsec], [offset_from_center_y_arcsec], "s", color="blue", ms=7, ) if spaxel3 != 0: offset_from_center_x_arcsec = ( spaxel3[0] - self.spaxel_RA0 + 1.5 ) * self.pixel_size_arcsec offset_from_center_y_arcsec = ( spaxel3[1] - self.spaxel_DEC0 + 1.5 ) * self.pixel_size_arcsec print(" - Red triangle: {} , Offset from center [arcsec] : {} , {}".format(np.round(spaxel3, 2), np.round(offset_from_center_x_arcsec, 3), np.round(offset_from_center_y_arcsec, 3))) plt.plot( [offset_from_center_x_arcsec], [offset_from_center_y_arcsec], "v", color="red", ms=7, ) cbar = fig.colorbar(cax, fraction=0.0457, pad=0.04) if fcal: barlabel = "{}".format("Integrated Flux [erg s$^{-1}$ cm$^{-2}$]") else: barlabel = "{}".format("Integrated Flux [Arbitrary units]") cbar.set_label(barlabel, rotation=270, labelpad=20, fontsize=14) # cbar.ax.set_yticklabels(['< -1', '0', '> 1'])# vertically oriented colorbar if save_file == "": #plt.show() pass else: plt.savefig(save_file) plt.close() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def create_map(self, wavelength1, wavelength2, name="NEW_MAP"): """ Create map adding maps in a wavelength range." Parameters ---------- wavelength1, wavelength2: floats The map will integrate all flux in the range [wavelength1, wavelength2]. map_name: string String with the name of the map, must be the same than file created here. Example ------- >>> a = cube.create_map(6810,6830, "a") > Created map with name a integrating range [ 6810 , 6830 ] """ mapa = np.nansum( self.data[ np.searchsorted(self.wavelength, wavelength1): np.searchsorted( self.wavelength, wavelength2 ) ], axis=0, ) print("\n> Created map with name {} integrating range [ {} , {} ]".format(name, wavelength1, wavelength2)) print(" Data shape {}".format(np.shape(self.data))) print(" Int map shape {}".format(np.shape(mapa))) return mapa # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def trace_peak( self, edgelow=10, edgehigh=10, plot=False, ADR=False, smoothfactor=2 ): # TASK_trace_peak """ Parameters ---------- edgelow edgehigh plot ADR smoothfactor Returns ------- """ print("\n\n> Tracing intensity peak over all wavelengths...") x = np.arange(self.n_cols) y = np.arange(self.n_rows) if ADR: print(" Checking ADR correction (small jumps are due to pixel size) ...") tmp = copy.deepcopy(self.data_ADR) tmp_img = np.nanmedian(tmp, axis=0) sort = np.sort(tmp_img.ravel()) low_ind = np.where(tmp_img < sort[int(0.8 * len(sort))]) for i in np.arange(len(low_ind[0])): tmp[:, low_ind[0][i], low_ind[1][i]] = np.nan weight = np.nan_to_num(tmp) # self.data_ADR) smoothfactor = 10 else: tmp = copy.deepcopy(self.data) tmp_img = np.nanmedian(tmp, axis=0) sort = np.sort(tmp_img.ravel()) low_ind = np.where(tmp_img < sort[int(0.9 * len(sort))]) # print(low_ind.shape) for i in np.arange(len(low_ind[0])): tmp[:, low_ind[0][i], low_ind[1][i]] = np.nan weight = np.nan_to_num(tmp) # self.data) # try to median smooth image for better results? # weight=sig.medfilt(weight,kernel_size=[51,1,1]) # also threshold the image so only the top 80% are used mean_image = np.nanmean(weight, axis=0) mean_image /= np.nanmean(mean_image) weight *= mean_image[np.newaxis, :, :] xw = x[np.newaxis, np.newaxis, :] * weight yw = y[np.newaxis, :, np.newaxis] * weight w = np.nansum(weight, axis=(1, 2)) self.x_peak = np.nansum(xw, axis=(1, 2))/w self.y_peak = np.nansum(yw, axis=(1, 2))/w self.x_peak_median = np.nanmedian(self.x_peak) self.y_peak_median = np.nanmedian(self.y_peak) self.x_peak_median_index = np.nanargmin( np.abs(self.x_peak - self.x_peak_median) ) self.y_peak_median_index = np.nanargmin( np.abs(self.y_peak - self.y_peak_median) ) wl = self.wavelength x = ( self.x_peak - self.x_peak[self.x_peak_median_index] ) * self.pixel_size_arcsec y = ( self.y_peak - self.y_peak[self.y_peak_median_index] ) * self.pixel_size_arcsec odd_number = ( smoothfactor * int((np.sqrt(self.n_wave)/2)) + 1 ) # Originarily, smoothfactor = 2 print(" Using medfilt window = {}".format(odd_number)) # fit, trimming edges index = np.arange(len(x)) valid_ind = np.where( (index >= edgelow) & (index <= len(wl) - edgehigh) & (~np.isnan(x)) & (~np.isnan(y)) )[0] valid_wl = wl[valid_ind] valid_x = x[valid_ind] wlm = sig.medfilt(valid_wl, odd_number) wx = sig.medfilt(valid_x, odd_number) # iteratively clip and refit for WX maxit = 10 niter = 0 stop = 0 fit_len = 100 # -100 while stop < 1: # print ' Trying iteration ', niter,"..." # a2x,a1x,a0x = np.polyfit(wlm, wx, 2) fit_len_init = copy.deepcopy(fit_len) if niter == 0: fit_index = np.where(wx == wx) fit_len = len(fit_index) sigma_resid = 0.0 if niter > 0: sigma_resid = median_absolute_deviation(resid) fit_index = np.where(np.abs(resid) < 4 * sigma_resid)[0] fit_len = len(fit_index) try: p = np.polyfit(wlm[fit_index], wx[fit_index], 2) pp = np.poly1d(p) fx = pp(wl) fxm = pp(wlm) resid = wx - fxm # print " Iteration {:2} results in RA: sigma_residual = {:.6f}, fit_len = {:5} fit_len ={:5}".format(niter,sigma_resid,fit_len_init,fit_len) except Exception: print(" Skipping iteration {}".format(niter)) if (niter >= maxit) or (fit_len_init == fit_len): if niter >= maxit: print(" x: Max iterations, {:2}, reached!") if fit_len_init == fit_len: print(" x: All interval fitted in iteration {:2} ! ".format(niter)) stop = 2 niter = niter + 1 # valid_y = y[edgelow:len(wl)-edgehigh] valid_ind = np.where( (index >= edgelow) & (index <= len(wl) - edgehigh) & (~np.isnan(x)) & (~np.isnan(y)) )[0] valid_y = y[valid_ind] wy = sig.medfilt(valid_y, odd_number) # iteratively clip and refit for WY maxit = 10 niter = 0 stop = 0 fit_len = -100 while stop < 1: fit_len_init = copy.deepcopy(fit_len) if niter == 0: fit_index = np.where(wy == wy) fit_len = len(fit_index) sigma_resid = 0.0 if niter > 0: sigma_resid = median_absolute_deviation(resid) fit_index = np.where(np.abs(resid) < 4 * sigma_resid)[0] fit_len = len(fit_index) try: p = np.polyfit(wlm[fit_index], wy[fit_index], 2) pp = np.poly1d(p) fy = pp(wl) fym = pp(wlm) resid = wy - fym # print " Iteration {:2} results in DEC: sigma_residual = {:.6f}, fit_len = {:5} fit_len ={:5}".format(niter,sigma_resid,fit_len_init,fit_len) except Exception: print(" Skipping iteration {}".format(niter)) if (niter >= maxit) or (fit_len_init == fit_len): if niter >= maxit: print(" y: Max iterations, {:2}, reached!") if fit_len_init == fit_len: print(" y: All interval fitted in iteration {:2} ! ".format(niter)) stop = 2 niter = niter + 1 self.ADR_x = fx self.ADR_y = fy self.ADR_x_max = np.nanmax(self.ADR_x) - np.nanmin(self.ADR_x) self.ADR_y_max = np.nanmax(self.ADR_y) - np.nanmin(self.ADR_y) ADR_xy = np.sqrt(self.ADR_x ** 2 + self.ADR_y ** 2) self.ADR_total = np.nanmax(ADR_xy) - np.nanmin(ADR_xy) if plot: plt.figure(figsize=(10, 5)) plt.plot(wl, fx, "-g", linewidth=3.5) plt.plot(wl, fy, "-g", linewidth=3.5) plt.plot(wl, x, "k.", alpha=0.2) plt.plot(wl, y, "r.", alpha=0.2) plt.plot(wl, sig.medfilt(x, odd_number), "k-") plt.plot(wl, sig.medfilt(y, odd_number), "r-") hi = np.max([np.nanpercentile(x, 95), np.nanpercentile(y, 95)]) lo = np.min([np.nanpercentile(x, 5), np.nanpercentile(y, 5)]) plt.ylim(lo, hi) plt.ylabel("$\Delta$ offset [arcsec]") plt.xlabel("Wavelength [$\AA$]") plt.title(self.description) # plt.show() # plt.close() print("> Peak coordinates tracing all wavelengths found in spaxel: ({:.2f}, {:.2f})".format( self.x_peak_median, self.y_peak_median )) print(" Effect of the ADR : {:.2f} in RA (black), {:.2f} in DEC (red), TOTAL = +/- {:.2f} arcsec".format( self.ADR_x_max, self.ADR_y_max, self.ADR_total )) # Check numbers using SMOOTH data ADR_x_max = np.nanmax(fxm) - np.nanmin(fxm) ADR_y_max = np.nanmax(fym) - np.nanmin(fym) ADR_xy = np.sqrt(fxm ** 2 + fym ** 2) ADR_total = np.nanmax(ADR_xy) - np.nanmin(ADR_xy) print(" Using SMOOTH values: ") print(" Effect of the ADR : {:.2f} in RA (black), {:.2f} in DEC (red), TOTAL = +/- {:.2f} arcsec".format( ADR_x_max, ADR_y_max, ADR_total )) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def growth_curve_between(self, min_wave=0, max_wave=0, plot=False, verbose=False): """ Compute growth curve in a wavelength range. Returns r2_growth_curve, F_growth_curve, flux, r2_half_light Parameters ---------- min_wave, max_wave: floats wavelength range = [min_wave, max_wave]. plot: boolean Plot yes/no Example ------- >>>r2_growth_curve, F_growth_curve, flux, r2_half_light = self.growth_curve_between(min_wave, max_wave, plot=True) # 0,1E30 ?? """ if min_wave == 0: min_wave = self.valid_wave_min if max_wave == 0: max_wave = self.valid_wave_max if verbose: print(" - Calculating growth curve between {} {} :".format(min_wave, max_wave)) index_min = np.searchsorted(self.wavelength, min_wave) index_max = np.searchsorted(self.wavelength, max_wave) intensity = np.nanmean(self.data[index_min:index_max, :, :], axis=0) x_peak = np.median(self.x_peak[index_min:index_max]) y_peak = np.median(self.y_peak[index_min:index_max]) x = np.arange(self.n_cols) - x_peak y = np.arange(self.n_rows) - y_peak r2 = np.sum(np.meshgrid(x ** 2, y ** 2), axis=0) sorted_by_distance = np.argsort(r2, axis=None) F_growth_curve = [] r2_growth_curve = [] total_flux = 0.0 for spaxel in sorted_by_distance: index = np.unravel_index(spaxel, (self.n_rows, self.n_cols)) I = intensity[index] # print spaxel, r2[index], L, total_flux, np.isnan(L) # if np.isnan(L) == False and L > 0: if np.isnan(I) == False: total_flux += I # TODO: Properly account for solid angle... F_growth_curve.append(total_flux) r2_growth_curve.append(r2[index]) F_guess = np.max(F_growth_curve) r2_half_light = np.interp(0.5 * F_guess, F_growth_curve, r2_growth_curve) self.seeing = np.sqrt(r2_half_light) * self.pixel_size_arcsec if plot: r_norm = np.sqrt(np.array(r2_growth_curve)/r2_half_light) F_norm = np.array(F_growth_curve)/F_guess print(" Flux guess = {} {} ratio = {}".format(F_guess, np.nansum(intensity), np.nansum(intensity)/F_guess)) print(" Half-light radius: {} arcsec = seeing if object is a star ".format(self.seeing)) print(" Light within 2, 3, 4, 5 half-light radii: {}".format(np.interp([2, 3, 4, 5], r_norm, F_norm))) plt.figure(figsize=(10, 8)) plt.plot(r_norm, F_norm, "-") plt.title( "Growth curve between {} and {} in {}".format(min_wave, max_wave, self.object)) plt.xlabel("Radius [arcsec]") plt.ylabel("Flux") plt.axvline(x=self.seeing, color="g", alpha=0.7) plt.axhline(y=0.5, color="k", linestyle=":", alpha=0.5) plt.axvline(x=2 * self.seeing, color="k", linestyle=":", alpha=0.2) plt.axvline(x=3 * self.seeing, color="k", linestyle=":", alpha=0.2) plt.axvline(x=4 * self.seeing, color="k", linestyle=":", alpha=0.2) plt.axvline(x=5 * self.seeing, color="r", linestyle="--", alpha=0.2) # plt.axhline(y=np.interp([2, 3, 4], r_norm, F_norm), color='k', linestyle=':', alpha=0.2) plt.axhline( y=np.interp([6], r_norm, F_norm), color="r", linestyle="--", alpha=0.2 ) plt.minorticks_on() # plt.show() # plt.close() return r2_growth_curve, F_growth_curve, F_guess, r2_half_light # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def half_light_spectrum( self, r_max=1, plot=False, smooth=21, min_wave=0, max_wave=0 ): """ Compute half light spectrum (for r_max=1) or integrated star spectrum (for r_max=5) in a wavelength range. Parameters ---------- r_max = 1: float r_max to integrate, in units of r2_half_light (= seeing if object is a star, for flux calibration make r_max=5) min_wave, max_wave: floats wavelength range = [min_wave, max_wave] smooth = 21: float smooth the data plot: boolean Plot yes/no Example ------- >>> self.half_light_spectrum(5, plot=plot, min_wave=min_wave, max_wave=max_wave) """ if min_wave == 0: min_wave = self.valid_wave_min if max_wave == 0: max_wave = self.valid_wave_max ( r2_growth_curve, F_growth_curve, flux, r2_half_light, ) = self.growth_curve_between( min_wave, max_wave, plot=True, verbose=True ) # 0,1E30 ?? # print "\n> Computing growth-curve spectrum..." intensity = [] smooth_x = sig.medfilt(self.x_peak, smooth) # originally, smooth = 11 smooth_y = sig.medfilt(self.y_peak, smooth) edgelow = (np.abs(self.wavelength - min_wave)).argmin() edgehigh = (np.abs(self.wavelength - max_wave)).argmin() valid_wl = self.wavelength[edgelow:edgehigh] for l in range(self.n_wave): # self.n_wave # wavelength = self.wavelength[l] # if l % (self.n_wave/10+1) == 0: # print " {:.2f} Angstroms (wavelength {}/{})..." \ # .format(wavelength, l+1, self.n_wave) x = np.arange(self.n_cols) - smooth_x[l] y = np.arange(self.n_rows) - smooth_y[l] r2 = np.sum(np.meshgrid(x ** 2, y ** 2), axis=0) spaxels = np.where(r2 < r2_half_light * r_max ** 2) intensity.append(np.nansum(self.data[l][spaxels])) valid_intensity = intensity[edgelow:edgehigh] valid_wl_smooth = sig.medfilt(valid_wl, smooth) valid_intensity_smooth = sig.medfilt(valid_intensity, smooth) if plot: fig_size = 12 plt.figure(figsize=(fig_size, fig_size / 2.5)) plt.plot(self.wavelength, intensity, "b", alpha=1, label="Intensity") plt.plot( valid_wl_smooth, valid_intensity_smooth, "r-", alpha=0.5, label="Smooth = " + "{}".format(smooth), ) margen = 0.1 * (np.nanmax(intensity) - np.nanmin(intensity)) plt.ylim(np.nanmin(intensity) - margen, np.nanmax(intensity) + margen) plt.xlim(np.min(self.wavelength), np.max(self.wavelength)) plt.ylabel("Flux") plt.xlabel("Wavelength [$\AA$]") plt.title("Integrated spectrum of {} for r_half_light = {}".format(self.object, r_max)) plt.axvline(x=min_wave, color="k", linestyle="--", alpha=0.5) plt.axvline(x=max_wave, color="k", linestyle="--", alpha=0.5) plt.minorticks_on() plt.legend(frameon=False, loc=1) # plt.show() # plt.close() if r_max == 5: print(" Saving this integrated star flux in self.integrated_star_flux") self.integrated_star_flux = np.array(intensity) return np.array(intensity) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def do_response_curve( self, filename, min_wave=0, max_wave=0, step=25.0, fit_degree=3, exp_time=60, smooth=0.03, ha_width=0, plot=True, verbose=False, ): # smooth new 5 Mar, smooth=21, now we don't use it """ Compute the response curve of a spectrophotometric star. Parameters ---------- filename: string filename where the spectrophotometric data are included (e.g. ffeige56.dat) min_wave, max_wave: floats wavelength range = [min_wave, max_wave] where the fit is performed step = 25: float Step (in A) for smoothing the data fit_degree = 3: integer degree of the polynomium used for the fit (3, 5, or 7). If fit_degree = 0 it interpolates the data exp_time = 60: float Exposition time of the calibration star smooth = 0.03: float Smooth value for interpolating the data for fit_degree = 0. plot: boolean Plot yes/no Example ------- >>> babbsdsad """ if min_wave == 0: min_wave = self.valid_wave_min if max_wave == 0: max_wave = self.valid_wave_max print("\n> Computing response curve for {} using step= {}, in range [ {} , {} ]".format(self.object, step, min_wave, max_wave)) # flux_cal_read in units of ergs/cm/cm/s/A * 10**16 # lambda_cal_read, flux_cal_read, delta_lambda_read = np.loadtxt(filename, usecols=(0,1,3), unpack=True) lambda_cal_read, flux_cal_read = np.loadtxt( filename, usecols=(0, 1), unpack=True ) valid_wl_smooth = np.arange(lambda_cal_read[0], lambda_cal_read[-1], step) tck_star = interpolate.splrep(lambda_cal_read, flux_cal_read, s=0) valid_flux_smooth = interpolate.splev(valid_wl_smooth, tck_star, der=0) valid_wave_min = min_wave valid_wave_max = max_wave edgelow = (np.abs(valid_wl_smooth - valid_wave_min)).argmin() edgehigh = (np.abs(valid_wl_smooth - valid_wave_max)).argmin() lambda_cal = valid_wl_smooth[edgelow:edgehigh] flux_cal = valid_flux_smooth[edgelow:edgehigh] lambda_min = lambda_cal - step lambda_max = lambda_cal + step if ( self.flux_cal_step == step and self.flux_cal_min_wave == min_wave and self.flux_cal_max_wave == max_wave ): print(" This has been computed before for step= {} in range [ {} , {} ], using values computed before...".format(step, min_wave, max_wave)) measured_counts = self.flux_cal_measured_counts else: measured_counts = np.array( [ self.fit_Moffat_between(lambda_min[i], lambda_max[i])[0] if lambda_cal[i] > min_wave and lambda_cal[i] < max_wave # 6200 #3650 # 7400 #5700 else np.NaN for i in range(len(lambda_cal)) ] ) self.flux_cal_step = step self.flux_cal_min_wave = min_wave self.flux_cal_max_wave = max_wave self.flux_cal_measured_counts = measured_counts _response_curve_ = ( old_div(old_div(measured_counts, flux_cal), exp_time) # TODO, function is not called. fix once called ) # Added exp_time Jan 2019 counts / (ergs/cm/cm/s/A * 10**16) / s = counts * ergs*cm*cm*A / 10**16 if np.isnan(_response_curve_[0]) == True: _response_curve_[0] = _response_curve_[ 1 ] # - (response_curve[2] - response_curve[1]) scale = np.nanmedian(_response_curve_) # self.integrated_star_flux = self.half_light_spectrum(5, plot=plot, min_wave=min_wave, max_wave=max_wave) edgelow_ = (np.abs(self.wavelength - lambda_cal[0])).argmin() edgehigh_ = (np.abs(self.wavelength - lambda_cal[-1])).argmin() self.response_wavelength = self.wavelength[edgelow_:edgehigh_] response_wavelength = [] response_curve = [] if ha_width > 0: skipping = 0 print(" Skipping H-alpha absorption with width ={} A ...".format(ha_width)) for i in range(len(lambda_cal)): if ( lambda_cal[i] > 6563 - ha_width / 2.0 and lambda_cal[i] < 6563 + ha_width / 2.0 ): # print " Skipping ",lambda_cal[i] skipping = skipping + 1 else: response_wavelength.append(lambda_cal[i]) response_curve.append(_response_curve_[i]) print(" ... Skipping a total of {} wavelength points".format(skipping)) else: response_wavelength = lambda_cal response_curve = _response_curve_ if fit_degree == 0: print(" Using interpolated data with smooth = {} for computing the response curve... ".format(smooth)) median_kernel = 151 response_curve_medfilt = sig.medfilt(response_curve, np.int(median_kernel)) interpolated_flat = interpolate.splrep( response_wavelength, response_curve_medfilt, s=smooth ) self.response_curve = interpolate.splev( self.response_wavelength, interpolated_flat, der=0 ) else: if fit_degree != 9: if fit_degree != 7: if fit_degree != 5: if fit_degree != 3: print(" We can't use a polynomium of grade here, using fit_degree = 3 instead".format(fit_degree)) fit_degree = 3 if fit_degree == 3: a3x, a2x, a1x, a0x = np.polyfit(response_wavelength, response_curve, 3) a4x = 0 a5x = 0 a6x = 0 a7x = 0 a8x = 0 a9x = 0 if fit_degree == 5: a5x, a4x, a3x, a2x, a1x, a0x = np.polyfit( response_wavelength, response_curve, 5 ) a6x = 0 a7x = 0 a8x = 0 a9x = 0 if fit_degree == 7: a7x, a6x, a5x, a4x, a3x, a2x, a1x, a0x = np.polyfit( response_wavelength, response_curve, 7 ) a8x = 0 a9x = 0 if fit_degree == 9: a9x, a8x, a7x, a6x, a5x, a4x, a3x, a2x, a1x, a0x = np.polyfit( response_wavelength, response_curve, 9 ) wlm = self.response_wavelength self.response_curve = ( a0x + a1x * wlm + a2x * wlm ** 2 + a3x * wlm ** 3 + a4x * wlm ** 4 + a5x * wlm ** 5 + a6x * wlm ** 6 + a7x * wlm ** 7 + a8x * wlm ** 8 + a9x * wlm ** 9 ) # Better use next # Adapting Matt code for trace peak ---------------------------------- smoothfactor = 2 wl = response_wavelength # response_wavelength x = response_curve odd_number = ( smoothfactor * int((np.sqrt(len(wl))/2)) - 1 ) # Originarily, smoothfactor = 2 print(" Using medfilt window = {} for fitting...".format(odd_number)) # fit, trimming edges # index=np.arange(len(x)) # edgelow=0 # edgehigh=1 # valid_ind=np.where((index >= edgelow) & (index <= len(wl)-edgehigh) & (~np.isnan(x)) )[0] # print valid_ind # valid_wl = wl[edgelow:-edgehigh] # wl[valid_ind] # valid_x = x[edgelow:-edgehigh] #x[valid_ind] # wlm = sig.medfilt(valid_wl, odd_number) # wx = sig.medfilt(valid_x, odd_number) wlm = sig.medfilt(wl, odd_number) wx = sig.medfilt(x, odd_number) # iteratively clip and refit for WX maxit = 10 niter = 0 stop = 0 fit_len = 100 # -100 while stop < 1: # print ' Trying iteration ', niter,"..." # a2x,a1x,a0x = np.polyfit(wlm, wx, 2) fit_len_init = copy.deepcopy(fit_len) if niter == 0: fit_index = np.where(wx == wx) fit_len = len(fit_index) sigma_resid = 0.0 if niter > 0: sigma_resid = median_absolute_deviation(resid) fit_index = np.where(np.abs(resid) < 4 * sigma_resid)[0] fit_len = len(fit_index) try: p = np.polyfit(wlm[fit_index], wx[fit_index], fit_degree) pp = np.poly1d(p) fx = pp(wl) fxm = pp(wlm) resid = wx - fxm # print " Iteration {:2} results in RA: sigma_residual = {:.6f}, fit_len = {:5} fit_len ={:5}".format(niter,sigma_resid,fit_len_init,fit_len) except Exception: print(" Skipping iteration {}".format(niter)) if (niter >= maxit) or (fit_len_init == fit_len): if niter >= maxit: print(" Max iterations, {:2}, reached!") if fit_len_init == fit_len: print(" All interval fitted in iteration {:2} ! ".format(niter)) stop = 2 niter = niter + 1 # -------------------------------------------------------------------- if plot: plt.figure(figsize=(10, 8)) plt.plot( lambda_cal, old_div(measured_counts, exp_time), # TODO, function is not called. fix once called "g+", ms=10, mew=3, label="measured counts", ) plt.plot(lambda_cal, flux_cal * scale, "k*-", label="flux_cal * scale") plt.plot( lambda_cal, flux_cal * _response_curve_, "c:", label="flux_cal * response", ) plt.xlim(np.min(self.wavelength), np.max(self.wavelength)) plt.ylabel("Flux") plt.xlabel("Wavelength [$\AA$]") plt.title("Response curve for absolute flux calibration using {}".format(self.object)) plt.legend(frameon=False, loc=1) plt.grid(which="both") plt.axvline(x=min_wave, color="k", linestyle="--", alpha=0.5) plt.axvline(x=max_wave, color="k", linestyle="--", alpha=0.5) plt.minorticks_on() # plt.show() # plt.close() plt.figure(figsize=(10, 8)) if fit_degree > 0: text = "Fit using polynomium of degree {}".format(fit_degree) else: text = "Using interpolated data with smooth = {}".format(smooth) plt.plot( self.response_wavelength, self.response_curve, "r-", alpha=0.4, linewidth=4, label=text, ) plt.plot(lambda_cal, _response_curve_, "k--", alpha=0.8) plt.plot( response_wavelength, response_curve, "g-", alpha=0.8, label="Response curve", ) plt.plot( wl, fx, "b-", linewidth=6, alpha=0.5, label="Response curve (filtered)" ) plt.xlim(np.min(self.wavelength), np.max(self.wavelength)) plt.ylabel("Flux") plt.xlabel("Wavelength [$\AA$]") plt.title("Response curve for absolute flux calibration using {}".format(self.object)) plt.minorticks_on() plt.grid(which="both") plt.axvline(x=min_wave, color="k", linestyle="--", alpha=0.5) plt.axvline(x=max_wave, color="k", linestyle="--", alpha=0.5) plt.legend(frameon=True, loc=4, ncol=4) # plt.show() # plt.close() interpolated_flat = interpolate.splrep(response_wavelength, fx) # , s=smooth) self.response_curve = interpolate.splev( self.response_wavelength, interpolated_flat, der=0 ) # plt.plot(self.response_wavelength, self.response_curve, "b-", alpha=0.5, linewidth=6, label = "Response curve (filtered)") print(" Min wavelength at {:.2f} with value = {:.3f} /s".format( self.response_wavelength[0], self.response_curve[0] )) print(" Max wavelength at {:.2f} with value = {:.3f} /s".format( self.response_wavelength[-1], self.response_curve[-1] )) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def fit_Moffat_between(self, min_wave=0, max_wave=0, r_max=5, plot=False): """ Parameters ---------- min_wave max_wave r_max plot Returns ------- """ if min_wave == 0: min_wave = self.valid_wave_min if max_wave == 0: max_wave = self.valid_wave_max ( r2_growth_curve, F_growth_curve, flux, r2_half_light, ) = self.growth_curve_between(min_wave, max_wave, plot) flux, alpha, beta = fit_Moffat( r2_growth_curve, F_growth_curve, flux, r2_half_light, r_max, plot ) r2_half_light = alpha * (np.power(2.0, 1.0 / beta) - 1) if plot: print("Moffat fit: Flux = {:.3e},".format(flux), "HWHM = {:.3f},".format( np.sqrt(r2_half_light) * self.pixel_size_arcsec ), "beta = {:.3f}".format(beta)) return flux, np.sqrt(r2_half_light) * self.pixel_size_arcsec, beta # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # CUBE CLASS (ANGEL + BEN) ALL OF THIS NEEDS TO BE CAREFULLY TESTED & UPDATED! # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- class CUBE(RSS, Interpolated_cube): """ This class reads the FITS files with COMBINED datacubes. Routines included: - cube.map_wavelength(wavelength, contours=True)\n - cube.plot_spectrum_cube(x,y, fcal=True) """ # ----------------------------------------------------------------------------- def __init__(self, filename): # Create RSS object super(CUBE, self).__init__() print("\n> Reading combined datacube ''{}''".format(filename)) RSS_fits_file = fits.open(filename) # Open file # General info: self.object = RSS_fits_file[0].header["OBJECT"] # self.description = self.object + ' - ' + filename self.description = RSS_fits_file[0].header[ "DESCRIP" ] # NOTE: it was originally "DEF" self.RA_centre_deg = RSS_fits_file[0].header["RAcen"] self.DEC_centre_deg = RSS_fits_file[0].header["DECcen"] self.PA = RSS_fits_file[0].header["PA"] self.wavelength = RSS_fits_file[1].data # TODO: why is this 1? shouldn't it be [0], maybe cause we are doing the biggest variance? self.flux_calibration = RSS_fits_file[2].data self.n_wave = len(self.wavelength) self.data = RSS_fits_file[0].data self.wave_resolution = (self.wavelength[-1] - self.wavelength[0])/self.n_wave self.n_cols = RSS_fits_file[0].header["Ncols"] self.n_rows = RSS_fits_file[0].header["Nrows"] self.pixel_size_arcsec = RSS_fits_file[0].header["PIXsize"] self.flux_calibrated = RSS_fits_file[0].header["FCAL"] self.number_of_combined_files = RSS_fits_file[0].header["COFILES"] self.offsets_files = RSS_fits_file[0].header["OFFSETS"] print("\n Object = {}".format(self.object)) print(" Description = {}".format(self.description)) print(" Centre: RA = {} Deg".format(self.RA_centre_deg)) print(" DEC = {} Deg".format(self.DEC_centre_deg)) print(" PA = {} Deg".format(self.PA)) print(" Size [pix] = {} x {}".format(self.n_rows, self.n_cols)) print(" Size [arcsec] = {} x {}".format(self.n_rows * self.pixel_size_arcsec, self.n_cols * self.pixel_size_arcsec)) print(" Pix size = {} arcsec".format(self.pixel_size_arcsec)) print(" Files combined = {}".format(self.number_of_combined_files)) print(" Offsets used = {}".format(self.offsets_files)) print(" Wave Range = [ {} , {} ]".format(self.wavelength[0], self.wavelength[-1])) print(" Wave Resol. = {} A/pix".format(self.wave_resolution)) print(" Flux Cal. = {}".format(self.flux_calibrated)) print("\n> Use these parameters for acceding the data :\n") print(" cube.wavelength : Array with wavelengths") print(" cube.data[w,x,y] : Flux of the w wavelength in spaxel (x,y)") if self.flux_calibrated: print(" cube.flux_calibration : Flux calibration per wavelength [ 1 / (1E-16 * erg/cm**2/s/A) ] ") print("\n> Cube readed! ") # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def map_wavelength( self, wavelength, cmap="fuego", fig_size=10, norm=colors.PowerNorm(gamma=1.0 / 4.0), save_file="", contours=True, fcal=False, ): """ Plot map at a particular wavelength. Parameters ---------- wavelength: float wavelength to be mapped. norm: Colour scale, default = colors.PowerNorm(gamma=1./4.)\n Log scale: norm=colors.LogNorm() \n Lineal scale: norm=colors.Normalize(). cmap: Color map used, default cmap="fuego"\n Weight: cmap = "gist_gray" \n Velocities: cmap="seismic".\n Try also "inferno", save_file: (Optional) Save plot in file "file.extension" Example ------- >>> cube.map_wavelength(6820, contours=True, cmap="seismic") """ if fcal: interpolated_map = self.data[np.searchsorted(self.wavelength, wavelength)] else: interpolated_map = self.data[np.searchsorted(self.wavelength, wavelength)] title = "{} - {} $\AA$".format(self.description, wavelength) self.plot_map( interpolated_map, cmap=cmap, fig_size=fig_size, norm=norm, contours=contours, save_file=save_file, title=title, fcal=fcal, ) # CHECK # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def plot_map( self, mapa, cmap="fuego", fig_size=10, norm=colors.PowerNorm(gamma=1.0 / 4.0), save_file="", contours=True, title="", vmin=0, vmax=1000, fcal=False, log=False, clabel=False, barlabel="", ): """ Plot a given map. Parameters ---------- wavelength: float wavelength to be mapped. norm: Colour scale, default = colors.PowerNorm(gamma=1./4.)\n Log scale: norm=colors.LogNorm() \n Lineal scale: norm=colors.Normalize(). cmap: Color map used, default cmap="fuego"\n Weight: cmap = "gist_gray" \n Velocities: cmap="seismic".\n Try also "inferno", save_file: (Optional) Save plot in file "file.extension" Example ------- >>> cube.plot_map(mapa, contours=True, cmap="seismic") """ fig, ax = plt.subplots(figsize=(fig_size, fig_size)) if log: cax = ax.imshow( mapa, origin="lower", interpolation="none", norm=colors.LogNorm(vmin=vmin, vmax=vmax), cmap=cmap, extent=( -0.5 * self.n_cols * self.pixel_size_arcsec, 0.5 * self.n_cols * self.pixel_size_arcsec, -0.5 * self.n_rows * self.pixel_size_arcsec, 0.5 * self.n_rows * self.pixel_size_arcsec, ), ) print("Map in log scale") else: cax = ax.imshow( mapa, origin="lower", interpolation="none", norm=norm, cmap=cmap, extent=( -0.5 * self.n_cols * self.pixel_size_arcsec, 0.5 * self.n_cols * self.pixel_size_arcsec, -0.5 * self.n_rows * self.pixel_size_arcsec, 0.5 * self.n_rows * self.pixel_size_arcsec, ), vmin=vmin, vmax=vmax, ) if contours: CS = plt.contour( mapa, extent=( -0.5 * self.n_cols * self.pixel_size_arcsec, 0.5 * self.n_cols * self.pixel_size_arcsec, -0.5 * self.n_rows * self.pixel_size_arcsec, 0.5 * self.n_rows * self.pixel_size_arcsec, ), ) if clabel: plt.clabel(CS, inline=1, fontsize=10) ax.set_title(title, fontsize=fig_size * 1.3) plt.tick_params(labelsize=fig_size) plt.xlabel("$\Delta$ RA [arcsec]", fontsize=fig_size * 1.2) plt.ylabel("$\Delta$ DEC [arcsec]", fontsize=fig_size * 1.2) # plt.legend(loc='upper right', frameon=False) plt.minorticks_on() plt.grid(which="both", color="green") plt.gca().invert_xaxis() sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax)) sm._A = [] cbar = fig.colorbar(sm, fraction=0.0499, pad=0.02) # cbar = fig.colorbar(cax, fraction=0.0490, pad=0.04, norm=colors.Normalize(clip=False)) if barlabel == "": if fcal: barlabel = "{}".format("Integrated Flux [10$^{-16}$ erg s$^{-1}$ cm$^{-2}$]") else: barlabel = "{}".format("Integrated Flux [Arbitrary units]") # if fcal: # cbar.set_label("{}".format("Integrated Flux [10$^{-16}$ erg s$^{-1}$ cm$^{-2}$]"), rotation=270, labelpad=40, fontsize=fig_size*1.2) # else: # cbar.set_label("{}".format("Integrated Flux [Arbitrary units]"), rotation=270, labelpad=40, fontsize=fig_size*1.2) cbar.set_label(barlabel, rotation=270, labelpad=20, fontsize=fig_size * 1.2) # cbar.ax.set_yticklabels(['< -1', '0', '> 1'])# vertically oriented colorbar # cbar.set_ticks([1.5,2,3,4,5,6], update_ticks=True) # cbar.set_ticklabels([1.5,2,3,4,5,6]) if save_file == "": #plt.show() pass else: plt.savefig(save_file) plt.close() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # # BEN ROUTINES # # def subtractContinuum(self, spectrum): """ Subtract the median value from each intensity in a provided spectrum. Parameters ---------- spectrum: The list of intensities. """ med = np.nanmedian(spectrum) for i in range(len(spectrum)): spectrum[i] = spectrum[i] - med if spectrum[i] < 0: spectrum[i] = 0 return spectrum def plot_spectrum_cube_ben( self, x, y, lmin=0, lmax=0, fmin=1e-30, fmax=1e30, fig_size=10, save_file="", fcal=False, ): """ Plot spectrum of a particular spaxel. Parameters ---------- x, y: coordenates of spaxel to show spectrum. lmin, lmax: The range of wavelengths to plot. Default is whole spectrum. fmin, fmax: Plot spectrum in flux range [fmin, fmax] fcal: Use flux calibration, default fcal=False.\n If fcal=True, cube.flux_calibration is used. save_file: (Optional) Save plot in file "file.extension" fig_size: Size of the figure (in x-axis), default: fig_size=10 Example ------- >>> cube.plot_spectrum_cube_ben(20, 20, fcal=True) """ # Define x and y axis to plot newWave = [] newSpectrum = [] if fcal == False: spectrum = self.data[:, x, y] ylabel = "Flux [relative units]" else: spectrum = (self.data[:, x, y]/self.flux_calibration)/1e16 # ylabel="Flux [ 10$^{-16}$ * erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]" ylabel = "Flux [ erg cm$^{-2}$ s$^{-1}$ A$^{-1}$]" # Remove NaN values from spectrum and replace them with zero. spectrum = np.nan_to_num(spectrum) # Subtract continuum from spectrum subSpectrum = self.subtractContinuum(spectrum) if fmin == 1e-30: fmin = np.nanmin(spectrum) if fmax == 1e30: fmax = np.nanmax(spectrum) # Since I can't define the correct default startpoint/endpoint within the # function arguments section, I set them here. if lmin == 0: lmin = self.wavelength[0] if lmax == 0: lmax = self.wavelength[-1] # Create a new list of wavelengths to plot based on the provided # wavelength startpoint and endpoint. for i in range(len(self.wavelength)): if self.wavelength[i] >= lmin and self.wavelength[i] <= lmax: newWave.append(self.wavelength[i]) newSpectrum.append(subSpectrum[i]) plt.figure(figsize=(fig_size, fig_size / 2.5)) plt.plot(newWave, newSpectrum) plt.ylim([fmin, fmax]) plt.xlim([lmin, lmax]) plt.minorticks_on() title = "Spectrum of spaxel ({} , {}) in {}".format(x, y, self.description) plt.title(title, fontsize=fig_size * 1.2) plt.tick_params(labelsize=fig_size * 0.8) plt.xlabel("Wavelength [$\AA$]", fontsize=fig_size * 1) plt.ylabel(ylabel, fontsize=fig_size * 1) if save_file == "": #plt.show() pass else: plt.savefig(save_file) plt.close() def calculateRatio(self, x, y, aStart, aEnd, bStart, bEnd, fcal=False): """ Given two wavelengths ranges, find the peak intensities and calculate the ratio between them. Parameters ---------- x, y: The spaxel we are interested in. aStart, aEnd: The startpoint and endpoint of the range that the first emission line will fall in. bStart, bEnd: The startpoint and endpoint of the range that the second emission line will fall in. """ aFirstIndex = np.searchsorted(self.wavelength, aStart) aLastIndex = np.searchsorted(self.wavelength, aEnd) bFirstIndex = np.searchsorted(self.wavelength, bStart) bLastIndex = np.searchsorted(self.wavelength, bEnd) if fcal == False: spectrum = self.data[:, x, y] else: spectrum = (self.data[:, x, y]/self.flux_calibration)/1e16 spectrum = np.nan_to_num(spectrum) subSpectrum = self.subtractContinuum(spectrum) aValues = [] tempIndex = aFirstIndex while tempIndex <= aLastIndex: aValues.append(subSpectrum[tempIndex]) tempIndex = tempIndex + 1 aMax =
np.nanmax(aValues)
numpy.nanmax
''' Data loading functions during training (modified from from https://github.com/yukimasano/self-label) ''' import torchvision import torch import torchvision.transforms as tfs import models import os, glob, natsort, pdb import numpy as np import util import xarray as xr from scipy.stats import mode import pickle from sklearn.model_selection import StratifiedKFold, StratifiedShuffleSplit from datetime import datetime as dt import h5py import mne class DataSet(torch.utils.data.Dataset): """ pytorch Dataset that return image index too""" def __init__(self, dt): self.dt = dt def __getitem__(self, index): data, target = self.dt[index] return data, target, index def __len__(self): return len(self.dt) def get_aug_dataloader(image_dir, is_validation=False, batch_size=256, image_size=256, crop_size=224, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], num_workers=8, augs=1, shuffle=True): print(image_dir) if image_dir is None: return None print("imagesize: ", image_size, "cropsize: ", crop_size) normalize = tfs.Normalize(mean=mean, std=std) if augs == 0: _transforms = tfs.Compose([ tfs.Resize(image_size), tfs.CenterCrop(crop_size), tfs.ToTensor(), normalize ]) elif augs == 1: _transforms = tfs.Compose([ tfs.Resize(image_size), tfs.CenterCrop(crop_size), tfs.RandomHorizontalFlip(), tfs.ToTensor(), normalize ]) elif augs == 2: _transforms = tfs.Compose([ tfs.Resize(image_size), tfs.RandomResizedCrop(crop_size), tfs.RandomHorizontalFlip(), tfs.ToTensor(), normalize ]) elif augs == 3: _transforms = tfs.Compose([ tfs.RandomResizedCrop(crop_size), tfs.RandomGrayscale(p=0.2), tfs.ColorJitter(0.4, 0.4, 0.4, 0.4), tfs.RandomHorizontalFlip(), tfs.ToTensor(), normalize ]) if is_validation: dataset = DataSet(torchvision.datasets.ImageFolder(image_dir + '/val', _transforms)) else: dataset = DataSet(torchvision.datasets.ImageFolder(image_dir + '/train', _transforms)) loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, drop_last=False ) return loader def return_model_loader(args, return_loader=True): outs = [args.ncl]*args.hc assert args.arch in ['alexnet','resnetv2','resnetv1','htnet','htnet_pose','htnet_rnn'] if not hasattr(args, 't_max'): args.t_max = 1 if not hasattr(args, 't_min'): args.t_min = -1 if not hasattr(args, 'rescale_rate'): args.rescale_rate = 0 if not hasattr(args, 'cont_data'): args.cont_data = False train_loader = get_htnet_data_loader(data_dir=args.imagenet_path, batch_size=args.batch_size, num_workers=args.workers, pat_id = args.pat_id, n_states = args.n_states, data_srate = args.data_srate, len_eps = args.len_eps, curr_fold = args.curr_fold, tlim = [args.t_min, args.t_max], rescale_rate = args.rescale_rate, cont_data = args.cont_data, use_ecog = args.use_ecog) # SP 12/22/2020: switched to HTNet subfunc and removed n_augs argument if (args.arch == 'alexnet'): model = models.__dict__[args.arch](num_classes=outs) elif args.arch in ['htnet','htnet_pose','htnet_rnn']: Chans,Samples = train_loader.dataset.__getitem__(0)[0].shape model, params = models.__dict__[args.arch](num_classes=outs, Chans=Chans, Samples=Samples, use_ecog = args.use_ecog, is_supervised = args.is_supervised, cont_data = args.cont_data, param_lp=args.param_lp) elif args.arch == 'resnetv2': # resnet model = models.__dict__[args.arch](num_classes=outs, nlayers=50, expansion=1) else: model = models.__dict__[args.arch](num_classes=outs) if not return_loader: return model return model, train_loader, Chans, Samples, params def get_standard_data_loader(image_dir, is_validation=False, batch_size=192, image_size=256, crop_size=224, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], num_workers=8,no_random_crops=False, tencrops=True): """Get a standard data loader for evaluating AlexNet representations in a standard way. """ if image_dir is None: return None normalize = tfs.Normalize(mean=mean, std=std) if is_validation: if tencrops: transforms = tfs.Compose([ tfs.Resize(image_size), tfs.TenCrop(crop_size), tfs.Lambda(lambda crops: torch.stack([normalize(tfs.ToTensor()(crop)) for crop in crops])) ]) batch_size = int(batch_size/10) else: transforms = tfs.Compose([ tfs.Resize(image_size), tfs.CenterCrop(crop_size), tfs.ToTensor(), normalize ]) else: if not no_random_crops: transforms = tfs.Compose([ tfs.RandomResizedCrop(crop_size), tfs.RandomHorizontalFlip(), tfs.ToTensor(), normalize ]) else: transforms = tfs.Compose([ tfs.Resize(image_size), tfs.CenterCrop(crop_size), tfs.RandomHorizontalFlip(), tfs.ToTensor(), normalize ]) dataset = torchvision.datasets.ImageFolder(image_dir, transforms) loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=not is_validation, num_workers=num_workers, pin_memory=True, sampler=None ) return loader def get_standard_data_loader_pairs(dir_path, **kargs): """Get a pair of data loaders for training and validation. This is only used for the representation EVALUATION part. """ train = get_standard_data_loader(os.path.join(dir_path, "train"), is_validation=False, **kargs) val = get_standard_data_loader(os.path.join(dir_path, "val"), is_validation=True, **kargs) return train, val ### HTNet-specific code ### def get_htnet_data_loader(data_dir, dat_type='train', batch_size=192, num_workers=1, shuffle=False, pat_id = 'EC01', n_states = 2, data_srate = 250, len_eps = 3, curr_fold = 0, tlim = [-1,1], rescale_rate = 0, cont_data = False, use_ecog=True): """Get a data loader for evaluating HTNet representations in a standard way. """ shuffle = dat_type == 'train' if data_dir is None: return None if cont_data: is_h5 = True if data_dir[-2:] == 'h5' else False if is_h5: dataset = ContNeuralDataset(data_dir) else: dataset = NeuralDataset(data_dir, dat_type=dat_type, pat_id=pat_id, n_states=n_states, curr_fold=curr_fold, tlim = tlim, rescale_rate = rescale_rate) # win_len = 2 # win_spacing = 0 # t_ind_lims = [12,16] #[8,16] # dataset = ContNeuralDataset(data_dir, win_len = win_len, # win_spacing = win_spacing, t_ind_lims = t_ind_lims) else: dataset = NeuralDataset(data_dir, dat_type=dat_type, pat_id=pat_id, n_states=n_states, curr_fold=curr_fold, tlim = tlim, rescale_rate = rescale_rate, use_ecog=use_ecog) # if is_validation: # dataset = NeuralDataset(data_dir + '/val') # else: # dataset = NeuralDataset(data_dir + '/train') loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, sampler=None ) return loader class NeuralDataset(torch.utils.data.Dataset): '''Data loader class (currently loads in all data at once; may want to change this for larger datasets)''' def __init__(self, lp, dat_type='train', rand_seed = 1337, pat_id = 'EC01', tlim = [-1,1], n_chans_all = 140, n_folds = 3, curr_fold = 0, n_states = 2, data_srate = 250, len_eps = 3, rescale_rate = 0, use_ecog=True): self.dat_type = dat_type self.rescale_rate = rescale_rate np.random.seed(rand_seed) # Load ECoG data X,y,X_test,y_test,sbj_order,sbj_order_test = load_data(pat_id, lp+'/', n_chans_all=n_chans_all, test_day=None, tlim=tlim, n_states=n_states, data_srate = data_srate, len_eps = len_eps) # test_day='last' X[np.isnan(X)] = 0 # set all NaN's to 0 # Make sure labels start at 0 and are consecutive miny = y.min() y -= miny y = y.astype('int') # Create splits for train/val and fit model n_folds = 5 sss = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=0) for i, inds in enumerate(sss.split(X, y)): if i == curr_fold: train_inds, test_inds = inds # Split data and labels into train/val sets scalings = 'median' # 'mean' if use_ecog else 'median' ss_dat = mne.decoding.Scaler(scalings=scalings) ss_dat.fit(X[train_inds,...]) if self.dat_type=='train': # Standardize data x_train = ss_dat.transform(X[train_inds,...]) # X[train_inds,...] self.x_data = torch.tensor(x_train, dtype=torch.float32) self.y_data = torch.tensor(y[train_inds], dtype=torch.long) elif self.dat_type=='test': # Standardize data X_test = ss_dat.transform(X[test_inds,...]) self.x_data = torch.tensor(X_test, dtype=torch.float32) self.y_data = torch.tensor(y[test_inds], dtype=torch.long) else: # Standardize data x_val = ss_dat.transform(X[test_inds,...]) # X[val_inds,...] self.x_data = torch.tensor(x_val, dtype=torch.float32) self.y_data = torch.tensor(y[test_inds], dtype=torch.long) def __len__(self): return len(self.x_data) # required def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() X = self.x_data[idx, ...] y = self.y_data[idx] return X, y, idx def load_data(pats_ids_in, lp, n_chans_all=64, test_day=None, tlim=[-1,1], event_types=['rest','move'], n_states = 2, data_srate = 250, len_eps = 3): ''' Load ECoG data from all subjects and combine (uses xarray variables) If len(pats_ids_in)>1, the number of electrodes will be padded or cut to match n_chans_all If test_day is not None, a variable with test data will be generated for the day specified If test_day = 'last', the last day will be set as the test day. ''' if not isinstance(pats_ids_in, list): pats_ids_in = [pats_ids_in] sbj_order,sbj_order_test = [],[] X_test_subj,y_test_subj = [],[] #placeholder vals #Gather each subjects data, and concatenate all days fID = natsort.natsorted(glob.glob(lp+pats_ids_in[0]+'*_data.nc'))[0] ep_data_in = xr.open_dataset(fID) if 'events' not in ep_data_in['__xarray_dataarray_variable__'].dims: # Case for loading Kai's data for j in range(len(pats_ids_in)): pat_curr = pats_ids_in[j] fID = natsort.natsorted(glob.glob(lp+pat_curr+'*_data.nc'))[0] ep_data_in = xr.open_dataset(fID).to_array().values ep_data_in = ep_data_in.reshape(ep_data_in.shape[0],ep_data_in.shape[1],-1,int(len_eps*data_srate)) ep_data_in = np.moveaxis(ep_data_in,2,0).squeeze() # events, 1, channels, time labels = ep_data_in[...,-1,:].squeeze() labels = mode(labels,axis=1)[0].squeeze() # 1 state per event ep_data_in = ep_data_in[...,:-1,:] n_ecog_chans = ep_data_in.shape[-2] if n_chans_all < n_ecog_chans: n_chans_curr = n_chans_all else: n_chans_curr = n_ecog_chans #Remove events with greater than n_states if n_states==3: labels_cp = labels.copy() labels = np.delete(labels,
np.nonzero(labels_cp>2)
numpy.nonzero
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions # and limitations under the License. import pytest # noqa: F401; pylint: disable=unused-variable from pytest import approx def test_importable(): import pecos.xmc # noqa: F401 from pecos import xmc # noqa: F401 from pecos.xmc import xlinear # noqa: F401 from pecos.xmc import xtransformer # noqa: F401 from pecos.xmc import Indexer # noqa: F401 def test_hierarchicalkmeans(): import numpy as np import scipy.sparse as smat from sklearn.preprocessing import normalize from pecos.xmc import Indexer feat_mat = normalize( smat.csr_matrix([[1, 0], [0.95, 0.05], [0.9, 0.1], [0, 1]], dtype=np.float32) ) target_balanced = [0, 0, 1, 1] target_imbalanced = [0, 0, 0, 1] balanced_chain = Indexer.gen(feat_mat, max_leaf_size=3) balanced_assignments = (balanced_chain[-1].todense() == [0, 1]).all(axis=1).A1 assert np.array_equal(balanced_assignments, target_balanced) or np.array_equal( ~balanced_assignments, target_balanced ) imbalanced_chain = Indexer.gen(feat_mat, imbalanced_ratio=0.4, max_leaf_size=3) imbalanced_assignments = (imbalanced_chain[-1].todense() == [0, 1]).all(axis=1).A1 assert np.array_equal(imbalanced_assignments, target_imbalanced) or np.array_equal( ~imbalanced_assignments, target_imbalanced ) chain2 = Indexer.gen(feat_mat, max_leaf_size=1, nr_splits=2) chain4 = Indexer.gen(feat_mat, max_leaf_size=1, nr_splits=4) assert (chain2.chain[-1] - chain4.chain[-1]).nnz == 0 assert (chain2.chain[1].dot(chain2.chain[0]) - chain4.chain[0]).nnz == 0 def test_label_embedding(): import random import numpy as np import scipy.sparse as smat from sklearn.preprocessing import normalize from pecos.xmc import LabelEmbeddingFactory X = smat.csr_matrix(smat.eye(3)).astype(np.float32) X_dense = X.toarray() Y = np.array([[1, 1, 1, 1, 0], [1, 1, 0, 1, 1], [0, 1, 1, 1, 1]]) Y = smat.csr_matrix(Y).astype(np.float32) Lt_dense = np.array( [ [0.70710678, 0.70710678, 0.0], [0.57735027, 0.57735027, 0.57735027], [0.70710678, 0.0, 0.70710678], [0.57735027, 0.57735027, 0.57735027], [0.0, 0.70710678, 0.70710678], ] ) Lt = smat.csr_matrix(Lt_dense) # pifa, X.dtype = csr_matrix, and simple X/Y with closed-form Lt_dense Lp = LabelEmbeddingFactory.create(Y, X, method="pifa").toarray() assert Lt_dense == approx( Lp, abs=1e-6 ), f"Lt_dense (true label embedding) != Lp (pifa label embedding), where closed-form X is sparse" # pifa, X.dtype = np.array, and the same X/Y with previous closed-form Lt_dense Lp = LabelEmbeddingFactory.create(Y, X_dense, method="pifa") assert Lt_dense == approx( Lp, abs=1e-6 ), f"Lt_dense (true label embedding) != Lp (pifa label embedding), where closed-form X is dense" # test data for pifa_lf_concat and pifa_lf_convex_combine Lp = LabelEmbeddingFactory.create(Y, X_dense, method="pifa") Lt_half_dense = Lt_dense * 0.5 Lt_half = smat.csr_matrix(Lt_half_dense) # test data for pifa_lf_concat Lplc_true = np.hstack([Lp, Lt_half_dense]) # pifa_lf_concat, X.dtype = ndarray, Z.dtype = ndarray Lplc = LabelEmbeddingFactory.create(Y, X_dense, Z=Lt_half_dense, method="pifa_lf_concat") assert isinstance( Lplc, np.ndarray ), f"Return matrix should be np.ndarray when X.dtype = ndarray, Z.dtype = ndarray" assert Lplc == approx( Lplc_true ), f"Lplc_true (true label embedding) != Lplc (pifa_lf_concat label embedding), where X.dtype = ndarray, Z.dtype = ndarray" # pifa_lf_concat, X.dtype = ndarray, Z.dtype = csr_matrix Lplc = LabelEmbeddingFactory.create(Y, X_dense, Z=Lt_half, method="pifa_lf_concat") assert isinstance( Lplc, smat.csr_matrix ), f"Return matrix should be csr_matrix when X.dtype = ndarray, Z.dtype = csr_matrix" assert Lplc.toarray() == approx( Lplc_true ), f"Lplc_true (true label embedding) != Lplc (pifa_lf_concat label embedding), where X.dtype = ndarray, Z.dtype = csr_matrix" # pifa_lf_concat, X.dtype = csr_matrix, Z.dtype = ndarray Lplc = LabelEmbeddingFactory.create(Y, X, Z=Lt_half_dense, method="pifa_lf_concat") assert isinstance( Lplc, smat.csr_matrix ), f"Return matrix should be csr_matrix when X.dtype = csr_matrix, Z.dtype = ndarray" assert Lplc.toarray() == approx( Lplc_true ), f"Lplc_true (true label embedding) != Lplc (pifa_lf_concat label embedding), where X.dtype = csr_matrix, Z.dtype = ndarray" # pifa_lf_concat, X.dtype = csr_matrix, Z.dtype = csr_matrix Lplc = LabelEmbeddingFactory.create(Y, X, Z=Lt_half, method="pifa_lf_concat") assert isinstance( Lplc, smat.csr_matrix ), f"Return matrix should be csr_matrix when X.dtype = csr_matrix, Z.dtype = csr_matrix" assert Lplc.toarray() == approx( Lplc_true ), f"Lplc_true (true label embedding) != Lplc (pifa_lf_concat label embedding), where X.dtype = csr_matrix, Z.dtype = csr_matrix" # pifa_lf_convex_combine, alpha is a number alpha = 0.3 Lplcvx_true = alpha * Lp + (1.0 - alpha) * Lt_half_dense # pifa_lf_convex_combine, X.dtype = ndarray, Z.dtype = ndarray Lplcvx = LabelEmbeddingFactory.create( Y, X_dense, Z=Lt_half_dense, alpha=alpha, method="pifa_lf_convex_combine" ) assert isinstance( Lplcvx, np.ndarray ), f"Return matrix should be ndarray when X.dtype = ndarray, Z.dtype = ndarray" assert Lplcvx == approx( Lplcvx_true ), f"Lplcvx_true (true label embedding) != Lplcvx (pifa_lf_convex_combine label embedding), where X.dtype = ndarray, Z.dtype = ndarray" # pifa_lf_convex_combine, X.dtype = ndarray, Z.dtype = csr_matrix Lplcvx = LabelEmbeddingFactory.create( Y, X_dense, Z=Lt_half, alpha=alpha, method="pifa_lf_convex_combine" ) assert isinstance( Lplcvx, np.ndarray ), f"Return matrix should be ndarray when X.dtype = ndarray, Z.dtype = csr_matrix" assert Lplcvx == approx( Lplcvx_true ), f"Lplcvx_true (true label embedding) != Lplcvx (pifa_lf_convex_combine label embedding), where X.dtype = ndarray, Z.dtype = csr_matrix" # pifa_lf_convex_combine, X.dtype = csr_matrix, Z.dtype = ndarray Lplcvx = LabelEmbeddingFactory.create( Y, X, Z=Lt_half_dense, alpha=alpha, method="pifa_lf_convex_combine" ) assert isinstance( Lplcvx, np.ndarray ), f"Return matrix should be ndarray when X.dtype = csr_matrix, Z.dtype = ndarray" assert Lplcvx == approx( Lplcvx_true ), f"Lplcvx_true (true label embedding) != Lplcvx (pifa_lf_convex_combine label embedding), where X.dtype = csr_matrix, Z.dtype = ndarray" # pifa_lf_convex_combine, X.dtype = csr_matrix, Z.dtype = csr_matrix Lplcvx = LabelEmbeddingFactory.create( Y, X, Z=Lt_half, alpha=alpha, method="pifa_lf_convex_combine" ) assert isinstance( Lplcvx, smat.csr_matrix ), f"Return matrix should be csr_matrix when X.dtype = csr_matrix, Z.dtype = csr_matrix" assert Lplcvx.toarray() == approx( Lplcvx_true ), f"Lplcvx_true (true label embedding) != Lplcvx (pifa_lf_convex_combine label embedding), where X.dtype = csr_matrix, Z.dtype = csr_matrix" # pifa_lf_convex_combine, alpha is an 1-D array alpha = np.array([0.1, 0.2, 0.3, 0.4, 0.5]) Lplcvx_true =
np.zeros_like(Lp)
numpy.zeros_like
import argparse import time import os import glob import sys import json import shutil import itertools import numpy as np import pandas as pd import csv import torch from torch import nn from torch.autograd import Variable from sklearn.metrics import confusion_matrix from torch.nn import functional as F from opts import parse_opts_online from model import generate_model, _modify_first_conv_layer, _construct_depth_model from mean import get_mean, get_std from spatial_transforms import * from temporal_transforms import * from target_transforms import ClassLabel from dataset import get_online_data from utils import Logger, AverageMeter, LevenshteinDistance, Queue import pdb import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import figure import scipy.io as sio import pickle def weighting_func(x): return (1 / (1 + np.exp(-0.2*(x-9)))) opt = parse_opts_online() def load_models(opt): opt.resume_path = opt.resume_path_clf opt.pretrain_path = opt.pretrain_path_clf opt.sample_duration = opt.sample_duration_clf opt.model = opt.model_clf opt.model_depth = opt.model_depth_clf opt.modality = opt.modality_clf opt.resnet_shortcut = opt.resnet_shortcut_clf opt.n_classes = opt.n_classes_clf opt.n_finetune_classes = opt.n_finetune_classes_clf if opt.root_path != '': opt.video_path = os.path.join(opt.root_path, opt.video_path) opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path) opt.result_path = os.path.join(opt.root_path, opt.result_path) if opt.resume_path: opt.resume_path = os.path.join(opt.root_path, opt.resume_path) if opt.pretrain_path: opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path) opt.scales = [opt.initial_scale] for i in range(1, opt.n_scales): opt.scales.append(opt.scales[-1] * opt.scale_step) opt.arch = '{}-{}'.format(opt.model, opt.model_depth) opt.mean = get_mean(opt.norm_value) opt.std = get_std(opt.norm_value) print(opt) with open(os.path.join(opt.result_path, 'opts_clf_{}.json'.format(opt.store_name)), 'w') as opt_file: json.dump(vars(opt), opt_file) torch.manual_seed(opt.manual_seed) if opt.modality == 'Depth': opt.modality = 'RGB' classifier, parameters = generate_model(opt) if opt.resume_path: print('loading checkpoint {}'.format(opt.resume_path)) checkpoint = torch.load(opt.resume_path) assert opt.arch == checkpoint['arch'] classifier.load_state_dict(checkpoint['state_dict']) if opt.sample_duration_clf < 32 and opt.model_clf != 'c3d': classifier = _modify_first_conv_layer(classifier,3,3) classifier = _construct_depth_model(classifier) classifier = classifier.cuda() if not opt.modality == opt.modality_clf: opt.modality = opt.modality_clf print('Model \n', classifier) pytorch_total_params = sum(p.numel() for p in classifier.parameters() if p.requires_grad) print("Total number of trainable parameters: ", pytorch_total_params) return classifier classifier = load_models(opt) if opt.no_mean_norm and not opt.std_norm: norm_method = Normalize([0, 0, 0], [1, 1, 1]) elif not opt.std_norm: norm_method = Normalize(opt.mean, [1, 1, 1]) else: norm_method = Normalize(opt.mean, opt.std) spatial_transform = Compose([ Scale(112), CenterCrop(112), ToTensor(opt.norm_value), norm_method ]) target_transform = ClassLabel() ## Get list of videos to test if opt.dataset == 'egogesture': subject_list = ['Subject{:02d}'.format(i) for i in [2, 9, 11, 14, 18, 19, 28, 31, 41, 47]] test_paths = [] buf = 4 for subject in subject_list: for x in glob.glob(os.path.join(opt.video_path,subject,'*/*/rgb*')): test_paths.append(x) elif opt.dataset == 'nv': df = pd.read_csv(os.path.join(opt.video_path,'nvgesture_test_correct_cvpr2016_v2.lst'), delimiter = ' ', header = None) test_paths = [] buf = 4 for x in df[0].values: if opt.modality_det == 'RGB': test_paths.append(os.path.join(opt.video_path, x.replace('path:', ''), 'sk_color_all')) elif opt.modality_det == 'Depth': test_paths.append(os.path.join(opt.video_path, x.replace('path:', ''), 'sk_depth_all')) elif opt.dataset == 'AHG': data = sio.loadmat(os.path.join(opt.root_path,'bega/datasets/AHG/splitfiles/testlist01.mat'))['raw_list'][0] test_paths = [] true_classes_all = [] true_frames_all = [] buf = 0 for i in range(data.shape[0]): test_paths.append(str(data[i][0][0])) true_classes_all.append(np.array(data[i][1][0])) true_frames_all.append(np.array(data[i][-2][0])) elif opt.dataset == 'denso': if opt.test_subset == 'val': print('Feature extraction of Validation set with {}ns'.format(opt.sample_duration)) data = sio.loadmat(os.path.join(opt.root_path,'bega/datasets/Pointing/train_sets/valid_list3.mat'))['raw_list'][0] elif opt.test_subset == 'test': print('Feature extraction of Testing set with {}ns'.format(opt.sample_duration)) data = sio.loadmat(os.path.join(opt.root_path,'bega/datasets/Pointing/train_sets/test_list3.mat'))['raw_list'][0] elif opt.test_subset == 'train': print('Feature extraction of Training set with {}ns'.format(opt.sample_duration)) data = sio.loadmat(os.path.join(opt.root_path,'bega/datasets/Pointing/train_sets/train_list3.mat'))['raw_list'][0] else: print('ERROR: chose val or test set for online evaluation') assert(opt.test_subset == 1) test_paths = [] true_classes_all = [] true_frames_all = [] buf = 0 for i in range(data.shape[0]): #All videos test_paths.append(str(data[i][0][0])) #path true_classes_all.append(
np.array(data[i][1][0])
numpy.array
import functools import operator import pickle import numpy as np import pandas as pd import pytest from numpy.testing import assert_allclose, assert_array_equal from packaging.version import Version import xarray as xr from xarray.core.alignment import broadcast from xarray.core.computation import ( _UFuncSignature, apply_ufunc, broadcast_compat_data, collect_dict_values, join_dict_keys, ordered_set_intersection, ordered_set_union, result_name, unified_dim_sizes, ) from xarray.core.pycompat import dask_version from . import has_dask, raise_if_dask_computes, requires_dask def assert_identical(a, b): """A version of this function which accepts numpy arrays""" __tracebackhide__ = True from xarray.testing import assert_identical as assert_identical_ if hasattr(a, "identical"): assert_identical_(a, b) else: assert_array_equal(a, b) def test_signature_properties() -> None: sig = _UFuncSignature([["x"], ["x", "y"]], [["z"]]) assert sig.input_core_dims == (("x",), ("x", "y")) assert sig.output_core_dims == (("z",),) assert sig.all_input_core_dims == frozenset(["x", "y"]) assert sig.all_output_core_dims == frozenset(["z"]) assert sig.num_inputs == 2 assert sig.num_outputs == 1 assert str(sig) == "(x),(x,y)->(z)" assert sig.to_gufunc_string() == "(dim0),(dim0,dim1)->(dim2)" assert ( sig.to_gufunc_string(exclude_dims=set("x")) == "(dim0_0),(dim0_1,dim1)->(dim2)" ) # dimension names matter assert _UFuncSignature([["x"]]) != _UFuncSignature([["y"]]) def test_result_name() -> None: class Named: def __init__(self, name=None): self.name = name assert result_name([1, 2]) is None assert result_name([Named()]) is None assert result_name([Named("foo"), 2]) == "foo" assert result_name([Named("foo"), Named("bar")]) is None assert result_name([Named("foo"), Named()]) is None def test_ordered_set_union() -> None: assert list(ordered_set_union([[1, 2]])) == [1, 2] assert list(ordered_set_union([[1, 2], [2, 1]])) == [1, 2] assert list(ordered_set_union([[0], [1, 2], [1, 3]])) == [0, 1, 2, 3] def test_ordered_set_intersection() -> None: assert list(ordered_set_intersection([[1, 2]])) == [1, 2] assert list(ordered_set_intersection([[1, 2], [2, 1]])) == [1, 2] assert list(ordered_set_intersection([[1, 2], [1, 3]])) == [1] assert list(ordered_set_intersection([[1, 2], [2]])) == [2] def test_join_dict_keys() -> None: dicts = [dict.fromkeys(keys) for keys in [["x", "y"], ["y", "z"]]] assert list(join_dict_keys(dicts, "left")) == ["x", "y"] assert list(join_dict_keys(dicts, "right")) == ["y", "z"] assert list(join_dict_keys(dicts, "inner")) == ["y"] assert list(join_dict_keys(dicts, "outer")) == ["x", "y", "z"] with pytest.raises(ValueError): join_dict_keys(dicts, "exact") with pytest.raises(KeyError): join_dict_keys(dicts, "foobar") def test_collect_dict_values() -> None: dicts = [{"x": 1, "y": 2, "z": 3}, {"z": 4}, 5] expected = [[1, 0, 5], [2, 0, 5], [3, 4, 5]] collected = collect_dict_values(dicts, ["x", "y", "z"], fill_value=0) assert collected == expected def identity(x): return x def test_apply_identity() -> None: array = np.arange(10) variable = xr.Variable("x", array) data_array = xr.DataArray(variable, [("x", -array)]) dataset = xr.Dataset({"y": variable}, {"x": -array}) apply_identity = functools.partial(apply_ufunc, identity) assert_identical(array, apply_identity(array)) assert_identical(variable, apply_identity(variable)) assert_identical(data_array, apply_identity(data_array)) assert_identical(data_array, apply_identity(data_array.groupby("x"))) assert_identical(dataset, apply_identity(dataset)) assert_identical(dataset, apply_identity(dataset.groupby("x"))) def add(a, b): return apply_ufunc(operator.add, a, b) def test_apply_two_inputs() -> None: array = np.array([1, 2, 3]) variable = xr.Variable("x", array) data_array = xr.DataArray(variable, [("x", -array)]) dataset = xr.Dataset({"y": variable}, {"x": -array}) zero_array = np.zeros_like(array) zero_variable = xr.Variable("x", zero_array) zero_data_array = xr.DataArray(zero_variable, [("x", -array)]) zero_dataset = xr.Dataset({"y": zero_variable}, {"x": -array}) assert_identical(array, add(array, zero_array)) assert_identical(array, add(zero_array, array)) assert_identical(variable, add(variable, zero_array)) assert_identical(variable, add(variable, zero_variable)) assert_identical(variable, add(zero_array, variable)) assert_identical(variable, add(zero_variable, variable)) assert_identical(data_array, add(data_array, zero_array)) assert_identical(data_array, add(data_array, zero_variable)) assert_identical(data_array, add(data_array, zero_data_array)) assert_identical(data_array, add(zero_array, data_array)) assert_identical(data_array, add(zero_variable, data_array)) assert_identical(data_array, add(zero_data_array, data_array)) assert_identical(dataset, add(dataset, zero_array)) assert_identical(dataset, add(dataset, zero_variable)) assert_identical(dataset, add(dataset, zero_data_array)) assert_identical(dataset, add(dataset, zero_dataset)) assert_identical(dataset, add(zero_array, dataset)) assert_identical(dataset, add(zero_variable, dataset)) assert_identical(dataset, add(zero_data_array, dataset)) assert_identical(dataset, add(zero_dataset, dataset)) assert_identical(data_array, add(data_array.groupby("x"), zero_data_array)) assert_identical(data_array, add(zero_data_array, data_array.groupby("x"))) assert_identical(dataset, add(data_array.groupby("x"), zero_dataset)) assert_identical(dataset, add(zero_dataset, data_array.groupby("x"))) assert_identical(dataset, add(dataset.groupby("x"), zero_data_array)) assert_identical(dataset, add(dataset.groupby("x"), zero_dataset)) assert_identical(dataset, add(zero_data_array, dataset.groupby("x"))) assert_identical(dataset, add(zero_dataset, dataset.groupby("x"))) def test_apply_1d_and_0d() -> None: array = np.array([1, 2, 3]) variable = xr.Variable("x", array) data_array = xr.DataArray(variable, [("x", -array)]) dataset = xr.Dataset({"y": variable}, {"x": -array}) zero_array = 0 zero_variable = xr.Variable((), zero_array) zero_data_array = xr.DataArray(zero_variable) zero_dataset = xr.Dataset({"y": zero_variable}) assert_identical(array, add(array, zero_array)) assert_identical(array, add(zero_array, array)) assert_identical(variable, add(variable, zero_array)) assert_identical(variable, add(variable, zero_variable)) assert_identical(variable, add(zero_array, variable)) assert_identical(variable, add(zero_variable, variable)) assert_identical(data_array, add(data_array, zero_array)) assert_identical(data_array, add(data_array, zero_variable)) assert_identical(data_array, add(data_array, zero_data_array)) assert_identical(data_array, add(zero_array, data_array)) assert_identical(data_array, add(zero_variable, data_array)) assert_identical(data_array, add(zero_data_array, data_array)) assert_identical(dataset, add(dataset, zero_array)) assert_identical(dataset, add(dataset, zero_variable)) assert_identical(dataset, add(dataset, zero_data_array)) assert_identical(dataset, add(dataset, zero_dataset)) assert_identical(dataset, add(zero_array, dataset)) assert_identical(dataset, add(zero_variable, dataset)) assert_identical(dataset, add(zero_data_array, dataset)) assert_identical(dataset, add(zero_dataset, dataset)) assert_identical(data_array, add(data_array.groupby("x"), zero_data_array)) assert_identical(data_array, add(zero_data_array, data_array.groupby("x"))) assert_identical(dataset, add(data_array.groupby("x"), zero_dataset)) assert_identical(dataset, add(zero_dataset, data_array.groupby("x"))) assert_identical(dataset, add(dataset.groupby("x"), zero_data_array)) assert_identical(dataset, add(dataset.groupby("x"), zero_dataset)) assert_identical(dataset, add(zero_data_array, dataset.groupby("x"))) assert_identical(dataset, add(zero_dataset, dataset.groupby("x"))) def test_apply_two_outputs() -> None: array = np.arange(5) variable = xr.Variable("x", array) data_array = xr.DataArray(variable, [("x", -array)]) dataset = xr.Dataset({"y": variable}, {"x": -array}) def twice(obj): def func(x): return (x, x) return apply_ufunc(func, obj, output_core_dims=[[], []]) out0, out1 = twice(array) assert_identical(out0, array) assert_identical(out1, array) out0, out1 = twice(variable) assert_identical(out0, variable) assert_identical(out1, variable) out0, out1 = twice(data_array) assert_identical(out0, data_array) assert_identical(out1, data_array) out0, out1 = twice(dataset) assert_identical(out0, dataset) assert_identical(out1, dataset) out0, out1 = twice(data_array.groupby("x")) assert_identical(out0, data_array) assert_identical(out1, data_array) out0, out1 = twice(dataset.groupby("x")) assert_identical(out0, dataset) assert_identical(out1, dataset) @requires_dask def test_apply_dask_parallelized_two_outputs() -> None: data_array = xr.DataArray([[0, 1, 2], [1, 2, 3]], dims=("x", "y")) def twice(obj): def func(x): return (x, x) return apply_ufunc(func, obj, output_core_dims=[[], []], dask="parallelized") out0, out1 = twice(data_array.chunk({"x": 1})) assert_identical(data_array, out0) assert_identical(data_array, out1) def test_apply_input_core_dimension() -> None: def first_element(obj, dim): def func(x): return x[..., 0] return apply_ufunc(func, obj, input_core_dims=[[dim]]) array = np.array([[1, 2], [3, 4]]) variable = xr.Variable(["x", "y"], array) data_array = xr.DataArray(variable, {"x": ["a", "b"], "y": [-1, -2]}) dataset = xr.Dataset({"data": data_array}) expected_variable_x = xr.Variable(["y"], [1, 2]) expected_data_array_x = xr.DataArray(expected_variable_x, {"y": [-1, -2]}) expected_dataset_x = xr.Dataset({"data": expected_data_array_x}) expected_variable_y = xr.Variable(["x"], [1, 3]) expected_data_array_y = xr.DataArray(expected_variable_y, {"x": ["a", "b"]}) expected_dataset_y = xr.Dataset({"data": expected_data_array_y}) assert_identical(expected_variable_x, first_element(variable, "x")) assert_identical(expected_variable_y, first_element(variable, "y")) assert_identical(expected_data_array_x, first_element(data_array, "x")) assert_identical(expected_data_array_y, first_element(data_array, "y")) assert_identical(expected_dataset_x, first_element(dataset, "x")) assert_identical(expected_dataset_y, first_element(dataset, "y")) assert_identical(expected_data_array_x, first_element(data_array.groupby("y"), "x")) assert_identical(expected_dataset_x, first_element(dataset.groupby("y"), "x")) def multiply(*args): val = args[0] for arg in args[1:]: val = val * arg return val # regression test for GH:2341 with pytest.raises(ValueError): apply_ufunc( multiply, data_array, data_array["y"].values, input_core_dims=[["y"]], output_core_dims=[["y"]], ) expected = xr.DataArray( multiply(data_array, data_array["y"]), dims=["x", "y"], coords=data_array.coords ) actual = apply_ufunc( multiply, data_array, data_array["y"].values, input_core_dims=[["y"], []], output_core_dims=[["y"]], ) assert_identical(expected, actual) def test_apply_output_core_dimension() -> None: def stack_negative(obj): def func(x): return np.stack([x, -x], axis=-1) result = apply_ufunc(func, obj, output_core_dims=[["sign"]]) if isinstance(result, (xr.Dataset, xr.DataArray)): result.coords["sign"] = [1, -1] return result array = np.array([[1, 2], [3, 4]]) variable = xr.Variable(["x", "y"], array) data_array = xr.DataArray(variable, {"x": ["a", "b"], "y": [-1, -2]}) dataset = xr.Dataset({"data": data_array}) stacked_array = np.array([[[1, -1], [2, -2]], [[3, -3], [4, -4]]]) stacked_variable = xr.Variable(["x", "y", "sign"], stacked_array) stacked_coords = {"x": ["a", "b"], "y": [-1, -2], "sign": [1, -1]} stacked_data_array = xr.DataArray(stacked_variable, stacked_coords) stacked_dataset = xr.Dataset({"data": stacked_data_array}) assert_identical(stacked_array, stack_negative(array)) assert_identical(stacked_variable, stack_negative(variable)) assert_identical(stacked_data_array, stack_negative(data_array)) assert_identical(stacked_dataset, stack_negative(dataset)) assert_identical(stacked_data_array, stack_negative(data_array.groupby("x"))) assert_identical(stacked_dataset, stack_negative(dataset.groupby("x"))) def original_and_stack_negative(obj): def func(x): return (x, np.stack([x, -x], axis=-1)) result = apply_ufunc(func, obj, output_core_dims=[[], ["sign"]]) if isinstance(result[1], (xr.Dataset, xr.DataArray)): result[1].coords["sign"] = [1, -1] return result out0, out1 = original_and_stack_negative(array) assert_identical(array, out0) assert_identical(stacked_array, out1) out0, out1 = original_and_stack_negative(variable) assert_identical(variable, out0) assert_identical(stacked_variable, out1) out0, out1 = original_and_stack_negative(data_array) assert_identical(data_array, out0) assert_identical(stacked_data_array, out1) out0, out1 = original_and_stack_negative(dataset) assert_identical(dataset, out0) assert_identical(stacked_dataset, out1) out0, out1 = original_and_stack_negative(data_array.groupby("x")) assert_identical(data_array, out0) assert_identical(stacked_data_array, out1) out0, out1 = original_and_stack_negative(dataset.groupby("x")) assert_identical(dataset, out0) assert_identical(stacked_dataset, out1) def test_apply_exclude() -> None: def concatenate(objects, dim="x"): def func(*x): return np.concatenate(x, axis=-1) result = apply_ufunc( func, *objects, input_core_dims=[[dim]] * len(objects), output_core_dims=[[dim]], exclude_dims={dim}, ) if isinstance(result, (xr.Dataset, xr.DataArray)): # note: this will fail if dim is not a coordinate on any input new_coord = np.concatenate([obj.coords[dim] for obj in objects]) result.coords[dim] = new_coord return result arrays = [np.array([1]), np.array([2, 3])] variables = [xr.Variable("x", a) for a in arrays] data_arrays = [ xr.DataArray(v, {"x": c, "y": ("x", range(len(c)))}) for v, c in zip(variables, [["a"], ["b", "c"]]) ] datasets = [xr.Dataset({"data": data_array}) for data_array in data_arrays] expected_array = np.array([1, 2, 3]) expected_variable = xr.Variable("x", expected_array) expected_data_array = xr.DataArray(expected_variable, [("x", list("abc"))]) expected_dataset = xr.Dataset({"data": expected_data_array}) assert_identical(expected_array, concatenate(arrays)) assert_identical(expected_variable, concatenate(variables)) assert_identical(expected_data_array, concatenate(data_arrays)) assert_identical(expected_dataset, concatenate(datasets)) # must also be a core dimension with pytest.raises(ValueError): apply_ufunc(identity, variables[0], exclude_dims={"x"}) def test_apply_groupby_add() -> None: array = np.arange(5) variable = xr.Variable("x", array) coords = {"x": -array, "y": ("x", [0, 0, 1, 1, 2])} data_array = xr.DataArray(variable, coords, dims="x") dataset = xr.Dataset({"z": variable}, coords) other_variable = xr.Variable("y", [0, 10]) other_data_array = xr.DataArray(other_variable, dims="y") other_dataset = xr.Dataset({"z": other_variable}) expected_variable = xr.Variable("x", [0, 1, 12, 13, np.nan]) expected_data_array = xr.DataArray(expected_variable, coords, dims="x") expected_dataset = xr.Dataset({"z": expected_variable}, coords) assert_identical( expected_data_array, add(data_array.groupby("y"), other_data_array) ) assert_identical(expected_dataset, add(data_array.groupby("y"), other_dataset)) assert_identical(expected_dataset, add(dataset.groupby("y"), other_data_array)) assert_identical(expected_dataset, add(dataset.groupby("y"), other_dataset)) # cannot be performed with xarray.Variable objects that share a dimension with pytest.raises(ValueError): add(data_array.groupby("y"), other_variable) # if they are all grouped the same way with pytest.raises(ValueError): add(data_array.groupby("y"), data_array[:4].groupby("y")) with pytest.raises(ValueError): add(data_array.groupby("y"), data_array[1:].groupby("y")) with pytest.raises(ValueError): add(data_array.groupby("y"), other_data_array.groupby("y")) with pytest.raises(ValueError): add(data_array.groupby("y"), data_array.groupby("x")) def test_unified_dim_sizes() -> None: assert unified_dim_sizes([xr.Variable((), 0)]) == {} assert unified_dim_sizes([xr.Variable("x", [1]), xr.Variable("x", [1])]) == {"x": 1} assert unified_dim_sizes([xr.Variable("x", [1]), xr.Variable("y", [1, 2])]) == { "x": 1, "y": 2, } assert unified_dim_sizes( [xr.Variable(("x", "z"), [[1]]), xr.Variable(("y", "z"), [[1, 2], [3, 4]])], exclude_dims={"z"}, ) == {"x": 1, "y": 2} # duplicate dimensions with pytest.raises(ValueError): unified_dim_sizes([xr.Variable(("x", "x"), [[1]])]) # mismatched lengths with pytest.raises(ValueError): unified_dim_sizes([xr.Variable("x", [1]), xr.Variable("x", [1, 2])]) def test_broadcast_compat_data_1d() -> None: data = np.arange(5) var = xr.Variable("x", data) assert_identical(data, broadcast_compat_data(var, ("x",), ())) assert_identical(data, broadcast_compat_data(var, (), ("x",))) assert_identical(data[:], broadcast_compat_data(var, ("w",), ("x",))) assert_identical(data[:, None], broadcast_compat_data(var, ("w", "x", "y"), ())) with pytest.raises(ValueError): broadcast_compat_data(var, ("x",), ("w",)) with pytest.raises(ValueError): broadcast_compat_data(var, (), ()) def test_broadcast_compat_data_2d() -> None: data = np.arange(12).reshape(3, 4) var = xr.Variable(["x", "y"], data) assert_identical(data, broadcast_compat_data(var, ("x", "y"), ())) assert_identical(data, broadcast_compat_data(var, ("x",), ("y",))) assert_identical(data, broadcast_compat_data(var, (), ("x", "y"))) assert_identical(data.T, broadcast_compat_data(var, ("y", "x"), ())) assert_identical(data.T, broadcast_compat_data(var, ("y",), ("x",))) assert_identical(data, broadcast_compat_data(var, ("w", "x"), ("y",))) assert_identical(data, broadcast_compat_data(var, ("w",), ("x", "y"))) assert_identical(data.T, broadcast_compat_data(var, ("w",), ("y", "x"))) assert_identical( data[:, :, None], broadcast_compat_data(var, ("w", "x", "y", "z"), ()) ) assert_identical( data[None, :, :].T, broadcast_compat_data(var, ("w", "y", "x", "z"), ()) ) def test_keep_attrs() -> None: def add(a, b, keep_attrs): if keep_attrs: return apply_ufunc(operator.add, a, b, keep_attrs=keep_attrs) else: return apply_ufunc(operator.add, a, b) a = xr.DataArray([0, 1], [("x", [0, 1])]) a.attrs["attr"] = "da" a["x"].attrs["attr"] = "da_coord" b = xr.DataArray([1, 2], [("x", [0, 1])]) actual = add(a, b, keep_attrs=False) assert not actual.attrs actual = add(a, b, keep_attrs=True) assert_identical(actual.attrs, a.attrs) assert_identical(actual["x"].attrs, a["x"].attrs) actual = add(a.variable, b.variable, keep_attrs=False) assert not actual.attrs actual = add(a.variable, b.variable, keep_attrs=True) assert_identical(actual.attrs, a.attrs) ds_a = xr.Dataset({"x": [0, 1]}) ds_a.attrs["attr"] = "ds" ds_a.x.attrs["attr"] = "da" ds_b = xr.Dataset({"x": [0, 1]}) actual = add(ds_a, ds_b, keep_attrs=False) assert not actual.attrs actual = add(ds_a, ds_b, keep_attrs=True) assert_identical(actual.attrs, ds_a.attrs) assert_identical(actual.x.attrs, ds_a.x.attrs) @pytest.mark.parametrize( ["strategy", "attrs", "expected", "error"], ( pytest.param( None, [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="default", ), pytest.param( False, [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="False", ), pytest.param( True, [{"a": 1}, {"a": 2}, {"a": 3}], {"a": 1}, False, id="True", ), pytest.param( "override", [{"a": 1}, {"a": 2}, {"a": 3}], {"a": 1}, False, id="override", ), pytest.param( "drop", [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="drop", ), pytest.param( "drop_conflicts", [{"a": 1, "b": 2}, {"b": 1, "c": 3}, {"c": 3, "d": 4}], {"a": 1, "c": 3, "d": 4}, False, id="drop_conflicts", ), pytest.param( "no_conflicts", [{"a": 1}, {"b": 2}, {"b": 3}], None, True, id="no_conflicts", ), ), ) def test_keep_attrs_strategies_variable(strategy, attrs, expected, error) -> None: a = xr.Variable("x", [0, 1], attrs=attrs[0]) b = xr.Variable("x", [0, 1], attrs=attrs[1]) c = xr.Variable("x", [0, 1], attrs=attrs[2]) if error: with pytest.raises(xr.MergeError): apply_ufunc(lambda *args: sum(args), a, b, c, keep_attrs=strategy) else: expected = xr.Variable("x", [0, 3], attrs=expected) actual = apply_ufunc(lambda *args: sum(args), a, b, c, keep_attrs=strategy) assert_identical(actual, expected) @pytest.mark.parametrize( ["strategy", "attrs", "expected", "error"], ( pytest.param( None, [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="default", ), pytest.param( False, [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="False", ), pytest.param( True, [{"a": 1}, {"a": 2}, {"a": 3}], {"a": 1}, False, id="True", ), pytest.param( "override", [{"a": 1}, {"a": 2}, {"a": 3}], {"a": 1}, False, id="override", ), pytest.param( "drop", [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="drop", ), pytest.param( "drop_conflicts", [{"a": 1, "b": 2}, {"b": 1, "c": 3}, {"c": 3, "d": 4}], {"a": 1, "c": 3, "d": 4}, False, id="drop_conflicts", ), pytest.param( "no_conflicts", [{"a": 1}, {"b": 2}, {"b": 3}], None, True, id="no_conflicts", ), ), ) def test_keep_attrs_strategies_dataarray(strategy, attrs, expected, error) -> None: a = xr.DataArray(dims="x", data=[0, 1], attrs=attrs[0]) b = xr.DataArray(dims="x", data=[0, 1], attrs=attrs[1]) c = xr.DataArray(dims="x", data=[0, 1], attrs=attrs[2]) if error: with pytest.raises(xr.MergeError): apply_ufunc(lambda *args: sum(args), a, b, c, keep_attrs=strategy) else: expected = xr.DataArray(dims="x", data=[0, 3], attrs=expected) actual = apply_ufunc(lambda *args: sum(args), a, b, c, keep_attrs=strategy) assert_identical(actual, expected) @pytest.mark.parametrize("variant", ("dim", "coord")) @pytest.mark.parametrize( ["strategy", "attrs", "expected", "error"], ( pytest.param( None, [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="default", ), pytest.param( False, [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="False", ), pytest.param( True, [{"a": 1}, {"a": 2}, {"a": 3}], {"a": 1}, False, id="True", ), pytest.param( "override", [{"a": 1}, {"a": 2}, {"a": 3}], {"a": 1}, False, id="override", ), pytest.param( "drop", [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="drop", ), pytest.param( "drop_conflicts", [{"a": 1, "b": 2}, {"b": 1, "c": 3}, {"c": 3, "d": 4}], {"a": 1, "c": 3, "d": 4}, False, id="drop_conflicts", ), pytest.param( "no_conflicts", [{"a": 1}, {"b": 2}, {"b": 3}], None, True, id="no_conflicts", ), ), ) def test_keep_attrs_strategies_dataarray_variables( variant, strategy, attrs, expected, error ): compute_attrs = { "dim": lambda attrs, default: (attrs, default), "coord": lambda attrs, default: (default, attrs), }.get(variant) dim_attrs, coord_attrs = compute_attrs(attrs, [{}, {}, {}]) a = xr.DataArray( dims="x", data=[0, 1], coords={"x": ("x", [0, 1], dim_attrs[0]), "u": ("x", [0, 1], coord_attrs[0])}, ) b = xr.DataArray( dims="x", data=[0, 1], coords={"x": ("x", [0, 1], dim_attrs[1]), "u": ("x", [0, 1], coord_attrs[1])}, ) c = xr.DataArray( dims="x", data=[0, 1], coords={"x": ("x", [0, 1], dim_attrs[2]), "u": ("x", [0, 1], coord_attrs[2])}, ) if error: with pytest.raises(xr.MergeError): apply_ufunc(lambda *args: sum(args), a, b, c, keep_attrs=strategy) else: dim_attrs, coord_attrs = compute_attrs(expected, {}) expected = xr.DataArray( dims="x", data=[0, 3], coords={"x": ("x", [0, 1], dim_attrs), "u": ("x", [0, 1], coord_attrs)}, ) actual = apply_ufunc(lambda *args: sum(args), a, b, c, keep_attrs=strategy) assert_identical(actual, expected) @pytest.mark.parametrize( ["strategy", "attrs", "expected", "error"], ( pytest.param( None, [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="default", ), pytest.param( False, [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="False", ), pytest.param( True, [{"a": 1}, {"a": 2}, {"a": 3}], {"a": 1}, False, id="True", ), pytest.param( "override", [{"a": 1}, {"a": 2}, {"a": 3}], {"a": 1}, False, id="override", ), pytest.param( "drop", [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="drop", ), pytest.param( "drop_conflicts", [{"a": 1, "b": 2}, {"b": 1, "c": 3}, {"c": 3, "d": 4}], {"a": 1, "c": 3, "d": 4}, False, id="drop_conflicts", ), pytest.param( "no_conflicts", [{"a": 1}, {"b": 2}, {"b": 3}], None, True, id="no_conflicts", ), ), ) def test_keep_attrs_strategies_dataset(strategy, attrs, expected, error) -> None: a = xr.Dataset({"a": ("x", [0, 1])}, attrs=attrs[0]) b = xr.Dataset({"a": ("x", [0, 1])}, attrs=attrs[1]) c = xr.Dataset({"a": ("x", [0, 1])}, attrs=attrs[2]) if error: with pytest.raises(xr.MergeError): apply_ufunc(lambda *args: sum(args), a, b, c, keep_attrs=strategy) else: expected = xr.Dataset({"a": ("x", [0, 3])}, attrs=expected) actual = apply_ufunc(lambda *args: sum(args), a, b, c, keep_attrs=strategy) assert_identical(actual, expected) @pytest.mark.parametrize("variant", ("data", "dim", "coord")) @pytest.mark.parametrize( ["strategy", "attrs", "expected", "error"], ( pytest.param( None, [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="default", ), pytest.param( False, [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="False", ), pytest.param( True, [{"a": 1}, {"a": 2}, {"a": 3}], {"a": 1}, False, id="True", ), pytest.param( "override", [{"a": 1}, {"a": 2}, {"a": 3}], {"a": 1}, False, id="override", ), pytest.param( "drop", [{"a": 1}, {"a": 2}, {"a": 3}], {}, False, id="drop", ), pytest.param( "drop_conflicts", [{"a": 1, "b": 2}, {"b": 1, "c": 3}, {"c": 3, "d": 4}], {"a": 1, "c": 3, "d": 4}, False, id="drop_conflicts", ), pytest.param( "no_conflicts", [{"a": 1}, {"b": 2}, {"b": 3}], None, True, id="no_conflicts", ), ), ) def test_keep_attrs_strategies_dataset_variables( variant, strategy, attrs, expected, error ): compute_attrs = { "data": lambda attrs, default: (attrs, default, default), "dim": lambda attrs, default: (default, attrs, default), "coord": lambda attrs, default: (default, default, attrs), }.get(variant) data_attrs, dim_attrs, coord_attrs = compute_attrs(attrs, [{}, {}, {}]) a = xr.Dataset( {"a": ("x", [], data_attrs[0])}, coords={"x": ("x", [], dim_attrs[0]), "u": ("x", [], coord_attrs[0])}, ) b = xr.Dataset( {"a": ("x", [], data_attrs[1])}, coords={"x": ("x", [], dim_attrs[1]), "u": ("x", [], coord_attrs[1])}, ) c = xr.Dataset( {"a": ("x", [], data_attrs[2])}, coords={"x": ("x", [], dim_attrs[2]), "u": ("x", [], coord_attrs[2])}, ) if error: with pytest.raises(xr.MergeError): apply_ufunc(lambda *args: sum(args), a, b, c, keep_attrs=strategy) else: data_attrs, dim_attrs, coord_attrs = compute_attrs(expected, {}) expected = xr.Dataset( {"a": ("x", [], data_attrs)}, coords={"x": ("x", [], dim_attrs), "u": ("x", [], coord_attrs)}, ) actual = apply_ufunc(lambda *args: sum(args), a, b, c, keep_attrs=strategy) assert_identical(actual, expected) def test_dataset_join() -> None: ds0 = xr.Dataset({"a": ("x", [1, 2]), "x": [0, 1]}) ds1 = xr.Dataset({"a": ("x", [99, 3]), "x": [1, 2]}) # by default, cannot have different labels with pytest.raises(ValueError, match=r"cannot align.*join.*exact.*"): apply_ufunc(operator.add, ds0, ds1) with pytest.raises(TypeError, match=r"must supply"): apply_ufunc(operator.add, ds0, ds1, dataset_join="outer") def add(a, b, join, dataset_join): return apply_ufunc( operator.add, a, b, join=join, dataset_join=dataset_join, dataset_fill_value=np.nan, ) actual = add(ds0, ds1, "outer", "inner") expected = xr.Dataset({"a": ("x", [np.nan, 101, np.nan]), "x": [0, 1, 2]}) assert_identical(actual, expected) actual = add(ds0, ds1, "outer", "outer") assert_identical(actual, expected) with pytest.raises(ValueError, match=r"data variable names"): apply_ufunc(operator.add, ds0, xr.Dataset({"b": 1})) ds2 = xr.Dataset({"b": ("x", [99, 3]), "x": [1, 2]}) actual = add(ds0, ds2, "outer", "inner") expected = xr.Dataset({"x": [0, 1, 2]}) assert_identical(actual, expected) # we used np.nan as the fill_value in add() above actual = add(ds0, ds2, "outer", "outer") expected = xr.Dataset( { "a": ("x", [np.nan, np.nan, np.nan]), "b": ("x", [np.nan, np.nan, np.nan]), "x": [0, 1, 2], } ) assert_identical(actual, expected) @requires_dask def test_apply_dask() -> None: import dask.array as da array = da.ones((2,), chunks=2) variable = xr.Variable("x", array) coords = xr.DataArray(variable).coords.variables data_array = xr.DataArray(variable, dims=["x"], coords=coords) dataset = xr.Dataset({"y": variable}) # encountered dask array, but did not set dask='allowed' with pytest.raises(ValueError): apply_ufunc(identity, array) with pytest.raises(ValueError): apply_ufunc(identity, variable) with pytest.raises(ValueError): apply_ufunc(identity, data_array) with pytest.raises(ValueError): apply_ufunc(identity, dataset) # unknown setting for dask array handling with pytest.raises(ValueError): apply_ufunc(identity, array, dask="unknown") def dask_safe_identity(x): return apply_ufunc(identity, x, dask="allowed") assert array is dask_safe_identity(array) actual = dask_safe_identity(variable) assert isinstance(actual.data, da.Array) assert_identical(variable, actual) actual = dask_safe_identity(data_array) assert isinstance(actual.data, da.Array) assert_identical(data_array, actual) actual = dask_safe_identity(dataset) assert isinstance(actual["y"].data, da.Array) assert_identical(dataset, actual) @requires_dask def test_apply_dask_parallelized_one_arg() -> None: import dask.array as da array = da.ones((2, 2), chunks=(1, 1)) data_array = xr.DataArray(array, dims=("x", "y")) def parallel_identity(x): return apply_ufunc(identity, x, dask="parallelized", output_dtypes=[x.dtype]) actual = parallel_identity(data_array) assert isinstance(actual.data, da.Array) assert actual.data.chunks == array.chunks assert_identical(data_array, actual) computed = data_array.compute() actual = parallel_identity(computed) assert_identical(computed, actual) @requires_dask def test_apply_dask_parallelized_two_args() -> None: import dask.array as da array = da.ones((2, 2), chunks=(1, 1), dtype=np.int64) data_array = xr.DataArray(array, dims=("x", "y")) data_array.name = None def parallel_add(x, y): return apply_ufunc( operator.add, x, y, dask="parallelized", output_dtypes=[np.int64] ) def check(x, y): actual = parallel_add(x, y) assert isinstance(actual.data, da.Array) assert actual.data.chunks == array.chunks assert_identical(data_array, actual) check(data_array, 0), check(0, data_array) check(data_array, xr.DataArray(0)) check(data_array, 0 * data_array) check(data_array, 0 * data_array[0]) check(data_array[:, 0], 0 * data_array[0]) check(data_array, 0 * data_array.compute()) @requires_dask def test_apply_dask_parallelized_errors() -> None: import dask.array as da array = da.ones((2, 2), chunks=(1, 1)) data_array = xr.DataArray(array, dims=("x", "y")) # from apply_array_ufunc with pytest.raises(ValueError, match=r"at least one input is an xarray object"): apply_ufunc(identity, array, dask="parallelized") # formerly from _apply_blockwise, now from apply_variable_ufunc with pytest.raises(ValueError, match=r"consists of multiple chunks"): apply_ufunc( identity, data_array, dask="parallelized", output_dtypes=[float], input_core_dims=[("y",)], output_core_dims=[("y",)], ) # it's currently impossible to silence these warnings from inside dask.array: # https://github.com/dask/dask/issues/3245 @requires_dask @pytest.mark.filterwarnings("ignore:Mean of empty slice") def test_apply_dask_multiple_inputs() -> None: import dask.array as da def covariance(x, y): return ( (x - x.mean(axis=-1, keepdims=True)) * (y - y.mean(axis=-1, keepdims=True)) ).mean(axis=-1) rs = np.random.RandomState(42) array1 = da.from_array(rs.randn(4, 4), chunks=(2, 4)) array2 = da.from_array(rs.randn(4, 4), chunks=(2, 4)) data_array_1 = xr.DataArray(array1, dims=("x", "z")) data_array_2 = xr.DataArray(array2, dims=("y", "z")) expected = apply_ufunc( covariance, data_array_1.compute(), data_array_2.compute(), input_core_dims=[["z"], ["z"]], ) allowed = apply_ufunc( covariance, data_array_1, data_array_2, input_core_dims=[["z"], ["z"]], dask="allowed", ) assert isinstance(allowed.data, da.Array) xr.testing.assert_allclose(expected, allowed.compute()) parallelized = apply_ufunc( covariance, data_array_1, data_array_2, input_core_dims=[["z"], ["z"]], dask="parallelized", output_dtypes=[float], ) assert isinstance(parallelized.data, da.Array) xr.testing.assert_allclose(expected, parallelized.compute()) @requires_dask def test_apply_dask_new_output_dimension() -> None: import dask.array as da array = da.ones((2, 2), chunks=(1, 1)) data_array = xr.DataArray(array, dims=("x", "y")) def stack_negative(obj): def func(x): return np.stack([x, -x], axis=-1) return apply_ufunc( func, obj, output_core_dims=[["sign"]], dask="parallelized", output_dtypes=[obj.dtype], dask_gufunc_kwargs=dict(output_sizes={"sign": 2}), ) expected = stack_negative(data_array.compute()) actual = stack_negative(data_array) assert actual.dims == ("x", "y", "sign") assert actual.shape == (2, 2, 2) assert isinstance(actual.data, da.Array) assert_identical(expected, actual) @requires_dask def test_apply_dask_new_output_sizes() -> None: ds = xr.Dataset({"foo": (["lon", "lat"], np.arange(10 * 10).reshape((10, 10)))}) ds["bar"] = ds["foo"] newdims = {"lon_new": 3, "lat_new": 6} def extract(obj): def func(da): return da[1:4, 1:7] return apply_ufunc( func, obj, dask="parallelized", input_core_dims=[["lon", "lat"]], output_core_dims=[["lon_new", "lat_new"]], dask_gufunc_kwargs=dict(output_sizes=newdims), ) expected = extract(ds) actual = extract(ds.chunk()) assert actual.dims == {"lon_new": 3, "lat_new": 6} assert_identical(expected.chunk(), actual) def pandas_median(x): return pd.Series(x).median() def test_vectorize() -> None: data_array = xr.DataArray([[0, 1, 2], [1, 2, 3]], dims=("x", "y")) expected = xr.DataArray([1, 2], dims=["x"]) actual = apply_ufunc( pandas_median, data_array, input_core_dims=[["y"]], vectorize=True ) assert_identical(expected, actual) @requires_dask def test_vectorize_dask() -> None: # run vectorization in dask.array.gufunc by using `dask='parallelized'` data_array = xr.DataArray([[0, 1, 2], [1, 2, 3]], dims=("x", "y")) expected = xr.DataArray([1, 2], dims=["x"]) actual = apply_ufunc( pandas_median, data_array.chunk({"x": 1}), input_core_dims=[["y"]], vectorize=True, dask="parallelized", output_dtypes=[float], ) assert_identical(expected, actual) @requires_dask def test_vectorize_dask_dtype() -> None: # ensure output_dtypes is preserved with vectorize=True # GH4015 # integer data_array = xr.DataArray([[0, 1, 2], [1, 2, 3]], dims=("x", "y")) expected = xr.DataArray([1, 2], dims=["x"]) actual = apply_ufunc( pandas_median, data_array.chunk({"x": 1}), input_core_dims=[["y"]], vectorize=True, dask="parallelized", output_dtypes=[int], ) assert_identical(expected, actual) assert expected.dtype == actual.dtype # complex data_array = xr.DataArray([[0 + 0j, 1 + 2j, 2 + 1j]], dims=("x", "y")) expected = data_array.copy() actual = apply_ufunc( identity, data_array.chunk({"x": 1}), vectorize=True, dask="parallelized", output_dtypes=[complex], ) assert_identical(expected, actual) assert expected.dtype == actual.dtype @requires_dask @pytest.mark.parametrize( "data_array", [ xr.DataArray([[0, 1, 2], [1, 2, 3]], dims=("x", "y")), xr.DataArray([[0 + 0j, 1 + 2j, 2 + 1j]], dims=("x", "y")), ], ) def test_vectorize_dask_dtype_without_output_dtypes(data_array) -> None: # ensure output_dtypes is preserved with vectorize=True # GH4015 expected = data_array.copy() actual = apply_ufunc( identity, data_array.chunk({"x": 1}), vectorize=True, dask="parallelized", ) assert_identical(expected, actual) assert expected.dtype == actual.dtype @pytest.mark.skipif( dask_version > Version("2021.06"), reason="dask/dask#7669: can no longer pass output_dtypes and meta", ) @requires_dask def test_vectorize_dask_dtype_meta() -> None: # meta dtype takes precedence data_array = xr.DataArray([[0, 1, 2], [1, 2, 3]], dims=("x", "y")) expected = xr.DataArray([1, 2], dims=["x"]) actual = apply_ufunc( pandas_median, data_array.chunk({"x": 1}), input_core_dims=[["y"]], vectorize=True, dask="parallelized", output_dtypes=[int], dask_gufunc_kwargs=dict(meta=np.ndarray((0, 0), dtype=float)), ) assert_identical(expected, actual) assert float == actual.dtype def pandas_median_add(x, y): # function which can consume input of unequal length return pd.Series(x).median() + pd.Series(y).median() def test_vectorize_exclude_dims() -> None: # GH 3890 data_array_a = xr.DataArray([[0, 1, 2], [1, 2, 3]], dims=("x", "y")) data_array_b = xr.DataArray([[0, 1, 2, 3, 4], [1, 2, 3, 4, 5]], dims=("x", "y")) expected = xr.DataArray([3, 5], dims=["x"]) actual = apply_ufunc( pandas_median_add, data_array_a, data_array_b, input_core_dims=[["y"], ["y"]], vectorize=True, exclude_dims=set("y"), ) assert_identical(expected, actual) @requires_dask def test_vectorize_exclude_dims_dask() -> None: # GH 3890 data_array_a = xr.DataArray([[0, 1, 2], [1, 2, 3]], dims=("x", "y")) data_array_b = xr.DataArray([[0, 1, 2, 3, 4], [1, 2, 3, 4, 5]], dims=("x", "y")) expected = xr.DataArray([3, 5], dims=["x"]) actual = apply_ufunc( pandas_median_add, data_array_a.chunk({"x": 1}), data_array_b.chunk({"x": 1}), input_core_dims=[["y"], ["y"]], exclude_dims=set("y"), vectorize=True, dask="parallelized", output_dtypes=[float], ) assert_identical(expected, actual) def test_corr_only_dataarray() -> None: with pytest.raises(TypeError, match="Only xr.DataArray is supported"): xr.corr(xr.Dataset(), xr.Dataset()) def arrays_w_tuples(): da = xr.DataArray( np.random.random((3, 21, 4)), coords={"time": pd.date_range("2000-01-01", freq="1D", periods=21)}, dims=("a", "time", "x"), ) arrays = [ da.isel(time=range(0, 18)), da.isel(time=range(2, 20)).rolling(time=3, center=True).mean(), xr.DataArray([[1, 2], [1, np.nan]], dims=["x", "time"]), xr.DataArray([[1, 2], [np.nan, np.nan]], dims=["x", "time"]), xr.DataArray([[1, 2], [2, 1]], dims=["x", "time"]), ] array_tuples = [ (arrays[0], arrays[0]), (arrays[0], arrays[1]), (arrays[1], arrays[1]), (arrays[2], arrays[2]), (arrays[2], arrays[3]), (arrays[2], arrays[4]), (arrays[4], arrays[2]), (arrays[3], arrays[3]), (arrays[4], arrays[4]), ] return arrays, array_tuples @pytest.mark.parametrize("ddof", [0, 1]) @pytest.mark.parametrize( "da_a, da_b", [ arrays_w_tuples()[1][3], arrays_w_tuples()[1][4], arrays_w_tuples()[1][5], arrays_w_tuples()[1][6], arrays_w_tuples()[1][7], arrays_w_tuples()[1][8], ], ) @pytest.mark.parametrize("dim", [None, "x", "time"]) @requires_dask def test_lazy_corrcov(da_a, da_b, dim, ddof) -> None: # GH 5284 from dask import is_dask_collection with raise_if_dask_computes(): cov = xr.cov(da_a.chunk(), da_b.chunk(), dim=dim, ddof=ddof) assert is_dask_collection(cov) corr = xr.corr(da_a.chunk(), da_b.chunk(), dim=dim) assert is_dask_collection(corr) @pytest.mark.parametrize("ddof", [0, 1]) @pytest.mark.parametrize( "da_a, da_b", [arrays_w_tuples()[1][0], arrays_w_tuples()[1][1], arrays_w_tuples()[1][2]], ) @pytest.mark.parametrize("dim", [None, "time"]) def test_cov(da_a, da_b, dim, ddof) -> None: if dim is not None: def np_cov_ind(ts1, ts2, a, x): # Ensure the ts are aligned and missing values ignored ts1, ts2 = broadcast(ts1, ts2) valid_values = ts1.notnull() & ts2.notnull() # While dropping isn't ideal here, numpy will return nan # if any segment contains a NaN. ts1 = ts1.where(valid_values) ts2 = ts2.where(valid_values) return np.ma.cov( np.ma.masked_invalid(ts1.sel(a=a, x=x).data.flatten()), np.ma.masked_invalid(ts2.sel(a=a, x=x).data.flatten()), ddof=ddof, )[0, 1] expected = np.zeros((3, 4)) for a in [0, 1, 2]: for x in [0, 1, 2, 3]: expected[a, x] = np_cov_ind(da_a, da_b, a=a, x=x) actual = xr.cov(da_a, da_b, dim=dim, ddof=ddof) assert_allclose(actual, expected) else: def np_cov(ts1, ts2): # Ensure the ts are aligned and missing values ignored ts1, ts2 = broadcast(ts1, ts2) valid_values = ts1.notnull() & ts2.notnull() ts1 = ts1.where(valid_values) ts2 = ts2.where(valid_values) return np.ma.cov( np.ma.masked_invalid(ts1.data.flatten()), np.ma.masked_invalid(ts2.data.flatten()), ddof=ddof, )[0, 1] expected = np_cov(da_a, da_b) actual = xr.cov(da_a, da_b, dim=dim, ddof=ddof) assert_allclose(actual, expected) @pytest.mark.parametrize( "da_a, da_b", [arrays_w_tuples()[1][0], arrays_w_tuples()[1][1], arrays_w_tuples()[1][2]], ) @pytest.mark.parametrize("dim", [None, "time"]) def test_corr(da_a, da_b, dim) -> None: if dim is not None: def np_corr_ind(ts1, ts2, a, x): # Ensure the ts are aligned and missing values ignored ts1, ts2 = broadcast(ts1, ts2) valid_values = ts1.notnull() & ts2.notnull() ts1 = ts1.where(valid_values) ts2 = ts2.where(valid_values) return np.ma.corrcoef( np.ma.masked_invalid(ts1.sel(a=a, x=x).data.flatten()), np.ma.masked_invalid(ts2.sel(a=a, x=x).data.flatten()), )[0, 1] expected = np.zeros((3, 4)) for a in [0, 1, 2]: for x in [0, 1, 2, 3]: expected[a, x] = np_corr_ind(da_a, da_b, a=a, x=x) actual = xr.corr(da_a, da_b, dim) assert_allclose(actual, expected) else: def np_corr(ts1, ts2): # Ensure the ts are aligned and missing values ignored ts1, ts2 = broadcast(ts1, ts2) valid_values = ts1.notnull() & ts2.notnull() ts1 = ts1.where(valid_values) ts2 = ts2.where(valid_values) return np.ma.corrcoef( np.ma.masked_invalid(ts1.data.flatten()), np.ma.masked_invalid(ts2.data.flatten()), )[0, 1] expected = np_corr(da_a, da_b) actual = xr.corr(da_a, da_b, dim) assert_allclose(actual, expected) @pytest.mark.parametrize( "da_a, da_b", arrays_w_tuples()[1], ) @pytest.mark.parametrize("dim", [None, "time", "x"]) def test_covcorr_consistency(da_a, da_b, dim) -> None: # Testing that xr.corr and xr.cov are consistent with each other # 1. Broadcast the two arrays da_a, da_b = broadcast(da_a, da_b) # 2. Ignore the nans valid_values = da_a.notnull() & da_b.notnull() da_a = da_a.where(valid_values) da_b = da_b.where(valid_values) expected = xr.cov(da_a, da_b, dim=dim, ddof=0) / ( da_a.std(dim=dim) * da_b.std(dim=dim) ) actual = xr.corr(da_a, da_b, dim=dim) assert_allclose(actual, expected) @requires_dask @pytest.mark.parametrize("da_a, da_b", arrays_w_tuples()[1]) @pytest.mark.parametrize("dim", [None, "time", "x"]) @pytest.mark.filterwarnings("ignore:invalid value encountered in .*divide") def test_corr_lazycorr_consistency(da_a, da_b, dim) -> None: da_al = da_a.chunk() da_bl = da_b.chunk() c_abl = xr.corr(da_al, da_bl, dim=dim) c_ab = xr.corr(da_a, da_b, dim=dim) c_ab_mixed = xr.corr(da_a, da_bl, dim=dim) assert_allclose(c_ab, c_abl) assert_allclose(c_ab, c_ab_mixed) @requires_dask def test_corr_dtype_error(): da_a = xr.DataArray([[1, 2], [2, 1]], dims=["x", "time"]) da_b = xr.DataArray([[1, 2], [1, np.nan]], dims=["x", "time"]) xr.testing.assert_equal(xr.corr(da_a, da_b), xr.corr(da_a.chunk(), da_b.chunk())) xr.testing.assert_equal(xr.corr(da_a, da_b), xr.corr(da_a, da_b.chunk())) @pytest.mark.parametrize( "da_a", arrays_w_tuples()[0], ) @pytest.mark.parametrize("dim", [None, "time", "x", ["time", "x"]]) def test_autocov(da_a, dim) -> None: # Testing that the autocovariance*(N-1) is ~=~ to the variance matrix # 1. Ignore the nans valid_values = da_a.notnull() # Because we're using ddof=1, this requires > 1 value in each sample da_a = da_a.where(valid_values.sum(dim=dim) > 1) expected = ((da_a - da_a.mean(dim=dim)) ** 2).sum(dim=dim, skipna=True, min_count=1) actual = xr.cov(da_a, da_a, dim=dim) * (valid_values.sum(dim) - 1) assert_allclose(actual, expected) @requires_dask def test_vectorize_dask_new_output_dims() -> None: # regression test for GH3574 # run vectorization in dask.array.gufunc by using `dask='parallelized'` data_array = xr.DataArray([[0, 1, 2], [1, 2, 3]], dims=("x", "y")) func = lambda x: x[np.newaxis, ...] expected = data_array.expand_dims("z") actual = apply_ufunc( func, data_array.chunk({"x": 1}), output_core_dims=[["z"]], vectorize=True, dask="parallelized", output_dtypes=[float], dask_gufunc_kwargs=dict(output_sizes={"z": 1}), ).transpose(*expected.dims) assert_identical(expected, actual) with pytest.raises( ValueError, match=r"dimension 'z1' in 'output_sizes' must correspond" ): apply_ufunc( func, data_array.chunk({"x": 1}), output_core_dims=[["z"]], vectorize=True, dask="parallelized", output_dtypes=[float], dask_gufunc_kwargs=dict(output_sizes={"z1": 1}), ) with pytest.raises( ValueError, match=r"dimension 'z' in 'output_core_dims' needs corresponding" ): apply_ufunc( func, data_array.chunk({"x": 1}), output_core_dims=[["z"]], vectorize=True, dask="parallelized", output_dtypes=[float], ) def test_output_wrong_number() -> None: variable = xr.Variable("x", np.arange(10)) def identity(x): return x def tuple3x(x): return (x, x, x) with pytest.raises(ValueError, match=r"number of outputs"): apply_ufunc(identity, variable, output_core_dims=[(), ()]) with pytest.raises(ValueError, match=r"number of outputs"): apply_ufunc(tuple3x, variable, output_core_dims=[(), ()]) def test_output_wrong_dims() -> None: variable = xr.Variable("x", np.arange(10)) def add_dim(x): return x[..., np.newaxis] def remove_dim(x): return x[..., 0] with pytest.raises(ValueError, match=r"unexpected number of dimensions"): apply_ufunc(add_dim, variable, output_core_dims=[("y", "z")]) with pytest.raises(ValueError, match=r"unexpected number of dimensions"): apply_ufunc(add_dim, variable) with pytest.raises(ValueError, match=r"unexpected number of dimensions"): apply_ufunc(remove_dim, variable) def test_output_wrong_dim_size() -> None: array = np.arange(10) variable = xr.Variable("x", array) data_array = xr.DataArray(variable, [("x", -array)]) dataset = xr.Dataset({"y": variable}, {"x": -array}) def truncate(array): return array[:5] def apply_truncate_broadcast_invalid(obj): return apply_ufunc(truncate, obj) with pytest.raises(ValueError, match=r"size of dimension"): apply_truncate_broadcast_invalid(variable) with pytest.raises(ValueError, match=r"size of dimension"): apply_truncate_broadcast_invalid(data_array) with pytest.raises(ValueError, match=r"size of dimension"): apply_truncate_broadcast_invalid(dataset) def apply_truncate_x_x_invalid(obj): return apply_ufunc( truncate, obj, input_core_dims=[["x"]], output_core_dims=[["x"]] ) with pytest.raises(ValueError, match=r"size of dimension"): apply_truncate_x_x_invalid(variable) with pytest.raises(ValueError, match=r"size of dimension"): apply_truncate_x_x_invalid(data_array) with pytest.raises(ValueError, match=r"size of dimension"): apply_truncate_x_x_invalid(dataset) def apply_truncate_x_z(obj): return apply_ufunc( truncate, obj, input_core_dims=[["x"]], output_core_dims=[["z"]] ) assert_identical(xr.Variable("z", array[:5]), apply_truncate_x_z(variable)) assert_identical( xr.DataArray(array[:5], dims=["z"]), apply_truncate_x_z(data_array) ) assert_identical(xr.Dataset({"y": ("z", array[:5])}), apply_truncate_x_z(dataset)) def apply_truncate_x_x_valid(obj): return apply_ufunc( truncate, obj, input_core_dims=[["x"]], output_core_dims=[["x"]], exclude_dims={"x"}, ) assert_identical(xr.Variable("x", array[:5]), apply_truncate_x_x_valid(variable)) assert_identical( xr.DataArray(array[:5], dims=["x"]), apply_truncate_x_x_valid(data_array) ) assert_identical( xr.Dataset({"y": ("x", array[:5])}), apply_truncate_x_x_valid(dataset) ) @pytest.mark.parametrize("use_dask", [True, False]) def test_dot(use_dask) -> None: if use_dask: if not has_dask: pytest.skip("test for dask.") a = np.arange(30 * 4).reshape(30, 4) b = np.arange(30 * 4 * 5).reshape(30, 4, 5) c = np.arange(5 * 60).reshape(5, 60) da_a = xr.DataArray(a, dims=["a", "b"], coords={"a": np.linspace(0, 1, 30)}) da_b = xr.DataArray(b, dims=["a", "b", "c"], coords={"a": np.linspace(0, 1, 30)}) da_c = xr.DataArray(c, dims=["c", "e"]) if use_dask: da_a = da_a.chunk({"a": 3}) da_b = da_b.chunk({"a": 3}) da_c = da_c.chunk({"c": 3}) actual = xr.dot(da_a, da_b, dims=["a", "b"]) assert actual.dims == ("c",) assert (actual.data == np.einsum("ij,ijk->k", a, b)).all() assert isinstance(actual.variable.data, type(da_a.variable.data)) actual = xr.dot(da_a, da_b) assert actual.dims == ("c",) assert (actual.data == np.einsum("ij,ijk->k", a, b)).all() assert isinstance(actual.variable.data, type(da_a.variable.data)) # for only a single array is passed without dims argument, just return # as is actual = xr.dot(da_a) assert_identical(da_a, actual) # test for variable actual = xr.dot(da_a.variable, da_b.variable) assert actual.dims == ("c",) assert (actual.data == np.einsum("ij,ijk->k", a, b)).all() assert isinstance(actual.data, type(da_a.variable.data)) if use_dask: da_a = da_a.chunk({"a": 3}) da_b = da_b.chunk({"a": 3}) actual = xr.dot(da_a, da_b, dims=["b"]) assert actual.dims == ("a", "c") assert (actual.data == np.einsum("ij,ijk->ik", a, b)).all() assert isinstance(actual.variable.data, type(da_a.variable.data)) actual = xr.dot(da_a, da_b, dims=["b"]) assert actual.dims == ("a", "c") assert (actual.data == np.einsum("ij,ijk->ik", a, b)).all() actual = xr.dot(da_a, da_b, dims="b") assert actual.dims == ("a", "c") assert (actual.data == np.einsum("ij,ijk->ik", a, b)).all() actual = xr.dot(da_a, da_b, dims="a") assert actual.dims == ("b", "c") assert (actual.data == np.einsum("ij,ijk->jk", a, b)).all() actual = xr.dot(da_a, da_b, dims="c") assert actual.dims == ("a", "b") assert (actual.data == np.einsum("ij,ijk->ij", a, b)).all() actual = xr.dot(da_a, da_b, da_c, dims=["a", "b"]) assert actual.dims == ("c", "e") assert (actual.data == np.einsum("ij,ijk,kl->kl ", a, b, c)).all() # should work with tuple actual = xr.dot(da_a, da_b, dims=("c",)) assert actual.dims == ("a", "b") assert (actual.data == np.einsum("ij,ijk->ij", a, b)).all() # default dims actual = xr.dot(da_a, da_b, da_c) assert actual.dims == ("e",) assert (actual.data == np.einsum("ij,ijk,kl->l ", a, b, c)).all() # 1 array summation actual = xr.dot(da_a, dims="a") assert actual.dims == ("b",) assert (actual.data == np.einsum("ij->j ", a)).all() # empty dim actual = xr.dot(da_a.sel(a=[]), da_a.sel(a=[]), dims="a") assert actual.dims == ("b",) assert (actual.data == np.zeros(actual.shape)).all() # Ellipsis (...) sums over all dimensions actual = xr.dot(da_a, da_b, dims=...) assert actual.dims == () assert (actual.data == np.einsum("ij,ijk->", a, b)).all() actual = xr.dot(da_a, da_b, da_c, dims=...) assert actual.dims == () assert (actual.data == np.einsum("ij,ijk,kl-> ", a, b, c)).all() actual = xr.dot(da_a, dims=...) assert actual.dims == () assert (actual.data == np.einsum("ij-> ", a)).all() actual = xr.dot(da_a.sel(a=[]), da_a.sel(a=[]), dims=...) assert actual.dims == () assert (actual.data == np.zeros(actual.shape)).all() # Invalid cases if not use_dask: with pytest.raises(TypeError): xr.dot(da_a, dims="a", invalid=None) with pytest.raises(TypeError): xr.dot(da_a.to_dataset(name="da"), dims="a") with pytest.raises(TypeError): xr.dot(dims="a") # einsum parameters actual = xr.dot(da_a, da_b, dims=["b"], order="C") assert (actual.data == np.einsum("ij,ijk->ik", a, b)).all() assert actual.values.flags["C_CONTIGUOUS"] assert not actual.values.flags["F_CONTIGUOUS"] actual = xr.dot(da_a, da_b, dims=["b"], order="F") assert (actual.data == np.einsum("ij,ijk->ik", a, b)).all() # dask converts Fortran arrays to C order when merging the final array if not use_dask: assert not actual.values.flags["C_CONTIGUOUS"] assert actual.values.flags["F_CONTIGUOUS"] # einsum has a constant string as of the first parameter, which makes # it hard to pass to xarray.apply_ufunc. # make sure dot() uses functools.partial(einsum, subscripts), which # can be pickled, and not a lambda, which can't. pickle.loads(pickle.dumps(xr.dot(da_a))) @pytest.mark.parametrize("use_dask", [True, False]) def test_dot_align_coords(use_dask) -> None: # GH 3694 if use_dask: if not has_dask: pytest.skip("test for dask.") a = np.arange(30 * 4).reshape(30, 4) b = np.arange(30 * 4 * 5).reshape(30, 4, 5) # use partially overlapping coords coords_a = {"a": np.arange(30), "b": np.arange(4)} coords_b = {"a": np.arange(5, 35), "b": np.arange(1, 5)} da_a = xr.DataArray(a, dims=["a", "b"], coords=coords_a) da_b = xr.DataArray(b, dims=["a", "b", "c"], coords=coords_b) if use_dask: da_a = da_a.chunk({"a": 3}) da_b = da_b.chunk({"a": 3}) # join="inner" is the default actual = xr.dot(da_a, da_b) # `dot` sums over the common dimensions of the arguments expected = (da_a * da_b).sum(["a", "b"]) xr.testing.assert_allclose(expected, actual) actual = xr.dot(da_a, da_b, dims=...) expected = (da_a * da_b).sum() xr.testing.assert_allclose(expected, actual) with xr.set_options(arithmetic_join="exact"): with pytest.raises(ValueError, match=r"cannot align.*join.*exact.*not equal.*"): xr.dot(da_a, da_b) # NOTE: dot always uses `join="inner"` because `(a * b).sum()` yields the same for all # join method (except "exact") with xr.set_options(arithmetic_join="left"): actual = xr.dot(da_a, da_b) expected = (da_a * da_b).sum(["a", "b"]) xr.testing.assert_allclose(expected, actual) with xr.set_options(arithmetic_join="right"): actual = xr.dot(da_a, da_b) expected = (da_a * da_b).sum(["a", "b"]) xr.testing.assert_allclose(expected, actual) with xr.set_options(arithmetic_join="outer"): actual = xr.dot(da_a, da_b) expected = (da_a * da_b).sum(["a", "b"]) xr.testing.assert_allclose(expected, actual) def test_where() -> None: cond = xr.DataArray([True, False], dims="x") actual = xr.where(cond, 1, 0) expected = xr.DataArray([1, 0], dims="x") assert_identical(expected, actual) def test_where_attrs() -> None: cond = xr.DataArray([True, False], dims="x", attrs={"attr": "cond"}) x = xr.DataArray([1, 1], dims="x", attrs={"attr": "x"}) y = xr.DataArray([0, 0], dims="x", attrs={"attr": "y"}) actual = xr.where(cond, x, y, keep_attrs=True) expected = xr.DataArray([1, 0], dims="x", attrs={"attr": "x"}) assert_identical(expected, actual) @pytest.mark.parametrize("use_dask", [True, False]) @pytest.mark.parametrize("use_datetime", [True, False]) def test_polyval(use_dask, use_datetime) -> None: if use_dask and not has_dask: pytest.skip("requires dask") if use_datetime: xcoord = xr.DataArray( pd.date_range("2000-01-01", freq="D", periods=10), dims=("x",), name="x" ) x = xr.core.missing.get_clean_interp_index(xcoord, "x") else: x = np.arange(10) xcoord = xr.DataArray(x, dims=("x",), name="x") da = xr.DataArray( np.stack((1.0 + x + 2.0 * x**2, 1.0 + 2.0 * x + 3.0 * x**2)), dims=("d", "x"), coords={"x": xcoord, "d": [0, 1]}, ) coeffs = xr.DataArray( [[2, 1, 1], [3, 2, 1]], dims=("d", "degree"), coords={"d": [0, 1], "degree": [2, 1, 0]}, ) if use_dask: coeffs = coeffs.chunk({"d": 2}) da_pv = xr.polyval(da.x, coeffs) xr.testing.assert_allclose(da, da_pv.T) @pytest.mark.parametrize("use_dask", [False, True]) @pytest.mark.parametrize( "a, b, ae, be, dim, axis", [ [ xr.DataArray([1, 2, 3]), xr.DataArray([4, 5, 6]), [1, 2, 3], [4, 5, 6], "dim_0", -1, ], [ xr.DataArray([1, 2]), xr.DataArray([4, 5, 6]), [1, 2], [4, 5, 6], "dim_0", -1, ], [ xr.Variable(dims=["dim_0"], data=[1, 2, 3]), xr.Variable(dims=["dim_0"], data=[4, 5, 6]), [1, 2, 3], [4, 5, 6], "dim_0", -1, ], [ xr.Variable(dims=["dim_0"], data=[1, 2]), xr.Variable(dims=["dim_0"], data=[4, 5, 6]), [1, 2], [4, 5, 6], "dim_0", -1, ], [ # Test dim in the middle: xr.DataArray( np.arange(0, 5 * 3 * 4).reshape((5, 3, 4)), dims=["time", "cartesian", "var"], coords=dict( time=(["time"], np.arange(0, 5)), cartesian=(["cartesian"], ["x", "y", "z"]), var=(["var"], [1, 1.5, 2, 2.5]), ), ), xr.DataArray( np.arange(0, 5 * 3 * 4).reshape((5, 3, 4)) + 1, dims=["time", "cartesian", "var"], coords=dict( time=(["time"], np.arange(0, 5)), cartesian=(["cartesian"], ["x", "y", "z"]), var=(["var"], [1, 1.5, 2, 2.5]), ), ), np.arange(0, 5 * 3 * 4).reshape((5, 3, 4)), np.arange(0, 5 * 3 * 4).reshape((5, 3, 4)) + 1, "cartesian", 1, ], [ # Test 1 sized arrays with coords: xr.DataArray( np.array([1]), dims=["cartesian"], coords=dict(cartesian=(["cartesian"], ["z"])), ), xr.DataArray( np.array([4, 5, 6]), dims=["cartesian"], coords=dict(cartesian=(["cartesian"], ["x", "y", "z"])), ), [0, 0, 1], [4, 5, 6], "cartesian", -1, ], [ # Test filling in between with coords: xr.DataArray( [1, 2], dims=["cartesian"], coords=dict(cartesian=(["cartesian"], ["x", "z"])), ), xr.DataArray( [4, 5, 6], dims=["cartesian"], coords=dict(cartesian=(["cartesian"], ["x", "y", "z"])), ), [1, 0, 2], [4, 5, 6], "cartesian", -1, ], ], ) def test_cross(a, b, ae, be, dim: str, axis: int, use_dask: bool) -> None: expected =
np.cross(ae, be, axis=axis)
numpy.cross
import time import os import csv import copy import math import pickle import cv2 import pyro import pyro.distributions as dist import torch import numpy as np from tqdm import tqdm import transforms3d as tf3d import pybullet as pb import random from PIL import Image from generation.mujocoCabinetParts import build_cabinet, sample_cabinet from generation.mujocoDrawerParts import build_drawer, sample_drawers from generation.mujocoMicrowaveParts import build_microwave, sample_microwave from generation.mujocoToasterOvenParts import build_toaster, sample_toaster from generation.mujocoDoubleCabinetParts import build_cabinet2, sample_cabinet2, set_two_door_control from generation.mujocoRefrigeratorParts import build_refrigerator, sample_refrigerator from generation.utils import * import generation.calibrations as calibrations # pb_client = pb.connect(pb.GUI) # pb.setGravity(0,0,-100) def white_bg(img): mask = 1 - (img > 0) img_cp = copy.deepcopy(img) img_cp[mask.all(axis=2)] = [255,255,255, 0] return img_cp def buffer_to_real(z, zfar, znear): return 2*zfar*znear / (zfar + znear - (zfar - znear)*(2*z -1)) def vertical_flip(img): return np.flip(img, axis=0) class SceneGenerator(): def __init__(self, pb_client, root_dir='bull/test_cabinets/solo', masked=False, debug_flag=False): ''' Class for generating simulated articulated object dataset. params: - root_dir: save in this directory - start_idx: index of first image saved - useful in threading context - depth_data: np array of depth images - masked: should the background of depth images be 0s or 1s? ''' self.scenes=[] self.savedir=root_dir self.masked = masked self.img_idx = 0 self.depth_data=[] self.debugging=debug_flag # pb_client = pb.connect(pb.GUI) self.pb_client = pb_client # self.pb_client.setGravity(0,0,-9.8) # Camera external settings self.viewMatrix = pb.computeViewMatrix( cameraEyePosition=[4,0,1], cameraTargetPosition=[0,0,1], cameraUpVector=[0,0,1] ) # Camera internal settings self.projectionMatrix = pb.computeProjectionMatrixFOV( fov=45., aspect=1.0, nearVal=0.1, farVal=8.1 ) print(root_dir) def write_urdf(self, filename, xml): with open(filename, "w") as text_file: text_file.write(xml) def sample_obj(self, obj_type, mean_flag, left_only, cute_flag=False): if obj_type == 'microwave': l, w, h, t, left, mass = sample_microwave(mean_flag) if mean_flag: obj = build_microwave(l, w, h, t, left, set_pose = [1.0, 0.0, -0.15], set_rot = [0.0, 0.0, 0.0, 1.0] ) elif cute_flag: base_xyz, base_angle = sample_pose() base_quat = angle_to_quat(base_angle) obj = build_microwave(l, w, h, t, left, set_pose = [1.0, 0.0, -0.15], set_rot = base_quat) else: obj = build_microwave(l, w, h, t, left) camera_dist = max(1.25, 2*math.log(10*h)) camera_height = h/2. elif obj_type == 'drawer': l, w, h, t, left, mass = sample_drawers(mean_flag) if mean_flag: obj = build_drawer(l, w, h, t, left, set_pose = [1.5, 0.0, -0.4], set_rot = [0.0, 0.0, 0.0, 1.0] ) elif cute_flag: base_xyz, base_angle = sample_pose() base_quat = angle_to_quat(base_angle) obj = build_drawer(l, w, h, t, left, set_pose = [1.2, 0.0, -0.15], set_rot = base_quat) else: obj = build_drawer(l, w, h, t, left) camera_dist = max(2, 2*math.log(10*h)) camera_height = h/2. elif obj_type == 'toaster': l, w, h, t, left, mass = sample_toaster(mean_flag) if mean_flag: obj = build_toaster(l, w, h, t, left, set_pose = [1.5, 0.0, -0.3], set_rot = [0.0, 0.0, 0.0, 1.0] ) elif cute_flag: base_xyz, base_angle = sample_pose() base_quat = angle_to_quat(base_angle) obj = build_toaster(l, w, h, t, left, set_pose = [1.0, 0.0, -0.15], set_rot = base_quat) else: obj = build_toaster(l, w, h, t, left) camera_dist = max(1, 2*math.log(10*h)) camera_height = h/2. elif obj_type == 'cabinet': l, w, h, t, left, mass = sample_cabinet(mean_flag) if mean_flag: if left_only: left=True else: left=False obj = build_cabinet(l, w, h, t, left, set_pose = [1.5, 0.0, -0.3], set_rot = [0.0, 0.0, 0.0, 1.0] ) elif cute_flag: base_xyz, base_angle = sample_pose() base_quat = angle_to_quat(base_angle) obj = build_cabinet(l, w, h, t, left, set_pose = [1.5, 0.0, -0.15], set_rot = base_quat) else: left = np.random.choice([True,False]) obj = build_cabinet(l, w, h, t, left) camera_dist = 2*math.log(10*h) camera_height = h/2. elif obj_type == 'cabinet2': l, w, h, t, left, mass = sample_cabinet2(mean_flag) if mean_flag: obj = build_cabinet2(l, w, h, t, left, set_pose = [1.5, 0.0, -0.3], set_rot = [0.0, 0.0, 0.0, 1.0] ) elif cute_flag: base_xyz, base_angle = sample_pose() base_quat = angle_to_quat(base_angle) obj = build_cabinet2(l, w, h, t, left, set_pose = [1.5, 0.0, -0.15], set_rot = base_quat) else: obj = build_cabinet2(l, w, h, t, left) camera_dist = 2*math.log(10*h) camera_height = h/2. elif obj_type == 'refrigerator': l, w, h, t, left, mass = sample_refrigerator(mean_flag) if mean_flag: obj = build_refrigerator(l, w, h, t, left, set_pose = [1.5, 0.0, -0.3], set_rot = [0.0, 0.0, 0.0, 1.0]) elif cute_flag: base_xyz, base_angle = sample_pose() base_quat = angle_to_quat(base_angle) obj = build_refrigerator(l, w, h, t, left, set_pose = [2.5, 0.0, -0.75], set_rot = base_quat) else: obj = build_refrigerator(l, w, h, t, left) camera_dist = 2*math.log(10*h) camera_height = h/2. else: raise 'uh oh, object not implemented!' return obj, camera_dist, camera_height def generate_scenes(self, N, objtype, write_csv=True, save_imgs=True, mean_flag=False, left_only=False, cute_flag=False, test=False, video=False): fname=os.path.join(self.savedir, 'labels.csv') self.img_idx = 0 with open(fname, 'a') as csvfile: writ = csv.writer(csvfile, delimiter=',') writ.writerow(['Object Name', 'Joint Type', 'Image Index', 'l_1', 'l_2', 'l_3', 'm_1', 'm_2', 'm_3',]) for i in tqdm(range(N)): obj, camera_dist, camera_height = self.sample_obj(objtype, mean_flag, left_only, cute_flag=cute_flag) xml=obj.xml fname=os.path.join(self.savedir, 'scene'+str(i).zfill(6)+'.xml') self.write_urdf(fname, xml) self.scenes.append(fname) self.take_images(fname, obj, camera_dist, camera_height, obj.joint_index, writ, test=test, video=video) return def take_images(self, filename, obj, camera_dist, camera_height, joint_index, writer, img_idx=0, debug=False, test=False, video=False): objId, _ = pb.loadMJCF(filename) # create normal texture image x, y = np.meshgrid(np.linspace(-1,1, 128), np.linspace(-1,1, 128)) texture_img = (72*(np.stack([np.cos(16*x),
np.cos(16*y)
numpy.cos
import NetworkLayer import Utils from NetworkConfig import NetworkConfig from NetworkPerformanceTuner import NetworkPerformanceTuner from NeuralNetworkMLP import NeuralNetwork import numpy as np nodes_per_layer = [3,2] weights = 0 def weight_provider(num): return np.arange(num) config = NetworkConfig(nodes_per_layer, weight_provider, Utils.node_bias_provider, Utils.sigmoid_function, Utils.sigmoid_derivative_function) neural_network = NeuralNetwork.build(config, NetworkLayer.NetworkLayer.build) learning_rate = 1 network_tuner = NetworkPerformanceTuner(neural_network, Utils.regular_layer_error_calculator, Utils.cross_entropy_output_layer_calculator, Utils.batch_cross_entropy_cost_function, learning_rate, config) inputs =
np.arange(6.0)
numpy.arange
""" This file is part of the repo: https://github.com/tencent-ailab/hifi3dface If you find the code useful, please cite our paper: "High-Fidelity 3D Digital Human Creation from RGB-D Selfies." <NAME>*, <NAME>*, <NAME>*, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. arXiv: https://arxiv.org/abs/2010.05562 Copyright (c) [2020] [Tencent AI Lab] Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # from __future__ import absolute_import # from __future__ import division # from __future__ import print_function import cv2, os, importlib, math import os.path as osp import numpy as np import scipy.io as scio import tensorflow as tf def create_mtcnn_pb(sess): pnet_fun = lambda img: sess.run( ("pnet/conv4-2/BiasAdd:0", "pnet/prob1:0"), feed_dict={"pnet/input:0": img} ) rnet_fun = lambda img: sess.run( ("rnet/conv5-2/conv5-2:0", "rnet/prob1:0"), feed_dict={"rnet/input:0": img} ) onet_fun = lambda img: sess.run( ("onet/conv6-2/conv6-2:0", "onet/conv6-3/conv6-3:0", "onet/prob1:0"), feed_dict={"onet/input:0": img}, ) return pnet_fun, rnet_fun, onet_fun def detect_face(img, minsize, pnet, rnet, onet, threshold, factor): """Detects faces in an image, and returns bounding boxes and points for them. img: input image minsize: minimum faces' size pnet, rnet, onet: caffemodel threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold factor: the factor used to create a scaling pyramid of face sizes to detect in the image. """ factor_count = 0 total_boxes = np.empty((0, 9)) points = np.empty(0) h = img.shape[0] w = img.shape[1] minl = np.amin([h, w]) m = 12.0 / minsize minl = minl * m # create scale pyramid scales = [] while minl >= 12: scales += [m * np.power(factor, factor_count)] minl = minl * factor factor_count += 1 # first stage for scale in scales: hs = int(np.ceil(h * scale)) ws = int(np.ceil(w * scale)) im_data = imresample(img, (hs, ws)) im_data = (im_data - 127.5) * 0.0078125 img_x = np.expand_dims(im_data, 0) img_y = np.transpose(img_x, (0, 2, 1, 3)) out = pnet(img_y) out0 = np.transpose(out[0], (0, 2, 1, 3)) out1 = np.transpose(out[1], (0, 2, 1, 3)) boxes, _ = generateBoundingBox( out1[0, :, :, 1].copy(), out0[0, :, :, :].copy(), scale, threshold[0] ) # inter-scale nms pick = nms(boxes.copy(), 0.5, "Union") if boxes.size > 0 and pick.size > 0: boxes = boxes[pick, :] total_boxes = np.append(total_boxes, boxes, axis=0) numbox = total_boxes.shape[0] if numbox > 0: pick = nms(total_boxes.copy(), 0.7, "Union") total_boxes = total_boxes[pick, :] regw = total_boxes[:, 2] - total_boxes[:, 0] regh = total_boxes[:, 3] - total_boxes[:, 1] qq1 = total_boxes[:, 0] + total_boxes[:, 5] * regw qq2 = total_boxes[:, 1] + total_boxes[:, 6] * regh qq3 = total_boxes[:, 2] + total_boxes[:, 7] * regw qq4 = total_boxes[:, 3] + total_boxes[:, 8] * regh total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:, 4]])) total_boxes = rerec(total_boxes.copy()) total_boxes[:, 0:4] = np.fix(total_boxes[:, 0:4]).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) numbox = total_boxes.shape[0] if numbox > 0: # second stage tempimg = np.zeros((24, 24, 3, numbox)) for k in range(0, numbox): tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) tmp[dy[k] - 1 : edy[k], dx[k] - 1 : edx[k], :] = img[ y[k] - 1 : ey[k], x[k] - 1 : ex[k], : ] if ( tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0 ): tempimg[:, :, :, k] = imresample(tmp, (24, 24)) else: return np.empty() tempimg = (tempimg - 127.5) * 0.0078125 tempimg1 = np.transpose(tempimg, (3, 1, 0, 2)) out = rnet(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) score = out1[1, :] ipass = np.where(score > threshold[1]) total_boxes = np.hstack( [total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)] ) mv = out0[:, ipass[0]] if total_boxes.shape[0] > 0: pick = nms(total_boxes, 0.7, "Union") total_boxes = total_boxes[pick, :] total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:, pick])) total_boxes = rerec(total_boxes.copy()) numbox = total_boxes.shape[0] if numbox > 0: # third stage total_boxes = np.fix(total_boxes).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) tempimg = np.zeros((48, 48, 3, numbox)) for k in range(0, numbox): tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) tmp[dy[k] - 1 : edy[k], dx[k] - 1 : edx[k], :] = img[ y[k] - 1 : ey[k], x[k] - 1 : ex[k], : ] if ( tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0 ): tempimg[:, :, :, k] = imresample(tmp, (48, 48)) else: return np.empty() tempimg = (tempimg - 127.5) * 0.0078125 tempimg1 = np.transpose(tempimg, (3, 1, 0, 2)) out = onet(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) out2 = np.transpose(out[2]) score = out2[1, :] points = out1 ipass = np.where(score > threshold[2]) points = points[:, ipass[0]] total_boxes = np.hstack( [total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)] ) mv = out0[:, ipass[0]] w = total_boxes[:, 2] - total_boxes[:, 0] + 1 h = total_boxes[:, 3] - total_boxes[:, 1] + 1 points[0:5, :] = ( np.tile(w, (5, 1)) * points[0:5, :] + np.tile(total_boxes[:, 0], (5, 1)) - 1 ) points[5:10, :] = ( np.tile(h, (5, 1)) * points[5:10, :] + np.tile(total_boxes[:, 1], (5, 1)) - 1 ) if total_boxes.shape[0] > 0: total_boxes = bbreg(total_boxes.copy(), np.transpose(mv)) pick = nms(total_boxes.copy(), 0.7, "Min") total_boxes = total_boxes[pick, :] points = points[:, pick] return total_boxes, points def generateBoundingBox(imap, reg, scale, t): """Use heatmap to generate bounding boxes""" stride = 2 cellsize = 12 imap = np.transpose(imap) dx1 = np.transpose(reg[:, :, 0]) dy1 = np.transpose(reg[:, :, 1]) dx2 = np.transpose(reg[:, :, 2]) dy2 = np.transpose(reg[:, :, 3]) y, x = np.where(imap >= t) if y.shape[0] == 1: dx1 = np.flipud(dx1) dy1 = np.flipud(dy1) dx2 = np.flipud(dx2) dy2 = np.flipud(dy2) score = imap[(y, x)] reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]])) if reg.size == 0: reg = np.empty((0, 3)) bb = np.transpose(np.vstack([y, x])) q1 = np.fix((stride * bb + 1) / scale) q2 = np.fix((stride * bb + cellsize - 1 + 1) / scale) boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg]) return boundingbox, reg def imresample(img, sz): im_data = cv2.resize( img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA ) # @UndefinedVariable return im_data def nms(boxes, threshold, method): if boxes.size == 0: return np.empty((0, 3)) x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] s = boxes[:, 4] area = (x2 - x1 + 1) * (y2 - y1 + 1) I = np.argsort(s) pick = np.zeros_like(s, dtype=np.int16) counter = 0 while I.size > 0: i = I[-1] pick[counter] = i counter += 1 idx = I[0:-1] xx1 = np.maximum(x1[i], x1[idx]) yy1 = np.maximum(y1[i], y1[idx]) xx2 = np.minimum(x2[i], x2[idx]) yy2 = np.minimum(y2[i], y2[idx]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h if method is "Min": o = inter / np.minimum(area[i], area[idx]) else: o = inter / (area[i] + area[idx] - inter) I = I[np.where(o <= threshold)] pick = pick[0:counter] return pick # function [bboxA] = rerec(bboxA) def rerec(bboxA): """Convert bboxA to square.""" h = bboxA[:, 3] - bboxA[:, 1] w = bboxA[:, 2] - bboxA[:, 0] l = np.maximum(w, h) bboxA[:, 0] = bboxA[:, 0] + w * 0.5 - l * 0.5 bboxA[:, 1] = bboxA[:, 1] + h * 0.5 - l * 0.5 bboxA[:, 2:4] = bboxA[:, 0:2] + np.transpose(np.tile(l, (2, 1))) return bboxA # function [boundingbox] = bbreg(boundingbox,reg) def bbreg(boundingbox, reg): """Calibrate bounding boxes""" if reg.shape[1] == 1: reg = np.reshape(reg, (reg.shape[2], reg.shape[3])) w = boundingbox[:, 2] - boundingbox[:, 0] + 1 h = boundingbox[:, 3] - boundingbox[:, 1] + 1 b1 = boundingbox[:, 0] + reg[:, 0] * w b2 = boundingbox[:, 1] + reg[:, 1] * h b3 = boundingbox[:, 2] + reg[:, 2] * w b4 = boundingbox[:, 3] + reg[:, 3] * h boundingbox[:, 0:4] = np.transpose(np.vstack([b1, b2, b3, b4])) return boundingbox # function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h) def pad(total_boxes, w, h): """Compute the padding coordinates (pad the bounding boxes to square)""" tmpw = (total_boxes[:, 2] - total_boxes[:, 0] + 1).astype(np.int32) tmph = (total_boxes[:, 3] - total_boxes[:, 1] + 1).astype(np.int32) numbox = total_boxes.shape[0] dx = np.ones((numbox), dtype=np.int32) dy = np.ones((numbox), dtype=np.int32) edx = tmpw.copy().astype(np.int32) edy = tmph.copy().astype(np.int32) x = total_boxes[:, 0].copy().astype(np.int32) y = total_boxes[:, 1].copy().astype(np.int32) ex = total_boxes[:, 2].copy().astype(np.int32) ey = total_boxes[:, 3].copy().astype(np.int32) tmp = np.where(ex > w) edx.flat[tmp] = np.expand_dims(-ex[tmp] + w + tmpw[tmp], 1) ex[tmp] = w tmp = np.where(ey > h) edy.flat[tmp] = np.expand_dims(-ey[tmp] + h + tmph[tmp], 1) ey[tmp] = h tmp = np.where(x < 1) dx.flat[tmp] = np.expand_dims(2 - x[tmp], 1) x[tmp] = 1 tmp = np.where(y < 1) dy.flat[tmp] = np.expand_dims(2 - y[tmp], 1) y[tmp] = 1 return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph def detect_with_MTCNN(origin_images_dir, out_dir, pb_path, mode="no_depth"): print("MTCNN detect") if os.path.exists(out_dir) is False: os.makedirs(out_dir) minsize = 20 # minimum size of face threshold = [0.5, 0.6, 0.6] # three steps's threshold factor = 0.709 # scale factor with tf.Graph().as_default(): graph_def = tf.GraphDef() graph_file = pb_path with open(graph_file, "rb") as f: print("hello") graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name="") sess = tf.Session() with sess.as_default(): tf.global_variables_initializer().run() pnet, rnet, onet = create_mtcnn_pb(sess) # find files import glob if mode == "depth": files = glob.glob(osp.join(origin_images_dir, "*.jpg")) files.extend(glob.glob(osp.join(origin_images_dir, "*.JPG"))) dep_files = glob.glob(osp.join(origin_images_dir, "*.png")) dep_files.extend(glob.glob(osp.join(origin_images_dir, "*.PNG"))) files.sort() dep_files.sort() else: files = glob.glob(osp.join(origin_images_dir, "*.jpg")) files.extend(glob.glob(osp.join(origin_images_dir, "*.png"))) files.extend(glob.glob(osp.join(origin_images_dir, "*.JPG"))) files.extend(glob.glob(osp.join(origin_images_dir, "*.PNG"))) files.sort() print("=========================") # print("img:", files) # print("Dep:", dep_files) # detect face bbox count = 0 names_list = [] dep_name_list = [] for index in range(0, len(files)): img = cv2.imread(files[index]) bounding_boxes, points = detect_face( img, minsize, pnet, rnet, onet, threshold, factor ) # bounding_boxes.shape: (n, 5) points.shape: (10, n) if len(bounding_boxes) == 1: points = np.transpose(points) batch_imgs = img batch_bboxes = bounding_boxes batch_points = points batch_names = files[index].split("/")[-1] names_list.append(batch_names) scio.savemat( os.path.join(out_dir, batch_names[:-4] + ".mat"), { "batch_bboxes": batch_bboxes.astype(np.float64), "batch_points": batch_points.astype(np.float64), }, ) if mode == "depth": dep_name_list.append(dep_files[index].split("/")[-1]) elif len(bounding_boxes) > 1: print("too much face to detect by MTCNN, only select first person") points =
np.transpose(points[:, 0:1])
numpy.transpose
''' DESCRIPTION ---------- An assortment of code written for sanity checks on our 2017 TESS GI proposal about difference imaging of clusters. Most of this involving parsing Kharchenko et al (2013)'s table, hence the name `parse_MWSC.py`. The tools here do things like: * Find how many open clusters we could observe * Find how many member stars within those we could observe * Compute TESS mags for everything (mostly via `ticgen`) * Estimate blending effects, mainly through the dilution (computed just by summing magnitudes appropriately) * Using K+13's King profile fits, estimate the surface density of member stars. It turns out that this radically underestimates the actual surface density of stars (because of all the background blends). Moreover, for purposes of motivating our difference imaging, "the number of stars in your aperture" is more relevant than "a surface density", and even more relevant than both of those is dilution. So I settled on the dilution calculation. The plotting scripts here also make the skymap figure of the proposal. (Where are the clusters on the sky?) USAGE ---------- From /src/, select desired functions from __main__ below. Then: >>> python parse_MWSC.py > output.log ''' import matplotlib.pyplot as plt, seaborn as sns import pandas as pd, numpy as np from astropy.table import Table from astropy.io import ascii from astropy.coordinates import SkyCoord import astropy.units as u from math import pi import pickle, os from scipy.interpolate import interp1d global COLORS COLORS = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] # cite: # # <NAME>. & <NAME>. 2017, ticgen: A tool for calculating a TESS # magnitude, and an expected noise level for stars to be observed by TESS., # v1.0.0, Zenodo, doi:10.5281/zenodo.888217 # # and Stassun & friends (2017). #import ticgen as ticgen # # These two, from the website # # http://dc.zah.uni-heidelberg.de/mwsc/q/clu/form # # are actually outdated or something. They provided too few resuls.. # close_certain = pd.read_csv('../data/MWSC_search_lt_2000_pc_type_certain.csv') # close_junk = pd.read_csv('../data/MWSC_search_lt_2000_pc_type_certain.csv') def get_cluster_data(): # Downloaded the MWSC from # http://cdsarc.u-strasbg.fr/viz-bin/Cat?cat=J%2FA%2BA%2F558%2FA53&target=http& tab = Table.read('../data/Kharchenko_2013_MWSC.vot', format='votable') df = tab.to_pandas() for colname in ['Type', 'Name', 'n_Type', 'SType']: df[colname] = [e.decode('utf-8') for e in list(df[colname])] # From erratum: # For the Sun-like star, a 4 Re planet produces a transit depth of 0.13%. The # limiting magnitude for transits to be detectable is about I_C = 11.4 . This # also corresponds to K_s ~= 10.6 and a maximum distance of 290 pc, assuming no # extinction. cinds = np.array(df['d']<500) close = df[cinds] finds = np.array(df['d']<1000) far = df[finds] N_c_r0 = int(np.sum(close['N1sr0'])) N_c_r1 = int(np.sum(close['N1sr1'])) N_c_r2 = int(np.sum(close['N1sr2'])) N_f_r0 = int(np.sum(far['N1sr0'])) N_f_r1 = int(np.sum(far['N1sr1'])) N_f_r2 = int(np.sum(far['N1sr2'])) type_d = {'a':'association', 'g':'globular cluster', 'm':'moving group', 'n':'nebulosity/presence of nebulosity', 'r':'remnant cluster', 's':'asterism', '': 'no label'} ntype_d = {'o':'object','c':'candidate','':'no label'} print('*'*50) print('\nMilky Way Star Clusters (close := <500pc)' '\nN_clusters: {:d}'.format(len(close))+\ '\nN_stars (in core): {:d}'.format(N_c_r0)+\ '\nN_stars (in central part): {:d}'.format(N_c_r1)+\ '\nN_stars (in cluster): {:d}'.format(N_c_r2)) print('\n'+'*'*50) print('\nMilky Way Star Clusters (far := <1000pc)' '\nN_clusters: {:d}'.format(len(far))+\ '\nN_stars (in core): {:d}'.format(N_f_r0)+\ '\nN_stars (in central part): {:d}'.format(N_f_r1)+\ '\nN_stars (in cluster): {:d}'.format(N_f_r2)) print('\n'+'*'*50) #################### # Post-processing. # #################### # Compute mean density mean_N_star_per_sqdeg = df['N1sr2'] / (pi * df['r2']**2) df['mean_N_star_per_sqdeg'] = mean_N_star_per_sqdeg # Compute King profiles king_profiles, theta_profiles = [], [] for rt, rc, k, d in zip(np.array(df['rt']), np.array(df['rc']), np.array(df['k']), np.array(df['d'])): sigma, theta = get_king_proj_density_profile(rt, rc, k, d) king_profiles.append(sigma) theta_profiles.append(theta) df['king_profile'] = king_profiles df['theta'] = theta_profiles ra = np.array(df['RAJ2000']) dec = np.array(df['DEJ2000']) c = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs') galactic_long = np.array(c.galactic.l) galactic_lat = np.array(c.galactic.b) ecliptic_long = np.array(c.barycentrictrueecliptic.lon) ecliptic_lat = np.array(c.barycentrictrueecliptic.lat) df['galactic_long'] = galactic_long df['galactic_lat'] = galactic_lat df['ecliptic_long'] = ecliptic_long df['ecliptic_lat'] = ecliptic_lat cinds = np.array(df['d']<500) close = df[cinds] finds = np.array(df['d']<1000) far = df[finds] return close, far, df def distance_histogram(df): plt.close('all') f,ax = plt.subplots(figsize=(4,4)) hist, bin_edges = np.histogram( df['d'], bins=np.append(np.logspace(1,6,1e3), 1e7), normed=False) ax.step(bin_edges[:-1], np.cumsum(hist), 'k-', where='post') ax.set_xlabel('distance [pc]') ax.set_ylabel('cumulative N clusters in MWSC') ax.set_xlim([5e1,1e4]) ax.set_xscale('log') ax.set_yscale('log') f.tight_layout() f.savefig('d_cumdistribn_MWSC.pdf', dpi=300, bbox_inches='tight') def angular_scale_cumdist(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f,ax = plt.subplots(figsize=(4,4)) axt = ax.twiny() scale_d = {'r0': 'angular radius of the core (0 if no core)', 'r1': '"central" radius', 'r2': 'cluster radius'} ix = 0 for t, dat in [('$d<0.5$ kpc',close), ('$d<1$ kpc',far)]: for k in ['r2']: hist, bin_edges = np.histogram( dat[k], bins=np.append(np.logspace(-2,1,1e3), 1e7), normed=False) ax.step(bin_edges[:-1], np.cumsum(hist), where='post', label=t+' '+scale_d[k]) ix += 1 def tick_function(angle_deg): tess_px = 21*u.arcsec vals = angle_deg/tess_px.to(u.deg).value return ['%.1f' % z for z in vals] ax.legend(loc='upper left', fontsize='xx-small') ax.set_xlabel('ang scale [deg]') ax.set_ylabel('cumulative N clusters in MWSC') ax.set_xscale('log') #ax.set_yscale('log') axt.set_xscale('log') axt.set_xlim(ax.get_xlim()) new_tick_locations = np.array([1e-2, 1e-1, 1e0, 1e1]) axt.set_xticks(new_tick_locations) axt.set_xticklabels(tick_function(new_tick_locations)) axt.set_xlabel('angular scale [TESS pixels]') f.tight_layout() f.savefig('angscale_cumdistribn_MWSC.pdf', dpi=300, bbox_inches='tight') def angular_scale_hist(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f,ax = plt.subplots(figsize=(4,4)) axt = ax.twiny() scale_d = {'r0': 'angular radius of the core (0 if no core)', 'r1': '"central" radius', 'r2': 'cluster radius'} ix = 0 for t, dat in [('$d<0.5$ kpc',close), ('$d<1$ kpc',far)]: for k in ['r2']: hist, bin_edges = np.histogram( dat[k], bins=np.append(np.logspace(-2,1,7), 1e7), normed=False) ax.step(bin_edges[:-1], hist, where='post', label=t+' '+scale_d[k], alpha=0.7) ix += 1 def tick_function(angle_deg): tess_px = 21*u.arcsec vals = angle_deg/tess_px.to(u.deg).value return ['%.1f' % z for z in vals] ax.legend(loc='best', fontsize='xx-small') ax.set_xlabel('ang scale [deg]') ax.set_ylabel('N clusters in MWSC') ax.set_xscale('log') #ax.set_yscale('log') axt.set_xscale('log') axt.set_xlim(ax.get_xlim()) new_tick_locations = np.array([1e-2, 1e-1, 1e0, 1e1]) axt.set_xticks(new_tick_locations) axt.set_xticklabels(tick_function(new_tick_locations)) axt.set_xlabel('angular scale [TESS pixels]') f.tight_layout() f.savefig('angscale_distribn_MWSC.pdf', dpi=300, bbox_inches='tight') def mean_density_hist(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f,ax = plt.subplots(figsize=(4,4)) axt = ax.twiny() ix = 0 for t, dat in [('$d<0.5$ kpc',close), ('$d<1$ kpc',far)]: hist, bin_edges = np.histogram( dat['mean_N_star_per_sqdeg'], bins=np.append(np.logspace(0,4,9), 1e7), normed=False) ax.step(bin_edges[:-1], hist, where='post', label=t, alpha=0.7) ix += 1 def tick_function(N_star_per_sqdeg): tess_px = 21*u.arcsec tess_px_area = tess_px**2 deg_per_tess_px = tess_px_area.to(u.deg**2).value vals = N_star_per_sqdeg * deg_per_tess_px outstrs = ['%.1E'%z for z in vals] outstrs = ['$'+o[0] + r'\! \cdot \! 10^{\mathrm{-}' + o[-1] + r'}$' \ for o in outstrs] return outstrs ax.legend(loc='best', fontsize='xx-small') ax.set_xlabel('mean areal density [stars/$\mathrm{deg}^{2}$]') ax.set_ylabel('N clusters in MWSC') ax.set_xscale('log') #ax.set_yscale('log') axt.set_xscale('log') axt.set_xlim(ax.get_xlim()) new_tick_locations = np.logspace(0,4,5) axt.set_xticks(new_tick_locations) axt.set_xticklabels(tick_function(new_tick_locations)) axt.set_xlabel('mean areal density [stars/$\mathrm{(TESS\ px)}^{2}$]') f.tight_layout() f.savefig('mean_density_distribn_MWSC.pdf', dpi=300, bbox_inches='tight') def plot_king_profiles(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f, axs = plt.subplots(figsize=(4,7), nrows=2, ncols=1, sharex=True) for theta, profile in zip(close['theta'], close['king_profile']): axs[0].plot(theta, profile, alpha=0.2, c=colors[0]) for theta, profile in zip(far['theta'], far['king_profile']): axs[1].plot(theta, profile, alpha=0.1, c=colors[1]) # Add text in top right. axs[0].text(0.95, 0.95, '$d < 500\ \mathrm{pc}$', verticalalignment='top', horizontalalignment='right', transform=axs[0].transAxes, fontsize='large') axs[1].text(0.95, 0.95, '$d < 1\ \mathrm{kpc}$', verticalalignment='top', horizontalalignment='right', transform=axs[1].transAxes, fontsize='large') xmin, xmax = 1, 1e3 for ax in axs: ax.set_xscale('log') ax.set_xlim([xmin, xmax]) if ax == axs[1]: ax.xaxis.set_ticks_position('both') ax.set_xlabel('angular distance [TESS px]') ax.tick_params(which='both', direction='in', zorder=0) ax.set_ylabel(r'$\Sigma(r)$ [stars/$\mathrm{(TESS\ px)}^{2}$]') f.tight_layout(h_pad=0) f.savefig('king_density_profiles_close_MWSC.pdf', dpi=300, bbox_inches='tight') def get_king_proj_density_profile(r_t, r_c, k, d): ''' r_t: King's tidal radius [pc] r_c: King's core radius [pc] k: normalization [pc^{-2}] d: distance [pc] returns density profile in number per sq tess pixel ''' # Eq 4 of Ernst et al, 2010 https://arxiv.org/pdf/1009.0710.pdf # citing King (1962). r = np.logspace(-2, 2.4, num=int(2e4)) X = 1 + (r/r_c)**2 C = 1 + (r_t/r_c)**2 vals = k * (X**(-1/2) - C**(-1/2))**2 #NOTE: this fails when r_t does not exist. This might be important... vals[r>r_t] = 0 # vals currently in number per square parsec. want in number per TESS px. # first convert to number per square arcsec # N per sq arcsec. First term converts to 1/AU^2. Then the angular surface # density scales as the square of the distance (same number of things, # smaller angle) sigma = vals * 206265**(-2) * d**2 tess_px = 21*u.arcsec arcsec_per_px = 21 sigma_per_sq_px = sigma * arcsec_per_px**2 # N per px^2 # r is in pc. we want the profile vs angular distance. AU_per_pc = 206265 r *= AU_per_pc # r now in AU theta = r / d # angular distance in arcsec tess_px = 21 # arcsec per px theta *= (1/tess_px) # angular distance in px return sigma_per_sq_px, theta def make_wget_script(df): ''' to download stellar data for each cluster, need to run a script of wgets. this function makes the script. ''' # get MWSC ids in "0012", "0007" format mwsc = np.array(df['MWSC']) mwsc_ids = np.array([str(int(f)).zfill(4) for f in mwsc]) names =
np.array(df['Name'])
numpy.array
import argparse import cv2 import datetime import math import numpy as np import os import PIL import random from scipy.spatial.distance import cdist import shutil import sys import torch import torch.nn.init import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.datasets as dset import torchvision.transforms as transforms from torch.autograd import Variable import torch.backends.cudnn as cudnn from demo_superpoint import * # Training settings parser = argparse.ArgumentParser(description='PyTorch SEKD') # Model options parser.add_argument('--dataroot', type=str, default='/home/songyoff/projects/data/hpatches/hpatches_benchmark_homo/hpatches_seq_resize/', help='Path of the dataset.') parser.add_argument('--model_path', type=str, default='superpoint_v1.pth', help='Path of the model.') # Device options parser.add_argument('--use_cuda', action='store_true', default=True, help='Enable using CUDA for acceleration.') parser.add_argument('--gpu_ids', default='0', type=str, help='GPU id(s) used by the cuda.') parser.add_argument('--seed', type=int, default=0, metavar='S', help='random seed (default: 0)') args = parser.parse_args() args.confidence_threshold = 0.001 args.maxinum_points = 500 args.nms_radius = 4 args.refine_radius = 4 args.detector_cell = 8 args.use_cuda = args.use_cuda and torch.cuda.is_available() if args.use_cuda: gpu_ids = [int(index) for index in args.gpu_ids.replace(',', ' ').split()] args.gpu_ids = gpu_ids print (("NOT " if not args.use_cuda else "") + "Using cuda") if args.use_cuda: cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) torch.backends.cudnn.deterministic = True # set random seeds random.seed(args.seed) torch.manual_seed(args.seed) np.random.seed(args.seed) def calculate_displacement(response_map, xs, ys, radius = 4): assert(xs.shape == ys.shape) num_points = xs.shape[0] xs_offset = np.zeros(xs.shape) ys_offset = np.zeros(ys.shape) #return xs_offset, ys_offset local_index_mask =
np.zeros([2*radius + 1, 2*radius+1, 2])
numpy.zeros
import pandas as pd import numpy as np import glob from neuropixels import generalephys_mua as ephys_mua from neuropixels.generalephys import get_waveform_duration,get_waveform_PTratio,get_waveform_repolarizationslope,option234_positions from scipy.cluster.vq import kmeans2 import seaborn as sns;sns.set_style("ticks") import matplotlib.pyplot as plt import h5py import matplotlib.path as mpath import matplotlib.lines as mlines import matplotlib.patches as mpatches from matplotlib.collections import PatchCollection import os def get_peak_waveform_from_template(template): max = 0 ind=0 peak = np.zeros(np.shape(template.T)[0]) for i,wv in enumerate(template.T): if np.max(np.abs(wv)) > max: max = np.max(np.abs(wv)) ind = i peak = wv return peak def df_from_phy_multimouse(folder,expnum='1',recnum='1',site_positions = option234_positions,**kwargs): if 'est' not in folder: base_folder = os.path.basename(folder) cohort_ = os.path.basename(base_folder).split('_')[-2] mouse_ = os.path.basename(base_folder).split('_')[-1] #traverse down tree to data if 'open-ephys-neuropix' in base_folder: try: rec_folder = glob.glob(folder+'/*')[0] print(rec_folder, 'hey') except: print(base_folder) return None else: rec_folder = folder print(rec_folder) raw_path = os.path.join(rec_folder,'recording'+str(recnum),'continuous') if len(glob.glob(raw_path+'/*100.0*'))>0: raw_path = glob.glob(raw_path+'/*100.0*')[0] print('loading from '+raw_path) else: print('could not find data folder for '+raw_path) if os.path.isfile(os.path.join(raw_path,'spike_clusters.npy')) : # df = df_from_phy(raw_path,site_positions = ephys.option234_positions,cluster_file='KS2',cohort=cohort,mouse=mouse) path = raw_path units = ephys.load_phy_template(path,cluster_file='cluster_group',site_positions=site_positions) #structures is a dictionary that defines the bounds of the structure e.g.:{'v1':(0,850), 'hpc':(850,2000)} mouse = [];experiment=[];cell = [];ypos = [];xpos = [];waveform=[];template=[];structure=[];times=[] index = []; count = 1; cohort = [] probe_id=[] depth=[];#print(list(nwb_data.keys()));print(list(nwb_data['processing'].keys())); for unit in list(units.keys()): if 'probe' in kwargs.keys(): probe_id.extend([kwargs['probe']]) else: probe_id.extend(['A']) if 'mouse' in kwargs.keys(): mouse.extend([kwargs['mouse']]) else: mouse.extend([mouse_]) if 'experiment' in kwargs.keys(): experiment.extend([kwargs['experiment']]) else: experiment.extend(['placeholder']) if 'cohort' in kwargs.keys(): cohort.extend([kwargs['cohort']]) else: cohort.extend([cohort_]) xpos.extend([units[unit]['xpos']]) ypos.extend([units[unit]['ypos']]) template.extend([units[unit]['template']]) times.append(units[unit]['times']) waveform.append(units[unit]['waveform_weights']) df = pd.DataFrame(index=index) df = df.fillna(np.nan) # df['nwb_id'] = nwb_id df['mouse'] = mouse df['experiment'] = experiment df['probe'] = probe_id # df['structure'] = structure df['cell'] = units.keys() df['cohort'] = cohort df['times'] = times df['ypos'] = ypos df['xpos'] = xpos # df['depth'] = depth df['waveform'] = waveform df['template'] = template return df def df_from_phy(folder,expnum='1',recnum='1',site_positions = option234_positions,**kwargs): # if 'est' not in folder: # base_folder = os.path.basename(folder) # cohort_ = os.path.basename(base_folder).split('_')[-2] # mouse_ = os.path.basename(base_folder).split('_')[-1] #traverse down tree to data # if 'open-ephys-neuropix' in base_folder: # try: # rec_folder = glob.glob(folder+'/*')[0] # except: # print(base_folder) # return None # else: # rec_folder = folder # raw_path = os.path.join(rec_folder,'experiment'+str(expnum),'recording'+str(recnum),'continuous') # if len(glob.glob(raw_path+'/*100.0*'))>0: # raw_path = glob.glob(raw_path+'/*100.0*')[0] # print('loading from '+raw_path) # else: # print('could not find data folder for '+raw_path) raw_path=folder if 'cohort' in kwargs.keys(): cohort = kwargs['cohort'] else: cohort = None if 'mouse' in kwargs.keys(): mouse = kwargs['mouse'] else: mouse = None # df = df_from_phy(raw_path,site_positions = ephys.option234_positions,cluster_file='KS2',cohort=cohort,mouse=mouse) path = raw_path #units = ephys.load_phy_template(path,cluster_file='KS2',site_positions=site_positions) units = ephys_mua.load_phy_template_mua(path,site_positions=site_positions) #structures is a dictionary that defines the bounds of the structure e.g.:{'v1':(0,850), 'hpc':(850,2000)} mouse = [];experiment=[];cell = [];ypos = [];xpos = [];waveform=[];template=[];structure=[];times=[] index = []; count = 1; cohort = [] probe_id=[] depth=[];#print(list(nwb_data.keys()));print(list(nwb_data['processing'].keys())); for unit in list(units.index): if 'probe' in kwargs.keys(): probe_id.extend([kwargs['probe']]) else: probe_id.extend(['A']) if 'mouse' in kwargs.keys(): mouse.extend([kwargs['mouse']]) else: mouse.extend([mouse_]) if 'experiment' in kwargs.keys(): experiment.extend([kwargs['experiment']]) else: experiment.extend(['placeholder']) if 'cohort' in kwargs.keys(): cohort.extend([kwargs['cohort']]) else: cohort.extend([cohort_]) df = units df['mouse'] = mouse df['experiment'] = experiment df['probe'] = probe_id # df['structure'] = structure df['cell'] = units.index df['cohort'] = cohort df['times'] = units['times'] df['ypos'] = units['ypos'] df['xpos'] = units['xpos'] # df['depth'] = xpos df['waveform'] = units['waveform_weights'] df['template'] = units['template'] return df def df_from_nwb(nwb_data,structures=None,insertion_angle=55,nwbid=0): if type(nwb_data)==str: #print(nwb_data) nwbid = nwb_data nwb_data = h5py.File(nwb_data) else: nwb_data = nwb_data #structures is a dictionary that defines the bounds of the structure e.g.:{'v1':(0,850), 'hpc':(850,2000)} mouse = [];experiment=[];cell = [];ypos = [];xpos = [];waveform=[];template=[];structure=[];times=[] index = []; count = 1 nwb_id = [];probe_id=[] depth=[];#print(list(nwb_data.keys()));print(list(nwb_data['processing'].keys())); if 'processing' in nwb_data.keys(): for probe in list(nwb_data['processing'].keys()): if 'UnitTimes' in list(nwb_data['processing'][probe].keys()): for i,u in enumerate(list(nwb_data['processing'][probe]['UnitTimes'].keys())): if u != 'unit_list': nwb_id.append(nwbid) probe_id.append(probe) index.append(count);count+=1 mouse.append(str(np.array(nwb_data.get('identifier')))) experiment.append(1) cell.append(u) times.append(np.array(nwb_data['processing'][probe]['UnitTimes'][u]['times']));# print(list(nwb_data['processing'][probe]['UnitTimes'][u].keys())) if 'ypos' in list(nwb_data['processing'][probe]['UnitTimes'][u].keys()): ypos.append(np.array(nwb_data['processing'][probe]['UnitTimes'][u]['ypos'])) has_ypos = True else: ypos.append(None) has_ypos = False if 'depth' in list(nwb_data['processing'][probe]['UnitTimes'][u].keys()): depth.append(np.array(nwb_data['processing'][probe]['UnitTimes'][u]['depth'])) else: if has_ypos: depth.append(np.array(nwb_data['processing'][probe]['UnitTimes'][u]['ypos'])) else: depth.append(None) if 'xpos' in list(nwb_data['processing'][probe]['UnitTimes'][u].keys()): xpos.append(np.array(nwb_data['processing'][probe]['UnitTimes'][u]['xpos'])) has_xpos = True else: xpos.append(None) has_xpos = False template.append(np.array(nwb_data['processing'][probe]['UnitTimes'][u]['template'])) waveform.append(get_peak_waveform_from_template(template[-1])) if not structures == None: structur = None for struct, bounds in structures.iteritems(): if ypos[-1] > bounds[0] and ypos[-1]< bounds[1] : structur=struct else: structur = None structure.append(structur) df = pd.DataFrame(index=index) df = df.fillna(np.nan) df['nwb_id'] = nwb_id df['mouse'] = mouse df['experiment'] = experiment df['probe'] = probe_id df['structure'] = structure df['cell'] = cell df['times'] = times df['ypos'] = ypos df['xpos'] = xpos df['depth'] = depth df['waveform'] = waveform df['template'] = template return df def classify_waveform_shape(df,plots=False,save_plots=False,basepath='',kmeans=0): durations = np.zeros(np.shape(df)[0]) PTratio = np.zeros(np.shape(df)[0]) repolarizationslope = np.zeros(np.shape(df)[0]) for i,waveform in enumerate(df.waveform): # try: durations[i]=get_waveform_duration(waveform) PTratio[i]=get_waveform_PTratio(waveform) repolarizationslope[i]=get_waveform_repolarizationslope(waveform,window=18) # except: # durations[i]=np.nan # PTratio[i]=np.nan # repolarizationslope[i]=np.nan df['waveform_duration'] = durations df['waveform_PTratio'] = PTratio df['waveform_repolarizationslope'] = repolarizationslope waveform_k = kmeans2(np.vstack(((durations-np.min(durations))/np.max((durations-np.min(durations))), (PTratio-np.min(PTratio))/np.max((PTratio-np.min(PTratio))), (repolarizationslope-np.min(repolarizationslope))/np.max((repolarizationslope-np.min(repolarizationslope))))).T, 2, iter=300, thresh=5e-6,minit='points') # waveform_k = kmeans2(np.vstack((durations/np.max(durations),PTratio/np.max(PTratio))).T, 2, iter=300, thresh=5e-6,minit='points') # waveform_k = kmeans2(np.vstack((durations/np.max(durations),(repolarizationslope-np.min(repolarizationslope))/np.max(repolarizationslope))).T, 2, iter=900, thresh=5e-7,minit='points') #assign fs and rs to the kmeans results if np.mean(durations[np.where(waveform_k[1]==0)[0]]) < np.mean(durations[np.where(waveform_k[1]==1)[0]]): fs_k = 0;rs_k = 1 waveform_class_ids = ['fs','rs'] else: rs_k = 0;fs_k = 1 waveform_class_ids = ['rs','fs'] waveform_class = [waveform_class_ids[k] for k in waveform_k[1]] #uncomment this to ignore the preceding kmeans and just split on the marginal distribution of durations if kmeans==0: waveform_class = ['fs' if duration < 0.0004 else 'rs' for i,duration in enumerate(durations) ] else: waveform_k = kmeans2(np.vstack(((durations-np.min(durations))/np.max((durations-np.min(durations))), (PTratio-np.min(PTratio))/np.max((PTratio-np.min(PTratio))), (repolarizationslope-np.min(repolarizationslope))/np.max((repolarizationslope-np.min(repolarizationslope))))).T, kmeans, iter=300, thresh=5e-6,minit='points') # waveform_k = kmeans2(np.vstack((durations/np.max(durations),PTratio/np.max(PTratio))).T, 2, iter=300, thresh=5e-6,minit='points') # waveform_k = kmeans2(np.vstack((durations/np.max(durations),(repolarizationslope-np.min(repolarizationslope))/np.max(repolarizationslope))).T, 2, iter=900, thresh=5e-7,minit='points') #assign fs and rs to the kmeans results if np.mean(durations[np.where(waveform_k[1]==0)[0]]) < np.mean(durations[np.where(waveform_k[1]==1)[0]]): fs_k = 0;rs_k = 1 waveform_class_ids = ['fs','rs'] else: rs_k = 0;fs_k = 1 waveform_class_ids = ['rs','fs'] waveform_class = [waveform_class_ids[k] for k in waveform_k[1]] #force upwards spikes to have the own class, because we're not sure how they fit in this framework waveform_class = [waveform_class[i] if ratio < 1.0 else 'up' for i,ratio in enumerate(PTratio) ] df['waveform_class']=waveform_class #mark narrow upwards spikes as axons waveform_class = ['axon' if all([duration < 0.0004,waveform_class[i]=='up']) else waveform_class[i] for i,duration in enumerate(durations) ] df['waveform_class']=waveform_class # #mark narrow downward spike at the very bottom of cortex as axons #waveform_class = ['axon' if all([duration < 0.0004,waveform_class[i]=='fs',df['depth'][i+1] > 750, df['depth'][i+1]<1050]) else waveform_class[i] for i,duration in enumerate(durations) ] df['waveform_class']=waveform_class if plots: plot_waveform_classification(durations, PTratio, repolarizationslope,df,save_plots=save_plots,basepath=basepath) return df def plot_waveform_classification(durations, PTratio, repolarizationslope, df,save_plots=False, basepath=''): f,ax = plt.subplots(1,3,figsize=(8,3)) ax[0].plot(durations[np.where(df.waveform_class=='rs')[0]],PTratio[np.where(df.waveform_class=='rs')[0]],'o',ms=3.2) ax[0].plot(durations[np.where(df.waveform_class=='fs')[0]],PTratio[np.where(df.waveform_class=='fs')[0]],'o',ms=3.2) #ax[0].plot(durations[np.where(df.waveform_class=='up')[0]],PTratio[np.where(df.waveform_class=='up')[0]],'o',ms=3.2) ax[0].plot(durations[np.where(df.waveform_class=='axon')[0]],PTratio[np.where(df.waveform_class=='axon')[0]],'o',ms=3.2) ax[0].set_xlabel('width (sec)') ax[0].set_ylabel('peak/trough ratio') ax[1].plot(durations[np.where(df.waveform_class=='rs')[0]],repolarizationslope[np.where(df.waveform_class=='rs')[0]],'o',ms=3.2) ax[1].plot(durations[np.where(df.waveform_class=='fs')[0]],repolarizationslope[np.where(df.waveform_class=='fs')[0]],'o',ms=3.2) #ax[1].plot(durations[np.where(df.waveform_class=='up')[0]],repolarizationslope[np.where(df.waveform_class=='up')[0]],'o',ms=3.2) ax[1].plot(durations[np.where(df.waveform_class=='axon')[0]],repolarizationslope[np.where(df.waveform_class=='axon')[0]],'o',ms=3.2) ax[1].set_xlabel('width (sec)') ax[1].set_ylabel('repolarization slope') ax[2].plot(PTratio[np.where(df.waveform_class=='rs')[0]],repolarizationslope[np.where(df.waveform_class=='rs')[0]],'o',ms=3.2) ax[2].plot(PTratio[np.where(df.waveform_class=='fs')[0]],repolarizationslope[np.where(df.waveform_class=='fs')[0]],'o',ms=3.2) #ax[2].plot(PTratio[np.where(df.waveform_class=='up')[0]],repolarizationslope[np.where(df.waveform_class=='up')[0]],'o',ms=3.2) ax[2].plot(PTratio[np.where(df.waveform_class=='axon')[0]],repolarizationslope[np.where(df.waveform_class=='axon')[0]],'o',ms=3.2) ax[2].set_ylabel('repolarization slope') ax[2].set_xlabel('peak/trough ratio') ax[0].set_xlim(0.0,0.0015);ax[1].set_xlim(0.0,0.0015) ax[0].set_ylim(0,1.1);ax[2].set_xlim(0,1.1) plt.tight_layout() for axis in ax: # ephys.cleanAxes(axis,bottomLabels=True,leftLabels=True) axis.locator_params(axis='x',nbins=4) ax[2].legend(loc='upper right') panelname = 'waveforms_clusters' plt.tight_layout() if save_plots: plt.gcf().savefig(os.path.join(basepath,'figures','panels',panelname+'.png'),fmt='png',dpi=300) plt.gcf().savefig(os.path.join(basepath,'figures','panels',panelname+'.eps'),fmt='eps') nbins = 36 plt.hist(durations[np.where(df.waveform_class=='rs')[0]],range=(0,0.0015),bins=nbins) plt.hist(durations[np.where(df.waveform_class=='fs')[0]],range=(0,0.0015),bins=nbins) plt.hist(durations[np.where(df.waveform_class=='axon')[0]],range=(0,0.0015),bins=nbins) plt.figure() plt.hist((durations[np.where(df.waveform_class=='rs')[0]],durations[
np.where(df.waveform_class=='fs')
numpy.where
from __future__ import division from __future__ import print_function from __future__ import absolute_import import numpy as np import math import matplotlib.pyplot as plt plt.switch_backend('agg') plt.style.use('ggplot') class Prior(object): def __init__(self, type): self.type = type def sample(self, shape): if self.type == "uniform": return np.random.uniform(-1.0, 1.0, shape) else: return
np.random.normal(0, 1, shape)
numpy.random.normal
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import random import logging import numpy as np from data import FaceIter import mxnet as mx from mxnet import ndarray as nd import argparse import mxnet.optimizer as optimizer import mxcommon.resnet_dcn as resnet_dcn import lfw import sklearn from sklearn.decomposition import PCA from center_loss import * logger = logging.getLogger() logger.setLevel(logging.INFO) class AccMetric(mx.metric.EvalMetric): def __init__(self): self.axis = 1 super(AccMetric, self).__init__( 'acc', axis=self.axis, output_names=None, label_names=None) self.losses = [] def update(self, labels, preds): #print(len(labels), len(preds)) #print(preds[1].asnumpy()) loss = preds[2].asnumpy()[0] if len(self.losses)==100: print('triplet loss', sum(self.losses)/len(self.losses)) self.losses = [] self.losses.append(loss) preds = [preds[1]] #use softmax output for label, pred_label in zip(labels, preds): #print(label.shape, pred_label.shape) if pred_label.shape != label.shape: pred_label = mx.ndarray.argmax(pred_label, axis=self.axis) pred_label = pred_label.asnumpy().astype('int32').flatten() label = label.asnumpy().astype('int32').flatten() #print(label) #print(label, pred_label) assert label.shape==pred_label.shape self.sum_metric += (pred_label.flat == label.flat).sum() self.num_inst += len(pred_label.flat) def parse_args(): parser = argparse.ArgumentParser(description='Train face network') # general parser.add_argument('--prefix', default='../model/face', help='directory to save model.') parser.add_argument('--load-epoch', type=int, default=0, help='load epoch.') parser.add_argument('--end-epoch', type=int, default=20, help='training epoch size.') parser.add_argument('--retrain', action='store_true', default=False, help='true means continue training.') args = parser.parse_args() return args def get_symbol(args, arg_params, aux_params): new_args = dict({k:arg_params[k] for k in arg_params if 'fc' not in k}) data_shape = (3,args.image_size,args.image_size) image_shape = ",".join([str(x) for x in data_shape]) layers = 152 _,_,embeddings,_ = resnet_dcn.get_cls_symbol(128, layers, image_shape, use_deformable=False) all_layers = embeddings.get_internals() #print(all_layers) layer_names = ['_plus10','_plus46', '_plus49'] #layer_names = ['plus2', '_plus10','_plus46', '_plus49'] layers = [] for name in layer_names: layers.append( all_layers[name+"_output"] ) out_sym = mx.symbol.Group(layers) out_name = out_sym.list_outputs() #arg_name = embeddings.list_arguments() #aux_name = embeddings.list_auxiliary_states() data_shape_dict = {'data' : (args.batch_size,)+data_shape} arg_shape, out_shape, aux_shape = out_sym.infer_shape(**data_shape_dict) #print(out_shape) out_shape_dict = dict(zip(out_name, out_shape)) for k,v in out_shape_dict.iteritems(): print(k,v) layers = [] for i in xrange(len(layer_names)): name = layer_names[i]+"_output" _layer = all_layers[name] _kernel = out_shape_dict[name][2]//5 if _kernel>1: layer = mx.sym.Pooling(data=_layer, kernel=(_kernel, _kernel), stride=(_kernel,_kernel), pad=(0,0), pool_type='max') else: layer = _layer layer = mx.symbol.Convolution(data=layer, kernel=(3, 3), pad=(1,1), num_filter=128) layers.append(layer) body = mx.symbol.concat(*layers, dim=1) body = mx.symbol.Convolution(data=body, kernel=(1, 1), pad=(0,0), num_filter=128) body = mx.sym.Pooling(data=body, global_pool=True, kernel=(5, 5), pool_type='avg', name='last_pool') embeddings = mx.sym.Flatten(data=body) _, out_shape, _= embeddings.infer_shape(**data_shape_dict) print(out_shape) #print(arg_shape) #sys.exit(0) l2_embeddings = mx.symbol.L2Normalization(embeddings) batch_size = args.batch_size//args.ctx_num anchor = mx.symbol.slice_axis(l2_embeddings, axis=0, begin=0, end=batch_size//3) positive = mx.symbol.slice_axis(l2_embeddings, axis=0, begin=batch_size//3, end=2*batch_size//3) negative = mx.symbol.slice_axis(l2_embeddings, axis=0, begin=2*batch_size//3, end=batch_size) ap = anchor - positive an = anchor - negative ap = ap*ap an = an*an ap = mx.symbol.sum(ap, axis=1, keepdims=1) #(T,1) an = mx.symbol.sum(an, axis=1, keepdims=1) #(T,1) loss_scale = [1.0, 0.0, 0.0] #triplet_loss = mx.symbol.broadcast_maximum(0.0, ap-an+args.margin) #(T,1) triplet_loss = mx.symbol.Activation(data = (ap-an+args.margin), act_type='relu') triplet_loss = mx.symbol.sum(triplet_loss)/(batch_size//3) triplet_loss = mx.symbol.MakeLoss(data = triplet_loss, grad_scale = loss_scale[0]) data = mx.symbol.Variable('data') gt_label = mx.symbol.Variable('softmax_label') fc = mx.symbol.FullyConnected(data = embeddings, num_hidden = args.num_classes, name="fc2") softmax = mx.symbol.SoftmaxOutput(data=fc, label = gt_label, name='softmax', grad_scale = loss_scale[1]) if loss_scale[2]>0.0: _center_loss = mx.symbol.Custom(data = l2_embeddings, label = gt_label, name='center_loss', op_type='centerloss' , num_class= args.num_classes, alpha = 0.5, scale=loss_scale[2], batchsize=batch_size) out = mx.symbol.Group([mx.symbol.BlockGrad(l2_embeddings), softmax, triplet_loss, _center_loss]) else: out = mx.symbol.Group([mx.symbol.BlockGrad(l2_embeddings), softmax, triplet_loss]) #out = triplet_loss #out = softmax return (out, new_args, aux_params) def train_net(args): ctx = [] cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip() if len(cvd)>0: for i in xrange(len(cvd.split(','))): ctx.append(mx.gpu(i)) if len(ctx)==0: ctx = [mx.cpu()] print('use cpu') else: print('gpu num:', len(ctx)) prefix = args.prefix end_epoch = args.end_epoch pretrained = '../model/resnet-152' load_epoch = args.load_epoch args.image_size = 160 per_batch_size = 60 args.ctx_num = len(ctx) args.batch_size = per_batch_size*args.ctx_num #args.all_batch_size = args.batch_size*args.ctx_num args.bag_size = 3600 args.margin = 0.2 args.num_classes = 10575 #webface data_shape = (3,args.image_size,args.image_size) begin_epoch = 0 base_lr = 0.05 base_wd = 0.0002 base_mom = 0.0 lr_decay = 0.98 if not args.retrain: #load and initialize params print(pretrained) _, arg_params, aux_params = mx.model.load_checkpoint(pretrained, load_epoch) sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params) #arg_params, aux_params = load_param(pretrained, epoch, convert=True) data_shape_dict = {'data': (args.batch_size, 3, args.image_size, args.image_size), 'softmax_label': (args.batch_size,)} resnet_dcn.init_weights(sym, data_shape_dict, arg_params, aux_params) else: pretrained = args.prefix sym, arg_params, aux_params = mx.model.load_checkpoint(pretrained, load_epoch) begin_epoch = load_epoch end_epoch = begin_epoch+10 base_wd = 0.00005 lr_decay = 0.5 base_lr = 0.015 # infer max shape model = mx.mod.Module( context = ctx, symbol = sym, #label_names = [], #fixed_param_prefix = fixed_param_prefix, ) train_dataiter = FaceIter( path_imglist = "/raid5data/dplearn/faceinsight_align_webface.lst", data_shape = data_shape, mod = model, ctx_num = args.ctx_num, batch_size = args.batch_size, bag_size = args.bag_size, images_per_person = 5, ) #_dice = DiceMetric() _acc = AccMetric() eval_metrics = [mx.metric.create(_acc)] # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric #for child_metric in [fcn_loss_metric]: # eval_metrics.add(child_metric) # callback #batch_end_callback = callback.Speedometer(input_batch_size, frequent=args.frequent) #epoch_end_callback = mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True) # decide learning rate #lr_step = '10,20,30' #train_size = 4848 #nrof_batch_in_epoch = int(train_size/input_batch_size) #print('nrof_batch_in_epoch:', nrof_batch_in_epoch) #lr_factor = 0.1 #lr_epoch = [float(epoch) for epoch in lr_step.split(',')] #lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch] #lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff))) #lr_iters = [int(epoch * train_size / batch_size) for epoch in lr_epoch_diff] #print 'lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters #lr_scheduler = MultiFactorScheduler(lr_iters, lr_factor) # optimizer #optimizer_params = {'momentum': 0.9, # 'wd': 0.0005, # 'learning_rate': base_lr, # 'rescale_grad': 1.0, # 'clip_gradient': None} initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2) #opt = optimizer.SGD(learning_rate=base_lr, momentum=0.9, wd=base_wd, rescale_grad=(1.0/args.batch_size)) opt = optimizer.SGD(learning_rate=base_lr, momentum=base_mom, wd=base_wd, rescale_grad=1.0) #opt = optimizer.AdaGrad(learning_rate=base_lr, wd=base_wd, rescale_grad=1.0) _cb = mx.callback.Speedometer(args.batch_size, 10) lfw_dir = '/raid5data/dplearn/lfw_mtcnn' lfw_pairs = lfw.read_pairs(os.path.join(lfw_dir, 'pairs.txt')) lfw_paths, issame_list = lfw.get_paths(lfw_dir, lfw_pairs, 'png') imgs = [] lfw_data_list = [] for flip in [0,1]: lfw_data = nd.empty((len(lfw_paths), 3, args.image_size, args.image_size)) i = 0 for path in lfw_paths: with open(path, 'rb') as fin: _bin = fin.read() img = mx.image.imdecode(_bin) img = nd.transpose(img, axes=(2, 0, 1)) if flip==1: img = img.asnumpy() for c in xrange(img.shape[0]): img[c,:,:] = np.fliplr(img[c,:,:]) img = nd.array( img ) #print(img.shape) lfw_data[i][:] = img i+=1 if i%1000==0: print('loading lfw', i) print(lfw_data.shape) lfw_data_list.append(lfw_data) def lfw_test(nbatch): print('testing lfw..') embeddings_list = [] for i in xrange( len(lfw_data_list) ): lfw_data = lfw_data_list[i] embeddings = None ba = 0 while ba<lfw_data.shape[0]: bb = min(ba+args.batch_size, lfw_data.shape[0]) _data = nd.slice_axis(lfw_data, axis=0, begin=ba, end=bb) _label = nd.ones( (bb-ba,) ) db = mx.io.DataBatch(data=(_data,), label=(_label,)) model.forward(db, is_train=False) net_out = model.get_outputs() _embeddings = net_out[0].asnumpy() if embeddings is None: embeddings = np.zeros( (lfw_data.shape[0], _embeddings.shape[1]) ) embeddings[ba:bb,:] = _embeddings ba = bb embeddings_list.append(embeddings) acc_list = [] embeddings = embeddings_list[0] _, _, accuracy, val, val_std, far = lfw.evaluate(embeddings, issame_list, nrof_folds=10) acc_list.append(np.mean(accuracy)) print('[%d]Accuracy: %1.3f+-%1.3f' % (nbatch, np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) embeddings = np.concatenate(embeddings_list, axis=1) embeddings = sklearn.preprocessing.normalize(embeddings) print(embeddings.shape) _, _, accuracy, val, val_std, far = lfw.evaluate(embeddings, issame_list, nrof_folds=10) acc_list.append(np.mean(accuracy)) print('[%d]Accuracy-Flip: %1.3f+-%1.3f' % (nbatch, np.mean(accuracy),
np.std(accuracy)
numpy.std
#!/usr/bin/env python # coding: utf-8 # In[1]: #<NAME> 140401097 def git_oraya_kadar(nerden,nereye,degerler): yeni_dizi=[] for i in range(nerden,nereye): yeni_dizi.append(degerler[i]) return yeni_dizi # In[2]: def yazdir2(buldugumSonuclar,Denklemin_katSayilari,derece,KORELASYON,baslangic,son): dosya = open('sonuc.txt','a+') dosya.write('\n---------denklem ('+str(derece)+') derece---------\n') dosya.write('KORELASYON DEGERI: '+str(KORELASYON)+'\n') dosya.write('denklemi:\n'+ Denklemin_katSayilari) dosya.write('\n\n') dosya.write('['+str(baslangic)+'-'+str(son)+']'+'arasindaki verileri'+'\n') dosya.write('\ngercek degerler , buldugum degerler , (E=y-a0-a1x-a2x^2..am x^m)\n') for i in range(len(degerler)): dosya.write(str(degerler[i])+'\t\t\t'+str(buldugumSonuclar[i])+'\t\t\t'+str(degerler[i]-buldugumSonuclar[i])+'\n') dosya.write('\n') # In[6]: import math import numpy as np # dosya okuma file=open("veriler.txt") degerler = [] degerler_temp = [] korelasyonlar=[] for line in file.readlines(): line=line.rstrip('\n') degerler.append(line) degerler_temp.append(line) file.close() #list`in degerleri stringten integere cevirme for i in range(0,len(degerler)): degerler[i] = int(degerler[i]) degerler_temp[i] = int(degerler_temp[i]) #------------------------------------------------ n= len(degerler) xlerin_karelerin_toplami ,xlerin_kupulerin_toplami,xlerin_4d_toplami = 0,0,0 xlerin_5d_toplami ,xlerin_6d_toplami, xlerin_7d_toplami= 0,0,0 xlerin_8d_toplami ,xlerin_9d_toplami ,xlerin_10d_toplami= 0,0,0 xlerin_11d_toplami ,xlerin_12d_toplami,x_y_carpim_toplami= 0,0,0 x_kare_y_carpim_toplami ,x_kupu_y_carpim_toplami,x4d_y_carpim_toplami=0,0,0 x5d_y_carpim_toplami ,x6d_y_carpim_toplami,Xler_toplami=0,0,0 #--------------------------- xler = [i+1 for i in range(n)] Xler_toplami=sum(xler) xler_ortalama = np.mean(xler) Yler_toplami= sum(degerler) Yler_ortalama = np.mean(degerler) Yler_karelerin_toplami= sum([pow(degerler[i],2) for i in range(n)]) xlerin_karelerin_toplami= sum([pow(i+1,2) for i in range(n)]) xlerin_kupulerin_toplami= sum([pow(i+1,3) for i in range(n)]) xlerin_4d_toplami= sum([pow(i+1,4) for i in range(n)]) xlerin_5d_toplami= sum([pow(i+1,5) for i in range(n)]) xlerin_6d_toplami= sum([pow(i+1,6) for i in range(n)]) xlerin_7d_toplami= sum([pow(i+1,7) for i in range(n)]) xlerin_8d_toplami= sum([pow(i+1,8) for i in range(n)]) xlerin_9d_toplami= sum([pow(i+1,9) for i in range(n)]) xlerin_10d_toplami= sum([pow(i+1,10) for i in range(n)]) xlerin_11d_toplami= sum([pow(i+1,11) for i in range(n)]) xlerin_12d_toplami= sum([pow(i+1,12) for i in range(n)]) x_y_carpim_toplami= sum([(i+1)*degerler[i] for i in range(n)]) x_kare_y_carpim_toplami = sum([pow(i+1,2)*degerler[i] for i in range(n)]) x_kupu_y_carpim_toplami = sum([pow(i+1,3)*degerler[i] for i in range(n)]) x4d_y_carpim_toplami=sum([pow(i+1,4)*degerler[i] for i in range(n)]) x5d_y_carpim_toplami=sum([pow(i+1,5)*degerler[i] for i in range(n)]) x6d_y_carpim_toplami=sum([pow(i+1,6)*degerler[i] for i in range(n)]) #---------------------------------------------------------------------------- #korelasyonu bulmak def Sr(degerler,buldugumDegerler): Sr=0 for i in range(0,len(degerler)): Sr+=(degerler[i]-buldugumDegerler[i])**2 return Sr def St(degerler): St=0 for y in degerler: St+=(y-Yler_ortalama)**2 return St def R_Kare(degerler,buldugumDegerler): return ((abs((St(degerler)-Sr(degerler,buldugumDegerler)))/St(degerler)))**(1/2) def en_iyi_korelasyonu_Bul(R_Kare_listesi): r,derece=abs(1-R_Kare_listesi[0]),0 for i in range(1,len(R_Kare_listesi)): if(abs(1-R_Kare_listesi[i]) < r): r,derece=R_Kare_listesi[i],i return (r,derece+1) #----birinci dereceden denklemi------------------------------------------------------ A1=(((n*x_y_carpim_toplami)-(Xler_toplami*Yler_toplami))/(n*xlerin_karelerin_toplami-(pow(Xler_toplami,2)))) A0= ((Yler_toplami/n) - A1*(Xler_toplami/n)) denk_1=str(A0)+" "+str(A1)+'x' birinci_denkleminin_buldugum_sonuclari=[A0+A1*i for i in range(len(xler))] R1=R_Kare(degerler,birinci_denkleminin_buldugum_sonuclari) korelasyonlar.append(R1) yazdir2(birinci_denkleminin_buldugum_sonuclari,denk_1,1,R1 ,1,len(degerler)) print("*Korelasyon_katsayısı:",R1,"\n") print("-birinci dereceden denklemi ","y =",A0,A1,"x") #-----ikinci dereceden denklem--------------------------------------------------------------- Matrix2= [[n,Xler_toplami,xlerin_karelerin_toplami], [Xler_toplami,xlerin_karelerin_toplami,xlerin_kupulerin_toplami], [xlerin_karelerin_toplami,xlerin_kupulerin_toplami,xlerin_4d_toplami]] det = np.linalg.det(Matrix2) Matrix_temp = [i[:] for i in Matrix2] Matrix2[0][0],Matrix2[1][0],Matrix2[2][0]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami det1 = np.linalg.det(Matrix2) Matrix2= [i[:] for i in Matrix_temp] Matrix_temp = [i[:] for i in Matrix2] Matrix_temp[0][1],Matrix_temp[1][1],Matrix_temp[2][1]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami det2 = np.linalg.det(Matrix_temp) Matrix_temp = [i[:] for i in Matrix2] Matrix_temp[0][2],Matrix_temp[1][2],Matrix_temp[2][2]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami det3 = np.linalg.det(Matrix_temp) a20,a21,a22=(det1/det),(det2/det),(det3/det) denk_2=str(a20)+"x^0 "+str(a21)+'x '+str(a22)+'x^2' ikinci_denkleminin_buldugum_sonuclari =[a20+(a21*i)+(a22*pow(i,2)) for i in range(len(xler))] R2=R_Kare(degerler,ikinci_denkleminin_buldugum_sonuclari) korelasyonlar.append(R2) yazdir2(ikinci_denkleminin_buldugum_sonuclari,denk_2,2,R2,1,len(degerler)) print("*Korelasyon_katsayısı:",R2,"\n") print("\n-ikinci dereceden polinom denklemi=\n",a20,"x^0",a21,"x^1",a22,"x^2") #----- üçüncü dereceden denklem-------------------------------------------------------------- Matrix3= [[n,Xler_toplami,xlerin_karelerin_toplami, xlerin_kupulerin_toplami], [Xler_toplami,xlerin_karelerin_toplami,xlerin_kupulerin_toplami,xlerin_4d_toplami], [xlerin_karelerin_toplami,xlerin_kupulerin_toplami,xlerin_4d_toplami,xlerin_5d_toplami], [xlerin_kupulerin_toplami,xlerin_4d_toplami,xlerin_5d_toplami,xlerin_6d_toplami]] det = np.linalg.det(Matrix3) Matrix_temp = [i[:] for i in Matrix3] Matrix3[0][0],Matrix3[1][0],Matrix3[2][0],Matrix3[3][0]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami,x_kupu_y_carpim_toplami det1 = np.linalg.det(Matrix3) Matrix3= [i[:] for i in Matrix_temp] Matrix3[0][1],Matrix3[1][1],Matrix3[2][1],Matrix3[3][1]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami,x_kupu_y_carpim_toplami det2 = np.linalg.det(Matrix3) Matrix3= [i[:] for i in Matrix_temp] Matrix3[0][2],Matrix3[1][2],Matrix3[2][2],Matrix3[3][2]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami,x_kupu_y_carpim_toplami det3 = np.linalg.det(Matrix3) Matrix3= [i[:] for i in Matrix_temp] Matrix3[0][3],Matrix3[1][3],Matrix3[2][3],Matrix3[3][3]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami,x_kupu_y_carpim_toplami det4 = np.linalg.det(Matrix3) a30,a31,a32,a33=(det1/det),(det2/det),(det3/det),(det4/det) denk_3=str(a30)+"x^0 "+str(a31)+'x '+str(a32)+'x^2 '+str(a33)+'x^3 ' ucuncu_denkleminin_buldugum_sonuclari =[a30+(a31*i)+(a32*pow(i,2))+(a33*pow(i,3)) for i in range(len(xler))] R3=R_Kare(degerler,ucuncu_denkleminin_buldugum_sonuclari) korelasyonlar.append(R3) yazdir2(ikinci_denkleminin_buldugum_sonuclari,denk_3,3,R3,1,len(degerler)) print("*Korelasyon_katsayısı:",R3,"\n") print("\n-üçüncü dereceden polinom denklemi=\n",a30,"x^0",a31,"x^1",a32,"x^2",a33,"x^3") #----- dörtüncü dereceden denklem-------------------------------------------------------------- Matrix4= [[n,Xler_toplami,xlerin_karelerin_toplami, xlerin_kupulerin_toplami, xlerin_4d_toplami], [Xler_toplami,xlerin_karelerin_toplami,xlerin_kupulerin_toplami,xlerin_4d_toplami,xlerin_5d_toplami], [xlerin_karelerin_toplami,xlerin_kupulerin_toplami,xlerin_4d_toplami,xlerin_5d_toplami,xlerin_6d_toplami], [xlerin_kupulerin_toplami,xlerin_4d_toplami,xlerin_5d_toplami,xlerin_6d_toplami,xlerin_7d_toplami], [xlerin_4d_toplami,xlerin_5d_toplami,xlerin_6d_toplami,xlerin_7d_toplami,xlerin_8d_toplami]] det = np.linalg.det(Matrix4) Matrix_temp = [i[:] for i in Matrix4] Matrix4[0][0],Matrix4[1][0],Matrix4[2][0],Matrix4[3][0],Matrix4[4][0]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami,x_kupu_y_carpim_toplami,x4d_y_carpim_toplami det1 = np.linalg.det(Matrix4) Matrix4= [i[:] for i in Matrix_temp] Matrix4[0][1],Matrix4[1][1],Matrix4[2][1],Matrix4[3][1],Matrix4[4][1]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami,x_kupu_y_carpim_toplami,x4d_y_carpim_toplami det2 = np.linalg.det(Matrix4) Matrix4= [i[:] for i in Matrix_temp] Matrix4[0][2],Matrix4[1][2],Matrix4[2][2],Matrix4[3][2],Matrix4[4][2]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami,x_kupu_y_carpim_toplami,x4d_y_carpim_toplami det3 = np.linalg.det(Matrix4) Matrix4= [i[:] for i in Matrix_temp] Matrix4[0][3],Matrix4[1][3],Matrix4[2][3],Matrix4[3][3],Matrix4[4][3]= Yler_toplami,x_y_carpim_toplami,x_kare_y_carpim_toplami,x_kupu_y_carpim_toplami,x4d_y_carpim_toplami det4 =
np.linalg.det(Matrix4)
numpy.linalg.det
import sys import csv import numpy as np import pandas as pd import os from pathlib import Path import get_cmip_path_v2 import xarray as xr import core_component as cc ## Read from shell script ii = int(sys.argv[1]) mip=sys.argv[2] expr=sys.argv[3] ##********************************************************** ## TEST code ## INPUT #mip="CMIP" ##CMIP or ScenarioMIP #ii = 1 #expr='historical' ## historical or ssp126 or ssp245 or ssp585 ##********************************************************** with open('file_list/file_list_'+expr+'.csv') as file: path_list = file.readlines() path_list = [line.rstrip() for line in path_list] tpath = path_list[ii] dum = tpath.split('/') fname = 'gm_tas_'+mip+'_'+expr+'_'+dum[7]+'_'+dum[9]+'_'+dum[12]+'.csv' file_list = [] for cp, cd, cf in os.walk(tpath): for f in cf: file_list.append(os.path.join(tpath,f)) flag = 0 for ff in file_list: # flag = 0 ds = xr.open_dataset(ff) n_time = len(ds['time'][:]) ## Number of time entry tavg_tmp =
np.zeros(n_time)
numpy.zeros
import sys import numpy as np def coadd_cameras(flux_cam, wave_cam, ivar_cam, mask_cam=None): """Adds spectra from the three cameras as long as they have the same number of wavelength bins. This is not a replacement for desispec.coaddition.coadd_cameras, but a simpler (versatile and faster) implementation which uses only numpy. This also assumes the input spectra grid are already aligned (i.e. same wavelength grid in the overlapping regions), This is likely the case if the spectra are from the official data releases. Parameters ---------- flux_cam : dict Dictionary containing the flux values from the three cameras wave_cam : dict Dictionary containing the wavelength values from the three cameras ivar_cam : dict Dictionary containing the inverse variance values from the three cameras mask_cam : dict, optional Dictionary containing the mask values from the three cameras Returns ------- Tuple returns the combined flux, wavelength and inverse variance grids. """ sbands = np.array(["b", "r", "z"]) # bands sorted by inc. wavelength # create wavelength array wave = None tolerance = 0.0001 # A , tolerance shifts = {} for b in sbands: wave_camera = np.atleast_2d(wave_cam[b].copy()) if wave is None: wave = wave_camera else: shifts[b] = np.sum( np.all((wave + tolerance) < wave_camera[:, 0][:, None], axis=0) ) wave = np.append( wave, wave_camera[ :, np.all(wave_camera > (wave[:, -1][:, None] + tolerance), axis=0) ], axis=1, ) nwave = wave.shape[1] blue = sbands[0] ntarget = len(flux_cam[blue]) flux = None ivar = None mask = None for b in sbands: flux_camera = np.atleast_2d(flux_cam[b].copy()) ivar_camera = np.atleast_2d(ivar_cam[b].copy()) ivar_camera[ivar_camera <= 0] = 0 if mask_cam is not None: mask_camera = np.atleast_2d(mask_cam[b].astype(bool)) ivar_camera[mask_camera] = 0 if flux is None: flux = np.zeros((ntarget, nwave), dtype=flux_cam[blue].dtype) flux[:, : flux_camera.shape[1]] += flux_camera * ivar_camera ivar = np.zeros((ntarget, nwave), dtype=flux_cam[blue].dtype) ivar[:, : ivar_camera.shape[1]] += ivar_camera if mask is not None: mask = np.ones((ntarget, nwave), dtype=mask_cam[blue].dtype) mask[:, : mask_camera.shape[1]] &= mask_camera else: flux[:, shifts[b] : (shifts[b] + flux_camera.shape[1])] += ( flux_camera * ivar_camera ) ivar[:, shifts[b] : (shifts[b] + ivar_camera.shape[1])] += ivar_camera if mask is not None: mask[:, shifts[b] : (shifts[b] + mask_camera.shape[1])] &= mask_camera flux = flux / ivar flux[~
np.isfinite(flux)
numpy.isfinite
import numpy from .operator import Operator class NetketOperatorWrapper(Operator): def __init__(self, netket_operator, hilbert_state_shape, max_number_of_local_connections=None, should_calc_unused=None): assert numpy.prod(hilbert_state_shape) == netket_operator.hilbert.size super(NetketOperatorWrapper, self).__init__(hilbert_state_shape) self.netket_operator = netket_operator self.should_calc_unused = should_calc_unused self.max_number_of_local_connections = max_number_of_local_connections self.estimated_number_of_local_connections = max_number_of_local_connections self._check_if_old_netket() if max_number_of_local_connections is None: self.estimated_number_of_local_connections = self._calculate_num_of_local_connectios_from_netket_operator() if self.should_calc_unused is None: self.should_calc_unused = False else: if self.should_calc_unused is None: self.should_calc_unused = True def random_states(self, num_of_states): import netket random_engine = netket.utils.RandomEngine() hilbert_space = self.netket_operator.hilbert results = numpy.zeros((num_of_states, hilbert_space.size)) for i in range(num_of_states): hilbert_space.random_vals(results[i, :], random_engine) return numpy.reshape(results, (num_of_states, ) + self.hilbert_state_shape) def _check_if_old_netket(self): res = self.netket_operator.get_conn(numpy.array([1]*self.netket_operator.hilbert.size)) self.old_netket = len(res) == 3 def _calculate_num_of_local_connectios_from_netket_operator(self): random_state = self.random_states(1) res = self.netket_operator.get_conn(random_state.flatten()) if self.old_netket: mel, _, _ = res else: _, mel = res return len(mel) def new_netket_find_conn(self, sample): conn_list, mel_list = [], [] batch_size = sample.shape[0] for i in range(batch_size): flat_input = sample[i, ...].flatten() sample_conn, sample_mel = self.netket_operator.get_conn(flat_input) conn_list.append(sample_conn) mel_list.append(sample_mel) assert numpy.all(sample_conn[0,:] == flat_input) self.estimated_number_of_local_connections = max(numpy.max([len(x) for x in mel_list]), self.estimated_number_of_local_connections) all_conn = numpy.zeros((self.estimated_number_of_local_connections,) + sample.shape) batch_mel = numpy.zeros((self.estimated_number_of_local_connections, sample.shape[0]), dtype=numpy.complex128) for i in range(batch_size): all_conn[:len(conn_list[i]), i, ...] = conn_list[i].reshape((-1,) + sample.shape[1:]) batch_mel[:len(mel_list[i]), i] = mel_list[i] if self.should_calc_unused: all_conn_use = batch_mel != 0.0 else: all_conn_use = numpy.ones((self.estimated_number_of_local_connections, batch_size), dtype=numpy.bool) all_conn_use[0, :] = True return all_conn, batch_mel, all_conn_use def old_netket_find_conn(self, sample): all_conn = numpy.zeros((self.estimated_number_of_local_connections,) + sample.shape) batch_mel = numpy.zeros((self.estimated_number_of_local_connections, sample.shape[0]), dtype=numpy.complex128) batch_size = sample.shape[0] for i in range(batch_size): flat_input = sample[i, ...].flatten() sample_conn_list, sample_mel = self.netket_operator.get_conn(flat_input) sample_mel, to_change_idx_list, to_change_vals_list = self.netket_operator.get_conn(flat_input) if len(sample_mel) > self.estimated_number_of_local_connections: print('wrong max_number_of_local_connections fixing and continue recursively') self.estimated_number_of_local_connections = len(sample_mel) return self.find_conn(sample) sample_mel = sample_mel + [0.0] * (self.estimated_number_of_local_connections - len(sample_mel)) batch_mel[:, i] = numpy.array(sample_mel) self_conn_idx = -1 for j, (to_change_idx, to_change_vals) in enumerate(zip(to_change_idx_list, to_change_vals_list)): conn = flat_input.copy() if len(to_change_idx) == 0: self_conn_idx = j for to_change_id, to_change_val in zip(to_change_idx, to_change_vals): conn[to_change_id] = to_change_val all_conn[j, i, ...] = conn.reshape(sample.shape[1:]) assert self_conn_idx >= 0 if self_conn_idx != 0: temp_conn = all_conn[0, ...] all_conn[0, ...] = all_conn[self_conn_idx, ...] all_conn[self_conn_idx, ...] = temp_conn tmp_mel = batch_mel[0, i] batch_mel[0, i] = batch_mel[self_conn_idx, i] batch_mel[self_conn_idx, i] = tmp_mel if self.should_calc_unused: all_conn_use = batch_mel != 0.0 else: all_conn_use =
numpy.ones((self.estimated_number_of_local_connections, batch_size), dtype=numpy.bool)
numpy.ones
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num =
N.array([0,0,0])
numpy.array
import numpy as np import pandas as pd import xarray as xr from scipy import stats from scipy.special import digamma from statsrat import resp_fun from . import kernel # https://github.com/LukasNeugebauer/LCM_python/blob/master/LCM.py # https://github.com/sjgershm/LCM class model: ''' Class for Bayesian latent cause learning models (Anderson, 1991; Gershman, Blei & Niv, 2010). Attributes ---------- name: str Model name. kernel: function Temporal kernel for distance dependent prior on latent causes. par_names: list Names of the model's free parameters (strings). pars: dict Information about model parameters (min, max, default, description). Methods ------- simulate(self, trials, par_val = None, n_z = 10, n_p = 50, random_resp = False, ident = 'sim', sim_type = 'local_vb') Simulate a trial sequence once with known model parameters using either the .local_vb() or .particle() method. This is just a wrapper for those simulation methods. local_vb(self, trials, par_val = None, n_z = 10, random_resp = False, ident = 'sim') Simulate the model using a combination of local MAP and variational Bayes. particle_filter(self, trials, par_val = None, n_z = 10, n_p = 50, random_resp = False, ident = 'sim') Simulate the model using a particle filter algorithm. Notes ----- The local_vb method uses a local MAP approximation for two purposes: approximating the prior on latent causes, and deciding when to add a new latent cause. Everything else is done via streaming variational Bayes. Currently both outcomes (y) and predictor stimuli (x) are drawn from independent normal distributions with the following hyperpriors: mu | sigma^2 ~ N(tau1/n, sigma^2/n) 1/sigma^2 ~ Gamma((n + 3)/2, (n tau2 - tau1^2)/(2 n)) In the future I may add other distribution options, e.g. multinomial or Bernoulli. *** MODIFY THE MINIMUM FOR THE NUMERATOR TO THE PARTICLE FILTER METHOD *** *** EXPLAIN THE NORMAL DISTRIBUTION PARAMETERIZATION *** Relevant Papers --------------- <NAME>. (1991). The adaptive nature of human categorization. Psychological Review, 98(3), 409. <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2013). Streaming variational Bayes. ArXiv Preprint ArXiv:1307.6769. <NAME>., <NAME>., & <NAME>. (2010). Context, learning, and extinction. Psychological Review, 117(1), 197–209. <NAME>., & <NAME>. (2012). Exploring a latent cause theory of classical conditioning. Learning & Behavior, 40(3), 255–268. <NAME>., & <NAME>. (2017). Streaming clustering with Bayesian nonparametric models. Neurocomputing, 258, 52–62. <NAME>., <NAME>., & <NAME>. (2010). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review, 117(4), 1144–1167. <NAME>., <NAME>., & <NAME>. (n.d.). Time-Sensitive Dirichlet Process Mixture Models. ''' def __init__(self, name, kernel): ''' Parameters ---------- ''' self.name = name self.kernel = kernel # determine the model's parameter space self.par_names = kernel.par_names + ['prior_tau2_x', 'prior_nu_x', 'prior_tau2_y', 'prior_nu_y', 'stick', 'alpha', 'resp_scale'] self.pars = pars.loc[self.par_names] def simulate(self, trials, par_val = None, n_z = 10, n_p = 50, random_resp = False, ident = 'sim', sim_type = 'local_vb'): ''' Simulate a trial sequence once with known model parameters using either the .local_vb() or .particle() method. Parameters ---------- trials: dataset (xarray) Time step level experimental data (cues, outcomes etc.). par_val: list, optional Learning model parameters (floats or ints). n_z: int, optional Maximum number of latent causes. Defaults to 10. n_p: int, optional Number of particles. Defaults to 50. Only relevant if using the .particle() simulation methods (i.e. sim_type = 'particle'). random_resp: str, optional Whether or not simulated responses should be random. Defaults to false, in which case behavior (b) is identical to expected behavior (b_hat); this saves some computation time. If true and resp_type is 'choice', then discrete responses are selected using b_hat as choice probabilities. If true and resp_type is 'exct' or 'supr' then a small amount of normally distributed noise (sd = 0.01) is added to b_hat. ident: str, optional Individual participant identifier. Defaults to 'sim'. sim_type: str, optional Determines what kind of simulation to perform. The options are 'local_vb' (combination of local MAP and mean field variational Bayes updates) and 'particle' (particle filter). Defaults to 'local_vb'. Returns ------- ds: dataset Simulation data. Notes ----- The .simulate() method is just a wrapper for the .local_vb() and .particle() methods, with the choice between these method indicated by the sim_type argument. The .local_vb() and .particle() methods can also be used on their own, without using the .simulate() method as a wrapper. The .simulate() method is only present in latent cause models in order to interface with the rest of the Statrat package (e.g. functions for performing model fitting and OATs). Note on terminology: "cluster" = "latent cause" ''' method_dict = {'local_vb': lambda par_val: self.local_vb(trials, par_val, n_z, random_resp, ident), 'particle': lambda par_val: self.particle_filter(trials, par_val, n_z, n_p, random_resp, ident)} return method_dict[sim_type](par_val) def local_vb(self, trials, par_val = None, n_z = 10, random_resp = False, ident = 'sim'): ''' Simulate the model using a combination of local MAP and variational Bayes. Parameters ---------- trials: dataset (xarray) Time step level experimental data (cues, outcomes etc.). par_val: list, optional Learning model parameters (floats or ints). n_z: int, optional Maximum number of latent causes. Defaults to 10. random_resp: str, optional Whether or not simulated responses should be random. Defaults to false, in which case behavior (b) is identical to expected behavior (b_hat); this saves some computation time. If true and resp_type is 'choice', then discrete responses are selected using b_hat as choice probabilities. If true and resp_type is 'exct' or 'supr' then a small amount of normally distributed noise (sd = 0.01) is added to b_hat. ident: str, optional Individual participant identifier. Defaults to 'sim'. sim_type: str, optional Determines what kind of simulation to perform. The options are 'local_vb' (combination of local MAP and mean field variational Bayes updates) and 'particle' (particle filter). Defaults to 'local_vb'. Returns ------- ds: dataset Simulation data. Explanation of variables in ds ------------------------------ y_psb: indicator vector for outcomes (y) that are possible on the trial (from the learner's perspective) y_lrn: indicator vector for outcomes (y) for which there is feedback and hence learning will occur y_hat: outcome predictions b_hat: expected value of behavioral response b: vector representing actual behavioral response (identical to b_hat unless the random_resp argument is set to True) est_mu_x: estimated mean of x est_sigma_x: estimated standard deviation of x est_precision_x: estimated precision of x est_mu_y: estimated mean of y est_sigma_y: estimated standard deviation of y est_precision_y: estimated precision of y n: estimated number of observations assigned to each latent cause z: hard latent cause assignments phi_x: posterior of latent causes after observing x, but before observing y phi: posterior of latent causes after observing both x and y N: estimated number of latent causes E_log_prior: expected log-prior for latent causes E_log_lik_x: expected log-likelihood of x for latent causes E_log_lik_y: expected log-likelihood of y for latent causes b_index: index of behavioral response (only present if response type is 'choice' and random_resp is True) b_name: name of behavioral response (only present if response type is 'choice' and random_resp is True) ''' # use default parameters unless others are given if par_val is None: sim_pars = self.pars['default'] else: # check that parameter values are within acceptable limits; if so assemble into a pandas series # for some reason, the optimization functions go slightly outside the specified bounds abv_min = par_val >= self.pars['min'] - 0.0001 blw_max = par_val <= self.pars['max'] + 0.0001 all_ok = np.prod(abv_min & blw_max) assert all_ok, 'par_val outside acceptable limits' sim_pars = pd.Series(par_val, self.pars.index) # set stuff up x = np.array(trials['x'], dtype = 'float64') y = np.array(trials['y'], dtype = 'float64') y_psb = np.array(trials['y_psb'], dtype = 'float64') y_lrn = np.array(trials['y_lrn'], dtype = 'float64') x_names = list(trials.x_name.values) y_names = list(trials.y_name.values) n_t = x.shape[0] # number of time points n_x = x.shape[1] # number of stimulus attributes n_y = y.shape[1] # number of outcomes/response options y_hat = np.zeros((n_t, n_y)) # outcome predictions b_hat = np.zeros((n_t, n_y)) # expected behavior time = trials['time'].values # real world time (in arbitrary units, starting at 0) x_sofar = np.zeros(n_x) # keep track of cues (x) observed so far # prior for x parameters tau1_x = np.zeros((n_t + 1, n_z, n_x)) tau2_x = sim_pars['prior_tau2_x']*np.ones((n_t + 1, n_z, n_x)) nu_x = sim_pars['prior_nu_x']*np.ones((n_t + 1, n_z, n_x)) # prior for y parameters tau1_y = np.zeros((n_t + 1, n_z, n_y)) tau2_y = sim_pars['prior_tau2_y']*np.ones((n_t + 1, n_z, n_y)) nu_y = sim_pars['prior_nu_y']*np.ones((n_t + 1, n_z, n_y)) E_log_prior = np.zeros((n_t, n_z)) E_log_lik_x = np.zeros((n_t, n_z)) E_log_lik_y = np.zeros((n_t, n_z)) est_mu_x = np.zeros((n_t, n_z, n_x)) prior_E_eta2_x = -(sim_pars['prior_nu_x']*(sim_pars['prior_nu_x'] + 3))/(2*sim_pars['prior_nu_x']*sim_pars['prior_tau2_x']) est_sigma_x = (1/np.sqrt(-2*prior_E_eta2_x))*
np.ones((n_t, n_z, n_x))
numpy.ones
import torch import torch.nn as nn import torchvision as tv from torchvision import transforms from torchvision.datasets.folder import default_loader from torchvision.ops import RoIPool, RoIAlign import numpy as np from pathlib import Path from PIL import Image use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") print(device) class AdaptiveConcatPool2d(nn.Module): def __init__(self, sz=None): super().__init__() sz = sz or (1,1) self.ap = nn.AdaptiveAvgPool2d(sz) self.mp = nn.AdaptiveMaxPool2d(sz) def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1) def get_idx(batch_size, n_output, device=None): idx = torch.arange(float(batch_size), dtype=torch.float, device=device).view(1, -1) idx = idx.repeat(n_output, 1, ).t() idx = idx.contiguous().view(-1, 1) return idx def get_blockwise_rois(blk_size, img_size=None): if img_size is None: img_size = [1, 1] y = np.linspace(0, img_size[0], num=blk_size[0] + 1) x = np.linspace(0, img_size[1], num=blk_size[1] + 1) a = [] for n in range(len(y) - 1): for m in range(len(x) - 1): a += [x[m], y[n], x[m + 1], y[n + 1]] return a class RoIPoolModel(nn.Module): rois = None def __init__(self, backbone='resnet18', pretrained=False): # set to true if you need to train it super().__init__() if backbone is 'resnet18': model = tv.models.resnet18(pretrained=pretrained) # cut = -2 spatial_scale = 1/32 self.model_type = self.__class__.__name__ self.body = nn.Sequential(*list(model.children())[:cut]) self.head = nn.Sequential( AdaptiveConcatPool2d(), nn.Flatten(), nn.BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True), nn.Dropout(p=0.25, inplace=False), nn.Linear(in_features=1024, out_features=512, bias=True), nn.ReLU(inplace=True), nn.BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True), nn.Dropout(p=0.5, inplace=False), nn.Linear(in_features=512, out_features=1, bias=True) ) self.roi_pool = RoIPool((2,2), spatial_scale) def forward(self, x): # compatitble with fastai model if isinstance(x, list) or isinstance(x, tuple): im_data, self.rois = x else: im_data = x feats = self.body(im_data) batch_size = im_data.size(0) if self.rois is not None: rois_data = self.rois.view(-1, 4) n_output = int(rois_data.size(0) / batch_size) idx = get_idx(batch_size, n_output, im_data.device) indexed_rois = torch.cat((idx, rois_data), 1) feats = self.roi_pool(feats, indexed_rois) preds = self.head(feats) return preds.view(batch_size, -1) def input_block_rois(self, blk_size=(20, 20), img_size=(1, 1), batch_size=1, include_image=True, device=None): a = [0, 0, img_size[1], img_size[0]] if include_image else [] a += get_blockwise_rois(blk_size, img_size) t = torch.tensor(a).float().to(device) self.rois = t.unsqueeze(0).repeat(batch_size, 1, 1).view(batch_size, -1).view(-1, 4) def img_files_in(path): IMAGE_EXTS = '.jpg', '.jpeg', '.bmp', '.png' a = [f for f in Path(path).rglob('*.*') if f.name.lower().endswith(IMAGE_EXTS)] return np.array(a) # a[mask] def get_peak(data): from collections import Counter L = int(data) most_common, num_most_common = Counter(L).most_common(1)[0] return most_common def normalize(x, peak, std_left, std_right, N_std, new_peak=None): if new_peak is None: new_peak = peak x = np.array(x) left, right = x < peak, x >= peak x [left] = new_peak + new_peak*(x[left]-peak)/(N_std*std_left) x [right] = new_peak + (100-new_peak)*(x[right]-peak)/(N_std*std_right) # x [x < 0] = 0 # x [x > 100] = 100 return x.tolist() class InferenceModel: blk_size = 20, 20 categories = 'Bad', 'Poor', 'Fair', 'Good', 'Excellent' def __init__(self, model, path_to_model_state: Path): self.transform = transforms.ToTensor() model_state = torch.load(path_to_model_state, map_location=lambda storage, loc: storage) self.model = model self.model.load_state_dict(model_state["model"]) self.model = self.model.to(device) self.model.eval() def predict_from_file(self, image_path: Path, render=False): image = default_loader(image_path) return self.predict(image) def predict_from_pil_image(self, image: Image): image = image.convert("RGB") return self.predict(image) # normalization N_std = 3.5 new_peak = None norm_params = 72, 7.798274017370107, 4.118047289170692 def normalize(self, x): x = normalize(x, *self.norm_params, N_std=self.N_std, new_peak=self.new_peak) return np.clip(x, 0, 99.9) # 100//20==5 out-of-range def adapt_from_dir(self, path): from collections import Counter global_scores = [model.predict_from_file(f)['global_score'] for f in img_files_in(PATH)] x = np.array(global_scores) x_peak, _ = Counter(x.astype(int)).most_common(1)[0] # get std based on the peak value left, right = x < x_peak, x >= x_peak std_left = np.concatenate([x[left], 2*x_peak-x[left]]).std() # reflection std_right =
np.concatenate([x[right], 2*x_peak-x[right]])
numpy.concatenate
"""Gym environment for the Real Robot Challenge Phase 1 (Simulation).""" import time import pybullet as p import numpy as np import gym import itertools from scipy.spatial.transform import Rotation as R from rrc_simulation import TriFingerPlatform from rrc_simulation import camera from rrc_simulation.code.utils import sample_cube_surface_points, apply_transform, VisualMarkers, is_valid_action, action_type_to from pybullet_planning import plan_joint_motion from pybullet_planning.interfaces.robots.collision import get_collision_fn from rrc_simulation.gym_wrapper.envs import cube_env from rrc_simulation.gym_wrapper.envs.cube_env import ActionType from rrc_simulation import collision_objects import cv2 import copy import functools from rrc_simulation.code.align_rotation import align_rotation from rrc_simulation.code.const import EXCEP_MSSG class FlatObservationWrapper(gym.ObservationWrapper): def __init__(self, env): super().__init__(env) low = [ self.observation_space[name].low.flatten() for name in self.observation_names ] high = [ self.observation_space[name].high.flatten() for name in self.observation_names ] self.observation_space = gym.spaces.Box( low=np.concatenate(low), high=np.concatenate(high) ) def observation(self, obs): observation = [obs[name].flatten() for name in self.observation_names] observation = np.concatenate(observation) return observation class IKActionWrapper(gym.Wrapper): def __init__(self, env): super().__init__(env) self.action_space = gym.spaces.Box(low=-np.ones(9), high=np.ones(9), dtype=np.float32) self._ob = None self.frameskip = self.unwrapped.frameskip def reset(self): self._ob = self.env.reset() self.dt = self.unwrapped.platform.simfinger.time_step_s self.ik = self.unwrapped.platform.simfinger.pinocchio_utils.inverse_kinematics return self._ob def _solve_ik(self, action): tips = self._ob['robot_tip_positions'] joints = self._ob['robot_position'] new_robot_pos = [] action = action * self.frameskip * self.dt tips_desired = [tips[i] + action[3*i: 3*(i+1)] for i in range(3)] for i in range(3): new_joints = self.ik(i, tips_desired[i], joints) new_robot_pos.append(new_joints[3*i:3*(i+1)]) new_pos = np.concatenate(new_robot_pos) for i in range(3): try: self._verify_ik(new_pos, tips_desired[i], i) except Exception as e: print(e) return np.clip(new_pos, self.env.action_space.low, self.env.action_space.high) def step(self, action): self._ob, r, done, info = self.env.step(self._solve_ik(action)) return self._ob, r, done, info def _verify_ik(self, j, x, finger_id, tol=0.001): x_actual = self.unwrapped.platform.forward_kinematics(j)[finger_id] dist = np.linalg.norm(x - x_actual) if dist >= tol: raise ValueError(f"IK Failed with error: {dist}!") class JointConfInitializationWrapper(gym.Wrapper): ''' Every time it resets, sample three points on the cube and initialize fingers so that tips are on the points. ''' def __init__(self, env, heuristic="pinch"): super().__init__(env) self.heuristic = heuristic def reset(self): obs = self.env.reset() return self.set_init_pose(obs) def set_init_pose(self, obs): if self.env.visualization: self.visual_markers = VisualMarkers() if getattr(self.env, 'ik', None) is None: self.ik = self.env.platform.simfinger.pinocchio_utils.inverse_kinematics # get initial joint angles and apply init_tips, init_joints = self.get_initial_conf(obs) self.init_tip_positions = init_tips self.env.platform.simfinger.reset_finger_positions_and_velocities(init_joints) # modify the first observation if "robot_position" in obs: obs['robot_position'] = init_joints if "robot_tip_positions" in obs: obs["robot_tip_positions"] = init_tips return obs def get_initial_conf(self, obs): tips = obs['robot_tip_positions'] joints = obs['robot_position'] org_joint_conf = self.get_joint_conf() num_trials = 20000 retry = 0 while retry < num_trials: # reset joint configuration (neccesary because planner messes # up with the pose) self.env.platform.simfinger.reset_finger_positions_and_velocities( org_joint_conf) self.cube_tip_positions = sample_cube_surface_points( cube_halfwidth=0.0500, heuristic=self.heuristic, shrink_region=0.5 ) target_tip_positions = apply_transform(obs['object_position'], obs['object_orientation'], self.cube_tip_positions) if self.heuristic is 'center_of_two': self.used_finger_ids = self.select_two_fingers(obs['goal_object_position'] - obs['object_position']) _, inds = self.assign_positions_to_fingers( tips[self.used_finger_ids, :], target_tip_positions[:len(self.used_finger_ids)] ) inds = self.used_finger_ids[list(inds)].tolist() inds = inds + [3 - sum(inds)] target_tip_positions = target_tip_positions[inds, :] else: target_tip_positions, inds = self.assign_positions_to_fingers( tips, target_tip_positions) self.cube_tip_positions = self.cube_tip_positions[inds, :] # Run IK to get the target joint configuration target_joint_conf = self.solve_for_joint_conf(target_tip_positions, joints) if target_joint_conf is None: continue # Validate that the joint conf is reachable (IK solver sometimes returns an infeasible solution) if not is_valid_action(target_joint_conf, action_type='position'): # print('(initial conf) IK solver returned infeasible joint conf:', target_joint_conf) continue # Run motion planning to test the feasibility. # Without this, sometimes fingers are initialized to go through the cube planned_motion = plan_joint_motion( self.env.platform.simfinger.finger_id, self.env.platform.simfinger.pybullet_link_indices, target_joint_conf, self_collisions=True, obstacles=[self.env.platform.cube.block], diagnosis=False ) # Test if the end pose is in collision if planned_motion is not None: obstacle = self._create_dummy_goal_object(obs) # dummy object for collision check collision_fn = get_collision_fn( self.env.platform.simfinger.finger_id, self.env.platform.simfinger.pybullet_link_indices, obstacles=[obstacle.block], self_collisions=True, max_distance=0 ) endpose = self._get_endpose(obs) # Validate if endpose is reachable (IK solver sometimes returns an infeasible solution) if endpose is not None and is_valid_action(endpose, action_type='position'): endpose_in_collision = collision_fn(endpose, diagnosis=False) # if endpose_in_collision: # print('endpose is in collision') else: # print('IK solver returned infeasible joint conf:', endpose) endpose_in_collision = True del obstacle if not endpose_in_collision: break retry += 1 # print('motion planning failed. retrying...\tcount:', retry) if planned_motion is None: raise RuntimeError('No feasible path to the target position is found.') # reset joint configuration (neccesary because planner messes up with the pose) self.env.platform.simfinger.reset_finger_positions_and_velocities(org_joint_conf) # visualize sampled points if self.env.visualization: self.visual_markers.add(target_tip_positions, color=(0, 1, 1, 0.5)) return target_tip_positions, target_joint_conf def get_joint_conf(self): robot_id = self.env.platform.simfinger.finger_id link_indices = self.env.platform.simfinger.pybullet_link_indices joint_conf = [joint_state[0] for joint_state in p.getJointStates( robot_id, link_indices)] return np.asarray(joint_conf) def assign_positions_to_fingers(self, tips, goal_tips): min_cost = 1000000 opt_tips = [] opt_inds = [] for v in itertools.permutations(range(len(tips))): sorted_tips = goal_tips[v, :] cost =
np.linalg.norm(sorted_tips - tips)
numpy.linalg.norm
import numpy as np from PIL import Image from scipy import special # PSF functions def scalar_a(x): if x == 0: return 1.0 else: return (special.jn(1,2*np.pi*x)/(np.pi*x))**2 a = np.vectorize(scalar_a) def s_b(x, NA=0.8, n=1.33): if x == 0: return 0 else: return (NA/n)**2*(special.jn(2,2*np.pi*x)/(np.pi*x))**2 b = np.vectorize(s_b) def h00(x, NA=0.8, n=1.33): return a(x) + 2*b(x, NA, n) def h20(x, NA=0.8, n=1.33): return (-a(x) + 4*b(x, NA, n))/np.sqrt(5) # OTF functions def myacos(x): return np.nan_to_num(np.arccos(np.abs(x/2))) def mysqrt(x): return np.nan_to_num((np.abs(x/2))*np.sqrt(1 - (np.abs(x/2))**2)) def A(x): return (2/np.pi)*(myacos(x) - mysqrt(x)) def B(x, NA=0.8, n=1.33): N = (1/(np.pi))*((NA/n)**2) poly = (3.0 - 2.0*(np.abs(x/2)**2)) return N*(myacos(x) - poly*mysqrt(x)) def H00(x, NA=0.8, n=1.33): return (A(x) + 2*B(x, NA=NA, n=n))/(1 + (NA/n)**2) def H20(x, NA=0.8, n=1.33): return (-A(x) + 4*B(x, NA=NA, n=n))/(np.sqrt(5)*(1 + (NA/n)**2)) # File I/O def save_tiff(image, filename): im = Image.fromarray(image) # float32 im.save(filename, "TIFF") def load_tiff(filename): image = Image.open(filename, mode='r') return np.array(image, dtype='float32') def cs(arr): return arr[:, np.int(arr.shape[0]/2)] # Fourier transform def myfft(image, pad=1000): N = image.shape[0] padded_image = np.pad(image, pad_width=pad, mode='constant') F = np.fft.fftshift( np.fft.fftn( np.fft.ifftshift(padded_image) )) xF = np.fft.fftshift(np.fft.fftfreq(2*pad + N, 4/N)) return xF,
np.abs(F)
numpy.abs
#! /usr/bin/env python import warnings warnings.filterwarnings('ignore') import numpy as np import scipy.interpolate as spi from astropy.io import fits as pf import matplotlib.pyplot as plt import multiprocessing as mp from ..lib import manageevent as me from ..lib import sort_nicely as sn from ..lib import centroid, suntimecorr, utc_tt import time, os, sys, shutil #import hst_scan as hst from importlib import reload #reload(hst) def reduceWFC3(eventname, eventdir, madVariable=False, madVarSet=False, isplots=False): ''' Reduces data images and calculated optimal spectra. Parameters ---------- isplots : Set True to produce plots Returns ------- None Remarks ------- Requires eventname_params file to intialize event object Steps ----- 1. Read in all data frames and header info 2. Record JD, scan direction, etc 3. Group images by frame, batch, and orbit number 4. Calculate centroid of direct image(s) 5. Calculate trace and 1D+2D wavelength solutions 6. Make flats, apply flat field correction 7. Manually mask regions 8. Apply light-time correction 9. Compute difference frames 10. Compute scan length 11. Perform outlier rejection of BG region 12. Background subtraction 13. Compute 2D drift, apply rough (integer-pixel) correction 14. Full-frame outlier rejection for time-series stack of NDRs 15. Apply sub-pixel 2D drift correction 16. Extract spectrum through summation 17. Compute median frame 18. Optimal spectral extraction 19. Save results, plot figures History ------- Written by <NAME> January 2017 ''' evpname = eventname + '_params' #exec 'import ' + evpname + ' as evp' in locals() #exec('import ' + evpname + ' as evp', locals()) exec('import ' + evpname + ' as evp', globals()) reload(evp) t0 = time.time() # Initialize event object # All parameters are specified in this file ev = evp.event_init() try: aux = evp.aux_init() except: print("Need to update event file to include auxiliary object.") return ev.eventdir = eventdir # Create directories if not os.path.exists(ev.eventdir): os.makedirs(ev.eventdir) if not os.path.exists(ev.eventdir+"/figs"): os.makedirs(ev.eventdir+"/figs") # Copy ev_params file shutil.copyfile(evpname + '.py', ev.eventdir+'/'+evpname+'.py') # Reset attribute for MAD variable (added by <NAME>) if madVariable: setattr(ev,madVariable,madVarSet) ev.madVarStr = madVariable ev.madVariable = madVarSet # Object ev.obj_list = [] #Do not rename ev.obj_list! if ev.objfile == None: #Retrieve files within specified range for i in range(ev.objstart,ev.objend): ev.obj_list.append(ev.loc_sci + ev.filebase + str(i).zfill(4) + ".fits") elif ev.objfile == 'all': #Retrieve all files from science directory for fname in os.listdir(ev.loc_sci): ev.obj_list.append(ev.loc_sci +'/'+ fname) ev.obj_list = sn.sort_nicely(ev.obj_list) else: #Retrieve filenames from list files = np.genfromtxt(ev.objfile, dtype=str, comments='#') for fname in files: ev.obj_list.append(ev.loc_sci +'/'+ fname) # handle = open(ev.objfile) # for line in handle: # print(line) # ev.obj_list.append(ev.loc_sci + line) # handle.close() ev.n_files = len(ev.obj_list) #Determine image size and filter/grism hdulist = pf.open(ev.obj_list[0].rstrip()) nx = hdulist['SCI',1].header['NAXIS1'] ny = hdulist['SCI',1].header['NAXIS2'] ev.grism = hdulist[0].header['FILTER'] ev.detector = hdulist[0].header['DETECTOR'] ev.flatoffset = [[-1*hdulist['SCI',1].header['LTV2'], -1*hdulist['SCI',1].header['LTV1']]] n_reads = hdulist['SCI',1].header['SAMPNUM'] hdulist.close() # Record JD and exposure times print('Reading data & headers, recording JD and exposure times...') ywindow = ev.ywindow[0] xwindow = ev.xwindow[0] subny = ywindow[1] - ywindow[0] subnx = xwindow[1] - xwindow[0] subdata = np.zeros((ev.n_files,n_reads,subny,subnx)) suberr = np.zeros((ev.n_files,n_reads,subny,subnx)) data_mhdr = [] data_hdr = [] ev.jd = np.zeros(ev.n_files) ev.exptime = np.zeros(ev.n_files) for m in range(ev.n_files): data, err, hdr, mhdr = hst.read(ev.obj_list[m].rstrip()) subdata[m] = data[0,:,ywindow[0]:ywindow[1],xwindow[0]:xwindow[1]] suberr [m] = err [0,:,ywindow[0]:ywindow[1],xwindow[0]:xwindow[1]] data_mhdr.append(mhdr[0]) data_hdr.append(hdr[0]) ev.jd[m] = 2400000.5 + 0.5*(data_mhdr[m]['EXPSTART'] + data_mhdr[m]['EXPEND']) ev.exptime[m] = data_mhdr[m]['EXPTIME'] # Assign scan direction ev.scandir = np.zeros(ev.n_files, dtype=int) ev.n_scan0 = 0 ev.n_scan1 = 0 try: scan0 = data_mhdr[0]['POSTARG2'] scan1 = data_mhdr[1]['POSTARG2'] for m in range(ev.n_files): if data_mhdr[m]['POSTARG2'] == scan0: ev.n_scan0 += 1 elif data_mhdr[m]['POSTARG2'] == scan1: ev.scandir[m] = 1 ev.n_scan1 += 1 else: print('WARNING: Unknown scan direction for file ' + str(m) + '.') print("# of files in scan direction 0: " + str(ev.n_scan0)) print("# of files in scan direction 1: " + str(ev.n_scan1)) except: ev.n_scan0 = ev.n_files print("Unable to determine scan direction, assuming unidirectional.") # Group frames into frame, batch, and orbit number ev.framenum, ev.batchnum, ev.orbitnum = hst.groupFrames(ev.jd) # Determine read noise and gain ev.readNoise = np.mean((data_mhdr[0]['READNSEA'], data_mhdr[0]['READNSEB'], data_mhdr[0]['READNSEC'], data_mhdr[0]['READNSED'])) print('Read noise: ' + str(ev.readNoise)) print('Gain: ' + str(ev.gain)) #ev.v0 = (ev.readNoise/ev.gain)**2 #Units of ADU ev.v0 = ev.readNoise**2 #Units of electrons # Calculate centroid of direct image(s) ev.img_list = [] if isinstance(ev.directfile, str) and ev.directfile.endswith('.fits'): ev.img_list.append(ev.loc_cal + ev.directfile) else: #Retrieve filenames from list handle = open(ev.directfile) for line in handle: ev.img_list.append(ev.loc_cal + line) handle.close() ev.n_img = len(ev.img_list) ev.centroid, ev.directim = hst.imageCentroid(ev.img_list, ev.centroidguess, ev.centroidtrim, ny, ev.obj_list[0]) """ # Calculate theoretical centroids along spatial scan direction ev.centroids = [] for j in range(ev.n_img): ev.centroids.append([]) for i in range(ev.n_spec): # Can assume that scan direction is only in y direction (no x component) # because we will apply drift correction to make it so ev.centroids[j].append([np.zeros(subny)+ev.centroid[j][0],ev.centroid[j][1]]) # Calculate trace print("Calculating 2D trace and wavelength assuming " + ev.grism + " filter/grism...") ev.xrange = [] for i in range(ev.n_spec): ev.xrange.append(np.arange(ev.xwindow[i][0],ev.xwindow[i][1])) ev.trace2d = [] ev.wave2d = [] for j in range(ev.n_img): ev.trace2d.append([]) ev.wave2d.append([]) for i in range(ev.n_spec): ev.trace2d[j].append(hst.calcTrace(ev.xrange[i], ev.centroids[j][i], ev.grism)) ev.wave2d[j].append(hst.calibrateLambda(ev.xrange[i], ev.centroids[j][i], ev.grism)/1e4) #wavelength in microns if ev.detector == 'IR': print("Calculating slit shift values using last frame...") i = 0 #Use first spectrum j = -1 #Use last image #spectrum = subdata[j] spectrum = pf.getdata(ev.obj_list[j]) ev.slitshift, ev.shift_values, ev.yfit = hst.calc_slitshift2(spectrum, ev.xrange[i], ev.ywindow[i], ev.xwindow[i]) ev.wavegrid = ev.wave2d ev.wave = [] for j in range(ev.n_img): ev.wave.append([]) for i in range(ev.n_spec): ev.wave[j].append(np.mean(ev.wavegrid[j][i],axis=0)) else: # Assume no slitshift for UVIS ev.yfit = range(ev.ywindow[0][1] - ev.ywindow[0][0]) ev.slitshift = np.zeros(ev.ywindow[0][1] - ev.ywindow[0][0]) ev.shift_values = np.zeros(len(ev.yfit)) # Make list of master flat field frames subflat = np.ones((ev.n_img,ev.n_spec,subny,subnx)) flatmask = np.ones((ev.n_img,ev.n_spec,subny,subnx)) if ev.flatfile == None: print('No flat frames found.') flat_hdr = None flat_mhdr = None else: print('Loading flat frames...') for j in range(ev.n_img): tempflat, tempmask = hst.makeflats(ev.flatfile, ev.wavegrid[j], ev.xwindow, ev.ywindow, ev.flatoffset, ev.n_spec, ny, nx, sigma=ev.flatsigma) for i in range(ev.n_spec): subflat[j][i] = tempflat[i][ywindow[0]:ywindow[1],xwindow[0]:xwindow[1]] flatmask[j][i] = tempmask[i][ywindow[0]:ywindow[1],xwindow[0]:xwindow[1]] # Manually mask regions [specnum, colstart, colend] if hasattr(ev, 'manmask'): print("\rMasking manually identified bad pixels.") for j in range(ev.n_img): for i in range(len(ev.manmask)): ind, colstart, colend, rowstart, rowend = ev.manmask[i] n = ind % ev.n_spec flatmask[j][n][rowstart:rowend,colstart:colend] = 0 #ev.window[:,ind][0]:ev.window[:,ind][1] # Calculate reduced image for m in range(ev.n_files): #Select appropriate flat, mask, and slitshift if ev.n_img == (np.max(ev.orbitnum)+1): j = int(ev.orbitnum[m]) else: j = 0 for n in range(n_reads): subdata[m][n] /= subflat[j][0] """ # Read in drift2D from previous iteration # np.save("drift2D.npy",ev.drift2D) #try: # drift2D = np.load("drift2D.npy") #except: # print("drift2D.npy not found.") drift2D = np.zeros((ev.n_files,n_reads-1,2)) # Calculate centroids for each grism frame ev.centroids = np.zeros((ev.n_files,n_reads-1,2)) for m in range(ev.n_files): for n in range(n_reads-1): ev.centroids[m,n] = np.array([ev.centroid[0][0]+drift2D[m,n,0], ev.centroid[0][1]+drift2D[m,n,1]]) #ev.centroids[m,n] = np.array([np.zeros(subny)+ev.centroid[0][0]+drift2D[m,n,0], # np.zeros(subnx)+ev.centroid[0][1]+drift2D[m,n,1]]) # Calculate trace print("Calculating 2D trace and wavelength assuming " + ev.grism + " filter/grism...") ev.xrange = np.arange(ev.xwindow[0][0],ev.xwindow[0][1]) trace2d = np.zeros((ev.n_files,n_reads-1,subny,subnx)) wave2d = np.zeros((ev.n_files,n_reads-1,subny,subnx)) for m in range(ev.n_files): for n in range(n_reads-1): trace2d[m,n] = hst.calcTrace(ev.xrange, ev.centroids[m,n], ev.grism) wave2d[m,n] = hst.calibrateLambda(ev.xrange, ev.centroids[m,n], ev.grism)/1e4 #wavelength in microns # Assume no slitshift ev.yfit = range(ev.ywindow[0][1] - ev.ywindow[0][0]) ev.slitshift = np.zeros(ev.ywindow[0][1] - ev.ywindow[0][0]) ev.shift_values = np.zeros(len(ev.yfit)) ev.wave = np.mean(wave2d, axis=2) print("Wavelength Range: %.3f - %.3f" % (np.min(ev.wave), np.max(ev.wave))) #iwmax = np.where(ev.wave[0][0]>1.65)[0][0] #print(ev.wave[0,0]) #print(ev.wave[0,1]) #print(ev.centroids) # Make list of master flat field frames subflat = np.ones((ev.n_files,subny,subnx)) flatmask = np.ones((ev.n_files,subny,subnx)) if ev.flatfile == None: print('No flat frames found.') flat_hdr = None flat_mhdr = None else: print('Loading flat frames...') print(ev.flatfile) for m in range(ev.n_files): tempflat, tempmask = hst.makeflats(ev.flatfile, [np.mean(wave2d[m],axis=0)], ev.xwindow, ev.ywindow, ev.flatoffset, ev.n_spec, ny, nx, sigma=ev.flatsigma) #tempflat = [pf.getdata(ev.flatfile)] #tempmask = [np.ones(tempflat[0].shape)] subflat[m] = tempflat[0][ywindow[0]:ywindow[1],xwindow[0]:xwindow[1]] flatmask[m] = tempmask[0][ywindow[0]:ywindow[1],xwindow[0]:xwindow[1]] # Manually mask regions [specnum, colstart, colend] if hasattr(ev, 'manmask'): print("\rMasking manually identified bad pixels.") for m in range(ev.n_files): for i in range(len(ev.manmask)): ind, colstart, colend, rowstart, rowend = ev.manmask[i] flatmask[m][rowstart:rowend,colstart:colend] = 0 #FINDME: Change flat field #subflat[:,:,28] /= 1.015 #subflat[:,:,50] /= 1.015 #subflat[:,:,70] *= 1.01 """ plt.figure(2) plt.clf() plt.imshow(np.copy(subdata[10,-1]),origin='lower',aspect='auto', vmin=0,vmax=25000,cmap=plt.cm.RdYlBu_r) plt.ylim(65,95) plt.show() """ # Calculate reduced image subdata /= subflat[:,np.newaxis] #subdata /= np.mean(subflat,axis=0)[np.newaxis,np.newaxis] """ # FINDME # Perform self flat field calibration # drift2D_int = np.round(edrift2D,0) # Identify frames outside SAA iNoSAA = np.where(np.round(drift2D[:,0,0],0)==0)[0] # Select subregion with lots of photons normdata = np.copy(subdata[iNoSAA,-1,69:91,15:147]) normmask = flatmask[iNoSAA,69:91,15:147] normdata[np.where(normmask==0)] = 0 # Normalize flux in each row to remove ramp/transit/variable scan rate normdata /= np.sum(normdata,axis=2)[:,:,np.newaxis] # Divide by mean spectrum to remove wavelength dependence normdata /= np.mean(normdata,axis=(0,1))[np.newaxis,np.newaxis,:] # Average frames to get flat-field correction flat_norm = np.mean(normdata,axis=0) flat_norm[np.where(np.mean(normmask,axis=0)<1)] = 1 ''' normdata /= np.mean(normdata,axis=(1,2))[:,np.newaxis,np.newaxis] flat_window = np.median(normdata,axis=0) medflat = np.median(flat_window, axis=0) flat_window /= medflat flat_window /= np.median(flat_window,axis=1)[:,np.newaxis] flat_norm = flat_window/np.mean(flat_window) ''' plt.figure(3) plt.clf() plt.imshow(np.copy(subdata[10,-1]),origin='lower',aspect='auto', vmin=0,vmax=25000,cmap=plt.cm.RdYlBu_r) plt.ylim(65,95) ff = np.load('ff.npy') subff = ff[ywindow[0]:ywindow[1],xwindow[0]:xwindow[1]] #subdata[:,:,69:91,15:147] /= flat_norm subdata /= subff plt.figure(4) plt.clf() plt.imshow(subdata[10,-1],origin='lower',aspect='auto',vmin=0,vmax=25000,cmap=plt.cm.RdYlBu_r) plt.ylim(65,95) plt.figure(1) plt.clf() plt.imshow(flat_norm,origin='lower',aspect='auto') plt.colorbar() plt.tight_layout() plt.pause(0.1) ev.flat_norm = flat_norm return ev """ """ if isplots: # Plot normalized flat fields plt.figure(1000, figsize=(12,8)) plt.clf() plt.suptitle('Master Flat Frames') for i in range(ev.n_spec): for j in range(ev.n_img): #plt.subplot(ev.n_spec,ev.n_img,i*ev.n_img+j+1) plt.subplot(2,np.ceil(ev.n_img/2.),i*ev.n_img+j+1) plt.title(str(j) +','+ str(i)) plt.imshow(subflat[j][i], origin='lower') plt.tight_layout() plt.savefig(ev.eventdir + '/figs/fig1000-Flats.png') # Plot masks plt.figure(1001, figsize=(12,8)) plt.clf() plt.suptitle('Mask Frames') for i in range(ev.n_spec): for j in range(ev.n_img): #plt.subplot(ev.n_spec,ev.n_img,i*ev.n_img+j+1) plt.subplot(2,np.ceil(ev.n_img/2.),i*ev.n_img+j+1) plt.title(str(j) +','+ str(i)) plt.imshow(flatmask[j][i], origin='lower') plt.tight_layout() plt.savefig(ev.eventdir + '/figs/fig1001-Masks.png') if ev.detector == 'IR': # Plot Slit shift plt.figure(1004, figsize=(12,8)) plt.clf() plt.suptitle('Model Slit Tilts/Shifts') plt.plot(ev.shift_values, ev.yfit, '.') plt.plot(ev.slitshift, range(ev.ywindow[0][0],ev.ywindow[0][1]), 'r-', lw=2) plt.xlim(-1,1) plt.savefig(ev.eventdir + '/figs/fig1004-SlitTilt.png') plt.pause(0.1) """ ev.ra = data_mhdr[0]['RA_TARG']*np.pi/180 ev.dec = data_mhdr[0]['DEC_TARG']*np.pi/180 if ev.horizonsfile != None: # Apply light-time correction, convert to BJD_TDB # Horizons file created for HST around time of observations print("Converting times to BJD_TDB...") ev.bjd_corr = suntimecorr.suntimecorr(ev.ra, ev.dec, ev.jd, ev.horizonsfile) bjdutc = ev.jd + ev.bjd_corr/86400. ev.bjdtdb = utc_tt.utc_tt(bjdutc,ev.leapdir) print('BJD_corr range: ' + str(ev.bjd_corr[0]) + ', ' + str(ev.bjd_corr[-1])) else: print("No Horizons file found.") ev.bjdtdb = ev.jd if n_reads > 1: ev.n_reads = n_reads # Subtract pairs of subframes diffdata = np.zeros((ev.n_files,ev.n_reads-1,subny,subnx)) differr = np.zeros((ev.n_files,ev.n_reads-1,subny,subnx)) for m in range(ev.n_files): for n in range(n_reads-1): #diffmask[m,n] = np.copy(flatmask[j][0]) #diffmask[m,n][np.where(suberr[m,n ] > diffthresh*np.std(suberr[m,n ]))] = 0 #diffmask[m,n][np.where(suberr[m,n+1] > diffthresh*np.std(suberr[m,n+1]))] = 0 diffdata[m,n] = subdata[m,n+1]-subdata[m,n] differr [m,n] = np.sqrt(suberr[m,n+1]**2+suberr[m,n]**2) else: # FLT data has already been differenced # FLT files subtract first from last, 2 reads ev.n_reads = 2 diffdata = subdata differr = suberr diffmask = np.zeros((ev.n_files,ev.n_reads-1,subny,subnx)) guess = np.zeros((ev.n_files,ev.n_reads-1),dtype=int) for m in range(ev.n_files): #Select appropriate mask #if ev.n_img == (np.max(ev.orbitnum)+1): # j = int(ev.orbitnum[m]) #else: # j = 0 for n in range(n_reads-1): diffmask[m,n] = np.copy(flatmask[m][0]) try: diffmask[m,n][ np.where(differr[m,n] > ev.diffthresh* np.median(differr[m,n],axis=1)[:,np.newaxis])] = 0 #diffdata[m,n] *= diffmask[m,n] except: # May fail for FLT files print("Diffthresh failed.") foo = diffdata[m,n]*diffmask[m,n] guess[m,n] = np.median(np.where(foo > np.mean(foo))[0]).astype(int) # Guess may be skewed if first file is zeros if guess[m,0] < 0 or guess[m,0] > subny: guess[m,0] = guess[m,1] # Compute full scan length ev.scanHeight = np.zeros(ev.n_files) for m in range(ev.n_files): scannedData = np.sum(subdata[m,-1], axis=1) xmin = np.min(guess[m]) xmax = np.max(guess[m]) scannedData/= np.median(scannedData[xmin:xmax+1]) scannedData-= 0.5 #leftEdge = np.where(scannedData > 0)/2)[0][0] #rightEdge = np.where(scannedData > 0)/2)[0][-1] #yrng = range(leftEdge-5, leftEdge+5, 1) yrng = range(subny) spline = spi.UnivariateSpline(yrng, scannedData[yrng], k=3, s=0) roots = spline.roots() try: ev.scanHeight[m] = roots[1]-roots[0] except: pass #Outlier rejection of sky background along time axis print("Performing background outlier rejection...") import sigrej, optspex for p in range(2): iscan = np.where(ev.scandir == p)[0] if len(iscan) > 0: for n in range(ev.n_reads-1): # Set limits on the sky background x1 = (guess[iscan,n].min()-ev.fitbghw).astype(int) x2 = (guess[iscan,n].max()+ev.fitbghw).astype(int) bgdata1 = diffdata[iscan,n,:x1 ] bgmask1 = diffmask[iscan,n,:x1 ] bgdata2 = diffdata[iscan,n, x2:] bgmask2 = diffmask[iscan,n, x2:] bgerr1 = np.median(suberr[iscan,n,:x1 ]) bgerr2 = np.median(suberr[iscan,n, x2:]) estsig1 = [bgerr1 for j in range(len(ev.sigthresh))] estsig2 = [bgerr2 for j in range(len(ev.sigthresh))] diffmask[iscan,n,:x1 ] = sigrej.sigrej(bgdata1, ev.sigthresh, bgmask1, estsig1) diffmask[iscan,n, x2:] = sigrej.sigrej(bgdata2, ev.sigthresh, bgmask2, estsig2) # Write background #global bg, diffmask def writeBG(arg): background, mask, m, n = arg bg[m,n] = background diffmask[m,n] = mask return # STEP 3: Fit sky background with out-of-spectra data # FINDME: parallelrize bg subtraction print("Performing background subtraction...") x1 = np.zeros((ev.n_files,ev.n_reads-1), dtype=int) x2 = np.zeros((ev.n_files,ev.n_reads-1), dtype=int) bg = np.zeros((diffdata.shape)) if ev.ncpu == 1: # Only 1 CPU for m in range(ev.n_files): for n in range(ev.n_reads-1): x1[m,n] = (guess[m,n]-ev.fitbghw).astype(int) x2[m,n] = (guess[m,n]+ev.fitbghw).astype(int) writeBG(hst.fitbg(diffdata[m,n], diffmask[m,n], x1[m,n], x2[m,n], ev.bgdeg, ev.p3thresh, isplots, m, n, ev.n_files)) else: # Multiple CPUs pool = mp.Pool(ev.ncpu) for m in range(ev.n_files): for n in range(ev.n_reads-1): x1[m,n] = (guess[m,n]-ev.fitbghw).astype(int) x2[m,n] = (guess[m,n]+ev.fitbghw).astype(int) res = pool.apply_async(hst.fitbg, args=(diffdata[m,n], diffmask[m,n], x1[m,n], x2[m,n], ev.bgdeg, ev.p3thresh, isplots, m, n, ev.n_files), callback=writeBG) pool.close() pool.join() res.wait() print(" Done.") # STEP 2: Calculate variance bgerr = np.std(bg, axis=2)/np.sqrt(np.sum(diffmask, axis=2)) bgerr[np.where(np.isnan(bgerr))] = 0. ev.v0 += np.mean(bgerr**2) variance = abs(diffdata) / ev.gain + ev.v0 #variance = abs(subdata*submask) / gain + v0 # Perform background subtraction diffdata -= bg # ''' foo = np.sum(diffdata*diffmask, axis=2) guess = [] for i in range(nreads-1): guess.append(np.median(np.where(foo[i] > np.mean(foo[i]))[0]).astype(int)) guess = np.array(guess) # Guess may be skewed if first file is zeros if guess[0] < 0 or guess[0] > subnx: guess[0] = guess[1] ''' # Write drift2D def writeDrift2D(arg): drift2D, m, n = arg # Assign to array of spectra and uncertainties ev.drift2D[m,n] = drift2D return ''' # Calulate drift2D def calcDrift2D():#im1, im2, m, n): print("test") drift2D = imr.chi2_shift(im1, im2, boundary='constant', nthreads=4, zeromean=False, return_error=False) return (drift2D, m, n) ''' print("Calculating 2D drift...") #FINDME: instead of calculating scanHeight, consider fitting stretch factor ev.drift2D = np.zeros((ev.n_files, ev.n_reads-1, 2)) if ev.ncpu == 1: # Only 1 CPU for m in range(ev.n_files): p = int(ev.scandir[m]) for n in range(ev.n_reads-1): writeDrift2D(hst.calcDrift2D(diffdata[ev.iref[p],n]*diffmask[ev.iref[p],n], diffdata[m,n]*diffmask[m,n], m, n, ev.n_files)) else: # Multiple CPUs pool = mp.Pool(ev.ncpu) for m in range(ev.n_files): p = int(ev.scandir[m]) for n in range(ev.n_reads-1): #res = pool.apply_async(hst.calcDrift2D) res = pool.apply_async(hst.calcDrift2D, args=(diffdata[ev.iref[p],n]*diffmask[ev.iref[p],n], diffdata[m,n]*diffmask[m,n], m, n, ev.n_files), callback=writeDrift2D) pool.close() pool.join() res.wait() print(" Done.") #np.save("drift2D.npy",ev.drift2D) #global shiftdata, shiftmask print("Performing rough, pixel-scale drift correction...") import scipy.ndimage.interpolation as spni ev.drift2D_int = np.round(ev.drift2D,0) shiftdata = np.zeros(diffdata.shape) shiftmask = np.zeros(diffmask.shape) shiftvar = np.zeros(diffdata.shape) shiftbg = np.zeros(diffdata.shape) # Correct for drift by integer pixel numbers, no interpolation for m in range(ev.n_files): for n in range(ev.n_reads-1): shiftdata[m,n] = spni.shift(diffdata[m,n], -1*ev.drift2D_int[m,n,::-1], order=0, mode='constant', cval=0) shiftmask[m,n] = spni.shift(diffmask[m,n], -1*ev.drift2D_int[m,n,::-1], order=0, mode='constant', cval=0) shiftvar [m,n] = spni.shift(variance[m,n], -1*ev.drift2D_int[m,n,::-1], order=0, mode='constant', cval=0) shiftbg [m,n] = spni.shift(bg [m,n], -1*ev.drift2D_int[m,n,::-1], order=0, mode='constant', cval=0) """ # spni.shift does not handle constant boundaries correctly if ev.drift2D_int[m,n,0] > 0: shiftdata[m,n,:,-1*ev.drift2D_int[m,n,0]:] = 0 shiftmask[m,n,:,-1*ev.drift2D_int[m,n,0]:] = 0 shiftvar [m,n,:,-1*ev.drift2D_int[m,n,0]:] = 0 shiftbg [m,n,:,-1*ev.drift2D_int[m,n,0]:] = 0 elif ev.drift2D_int[m,n,0] < 0: #print(m,n,-1*ev.drift2D_int[m,n,0]) shiftdata[m,n,:,:-1*ev.drift2D_int[m,n,0]] = 0 shiftmask[m,n,:,:-1*ev.drift2D_int[m,n,0]] = 0 shiftvar [m,n,:,:-1*ev.drift2D_int[m,n,0]] = 0 shiftbg [m,n,:,:-1*ev.drift2D_int[m,n,0]] = 0 """ # Outlier rejection of full frame along time axis print("Performing full-frame outlier rejection...") for p in range(2): iscan = np.where(ev.scandir == p)[0] if len(iscan) > 0: for n in range(ev.n_reads-1): #y1 = guess[ev.iref,n] - ev.spec_width #y2 = guess[ev.iref,n] + ev.spec_width #estsig = [differr[ev.iref,n,y1:y2] for j in range(len(ev.sigthresh))] shiftmask[iscan,n] = sigrej.sigrej(shiftdata[iscan,n], ev.sigthresh, shiftmask[iscan,n])#, estsig) """ # Replace bad pixels using 2D Gaussian kernal along x and time axes def writeReplacePixels(arg): shift, m, n, i, j = arg shiftdata[m,n,i,j] = shift return #import smoothing #reload(smoothing) ny, nx, sy, sx = (2,2,1,1) wherebad = np.array(np.where(shiftmask==0)).T #smdata = np.copy(shiftdata) print("Replacing " + str(len(wherebad)) + " bad pixels...") k = 0 ktot = len(wherebad) #FINDME: multiple CPUs is inefficient if ev.ncpu >= 1: # Only 1 CPU for m,n,i,j in wherebad: #sys.stdout.write('\r'+str(k+1)+'/'+str(len(wherebad))) #sys.stdout.flush() writeReplacePixels(hst.replacePixels(shiftdata[:,n,:,j], shiftmask[:,n,:,j], m, n, i, j, k, ktot, ny, nx, sy, sx)) #Pad image initially with zeros #newim = np.zeros(np.array(shiftdata[:,n,:,j].shape) + 2*np.array((ny, nx))) #newim[ny:-ny, nx:-nx] = shiftdata[:,n,:,j] #Calculate kernel #gk = smoothing.gauss_kernel_mask2((ny,nx), (sy,sx), (m,i), shiftmask[:,n,:,j]) #shiftdata[m,n,i,j] = np.sum(gk * newim[m:m+2*ny+1, i:i+2*nx+1]) k += 1 else: # Multiple CPUs pool = mp.Pool(ev.ncpu) for m,n,i,j in wherebad: res = pool.apply_async(hst.replacePixels, args=(shiftdata[:,n,:,j], shiftmask[:,n,:,j], m, n, i, j, k, ktot, ny, nx, sy, sx), callback=writeReplacePixels) k += 1 pool.close() pool.join() res.wait() print(" Done.") """ if isplots >= 3: for m in range(ev.n_files): for n in range(ev.n_reads-1): plt.figure(1010) plt.clf() plt.suptitle(str(m) + "," + str(n)) plt.subplot(211) plt.imshow(shiftdata[m,n]*shiftmask[m,n], origin='lower', aspect='auto', vmin=0, vmax=500) plt.subplot(212) #plt.imshow(submask[i], origin='lower', aspect='auto', vmax=1) mean = np.median(shiftbg[m,n]) std = np.std(shiftbg[m,n]) plt.imshow(shiftbg[m,n], origin='lower', aspect='auto',vmin=mean-3*std,vmax=mean+3*std) plt.savefig(ev.eventdir+'/figs/fig1010-'+str(m)+'-'+str(n)+'-Image+Background.png') #plt.pause(0.1) """ apdata = np.zeros((ev.n_files,ev.n_reads-1,ev.spec_width*2,subnx)) apmask = np.zeros((ev.n_files,ev.n_reads-1,ev.spec_width*2,subnx)) apvar = np.zeros((ev.n_files,ev.n_reads-1,ev.spec_width*2,subnx)) apbg = np.zeros((ev.n_files,ev.n_reads-1,ev.spec_width*2,subnx)) for n in range(ev.n_reads-1): y1 = guess[ev.iref,n] - ev.spec_width y2 = guess[ev.iref,n] + ev.spec_width apdata[:,n] = shiftdata[:,n,y1:y2] apmask[:,n] = shiftmask[:,n,y1:y2] apvar [:,n] = shiftvar [:,n,y1:y2] apbg [:,n] = shiftbg [:,n,y1:y2] """ print("Performing sub-pixel drift correction...") istart = 0 #corrdata = np.zeros(diffdata.shape) #corrmask = np.zeros(diffdata.shape) # Select aperture data apdata =
np.zeros((ev.n_files,ev.n_reads-1,ev.spec_width*2,subnx))
numpy.zeros
from math import sqrt from numba import njit import numpy as np import flare.kernels.cutoffs as cf from flare.kernels.kernels import coordination_number, q_value_mc @njit def get_2_body_arrays( positions, atom: int, cell, r_cut, cutoff_2, species, sweep, nspecie, species_mask, twobody_mask, ): """Returns distances, coordinates, species of atoms, and indices of neighbors in the 2-body local environment. This method is implemented outside the AtomicEnvironment class to allow for njit acceleration with Numba. :param positions: Positions of atoms in the structure. :type positions: np.ndarray :param atom: Index of the central atom of the local environment. :type atom: int :param cell: 3x3 array whose rows are the Bravais lattice vectors of the cell. :type cell: np.ndarray :param cutoff_2: 2-body cutoff radius. :type cutoff_2: np.ndarray :param species: Numpy array of species represented by their atomic numbers. :type species: np.ndarray :param nspecie: number of atom types to define bonds :type: int :param species_mask: mapping from atomic number to atom types :type: np.ndarray :param twobody_mask: mapping from the types of end atoms to bond types :type: np.ndarray :return: Tuple of arrays describing pairs of atoms in the 2-body local environment. bond_array_2: Array containing the distances and relative coordinates of atoms in the 2-body local environment. First column contains distances, remaining columns contain Cartesian coordinates divided by the distance (with the origin defined as the position of the central atom). The rows are sorted by distance from the central atom. bond_positions_2: Coordinates of atoms in the 2-body local environment. etypes: Species of atoms in the 2-body local environment represented by their atomic number. bond_indices: Structure indices of atoms in the local environment. :rtype: np.ndarray, np.ndarray, np.ndarray, np.ndarray """ noa = len(positions) pos_atom = positions[atom] super_count = sweep.shape[0] ** 3 coords = np.zeros((noa, 3, super_count), dtype=np.float64) dists = np.zeros((noa, super_count), dtype=np.float64) cutoff_count = 0 vec1 = cell[0] vec2 = cell[1] vec3 = cell[2] sepcut = False bcn = 0 if nspecie > 1 and cutoff_2 is not None: sepcut = True bc = species_mask[species[atom]] bcn = nspecie * bc # record distances and positions of images for n in range(noa): diff_curr = positions[n] - pos_atom im_count = 0 if sepcut and (species_mask is not None) and (cutoff_2 is not None): bn = species_mask[species[n]] r_cut = cutoff_2[twobody_mask[bn + bcn]] for s1 in sweep: for s2 in sweep: for s3 in sweep: im = diff_curr + s1 * vec1 + s2 * vec2 + s3 * vec3 dist = sqrt(im[0] * im[0] + im[1] * im[1] + im[2] * im[2]) if (dist < r_cut) and (dist != 0): dists[n, im_count] = dist coords[n, :, im_count] = im cutoff_count += 1 im_count += 1 # create 2-body bond array bond_indices = np.zeros(cutoff_count, dtype=np.int8) bond_array_2 = np.zeros((cutoff_count, 4), dtype=np.float64) bond_positions_2 = np.zeros((cutoff_count, 3), dtype=np.float64) etypes = np.zeros(cutoff_count, dtype=np.int8) bond_count = 0 for m in range(noa): spec_curr = species[m] if sepcut and (species_mask is not None) and (cutoff_2 is not None): bm = species_mask[species[m]] r_cut = cutoff_2[twobody_mask[bm + bcn]] for im_count in range(super_count): dist_curr = dists[m, im_count] if (dist_curr < r_cut) and (dist_curr != 0): coord = coords[m, :, im_count] bond_array_2[bond_count, 0] = dist_curr bond_array_2[bond_count, 1:4] = coord / dist_curr bond_positions_2[bond_count, :] = coord etypes[bond_count] = spec_curr bond_indices[bond_count] = m bond_count += 1 # sort by distance sort_inds = bond_array_2[:, 0].argsort() bond_array_2 = bond_array_2[sort_inds] bond_positions_2 = bond_positions_2[sort_inds] bond_indices = bond_indices[sort_inds] etypes = etypes[sort_inds] return bond_array_2, bond_positions_2, etypes, bond_indices @njit def get_3_body_arrays( bond_array_2, bond_positions_2, ctype, etypes, r_cut, cutoff_3, nspecie, species_mask, cut3b_mask, ): """Returns distances and coordinates of triplets of atoms in the 3-body local environment. :param bond_array_2: 2-body bond array. :type bond_array_2: np.ndarray :param bond_positions_2: Coordinates of atoms in the 2-body local environment. :type bond_positions_2: np.ndarray :param ctype: atomic number of the center atom :type: int :param cutoff_3: 3-body cutoff radius. :type cutoff_3: np.ndarray :param nspecie: number of atom types to define bonds :type: int :param species_mask: mapping from atomic number to atom types :type: np.ndarray :param cut3b_mask: mapping from the types of end atoms to bond types :type: np.ndarray :return: Tuple of 4 arrays describing triplets of atoms in the 3-body local environment. bond_array_3: Array containing the distances and relative coordinates of atoms in the 3-body local environment. First column contains distances, remaining columns contain Cartesian coordinates divided by the distance (with the origin defined as the position of the central atom). The rows are sorted by distance from the central atom. cross_bond_inds: Two dimensional array whose row m contains the indices of atoms n > m that are within a distance cutoff_3 of both atom n and the central atom. cross_bond_dists: Two dimensional array whose row m contains the distances from atom m of atoms n > m that are within a distance cutoff_3 of both atom n and the central atom. triplet_counts: One dimensional array of integers whose entry m is the number of atoms that are within a distance cutoff_3 of atom m. :rtype: (np.ndarray, np.ndarray, np.ndarray, np.ndarray) """ sepcut = False if nspecie > 1 and cutoff_3 is not None: bc = species_mask[ctype] bcn = nspecie * bc r_cut = np.max(cutoff_3) sepcut = True # get 3-body bond array ind_3_l = np.where(bond_array_2[:, 0] > r_cut)[0] if ind_3_l.shape[0] > 0: ind_3 = ind_3_l[0] else: ind_3 = bond_array_2.shape[0] bond_array_3 = bond_array_2[0:ind_3, :] bond_positions_3 = bond_positions_2[0:ind_3, :] cut_m = r_cut cut_n = r_cut cut_mn = r_cut # get cross bond array cross_bond_inds = np.zeros((ind_3, ind_3), dtype=np.int8) - 1 cross_bond_dists = np.zeros((ind_3, ind_3), dtype=np.float64) triplet_counts =
np.zeros(ind_3, dtype=np.int8)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 18 11:59:13 2019 @author: matthew """ #%% def fastica_MEG(X, n_comp=None, algorithm="parallel", whiten=True, fun="logcosh", fun_prime='', fun_args={}, maxit=200, tol=1e-04, w_init=None, verbose = True): """Perform Fast Independent Component Analysis. Parameters ---------- X : (p, n) array Array with n observations (statistical units) measured on p variables. n_comp : int, optional Number of components to extract. If None no dimension reduction is performed. algorithm : {'parallel','deflation'} Apply an parallel or deflational FASTICA algorithm. whiten: boolean, optional If true perform an initial whitening of the data. Do not set to false unless the data is already white, as you will get incorrect results. If whiten is true, the data is assumed to have already been preprocessed: it should be centered, normed and white. fun : String or Function The functional form of the G function used in the approximation to neg-entropy. Could be either 'logcosh', 'exp', or 'cube'. You can also provide your own function but in this case, its derivative should be provided via argument fun_prime fun_prime : Empty string ('') or Function See fun. fun_args : Optional dictionnary If empty and if fun='logcosh', fun_args will take value {'alpha' : 1.0} maxit : int Maximum number of iterations to perform tol : float A positive scalar giving the tolerance at which the un-mixing matrix is considered to have converged w_init : (n_comp,n_comp) array Initial un-mixing array of dimension (n.comp,n.comp). If None (default) then an array of normal r.v.'s is used Results ------- K : (n_comp, p) array pre-whitening matrix that projects data onto th first n.comp principal components. Returned only if whiten is True W : (n_comp, n_comp) array estimated un-mixing matrix The mixing matrix can be obtained by:: w = np.asmatrix(W) * K.T A = w.T * (w * w.T).I S : (n_comp, n) array estimated source matrix Notes ----- The data matrix X is considered to be a linear combination of non-Gaussian (independent) components i.e. X = SA where columns of S contain the independent components and A is a linear mixing matrix. In short ICA attempts to `un-mix' the data by estimating an un-mixing matrix W where S = W K X. Implemented using FastICA: <NAME> and <NAME>, Independent Component Analysis: Algorithms and Applications, Neural Networks, 13(4-5), 2000, pp. 411-430 2017/07/19 | Merged into one function by MEG and included a PCA function for whitening 2017/07/20 | fixed bug when giving the function whitened data 2018/02/22 | Return a boolean flag describing if algorithm converged or not (only works with symetric estimation) """ import numpy as np from scipy import linalg def _ica_def(X, tol, g, gprime, fun_args, maxit, w_init): """Deflationary FastICA using fun approx to neg-entropy function Used internally by FastICA. """ def _gs_decorrelation(w, W, j): """ Gram-Schmidt-like decorrelation. """ t = np.zeros_like(w) for u in range(j): t = t + np.dot(w, W[u]) * W[u] w -= t return w n_comp = w_init.shape[0] W = np.zeros((n_comp, n_comp), dtype=float) # j is the index of the extracted component for j in range(n_comp): w = w_init[j, :].copy() w /= np.sqrt((w**2).sum()) n_iterations = 0 # we set lim to tol+1 to be sure to enter at least once in next while lim = tol + 1 while ((lim > tol) & (n_iterations < (maxit-1))): wtx = np.dot(w.T, X) gwtx = g(wtx, fun_args) g_wtx = gprime(wtx, fun_args) w1 = (X * gwtx).mean(axis=1) - g_wtx.mean() * w _gs_decorrelation(w1, W, j) w1 /= np.sqrt((w1**2).sum()) lim = np.abs(np.abs((w1 * w).sum()) - 1) w = w1 n_iterations = n_iterations + 1 W[j, :] = w return W # XXXX for deflation, a converged term isn't returned def _ica_par(X, tol, g, gprime, fun_args, maxit, w_init): """Parallel FastICA. Used internally by FastICA. 2017/05/10 | edit to? """ def _sym_decorrelation(W): """ Symmetric decorrelation """ K = W @ W.T s, u = linalg.eigh(K) # u (resp. s) contains the eigenvectors (resp. square roots of # the eigenvalues) of W * W.T u, W = [np.asmatrix(e) for e in (u, W)] W = (u * np.diag(1.0/np.sqrt(s)) * u.T) * W # W = (W * W.T) ^{-1/2} * W return np.asarray(W) n, p = X.shape W = _sym_decorrelation(w_init) # we set lim to tol+1 to be sure to enter at least once in next while lim = tol + 1 it = 0 hist_lim = np.zeros((1, maxit)) #initiate array for history of change of W hist_W =
np.zeros((w_init.size, maxit))
numpy.zeros
# -*- coding: utf-8 -*- """Classes for elastic backscatter calculation""" from ELDAmwl.bases.factory import BaseOperation from ELDAmwl.bases.factory import BaseOperationFactory from ELDAmwl.component.registry import registry from ELDAmwl.errors.exceptions import NoValidDataPointsForCalibration from ELDAmwl.rayleigh import RayleighLidarRatio from ELDAmwl.utils.constants import NC_FILL_INT from ELDAmwl.utils.numerical import closest_bin from ELDAmwl.utils.numerical import integral_profile import numpy as np import xarray as xr class CalcBscProfileKF(BaseOperation): """ calculates elast backscatter profile with Klett-Fernald method uses equations and symbols from Althausen et al. JOTECH 2000 (https://journals.ametsoc.org/view/journals/atot/17/11/1520-0426_2000_017_1469_swcal_2_0_co_2.xml) """ name = 'CalcBscProfileKF' elast_sig = None rayl_scat = None range_axis = None error_params = None calibration = None def run(self, **kwargs): """calculates elast backscatter profile with Klett-Fernald method Keyword Args: elast_sig (xarray.DataSet): already smoothed elastic signal with \ variables 'data', 'error', 'qf', 'altitude', 'binres', 'mol_extinction', 'mol_bckscatter', 'assumed_particle_lidar_ratio' range_axis (xarray.DataArray): range axis of the elast_signal with variable 'data' error_params (addict.Dict): with keys 'lowrange' and 'highrange' = maximum allowable relative statistical error calibration (addict.Dict): with keys 'cal_first_lev', 'cal_last_lev', and 'calibr_value'. calibr_value is the assumed backscatter ratio at calibration level Returns: bsc (xarray.DataSet) with variables 'data' (particle backscatter coefficient), 'error' (the uncertainty contains only the uncertainty of the calibration, not the uncertainty of signal noise nor uncertainty of lidar ratio estimation), 'qf' (same as in elast_sig), 'binres' (same as in elast_sig), 'calibration_bin' (altitude bin where the KF integration starts. backward integration below, forward integration above) """ assert 'elast_sig' in kwargs assert 'error_params' in kwargs assert 'calibration' in kwargs # prepare elast_sig = kwargs['elast_sig'] calibration = kwargs['calibration'] error_params = kwargs['error_params'] rayl_lr = RayleighLidarRatio()(wavelength=elast_sig.emission_wavelength).run() rayl_bsc = elast_sig.mol_backscatter if 'range_axis' in kwargs: range_axis = kwargs['range_axis'] else: range_axis = elast_sig.altitude num_times = elast_sig.dims['time'] # calculate difference profile between particle and Rayleigh lidar ratio lidar_ratio = elast_sig.assumed_particle_lidar_ratio lr_diff = lidar_ratio - rayl_lr # prepare empty arrays calibr_factor = np.ones(num_times) * np.nan calibr_bin = np.ones(num_times, dtype=int) * NC_FILL_INT calibr_factor_err = np.ones(num_times) * np.nan # sqr_rel_calibr_err = np.ones(times) * np.nan M = np.full(rayl_bsc.shape, np.nan) A = np.full(rayl_bsc.shape, np.nan) A_int = np.full(rayl_bsc.shape, np.nan) B = np.full(rayl_bsc.shape, np.nan) B_err = np.full(rayl_bsc.shape, np.nan) # 1) calculate calibration factor for t in range(num_times): # convert elast_sig.ds (xr.Dataset) into pd.Dataframe for easier selection of calibration window df_sig = elast_sig.data.isel( {'level': range(calibration['cal_first_lev'][t], calibration['cal_last_lev'][t] + 1), 'time': t})\ .to_dataframe() mean_sig = df_sig.data.mean() sem_sig = df_sig.data.sem() rel_sem_sig = sem_sig / mean_sig df_rayl = rayl_bsc.isel({'level': range(calibration['cal_first_lev'][t], calibration['cal_last_lev'][t] + 1), 'time': t})\ .to_dataframe() mean_rayl_bsc = df_rayl.mol_backscatter.mean() # assume that rayleigh backscatter has no uncertainty if rel_sem_sig > error_params.err_threshold.highrange: self.logger.error('relative error of signal in calibration window is larger than error threshold') raise NoValidDataPointsForCalibration else: calibr_factor[t] = mean_sig / mean_rayl_bsc / calibration.calibr_value.value calibr_factor_err[t] = calibr_factor[t] * \ np.sqrt(np.square(rel_sem_sig) + np.square(calibration.calibr_value.rel_error)) # 2) find signal bin which has the value closest to the mean of the calibration window calibr_bin[t] = closest_bin( elast_sig.data[t].values, elast_sig.err[t].values, first_bin=calibration['cal_first_lev'][t], last_bin=calibration['cal_last_lev'][t], search_value=mean_sig) if calibr_bin[t] is None: self.logger.error('cannot find altitude bin close enough to mean signal within calibration window') raise NoValidDataPointsForCalibration # 3) calculate M, A, A_int, B, and B_err M[t, calibr_bin[t]:] = integral_profile(rayl_bsc[t].values, range_axis=range_axis[t].values, first_bin=calibr_bin[t]) M[t, :calibr_bin[t] + 1] = integral_profile(rayl_bsc[t].values, range_axis=range_axis[t].values, first_bin=calibr_bin[t], last_bin=0) M[t, calibr_bin[t]] = 0 A[t] = elast_sig.data[t] *
np.exp(-2 * lr_diff[t] * M[t])
numpy.exp
# -*- coding: utf-8 -*- import copy import os import numpy as np from scipy import misc from skimage.transform import resize from scipy import ndimage ################################################################################ # # Utility functions for performing object localization. # ################################################################################ def prepareCAM(snet): ''' Prepares the network for generating Class Activation Mappings ''' # Adds the output for heatmap generation snet.getStage(1).model.add_output(name='GAP/conv', input='CAM_conv/relu') snet.getStage(1).setOptimizer() # Get weights (position 0 -> no food, positions 1 -> food) W = snet.getStage(1).model.get_weights()[-2] b = snet.getStage(1).model.get_weights()[-1] # recover bias although it will not be used return W def loadImagesDataset(ds, init, final, load_original=True): ''' Loads a list of images and their pre-processed representations "X" ready for applying a forward pass. The images loaded are stored in the Dataset object "test" division. ''' X = ds.getX('test', init, final, normalization=False, meanSubstraction=True, dataAugmentation=False) if (load_original): images = np.transpose( ds.getX('test', init, final, normalization=False, meanSubstraction=False, dataAugmentation=False), (0, 2, 3, 1)) images_ = copy.copy(images) images[:, :, :, 0] = images_[:, :, :, 2] images[:, :, :, 2] = images_[:, :, :, 0] return [images, X] return X def loadImagesExternal(ds, list_imgs, load_original=True): ''' Loads a list of images and their pre-processed representations "X" ready for applying a forward pass. The images loaded are external to the Dataset object. ''' X = ds.loadImages(list_imgs, False, True, False, external=True) if (load_original): images = np.transpose(ds.loadImages(list_imgs, False, False, False, external=True), (0, 2, 3, 1)) images_ = copy.copy(images) images[:, :, :, 0] = images_[:, :, :, 2] images[:, :, :, 2] = images_[:, :, :, 0] return [images, X] return X def applyForwardPass(snet, X): ''' Applies a forward pass through the GAP network on the pre-processed "X" images. ''' # Apply forward pass # X = snet.forwardUntilStage(X,1)['inception_4e'] X = snet.forwardUntilStage(X, 1)[snet._Staged_Network__inNames[1]] predictions = np.argmax(snet.getStage(1).predictOnBatch(X, out_name='GAP/softmax'), axis=1) X = snet.getStage(1).predictOnBatch(X, out_name='GAP/conv') return [X, predictions] # def computeCAM(snet, X, W, reshape_size=[256, 256]): # ''' # Applies a forward pass of the pre-processed samples "X" in the GAP net "snet" and generates the resulting # CAM "maps" using the GAP weights "W" with the defined size "reshape_size". # ''' # # # Apply forward pass in GAP model # [X, predictions] = applyForwardPass(snet, X) # # # Compute heatmaps (CAMs) for each class [n_samples, n_classes, height, width] # maps = np.zeros((X.shape[0], W.shape[1], reshape_size[0], reshape_size[1])) # for s in range(X.shape[0]): # weighted_activation = np.dot(np.transpose(W), np.reshape(X[s], (W.shape[0], X.shape[2]*X.shape[3]))) # map = np.reshape(weighted_activation, (W.shape[1], X.shape[2], X.shape[3])) # maps[s] = resize(map, tuple([W.shape[1]]+reshape_size), order=1, preserve_range=True) # # return [maps, predictions] def computeCAM(snet, X, W, reshape_size=[256, 256], n_top_convs=20): ''' Applies a forward pass of the pre-processed samples "X" in the GAP net "snet" and generates the resulting CAM "maps" using the GAP weights "W" with the defined size "reshape_size". Additionally, it returns the best "n_top_convs" convolutional features for each of the classes. The ranking is computed considering the weight Wi assigned to the i-th feature map. ''' # Apply forward pass in GAP model [X, predictions] = applyForwardPass(snet, X) # Get indices of best convolutional features for each class ind_best = np.zeros((W.shape[1], n_top_convs)) for c in range(W.shape[1]): ind_best[c, :] = np.argsort(W[:, c])[::-1][:n_top_convs] # Compute heatmaps (CAMs) for each class [n_samples, n_classes, height, width] maps = np.zeros((X.shape[0], W.shape[1], reshape_size[0], reshape_size[1])) # Store top convolutional features convs = np.zeros((X.shape[0], W.shape[1], n_top_convs, reshape_size[0], reshape_size[1])) for s in range(X.shape[0]): weighted_activation = np.dot(np.transpose(W), np.reshape(X[s], (W.shape[0], X.shape[2] * X.shape[3]))) map = np.reshape(weighted_activation, (W.shape[1], X.shape[2], X.shape[3])) maps[s] = resize(map, tuple([W.shape[1]] + reshape_size), order=1, preserve_range=True) for c in range(W.shape[1]): for enum_conv, i_conv in enumerate(ind_best[c]): convs[s, c, enum_conv] = resize(X[s, i_conv], reshape_size, order=1, preserve_range=True) return [maps, predictions, convs] # def getBestConvFeatures(snet, X, W, reshape_size=[256, 256], n_top_convs=20): # ''' # Returns the best "n_top_convs" convolutional features for each of the classes. The ranking is # computed considering the weight Wi assigned to the i-th feature map. # ''' # # Apply forward pass in GAP model # [X, predictions] = applyForwardPass(snet, X) # # # Get indices of best convolutional features for each class # ind_best = np.zeros((W.shape[1], n_top_convs)) # for c in range(W.shape[1]): # ind_best[c,:] = np.argsort(W[:,c])[::-1][:20] # # # Store top convolutional features # convs = np.zeros((X.shape[0], W.shape[1], n_top_convs, reshape_size[0], reshape_size[1])) # for s in range(X.shape[0]): # for c in range(W.shape[1]): # for enum_conv, i_conv in enumerate(ind_best[c]): # convs[s,c,enum_conv] = resize(X[s,i_conv], reshape_size, order=1, preserve_range=True) # # return convs def bbox(img, mode='width_height'): ''' Returns a bounding box covering all the non-zero area in the image. "mode" : "width_height" returns width in [2] and height in [3], "max" returns xmax in [2] and ymax in [3] ''' rows = np.any(img, axis=1) cols = np.any(img, axis=0) y, ymax = np.where(rows)[0][[0, -1]] x, xmax = np.where(cols)[0][[0, -1]] if (mode == 'width_height'): return x, y, xmax - x, ymax - y elif (mode == 'max'): return x, y, xmax, ymax def computeIoU(GT, pred): ''' Calculates the Intersectino over Union value of two bounding boxes. ''' intersection = max(0, min(GT[2], pred[2]) - max(GT[0], pred[0])) * max(0, min(GT[3], pred[3]) - max(GT[1], pred[1])) gt_area = (GT[2] - GT[0]) * float((GT[3] - GT[1])) pred_area = (pred[2] - pred[0]) * float((pred[3] - pred[1])) union = gt_area + pred_area - intersection return intersection / union def getBBoxesFromCAMs(CAMs, reshape_size=[256, 256], percentage_heat=0.4, size_restriction=0.1, box_expansion=0.2, use_gpu=True): ''' Reference: Bolaños, Marc, and <NAME>. "Simultaneous Food Localization and Recognition." arXiv preprint arXiv:1604.07953 (2016). Description: Extracts a set of bounding boxes from the generated CAMs which contain food instances. This functions should only be called if the current image has been predicted as Food by the GAP FoodvsNon-food detector! Arguments: :param CAMs: list of class activation maps generated by the CAM network :param reshape_size: reshape proportions used for transorming the CAM for extracting bounding boxes :param percentage_heat: minimum percentage allowed for considering a detection (aka 't' in reference paper) :param size_restriction: remove all regions covering less than a certain percentage size of the original image (aka 's' in reference paper) :param box_expansion: expand the bounding boxes by a certain percentage (aka 'e' in reference paper) :param use_gpu: boolean indicating if we want to use the GPU for applying NMS :return: [predicted_bboxes, predicted_scores], containing a list of bboxes coordinates on the first position and a list of their corresponding scores on the second position ''' try: from nms.gpu_nms import gpu_nms from nms.cpu_nms import cpu_nms except: raise Exception( "Cython is required for running this function:\npip install cython\nRun the following command inside " "kernel_wrapper/extra/nms after its installation:\npython setup.py build_ext --inplace") predicted_bboxes = [] predicted_scores = [] # Get all computed maps (if we are also using convolutional features) all_maps = CAMs for map in all_maps: # map = misc.imread(maps_dir[dataset]+'/'+samples_detection[dataset]['all_ids'][s]+'_CAM.jpg') # CAM only # map = misc.imread(map_path) # CAM and convolutional features new_reshape_size = reshape_size # Resize map to original size map = resize(map, tuple(new_reshape_size), order=1, preserve_range=True) # Detect regions above a certain percentage of the max heat bb_thres = np.max(map) * percentage_heat # Compute binary selected region binary_heat = map binary_heat = np.where(binary_heat > bb_thres, 255, 0) # Get biggest connected component min_size = new_reshape_size[0] * new_reshape_size[1] * size_restriction labeled, nr_objects = ndimage.label(binary_heat) # get connected components [objects, counts] = np.unique(labeled, return_counts=True) # count occurrences biggest_components = np.argsort(counts[1:])[::-1] selected_components = [1 if counts[i + 1] >= min_size else 0 for i in biggest_components] # check minimum size restriction biggest_components = biggest_components[:min([np.sum(selected_components), 9999])] # get all bboxes # Extract each component (which will become a bbox prediction) map = map / 255.0 # normalize map # Get bboxes for selected, comp in zip(selected_components, biggest_components): if (selected): max_heat = np.where(labeled == comp + 1, 255, 0) # get the biggest # Draw bounding box on original image box = list(bbox(max_heat)) # expand box before final detection x_exp = box[2] * box_expansion y_exp = box[3] * box_expansion box[0] = max([0, box[0] - x_exp / 2]) box[1] = max([0, box[1] - y_exp / 2]) # change width and height by xmax and ymax box[2] += box[0] box[3] += box[1] box[2] = min([new_reshape_size[1] - 1, box[2] + x_exp]) box[3] = min([new_reshape_size[0] - 1, box[3] + y_exp]) predicted_bboxes.append(box) # Get score for current bbox score =
np.mean(map[box[1]:box[3], box[0]:box[2]])
numpy.mean
from SciDataTool.Functions import UnitError from SciDataTool.Functions.fft_functions import ( comp_fft_freqs, comp_fft_time, comp_nthoctave_axis, ) from numpy import ( pi, log10, sqrt, square, column_stack, exp, real, imag, cos, sin, ndarray, nan, isnan, abs as np_abs, sum as np_sum, angle as np_angle, where, argwhere, array, take, zeros, floor, ones, ) # List of the unit symbols, their normalizing value and their dimensions "MLTTempAngleCurrent" unit_symbols = [ ("dimless", 1.0, (0, 0, 0, 0, 0, 0)), # dimensionless ("degC", 1.0, (0, 0, 0, 1, 0, 0)), # degree Celsius ("rad", 1.0, (0, 0, 0, 0, 1, 0)), # radians ("°", pi / 180, (0, 0, 0, 0, 1, 0)), # degree (angle) ("rpm", 2 * pi / 60, (0, 0, -1, 0, 1, 0)), # rotation per minute ("min", 60.0, (0, 0, 1, 0, 0, 0)), # minute ("Ohm", 1.0, (1, 2, -3, 0, 0, -2)), # Ohm ("At", 1.0, (0, 0, 0, 0, 0, 1)), # Ampere-tour ("Wb", 1.0, (1, 2, -2, 0, 0, -1)), # Weber ("Mx", 1.0e-8, (1, 2, -2, 0, 0, -1)), # Maxwell ("Hz", 1.0, (0, 0, -1, 0, 0, 0)), # Herz ("Pa", 1.0, (1, -1, -2, 0, 0, 0)), # Pascal ("g", 1.0e-3, (0, 1, 0, 0, 0, 0)), # gram ("s", 1.0, (0, 0, 1, 0, 0, 0)), # second ("h", 3600.0, (0, 0, 1, 0, 0, 0)), # hour # ("K", 1.0, (0,0,0,1,0,0)), # Kelvin ("A", 1.0, (0, 0, 0, 0, 0, 1)), # Ampere ("J", 1.0, (1, 2, -2, 0, 0, 0)), # Joule ("W", 1.0, (1, 2, -3, 0, 0, 0)), # Watt ("N", 1.0, (1, 1, -2, 0, 0, 0)), # Newton ("C", 1.0, (0, 0, 1, 0, 0, 1)), # Coulomb ("T", 1.0, (1, 0, -2, 0, 0, -1)), # Tesla ("G", 1.0e-4, (1, 0, -2, 0, 0, -1)), # Gauss ("V", 1.0, (1, 2, -3, 0, 0, -1)), # Volt ("F", 1.0, (-1, -2, 4, 0, 0, 2)), # Farrad ("H", 1.0, (1, -2, -2, 0, 0, -2)), # Henry ("m", 1.0, (1, 0, 0, 0, 0, 0)), # meter ] # Dictionnary of the prefixes and their values unit_prefixes = { "Y": 1e24, "Z": 1e21, "E": 1e18, "P": 1e15, "T": 1e12, "G": 1e9, "M": 1e6, "k": 1e3, "h": 1e2, "da": 1e1, "": 1.0, "d": 1e-1, "c": 1e-2, "m": 1e-3, "µ": 1e-6, # ('MICRO SIGN' U+00B5) "u": 1e-6, "μ": 1e-6, # ('GREEK SMALL LETTER MU' U+03BC) "n": 1e-9, "p": 1e-12, "f": 1e-15, "a": 1e-18, "z": 1e-21, "y": 1e-24, } def get_dim_prefix(unit_str): if unit_str == "": unit_str = "dimless" p = 1 # power of the unit dim = None for key in unit_symbols: if key[0] in unit_str: if unit_str.rsplit(key[0], 1)[1].isdigit(): p = int(unit_str.rsplit(key[0], 1)[1]) dim = [p * d for d in key[2]] prefix_str = unit_str.rsplit(key[0], 1)[0] if prefix_str in unit_prefixes.keys(): prefix = (unit_prefixes.get(prefix_str) * key[1]) ** p else: raise UnitError("Prefix " + prefix_str + " unknown") break if not dim: raise UnitError("Unit " + unit_str + " unknown") return (dim, prefix) def get_unit_derivate(unit_str, axis_unit): unit_str = unit_str.replace("*", "").replace(" ", "").replace("^", "") if axis_unit == "Hz": axis_unit = "s" if axis_unit == "rad": axis_unit = "m" p = 0 if "/" in unit_str: unit_num = unit_str.split("/")[0] unit_denom = unit_str.split("/")[1] else: unit_num = unit_str unit_denom = "" if axis_unit in unit_num: p = 1 if unit_num.rsplit(axis_unit, 1)[1].isdigit(): p = int(unit_num.rsplit(axis_unit, 1)[1]) p_new = p - 1 # Case axis_unit must be withdrawn if p_new == 0: unit_str = unit_str.replace(axis_unit, "") elif p_new == 1: unit_str = unit_str.replace(axis_unit + str(p), axis_unit) else: unit_str = unit_str.replace(axis_unit + str(p), axis_unit + str(p_new)) elif axis_unit in unit_denom: p = 1 if unit_denom.rsplit(axis_unit, 1)[1].isdigit(): p = int(unit_denom.rsplit(axis_unit, 1)[1]) p_new = p + 1 # Case p was 1 if p_new == 2: unit_str = unit_str.replace(axis_unit, axis_unit + "2") elif p_new == 1: unit_str = unit_str.replace(axis_unit + str(p), axis_unit) else: unit_str = unit_str.replace(axis_unit + str(p), axis_unit + str(p_new)) else: # Case axis_unit was not in unit_str if unit_denom != "": unit_str += axis_unit else: unit_str += "/" + axis_unit return unit_str def get_unit_integrate(unit_str, axis_unit): unit_str = unit_str.replace("*", "").replace(" ", "").replace("^", "") if axis_unit == "Hz": axis_unit = "s" if axis_unit == "rad": axis_unit = "m" p = 0 if "/" in unit_str: unit_num = unit_str.split("/")[0] unit_denom = unit_str.split("/")[1] else: unit_num = unit_str unit_denom = "" if axis_unit in unit_num: p = 1 if unit_num.rsplit(axis_unit, 1)[1].isdigit(): p = int(unit_num.rsplit(axis_unit, 1)[1]) p_new = p + 1 # Case p was 1 if p_new == 2: unit_str = unit_str.replace(axis_unit, axis_unit + "2") elif p_new == 1: unit_str = unit_str.replace(axis_unit + str(p), axis_unit) else: unit_str = unit_str.replace(axis_unit + str(p), axis_unit + str(p_new)) elif axis_unit in unit_denom: p = 1 if unit_denom.rsplit(axis_unit, 1)[1].isdigit(): p = int(unit_denom.rsplit(axis_unit, 1)[1]) p_new = p - 1 # Case axis_unit must be withdrawn if p_new == 0: unit_denom = unit_denom.replace(axis_unit, "") if unit_denom == "": unit_str = unit_num else: unit_str = unit_str.replace(axis_unit, "") elif p_new == 1: unit_str = unit_str.replace(axis_unit + str(p), axis_unit) else: unit_str = unit_str.replace(axis_unit + str(p), axis_unit + str(p_new)) else: # Case axis_unit was not in unit_str if unit_denom != "": unit_str = unit_num + axis_unit + "/" + unit_denom else: unit_str += axis_unit return unit_str def convert(values, unit1, unit2): """Converts values from unit1 to unit2 Parameters ---------- values: ndarray Values of the field to convert unit1: str start unit unit2: str final unit Returns ------- ndarray of the converted field """ # Critical band to frequency conversion (for acoustic loudness) # <NAME>. (1990). "Analytical expressions for the tonotopic sensory scale". # The Journal of the Acoustical Society of America. 88: 97. doi:10.1121/1.399849 if unit1 == "Bark" and unit2 == "Hz": return 1960 * (values + 0.53) / (26.28 - values) elif unit1 == "Hz" and unit2 == "Bark": return (26.81 * values / (1960 + values)) - 0.53 elif unit1 == "dimless" and unit2 == "": return values elif unit1 == "" and unit2 == "dimless": return values # Generic conversion else: unit1_save = unit1 unit2_save = unit2 # Format the strings unit1 = unit1.replace("*", "").replace(" ", "").replace("^", "") unit2 = unit2.replace("*", "").replace(" ", "").replace("^", "") # Unit1 parsing if "/" in unit1: dim1_denom, prefix1_denom = get_dim_prefix(unit1.split("/")[1]) unit1 = unit1.split("/")[0] else: dim1_denom = [0, 0, 0, 0, 0, 0] prefix1_denom = 1.0 dim1_num, prefix1_num = get_dim_prefix(unit1) # Unit2 parsing if "/" in unit2: dim2_denom, prefix2_denom = get_dim_prefix(unit2.split("/")[1]) unit2 = unit2.split("/")[0] else: dim2_denom = [0, 0, 0, 0, 0, 0] prefix2_denom = 1.0 dim2_num, prefix2_num = get_dim_prefix(unit2) # Check compatibility dim1 = [i - j for i, j in zip(dim1_num, dim1_denom)] dim2 = [i - j for i, j in zip(dim2_num, dim2_denom)] if dim1 != dim2: raise UnitError( "Units " + unit1_save + " and " + unit2_save + " do not match" ) else: return ( values * (prefix1_num / prefix1_denom) / (prefix2_num / prefix2_denom) ) def to_dB(values, unit, ref_value=1.0): """Converts values into dB normalized with ref_value Parameters ---------- values: ndarray Values of the field to convert unit: str Unit ref_value: float Reference value Returns ------- ndarray of the converted field """ if ref_value != 1: if isinstance(values, ndarray): values[values < ref_value] = ref_value else: if values < ref_value: values = ref_value mask = values != 0 try: convert(values, unit, "W") values_dB = 10.0 * where(mask,
log10(values / ref_value, where=mask)
numpy.log10
from keras.utils import np_utils from keras.datasets import mnist import numpy as np def load_mnist(digits = None, conv = False): # Get MNIST test data #X_train, Y_train, X_test, Y_test = data_mnist() (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(60000, 784) X_test = X_test.reshape(10000, 784) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255. X_test /= 255. # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, 10) Y_test = np_utils.to_categorical(y_test, 10) # collect the corresponding digits if digits is not None: ind_train = [] ind_test = [] for i in digits: ind_train = ind_train + list(np.where(Y_train[:, i] == 1)[0]) ind_test = ind_test + list(
np.where(Y_test[:, i] == 1)
numpy.where
#!/usr/bin/python #-*- coding:utf-8 -*- import sys import struct import numpy as np from torch import tensor from torch.nn import functional as fn def convolution3d_f32(): para = [] # init the input data and parameters batch = int(np.random.randint(1, high=4, size=1)) in_channel = int(np.random.randint(2, high=8, size=1)) in_depth = int(np.random.randint(16, high=128, size=1)) in_height = int(np.random.randint(16, high=128, size=1)) in_width = int(np.random.randint(16, high=128, size=1)) out_channel = int(np.random.randint(8, high=16, size=1)) stride_d = int(np.random.randint(1, high=5, size=1)) stride_h = int(np.random.randint(1, high=5, size=1)) stride_w = int(np.random.randint(1, high=5, size=1)) kernel_d = int(np.random.randint(stride_d, high=8, size=1)) kernel_h = int(
np.random.randint(stride_h, high=8, size=1)
numpy.random.randint
import numpy as np import keras import tensorflow as tf from matplotlib import pyplot as plt import pandas as pd from keras.layers.embeddings import Embedding from keras.layers import concatenate, Lambda import os, sys from weather_model import Seq2Seq_MVE_subnets_swish, weather_conv1D, CausalCNN, RNN_builder, Seq2Seq, Seq2Seq_MVE, Seq2Seq_MVE_subnets from keras.models import load_model, model_from_json #from utils import random_sine, plot_prediction #learning_rate = 0.01 #decay = 0 # Learning rate decay model_save_path = '../models/' #loss = "mse" # Other loss functions are possible, see Keras documentation. # Regularisation isn't really needed for this application #lambda_regulariser = None #0.000001 # Will not be used if regulariser is None #regulariser = None # Possible regulariser: keras.regularizers.l2(lambda_regulariser) #steps_per_epoch = 200 # batch_size * steps_per_epoch = total number of training examples #num_signals = 2 # The number of random sine waves the compose the signal. The more sine waves, the harder the problem. def crop(dimension, start, end): # Crops (or slices) a Tensor on a given dimension from start to end # example : to crop tensor x[:, :, 5:10] # call slice(2, 5, 10) as you want to crop on the second dimension def func(x): if dimension == 0: return x[start: end] if dimension == 1: return x[:, start: end] if dimension == 2: return x[:, :, start: end] if dimension == 3: return x[:, :, :, start: end] if dimension == 4: return x[:, :, :, :, start: end] return Lambda(func) class WeatherConv1D: def __init__(self, regulariser=None, lr=0.001, decay=0, loss="mse", layers=[35, 35], batch_size=256, input_len=37, input_features=29, strides_len=3, kernel_size=5): self.regulariser = regulariser self.layers = layers self.lr = lr self.decay = decay self.loss = loss self.pred_result = None self.batch_size = batch_size self.input_len = input_len self.input_features = input_features self.kernel_strides = strides_len self.kernel_size = kernel_size print('Initialized!') def build_graph(self): keras.backend.clear_session() # clear session/graph self.model = weather_conv1D(self.layers, self.lr, self.decay, self.loss, self.input_len, self.input_features, self.kernel_strides, self.kernel_size) print(self.model.summary()) def sample_batch(self, data_inputs, ground_truth, ruitu_inputs, batch_size, certain_id=None, certain_feature=None): max_i, _, max_j, _ = data_inputs.shape # Example: (1148, 37, 10, 9)-(sample_ind, timestep, sta_id, features) if certain_id == None and certain_feature == None: id_ = np.random.randint(max_j, size=batch_size) i = np.random.randint(max_i, size=batch_size) batch_ouputs = ground_truth[i,:,id_,:] batch_ruitu = ruitu_inputs[i,:,id_,:] elif certain_id != None: pass return batch_ruitu, batch_ouputs def order_batch(self, data_inputs, ground_truth, ruitu_inputs, batch_size, certain_id=None, certain_feature=None): pass #TODO: def fit(self, train_input_ruitu, train_labels, val_input_ruitu, val_labels, batch_size, iterations=300, validation=True): self.optimizer = keras.optimizers.Adam(lr=self.lr, decay=self.decay) self.model.compile(optimizer = self.optimizer, loss=self.loss) print('Train batch size: {}'.format(batch_size)) print('Validation on data size of {};'.format(val_input_ruitu.shape[0])) for i in range(iterations): batch_ruitu, batch_labels = self.sample_batch(train_input_ruitu, train_labels, train_input_ruitu, batch_size=batch_size) loss_ = self.model.train_on_batch(x=[batch_ruitu], y=[batch_labels]) if (i+1)%50 == 0: print('Iteration:{}/{}. Training batch loss:{}'. format(i+1, iterations, loss_)) if validation : self.evaluate(val_input_ruitu, val_labels, each_station_display=False) print('###'*10) print('Train finish! Total validation loss:') self.evaluate(val_input_ruitu, val_labels, each_station_display=True) def evaluate(self, data_input_ruitu, data_labels, each_station_display=False): all_loss=[] for i in range(10): # iterate for each station. (sample_ind, timestep, staionID, features) val_loss= self.model.evaluate(x=[data_input_ruitu[:,:,i,:]], y=[data_labels[:,:,i,:]], verbose=False) all_loss.append(val_loss) if each_station_display: print('\tFor station 9000{}, evaluated loss: {}'.format(i+1, val_loss)) print('Mean evaluated loss on all stations:', np.mean(all_loss)) #return np.mean(all_loss) def predict(self, batch_ruitu): pred_result_list = [] for i in range(10): #print('Predict for station: 9000{}'.format(i+1)) result = self.model.predict(x=[batch_ruitu[:,:,i,:]]) result = np.squeeze(result, axis=0) #all_pred[i] = result pred_result_list.append(result) #pass pred_result = np.stack(pred_result_list, axis=0) #return all_pred, pred_result print('Predict shape (10,37,3) means (stationID, timestep, features). Features include: t2m, rh2m and w10m') self.pred_result = pred_result return pred_result def renorm_for_submit(self, pred_mean, pred_var): if self.pred_result is None: print('You must run self.predict(batch_inputs, batch_ruitu) firstly!!') else: df_empty = pd.DataFrame(columns=['FORE_data', 't2m', 'rh2m', 'w10m']) target_list=['t2m','rh2m','w10m'] self.obs_range_dic={'t2m':[-30,42], # Official value: [-20,42] 'rh2m':[0.0,100.0], 'w10m':[0.0, 30.0]} for j, target_v in enumerate(self.target_list): series_ids = pd.Series() series_targets = pd.Series() renorm_value = renorm(self.pred_result[:,:,j], self.obs_range_dic[target_v][0], self.obs_range_dic[target_v][1]) for i in range(10): if i != 9: id_num = '0'+str(i+1) else: id_num = str(10) sta_name_time = '900'+id_num+'_' time_str_list=[] for t in range(37): if t < 10: time_str= sta_name_time + '0'+ str(t) else: time_str = sta_name_time + str(t) time_str_list.append(time_str) series_id = pd.Series(time_str_list) series_target = pd.Series(renorm_value[i]) series_ids = pd.concat([series_ids, series_id]) series_targets = pd.concat([series_targets, series_target]) df_empty['FORE_data'] = series_ids df_empty[target_v] = series_targets return df_empty class CausalCNN_Class(WeatherConv1D): def __init__(self, regulariser,lr, decay, loss, n_filters, strides_len, kernel_size, seq_len, input_features, output_features, dilation_rates): self.regulariser=regulariser self.n_filters=n_filters self.lr=lr self.decay=decay self.loss=loss self.seq_len=seq_len self.input_features=input_features self.output_features = output_features self.strides_len=strides_len self.kernel_size=kernel_size self.dilation_rates=dilation_rates def build_graph(self): keras.backend.clear_session() # clear session/graph self.model = CausalCNN(self.n_filters, self.lr, self.decay, self.loss, self.seq_len, self.input_features, self.strides_len, self.kernel_size, self.dilation_rates) print(self.model.summary()) class FNN(WeatherConv1D): def __init__(self, regulariser,lr, decay, loss, layers, batch_size, seq_len, input_features, output_features): self.regulariser=regulariser self.layers=layers self.lr=lr self.decay=decay self.loss=loss self.seq_len=seq_len self.input_features=input_features self.output_features = output_features def build_graph(self): keras.backend.clear_session() # clear session/graph self.model = weather_fnn(self.layers, self.lr, self.decay, self.loss, self.seq_len, self.input_features, self.output_features) print(self.model.summary()) class Enc_Dec: def __init__(self, num_input_features, num_output_features, num_decoder_features, input_sequence_length, target_sequence_length, num_steps_to_predict, regulariser = None, lr=0.001, decay=0, loss = "mse", layers=[35, 35]): self.num_input_features = num_input_features self.num_output_features = num_output_features self.num_decoder_features = num_decoder_features self.input_sequence_length = input_sequence_length self.target_sequence_length = target_sequence_length self.num_steps_to_predict = num_steps_to_predict self.regulariser = regulariser self.layers = layers self.lr = lr self.decay = decay self.loss = loss self.pred_result = None self.train_loss=[] self.target_list=['t2m','rh2m','w10m'] self.obs_range_dic={'t2m':[-30,42], # Official value: [-20,42] 'rh2m':[0.0,100.0], 'w10m':[0.0, 30.0]} print('Initialized!') def build_graph(self): keras.backend.clear_session() # clear session/graph self.optimiser = keras.optimizers.Adam(lr=self.lr, decay=self.decay) # Define an input sequence. encoder_inputs = keras.layers.Input(shape=(None, self.num_input_features), name='encoder_inputs') # Create a list of RNN Cells, these are then concatenated into a single layer # with the RNN layer. encoder_cells = [] for hidden_neurons in self.layers: encoder_cells.append(keras.layers.GRUCell(hidden_neurons, kernel_regularizer = self.regulariser, recurrent_regularizer = self.regulariser, bias_regularizer = self.regulariser)) encoder = keras.layers.RNN(encoder_cells, return_state=True) encoder_outputs_and_states = encoder(encoder_inputs) # Discard encoder outputs and only keep the states. encoder_states = encoder_outputs_and_states[1:] # Define a decoder sequence. decoder_inputs = keras.layers.Input(shape=(None, self.num_decoder_features), name='decoder_inputs') decoder_cells = [] for hidden_neurons in self.layers: decoder_cells.append(keras.layers.GRUCell(hidden_neurons, kernel_regularizer = self.regulariser, recurrent_regularizer = self.regulariser, bias_regularizer = self.regulariser)) decoder = keras.layers.RNN(decoder_cells, return_sequences=True, return_state=True) # Set the initial state of the decoder to be the ouput state of the encoder. decoder_outputs_and_states = decoder(decoder_inputs, initial_state=encoder_states) # Only select the output of the decoder (not the states) decoder_outputs = decoder_outputs_and_states[0] # Apply a dense layer with linear activation to set output to correct dimension # and scale (tanh is default activation for GRU in Keras, our output sine function can be larger then 1) decoder_dense1 = keras.layers.Dense(units=64, activation='tanh', kernel_regularizer = self.regulariser, bias_regularizer = self.regulariser, name='dense_tanh') output_dense = keras.layers.Dense(self.num_output_features, activation='sigmoid', kernel_regularizer = self.regulariser, bias_regularizer = self.regulariser, name='output_sig') #densen1=decoder_dense1(decoder_outputs) decoder_outputs = output_dense(decoder_outputs) # Create a model using the functional API provided by Keras. self.model = keras.models.Model(inputs=[encoder_inputs, decoder_inputs], outputs=decoder_outputs) print(self.model.summary()) def sample_batch(self, data_inputs, ground_truth, ruitu_inputs, batch_size, certain_id=None, certain_feature=None): max_i, _, max_j, _ = data_inputs.shape # Example: (1148, 37, 10, 9)-(sample_ind, timestep, sta_id, features) if certain_id == None and certain_feature == None: id_ = np.random.randint(max_j, size=batch_size) i = np.random.randint(max_i, size=batch_size) batch_inputs = data_inputs[i,:,id_,:] batch_ouputs = ground_truth[i,:,id_,:] batch_ruitu = ruitu_inputs[i,:,id_,:] elif certain_id != None: pass return batch_inputs, batch_ruitu, batch_ouputs def fit(self, train_input_obs, train_input_ruitu, train_labels, val_input_obs, val_input_ruitu, val_labels, batch_size, iterations=300, validation=True): self.model.compile(optimizer = self.optimiser, loss=self.loss) print('Train batch size: {}'.format(batch_size)) print('Validation on data size of {};'.format(val_input_obs.shape[0])) for i in range(iterations): batch_inputs, batch_ruitu, batch_labels = self.sample_batch(train_input_obs, train_labels, train_input_ruitu, batch_size=batch_size) loss_ = self.model.train_on_batch(x=[batch_inputs, batch_ruitu], y=[batch_labels]) if (i+1)%50 == 0: print('Iteration:{}/{}. Training batch loss:{}'. format(i+1, iterations, loss_)) if validation : self.evaluate(val_input_obs, val_input_ruitu, val_labels, each_station_display=False) print('###'*10) print('Train finish! Total validation loss:') self.evaluate(val_input_obs, val_input_ruitu, val_labels, each_station_display=True) def evaluate(self, data_input_obs, data_input_ruitu, data_labels, each_station_display=False): assert data_input_ruitu.shape[0] == data_input_obs.shape[0] == data_labels.shape[0], 'Shape Error' #assert data_input_obs.shape[1] == 28 and data_input_obs.shape[2] == 10 and data_input_obs.shape[3] == 9, 'Error! Obs input shape must be (None, 28,10,9)' assert data_input_ruitu.shape[1] == 37 and data_input_ruitu.shape[2] == 10 and data_input_ruitu.shape[3] == 29, 'Error! Ruitu input shape must be (None, 37,10,29)' assert data_labels.shape[1] == 37 and data_labels.shape[2] == 10 and data_labels.shape[3] == 3, 'Error! Ruitu input shape must be (None, 37,10,3)' all_loss=[] for i in range(10): # iterate for each station. (sample_ind, timestep, staionID, features) val_loss= self.model.evaluate(x=[data_input_obs[:,:,i,:], data_input_ruitu[:,:,i,:]], y=[data_labels[:,:,i,:]], verbose=False) all_loss.append(val_loss) if each_station_display: print('\tFor station 9000{}, evaluated loss: {}'.format(i+1, val_loss)) print('Mean evaluated loss on all stations:', np.mean(all_loss)) def predict(self, batch_inputs, batch_ruitu): assert batch_ruitu.shape[0] == batch_inputs.shape[0], 'Shape Error' assert batch_inputs.shape[1] == 28 and batch_inputs.shape[2] == 10 and batch_inputs.shape[3] == 9, 'Error! Obs input shape must be (None, 28,10,9)' assert batch_ruitu.shape[1] == 37 and batch_ruitu.shape[2] == 10 and batch_ruitu.shape[3] == 29, 'Error! Ruitu input shape must be (None, 37,10, 29)' #all_pred={} pred_result_list = [] for i in range(10): #print('Predict for station: 9000{}'.format(i+1)) result = self.model.predict(x=[batch_inputs[:,:,i,:], batch_ruitu[:,:,i,:]]) result = np.squeeze(result, axis=0) #all_pred[i] = result pred_result_list.append(result) #pass pred_result = np.stack(pred_result_list, axis=0) #return all_pred, pred_result print('Predict shape (10,37,3) means (stationID, timestep, features). Features include: t2m, rh2m and w10m') self.pred_result = pred_result return pred_result def renorm_for_submit(self, pred_mean, pred_var=None): ''' # TODO: Add three strategies for output ''' assert self.pred_result is not None, 'You must run self.predict(batch_inputs, batch_ruitu) firstly!!' assert pred_mean.shape == (10, 37, 3), 'Error! This funtion ONLY works for one data sample with shape (10, 37, 3). Any data shape (None, 10, 37, 3) will leads this error!' df_empty = pd.DataFrame(columns=['FORE_data', 't2m', 'rh2m', 'w10m']) for j, target_v in enumerate(self.target_list): series_ids = pd.Series() series_targets = pd.Series() renorm_value = renorm(pred_mean[:,:,j], self.obs_range_dic[target_v][0], self.obs_range_dic[target_v][1]) for i in range(10): if i != 9: id_num = '0'+str(i+1) else: id_num = str(10) sta_name_time = '900'+id_num+'_' time_str_list=[] for t in range(37): if t < 10: time_str= sta_name_time + '0'+ str(t) else: time_str = sta_name_time + str(t) time_str_list.append(time_str) series_id = pd.Series(time_str_list) series_target = pd.Series(renorm_value[i]) series_ids = pd.concat([series_ids, series_id]) series_targets = pd.concat([series_targets, series_target]) df_empty['FORE_data'] = series_ids df_empty[target_v] = series_targets return df_empty #pass def plot_prediction(self, x, y_true, y_pred, input_ruitu=None): """Plots the predictions. Arguments --------- x: Input sequence of shape (input_sequence_length, dimension_of_signal) y_true: True output sequence of shape (input_sequence_length, dimension_of_signal) y_pred: Predicted output sequence (input_sequence_length, dimension_of_signal) input_ruitu: Ruitu output sequence """ plt.figure(figsize=(12, 3)) output_dim = x.shape[-1]# feature dimension for j in range(output_dim): past = x[:, j] true = y_true[:, j] pred = y_pred[:, j] if input_ruitu is not None: ruitu = input_ruitu[:, j] label1 = "Seen (past) values" if j==0 else "_nolegend_" label2 = "True future values" if j==0 else "_nolegend_" label3 = "Predictions" if j==0 else "_nolegend_" label4 = "Ruitu values" if j==0 else "_nolegend_" plt.plot(range(len(past)), past, "o-g", label=label1) plt.plot(range(len(past), len(true)+len(past)), true, "x--g", label=label2) plt.plot(range(len(past), len(pred)+len(past)), pred, "o--y", label=label3) if input_ruitu is not None: plt.plot(range(len(past), len(ruitu)+len(past)), ruitu, "o--r", label=label4) plt.legend(loc='best') plt.title("Predictions v.s. true values v.s. Ruitu") plt.show() class RNN_Class(WeatherConv1D): def __init__(self, num_output_features, num_decoder_features, target_sequence_length, num_steps_to_predict, regulariser = None, lr=0.001, decay=0, loss = "mse", layers=[35, 35]): self.num_output_features = num_output_features self.num_decoder_features = num_decoder_features self.target_sequence_length = target_sequence_length self.num_steps_to_predict = num_steps_to_predict self.regulariser = regulariser self.layers = layers self.lr = lr self.decay = decay self.loss = loss self.pred_result = None #self.batch_size = batch_size print('Initialized!') def build_graph(self): keras.backend.clear_session() # clear session/graph self.model = RNN_builder(self.num_output_features, self.num_decoder_features, self.target_sequence_length, self.num_steps_to_predict, self.regulariser, self.lr, self.decay, self.loss, self.layers) print(self.model.summary()) class Seq2Seq_Class(Enc_Dec): def __init__(self, id_embd, time_embd, num_input_features, num_output_features, num_decoder_features, input_sequence_length, target_sequence_length, num_steps_to_predict, regulariser = None, lr=0.001, decay=0, loss = "mse", layers=[35, 35], model_save_path='../models', model_structure_name='seq2seq_model.json', model_weights_name='seq2seq_model_weights.h5'): super().__init__(num_input_features, num_output_features, num_decoder_features, input_sequence_length, target_sequence_length, num_steps_to_predict, regulariser = None, lr=lr, decay=decay, loss = loss, layers=layers) self.id_embd = id_embd self.time_embd = time_embd self.val_loss_list=[] self.train_loss_list=[] self.current_mean_val_loss = None self.early_stop_limit = 10 # with the unit of Iteration Display self.EARLY_STOP=False self.pred_var_result = [] self.pi_dic={0.95:1.96, 0.9:1.645, 0.8:1.28, 0.68:1.} self.target_list=['t2m','rh2m','w10m'] self.obs_range_dic={'t2m':[-30,42], # Official value: [-20,42] 'rh2m':[0.0,100.0], 'w10m':[0.0, 30.0]} self.obs_and_output_feature_index_map = {'t2m':0,'rh2m':1,'w10m':2} self.ruitu_feature_index_map = {'t2m':1,'rh2m':3,'w10m':4} self.model_save_path = model_save_path self.model_structure_name=model_structure_name self.model_weights_name=model_weights_name def build_graph(self): #keras.backend.clear_session() # clear session/graph self.optimizer = keras.optimizers.Adam(lr=self.lr, decay=self.decay) self.model = Seq2Seq_MVE_subnets_swish(id_embd=True, time_embd=True, lr=self.lr, decay=self.decay, num_input_features=self.num_input_features, num_output_features=self.num_output_features, num_decoder_features=self.num_decoder_features, layers=self.layers, loss=self.loss, regulariser=self.regulariser) def _mve_loss(y_true, y_pred): pred_u = crop(2,0,3)(y_pred) pred_sig = crop(2,3,6)(y_pred) print(pred_sig) #exp_sig = tf.exp(pred_sig) # avoid pred_sig is too small such as zero #precision = 1./exp_sig precision = 1./pred_sig #log_loss= 0.5*tf.log(exp_sig)+0.5*precision*((pred_u-y_true)**2) log_loss= 0.5*tf.log(pred_sig)+0.5*precision*((pred_u-y_true)**2) log_loss=tf.reduce_mean(log_loss) return log_loss print(self.model.summary()) self.model.compile(optimizer = self.optimizer, loss=_mve_loss) def sample_batch(self, data_inputs, ground_truth, ruitu_inputs, batch_size, certain_id=None, certain_feature=None): max_i, _, max_j, _ = data_inputs.shape # Example: (1148, 37, 10, 9)-(sample_ind, timestep, sta_id, features) id_ = np.random.randint(max_j, size=batch_size) i = np.random.randint(max_i, size=batch_size) batch_inputs = data_inputs[i,:,id_,:] batch_ouputs = ground_truth[i,:,id_,:] batch_ruitu = ruitu_inputs[i,:,id_,:] # id used for embedding if self.id_embd and (not self.time_embd): expd_id = np.expand_dims(id_,axis=1) batch_ids = np.tile(expd_id,(1,37)) return batch_inputs, batch_ruitu, batch_ouputs, batch_ids elif (not self.id_embd) and (self.time_embd): time_range = np.array(range(37)) batch_time = np.tile(time_range,(batch_size,1)) #batch_time = np.expand_dims(batch_time, axis=-1) return batch_inputs, batch_ruitu, batch_ouputs, batch_time elif (self.id_embd) and (self.time_embd): expd_id = np.expand_dims(id_,axis=1) batch_ids = np.tile(expd_id,(1,37)) time_range = np.array(range(37)) batch_time = np.tile(time_range,(batch_size,1)) #batch_time = np.expand_dims(batch_time, axis=-1) return batch_inputs, batch_ruitu, batch_ouputs, batch_ids, batch_time elif (not self.id_embd) and (not self.time_embd): return batch_inputs, batch_ruitu, batch_ouputs def fit(self, train_input_obs, train_input_ruitu, train_labels, val_input_obs, val_input_ruitu, val_labels, val_ids, val_times, batch_size, iterations=300, validation=True): print('Train batch size: {}'.format(batch_size)) print('Validation on data size of {};'.format(val_input_obs.shape[0])) early_stop_count = 0 for i in range(iterations): batch_inputs, batch_ruitu, batch_labels, batch_ids, batch_time = self.sample_batch(train_input_obs, train_labels, train_input_ruitu, batch_size=batch_size) #batch_placeholders = np.zeros_like(batch_labels) loss_ = self.model.train_on_batch(x=[batch_inputs, batch_ruitu, batch_ids, batch_time], y=[batch_labels]) if (i+1)%50 == 0: print('Iteration:{}/{}. Training batch MLE loss:{}'. format(i+1, iterations, loss_)) if validation : self.evaluate(val_input_obs, val_input_ruitu, val_labels, val_ids, val_times, each_station_display=False) if len(self.val_loss_list) >0: # Early stopping if(self.current_mean_val_loss) <= min(self.val_loss_list): # compare with the last early_stop_limit values except SELF early_stop_count = 0 model_json = self.model.to_json() with open(self.model_save_path+self.model_structure_name, "w") as json_file: json_file.write(model_json) self.model.save_weights(self.model_save_path+self.model_weights_name) else: early_stop_count +=1 print('Early-stop counter:', early_stop_count) if early_stop_count == self.early_stop_limit: self.EARLY_STOP=True break print('###'*10) if self.EARLY_STOP: print('Loading the best model before early-stop ...') self.model.load_weights(self.model_save_path+self.model_weights_name) print('Training finished! Detailed val MLE loss:') self.evaluate(val_input_obs, val_input_ruitu, val_labels, val_ids, val_times, each_station_display=True) def evaluate(self, data_input_obs, data_input_ruitu, data_labels, data_ids, data_time, each_station_display=False): all_loss=[] for i in range(10): # iterate for each station. (sample_ind, timestep, staionID, features) #batch_placeholders = np.zeros_like(data_labels[:,:,i,:]) val_loss= self.model.evaluate(x=[data_input_obs[:,:,i,:], data_input_ruitu[:,:,i,:], data_ids[:,:,i], data_time], y=[data_labels[:,:,i,:]], verbose=False) all_loss.append(val_loss) if each_station_display: print('\tFor station 9000{}, val MLE loss: {}'.format(i+1, val_loss)) self.current_mean_val_loss = np.mean(all_loss) print('Mean val MLE loss:', self.current_mean_val_loss) self.val_loss_list.append(self.current_mean_val_loss) def predict(self, batch_inputs, batch_ruitu, batch_ids, batch_times): ''' Input: Output: pred_result (mean value) : (None, 10,37,3). i.e., (sample_nums, stationID, timestep, features) pred_var_result (var value) : (None, 10,37,3) ''' pred_result_list = [] pred_var_list = [] #pred_std_list =[] for i in range(10): result = self.model.predict(x=[batch_inputs[:,:,i,:], batch_ruitu[:,:,i,:], batch_ids[:,:,i], batch_times]) var_result = result[:,:,3:6] # Variance result = result[:,:,0:3] # Mean #result = np.squeeze(result, axis=0) pred_result_list.append(result) #var_result = np.squeeze(var_result, axis=0) pred_var_list.append(var_result) pred_result = np.stack(pred_result_list, axis=1) pred_var_result = np.stack(pred_var_list, axis=1) print('Predictive shape (None, 10,37,3) means (sample_nums, stationID, timestep, features). \ Features include: t2m, rh2m and w10m') self.pred_result = pred_result self.pred_var_result = pred_var_result #self.pred_std_result = np.sqrt(np.exp(self.pred_var_result[:,:,i,j])) # Calculate standard deviation return pred_result, pred_var_result def renorm_for_visualization(self, obs_inputs, ruitu_inputs, pred_mean_result, pred_var_result, ground_truth=None): ''' obs_inputs: (None, 28, 10, 9) ruitu_inputs: (None, 37, 10, 29) pred_mean_result: (None, 10, 37, 3) pred_var_result: (None, 10, 37, 3) ground_truth: (None, 37, 10, 3) #self.target_list=['t2m','rh2m','w10m'] #self.obs_range_dic={'t2m':[-30,42], # 'rh2m':[0.0,100.0], # 'w10m':[0.0, 30.0]} #self.obs_and_output_feature_index_map = {'t2m':0,'rh2m':1,'w10m':2} #self.ruitu_feature_index_map = {'t2m':1,'rh2m':3,'w10m':4} #TODO: ''' for target_v in self.target_list: temp1 = obs_inputs[:,:,:,self.obs_and_output_feature_index_map[target_v]] temp2 = ruitu_inputs[:,:,:,self.ruitu_feature_index_map[target_v]] temp3 = pred_mean_result[:,:,:,self.obs_and_output_feature_index_map[target_v]] #temp4 = pred_var_result[:,:,:,self.obs_and_output_feature_index_map[target_v]] obs_inputs[:,:,:,self.obs_and_output_feature_index_map[target_v]] = renorm(temp1, self.obs_range_dic[target_v][0], self.obs_range_dic[target_v][1]) ruitu_inputs[:,:,:,self.ruitu_feature_index_map[target_v]] = renorm(temp2, self.obs_range_dic[target_v][0], self.obs_range_dic[target_v][1]) pred_mean_result[:,:,:,self.obs_and_output_feature_index_map[target_v]] = renorm(temp3, self.obs_range_dic[target_v][0], self.obs_range_dic[target_v][1]) #pred_var_result[:,:,:,self.obs_and_output_feature_index_map[target_v]] = renorm(temp4, self.obs_range_dic[target_v][0], self.obs_range_dic[target_v][1]) if ground_truth is not None: temp5 = ground_truth[:,:,:,self.obs_and_output_feature_index_map[target_v]] ground_truth[:,:,:,self.obs_and_output_feature_index_map[target_v]] = renorm(temp5, self.obs_range_dic[target_v][0], self.obs_range_dic[target_v][1]) if ground_truth is not None: return obs_inputs, ruitu_inputs, pred_mean_result, pred_var_result, ground_truth else: return obs_inputs, ruitu_inputs, pred_mean_result, pred_var_result def calc_uncertainty_info(self, verbose=False): ''' Verbose: Display uncertainty for each feature i.e., (t2m, rh2m, w10m) #TODO: Refactor the double 'for' part. ''' assert len(self.pred_var_result)>0, 'Error! You must run predict() before running calc_uncertainty_info()' print('The uncertainty info are calculated on {} predicted samples with shape {}' .format(len(self.pred_var_result), self.pred_var_result.shape)) # if verbose: assert self.target_list == ['t2m','rh2m','w10m'], 'ERROR, list changed!' for j, target_v in enumerate(['t2m','rh2m','w10m']): print('For feature {}:'.format(target_v)) for i in range(37): #unctt_var = np.exp(self.pred_var_result[:,:,i,j]) unctt_std = np.sqrt(unctt_var) unctt_mean_std = np.mean(unctt_std) unctt_mean_var = np.mean(unctt_var) #renorm_unctt_mean_std = renorm(unctt_mean_std, self.obs_range_dic[target_v][0], self.obs_range_dic[target_v][1]) print('\tTime:{}-Variance:{:.4f}; Std:{:.4f};'. format(i+1, unctt_mean_var, unctt_mean_std)) else: for i in range(37): unctt_var = np.exp(self.pred_var_result[:,:,i,:]) unctt_std = np.sqrt(unctt_var) unctt_mean_std = np.mean(unctt_std) unctt_mean_var = np.mean(unctt_var) #renorm_unctt_mean_std = 0 print('Time:{}-Variance:{:.4f}; Std:{:.4f};'. format(i+1, unctt_mean_var, unctt_mean_std)) def minus_plus_std_strategy(self, pred_mean, pred_var, feature_name,\ timestep_to_ensemble=21, alpha=0): ''' This stratergy aims to calculate linear weighted at specific timestep (timestep_to_ensemble) between prediction and ruitu as formula: (alpha)*pred_mean + (1-alpha)*ruitu_inputs pred_mean: (10, 37, 3) pred_var: (10, 37, 3) timestep_to_ensemble: int32 (From 0 to 36) ''' print('Using minus_plus_var_strategy with alpha {}'.format(alpha)) assert 0<=timestep_to_ensemble<=36 , 'Please ensure 0<=timestep_to_ensemble<=36!' assert -0.3<= alpha <=0.3, '-0.3<= alpha <=0.3!' assert pred_mean.shape == (10, 37, 3), 'Error! This funtion ONLY works for \ one data sample with shape (10, 37, 3). Any data shape (None, 10, 37, 3) will leads this error!' pred_std = np.sqrt(np.exp(pred_var)) print('alpha:',alpha) pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] = \ pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] + \ alpha * pred_std[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] return pred_mean def linear_ensemble_strategy(self, pred_mean, pred_var, ruitu_inputs, feature_name,\ timestep_to_ensemble=21, alpha=1): ''' This stratergy aims to calculate linear weighted at specific timestep (timestep_to_ensemble) between prediction and ruitu as formula: (alpha)*pred_mean + (1-alpha)*ruitu_inputs pred_mean: (10, 37, 3) pred_var: (10, 37, 3) ruitu_inputs: (37,10,29). Need Swamp to(10,37,29) FIRSTLY!! timestep_to_ensemble: int32 (From 0 to 36) ''' assert 0<= alpha <=1, 'Please ensure 0<= alpha <=1 !' assert pred_mean.shape == (10, 37, 3), 'Error! This funtion ONLY works for \ one data sample with shape (10, 37, 3). Any data shape (None, 10, 37, 3) will leads this error!' #pred_std = np.sqrt(np.exp(pred_var)) ruitu_inputs = np.swapaxes(ruitu_inputs,0,1) print('alpha:',alpha) pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] = \ (alpha)*pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] + \ (1-alpha)*ruitu_inputs[:,timestep_to_ensemble:, self.ruitu_feature_index_map[feature_name]] print('Corrected pred_mean shape:', pred_mean.shape) return pred_mean def fuzzy_ensemble_strategy(self, pred_mean, pred_var, feature_name,\ timestep_to_ensemble=21, alpha=0): ''' This stratergy aims to calculate linear weighted at specific timestep (timestep_to_ensemble) between prediction and ruitu as formula: (alpha)*pred_mean + (1-alpha)*ruitu_inputs pred_mean: (10, 37, 3) pred_var: (10, 37, 3) timestep_to_ensemble: int32 (From 0 to 36) ''' print('Using fuzzy_ensemble_strategy with alpha {}'.format(alpha)) assert 0<=timestep_to_ensemble<=36 , 'Please ensure 0<=timestep_to_ensemble<=36!' assert -0.4<= alpha <=0.4, 'Please ensure -0.4<= alpha <=0.4 !' assert pred_mean.shape == (10, 37, 3), 'Error! This funtion ONLY works for \ one data sample with shape (10, 37, 3). Any data shape (None, 10, 37, 3) will leads this error!' pred_std = np.sqrt(np.exp(pred_var)) #print('normalizing for Std. after timestep:', timestep_to_ensemble) temp_std = pred_std[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] norm_std = temp_std / np.max(temp_std) #print('norm_std shape', norm_std.shape) dim_0, dim_1 = norm_std.shape reshaped_std = norm_std.reshape(-1) from skfuzzy import trimf fuzzy_degree = trimf(reshaped_std, [0., 1, 1.2]) fuzzy_degree = fuzzy_degree.reshape(dim_0, dim_1) #print('fuzzy_degree shape:',fuzzy_degree.shape) #print('temp_std shape:',temp_std.shape) pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] = \ pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] + \ fuzzy_degree*alpha*temp_std #pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] + \ #alpha * pred_std[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] #print('pred_mean.shape',pred_mean.shape) return pred_mean pass def renorm_for_submit(self, pred_mean, pred_var, ruitu_inputs, timestep_to_ensemble=21, alpha=1): ''' Overwrite for Seq2Seq_MVE Class pred_mean: shape of (10, 37, 3) pred_var: shape of (10, 37, 3) ruitu_inputs: shape of (10, 37, 3) timestep_to_ensemble: int32 (From 0 to 36) # TODO: Add three strategies for output ''' assert self.pred_result is not None, 'You must run self.predict(batch_inputs, batch_ruitu) firstly!!' assert pred_mean.shape == (10, 37, 3), 'Error! This funtion ONLY works for one data sample with shape (10, 37, 3). Any data shape (None, 10, 37, 3) will leads this error!' df_empty = pd.DataFrame(columns=['FORE_data', 't2m', 'rh2m', 'w10m']) for j, target_v in enumerate(self.target_list): series_ids = pd.Series() series_targets = pd.Series() #print('Feature {}, timestep_to_ensemble: {}, weighted alpha: {}'. # format(target_v, timestep_to_ensemble, alpha)) #pred_mean = self.linear_ensemble_strategy(pred_mean, pred_var, # ruitu_inputs, target_v, timestep_to_ensemble, alpha) #pred_mean =self.minus_plus_std_strategy(pred_mean, pred_var, target_v,\ # timestep_to_ensemble, alpha) #pred_mean = self.fuzzy_ensemble_strategy(pred_mean, pred_var, target_v,\ # timestep_to_ensemble, alpha=0.) renorm_value = renorm(pred_mean[:,:,j], self.obs_range_dic[target_v][0], self.obs_range_dic[target_v][1]) for i in range(10): if i != 9: id_num = '0'+str(i+1) else: id_num = str(10) sta_name_time = '900'+id_num+'_' time_str_list=[] for t in range(37): if t < 10: time_str= sta_name_time + '0'+ str(t) else: time_str = sta_name_time + str(t) time_str_list.append(time_str) series_id = pd.Series(time_str_list) series_target = pd.Series(renorm_value[i]) series_ids = pd.concat([series_ids, series_id]) series_targets = pd.concat([series_targets, series_target]) df_empty['FORE_data'] = series_ids df_empty[target_v] = series_targets return df_empty def plot_prediction(self, x, y_true, y_pred, intervals=None, input_ruitu=None, pi_degree=0.8, renorm_flag=False): """Plots the predictions. Arguments --------- x: Input sequence of shape (input_sequence_length, dimension_of_signal) E.g. (28, 1) y_true: True output sequence of shape (input_sequence_length, dimension_of_signal) E.g. (35, 1) y_pred: Predicted output sequence (input_sequence_length, dimension_of_signal) E.g. (35, 1) input_ruitu: Ruitu output sequence E.g. (35, 1) pi_degree: Confident Level such as 0.95, 0.9, 0.8, and 0.68 etc. """ plt.figure(figsize=(12, 3)) output_dim = x.shape[-1]# feature dimension for j in range(output_dim): past = x[:, j] true = y_true[:, j] pred = y_pred[:, j] if input_ruitu is not None: ruitu = input_ruitu[:, j] if intervals is not None: pi_var = intervals[:, j] pi_var = np.sqrt(np.exp(pi_var)) label1 = "Seen (past) values" if j==0 else "_nolegend_" label2 = "True future values" if j==0 else "_nolegend_" label3 = "Predictions" if j==0 else "_nolegend_" label4 = "Ruitu values" if j==0 else "_nolegend_" label5 = "Lower-Upper bound" if j==0 else "_nolegend_" plt.plot(range(len(past)), past, "o-g", label=label1) plt.plot(range(len(past), len(true)+len(past)), true, "x--g", label=label2) plt.plot(range(len(past), len(pred)+len(past)), pred, ".--b", label=label3) if input_ruitu is not None: plt.plot(range(len(past), len(ruitu)+len(past)), ruitu, ".--r", label=label4) if intervals is not None: #print(intervals.shape) print(pi_var.shape) up_bound = pred + self.pi_dic[pi_degree]*pi_var low_bound = pred - self.pi_dic[pi_degree]*pi_var plt.fill_between(range(len(past), len(ruitu)+len(past)), up_bound, low_bound, facecolor='blue', alpha=0.1) plt.legend(loc='best') plt.title("Predictions v.s. true values v.s. Ruitu") plt.show() class Enc_Dec_Embd(Enc_Dec): def build_graph(self): keras.backend.clear_session() # clear session/graph self.optimiser = keras.optimizers.Adam(lr=self.lr, decay=self.decay) # Define an input sequence. encoder_inputs = keras.layers.Input(shape=(None, self.num_input_features), name='encoder_inputs') # Create a list of RNN Cells, these are then concatenated into a single layer # with the RNN layer. encoder_cells = [] for hidden_neurons in self.layers: encoder_cells.append(keras.layers.GRUCell(hidden_neurons, kernel_regularizer = self.regulariser, recurrent_regularizer = self.regulariser, bias_regularizer = self.regulariser)) encoder = keras.layers.RNN(encoder_cells, return_state=True) encoder_outputs_and_states = encoder(encoder_inputs) # Discard encoder outputs and only keep the states. encoder_states = encoder_outputs_and_states[1:] # Define a decoder sequence. decoder_inputs = keras.layers.Input(shape=(None, self.num_decoder_features), name='decoder_inputs') decoder_inputs_id = keras.layers.Input(shape=(None,), name='id_inputs') decoder_inputs_id_embd = Embedding(input_dim=10, output_dim=2, name='id_embedding')(decoder_inputs_id) #decoder_inputs_time = keras.layers.Input(shape=(None,), name='time_inputs') #decoder_inputs_time_embd = Embedding(input_dim=37, output_dim=2, name='time_embedding')(decoder_inputs_time) decoder_concat = concatenate([decoder_inputs, decoder_inputs_id_embd], axis=-1) decoder_cells = [] for hidden_neurons in self.layers: decoder_cells.append(keras.layers.GRUCell(hidden_neurons, kernel_regularizer = self.regulariser, recurrent_regularizer = self.regulariser, bias_regularizer = self.regulariser)) decoder = keras.layers.RNN(decoder_cells, return_sequences=True, return_state=True) decoder_outputs_and_states = decoder(decoder_concat, initial_state=encoder_states) decoder_outputs = decoder_outputs_and_states[0] #decoder_dense1 = keras.layers.Dense(units=32, # activation='relu', # kernel_regularizer = self.regulariser, # bias_regularizer = self.regulariser, name='dense_relu') output_dense = keras.layers.Dense(self.num_output_features, activation='sigmoid', kernel_regularizer = self.regulariser, bias_regularizer = self.regulariser, name='output_sig') #densen1=decoder_dense1(decoder_outputs) decoder_outputs = output_dense(decoder_outputs) # Create a model using the functional API provided by Keras. self.model = keras.models.Model(inputs=[encoder_inputs, decoder_inputs, decoder_inputs_id], outputs=decoder_outputs) self.model.compile(optimizer = self.optimiser, loss=self.loss) print(self.model.summary()) def sample_batch(self, data_inputs, ground_truth, ruitu_inputs, batch_size, certain_id=None, certain_feature=None): max_i, _, max_j, _ = data_inputs.shape # Example: (1148, 37, 10, 9)-(sample_ind, timestep, sta_id, features) if certain_id == None and certain_feature == None: id_ =
np.random.randint(max_j, size=batch_size)
numpy.random.randint
import pandas import numpy as np from cornellGrading import cornellQualtrics import os def genReadingAssignments(infile, outfile): # generate reading assignments # infile must be xlsx with two sheets (Readers & Canddiates) # grab all input data if isinstance(infile, str): tmp = pandas.ExcelFile(infile, engine="openpyxl") readers = tmp.parse("Readers") candidates = tmp.parse("Candidates") tmp.close() readers = readers["Reader Names"].values candidates = candidates["Candidate Names"].values else: readers = infile[0] candidates = infile[1] # Each person needs to be read by 2 readers nperreader = int(np.round(len(candidates) * 2 / len(readers))) # shuffle candidates and split by readers clist = np.hstack((candidates.copy(), candidates.copy())) np.random.shuffle(clist) out = {} for reader in readers: tmp = clist[:nperreader] while np.unique(tmp).size != tmp.size: np.random.shuffle(clist) tmp = clist[:nperreader] out[reader] = tmp clist = clist[nperreader:] # check for unassigned if len(clist) > 0: for c in clist: r = np.random.choice(readers, size=1)[0] while c in out[r]: r = np.random.choice(readers, size=1)[0] out[r] = np.hstack((out[r], c)) # final consistency check asslist = [] for key, val in out.items(): assert np.unique(val).size == val.size, "{} has non-unique list.".format(key) asslist =
np.hstack((asslist, val))
numpy.hstack
import tensorflow as tf from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.layers import GlobalAveragePooling2D, Dense from tensorflow.keras.models import Model from tensorflow.keras.callbacks import Callback, History import tensorflow.keras.backend as K from keras.objectives import mean_squared_error from PIL import Image import numpy as np import pickle, glob, random, os, zipfile from tensorflow.contrib.tpu.python.tpu import keras_support def enumerate_layers(): # 確認用。サマリーとレイヤー名とindexの対応を調べる resnet = ResNet50(include_top=False, weights="imagenet", input_shape=(224, 224, 3)) resnet.summary() for i, layer in enumerate(resnet.layers): print(i, layer.name) def create_resnet(): # 転移学習用モデル resnet = ResNet50(include_top=False, weights="imagenet", input_shape=(224, 224, 3)) for i in range(82): # res4a_branch2a(82)から訓練させる resnet.layers[i].trainable=False x = GlobalAveragePooling2D()(resnet.output) # ランドマーク9×2点 x = Dense(18, activation="sigmoid")(x) model = Model(resnet.inputs, x) return model class CatGenerator: def __init__(self): with open("cats-dataset/cat_annotation.dat", "rb") as fp: self.annotation_data = pickle.load(fp) def flow_from_directory(self, batch_size, train=True, shuffle=True, use_data_augmentation=True): source_dir = "cats-dataset/train" if train else "cats-dataset/test" images = glob.glob(source_dir+"/*.jpg") X_cache, y_cache = [], [] while True: if shuffle: np.random.shuffle(images) for img_path in images: with Image.open(img_path) as img: width, height = img.size img_array = np.asarray(img.resize((224, 224), Image.BILINEAR)) basename = os.path.basename(img_path) data = self.annotation_data[basename] # アノテーションを0~1に変換 annotation = np.zeros((9,2), dtype=np.float32) annotation[:, 0] = data[2][:, 0] / width annotation[:, 1] = data[2][:, 1] / height annotation = np.clip(annotation, 0.0, 1.0) if train and use_data_augmentation: # 水平反転 if random.random() >= 0.5: img_array = img_array[:, ::-1, :] annotation[:, 0] = 1 - annotation[:, 0] # 左目と右目の反転 annotation[0, :], annotation[1, :] = annotation[1, :], annotation[0, :].copy() # 左耳と右耳の反転 annotation[3:6, :], annotation[6:9, :] = annotation[6:9, :], annotation[3:6, :].copy() # PCA Color Augmentation img_array = self.pca_color_augmentation(img_array) X_cache.append(img_array) y_cache.append(np.ravel(annotation)) if len(X_cache) == batch_size: X_batch = np.asarray(X_cache, dtype=np.float32) / 255.0 y_batch = np.asarray(y_cache, dtype=np.float32) X_cache, y_cache = [], [] yield X_batch, y_batch def pca_color_augmentation(self, image_array_input): assert image_array_input.ndim == 3 and image_array_input.shape[2] == 3 assert image_array_input.dtype == np.uint8 img = image_array_input.reshape(-1, 3).astype(np.float32) img = (img - np.mean(img, axis=0)) / np.std(img, axis=0) cov = np.cov(img, rowvar=False) lambd_eigen_value, p_eigen_vector = np.linalg.eig(cov) rand = np.random.randn(3) * 0.1 delta = np.dot(p_eigen_vector, rand*lambd_eigen_value) delta = (delta * 255.0).astype(np.int32)[np.newaxis, np.newaxis, :] img_out =
np.clip(image_array_input + delta, 0, 255)
numpy.clip
#!/usr/bin/env python # coding: utf-8 # # Numpy # NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. # In[ ]: import numpy as np # In[ ]: arr = np.array([1,2]) # In[ ]: print(arr) print(type(arr)) print(arr.shape) print(arr.size) # In[ ]: arr2 = np.array([[1,2,3],[4,5,6]]) # In[ ]: print(arr2) print(type(arr2)) print(arr2.shape) print(arr2.size) # In[ ]: arr2[:,0:2] # In[ ]: arr2[0,:] # In[ ]: arr2 # ### Built in function # In[ ]: arr = np.zeros((4,3)) arr # In[ ]: arr = np.ones((4,4)) arr # In[ ]: arr = np.random.random((4,4)) arr # In[ ]: arr = np.full((4,4),6) arr # ### Reshaping an array # In[ ]: arr.reshape(2,2,4) # ### Flatten an array # In[ ]: arr = np.random.random((2,4)) arr # In[ ]: arr.flatten() # # Operators # ### Unary Operator # In[ ]: arr = np.array([[1,2,3], [4,5,6]]) print(arr.min()) # finding min print(arr.max()) # finding max print(arr.sum()) # finding sum # ### Binary operators # In[ ]: arr1 = np.array([1,2]) arr2 = np.array([3,4]) print(arr1 + arr2) #sum of two array elementwise print(arr1 * arr2) #multiply of two array elementwise print(arr1.dot(arr2)) #sum of two array elementwise # ## Matrix Multiplication # In[ ]: m1 = np.array([[1,2],[3,4]]) m2 = np.array([[2,4],[4,4]]) np.matmul(m1,m2) # ## Sorting array # In[ ]: arr =
np.random.random((4,3))
numpy.random.random
import numpy as np import matplotlib # matplotlib.use("Agg") import matplotlib.pyplot as plt import os # customized from scipy.optimize import minimize, basinhopping from scipy.signal import find_peaks from Bayesian import FitParameters, Priors, Likelihoods, Posteriors from Fitter import FitModes, PTSampler, ESSampler, LSSampler def echelle(x, y, period, fmin=None, fmax=None, echelletype="single", offset=0.0): ''' Generate a z-map for echelle plotting. Input: x: array-like[N,] y: array-like[N,] period: the large separation, fmin: the lower boundary fmax: the upper boundary echelletype: single/replicated offset: the horizontal shift Output: x, y: two 1-d arrays. z: a 2-d array. Exemplary call: import matplotlib.pyplot as plt fig = plt.figure(figsize=(6,8)) ax1 = fig.add_subplot(111) echx, echy, echz = echelle(tfreq,tpowers_o,dnu,numax-9.0*dnu,numax+9.0*dnu,echelletype="single",offset=offset) levels = np.linspace(np.min(echz),np.max(echz),500) ax1.contourf(echx,echy,echz,cmap="gray_r",levels=levels) ax1.axis([np.min(echx),np.max(echx),np.min(echy),np.max(echy)]) if offset > 0.0: ax1.set_xlabel("(Frequency - "+str("{0:.2f}").format(offset)+ ") mod "+str("{0:.2f}").format(dnu) + " ($\mu$Hz)") if offset < 0.0: ax1.set_xlabel("(Frequency + "+str("{0:.2f}").format(np.abs(offset))+ ") mod "+str("{0:.2f}").format(dnu) + " ($\mu$Hz)") if offset == 0.0: ax1.set_xlabel("Frequency mod "+str("{0:.2f}").format(dnu) + " ($\mu$Hz)") plt.savefig("echelle.png") ''' if not echelletype in ["single", "replicated"]: raise ValueError("echelletype is on of 'single', 'replicated'.") if len(x) != len(y): raise ValueError("x and y must have equal size.") if fmin is None: fmin=0. if fmax is None: fmax=np.nanmax(x) fmin = fmin - offset fmax = fmax - offset x = x - offset if fmin <= 0.0: fmin = 0.0 else: fmin = fmin - (fmin % period) # first interpolate samplinginterval = np.median(x[1:-1] - x[0:-2]) * 0.1 xp = np.arange(fmin,fmax+period,samplinginterval) yp = np.interp(xp, x, y) n_stack = int((fmax-fmin)/period) n_element = int(period/samplinginterval) #print(n_stack,n_element,len()) morerow = 2 arr = np.arange(1,n_stack) * period # + period/2.0 arr2 = np.array([arr,arr]) yn = np.reshape(arr2,len(arr)*2,order="F") yn = np.insert(yn,0,0.0) yn = np.append(yn,n_stack*period) + fmin #+ offset if echelletype == "single": xn = np.arange(1,n_element+1)/n_element * period z = np.zeros([n_stack*morerow,n_element]) for i in range(n_stack): for j in range(i*morerow,(i+1)*morerow): z[j,:] = yp[n_element*(i):n_element*(i+1)] if echelletype == "replicated": xn = np.arange(1,2*n_element+1)/n_element * period z = np.zeros([n_stack*morerow,2*n_element]) for i in range(n_stack): for j in range(i*morerow,(i+1)*morerow): z[j,:] = np.concatenate([yp[n_element*(i):n_element*(i+1)],yp[n_element*(i+1):n_element*(i+2)]]) return xn, yn, z class SolarlikePeakbagging: """docstring for SolarlikePeakbagging""" def __init__(self, starname, outputdir, fnyq, numax): """ Docstring """ # super(SolarlikePeakbagging, self).__init__() self._sep = "\\" if os.name=="nt" else "/" self._starname = starname self._outputdir = outputdir # "with a / in the end" assert outputdir.endswith(self._sep), "outputdir should end with "+self._sep self._fnyq = fnyq # in microHz (muHz) # numax and dnu are only approximations self._numax0 = numax # in microHz (muHz) self._dnu0 = (self._numax0/3050)**0.77 * 135.1 # Stello+2009 # nu_max and delta_nu are accruate values return def parse_power_spectrum(self, freq, power, trimUpperLimitInDnu=None, trimLowerLimitInDnu=None, ifSmooth=False): """ Pass the power spectrum in. Input: freq: np.array frequency in muHz. power: np.array the background divided power spectrum (so now is s/b instead). Optional input: """ assert len(freq) == len(power), "len(freq) != len(power)" idx = np.array(np.zeros(len(freq))+1, dtype=bool) freq = np.array(freq) power = np.array(power) if not trimUpperLimitInDnu is None: idx = (idx) & (freq<=self._numax0+trimUpperLimitInDnu*self._dnu0) if not trimLowerLimitInDnu is None: idx = (idx) & (freq>=self._numax0-trimLowerLimitInDnu*self._dnu0) self.freq = freq[idx] self.power = power[idx] ifSmooth: self.powers = self._smooth_power() return def _trim_power_spectrum(self, freq, power, powers=None, trimUpperLimitInDnu=None, trimLowerLimitInDnu=None): """ Trim the power spectrum. Input: freq: np.array frequency in muHz. power: np.array the background divided power spectrum (so now is s/b instead). Optional input: """ idx = np.array(np.zeros(len(freq))+1, dtype=bool) freq = np.array(freq) power = np.array(power) if not trimUpperLimitInDnu is None: idx = (idx) & (freq<=self._numax0+trimUpperLimitInDnu*self._dnu0) if not trimLowerLimitInDnu is None: idx = (idx) & (freq>=self._numax0-trimLowerLimitInDnu*self._dnu0) if powers is None: return freq[idx], power[idx] else: return freq[idx], power[idx], powers[idx] def _smooth_power(self, period=None): if period is None: period = self._dnu0/15.0 # microHz self.powers = self._smooth_wrapper(self.freq, self.power, period, "bartlett") return def _smooth_wrapper(self, x, y, period, windowtype, samplinginterval=None): if samplinginterval is None: samplinginterval = np.median(x[1:-1] - x[0:-2]) if not windowtype in ["flat", "hanning", "hamming", "bartlett", "blackman"]: raise ValueError("Window is one of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'") xp = np.arange(np.min(x), np.max(x), samplinginterval) yp = np.interp(xp, x, y) window_len = int(period/samplinginterval) if window_len % 2 == 0: window_len = window_len + 1 if windowtype == "flat": w = np.ones(window_len,"d") else: w = eval("np."+windowtype+"(window_len)") ys = np.convolve(w/w.sum(),yp,mode="same") yf = np.interp(x, xp, ys) return yf def guess_ppara(self, fixDnu=None): """ Docstring """ # smooth the power spectrum self._smooth_power() # slice the power spectrum freq, power, powers = self._trim_power_spectrum(self.freq, self.power, powers=self.powers, trimUpperLimitInDnu=3., trimLowerLimitInDnu=3.) def ppara_model(ppara): # initialize x = freq ymodel = np.zeros(len(freq)) if fixDnu is None: dnu02, dnu, eps = ppara else: dnu02, eps = ppara dnu = fixDnu _xmin, _xmax = np.min(x), np.max(x) # print(_xmin, _xmax, eps) n_p = np.arange(int(_xmin/dnu-eps-1), int(_xmax/dnu-eps+1), 1) nu_l0 = dnu*(n_p+eps) nu_l2 = dnu*(n_p+eps)-dnu02 nu_l1 = dnu*(n_p+eps)+0.5*dnu # l=0 template for inu in nu_l0: lw, center, maxima = 0.04*dnu, inu, 1.0 idx = (x>inu-lw) & (x<inu+lw) ymodel[idx] = -(1.0/lw**2.0)*(x[idx] - center)**2.0 + maxima # l=2 template for inu in nu_l2: lw, center, maxima = 0.03*dnu, inu, 0.6 idx = (x>inu-lw) & (x<inu+lw) ymodel[idx] = -(1.0/lw**2.0)*(x[idx] - center)**2.0 + maxima # l=1 template for inu in nu_l1: lw, center, maxima = 0.03*dnu, inu, 1.0 idx = (x>inu-lw) & (x<inu+lw) ymodel[idx] = -(1.0/lw**2.0)*(x[idx] - center)**2.0 + maxima ymodel[ymodel<0] = 0. return ymodel def corr_ppara(ppara): ymodel = ppara_model(ppara) y = (powers-1)/np.max(powers-1) return -np.log(np.sum(ymodel*y)/np.sum(ymodel))*10.0 # set free parameters if fixDnu is None: init = [self._dnu0/10., self._dnu0, 0.5] bounds = [[self._dnu0/20., self._dnu0/8.], [self._dnu0*0.8, self._dnu0*1.2], [0.0001, 1.-0.0001]] names = ["dnu02", "dnu", "eps"] else: init = [self._dnu0/10., 0.5] bounds = [[self._dnu0/20., self._dnu0/8.], [0.0001, 1.-0.0001]] names = ["dnu02", "eps"] minimizer_kwargs = {"bounds":bounds} res = basinhopping(corr_ppara, init, minimizer_kwargs=minimizer_kwargs) ppara = res.x if fixDnu is None: self._dnu02, self.dnu, self.eps = ppara else: self._dnu02, self.eps = ppara self.dnu = fixDnu self.print_ppara() self.print_ppara_tofile() # plot - power spectrum fig = plt.figure(figsize=(8,5)) ax1 = fig.add_subplot(111) ymodel = ppara_model(ppara) yobs = (powers-1)/np.max(powers-1) ax1.plot(freq, ymodel, color="green") ax1.plot(freq, yobs, color="black") plt.savefig(self._outputdir+"ppara.png") return def set_ppara_fromfile(self, inputfile=None): """ Docstring """ if inputfile is None: inputfile = self._outputdir + "ppara.txt" self._dnu02, self.dnu, self.eps = np.loadtxt(inputfile, delimiter=",") return def set_ppara(self, dnu02, dnu, eps): """ Docstring """ self._dnu02, self.dnu, self.eps = dnu02, dnu, eps return def print_ppara(self): """ Docstring """ print("dnu02 = ", self._dnu02) print("dnu = ", self.dnu) print("eps = ", self.eps) return def print_ppara_tofile(self): """ Docstring """ outputfile = self._outputdir + "ppara.txt" print("Writing ppara to "+outputfile) np.savetxt(outputfile, np.array([[self._dnu02, self.dnu, self.eps]]), header="dnu02, dnu, eps", delimiter=",") return def guess_modeid(self, trimLowerLimitInDnu=9.0, trimUpperLimitInDnu=9.0, height=2.0, prominence=1.5): """ An initial guess for all mode frequencies in the power spectrum. After running this function, you should visually check the power spectrum and see if the identified modes generated from the code are correct (matched with your expectations). Input: Optional input: trimLowerLimitInDnu: float, default: 9.0 the lower boundary of the power spectrum slice, in unit of dnu. trimUpperLimitInDnu: float, default: 9.0 the upper boundary of the power spectrum slice, in unit of dnu. height: float, default: 2.0 the minimum height for a peak to be recognised, in unit of power. prominence: float, default: 1.5 the minimum prominence for a peak to be recognised, in unit of power. Output: Files containing necessary outputs. 1. table frequencyGuess.csv Under development: 1. Improvement to mode identification - slide with spectrum and define probs. """ # smooth the power spectrum self._smooth_power(period=self.dnu/50.) # slice the power spectrum freq, power, powers = self._trim_power_spectrum(self.freq, self.power, powers=self.powers, trimUpperLimitInDnu=trimLowerLimitInDnu, trimLowerLimitInDnu=trimUpperLimitInDnu) dnu02, dnu, eps, numax = self._dnu02, self.dnu, self.eps, self._numax0 samplinginterval = np.median(freq[1:]-freq[:-1]) # assign l=0,1,2 region to the power spectrum rfreq = freq/dnu % 1.0 lowc = [-dnu02/dnu/2.0, +0.10, -dnu02/dnu-0.05] highc = [+0.10, 1.0-dnu02/dnu-0.05, -dnu02/dnu/2.0] idx_l = [] for l in range(3): dum1 = (rfreq>=eps+lowc[l]) & (rfreq<eps+highc[l]) dum2 = (rfreq>=eps+lowc[l]-1) & (rfreq<eps+highc[l]-1) dum3 = (rfreq>=eps+lowc[l]+1) & (rfreq<eps+highc[l]+1) idx_l.append((dum1|dum2|dum3)) # slice power spectrum into blocks n_blocks = int(trimLowerLimitInDnu+trimUpperLimitInDnu)+1 # label_echx, label_echy, label_text = [[] for i in range(3)] rfreq_init = (numax/dnu)%1.0 if rfreq_init-eps < 0.0: freq_init = numax-dnu*trimLowerLimitInDnu-dnu+np.abs(rfreq_init-eps)*dnu-dnu02-0.05*dnu if rfreq_init-eps >=0.0: freq_init = numax-dnu*trimLowerLimitInDnu-np.abs(rfreq_init-eps)*dnu-dnu02-0.05*dnu mode_l, mode_freq = [], [] # find peaks in each dnu range for iblock in range(n_blocks): freq_low, freq_high = freq_init+iblock*dnu, freq_init+(iblock+1)*dnu idx_norder = np.all(np.array([freq>=freq_low,freq<freq_high]),axis=0) # find peaks in each l range tidx_l, tmode_freq, tmode_l = [], [], [] for l in range(3): tidx_l.append(np.all(np.array([freq>=freq_low,freq<freq_high,idx_l[l]]),axis=0)) if len(freq[tidx_l[l]])==0: continue tfreq, tpower, tpowers = freq[tidx_l[l]], power[tidx_l[l]], powers[tidx_l[l]] meanlevel = np.median(tpowers) # find the highest peak in this range as a guess for the radial mode idx_peaks, properties = find_peaks(tpowers, height=(height,None), distance=int(dnu02/samplinginterval/5.0), prominence=(prominence,None)) Npeaks = len(idx_peaks) if Npeaks != 0: if l != 1: idx_maxpeak = idx_peaks[properties["peak_heights"] == properties["peak_heights"].max()] tmode_freq.append(tfreq[idx_maxpeak[0]]) tmode_l.append(l) else: for ipeak in range(Npeaks): tmode_freq.append(tfreq[idx_peaks[ipeak]]) tmode_l.append(l) tmode_freq, tmode_l = np.array(tmode_freq), np.array(tmode_l) mode_freq.append(tmode_freq) mode_l.append(tmode_l) # save a table # but first let's associate each mode with a group number mode_freq, mode_l = np.concatenate(mode_freq), np.concatenate(mode_l) mode_freq_group, mode_l_group, mode_group = [], [], np.array([]) idx = np.argsort(mode_freq) mode_freq, mode_l = mode_freq[idx], mode_l[idx] dist = mode_freq[1:] - mode_freq[:-1] group_idx = np.where(dist>=0.2*dnu)[0] + 1 #each element the new group start from Ngroups = len(group_idx) + 1 group_idx = np.insert(group_idx,0,0) group_idx = np.append(group_idx,len(mode_freq)) # just sort a bit for igroup in range(Ngroups): tmode_freq = mode_freq[group_idx[igroup]:group_idx[igroup+1]] tmode_l = mode_l[group_idx[igroup]:group_idx[igroup+1]] mode_freq_group.append(tmode_freq) mode_l_group.append(tmode_l) elements = group_idx[igroup+1] - group_idx[igroup] for j in range(elements): mode_group = np.append(mode_group,igroup) mode_group = np.array(mode_group, dtype=int) mode_freq =
np.concatenate(mode_freq_group)
numpy.concatenate
import numpy as np import os from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt from scipy import stats from scipy.spatial import distance import math import pickle from sklearn.neighbors import KNeighborsClassifier from sklearn.externals import joblib from sklearn.svm import SVC from collections import Counter import time def get_data(path): assert isinstance(path, str) assert 'pickle' or 'pkl' in path return pickle.load(open(path,'rb')) def barcode_to_names(barcode_file): assert isinstance(barcode_file, str) barcode_dict = {} with open(barcode_file,'r') as f: data = f.readlines() data = [x.split(',') for x in data] for x in data: barcode_dict[x[0]] = x[1].strip('\n') return barcode_dict def get_name_given_barcode(barcode, barcode_file): assert isinstance(barcode_file, str) assert isinstance(barcode, str) barcode_dict = barcode_to_names(barcode_file) return barcode_dict[barcode] def computer_kmeans(data, k, max_iter=1000, random_state=42): assert isinstance(data, np.ndarray) assert isinstance(k, int) assert k > 0 assert isinstance(max_iter, int) assert isinstance(random_state, int) kmeans = KMeans(n_clusters = k, max_iter=1000, random_state=42).fit(train_X) return kmeans def save_model(model, path, model_file_name): assert isinstance(path, str) assert isinstance(model_file_name, str) joblib.dump(model, os.path.join(path, model_file_name)) print(f"Model saved at: {os.path.join(path, model_file_name)}") def load_model(path): assert isinstance(path, str) return joblib.load(path) def get_data_given_class(idx, X, Y): assert isinstance(idx, int) assert isinstance(X, np.ndarray) assert isinstance(Y, np.ndarray) indices = [i for i, x in enumerate(Y) if x == idx] return X[indices] def get_class_wise_data_dict(class_labels, X, Y): assert isinstance(class_labels, list) assert isinstance(X, np.ndarray) assert isinstance(Y, np.ndarray) data_dict = {} for label in class_labels: label = int(label) data_dict[label] = get_data_given_class(label, X, Y) return data_dict def save_class_wise_stats(save_file, num_classes, gt, preds, barcodes_file, barcode_to_names_file): assert isinstance(save_file, str) assert isinstance(num_classes, int) assert isinstance(gt, np.ndarray) assert isinstance(preds, np.ndarray) assert isinstance(barcodes, str) assert isinstance(barcode_to_name_dict, dict) barcodes = get_data(barcodes_file) with open(os.path.join(save_file), 'w') as f: header = 'barcode\tclass_name\tnum_clusters\n' f.write(header + '\n') for i in range(len(num_classes)): indices = np.where(gt == i) p = preds[indices] mode = stats.mode(p)[0][0] barcode = barcodes[i] name = get_name_given_barcode(barcode, barcodes_to_names_file) num_clusters = len(np.unique(p)) f.write(str(barcode) + '\t' + str(name) + '\t' + str(num_clusters) + '\n') def save_cluster_wise_stats(save_file, num_clusters, gt, preds, barcode_file, barcode_to_name_file): assert isinstance(save_file, str) assert isinstance(num_clusters, int) assert isinstance(gt, np.ndarray) assert isinstance(preds, np.ndarray) assert isinstance(barcode_file, str) assert isinstance(barcode_to_name_file, str) barcodes = get_data(barcode_file) with open(save_file, 'w') as f: header = 'cluster_id\tclass_mode(barcode)\tclass_mode(name)\tmode\ttotal\tcluster_purity\tnum_unique\tclass_count' f.write(header + '\n') cluster_dict = {} for i in range(len(num_clusters)): indices = np.where(preds == i) cluster_dict[i] = gt[indices] unique_objects = np.unique(gt[indices]) class_counters = Counter(gt[indices]) top_3 = class_counters.most_common(3) top_3 = [(get_name_given_barcode(barcodes[x[0]], barcode_to_name_file) ,x[1]) for x in top_3] mode = stats.mode(preds[indices])[0][0] class_name = get_name_given_barcode(barcodes[mode], barcode_to_name_file) cluster_purity = class_counters[mode] / preds[indices].shape[0] f.write(str(i) + '\t' + str(int(barcodes[mode])) + '\t'+ str(class_name) +'\t'+ str(top_3[0][1]) +'\t' + str(len(gt[indices])) + '\t' + str(round(cluster_purity, 2)) + '\t' + str(num_clusters) + '\t' + str(top_3) + '\n') def get_mean_vectors(class_wise_data_dict): assert isinstance(class_wise_data_dict, dict) mean_vectors = [] for key, value in train_data_dict.items(): mean_vector = np.mean(value, axis=0) mean_vectors.append(mean_vector) return np.array(mean_vectors) def infer_using_mean_vector(feature_vector, mean_vectors): assert isinstance(feature_vector, np.ndarray) assert isinstance(mean_vectors, np.ndarray) dists = [] for c in mean_vectors: dst = distance.euclidean(feature_vector, c) dists.append(dst) return np.argmin(dists) def get_all_categories_models(path, num_category): assert isinstance(path, str) assert isinstance(num_category, int) assert num_category > 0 models = [] for i in range(num_category): model_path = os.path.join(path, 'category' + str(i+1) +'_meanvect_model.pkl') models.append(load_model(model_path)) return models def get_barcode_labels(path): assert isinstance(path, str) num_labels = len(os.listdir(path)) category_labels = [] for i in range(num_labels): labels_file_path = os.path.join(path, 'category_' + str(i+1) + '.txt') with open(labels_file_path, 'r') as f: labels = f.readlines() labels = [x.strip('\n') for x in labels] category_labels.append(labels) return category_labels def predict_single(data_vector, aisle_model, category_models, barcode_labels): assert isinstance(data_vector, np.ndarray) assert isinstance(category_models, list) assert isinstance(barcode_labels, list) aisle_pred = infer_using_mean_vector(data_vector, aisle_model) aisle_pred = 0 category_model = category_models[aisle_pred] class_pred = infer_using_mean_vector(data_vector, category_model) barcode_pred = barcode_labels[aisle_pred][class_pred] return barcode_pred def predict_end_to_end(X, aisle_model, category_models, barcode_labels): assert isinstance(X, np.ndarray) assert isinstance(category_models, list) assert isinstance(barcode_labels, list) preds = [] for i in range(X.shape[0]): pred = predict_single(X[i], aisle_model, category_models, barcode_labels) preds.append(pred) return preds def convert_labels_to_barcodes(Y, category, barcode_labels): assert isinstance(Y, (np.ndarray, list)) assert isinstance(category, int) assert category > 0 assert isinstance(barcode_labels, list) labels = barcode_labels[category - 1] barcodes = [] for y in Y: barcodes.append(labels[y]) return barcodes def evaluate(preds, gt): assert isinstance(preds, list) assert isinstance(gt, list) assert len(preds) == len(gt) total = len(gt) correct = 0 for y, pred in zip(gt, preds): if y == pred: correct += 1 return correct, (correct / total) category_names = ['Laundry','Biscuits','Cereals and Tea','Snacks and Kitchen Items','Hair Products', 'Beauty Products', 'Soaps','toothbrush_and_toothpaste'] correct = 0 total = 0 for i in range(len(category_names)): category = i + 1 category_name = category_names[i] print(f'{category}: {category_name}') train_path = 'data/train_features' valid_path = 'data/valid_features' logs_root = 'logs/' model_save_path = 'models' barcode_file_path = 'data/barcodes.txt' labels_file = 'data/labels.pkl' ncm_model_path = 'ncm_models' barcode_labels_path = 'Labels' train_data_path = os.path.join(train_path, 'category' + str(category) + '_X.pickle') train_labels_path = os.path.join(train_path, 'category' + str(category) + '_Y.pickle') valid_data_path = os.path.join(valid_path, 'category' + str(category) + '_X.pickle') valid_labels_path = os.path.join(valid_path, 'category' + str(category) + '_Y.pickle') # train_data_path = 'data/features_8_aisle/train_X.pickle' # train_labels_path = 'data/features_8_aisle/train_Y.pickle' # valid_data_path = 'data/features_8_aisle/valid_X.pickle' # valid_labels_path = 'data/features_8_aisle/valid_Y.pickle' train_X = get_data(train_data_path) train_Y = get_data(train_labels_path) valid_X = get_data(valid_data_path) valid_Y = get_data(valid_labels_path) unique_labels = list(set(train_Y.tolist())) print(f"No. of unique labels: {len(unique_labels)}") barcode_to_name_dict = barcode_to_names(barcode_file_path) barcodes = get_data(labels_file) # kmeans = load_model(os.path.join(model_save_path, 'category' + str(category) + '_model.pkl')) k = math.ceil(math.log(len(unique_labels), 2)) start = time.time() kmeans = computer_kmeans(train_X, k=k) print(f'Training took {time.time()-start}s') save_model(kmeans, model_save_path, 'category' + str(category) + '_model.pkl') continue train_data_dict = get_class_wise_data_dict(unique_labels, train_X, train_Y) valid_data_dict = get_class_wise_data_dict(unique_labels, valid_X, valid_Y) aisle_model = load_model(os.path.join(ncm_model_path, '8_aisle_meanvect_model.pkl')) category_models = get_all_categories_models(ncm_model_path, len(category_names)) barcode_labels = get_barcode_labels(barcode_labels_path) train_barcode_Y = convert_labels_to_barcodes(train_Y, category,barcode_labels) train_preds = predict_end_to_end(train_X, aisle_model, category_models, barcode_labels) correct, accuracy_score = evaluate(train_preds, train_barcode_Y) print(correct) print(accuracy_score) assert False continue # evaluate_end_to_end(trainX, trainY, aisle_model, category_models, category, barcode_labels) # predict_end_to_end(trainX, train_Y, aisle_model, category_models) print(f'Training took {time.time() - start} ms') # save_model(mean_vectors, 'ncm_models', 'category' + str(category) + '_meanvect_model.pkl') # save_model(mean_vectors, 'ncm_models', '8_aisle_' + '_meanvect_model.pkl') train_correct = 0 start = time.time() for key, value in train_data_dict.items(): correct = 0 for v in value: pred = infer_using_mean_vector(v, mean_vectors) if pred == key: correct += 1 train_correct += correct print(f'Evaluation on train data took {(time.time() - start)}s') print(f"Correct: {train_correct}, Total:{train_Y.shape[0]}") print(f"Train Accuracy: {(train_correct/ train_Y.shape[0])*100}") valid_correct = 0 start = time.time() for key, value in valid_data_dict.items(): correct = 0 for v in value: pred = infer_using_mean_vector(v, mean_vectors) if pred == key: correct += 1 valid_correct += correct print(f'Evaluation on valid data took {(time.time() - start)}s') print(f"Correct: {valid_correct}, Total:{valid_Y.shape[0]}") print(f"Valid Accuracy: {(valid_correct / valid_Y.shape[0])*100}") continue # get predictions from clusters train_preds = kmeans.predict(train_X) cluster_centers = kmeans.cluster_centers_ # save_class_wise_stats(os.path.join(logs_root,'470_items_class_statistics.csv'), # len(unique_labels), train_Y, train_preds, barcodes, barcode_to_name_dict) # dists = [] # for c in cluster_centers: # dst = distance.euclidean(mean_vector, c) # dists.append(dst) # cluster = np.argmin(dists) # labels_dict[key] = cluster train_correct = 0 for key, value in train_data_dict.items(): correct = 0 for v in value: dists = [] for c in mean_vectors: dst = distance.euclidean(v, c) dists.append(dst) cluster =
np.argmin(dists)
numpy.argmin
# -*- coding: utf-8 -*- """ Created on Thu Mar 26 11:21:14 2015 @author: noore """ import numpy as np import scipy class LINALG(object): @staticmethod def svd(A): # numpy.linalg.svd returns U, s, V such that # A = U * s * V # however, matlab and octave return U, S, V such that # V needs to be conjugate transposed when multiplied: # A = U * S * V.H # we would like to stick to the latter standard, so we return # the transposed V here (assuming it is real) U, s, V = scipy.linalg.svd(A, full_matrices=True) S = np.matrix(np.zeros(A.shape)) np.fill_diagonal(S, s) U = np.matrix(U) V = np.matrix(V) return U, S, V.T @staticmethod def _zero_pad_S(S, cids_orig, cids_joined): """ takes a stoichiometric matrix with a given list of IDs 'cids' and adds 0-rows so that the list of IDs will be 'cids_joined' """ if not set(cids_orig).issubset(cids_joined): raise Exception('The full list is missing some IDs in "cids"') full_S = np.zeros((len(cids_joined), S.shape[1])) for i, cid in enumerate(cids_orig): S_row = S[i, :] full_S[cids_joined.index(cid), :] = S_row return np.matrix(full_S) @staticmethod def _invert_project(A, eps=1e-10): n, m = A.shape U, S, V = LINALG.svd(A) inv_A = V *
np.linalg.pinv(S)
numpy.linalg.pinv
import numpy as np from scipy.integrate import odeint class MorrisLecar: """ Creates a MorrisLecar model. """ def __init__(self, C=20, VL=-60, VCa=120, VK=-84, gL=2, gCa=4, gK=8, V1=-1.2, V2=18, V3=12, V4=17.4, phi=0.06): """ Initializes the model. Args: C (int, float): Capacitance of the membrane. VL (int, float): Potential L. VCa (int, float): Potential Ca. VK (int, float): Potential K. gL (int, float): Conductance L. gCa (int, float): Conductance Ca. gK (int, float): Conductance K. V1 (int, float): Potential at which Mss converges. V2 (int, float): Reciprocal of slope of Mss. V3 (int, float): Potential at which Nss converges. V4 (int, float): Reciprocal of slope of Nss. phi (int, float): Time scale recovery. """ self.C = C self.VL = VL self.VCa = VCa self.VK = VK self.gL = gL self.gCa = gCa self.gK = gK self.V1 = V1 self.V2 = V2 self.V3 = V3 self.V4 = V4 self.phi = phi self.t = None self.dt = None self.tvec = None self.V = None self.N = None def __repr__(self): """ Visualize model parameters when printing. """ return (f'MorrisLecar(C={self.C}, VL={self.VL}, VCa={self.VCa}, VK={self.VK}, ' f'gL={self.gL}, gCa={self.gCa}, gK={self.gK}, V1={self.V1}, V2={self.V2}, ' f'V3={self.V3}, V4={self.V4}, phi={self.phi})') def _system_equations(self, X, t, current): """ Defines the equations of the dynamical system for integration. """ Mss = (1 +
np.tanh((X[0] - self.V1) / self.V2)
numpy.tanh
""" main script for running the code to get sc-gmc nearest neighbors 2021-01-04 """ import glob import numpy as np import pandas as pd import matplotlib.pyplot as plt import aplpy as ap from astropy.io import fits, ascii from astropy.coordinates import SkyCoord, search_around_sky from astropy.table import Table from astropy.wcs import WCS import astropy.units as u import sys sys.path.append('/cherokee1/turner/phangs/cf/utils') from utils import * import matplotlib # non-interactive plots matplotlib.use('agg') # set path of the data dir data_dir = '/cherokee1/turner/phangs/cf/data/' # read in list of galaxies master_galaxy_list = ascii.read('master_galaxy.list') galaxy_list = ascii.read('galaxy.list') gal_id = galaxy_list['id'] gal_alt_id = galaxy_list['alt_id'] gal_dist = galaxy_list['dist'] mkhist = True # loop through all the galaxies in the list for i in range(len(galaxy_list)): # galaxy props gal_name = gal_id[i] dist = gal_dist[i] print('') print(gal_name) # read in star cluster catalog [class 1 and 2 only for now] sc_cat = fits.open(data_dir + '%s/hst/%s_phangshst_base_catalog.class12.fits'%(gal_name, gal_name))[1].data # grab star cluster positions sc_x, sc_y, = sc_cat['PHANGS_X'], sc_cat['PHANGS_Y'] sc_ra, sc_dec = sc_cat['PHANGS_RA'], sc_cat['PHANGS_DEC'] # grab star cluster ages sc_age = sc_cat['PHANGS_AGE_MINCHISQ'] # read in GMC catalog gmc_cat = fits.open(data_dir + '%s/alma/%s_12m+7m+tp_co21_nativeres_nativenoise_props.fits'%(gal_name, gal_name))[1].data # grab center positions of the GMCs gmc_ra, gmc_dec = gmc_cat['XCTR_DEG'], gmc_cat['YCTR_DEG'] # read in the overlap mask mask_hdu = fits.open(data_dir + '%s/%s_hst_alma_overlap_mask.fits'%(gal_name, gal_name)) mask = mask_hdu[0].data mask_header = mask_hdu[0].header # convert star cluster x,y postions to integer pixels sc_x_int = np.array([int(np.round(x)) for x in sc_x ]) sc_y_int = np.array([int(np.round(y)) for y in sc_y ]) # check if the clusters are within the overlap mask sc_in_mask = np.array([True if mask[y,x] == 1 else False for y,x in zip(sc_y_int, sc_x_int)]) wfalse = np.where(sc_in_mask == False)[0] # drop clusters outside of the mask sc_ra = np.delete(sc_ra, wfalse) sc_dec = np.delete(sc_dec, wfalse) sc_x =
np.delete(sc_x, wfalse)
numpy.delete
import pandas as pd import numpy as np import sys import matplotlib.pyplot as plt import seaborn as sns def plot_conservation(out_path): """ Plotting the fraction of conserved binding sites for Brn2, Ebf2 and Onecut2, based on multiGPS and edgeR results from Aydin et al., 2019 (Nature Neurosciece: PMID 31086315) Parameters: out_path: Filepath prefix for output bar plots (Manuscript Fig. 6A) Returns: None """ # Defining the dataFrames using multiGPS and edgeR results \ # from Aydin et al., (2019) Nat. Neuroscience. # Brn2 brn2 = pd.DataFrame([['shared', 6776], ['iA>iN', 2432], ['iN>iA', 1242]], columns=['category', '#']) brn2['#'] = brn2['#']/np.sum(brn2['#']) # Ebf2 ebf2 = pd.DataFrame([['shared', 23331], ['iA>iN', 10687], ['iN>iA', 7921]], columns=['category', '#']) ebf2['#'] = ebf2['#']/np.sum(ebf2['#']) # Onecut2 onecut2 = pd.DataFrame([['shared', 45416], ['iA>iN', 4622], ['iN>iA', 2965]], columns=['category', '#']) onecut2['#'] = onecut2['#']/np.sum(onecut2['#']) # plot bar plots sns.set_style('ticks') fig, ax = plt.subplots() plt.subplot(1, 3, 1) plt.bar([0, 1, 2], onecut2['#'], width=0.5, color='#687466') plt.yticks(fontsize=12) plt.ylim(0, 1) # plt.subplot(1, 3, 2) plt.bar([0, 1, 2], brn2['#'], width=0.5, color='#cd8d7b') plt.yticks(fontsize=12) plt.ylim(0, 1) # plt.subplot(1, 3, 3) plt.bar([0, 1, 2], ebf2['#'], width=0.5, color='#fbc490') plt.yticks(fontsize=12) plt.ylim(0, 1) # sns.despine() fig.tight_layout() fig.set_size_inches(6, 4) plt.savefig(out_path + 'Fig_6a.pdf') def plot_embeddings(data_path, outpath): """ Plot 2-D latent embeddings for Brn2, Ebf2 and Onecut2. Parameters: data_path: Input file paths (N rows * 2 columns) storing the 2-D co-ordinates for each binding site in the latent space. The embeddings must be derived using latent_embeddings/get_latent_embeddings.py Note: This function assumes that the files are saved with an \ ".embedding.txt" extension. Provide only the prefix as an argument. For example, if the 2-D embedding is stored in "~/Prefix/Oct4.embedding.txt", call function as: plot_embeddings("~/Prefix/Oct4") outpath: Output file path. Returns: None """ transcription_factors = ['Brn2', 'Ebf2', 'Onecut2'] for tf in transcription_factors: dat =
np.loadtxt(data_path + tf + '.embedding.txt')
numpy.loadtxt
""" Set of tools to postprocess the DEMs: statistics calculations, coregistration, filtering etc """ from __future__ import annotations import concurrent.futures import multiprocessing as mp import os import threading from glob import glob from typing import Callable import cv2 import geoutils as gu import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd import xdem from skimage.morphology import disk from tqdm import tqdm # Turn off imshow's interpolation to avoid gaps spread in plots plt.rcParams["image.interpolation"] = "none" def calculate_stats(ddem, roi_mask, stable_mask): """ Returns main statistics of ddem: fraction of coverage over glacier, number of obs, NMAD and median dh over stable terrain Warning: ddems may contain NaNs on top of nodata values. """ # Get array of valid data (no nodata, no nan) and mask data, mask = gu.spatial_tools.get_array_and_mask(ddem) # Make sure input masks are 2D roi_mask = roi_mask.squeeze() stable_mask = stable_mask.squeeze() # Calculate coverage over glaciers nobs = np.sum(~mask[roi_mask]) ntot = np.sum(roi_mask) roi_coverage = nobs / ntot # Calculate statistics in stable terrain nstable = np.sum(~mask[stable_mask]) nmad_stable = xdem.spatialstats.nmad(data[stable_mask]) med_stable = np.nanmedian(data[stable_mask]) return roi_coverage, nstable, med_stable, nmad_stable def nmad_filter( dh_array: np.ndarray, inlier_mask: np.ndarray, nmad_factor: float = 5, max_iter: int = 20, verbose: bool = False ) -> np.ndarray: """ Iteratively remove pixels where the elevation difference (dh_array) in stable terrain (inlier_mask) is larger \ than nmad_factor * NMAD. Iterations will stop either when the NMAD change is less than 0.1, or after max_iter iterations. :params dh_array: 2D array of elevation difference. :params inlier_mask: 2D boolean array of areas to include in the analysis (inliers=True). :param nmad_factor: The factor by which the stable dh NMAD has to be multiplied to calculate the outlier threshold :param max_iter: Maximum number of iterations (normally not reached, just for safety) :param verbose: set to True to print some statistics to screen. :returns: 2D boolean array with updated inliers set to True """ # Mask unstable terrain dh_stable = dh_array.copy() dh_stable.mask[~inlier_mask] = True nmad_before = xdem.spatialstats.nmad(dh_stable) if verbose: print(f"NMAD before: {nmad_before:.2f}") print("Iteratively remove large outliers") # Iteratively remove large outliers for i in range(max_iter): outlier_threshold = nmad_factor * nmad_before dh_stable.mask[np.abs(dh_stable) > outlier_threshold] = True nmad_after = xdem.spatialstats.nmad(dh_stable) if verbose: print(f"Remove pixels where abs(value) > {outlier_threshold:.2f} -> New NMAD: {nmad_after:.2f}") # If NMAD change is loweer than a set threshold, stop iterations, otherwise stop after max_iter if nmad_before - nmad_after < 0.1: break nmad_before = nmad_after return ~dh_stable.mask def spatial_filter_ref(ref_dem: np.ndarray, src_dem: np.ndarray, radius_pix: float, dh_thresh: float) -> np.ndarray: """ Masks all values where src_dem < min_ref - dh_thresh & src_dem > max_ref + dh_thresh. where min_ref and max_ref are the min/max elevation of ref_dem within radius. :param ref_dem: 2D array containing the reference elevation. :param src_dem: 2D array containing the DEM to be filtered, of same size as ref_dem. :param radius_pix: the radius of the disk where to calculate min/max ref elevation. :param dh_thresh: the second elevation can be this far below/above the min/max ref elevation. :returns: a boolean 2D array set to True for pixels to be masked """ # Sanity check assert ref_dem.shape == src_dem.shape, "Input arrays have different shape" assert
np.ndim(ref_dem)
numpy.ndim
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for running legacy optimizer code with DistributionStrategy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy from tensorflow.python.data.ops import dataset_ops from tensorflow.python.distribute import combinations from tensorflow.python.distribute import reduce_util from tensorflow.python.distribute import strategy_combinations from tensorflow.python.distribute import strategy_test_lib from tensorflow.python.distribute.single_loss_example import batchnorm_example from tensorflow.python.distribute.single_loss_example import minimize_loss_example from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.keras.distribute import optimizer_combinations from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import control_flow_v2_toggles from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables as variables_lib from tensorflow.python.ops.losses import losses_impl from tensorflow.python.platform import test VAR_MAP_V1 = { "GradientDescent": ("dense/kernel", "dense/bias"), "Adagrad": ("dense/kernel/Adagrad", "dense/kernel", "dense/bias/Adagrad", "dense/bias"), "Ftrl": ("dense/kernel/Ftrl", "dense/kernel", "dense/bias/Ftrl", "dense/bias", "dense/kernel/Ftrl_1", "dense/bias/Ftrl_1"), "RMSProp": ("dense/kernel", "dense/bias/RMSProp", "dense/bias/RMSProp_1", "dense/bias", "dense/kernel/RMSProp_1", "dense/kernel/RMSProp") } VAR_MAP_V2 = { "SGD": ("dense/bias", "SGD/learning_rate", "SGD/decay", "SGD/iter", "dense/kernel", "SGD/momentum"), "Adagrad": ("Adagrad/iter", "dense/bias", "dense/kernel", "Adagrad/learning_rate", "Adagrad/decay", "Adagrad/dense/kernel/accumulator", "Adagrad/dense/bias/accumulator") } class MinimizeLossStepTest(test.TestCase, parameterized.TestCase): def _get_iterator(self, strategy, input_fn): iterator = strategy.make_input_fn_iterator(lambda _: input_fn()) self.evaluate(iterator.initializer) return iterator @combinations.generate( combinations.times( optimizer_combinations.distributions_and_v1_optimizers(), combinations.combine(mode=["graph"], use_callable_loss=[True, False]) + combinations.combine(mode=["eager"], use_callable_loss=[True])) + combinations.times( optimizer_combinations.distributions_and_v2_optimizers(), combinations.combine( mode=["graph", "eager"], use_callable_loss=[True])) + combinations.combine( distribution=[strategy_combinations.tpu_strategy], optimizer_fn=optimizer_combinations.optimizers_v2, mode=["graph"], use_callable_loss=[True]) + combinations.combine( distribution=[strategy_combinations.tpu_strategy], optimizer_fn=optimizer_combinations.optimizers_v1, mode=["graph"], use_callable_loss=[True, False])) def testTrainNetwork(self, distribution, optimizer_fn, use_callable_loss): with distribution.scope(): optimizer = optimizer_fn() model_fn, dataset_fn, layer = minimize_loss_example( optimizer, use_bias=True, use_callable_loss=use_callable_loss) def step_fn(ctx, inputs): del ctx # Unused return distribution.group( distribution.extended.call_for_each_replica( model_fn, args=(inputs,))) iterator = self._get_iterator(distribution, dataset_fn) def run_step(): return distribution.extended.experimental_run_steps_on_iterator( step_fn, iterator, iterations=2).run_op if not context.executing_eagerly(): with self.cached_session() as sess: run_step = sess.make_callable(run_step()) self.evaluate(variables_lib.global_variables_initializer()) weights, biases = [], [] for _ in range(5): run_step() weights.append(self.evaluate(layer.kernel)) biases.append(self.evaluate(layer.bias)) error = abs(numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1) is_not_increasing = all(y <= x for x, y in zip(error, error[1:])) self.assertTrue(is_not_increasing) @combinations.generate( combinations.times( optimizer_combinations.distributions_and_v1_optimizers(), combinations.combine(mode=["graph"], use_callable_loss=[True, False]) + combinations.combine(mode=["eager"], use_callable_loss=[True])) + combinations.times( optimizer_combinations.distributions_and_v2_optimizers(), combinations.combine( mode=["graph", "eager"], use_callable_loss=[True]))) def testTrainNetworkByCallForEachReplica(self, distribution, optimizer_fn, use_callable_loss): with distribution.scope(): optimizer = optimizer_fn() model_fn, dataset_fn, layer = minimize_loss_example( optimizer, use_bias=True, use_callable_loss=use_callable_loss) iterator = self._get_iterator(distribution, dataset_fn) def run_step(): return distribution.group( distribution.extended.call_for_each_replica( model_fn, args=(iterator.get_next(),))) if not context.executing_eagerly(): with self.cached_session() as sess: run_step = sess.make_callable(run_step()) self.evaluate(variables_lib.global_variables_initializer()) weights, biases = [], [] for _ in range(10): run_step() weights.append(self.evaluate(layer.kernel)) biases.append(self.evaluate(layer.bias)) error = abs(numpy.add(numpy.squeeze(weights),
numpy.squeeze(biases)
numpy.squeeze
# ============================================================================ # 第八章 コージェネレーション設備 # Ver.12(エネルギー消費性能計算プログラム(住宅版)Ver.02.04~) # ============================================================================ import numpy as np import pyhees.section4_7 as hwh import pyhees.section7_1 as dhw import pyhees.section8_a as spec import pyhees.section8_d as bb_dhw import pyhees.section8_e as bb_hwh from pyhees.section11_1 import load_outdoor, get_Theta_ex # ============================================================================ # 5. ガス消費量 # ============================================================================ def calc_E_G_CG_d_t(bath_function, CG, E_E_dmd_d_t, L_dashdash_k_d_t, L_dashdash_w_d_t, L_dashdash_s_d_t, L_dashdash_b1_d_t, L_dashdash_b2_d_t, L_dashdash_ba1_d_t, L_dashdash_ba2_d_t, H_HS, H_MR, H_OR, A_A, A_MR, A_OR, region, mode_MR, mode_OR, L_T_H_rad): """1時間当たりのコージェネレーション設備のガス消費量 (1) Args: bath_function(str): ふろ機能の種類 CG(dict): コージェネレーション設備の仕様 E_E_dmd_d_t(ndarray): 1時間当たりの電力需要 (kWh/h) L_dashdash_k_d_t(ndarray): 1時間当たりの台所水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_w_d_t(ndarray): 1時間当たりの洗面水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_b2_d_t(ndarray): 1時間当たりの浴槽自動追焚時における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_ba2_d_t(ndarray): 1時間当たりの浴槽追焚の太陽熱補正給湯熱負荷 (MJ/h) H_HS: param H_MR: H_OR: param A_A: A_MR: param A_OR: region: param mode_MR: mode_OR: param L_T_H_rad: H_MR: A_A: A_OR: mode_MR: L_T_H_rad: Returns: tuple: 1時間当たりのコージェネレーション設備の一次エネルギー消費量及び1時間当たりのコージェネレーション設備による発電量 """ # ----- パラメータの取得 ----- if 'CG_category' in CG: # 温水暖房への排熱利用 exhaust = spec.get_exhaust(CG['CG_category']) # 排熱利用方式 exhaust_priority = spec.get_exhaust_priority(CG['CG_category']) # バックアップボイラー(給湯)の給湯機の効率 e_rtd_DHW_BB = spec.get_e_rtd_BB_DHW(CG['CG_category']) # バックアップボイラー(給湯、温水暖房)の種類 type_BB_HWH = spec.get_type_BB_HWH(CG['CG_category']) # バックアップボイラー(温水暖房)の定格効率 e_rtd_BB_HWH = spec.get_e_rtd_BB_HWH(CG['CG_category']) # バックアップボイラー(温水暖房)の定格能力 (W) q_rtd_BB_HWH = spec.get_q_rtd_BB_HWH(CG['CG_category']) # 発電ユニットの給湯排熱利用率 r_DHW_gen_PU_d = spec.get_r_DHW_gen_PU_d(CG['CG_category']) # 発電ユニットの温水暖房排熱利用率 r_HWH_gen_PU_d = spec.get_r_HWH_gen_PU_d(CG['CG_category']) # 発電ユニットの発電方式 PU_type = spec.get_PU_type(CG['CG_category']) # 発電ユニットの発電量推定時の仮想発電量のパラメータ a_PU, a_DHW, a_HWH, b, c param_E_E_gen_PU_Evt_d = spec.get_param_E_E_gen_PU_EVt_d(CG['CG_category']) # 発電ユニットの排熱量推定時の仮想燃料消費量を求める係数 param_E_F_PU_HVt_d = spec.get_param_E_F_PU_HVt_d(CG['CG_category']) # 発電ユニットの排熱量推定時の仮想排熱量の上限比を求める係数 a_DHW, a_HWH, b param_r_H_gen_PU_HVt_d = spec.get_param_r_H_gen_PU_HVt_d(CG['CG_category']) # 発電ユニットの日平均発電効率を求める係数 a_PU, a_DHW, a_HWH, b, 上限値, 下限値 param_e_E_PU_d = spec.get_param_e_E_PU_d(CG['CG_category']) # 発電ユニットの日平均排熱効率を求める係数 a_PU, a_DHW, a_HWH, b, 上限値, 下限値 param_e_H_PU_d = spec.get_param_e_H_PU_d(CG['CG_category']) # 定格発電出力 (W) P_rtd_PU = spec.get_P_rtd_PU(CG['CG_category']) # タンクユニットの補機消費電力 (給湯) P_TU_aux_DHW = spec.get_P_TU_aux_DHW(CG['CG_category']) # タンクユニットの補機消費電力 (温水暖房) P_TU_aux_HWH = spec.get_P_TU_aux_HWH(CG['CG_category']) # 逆潮流の評価 has_CG_reverse = CG['reverse'] if 'reverse' in CG else False else: # 温水暖房への排熱利用 exhaust = CG['exhaust'] # 排熱利用方式 exhaust_priority = CG['exhaust_priority'] # バックアップボイラー(給湯、温水暖房)の種類 type_BB_HWH = CG['type_BB_HWH'] # 付録D,Eより if type_BB_HWH == 'ガス従来型' or type_BB_HWH == 'G_NEJ': # バックアップボイラー(給湯)の給湯機の効率 e_rtd_DHW_BB = 0.782 # バックアップボイラー(温水暖房)の定格効率 e_rtd_BB_HWH = 0.82 # バックアップボイラー(温水暖房)の定格能力 (W) q_rtd_BB_HWH = 17400 elif type_BB_HWH == 'ガス潜熱回収型' or type_BB_HWH == 'G_EJ': # バックアップボイラー(給湯)の給湯機の効率 e_rtd_DHW_BB = 0.905 # バックアップボイラー(温水暖房)の定格効率 e_rtd_BB_HWH = 0.87 # バックアップボイラー(温水暖房)の定格能力 (W) q_rtd_BB_HWH = 17400 else: raise ValueError(type_BB_HWH) # 発電ユニットの給湯排熱利用率 r_DHW_gen_PU_d = CG['r_DHW_gen_PU_d'] # 発電ユニットの温水暖房排熱利用率 r_HWH_gen_PU_d = CG['r_HWH_gen_PU_d'] # 発電ユニットの発電方式 if 'PU_type' in CG: # 発電ユニットの発電方式 PU_type = CG['PU_type'] else: # 付録A コージェネレーション設備の仕様 if CG['CG_category_param'] == 'PEFC': CG_category = 'PEFC2' elif CG['CG_category_param'] == 'SOFC': CG_category = 'SOFC1' elif CG['CG_category_param'] == 'GEC': CG_category = 'GEC1' else: raise ValueError(CG['CG_category_param']) PU_type = spec.get_PU_type(CG_category) # 発電ユニットの発電量推定時の仮想発電量のパラメータ a_PU, a_DHW, a_HWH, b, c param_E_E_gen_PU_Evt_d = CG['param_E_E_gen_PU_Evt_d'] # 発電ユニットの排熱量推定時の仮想燃料消費量を求める係数 if 'param_E_F_PU_HVt_d' in CG: param_E_F_PU_HVt_d = CG['param_E_F_PU_HVt_d'] # 発電ユニットの排熱量推定時の仮想排熱量の上限比を求める係数 a_DHW, a_HWH, b if 'param_r_H_gen_PU_HVt_d' in CG: param_r_H_gen_PU_HVt_d = CG['param_r_H_gen_PU_HVt_d'] # 発電ユニットの日平均発電効率を求める係数 a_PU, a_DHW, a_HWH, b, 上限値, 下限値 param_e_E_PU_d = CG['param_e_E_PU_d'] # 発電ユニットの日平均排熱効率を求める係数 a_PU, a_DHW, a_HWH, b, 上限値, 下限値 param_e_H_PU_d = CG['param_e_H_PU_d'] # 定格発電出力 (W) P_rtd_PU = CG['P_rtd_PU'] # タンクユニットの補機消費電力 (給湯) P_TU_aux_DHW = CG['P_TU_aux_DHW'] # タンクユニットの補機消費電力 (温水暖房) P_TU_aux_HWH = CG['P_TU_aux_HWH'] # 逆潮流の評価 has_CG_reverse = CG['reverse'] if 'reverse' in CG else False # ----- 温水暖房用熱源機の負荷および温水供給運転率の計算 ----- if H_HS is not None and H_HS['type'] == 'コージェネレーションを使用する': # 主たる居室、その他の居室という単位で設定された放熱機器を暖房区画ごとの配列に変換 rad_list = hwh.get_rad_list(H_MR, H_OR) # 温水暖房用熱源機の往き温水温度 Theta_SW_hs_op = hwh.get_Theta_SW_hs_op(type_BB_HWH) p_hs = hwh.calc_p_hs_d_t(Theta_SW_hs_op, rad_list, L_T_H_rad, A_A, A_MR, A_OR, region, mode_MR, mode_OR) Theta_SW_d_t = hwh.get_Theta_SW_d_t(Theta_SW_hs_op, p_hs) # 1時間当たりの温水暖房の熱負荷 (MJ/h) L_HWH_d_t = hwh.calc_Q_dmd_H_hs_d_t(rad_list, H_HS['pipe_insulation'], H_HS['underfloor_pipe_insulation'], Theta_SW_d_t, A_A, A_MR, A_OR, region, mode_MR, mode_OR, L_T_H_rad) # 処理暖房負荷 Q_T_H_rad = np.zeros((5, 24 * 365)) for i in [1, 3, 4, 5]: if rad_list[i - 1] is None: continue # 1時間当たりの暖冷房区画iに設置された放熱器の最大暖房出力 A_HCZ = hwh.calc_A_HCZ_i(i, A_A, A_MR, A_OR) R_type = '主たる居室' if i == 1 else 'その他の居室' mode = mode_MR if i == 1 else mode_OR Q_max_H_rad_d_t_i = hwh.calc_Q_max_H_rad_d_t_i(rad_list[i - 1], A_HCZ, Theta_SW_d_t, region, mode, R_type) # 1時間当たりの暖冷房区画iに設置された放熱器の処理暖房負荷 Q_T_H_rad[i - 1, :] = hwh.calc_Q_T_H_rad_d_t_i(Q_max_H_rad_d_t_i, L_T_H_rad[i - 1]) # 温水暖房用熱源機の温水供給運転率 r_WS_HWH_d_t = hwh.calc_r_WS_hs_d_t(rad_list, L_HWH_d_t, Q_T_H_rad, Theta_SW_d_t, region, A_A, A_MR, A_OR, mode_MR) # 戻り温水温度 (9) Theta_RW_hs = hwh.calc_Theta_RW_hs_d_t(Theta_SW_d_t, rad_list, H_HS['pipe_insulation'], H_HS['underfloor_pipe_insulation'], A_A, A_MR, A_OR, region, mode_MR, mode_OR, L_T_H_rad) # 定格能力の計算のためのパラメータの取得 rad_types = hwh.get_rad_type_list() has_MR_hwh = H_MR['type'] in rad_types if H_OR is not None: has_OR_hwh = H_OR['type'] in rad_types else: has_OR_hwh = False else: L_HWH_d_t = np.zeros(24 * 365) P_TU_aux_HWH =
np.zeros(24 * 365)
numpy.zeros
from typing import Text, Dict, List, Optional import numpy as np import pytest from rasa.core.featurizers.single_state_featurizer import SingleStateFeaturizer from rasa.core.featurizers.single_state_featurizer import ( IntentTokenizerSingleStateFeaturizer, ) from rasa.core.featurizers.tracker_featurizers import ( TrackerFeaturizer as TrackerFeaturizer, ) from rasa.core.featurizers.tracker_featurizers import MaxHistoryTrackerFeaturizer from rasa.core.featurizers.tracker_featurizers import IntentMaxHistoryTrackerFeaturizer from rasa.core.featurizers.tracker_featurizers import FullDialogueTrackerFeaturizer from rasa.shared.core.domain import Domain from tests.core.utilities import user_uttered from rasa.shared.nlu.training_data.features import Features from rasa.shared.nlu.constants import INTENT, ACTION_NAME from rasa.shared.core.constants import ( ACTION_LISTEN_NAME, ACTION_UNLIKELY_INTENT_NAME, USER, PREVIOUS_ACTION, ) from rasa.shared.core.events import ActionExecuted from rasa.shared.core.trackers import DialogueStateTracker from rasa.utils.tensorflow.constants import LABEL_PAD_ID from rasa.core.exceptions import InvalidTrackerFeaturizerUsageError def test_fail_to_load_non_existent_featurizer(): assert TrackerFeaturizer.load("non_existent_class") is None def test_persist_and_load_tracker_featurizer(tmp_path: Text, moodbot_domain: Domain): state_featurizer = SingleStateFeaturizer() state_featurizer.prepare_for_training(moodbot_domain) tracker_featurizer = MaxHistoryTrackerFeaturizer(state_featurizer) tracker_featurizer.persist(tmp_path) loaded_tracker_featurizer = TrackerFeaturizer.load(tmp_path) assert loaded_tracker_featurizer is not None assert loaded_tracker_featurizer.state_featurizer is not None def test_convert_action_labels_to_ids(domain: Domain): trackers_as_actions = [ ["utter_greet", "utter_channel"], ["utter_greet", "utter_default", "utter_goodbye"], ] tracker_featurizer = TrackerFeaturizer() actual_output = tracker_featurizer._convert_labels_to_ids( trackers_as_actions, domain ) expected_output = np.array( [ np.array( [ domain.action_names_or_texts.index("utter_greet"), domain.action_names_or_texts.index("utter_channel"), ], ), np.array( [ domain.action_names_or_texts.index("utter_greet"), domain.action_names_or_texts.index("utter_default"), domain.action_names_or_texts.index("utter_goodbye"), ], ), ], ) assert expected_output.size == actual_output.size for expected_array, actual_array in zip(expected_output, actual_output): assert np.all(expected_array == actual_array) def test_convert_intent_labels_to_ids(domain: Domain): trackers_as_intents = [ ["next_intent", "nlu_fallback", "out_of_scope", "restart"], ["greet", "hello", "affirm"], ] tracker_featurizer = IntentMaxHistoryTrackerFeaturizer() actual_labels = tracker_featurizer._convert_labels_to_ids( trackers_as_intents, domain ) expected_labels = np.array( [ [ domain.intents.index("next_intent"), domain.intents.index("nlu_fallback"), domain.intents.index("out_of_scope"), domain.intents.index("restart"), ], [ domain.intents.index("greet"), domain.intents.index("hello"), domain.intents.index("affirm"), LABEL_PAD_ID, ], ], ) assert expected_labels.size == actual_labels.size assert expected_labels.shape == actual_labels.shape assert np.all(expected_labels == actual_labels) def test_featurize_trackers_raises_on_missing_state_featurizer(domain: Domain): tracker_featurizer = TrackerFeaturizer() with pytest.raises(InvalidTrackerFeaturizerUsageError): tracker_featurizer.featurize_trackers([], domain, precomputations=None) def compare_featurized_states( states1: List[Dict[Text, List[Features]]], states2: List[Dict[Text, List[Features]]] ) -> bool: """Compares two lists of featurized states and returns True if they are identical and False otherwise. """ if len(states1) != len(states2): return False for state1, state2 in zip(states1, states2): if state1.keys() != state2.keys(): return False for key in state1.keys(): for feature1, feature2 in zip(state1[key], state2[key]): if np.any((feature1.features != feature2.features).toarray()): return False if feature1.origin != feature2.origin: return False if feature1.attribute != feature2.attribute: return False if feature1.type != feature2.type: return False return True def test_featurize_trackers_with_full_dialogue_tracker_featurizer( moodbot_tracker: DialogueStateTracker, moodbot_domain: Domain, moodbot_features: Dict[Text, Dict[Text, Features]], ): state_featurizer = SingleStateFeaturizer() tracker_featurizer = FullDialogueTrackerFeaturizer(state_featurizer) actual_features, actual_labels, entity_tags = tracker_featurizer.featurize_trackers( [moodbot_tracker], moodbot_domain, precomputations=None, ) expected_features = [ [ {}, { ACTION_NAME: [moodbot_features["actions"][ACTION_LISTEN_NAME]], INTENT: [moodbot_features["intents"]["greet"]], }, {ACTION_NAME: [moodbot_features["actions"]["utter_greet"]]}, { ACTION_NAME: [moodbot_features["actions"][ACTION_LISTEN_NAME]], INTENT: [moodbot_features["intents"]["mood_unhappy"]], }, {ACTION_NAME: [moodbot_features["actions"]["utter_cheer_up"]]}, {ACTION_NAME: [moodbot_features["actions"]["utter_did_that_help"]]}, { ACTION_NAME: [moodbot_features["actions"][ACTION_LISTEN_NAME]], INTENT: [moodbot_features["intents"]["deny"]], }, ] ] assert actual_features is not None assert len(actual_features) == len(expected_features) for actual, expected in zip(actual_features, expected_features): assert compare_featurized_states(actual, expected) expected_labels = np.array([[0, 16, 0, 13, 14, 0, 15]]) assert actual_labels is not None assert len(actual_labels) == 1 for actual, expected in zip(actual_labels, expected_labels): assert np.all(actual == expected) # moodbot doesn't contain e2e entities assert not any([any(turn_tags) for turn_tags in entity_tags]) def test_trackers_ignore_action_unlikely_intent_with_full_dialogue_tracker_featurizer( moodbot_domain: Domain, moodbot_features: Dict[Text, Dict[Text, Features]], ): tracker = DialogueStateTracker.from_events( "default", [ ActionExecuted(ACTION_LISTEN_NAME), user_uttered("greet"), ActionExecuted(ACTION_UNLIKELY_INTENT_NAME), ActionExecuted("utter_greet"), ActionExecuted(ACTION_LISTEN_NAME), user_uttered("mood_unhappy"), ActionExecuted(ACTION_UNLIKELY_INTENT_NAME), ActionExecuted("utter_cheer_up"), ActionExecuted("utter_did_that_help"), ActionExecuted(ACTION_LISTEN_NAME), user_uttered("deny"), ActionExecuted(ACTION_UNLIKELY_INTENT_NAME), ActionExecuted("utter_goodbye"), ], domain=moodbot_domain, ) state_featurizer = SingleStateFeaturizer() tracker_featurizer = FullDialogueTrackerFeaturizer(state_featurizer) actual_features, actual_labels, entity_tags = tracker_featurizer.featurize_trackers( [tracker], moodbot_domain, precomputations=None, ignore_action_unlikely_intent=True, ) expected_features = [ [ {}, { ACTION_NAME: [moodbot_features["actions"][ACTION_LISTEN_NAME]], INTENT: [moodbot_features["intents"]["greet"]], }, {ACTION_NAME: [moodbot_features["actions"]["utter_greet"]]}, { ACTION_NAME: [moodbot_features["actions"][ACTION_LISTEN_NAME]], INTENT: [moodbot_features["intents"]["mood_unhappy"]], }, {ACTION_NAME: [moodbot_features["actions"]["utter_cheer_up"]]}, {ACTION_NAME: [moodbot_features["actions"]["utter_did_that_help"]]}, { ACTION_NAME: [moodbot_features["actions"][ACTION_LISTEN_NAME]], INTENT: [moodbot_features["intents"]["deny"]], }, ] ] assert actual_features is not None assert len(actual_features) == len(expected_features) for actual, expected in zip(actual_features, expected_features): assert compare_featurized_states(actual, expected) expected_labels = np.array([[0, 16, 0, 13, 14, 0, 15]]) assert actual_labels is not None assert len(actual_labels) == 1 for actual, expected in zip(actual_labels, expected_labels): assert
np.all(actual == expected)
numpy.all
import os, fnmatch, sys, traceback, re import dill as pickle import scipy.interpolate as interp import scipy.optimize as opti import scipy.constants as constants import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import bead_util as bu import configuration as config import transfer_func_util as tf import iminuit plt.rcParams.update({'font.size': 14}) file_dict = {} arr = [] ### FIRST BEAD ON ATTRACTOR arr.append('/data/20190122/bead1/weigh/high_pressure_neg_0.5Hz_4pp') arr.append('/data/20190122/bead1/weigh/low_pressure_neg_0.5Hz_4pp') arr.append(['/data/20190122/bead1/weigh/low_pressure_pos_0.5Hz_4pp_2', \ '/data/20190122/bead1/weigh/low_pressure_pos_0.5Hz_4pp_3']) file_dict['20190122'] = (arr, 5, 7) arr = [] ### SECOND BEAD ON ATTRACTOR arr.append('/data/20190123/bead2/weigh/high_pressure_neg_0.5Hz_4pp') arr.append('/data/20190123/bead2/weigh/low_pressure_neg_0.5Hz_4pp') arr.append('/data/20190123/bead2/weigh/low_pressure_pos_0.5Hz_4pp') file_dict['20190123'] = (arr, 5, 7) arr = [] ### THIRD BEAD ON ATTRACTOR arr.append('/data/20190124/bead2/weigh/high_pressure_neg_0.5Hz_4pp') arr.append('/data/20190124/bead2/weigh/low_pressure_neg_0.5Hz_4pp') arr.append('/data/20190124/bead2/weigh/low_pressure_pos_0.5Hz_4pp') file_dict['20190124'] = (arr, 5, 7) arr = [] ### arr.append('/data/old_trap/20200307/gbead1/weigh_2/4Vpp_lowp_0') # arr.append('/data/old_trap/20200307/gbead1/weigh/6Vpp_lowp_0') file_dict['20200307'] = (arr, 1, 0) arr = [] ### arr.append('/data/old_trap/20200322/gbead1/weigh/4Vpp_neg') arr.append('/data/old_trap/20200322/gbead1/weigh/6Vpp_neg') arr.append('/data/old_trap/20200322/gbead1/weigh/8Vpp_neg') file_dict['20200322'] = (arr, 1, 0) arr = [] ### # arr.append('/data/old_trap/20200327/gbead1/weigh/4Vpp_neg_lowp') # arr.append('/data/old_trap/20200327/gbead1/weigh/6Vpp_neg_lowp') arr.append('/data/old_trap/20200327/gbead1/weigh/8Vpp_neg_lowp') file_dict['20200327'] = (arr, 1, 0) arr = [] ### # arr.append('/data/old_trap/20200330/gbead3/weigh/6Vpp_neg_lowp') arr.append('/data/old_trap/20200330/gbead3/weigh/8Vpp_neg_lowp') file_dict['20200330'] = (arr, 1, 0) arr = [] ### arr.append('/data/old_trap/20200721/bead2/weigh/4Vpp_lowp_neg_1') arr.append('/data/old_trap/20200721/bead2/weigh/6Vpp_lowp_neg_1') file_dict['20200721'] = (arr, 1, 0) arr = [] ### arr.append('/data/old_trap/20200727/bead1/weigh/4Vpp_lowp_neg') arr.append('/data/old_trap/20200727/bead1/weigh/6Vpp_lowp_neg') file_dict['20200727'] = (arr, 1, 0) file_dict = {'20200727': (arr, 1, 0)} arr = [] ### arr.append('/data/old_trap/20200924/bead1/weigh/4Vpp_lowp_neg') arr.append('/data/old_trap/20200924/bead1/weigh/6Vpp_lowp_neg') file_dict['20200924'] = (arr, 2, 1) file_dict = {'20200924': (arr, 2, 1)} arr = [] ### arr.append('/data/old_trap/20201030/bead1/weigh/6Vpp_lowp_neg') file_dict['20201030'] = (arr, 2, 1) file_dict = {'20201030': (arr, 2, 1)} arr = [] ### arr.append('/data/old_trap/20201222/gbead1/weigh/8Vpp_lowp_neg') file_dict['20201222'] = (arr, 2, 0) file_dict = {'20201222': (arr, 2, 0)} # xlim = (-10, 100) xlim = (-40, 450) # arr = [] ### # arr.append('/data/new_trap/20200320/Bead1/Mass/derp') # file_dict['20200320'] = (arr, 1, 0) # file_dict = {'20200320': (arr, 1, 0)} manual_charge = 0 # manual_charge = 25 # Noise data #chopper = True noise = False n_noise = 7 noise_dirs = ['/data/20181211/bead2/weigh/noise/no_charge_0.5Hz_4pp', \ '/data/20181211/bead2/weigh/noise/no_drive', \ '/data/20181213/bead1/weigh/noise/no_charge_0.5Hz_4pp', \ '/data/20181213/bead1/weigh/noise/no-bead_0.5Hz_4pp', \ '/data/20181213/bead1/weigh/noise/no-bead_0.5Hz_4pp_pd-blocked', \ '/data/20181213/bead1/weigh/noise/no-bead_zfb-inject', \ '/data/20181213/bead1/weigh/noise/no-bead_zfb-inject_pd-blocked'] # new_trap = True new_trap = False #r_divider = 50000.0 / (3000.0 + 50000.0) r_divider = 1.0 mon_fac = r_divider**(-1) * 100.0 # Tabor amplifier monitor is 100:1 sign = -1.0 # sign = 1.0 trans_gain = 100e3 # V/A pd_gain = 0.25 # A/W # line_filter_trans = 0.45 line_filter_trans = 1 # bs_fac = 0.01 bs_fac = 0.09 maxfiles = 1000 # Many more than necessary lpf = 2500 # Hz file_inds = (0, 500) userNFFT = 2**12 diag = False save = False fullNFFT = False correct_phase_shift = False save_mass = False print_res = True plot = True save_example = False example_filename = '/home/cblakemore/plots/weigh_beads/example_extrapolation.png' # upper_outlier = 95e-15 # in kg # upper_outlier = 95e-13 upper_outlier = 600e-15 lower_outlier = 70e-15 # lower_outlier = 1e-15 try: allres_dict = pickle.load(open('./allres.p', 'rb')) except: allres_dict = {} try: overall_mass_dict = pickle.load(open('./overall_masses.p', 'rb')) except: overall_mass_dict = {} ########################################################### def line(x, a, b): return a * x + b def weigh_bead_efield(files, elec_ind, pow_ind, colormap='plasma', sort='time',\ file_inds=(0,10000), plot=True, print_res=False, pos=False, \ save_mass=False, new_trap=False, correct_phase_shift=False): '''Loops over a list of file names, loads each file, diagonalizes, then plots the amplitude spectral density of any number of data or cantilever/electrode drive signals INPUTS: files, list of files names to extract data data_axes, list of pos_data axes to plot cant_axes, list of cant_data axes to plot elec_axes, list of electrode_data axes to plot diag, boolean specifying whether to diagonalize OUTPUTS: none, plots stuff ''' date = re.search(r"\d{8,}", files[0])[0] suffix = files[0].split('/')[-2] if new_trap: trap_str = 'new_trap' else: trap_str = 'old_trap' charge_file = '/data/{:s}_processed/calibrations/charges/'.format(trap_str) + date save_filename = '/data/{:s}_processed/calibrations/masses/'.format(trap_str) \ + date + '_' + suffix + '.mass' bu.make_all_pardirs(save_filename) if pos: charge_file += '_recharge.charge' else: charge_file += '.charge' try: nq = np.load(charge_file)[0] found_charge = True except: found_charge = False if not found_charge or manual_charge: user_nq = input('No charge file or manual requested. Guess q: ') nq = int(user_nq) if correct_phase_shift: print('Correcting anomalous phase-shift during analysis.') # nq = -16 print('qbead: {:d} e'.format(int(nq))) q_bead = nq * constants.elementary_charge run_index = 0 masses = [] nfiles = len(files) if not print_res: print("Processing %i files..." % nfiles) all_eforce = [] all_power = [] all_param = [] mass_vec = [] p_ac = [] p_dc = [] e_ac = [] e_dc = [] pressure_vec = [] zamp_avg = 0 zphase_avg = 0 zamp_N = 0 zfb_avg = 0 zfb_N = 0 power_avg = 0 power_N = 0 Nbad = 0 powpsd = [] for fil_ind, fil in enumerate(files):# 15-65 # 4 # if fil_ind == 16 or fil_ind == 4: # continue bu.progress_bar(fil_ind, nfiles) # Load data df = bu.DataFile() try: if new_trap: df.load_new(fil) else: df.load(fil, load_other=True) except Exception: traceback.print_exc() continue try: # df.calibrate_stage_position() df.calibrate_phase() except Exception: traceback.print_exc() continue if ('20181129' in fil) and ('high' in fil): pressure_vec.append(1.5) else: try: pressure_vec.append(df.pressures['pirani']) except Exception: pressure_vec.append(0.0) ### Extract electrode data if new_trap: top_elec = df.electrode_data[1] bot_elec = df.electrode_data[2] else: top_elec = mon_fac * df.other_data[elec_ind] bot_elec = mon_fac * df.other_data[elec_ind+1] fac = 1.0 if np.std(top_elec) < 0.5 * np.std(bot_elec) \ or np.std(bot_elec) < 0.5 * np.std(top_elec): print('Adjusting electric field since only one electrode was digitized.') fac = 2.0 nsamp = len(top_elec) zeros = np.zeros(nsamp) voltages = [zeros, top_elec, bot_elec, zeros, \ zeros, zeros, zeros, zeros] efield = bu.trap_efield(voltages, new_trap=new_trap) eforce2 = fac * sign * efield[2] * q_bead tarr = np.arange(0, df.nsamp/df.fsamp, 1.0/df.fsamp) # fig, axarr = plt.subplots(2,1,sharex=True,figsize=(10,8)) # axarr[0].plot(tarr, top_elec, label='Top elec.') # axarr[0].plot(tarr, bot_elec, label='Bottom elec.') # axarr[0].set_ylabel('Apparent Voltages [V]') # axarr[0].legend(fontsize=12, loc='upper right') # axarr[1].plot(tarr, efield[2]) # axarr[1].set_xlabel('Time [s]') # axarr[1].set_ylabel('Apparent Electric Field [V/m]') # fig.tight_layout() # plt.show() # input() freqs = np.fft.rfftfreq(df.nsamp, d=1.0/df.fsamp) drive_ind = np.argmax(np.abs(np.fft.rfft(eforce2))) drive_freq = freqs[drive_ind] zamp = np.abs( np.fft.rfft(df.zcal) * bu.fft_norm(df.nsamp, df.fsamp) * \ np.sqrt(freqs[1] - freqs[0]) ) zamp *= (1064.0e-9 / 2.0) * (1.0 / (2.9 * np.pi)) zphase = np.angle( np.fft.rfft(df.zcal) ) zamp_avg += zamp[drive_ind] zamp_N += 1 #plt.loglog(freqs, zamp) #plt.scatter(freqs[drive_ind], zamp[drive_ind], s=10, color='r') #plt.show() zfb = np.abs(np.fft.rfft(df.pos_fb[2]) * bu.fft_norm(df.nsamp, df.fsamp) * \ np.sqrt(freqs[1] - freqs[0]) ) zfb_avg += zfb[drive_ind] zfb_N += 1 #eforce2 = (top_elec * e_top_func(0.0) + bot_elec * e_bot_func(0.0)) * q_bead if noise: e_dc.append(np.mean(eforce2)) e_ac_val = np.abs(np.fft.rfft(eforce2))[drive_ind] e_ac.append(e_ac_val * bu.fft_norm(df.nsamp, df.fsamp) \ * np.sqrt(freqs[1] - freqs[0]) ) zphase_avg += (zphase[drive_ind] - np.angle(eforce2)[drive_ind]) if np.sum(df.power) == 0.0: current = np.abs(df.other_data[pow_ind]) / trans_gain else: fac = 1e-6 current = fac * df.power / trans_gain power = current / pd_gain power = power / line_filter_trans power = power / bs_fac power_avg += np.mean(power) power_N += 1 if noise: p_dc.append(np.mean(power)) p_ac_val = np.abs(np.fft.rfft(power))[drive_ind] p_ac.append(p_ac_val * bu.fft_norm(df.nsamp, df.fsamp) \ * np.sqrt(freqs[1] - freqs[0]) ) fft1 = np.fft.rfft(power) fft2 = np.fft.rfft(df.pos_fb[2]) if not len(powpsd): powpsd = np.abs(fft1) Npsd = 1 else: powpsd += np.abs(fft1) Npsd += 1 # freqs = np.fft.rfftfreq(df.nsamp, d=1.0/df.fsamp) # plt.loglog(freqs, np.abs(np.fft.rfft(eforce2))) # plt.loglog(freqs, np.abs(np.fft.rfft(power))) # plt.show() # input() # fig, axarr = plt.subplots(2,1,sharex=True,figsize=(10,8)) # axarr[0].plot(tarr, power) # axarr[0].set_ylabel('Measured Power [Arb.]') # axarr[1].plot(tarr, power) # axarr[1].set_xlabel('Time [s]') # axarr[1].set_ylabel('Measured Power [Arb.]') # bot, top = axarr[1].get_ylim() # axarr[1].set_ylim(1.05*bot, 0) # fig.tight_layout() # plt.show() # input() bins, dat, errs = bu.spatial_bin(eforce2, power, nbins=200, width=0.0, #width=0.05, \ dt=1.0/df.fsamp, harms=[1], \ add_mean=True, verbose=False, \ correct_phase_shift=correct_phase_shift, \ grad_sign=0) dat = dat / np.mean(dat) #plt.plot(bins, dat, 'o') #plt.show() popt, pcov = opti.curve_fit(line, bins*1.0e13, dat, \ absolute_sigma=False, maxfev=10000) test_vals = np.linspace(np.min(eforce2*1.0e13), np.max(eforce2*1.0e13), 100) fit = line(test_vals, *popt) lev_force = -popt[1] / (popt[0] * 1.0e13) mass = lev_force / (9.806) #umass = ulev_force / 9.806 #lmass = llev_force / 9.806 if mass > upper_outlier or mass < lower_outlier: print('Crazy mass: {:0.2f} pg.... ignoring'.format(mass*1e15)) # fig, axarr = plt.subplots(3,1,sharex=True) # axarr[0].plot(eforce2) # axarr[1].plot(power) # axarr[2].plot(df.pos_data[2]) # ylims = axarr[1].get_ylim() # axarr[1].set_ylim(ylims[0], 0) # plt.show() continue all_param.append(popt) all_eforce.append(bins) all_power.append(dat) mass_vec.append(mass) if noise: print('DC power: ', np.mean(p_dc), np.std(p_dc)) print('AC power: ', np.mean(p_ac), np.std(p_ac)) print('DC field: ', np.mean(e_dc), np.std(e_dc)) print('AC field: ', np.mean(e_ac), np.std(e_ac)) return #plt.plot(mass_vec) mean_popt = np.mean(all_param, axis=0) mean_lev =
np.mean(mass_vec)
numpy.mean
#!/usr/bin/env python # Copyright 2021 # author: <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from scipy.stats import ttest_ind import netCDF4 as nc import pickle import os from PIL import Image as PIL_Image import sys import shutil import glob import datetime import time import calendar from numpy import genfromtxt from scipy.optimize import curve_fit from scipy.cluster.vq import kmeans,vq from scipy.interpolate import interpn, interp1d from math import e as e_constant import math import matplotlib.dates as mdates from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm from matplotlib.collections import LineCollection from matplotlib.ticker import (MultipleLocator, NullFormatter, ScalarFormatter) from matplotlib.colors import ListedColormap, BoundaryNorm import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import matplotlib import warnings warnings.filterwarnings("ignore") plt.style.use('classic') # font size # font_size = 14 # matplotlib.rc('font', **{'family': 'serif', 'serif': ['Arial'], 'size': font_size}) # matplotlib.rc('font', weight='bold') p_progress_writing = False SMALL_SIZE = 8 MEDIUM_SIZE = 10 BIGGER_SIZE = 12 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title time_format = '%d-%m-%Y_%H:%M' time_format_khan = '%Y%m%d.0%H' time_format_mod = '%Y-%m-%d_%H:%M:%S' time_format_twolines = '%H:%M\n%d-%m-%Y' time_format_twolines_noYear_noMin_intMonth = '%H\n%d-%m' time_format_twolines_noYear = '%H:%M\n%d-%b' time_format_twolines_noYear_noMin = '%H\n%d-%b' time_format_date = '%Y-%m-%d' time_format_time = '%H:%M:%S' time_format_parsivel = '%Y%m%d%H%M' time_format_parsivel_seconds = '%Y%m%d%H%M%S' time_str_formats = [ time_format, time_format_mod, time_format_twolines, time_format_twolines_noYear, time_format_date, time_format_time, time_format_parsivel ] default_cm = cm.jet cm_vir = cm.viridis listed_cm_colors_list = ['silver', 'red', 'green', 'yellow', 'blue', 'black'] listed_cm = ListedColormap(listed_cm_colors_list, 'indexed') colorbar_tick_labels_list_cloud_phase = ['Clear', 'Water', 'SLW', 'Mixed', 'Ice', 'Unknown'] listed_cm_colors_list_cloud_phase = ['white', 'red', 'green', 'yellow', 'blue', 'purple'] listed_cm_cloud_phase = ListedColormap(listed_cm_colors_list_cloud_phase, 'indexed') avogadros_ = 6.022140857E+23 # molecules/mol gas_const = 83144.598 # cm3 mbar k-1 mol-1 gas_const_2 = 8.3144621 # J mol-1 K-1 gas_const_water = 461 # J kg-1 K-1 gas_const_dry = 287 # J kg-1 K-1 boltzmann_ = gas_const / avogadros_ # cm3 mbar / k molecules gravity_ = 9.80665 # m/s poisson_ = 2/7 # for dry air (k) latent_heat_v = 2.501E+6 # J/kg latent_heat_f = 3.337E+5 # J/kg latent_heat_s = 2.834E+6 # J/kg heat_capacity__Cp = 1005.7 # J kg-1 K-1 dry air heat_capacity__Cv = 719 # J kg-1 K-1 water vapor Rs_da = 287.05 # Specific gas const for dry air, J kg^{-1} K^{-1} Rs_v = 461.51 # Specific gas const for water vapour, J kg^{-1} K^{-1} Cp_da = 1004.6 # Specific heat at constant pressure for dry air Cv_da = 719. # Specific heat at constant volume for dry air Cp_v = 1870. # Specific heat at constant pressure for water vapour Cv_v = 1410. # Specific heat at constant volume for water vapour Cp_lw = 4218 # Specific heat at constant pressure for liquid water Epsilon = 0.622 # Epsilon=Rs_da/Rs_v; The ratio of the gas constants degCtoK = 273.15 # Temperature offset between K and C (deg C) rho_w = 1000. # Liquid Water density kg m^{-3} grav = 9.80665 # Gravity, m s^{-2} Lv = 2.5e6 # Latent Heat of vaporisation boltzmann = 5.67e-8 # Stefan-Boltzmann constant mv = 18.0153e-3 # Mean molar mass of water vapor(kg/mol) m_a = 28.9644e-3 # Mean molar mass of air(kg/mol) Rstar_a = 8.31432 # Universal gas constant for air (N m /(mol K)) path_output = '/g/data/k10/la6753/' # Misc class Object_create(object): pass def list_files_recursive(path_, filter_str=None): # create list of raw spectra files file_list = [] # r=root, d=directories, f = files if filter_str is None: for r, d, f in os.walk(path_): for file in f: file_list.append(os.path.join(r, file)) else: for r, d, f in os.walk(path_): for file in f: if filter_str in file: file_list.append(os.path.join(r, file)) return file_list def list_files(path_, filter_str='*'): file_list = sorted(glob.glob(str(path_ + filter_str))) return file_list def coincidence(arr_1,arr_2): # only coincidences check_ = arr_1 * arr_2 check_[check_ == check_] = 1 arr_1_checked = arr_1 * check_ arr_2_checked = arr_2 * check_ return arr_1_checked[~np.isnan(arr_1_checked)], arr_2_checked[~np.isnan(arr_2_checked)] def array_2d_fill_gaps_by_interpolation_linear(array_): rows_ = array_.shape[0] cols_ = array_.shape[1] output_array_X = np.zeros((rows_, cols_), dtype=float) output_array_Y = np.zeros((rows_, cols_), dtype=float) row_sum = np.sum(array_, axis=1) col_index = np.arange(array_.shape[1]) col_sum = np.sum(array_, axis=0) row_index = np.arange(array_.shape[0]) for r_ in range(array_.shape[0]): if row_sum[r_] != row_sum[r_]: # get X direction interpolation coin_out = coincidence(col_index, array_[r_, :]) output_array_X[r_, :][np.isnan(array_[r_, :])] = np.interp( col_index[np.isnan(array_[r_, :])], coin_out[0], coin_out[1]) for c_ in range(array_.shape[1]): if col_sum[c_] != col_sum[c_]: # get Y direction interpolation coin_out = coincidence(row_index, array_[:, c_]) output_array_Y[:, c_][np.isnan(array_[:, c_])] = np.interp( row_index[np.isnan(array_[:, c_])], coin_out[0], coin_out[1]) output_array = np.array(array_) output_array[np.isnan(array_)] = 0 return output_array + ((output_array_X + output_array_Y)/2) def array_2d_fill_gaps_by_interpolation_cubic(array_): rows_ = array_.shape[0] cols_ = array_.shape[1] output_array_X = np.zeros((rows_, cols_), dtype=float) output_array_Y = np.zeros((rows_, cols_), dtype=float) row_sum = np.sum(array_, axis=1) col_index = np.arange(array_.shape[1]) col_sum = np.sum(array_, axis=0) row_index = np.arange(array_.shape[0]) for r_ in range(array_.shape[0]): if row_sum[r_] != row_sum[r_]: # get X direction interpolation coin_out = coincidence(col_index, array_[r_, :]) interp_function = interp1d(coin_out[0], coin_out[1], kind='cubic') output_array_X[r_, :][np.isnan(array_[r_, :])] = interp_function(col_index[np.isnan(array_[r_, :])]) for c_ in range(array_.shape[1]): if col_sum[c_] != col_sum[c_]: # get Y direction interpolation coin_out = coincidence(row_index, array_[:, c_]) interp_function = interp1d(coin_out[0], coin_out[1], kind='cubic') output_array_Y[:, c_][np.isnan(array_[:, c_])] = interp_function(row_index[np.isnan(array_[:, c_])]) output_array = np.array(array_) output_array[np.isnan(array_)] = 0 return output_array + ((output_array_X + output_array_Y)/2) def combine_2_time_series(time_1_reference, data_1, time_2, data_2, forced_time_step=None, forced_start_time=None, forced_stop_time=None, cumulative_var_1=False, cumulative_var_2=False): """ takes two data sets with respective time series, and outputs the coincident stamps from both data sets It does this by using mean_discrete() for both sets with the same start stamp and averaging time, the averaging time is the forced_time_step :param time_1_reference: 1D array, same units as time_2, this series will define the returned time step reference :param data_1: can be 1D or 2D array, first dimention most be same as time_1 :param time_2: 1D array, same units as time_1 :param data_2: can be 1D or 2D array, first dimention most be same as time_2 :param window_: optional, if 0 (default) the values at time_1 and time_2 most match exactly, else, the match can be +- window_ :param forced_time_step: if not none, the median of the differential of the time_1_reference will be used :param forced_start_time: if not none, the returned series will start at this time stamp :param forced_stop_time: if not none, the returned series will stop at this time stamp :param cumulative_var_1: True is you want the variable to be accumulated instead of means, only of 1D data :param cumulative_var_2: True is you want the variable to be accumulated instead of means, only of 1D data :return: Index_averaged_1: 1D array, smallest coincident time, without time stamp gaps :return: Values_mean_1: same shape as data_1 both according to Index_averaged_1 times :return: Values_mean_2: same shape as data_2 both according to Index_averaged_1 times """ # define forced_time_step if forced_time_step is None: forced_time_step = np.median(np.diff(time_1_reference)) # find time period if forced_start_time is None: first_time_stamp = max(np.nanmin(time_1_reference), np.nanmin(time_2)) else: first_time_stamp = forced_start_time if forced_stop_time is None: last_time_stamp = min(np.nanmax(time_1_reference), np.nanmax(time_2)) else: last_time_stamp = forced_stop_time # do the averaging print('starting averaging of data 1') if cumulative_var_1: Index_averaged_1, Values_mean_1 = mean_discrete(time_1_reference, data_1, forced_time_step, first_time_stamp, last_index=last_time_stamp, cumulative_parameter_indx=0) else: Index_averaged_1, Values_mean_1 = mean_discrete(time_1_reference, data_1, forced_time_step, first_time_stamp, last_index=last_time_stamp) print('starting averaging of data 2') if cumulative_var_2: Index_averaged_2, Values_mean_2 = mean_discrete(time_2, data_2, forced_time_step, first_time_stamp, last_index=last_time_stamp, cumulative_parameter_indx=0) else: Index_averaged_2, Values_mean_2 = mean_discrete(time_2, data_2, forced_time_step, first_time_stamp, last_index=last_time_stamp) # check that averaged indexes are the same if np.nansum(np.abs(Index_averaged_1 - Index_averaged_2)) != 0: print('error during averaging of series, times do no match ????') return None, None, None # return the combined, trimmed data return Index_averaged_1, Values_mean_1, Values_mean_2 def split_str_chunks(s, n): """Produce `n`-character chunks from `s`.""" out_list = [] for start in range(0, len(s), n): out_list.append(s[start:start+n]) return out_list def coincidence_multi(array_list): # only coincidences parameters_list = array_list check_ = parameters_list[0] for param_ in parameters_list[1:]: check_ = check_ * param_ check_[check_ == check_] = 1 new_arr_list = [] for param_ in parameters_list: new_arr_list.append(param_ * check_) check_ = check_ * param_ # delete empty rows_ list_list = [] for param_ in parameters_list: t_list = [] for i in range(check_.shape[0]): if check_[i] == check_[i]: t_list.append(param_[i]) list_list.append(t_list) # concatenate ar_list = [] for ii in range(len(parameters_list)): ar_list.append(np.array(list_list[ii])) return ar_list def coincidence_zero(arr_1,arr_2): # only coincidences check_ = arr_1 * arr_2 # delete empty rows_ list_1 = [] list_2 = [] for i in range(check_.shape[0]): if check_[i] != 0: list_1.append(arr_1[i]) list_2.append(arr_2[i]) return np.array(list_1),
np.array(list_2)
numpy.array
import numpy as np def unit_vector(vector): """ Returns the unit vector of the vector. """ return vector / np.linalg.norm(vector) def angle_between(v1, v2) -> float: """ Returns the angle in radians between vectors 'v1' and 'v2' """ v1_u = unit_vector(v1) v2_u = unit_vector(v2) return (np.arccos(np.clip(
np.dot(v1_u, v2_u)
numpy.dot
from copy import copy from itertools import cycle, islice import numpy as np import pandas as pd import pytest from napari._tests.utils import check_layer_world_data_extent from napari.layers import Shapes from napari.layers.utils._text_constants import TextMode from napari.utils.colormaps.standardize_color import transform_color def _make_cycled_properties(values, length): """Helper function to make property values Parameters ---------- values The values to be cycled. length : int The length of the resulting property array Returns ------- cycled_properties : np.ndarray The property array comprising the cycled values. """ cycled_properties = np.array(list(islice(cycle(values), 0, length))) return cycled_properties def test_empty_shapes(): shp = Shapes() assert shp.ndim == 2 properties_array = {'shape_type': _make_cycled_properties(['A', 'B'], 10)} properties_list = {'shape_type': list(_make_cycled_properties(['A', 'B'], 10))} @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_properties(properties): shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, properties=copy(properties)) np.testing.assert_equal(layer.properties, properties) current_prop = {'shape_type': np.array(['B'])} assert layer.current_properties == current_prop # test removing shapes layer.selected_data = {0, 1} layer.remove_selected() remove_properties = properties['shape_type'][2::] assert len(layer.properties['shape_type']) == (shape[0] - 2) assert np.all(layer.properties['shape_type'] == remove_properties) # test selection of properties layer.selected_data = {0} selected_annotation = layer.current_properties['shape_type'] assert len(selected_annotation) == 1 assert selected_annotation[0] == 'A' # test adding shapes with properties new_data = np.random.random((1, 4, 2)) new_shape_type = ['rectangle'] layer.add(new_data, shape_type=new_shape_type) add_properties = np.concatenate((remove_properties, ['A']), axis=0) assert np.all(layer.properties['shape_type'] == add_properties) # test copy/paste layer.selected_data = {0, 1} layer._copy_data() assert np.all(layer._clipboard['properties']['shape_type'] == ['A', 'B']) layer._paste_data() paste_properties = np.concatenate((add_properties, ['A', 'B']), axis=0) assert np.all(layer.properties['shape_type'] == paste_properties) # test updating a property layer.mode = 'select' layer.selected_data = {0} new_property = {'shape_type': np.array(['B'])} layer.current_properties = new_property updated_properties = layer.properties assert updated_properties['shape_type'][0] == 'B' @pytest.mark.parametrize("attribute", ['edge', 'face']) def test_adding_properties(attribute): """Test adding properties to an existing layer""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data) # add properties properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])} layer.properties = properties np.testing.assert_equal(layer.properties, properties) # add properties as a dataframe properties_df = pd.DataFrame(properties) layer.properties = properties_df np.testing.assert_equal(layer.properties, properties) # add properties as a dictionary with list values properties_list = { 'shape_type': list(_make_cycled_properties(['A', 'B'], shape[0])) } layer.properties = properties_list assert isinstance(layer.properties['shape_type'], np.ndarray) # removing a property that was the _*_color_property should give a warning setattr(layer, f'_{attribute}_color_property', 'shape_type') properties_2 = { 'not_shape_type': _make_cycled_properties(['A', 'B'], shape[0]) } with pytest.warns(RuntimeWarning): layer.properties = properties_2 def test_data_setter_with_properties(): """Test layer data on a layer with properties via the data setter""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])} layer = Shapes(data, properties=properties) # test setting to data with fewer shapes n_new_shapes = 4 new_data = 20 * np.random.random((n_new_shapes, 4, 2)) layer.data = new_data assert len(layer.properties['shape_type']) == n_new_shapes # test setting to data with more shapes n_new_shapes_2 = 6 new_data_2 = 20 * np.random.random((n_new_shapes_2, 4, 2)) layer.data = new_data_2 assert len(layer.properties['shape_type']) == n_new_shapes_2 # test setting to data with same shapes new_data_3 = 20 * np.random.random((n_new_shapes_2, 4, 2)) layer.data = new_data_3 assert len(layer.properties['shape_type']) == n_new_shapes_2 def test_properties_dataframe(): """Test if properties can be provided as a DataFrame""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])} properties_df = pd.DataFrame(properties) properties_df = properties_df.astype(properties['shape_type'].dtype) layer = Shapes(data, properties=properties_df) np.testing.assert_equal(layer.properties, properties) def test_empty_layer_with_text_properties(): """Test initializing an empty layer with text defined""" default_properties = {'shape_type': np.array([1.5], dtype=float)} text_kwargs = {'text': 'shape_type', 'color': 'red'} layer = Shapes( properties=default_properties, text=text_kwargs, ) assert layer.text._mode == TextMode.PROPERTY assert layer.text.values.size == 0 np.testing.assert_allclose(layer.text.color, [1, 0, 0, 1]) # add a shape and check that the appropriate text value was added layer.add(np.random.random((1, 4, 2))) np.testing.assert_equal(layer.text.values, ['1.5']) np.testing.assert_allclose(layer.text.color, [1, 0, 0, 1]) def test_empty_layer_with_text_formatted(): """Test initializing an empty layer with text defined""" default_properties = {'shape_type': np.array([1.5], dtype=float)} layer = Shapes( properties=default_properties, text='shape_type: {shape_type:.2f}', ) assert layer.text._mode == TextMode.FORMATTED assert layer.text.values.size == 0 # add a shape and check that the appropriate text value was added layer.add(np.random.random((1, 4, 2))) np.testing.assert_equal(layer.text.values, ['shape_type: 1.50']) @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_text_from_property_value(properties): """Test setting text from a property value""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, properties=copy(properties), text='shape_type') np.testing.assert_equal(layer.text.values, properties['shape_type']) @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_text_from_property_fstring(properties): """Test setting text with an f-string from the property value""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes( data, properties=copy(properties), text='type: {shape_type}' ) expected_text = ['type: ' + v for v in properties['shape_type']] np.testing.assert_equal(layer.text.values, expected_text) # test updating the text layer.text = 'type-ish: {shape_type}' expected_text_2 = ['type-ish: ' + v for v in properties['shape_type']] np.testing.assert_equal(layer.text.values, expected_text_2) # copy/paste layer.selected_data = {0} layer._copy_data() layer._paste_data() expected_text_3 = expected_text_2 + ['type-ish: A'] np.testing.assert_equal(layer.text.values, expected_text_3) # add shape layer.selected_data = {0} new_shape = np.random.random((1, 4, 2)) layer.add(new_shape) expected_text_4 = expected_text_3 + ['type-ish: A'] np.testing.assert_equal(layer.text.values, expected_text_4) @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_set_text_with_kwarg_dict(properties): text_kwargs = { 'text': 'type: {shape_type}', 'color': [0, 0, 0, 1], 'rotation': 10, 'translation': [5, 5], 'anchor': 'upper_left', 'size': 10, 'visible': True, } shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, properties=copy(properties), text=text_kwargs) expected_text = ['type: ' + v for v in properties['shape_type']] np.testing.assert_equal(layer.text.values, expected_text) for property, value in text_kwargs.items(): if property == 'text': continue layer_value = getattr(layer._text, property) np.testing.assert_equal(layer_value, value) @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_text_error(properties): """creating a layer with text as the wrong type should raise an error""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) # try adding text as the wrong type with pytest.raises(TypeError): Shapes(data, properties=copy(properties), text=123) def test_refresh_text(): """Test refreshing the text after setting new properties""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) properties = {'shape_type': ['A'] * shape[0]} layer = Shapes(data, properties=copy(properties), text='shape_type') new_properties = {'shape_type': ['B'] * shape[0]} layer.properties = new_properties np.testing.assert_equal(layer.text.values, new_properties['shape_type']) def test_nd_text(): """Test slicing of text coords with nD shapes""" shapes_data = [ [[0, 10, 10, 10], [0, 10, 20, 20], [0, 10, 10, 20], [0, 10, 20, 10]], [[1, 20, 30, 30], [1, 20, 50, 50], [1, 20, 50, 30], [1, 20, 30, 50]], ] properties = {'shape_type': ['A', 'B']} text_kwargs = {'text': 'shape_type', 'anchor': 'center'} layer = Shapes(shapes_data, properties=properties, text=text_kwargs) assert layer.ndim == 4 layer._slice_dims(point=[0, 10, 0, 0], ndisplay=2) np.testing.assert_equal(layer._indices_view, [0]) np.testing.assert_equal(layer._view_text_coords[0], [[15, 15]]) layer._slice_dims(point=[1, 0, 0, 0], ndisplay=3) np.testing.assert_equal(layer._indices_view, [1]) np.testing.assert_equal(layer._view_text_coords[0], [[20, 40, 40]]) @pytest.mark.parametrize("properties", [properties_array, properties_list]) def test_data_setter_with_text(properties): """Test layer data on a layer with text via the data setter""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, properties=copy(properties), text='shape_type') # test setting to data with fewer shapes n_new_shapes = 4 new_data = 20 * np.random.random((n_new_shapes, 4, 2)) layer.data = new_data assert len(layer.text.values) == n_new_shapes # test setting to data with more shapes n_new_shapes_2 = 6 new_data_2 = 20 * np.random.random((n_new_shapes_2, 4, 2)) layer.data = new_data_2 assert len(layer.text.values) == n_new_shapes_2 # test setting to data with same shapes new_data_3 = 20 * np.random.random((n_new_shapes_2, 4, 2)) layer.data = new_data_3 assert len(layer.text.values) == n_new_shapes_2 def test_rectangles(): """Test instantiating Shapes layer with a random 2D rectangles.""" # Test a single four corner rectangle shape = (1, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) # Test multiple four corner rectangles shape = (10, 4, 2) data = 20 * np.random.random(shape) layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) # Test a single two corner rectangle, which gets converted into four # corner rectangle shape = (1, 2, 2) data = 20 * np.random.random(shape) layer = Shapes(data) assert layer.nshapes == 1 assert len(layer.data[0]) == 4 assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) # Test multiple two corner rectangles shape = (10, 2, 2) data = 20 * np.random.random(shape) layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([len(ld) == 4 for ld in layer.data]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_rectangles_with_shape_type(): """Test instantiating rectangles with shape_type in data""" # Test (rectangle, shape_type) tuple shape = (1, 4, 2) np.random.seed(0) vertices = 20 * np.random.random(shape) data = (vertices, "rectangle") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) # Test (list of rectangles, shape_type) tuple shape = (10, 4, 2) vertices = 20 * np.random.random(shape) data = (vertices, "rectangle") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) # Test list of (rectangle, shape_type) tuples data = [(vertices[i], "rectangle") for i in range(shape[0])] layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_rectangles_roundtrip(): """Test a full roundtrip with rectangles data.""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data) new_layer = Shapes(layer.data) assert np.all([nd == d for nd, d in zip(new_layer.data, layer.data)]) def test_integer_rectangle(): """Test instantiating rectangles with integer data.""" shape = (10, 2, 2) np.random.seed(1) data = np.random.randint(20, size=shape) layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([len(ld) == 4 for ld in layer.data]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_negative_rectangle(): """Test instantiating rectangles with negative data.""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) - 10 layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_empty_rectangle(): """Test instantiating rectangles with empty data.""" shape = (0, 0, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == shape[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_3D_rectangles(): """Test instantiating Shapes layer with 3D planar rectangles.""" # Test a single four corner rectangle np.random.seed(0) planes = np.tile(np.arange(10).reshape((10, 1, 1)), (1, 4, 1)) corners = np.random.uniform(0, 10, size=(10, 4, 2)) data = np.concatenate((planes, corners), axis=2) layer = Shapes(data) assert layer.nshapes == len(data) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == 3 assert np.all([s == 'rectangle' for s in layer.shape_type]) def test_ellipses(): """Test instantiating Shapes layer with a random 2D ellipses.""" # Test a single four corner ellipses shape = (1, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='ellipse') assert layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test multiple four corner ellipses shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='ellipse') assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test a single ellipse center radii, which gets converted into four # corner ellipse shape = (1, 2, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='ellipse') assert layer.nshapes == 1 assert len(layer.data[0]) == 4 assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test multiple center radii ellipses shape = (10, 2, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='ellipse') assert layer.nshapes == shape[0] assert np.all([len(ld) == 4 for ld in layer.data]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) def test_ellipses_with_shape_type(): """Test instantiating ellipses with shape_type in data""" # Test single four corner (vertices, shape_type) tuple shape = (1, 4, 2) np.random.seed(0) vertices = 20 * np.random.random(shape) data = (vertices, "ellipse") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test multiple four corner (list of vertices, shape_type) tuple shape = (10, 4, 2) np.random.seed(0) vertices = 20 * np.random.random(shape) data = (vertices, "ellipse") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test list of four corner (vertices, shape_type) tuples shape = (10, 4, 2) np.random.seed(0) vertices = 20 * np.random.random(shape) data = [(vertices[i], "ellipse") for i in range(shape[0])] layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices)]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test single (center-radii, shape_type) ellipse shape = (1, 2, 2) np.random.seed(0) data = (20 * np.random.random(shape), "ellipse") layer = Shapes(data) assert layer.nshapes == 1 assert len(layer.data[0]) == 4 assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test (list of center-radii, shape_type) tuple shape = (10, 2, 2) np.random.seed(0) center_radii = 20 * np.random.random(shape) data = (center_radii, "ellipse") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([len(ld) == 4 for ld in layer.data]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # Test list of (center-radii, shape_type) tuples shape = (10, 2, 2) np.random.seed(0) center_radii = 20 * np.random.random(shape) data = [(center_radii[i], "ellipse") for i in range(shape[0])] layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([len(ld) == 4 for ld in layer.data]) assert layer.ndim == shape[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) def test_4D_ellispse(): """Test instantiating Shapes layer with 4D planar ellipse.""" # Test a single 4D ellipse np.random.seed(0) data = [ [ [3, 5, 108, 108], [3, 5, 108, 148], [3, 5, 148, 148], [3, 5, 148, 108], ] ] layer = Shapes(data, shape_type='ellipse') assert layer.nshapes == len(data) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == 4 assert np.all([s == 'ellipse' for s in layer.shape_type]) def test_ellipses_roundtrip(): """Test a full roundtrip with ellipss data.""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='ellipse') new_layer = Shapes(layer.data, shape_type='ellipse') assert np.all([nd == d for nd, d in zip(new_layer.data, layer.data)]) def test_lines(): """Test instantiating Shapes layer with a random 2D lines.""" # Test a single two end point line shape = (1, 2, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='line') assert layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'line' for s in layer.shape_type]) # Test multiple lines shape = (10, 2, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='line') assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == shape[2] assert np.all([s == 'line' for s in layer.shape_type]) def test_lines_with_shape_type(): """Test instantiating lines with shape_type""" # Test (single line, shape_type) tuple shape = (1, 2, 2) np.random.seed(0) end_points = 20 * np.random.random(shape) data = (end_points, 'line') layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all(layer.data[0] == end_points[0]) assert layer.ndim == shape[2] assert np.all([s == 'line' for s in layer.shape_type]) # Test (multiple lines, shape_type) tuple shape = (10, 2, 2) np.random.seed(0) end_points = 20 * np.random.random(shape) data = (end_points, "line") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, end_points)]) assert layer.ndim == shape[2] assert np.all([s == 'line' for s in layer.shape_type]) # Test list of (line, shape_type) tuples shape = (10, 2, 2) np.random.seed(0) end_points = 20 * np.random.random(shape) data = [(end_points[i], "line") for i in range(shape[0])] layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, end_points)]) assert layer.ndim == shape[2] assert np.all([s == 'line' for s in layer.shape_type]) def test_lines_roundtrip(): """Test a full roundtrip with line data.""" shape = (10, 2, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='line') new_layer = Shapes(layer.data, shape_type='line') assert np.all([nd == d for nd, d in zip(new_layer.data, layer.data)]) def test_paths(): """Test instantiating Shapes layer with a random 2D paths.""" # Test a single path with 6 points shape = (1, 6, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='path') assert layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'path' for s in layer.shape_type]) # Test multiple paths with different numbers of points data = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10) ] layer = Shapes(data, shape_type='path') assert layer.nshapes == len(data) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == 2 assert np.all([s == 'path' for s in layer.shape_type]) def test_paths_with_shape_type(): """Test instantiating paths with shape_type in data""" # Test (single path, shape_type) tuple shape = (1, 6, 2) np.random.seed(0) path_points = 20 * np.random.random(shape) data = (path_points, "path") layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all(layer.data[0] == path_points[0]) assert layer.ndim == shape[2] assert np.all([s == 'path' for s in layer.shape_type]) # Test (list of paths, shape_type) tuple path_points = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10) ] data = (path_points, "path") layer = Shapes(data) assert layer.nshapes == len(path_points) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, path_points)]) assert layer.ndim == 2 assert np.all([s == 'path' for s in layer.shape_type]) # Test list of (path, shape_type) tuples data = [(path_points[i], "path") for i in range(len(path_points))] layer = Shapes(data) assert layer.nshapes == len(data) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, path_points)]) assert layer.ndim == 2 assert np.all([s == 'path' for s in layer.shape_type]) def test_paths_roundtrip(): """Test a full roundtrip with path data.""" np.random.seed(0) data = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10) ] layer = Shapes(data, shape_type='path') new_layer = Shapes(layer.data, shape_type='path') assert np.all( [np.all(nd == d) for nd, d in zip(new_layer.data, layer.data)] ) def test_polygons(): """Test instantiating Shapes layer with a random 2D polygons.""" # Test a single polygon with 6 points shape = (1, 6, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data, shape_type='polygon') assert layer.nshapes == shape[0] assert np.all(layer.data[0] == data[0]) assert layer.ndim == shape[2] assert np.all([s == 'polygon' for s in layer.shape_type]) # Test multiple polygons with different numbers of points data = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10) ] layer = Shapes(data, shape_type='polygon') assert layer.nshapes == len(data) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == 2 assert np.all([s == 'polygon' for s in layer.shape_type]) def test_polygons_with_shape_type(): """Test 2D polygons with shape_type in data""" # Test single (polygon, shape_type) tuple shape = (1, 6, 2) np.random.seed(0) vertices = 20 * np.random.random(shape) data = (vertices, 'polygon') layer = Shapes(data) assert layer.nshapes == shape[0] assert np.all(layer.data[0] == vertices[0]) assert layer.ndim == shape[2] assert np.all([s == 'polygon' for s in layer.shape_type]) # Test (list of polygons, shape_type) tuple polygons = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10) ] data = (polygons, 'polygon') layer = Shapes(data) assert layer.nshapes == len(polygons) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, polygons)]) assert layer.ndim == 2 assert np.all([s == 'polygon' for s in layer.shape_type]) # Test list of (polygon, shape_type) tuples data = [(polygons[i], 'polygon') for i in range(len(polygons))] layer = Shapes(data) assert layer.nshapes == len(polygons) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, polygons)]) assert layer.ndim == 2 assert np.all([s == 'polygon' for s in layer.shape_type]) def test_polygon_roundtrip(): """Test a full roundtrip with polygon data.""" np.random.seed(0) data = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(10) ] layer = Shapes(data, shape_type='polygon') new_layer = Shapes(layer.data, shape_type='polygon') assert np.all( [np.all(nd == d) for nd, d in zip(new_layer.data, layer.data)] ) def test_mixed_shapes(): """Test instantiating Shapes layer with a mix of random 2D shapes.""" # Test multiple polygons with different numbers of points np.random.seed(0) shape_vertices = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(5) ] + list(np.random.random((5, 4, 2))) shape_type = ['polygon'] * 5 + ['rectangle'] * 3 + ['ellipse'] * 2 layer = Shapes(shape_vertices, shape_type=shape_type) assert layer.nshapes == len(shape_vertices) assert np.all( [np.all(ld == d) for ld, d in zip(layer.data, shape_vertices)] ) assert layer.ndim == 2 assert np.all([s == so for s, so in zip(layer.shape_type, shape_type)]) # Test roundtrip with mixed data new_layer = Shapes(layer.data, shape_type=layer.shape_type) assert np.all( [np.all(nd == d) for nd, d in zip(new_layer.data, layer.data)] ) assert np.all( [ns == s for ns, s in zip(new_layer.shape_type, layer.shape_type)] ) def test_mixed_shapes_with_shape_type(): """Test adding mixed shapes with shape_type in data""" np.random.seed(0) shape_vertices = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(5) ] + list(np.random.random((5, 4, 2))) shape_type = ['polygon'] * 5 + ['rectangle'] * 3 + ['ellipse'] * 2 # Test multiple (shape, shape_type) tuples data = list(zip(shape_vertices, shape_type)) layer = Shapes(data) assert layer.nshapes == len(shape_vertices) assert np.all( [np.all(ld == d) for ld, d in zip(layer.data, shape_vertices)] ) assert layer.ndim == 2 assert np.all([s == so for s, so in zip(layer.shape_type, shape_type)]) def test_data_shape_type_overwrites_meta(): """Test shape type passed through data property overwrites metadata shape type""" shape = (10, 4, 2) np.random.seed(0) vertices = 20 * np.random.random(shape) data = (vertices, "ellipse") layer = Shapes(data, shape_type='rectangle') assert np.all([s == 'ellipse' for s in layer.shape_type]) data = [(vertices[i], "ellipse") for i in range(shape[0])] layer = Shapes(data, shape_type='rectangle') assert np.all([s == 'ellipse' for s in layer.shape_type]) def test_changing_shapes(): """Test changing Shapes data.""" shape_a = (10, 4, 2) shape_b = (20, 4, 2) np.random.seed(0) vertices_a = 20 * np.random.random(shape_a) vertices_b = 20 * np.random.random(shape_b) layer = Shapes(vertices_a) assert layer.nshapes == shape_a[0] layer.data = vertices_b assert layer.nshapes == shape_b[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices_b)]) assert layer.ndim == shape_b[2] assert np.all([s == 'rectangle' for s in layer.shape_type]) # setting data with shape type data_a = (vertices_a, "ellipse") layer.data = data_a assert layer.nshapes == shape_a[0] assert np.all([np.all(ld == d) for ld, d in zip(layer.data, vertices_a)]) assert layer.ndim == shape_a[2] assert np.all([s == 'ellipse' for s in layer.shape_type]) # setting data with fewer shapes smaller_data = vertices_a[:5] current_edge_color = layer._data_view.edge_color current_edge_width = layer._data_view.edge_widths current_face_color = layer._data_view.face_color current_z = layer._data_view.z_indices layer.data = smaller_data assert layer.nshapes == smaller_data.shape[0] assert np.allclose(layer._data_view.edge_color, current_edge_color[:5]) assert np.allclose(layer._data_view.face_color, current_face_color[:5]) assert np.allclose(layer._data_view.edge_widths, current_edge_width[:5]) assert np.allclose(layer._data_view.z_indices, current_z[:5]) # setting data with added shapes current_edge_color = layer._data_view.edge_color current_edge_width = layer._data_view.edge_widths current_face_color = layer._data_view.face_color current_z = layer._data_view.z_indices bigger_data = vertices_b layer.data = bigger_data assert layer.nshapes == bigger_data.shape[0] assert np.allclose(layer._data_view.edge_color[:5], current_edge_color) assert np.allclose(layer._data_view.face_color[:5], current_face_color) assert np.allclose(layer._data_view.edge_widths[:5], current_edge_width) assert np.allclose(layer._data_view.z_indices[:5], current_z) def test_changing_shape_type(): """Test changing shape type""" np.random.seed(0) rectangles = 20 * np.random.random((10, 4, 2)) layer = Shapes(rectangles, shape_type='rectangle') layer.shape_type = "ellipse" assert np.all([s == 'ellipse' for s in layer.shape_type]) def test_adding_shapes(): """Test adding shapes.""" # Start with polygons with different numbers of points np.random.seed(0) data = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(5) ] # shape_type = ['polygon'] * 5 + ['rectangle'] * 3 + ['ellipse'] * 2 layer = Shapes(data, shape_type='polygon') new_data = np.random.random((5, 4, 2)) new_shape_type = ['rectangle'] * 3 + ['ellipse'] * 2 layer.add(new_data, shape_type=new_shape_type) all_data = data + list(new_data) all_shape_type = ['polygon'] * 5 + new_shape_type assert layer.nshapes == len(all_data) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, all_data)]) assert layer.ndim == 2 assert np.all([s == so for s, so in zip(layer.shape_type, all_shape_type)]) # test adding data with shape_type new_vertices = np.random.random((5, 4, 2)) new_shape_type2 = ['ellipse'] * 3 + ['rectangle'] * 2 new_data2 = list(zip(new_vertices, new_shape_type2)) layer.add(new_data2) all_vertices = all_data + list(new_vertices) all_shape_type = all_shape_type + new_shape_type2 assert layer.nshapes == len(all_vertices) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, all_vertices)]) assert layer.ndim == 2 assert np.all([s == so for s, so in zip(layer.shape_type, all_shape_type)]) def test_adding_shapes_to_empty(): """Test adding shapes to empty.""" data = np.empty((0, 0, 2)) np.random.seed(0) layer = Shapes(np.empty((0, 0, 2))) assert len(layer.data) == 0 data = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(5) ] + list(np.random.random((5, 4, 2))) shape_type = ['path'] * 5 + ['rectangle'] * 3 + ['ellipse'] * 2 layer.add(data, shape_type=shape_type) assert layer.nshapes == len(data) assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data)]) assert layer.ndim == 2 assert np.all([s == so for s, so in zip(layer.shape_type, shape_type)]) def test_selecting_shapes(): """Test selecting shapes.""" data = 20 * np.random.random((10, 4, 2)) np.random.seed(0) layer = Shapes(data) layer.selected_data = {0, 1} assert layer.selected_data == {0, 1} layer.selected_data = {9} assert layer.selected_data == {9} layer.selected_data = set() assert layer.selected_data == set() def test_removing_all_shapes_empty_list(): """Test removing all shapes with an empty list.""" data = 20 * np.random.random((10, 4, 2)) np.random.seed(0) layer = Shapes(data) assert layer.nshapes == 10 layer.data = [] assert layer.nshapes == 0 def test_removing_all_shapes_empty_array(): """Test removing all shapes with an empty list.""" data = 20 * np.random.random((10, 4, 2)) np.random.seed(0) layer = Shapes(data) assert layer.nshapes == 10 layer.data = np.empty((0, 2)) assert layer.nshapes == 0 def test_removing_selected_shapes(): """Test removing selected shapes.""" np.random.seed(0) data = [ 20 * np.random.random((np.random.randint(2, 12), 2)) for i in range(5) ] + list(np.random.random((5, 4, 2))) shape_type = ['polygon'] * 5 + ['rectangle'] * 3 + ['ellipse'] * 2 layer = Shapes(data, shape_type=shape_type) # With nothing selected no points should be removed layer.remove_selected() assert len(layer.data) == len(data) # Select three shapes and remove them layer.selected_data = {1, 7, 8} layer.remove_selected() keep = [0] + list(range(2, 7)) + [9] data_keep = [data[i] for i in keep] shape_type_keep = [shape_type[i] for i in keep] assert len(layer.data) == len(data_keep) assert len(layer.selected_data) == 0 assert np.all([np.all(ld == d) for ld, d in zip(layer.data, data_keep)]) assert layer.ndim == 2 assert np.all( [s == so for s, so in zip(layer.shape_type, shape_type_keep)] ) def test_changing_modes(): """Test changing modes.""" np.random.seed(0) data = 20 * np.random.random((10, 4, 2)) layer = Shapes(data) assert layer.mode == 'pan_zoom' assert layer.interactive is True layer.mode = 'select' assert layer.mode == 'select' assert layer.interactive is False layer.mode = 'direct' assert layer.mode == 'direct' assert layer.interactive is False layer.mode = 'vertex_insert' assert layer.mode == 'vertex_insert' assert layer.interactive is False layer.mode = 'vertex_remove' assert layer.mode == 'vertex_remove' assert layer.interactive is False layer.mode = 'add_rectangle' assert layer.mode == 'add_rectangle' assert layer.interactive is False layer.mode = 'add_ellipse' assert layer.mode == 'add_ellipse' assert layer.interactive is False layer.mode = 'add_line' assert layer.mode == 'add_line' assert layer.interactive is False layer.mode = 'add_path' assert layer.mode == 'add_path' assert layer.interactive is False layer.mode = 'add_polygon' assert layer.mode == 'add_polygon' assert layer.interactive is False layer.mode = 'pan_zoom' assert layer.mode == 'pan_zoom' assert layer.interactive is True def test_name(): """Test setting layer name.""" np.random.seed(0) data = 20 * np.random.random((10, 4, 2)) layer = Shapes(data) assert layer.name == 'Shapes' layer = Shapes(data, name='random') assert layer.name == 'random' layer.name = 'shps' assert layer.name == 'shps' def test_visiblity(): """Test setting layer visibility.""" np.random.seed(0) data = 20 * np.random.random((10, 4, 2)) layer = Shapes(data) assert layer.visible is True layer.visible = False assert layer.visible is False layer = Shapes(data, visible=False) assert layer.visible is False layer.visible = True assert layer.visible is True def test_opacity(): """Test setting opacity.""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer = Shapes(data) # Check default opacity value of 0.7 assert layer.opacity == 0.7 # Select data and change opacity of selection layer.selected_data = {0, 1} assert layer.opacity == 0.7 layer.opacity = 0.5 assert layer.opacity == 0.5 # Add new shape and test its width new_shape = np.random.random((1, 4, 2)) layer.selected_data = set() layer.add(new_shape) assert layer.opacity == 0.5 # Instantiate with custom opacity layer2 = Shapes(data, opacity=0.2) assert layer2.opacity == 0.2 # Check removing data shouldn't change opacity layer2.selected_data = {0, 2} layer2.remove_selected() assert len(layer2.data) == shape[0] - 2 assert layer2.opacity == 0.2 def test_blending(): """Test setting layer blending.""" np.random.seed(0) data = 20 * np.random.random((10, 4, 2)) layer = Shapes(data) assert layer.blending == 'translucent' layer.blending = 'additive' assert layer.blending == 'additive' layer = Shapes(data, blending='additive') assert layer.blending == 'additive' layer.blending = 'opaque' assert layer.blending == 'opaque' @pytest.mark.filterwarnings("ignore:elementwise comparison fail:FutureWarning") @pytest.mark.parametrize("attribute", ['edge', 'face']) def test_switch_color_mode(attribute): """Test switching between color modes""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) # create a continuous property with a known value in the last element continuous_prop = np.random.random((shape[0],)) continuous_prop[-1] = 1 properties = { 'shape_truthiness': continuous_prop, 'shape_type': _make_cycled_properties(['A', 'B'], shape[0]), } initial_color = [1, 0, 0, 1] color_cycle = ['red', 'blue'] color_kwarg = f'{attribute}_color' colormap_kwarg = f'{attribute}_colormap' color_cycle_kwarg = f'{attribute}_color_cycle' args = { color_kwarg: initial_color, colormap_kwarg: 'gray', color_cycle_kwarg: color_cycle, } layer = Shapes(data, properties=properties, **args) layer_color_mode = getattr(layer, f'{attribute}_color_mode') layer_color = getattr(layer, f'{attribute}_color') assert layer_color_mode == 'direct' np.testing.assert_allclose( layer_color, np.repeat([initial_color], shape[0], axis=0) ) # there should not be an edge_color_property color_property = getattr(layer, f'_{attribute}_color_property') assert color_property == '' # transitioning to colormap should raise a warning # because there isn't an edge color property yet and # the first property in shapes.properties is being automatically selected with pytest.warns(UserWarning): setattr(layer, f'{attribute}_color_mode', 'colormap') color_property = getattr(layer, f'_{attribute}_color_property') assert color_property == next(iter(properties)) layer_color = getattr(layer, f'{attribute}_color') np.testing.assert_allclose(layer_color[-1], [1, 1, 1, 1]) # switch to color cycle setattr(layer, f'{attribute}_color_mode', 'cycle') setattr(layer, f'{attribute}_color', 'shape_type') color = getattr(layer, f'{attribute}_color') layer_color = transform_color(color_cycle * int(shape[0] / 2)) np.testing.assert_allclose(color, layer_color) # switch back to direct, edge_colors shouldn't change setattr(layer, f'{attribute}_color_mode', 'direct') new_edge_color = getattr(layer, f'{attribute}_color') np.testing.assert_allclose(new_edge_color, color) @pytest.mark.parametrize("attribute", ['edge', 'face']) def test_color_direct(attribute: str): """Test setting face/edge color directly.""" shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer_kwargs = {f'{attribute}_color': 'black'} layer = Shapes(data, **layer_kwargs) color_array = transform_color(['black'] * shape[0]) current_color = getattr(layer, f'current_{attribute}_color') layer_color = getattr(layer, f'{attribute}_color') assert current_color == 'black' assert len(layer.edge_color) == shape[0] np.testing.assert_allclose(color_array, layer_color) # With no data selected changing color has no effect setattr(layer, f'current_{attribute}_color', 'blue') current_color = getattr(layer, f'current_{attribute}_color') assert current_color == 'blue' np.testing.assert_allclose(color_array, layer_color) # Select data and change edge color of selection selected_data = {0, 1} layer.selected_data = {0, 1} current_color = getattr(layer, f'current_{attribute}_color') assert current_color == 'black' setattr(layer, f'current_{attribute}_color', 'green') colorarray_green = transform_color(['green'] * len(layer.selected_data)) color_array[list(selected_data)] = colorarray_green layer_color = getattr(layer, f'{attribute}_color') np.testing.assert_allclose(color_array, layer_color) # Add new shape and test its color new_shape = np.random.random((1, 4, 2)) layer.selected_data = set() setattr(layer, f'current_{attribute}_color', 'blue') layer.add(new_shape) color_array = np.vstack([color_array, transform_color('blue')]) layer_color = getattr(layer, f'{attribute}_color') assert len(layer_color) == shape[0] + 1 np.testing.assert_allclose(color_array, layer_color) # Check removing data adjusts colors correctly layer.selected_data = {0, 2} layer.remove_selected() assert len(layer.data) == shape[0] - 1 layer_color = getattr(layer, f'{attribute}_color') assert len(layer_color) == shape[0] - 1 np.testing.assert_allclose( layer_color, np.vstack((color_array[1], color_array[3:])), ) # set the color directly setattr(layer, f'{attribute}_color', 'black') color_array = np.tile([[0, 0, 0, 1]], (len(layer.data), 1)) layer_color = getattr(layer, f'{attribute}_color') np.testing.assert_allclose(color_array, layer_color) @pytest.mark.parametrize("attribute", ['edge', 'face']) def test_single_shape_properties(attribute): """Test creating single shape with properties""" shape = (4, 2) np.random.seed(0) data = 20 * np.random.random(shape) layer_kwargs = {f'{attribute}_color': 'red'} layer = Shapes(data, **layer_kwargs) layer_color = getattr(layer, f'{attribute}_color') assert len(layer_color) == 1 np.testing.assert_allclose([1, 0, 0, 1], layer_color[0]) color_cycle_str = ['red', 'blue'] color_cycle_rgb = [[1, 0, 0], [0, 0, 1]] color_cycle_rgba = [[1, 0, 0, 1], [0, 0, 1, 1]] @pytest.mark.parametrize("attribute", ['edge', 'face']) @pytest.mark.parametrize( "color_cycle", [color_cycle_str, color_cycle_rgb, color_cycle_rgba], ) def test_color_cycle(attribute, color_cycle): """Test setting edge/face color with a color cycle list""" # create Shapes using list color cycle shape = (10, 4, 2) np.random.seed(0) data = 20 * np.random.random(shape) properties = {'shape_type': _make_cycled_properties(['A', 'B'], shape[0])} shapes_kwargs = { 'properties': properties, f'{attribute}_color': 'shape_type', f'{attribute}_color_cycle': color_cycle, } layer = Shapes(data, **shapes_kwargs) assert layer.properties == properties color_array = transform_color( list(islice(cycle(color_cycle), 0, shape[0])) ) layer_color = getattr(layer, f'{attribute}_color') np.testing.assert_allclose(layer_color, color_array) # Add new shape and test its color new_shape = np.random.random((1, 4, 2)) layer.selected_data = {0} layer.add(new_shape) layer_color = getattr(layer, f'{attribute}_color') assert len(layer_color) == shape[0] + 1 np.testing.assert_allclose( layer_color, np.vstack((color_array, transform_color('red'))), ) # Check removing data adjusts colors correctly layer.selected_data = {0, 2} layer.remove_selected() assert len(layer.data) == shape[0] - 1 layer_color = getattr(layer, f'{attribute}_color') assert len(layer_color) == shape[0] - 1 np.testing.assert_allclose( layer_color, np.vstack((color_array[1], color_array[3:], transform_color('red'))), ) # refresh colors layer.refresh_colors(update_color_mapping=True) # test adding a shape with a new property value layer.selected_data = {} current_properties = layer.current_properties current_properties['shape_type'] = np.array(['new']) layer.current_properties = current_properties new_shape_2 = np.random.random((1, 4, 2)) layer.add(new_shape_2) color_cycle_map = getattr(layer, f'{attribute}_color_cycle_map') assert 'new' in color_cycle_map np.testing.assert_allclose( color_cycle_map['new'], np.squeeze(transform_color(color_cycle[0])) ) @pytest.mark.parametrize("attribute", ['edge', 'face']) def test_add_color_cycle_to_empty_layer(attribute): """Test adding a shape to an empty layer when edge/face color is a color cycle See: https://github.com/napari/napari/pull/1069 """ default_properties = {'shape_type': np.array(['A'])} color_cycle = ['red', 'blue'] shapes_kwargs = { 'properties': default_properties, f'{attribute}_color': 'shape_type', f'{attribute}_color_cycle': color_cycle, } layer = Shapes(**shapes_kwargs) # verify the current_edge_color is correct expected_color = transform_color(color_cycle[0]) current_color = getattr(layer, f'_current_{attribute}_color') np.testing.assert_allclose(current_color, expected_color) # add a shape np.random.seed(0) new_shape = 20 * np.random.random((1, 4, 2)) layer.add(new_shape) props = {'shape_type':
np.array(['A'])
numpy.array
from typing import Tuple, Dict, Any, Union, Callable import numpy as np import scipy.ndimage as ndi from common.exceptionmanager import catch_error_exception from common.functionutil import ImagesUtil from preprocessing.imagegenerator import ImageGenerator _epsilon = 1e-6 class TransformRigidImages(ImageGenerator): def __init__(self, size_image: Union[Tuple[int, int, int], Tuple[int, int]], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, is_inverse_transform: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: super(TransformRigidImages, self).__init__(size_image, num_images=1) if is_normalize_data: if type_normalize_data == 'featurewise': self._featurewise_center = True self._featurewise_std_normalization = True self._samplewise_center = False self._samplewise_std_normalization = False else: # type_normalize_data == 'samplewise' self._featurewise_center = False self._featurewise_std_normalization = False self._samplewise_center = True self._samplewise_std_normalization = True else: self._featurewise_center = False self._featurewise_std_normalization = False self._samplewise_center = False self._samplewise_std_normalization = False self._is_zca_whitening = is_zca_whitening self._zca_epsilon = 1e-6 self._rescale_factor = rescale_factor self._preprocessing_function = preprocessing_function self._mean = None self._std = None self._principal_components = None self._is_inverse_transform = is_inverse_transform self._initialize_gendata() def update_image_data(self, in_shape_image: Tuple[int, ...]) -> None: # self._num_images = in_shape_image[0] pass def _initialize_gendata(self) -> None: self._transform_matrix = None self._transform_params = None self._count_trans_in_images = 0 def _update_gendata(self, **kwargs) -> None: seed = kwargs['seed'] (self._transform_matrix, self._transform_params) = self._calc_gendata_random_transform(seed) self._count_trans_in_images = 0 def _get_image(self, in_image: np.ndarray) -> np.ndarray: is_type_input_image = (self._count_trans_in_images == 0) self._count_trans_in_images += 1 return self._get_transformed_image(in_image, is_type_input_image=is_type_input_image) def _get_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: if ImagesUtil.is_without_channels(self._size_image, in_image.shape): in_image = np.expand_dims(in_image, axis=-1) is_reshape_input_image = True else: is_reshape_input_image = False in_image = self._calc_transformed_image(in_image, is_type_input_image=is_type_input_image) if is_type_input_image: in_image = self._standardize(in_image) if is_reshape_input_image: in_image = np.squeeze(in_image, axis=-1) return in_image def _get_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: if ImagesUtil.is_without_channels(self._size_image, in_image.shape): in_image = np.expand_dims(in_image, axis=-1) is_reshape_input_image = True else: is_reshape_input_image = False if is_type_input_image: in_image = self._standardize_inverse(in_image) in_image = self._calc_inverse_transformed_image(in_image, is_type_input_image=is_type_input_image) if is_reshape_input_image: in_image = np.squeeze(in_image, axis=-1) return in_image def _calc_transformed_image(self, in_array: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: raise NotImplementedError def _calc_inverse_transformed_image(self, in_array: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: raise NotImplementedError def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: raise NotImplementedError def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: raise NotImplementedError def _standardize(self, in_image: np.ndarray) -> np.ndarray: if self._preprocessing_function: in_image = self._preprocessing_function(in_image) if self._rescale_factor: in_image *= self._rescale_factor if self._samplewise_center: in_image -= np.mean(in_image, keepdims=True) if self._samplewise_std_normalization: in_image /= (np.std(in_image, keepdims=True) + _epsilon) template_message_error = 'This ImageDataGenerator specifies \'%s\', but it hasn\'t been fit on any ' \ 'training data. Fit it first by calling \'fit(numpy_data)\'.' if self._featurewise_center: if self._mean is not None: in_image -= self._mean else: message = template_message_error % ('featurewise_center') catch_error_exception(message) if self._featurewise_std_normalization: if self._std is not None: in_image /= (self._std + _epsilon) else: message = template_message_error % ('featurewise_std_normalization') catch_error_exception(template_message_error % (message)) if self._is_zca_whitening: if self._principal_components is not None: flatx = np.reshape(in_image, (-1, np.prod(in_image.shape[-3:]))) whitex = np.dot(flatx, self._principal_components) in_image = np.reshape(whitex, in_image.shape) else: message = template_message_error % ('zca_whitening') catch_error_exception(message) return in_image def _standardize_inverse(self, in_image: np.ndarray) -> np.ndarray: template_message_error = 'This ImageDataGenerator specifies \'%s\', but it hasn\'t been fit on any ' \ 'training data. Fit it first by calling \'fit(numpy_data)\'.' if self._is_zca_whitening: if self._principal_components is not None: flatx = np.reshape(in_image, (-1, np.prod(in_image.shape[-3:]))) inverse_principal_componens = np.divide(1.0, self._principal_components) whitex = np.dot(flatx, inverse_principal_componens) in_image = np.reshape(whitex, in_image.shape) else: message = template_message_error % ('zca_whitening') catch_error_exception(message) if self._featurewise_std_normalization: if self._std is not None: in_image *= self._std else: message = template_message_error % ('featurewise_std_normalization') catch_error_exception(message) if self._featurewise_center: if self._mean is not None: in_image += self._mean else: message = template_message_error % ('featurewise_center') catch_error_exception(message) if self._samplewise_std_normalization: in_image *= np.std(in_image, keepdims=True) if self._samplewise_center: in_image += np.mean(in_image, keepdims=True) if self._rescale_factor: in_image /= self._rescale_factor if self._preprocessing_function: catch_error_exception('Not implemented inverse preprocessing function') return in_image @staticmethod def _flip_axis(in_image: np.ndarray, axis: int) -> np.ndarray: in_image = np.asarray(in_image).swapaxes(axis, 0) in_image = in_image[::-1, ...] in_image = in_image.swapaxes(0, axis) return in_image @staticmethod def _apply_channel_shift(in_image: np.ndarray, intensity: int, channel_axis: int = 0) -> np.ndarray: in_image = np.rollaxis(in_image, channel_axis, 0) min_x, max_x = np.min(in_image), np.max(in_image) channel_images = [np.clip(x_channel + intensity, min_x, max_x) for x_channel in in_image] in_image = np.stack(channel_images, axis=0) in_image = np.rollaxis(in_image, 0, channel_axis + 1) return in_image def _apply_brightness_shift(self, in_image: np.ndarray, brightness: int) -> np.ndarray: catch_error_exception('Not implemented brightness shifting option...') # in_image = array_to_img(in_image) # in_image = imgenhancer_Brightness = ImageEnhance.Brightness(in_image) # in_image = imgenhancer_Brightness.enhance(brightness) # in_image = img_to_array(in_image) def get_text_description(self) -> str: raise NotImplementedError class TransformRigidImages2D(TransformRigidImages): _img_row_axis = 0 _img_col_axis = 1 _img_channel_axis = 2 def __init__(self, size_image: Tuple[int, int], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, rotation_range: float = 0.0, width_shift_range: float = 0.0, height_shift_range: float = 0.0, brightness_range: Tuple[float, float] = None, shear_range: float = 0.0, zoom_range: Union[float, Tuple[float, float]] = 0.0, channel_shift_range: float = 0.0, fill_mode: str = 'nearest', cval: float = 0.0, horizontal_flip: bool = False, vertical_flip: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: self._rotation_range = rotation_range self._width_shift_range = width_shift_range self._height_shift_range = height_shift_range self._brightness_range = brightness_range self._shear_range = shear_range self._channel_shift_range = channel_shift_range self._fill_mode = fill_mode self._cval = cval self._horizontal_flip = horizontal_flip self._vertical_flip = vertical_flip if np.isscalar(zoom_range): self._zoom_range = (1 - zoom_range, 1 + zoom_range) elif len(zoom_range) == 2: self._zoom_range = (zoom_range[0], zoom_range[1]) else: message = '\'zoom_range\' should be a float or a tuple of two floats. Received %s' % (str(zoom_range)) catch_error_exception(message) if self._brightness_range is not None: if len(self._brightness_range) != 2: message = '\'brightness_range\' should be a tuple of two floats. Received %s' % (str(brightness_range)) catch_error_exception(message) super(TransformRigidImages2D, self).__init__(size_image, is_normalize_data=is_normalize_data, type_normalize_data=type_normalize_data, is_zca_whitening=is_zca_whitening, rescale_factor=rescale_factor, preprocessing_function=preprocessing_function) def _calc_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: rigid transformations # 2nd: channel shift intensity / flipping if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) return in_image def _calc_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: channel shift intensity / flipping # 2nd: rigid transformations if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) return in_image def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_range: theta = np.deg2rad(np.random.uniform(-self._rotation_range, self._rotation_range)) else: theta = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if np.max(self._height_shift_range) < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if np.max(self._width_shift_range) < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._shear_range: shear = np.deg2rad(np.random.uniform(-self._shear_range, self._shear_range)) else: shear = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 2) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if theta != 0: rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear != 0: shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = self._size_image[self._img_row_axis], self._size_image[self._img_col_axis] transform_matrix = self._transform_matrix_offset_center(transform_matrix, h, w) # **************************************************** return (transform_matrix, transform_parameters) def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of inverse homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_range: theta = np.deg2rad(np.random.uniform(-self._rotation_range, self._rotation_range)) else: theta = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if self._height_shift_range < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if self._width_shift_range < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._shear_range: shear = np.deg2rad(np.random.uniform(-self._shear_range, self._shear_range)) else: shear = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 2) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if theta != 0: rotation_matrix = np.array([[np.cos(theta), np.sin(theta), 0], [-np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, -tx], [0, 1, -ty], [0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear != 0: shear_matrix = np.array([[1, np.tan(shear), 0], [0, 1.0 / np.cos(shear), 0], [0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[1.0 / zx, 0, 0], [0, 1.0 / zy, 0], [0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = self._size_image[self._img_row_axis], self._size_image[self._img_col_axis] transform_matrix = self._transform_matrix_offset_center(transform_matrix, h, w) # **************************************************** return (transform_matrix, transform_parameters) @staticmethod def _transform_matrix_offset_center(matrix: np.ndarray, x: int, y: int) -> np.ndarray: o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix @staticmethod def _apply_transform(in_image: np.ndarray, transform_matrix: np.ndarray, channel_axis: int = 0, fill_mode: str = 'nearest', cval: float = 0.0) -> np.ndarray: in_image = np.rollaxis(in_image, channel_axis, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=1, mode=fill_mode, cval=cval) for x_channel in in_image] in_image = np.stack(channel_images, axis=0) in_image = np.rollaxis(in_image, 0, channel_axis + 1) return in_image def get_text_description(self) -> str: message = 'Rigid 2D transformations of images, with parameters...\n' message += 'rotation (plane_XY) range: \'%s\'...\n' % (self._rotation_range) message += 'shift (width, height) range: \'(%s, %s)\'...\n' \ % (self._width_shift_range, self._height_shift_range) message += 'flip (horizontal, vertical): \'(%s, %s)\'...\n' \ % (self._horizontal_flip, self._vertical_flip) message += 'zoom (min, max) range: \'(%s, %s)\'...\n' % (self._zoom_range[0], self._zoom_range[1]) message += 'shear (plane_XY) range: \'%s\'...\n' % (self._shear_range) message += 'fill mode, when applied transformation: \'%s\'...\n' % (self._fill_mode) return message class TransformRigidImages3D(TransformRigidImages): _img_dep_axis = 0 _img_row_axis = 1 _img_col_axis = 2 _img_channel_axis = 3 def __init__(self, size_image: Tuple[int, int, int], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, rotation_xy_range: float = 0.0, rotation_xz_range: float = 0.0, rotation_yz_range: float = 0.0, width_shift_range: float = 0.0, height_shift_range: float = 0.0, depth_shift_range: float = 0.0, brightness_range: Tuple[float, float] = None, shear_xy_range: float = 0.0, shear_xz_range: float = 0.0, shear_yz_range: float = 0.0, zoom_range: Union[float, Tuple[float, float]] = 0.0, channel_shift_range: float = 0.0, fill_mode: str = 'nearest', cval: float = 0.0, horizontal_flip: bool = False, vertical_flip: bool = False, axialdir_flip: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: self._rotation_xy_range = rotation_xy_range self._rotation_xz_range = rotation_xz_range self._rotation_yz_range = rotation_yz_range self._width_shift_range = width_shift_range self._height_shift_range = height_shift_range self._depth_shift_range = depth_shift_range self._brightness_range = brightness_range self._shear_xy_range = shear_xy_range self._shear_xz_range = shear_xz_range self._shear_yz_range = shear_yz_range self._channel_shift_range = channel_shift_range self._fill_mode = fill_mode self._cval = cval self._horizontal_flip = horizontal_flip self._vertical_flip = vertical_flip self._axialdir_flip = axialdir_flip if np.isscalar(zoom_range): self._zoom_range = (1 - zoom_range, 1 + zoom_range) elif len(zoom_range) == 2: self._zoom_range = (zoom_range[0], zoom_range[1]) else: message = '\'zoom_range\' should be a float or a tuple of two floats. Received %s' % (str(zoom_range)) catch_error_exception(message) if self._brightness_range is not None: if len(self._brightness_range) != 2: message = '\'brightness_range\' should be a tuple of two floats. Received %s' % (str(brightness_range)) catch_error_exception(message) super(TransformRigidImages3D, self).__init__(size_image, is_normalize_data=is_normalize_data, type_normalize_data=type_normalize_data, is_zca_whitening=is_zca_whitening, rescale_factor=rescale_factor, preprocessing_function=preprocessing_function) def _calc_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: rigid transformations # 2nd: channel shift intensity / flipping if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_axialdir', False): in_image = self._flip_axis(in_image, axis=self._img_dep_axis) if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) return in_image def _calc_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: channel shift intensity / flipping # 2nd: rigid transformations if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) if self._transform_params.get('flip_axialdir', False): in_image = self._flip_axis(in_image, axis=self._img_dep_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) return in_image def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_xy_range: angle_xy = np.deg2rad(np.random.uniform(-self._rotation_xy_range, self._rotation_xy_range)) else: angle_xy = 0 if self._rotation_xz_range: angle_xz = np.deg2rad(np.random.uniform(-self._rotation_xz_range, self._rotation_xz_range)) else: angle_xz = 0 if self._rotation_yz_range: angle_yz = np.deg2rad(np.random.uniform(-self._rotation_yz_range, self._rotation_yz_range)) else: angle_yz = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if self._height_shift_range < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if self._width_shift_range < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._depth_shift_range: tz = np.random.uniform(-self._depth_shift_range, self._depth_shift_range) if self._depth_shift_range < 1: tz *= self._size_image[self._img_dep_axis] else: tz = 0 if self._shear_xy_range: shear_xy = np.deg2rad(np.random.uniform(-self._shear_xy_range, self._shear_xy_range)) else: shear_xy = 0 if self._shear_xz_range: shear_xz = np.deg2rad(np.random.uniform(-self._shear_xz_range, self._shear_xz_range)) else: shear_xz = 0 if self._shear_yz_range: shear_yz = np.deg2rad(np.random.uniform(-self._shear_yz_range, self._shear_yz_range)) else: shear_yz = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: (zx, zy, zz) = (1, 1, 1) else: (zx, zy, zz) = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 3) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip flip_axialdir = (np.random.random() < 0.5) * self._axialdir_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'flip_axialdir': flip_axialdir, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if angle_xy != 0: rotation_matrix = np.array([[1, 0, 0, 0], [0, np.cos(angle_xy), -np.sin(angle_xy), 0], [0, np.sin(angle_xy), np.cos(angle_xy), 0], [0, 0, 0, 1]]) transform_matrix = rotation_matrix if angle_xz != 0: rotation_matrix = np.array([[np.cos(angle_xz), np.sin(angle_xz), 0, 0], [-np.sin(angle_xz), np.cos(angle_xz), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) transform_matrix = \ rotation_matrix if transform_matrix is None else np.dot(transform_matrix, rotation_matrix) if angle_yz != 0: rotation_matrix = np.array([[np.cos(angle_yz), 0, np.sin(angle_yz), 0], [0, 1, 0, 0], [-np.sin(angle_yz), 0, np.cos(angle_yz), 0], [0, 0, 0, 1]]) transform_matrix = \ rotation_matrix if transform_matrix is None else np.dot(transform_matrix, rotation_matrix) if tx != 0 or ty != 0 or tz != 0: shift_matrix = np.array([[1, 0, 0, tz], [0, 1, 0, tx], [0, 0, 1, ty], [0, 0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear_xy != 0: shear_matrix = np.array([[1, 0, 0, 0], [0, 1, -np.sin(shear_xy), 0], [0, 0, np.cos(shear_xy), 0], [0, 0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if shear_xz != 0: shear_matrix = np.array([[np.cos(shear_xz), 0, 0, 0], [-np.sin(shear_xz), 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if shear_yz != 0: shear_matrix = np.array([[np.cos(shear_yz), 0, 0, 0], [0, 1, 0, 0], [-np.sin(shear_yz), 0, 1, 0], [0, 0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1 or zz != 1: zoom_matrix = np.array([[zz, 0, 0, 0], [0, zx, 0, 0], [0, 0, zy, 0], [0, 0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: (d, h, w) = (self._size_image[self._img_dep_axis], self._size_image[self._img_row_axis], self._size_image[self._img_col_axis]) transform_matrix = self._transform_matrix_offset_center(transform_matrix, d, h, w) # **************************************************** return (transform_matrix, transform_parameters) def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of inverse homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_xy_range: angle_xy = np.deg2rad(np.random.uniform(-self._rotation_xy_range, self._rotation_xy_range)) else: angle_xy = 0 if self._rotation_xz_range: angle_xz = np.deg2rad(np.random.uniform(-self._rotation_xz_range, self._rotation_xz_range)) else: angle_xz = 0 if self._rotation_yz_range: angle_yz = np.deg2rad(np.random.uniform(-self._rotation_yz_range, self._rotation_yz_range)) else: angle_yz = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if self._height_shift_range < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if self._width_shift_range < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._depth_shift_range: tz = np.random.uniform(-self._depth_shift_range, self._depth_shift_range) if self._depth_shift_range < 1: tz *= self._size_image[self._img_dep_axis] else: tz = 0 if self._shear_xy_range: shear_xy = np.deg2rad(np.random.uniform(-self._shear_xy_range, self._shear_xy_range)) else: shear_xy = 0 if self._shear_xz_range: shear_xz = np.deg2rad(np.random.uniform(-self._shear_xz_range, self._shear_xz_range)) else: shear_xz = 0 if self._shear_yz_range: shear_yz = np.deg2rad(np.random.uniform(-self._shear_yz_range, self._shear_yz_range)) else: shear_yz = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: (zx, zy, zz) = (1, 1, 1) else: (zx, zy, zz) = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 3) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip flip_axialdir = (np.random.random() < 0.5) * self._axialdir_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'flip_axialdir': flip_axialdir, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if angle_xy != 0: rotation_matrix = np.array([[1, 0, 0, 0], [0, np.cos(angle_xy), np.sin(angle_xy), 0], [0, -np.sin(angle_xy), np.cos(angle_xy), 0], [0, 0, 0, 1]]) transform_matrix = rotation_matrix if angle_xz != 0: rotation_matrix = np.array([[np.cos(angle_xz), -np.sin(angle_xz), 0, 0], [np.sin(angle_xz),
np.cos(angle_xz)
numpy.cos
import json import os import numpy as np, h5py import scipy.io as sp import pandas as pd from depth import depthlist from feature_smooth import feature_smooth from utils import angle_between, cross_validation def parse_feats(f_in,f_out,f_in_d,depth,oversample): """ Load """ json_files = os.listdir(f_in) face_feats_all = np.zeros([2, len(json_files), 210], dtype=np.float64) pose_feats_all = np.zeros([2, len(json_files), 54], dtype=np.float64) pose_feats = np.zeros([len(json_files), 66], dtype=np.float64) for idx in range(0,len(json_files)): data = json.load(open(f_in + json_files[idx])) if len(data['people']) > 0: face_feats_all[0,idx] = data['people'][0]['face_keypoints'] pose_feats_all[0,idx] = data['people'][0]['pose_keypoints'] try: face_feats_all[1,idx] = data['people'][1]['face_keypoints'] pose_feats_all[1,idx] = data['people'][1]['pose_keypoints'] except IndexError: pass else: face_feats_all[0,idx] = np.zeros([210]) face_feats_all[1,idx] =
np.zeros([210])
numpy.zeros
from scipy.optimize import leastsq from copy import deepcopy import numpy as np import warnings def standardize_vector(vector): if vector[0] != 0: if vector[0] < 0: vector = np.array(vector) * -1 vector = vector.tolist() elif vector[1] != 0: if vector[1] < 0: vector = np.array(vector) * -1 vector = vector.tolist() else: if vector[2] < 0: vector = np.array(vector) * -1 vector = vector.tolist() for i in range(3): vector[i] = vector[i] + 0 return vector def is_rasci_transition(configuration, reference, n_electron=1, max_jump=10): """ Determine if a configuration corresponds to a transition of n_electron :param configuration: dictionary containing the configuration to be analyzed :param reference: reference configuration (in general lowest energy Slater determinant) :param n_electron: :param max_jump: Restrict to transitions with jumps less or equal to max_jump orbitals :return: True if conditions are met, otherwise False """ warnings.warn('This function will be deprecated, use "is_transition" instead', DeprecationWarning) alpha_diff = [int(i) - int(j) for i, j in zip(configuration['alpha'], reference['alpha'])] beta_diff = [int(i) - int(j) for i, j in zip(configuration['beta'], reference['beta'])] ini_alpha = np.where(np.array(alpha_diff) < 0)[0] fin_alpha = np.where(np.array(alpha_diff) > 0)[0] ini_beta = np.where(np.array(beta_diff) < 0)[0] fin_beta = np.where(np.array(beta_diff) > 0)[0] try: jump_alpha = np.max(fin_alpha) - np.min(ini_alpha) except ValueError: jump_alpha = 0 try: jump_beta = np.max(fin_beta) - np.min(ini_beta) except ValueError: jump_beta = 0 n_alpha = len(fin_alpha) n_beta = len(fin_beta) elec_condition = n_alpha + n_beta == n_electron jump_condition = jump_alpha <= max_jump and jump_beta <= max_jump return elec_condition and jump_condition def get_ratio_of_condition_rasci(state, n_electron=1, max_jump=10): # reference = {'hole': '', 'alpha': '111000', 'beta': '111000', 'part': '', 'amplitude': 0.9777044} warnings.warn('This function will be deprecated, use "get_ratio_of_condition" instead', DeprecationWarning) alpha_int = [int(i) for i in state['configurations'][0]['alpha']] ref_alpha = '' for i in range(len(alpha_int)): if i < np.sum(alpha_int): ref_alpha += '1' else: ref_alpha += '0' reference = {'hole': '', 'alpha': ref_alpha, 'beta': ref_alpha, 'part': ''} p = 0 for configuration in state['configurations']: if is_rasci_transition(configuration, reference, n_electron, max_jump): p += configuration['amplitude']**2 return p def is_transition(configuration, reference, n_electron=1, max_jump=10): """ Determine if a configuration corresponds to a transition of n_electron :param configuration: dictionary containing the configuration to be analyzed :param reference: reference configuration (in general lowest energy Slater determinant) :param n_electron: number of electrons in the transition :param max_jump: Restrict to transitions with jumps less or equal to max_jump orbitals :return: True if conditions are met, otherwise False """ alpha_diff = [int(i) - int(j) for i, j in zip(configuration['occupations']['alpha'], reference['alpha'])] beta_diff = [int(i) - int(j) for i, j in zip(configuration['occupations']['beta'], reference['beta'])] ini_alpha = np.where(np.array(alpha_diff) < 0)[0] fin_alpha = np.where(np.array(alpha_diff) > 0)[0] ini_beta = np.where(np.array(beta_diff) < 0)[0] fin_beta = np.where(np.array(beta_diff) > 0)[0] try: jump_alpha = np.max(fin_alpha) - np.min(ini_alpha) except ValueError: jump_alpha = 0 try: jump_beta =
np.max(fin_beta)
numpy.max
#%% #前處理 import matplotlib.pyplot as plt import pandas as pd import numpy as np df = pd.read_csv('Pokemon.csv') df = df.drop(["Unnamed: 0","Name"], axis = 1) title_mapping = {False: 0, True: 1} df['Legendary'] = df['Legendary'].map(title_mapping) title_mapping2 = {'Normal': 1, 'Water': 2,'Psychic':3} df['Type 1'] = df['Type 1'].map(title_mapping2) for i in range(8): df.iloc[:,i+1] = (df.iloc[:,i+2]-df.iloc[:,i+2].mean())/df.iloc[:,i+2].std() x_train = df.iloc[:120,:] x_test = df.iloc[120:,:] #%% #1. K-nearest-neighbor classi def euclideanDistance(data, test, n1, n2): d1=np.sqrt(np.sum(np.square(data.iloc[n1,1:]-test.iloc[n2,1:]))) return(d1) def pred(data,test): eudis = [] predict = [] true = [] for i in range(test.shape[0]): dis = [] p = [] for j in range(data.shape[0]): dis.append(euclideanDistance(data, test, j, i)) p.append(data.iloc[j,0]) eudis.append(dis) predict.append(p) true.append(test.iloc[i,0]) return(eudis,predict,true) eudis,predict,true = pred(x_train,x_test) def select_k(dis,p,k): pred=[] for i in range(len(dis)): idx = np.argsort(dis[i]) pred.append(np.array(p[i])[idx][:k]) pred = np.array(pred) if k==1: return(np.array(pred)) else: pp = [] for j in range(len(pred)): d = {x:list(pred[j]).count(x) for x in list(pred[j])} a,b = list(d.keys()),list(d.values()) pp.append(a[b.index(max(b))]) return(np.array(pp)) def accuracy(p,t): h = 0 for i in range(len(p)): if p[i] == np.array(t)[i]: h += 1 return(h/len(p)) acc = [] for k in range(1,11): acc.append(accuracy(select_k(eudis,predict,k),true)) acc k = [i for i in range(1,11)] plt.plot(k,acc) plt.xlabel('k') plt.ylabel('accuracy') plt.title('KNN') plt.savefig('KNN.png') #%% #(2).PCA def pca(df,k): xtx = np.dot(df.T,df) [df_eig_v,df_eig_vec] =
np.linalg.eigh(xtx)
numpy.linalg.eigh
""" @author: <NAME> """ import yfinance as yf import datetime as dt import pandas as pd import numpy as np from pandas.plotting import table import matplotlib.pyplot as plt from scipy.stats import levene # Download historical data for S&P 500 ticker = "^GSPC" SnP = yf.download(ticker, start="1991-02-01", end="2018-06-01") SnP = SnP.drop(['Open','High','Low','Close','Volume'], axis=1) SnP['Return'] = SnP['Adj Close'].pct_change() def Ret_everyndays(DF,n): """ This function takes in the SnP data, calculates the returns every n days, returns a list""" df = DF.copy().drop('Return', axis = 1).iloc[::n, :] ret = df['Adj Close'].pct_change().to_list() return ret def MV_Breach(mvg_avg_days,DF): """this function takes in the MA days, df of close prices & outputs events when MA was breached . In order for the moving average to be breached, the previous day’s closing price has to be ABOVE the moving average and today's close must be BELOW the moving average""" df = DF.copy().drop("Return", axis=1) df["Moving Average Price"] = df["Adj Close"].rolling(mvg_avg_days).mean() last_close_price = df["Adj Close"].iloc[mvg_avg_days-2] df = df.iloc[mvg_avg_days-2:, ] df_BreakingDMA = df[(df["Adj Close"].shift(1) > df["Moving Average Price"].shift(1)) & (df["Adj Close"] < df["Moving Average Price"])] df_BreakingDMA = df_BreakingDMA.reset_index().rename(columns={'Date': f'Date {mvg_avg_days}d MA is breached','Adj Close': 'Closing Price on Day 0'}) df_BreakingDMA = df_BreakingDMA[[f'Date {mvg_avg_days}d MA is breached', 'Moving Average Price', 'Closing Price on Day 0']] return df_BreakingDMA def strategyretdata(Price,breachdata,n,N): """ Extract the close prices 1d,2d,..,nd from the breach date. Then calculate the returns for each of such intervals taking the price as on breach date as the base price""" price = Price.copy() price = price.reset_index() dict = {} for i in breachdata[f'Date {N}d MA is breached']: x = price[price['Date'] == i]['Adj Close'].index.values S = pd.Series(SnP['Adj Close'][x[0]:x[0] + n]) first_element = S[0] dict[i] = list(S.apply(lambda y: ((y / first_element) - 1))) return dict # Create a DataFrame with SnP returns from every 1d,2d,...,40d SnP_Returns = pd.DataFrame() df = pd.DataFrame() for k in range(1, 41): Column_Name = str(f'Date - EVERY {k} DAYS') df[Column_Name] = np.array(Ret_everyndays(SnP, k)) SnP_Returns = pd.concat([SnP_Returns, df], axis=1) df = pd.DataFrame() continue SnP_Returns.drop(index=0, inplace=True) # Create DataFrame with the Close Prices on the Breach Date Breach_data_50DMA = MV_Breach(50,SnP) # 50 DMA Breach_data_100DMA = MV_Breach(100,SnP) # 100 DMA Breach_data_200DMA = MV_Breach(200,SnP) # 200 DMA # Create a DataFrame with the Strategy Returns every 1d,2d,....,40d from the Breach Date Breach_ret_50DMA = pd.DataFrame(dict((k, v) for k, v in strategyretdata(SnP, Breach_data_50DMA, 41, 50).items() if len(v)==41)).transpose().drop(columns=0) Breach_ret_100DMA = pd.DataFrame(dict((k, v) for k, v in strategyretdata(SnP, Breach_data_100DMA, 41, 100).items() if len(v)==41)).transpose().drop(columns=0) Breach_ret_200DMA = pd.DataFrame(dict((k, v) for k, v in strategyretdata(SnP, Breach_data_200DMA, 41, 200).items() if len(v)==41)).transpose().drop(columns=0) # Performing Levene's Test on 50d,100d,200d against S&P_Ret for very 1d,2d,3d,...,40d holding period P_Values = pd.DataFrame(index=range(1,41), columns=["Levene's test p-value MA 200 ","Levene's test p-value MA 100","Levene's test p-value MA 50"]) for i in range(0, 40): stat1, p1 = levene(list(Breach_ret_50DMA.iloc[:, i].dropna()), list(SnP_Returns.iloc[:, i].dropna())) stat2, p2 = levene(list(Breach_ret_100DMA.iloc[:, i].dropna()), list(SnP_Returns.iloc[:, i].dropna())) stat3, p3 = levene(list(Breach_ret_200DMA.iloc[:, i].dropna()), list(SnP_Returns.iloc[:, i].dropna())) P_Values.iloc[i, 2] = p1 P_Values.iloc[i, 1] = p2 P_Values.iloc[i, 0] = p3 # Analyzing the p-values for 50d,100d and 200d MA mu1 = round(np.mean(P_Values.iloc[:, 0]), 2) sigma1 = round(np.std(P_Values.iloc[:, 0]), 2) plt.subplot(311) plt.hist(P_Values.iloc[:,0], 20, density=True) plt.title("Histogram of 'p-value - MA 200': '$\mu={}$, $\sigma={}$'".format(mu1, sigma1)) plt.xticks([]) # Disables xticks plt.axvline(x=0.05, color='r', label='p-value of 0.05', linestyle='--', linewidth=1) plt.legend() mu2 = round(np.mean(P_Values.iloc[:, 1]), 2) sigma2 = round(
np.std(P_Values.iloc[:, 1])
numpy.std
""" Module: LMR_verify_proxy_plot.py Purpose: Plotting of summary statistics from proxy-based verification. Both proxy chronologies that were assimilated to create reconstructions and those witheld for independent verification are considered. Input: Reads .pckl files containing verification data generated by running the LMR_verify_proxy.py script. Originator: <NAME> | Dept. of Atmospheric Sciences, Univ. of Washington | October 2015 Revisions: - Histogram plots now include overlays of distributions derived from kernel (gaussian) density estimation, as well as results from a 2-sided Kolmogorov-Smirnov significance test on distributions representing results over two different time periods [<NAME> - U. of Washington, Dec. 2017] - Added the production of plots showing results per individual proxy records. [<NAME> - U. of Washington, March 2018] """ import os import numpy as np import pickle from time import time from os.path import join from scipy import stats import statsmodels.api as sm import matplotlib import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib.colors import from_levels_and_colors from mpl_toolkits.basemap import Basemap # ========================================================================================= # START: set user parameters here # ========================================================================================= # ------------------------------ # Section 1: Plotting parameters # ------------------------------ make_plots_hist = True make_plots_maps = False make_plots_individual_sites = False make_pdfs = False # set the default size of the figure in inches. ['figure.figsize'] = width, height; plt.rcParams['figure.figsize'] = 10, 8 # that's default image size for this interactive session plt.rcParams['axes.linewidth'] = 2.0 #set the value globally plt.rcParams['font.weight'] = 'bold' #set the font weight globally plt.rcParams['font.size'] = 11 #set the font size globally #plt.rc('text', usetex=True) plt.rc('text', usetex=False) plt.style.use('ggplot') # Histogram plotting parameters binwidth = 0.05 CORRrange = [-1,1] CErange = [-1,1] CEchangerange = [-1,1] alpha = 0.25 fcolor = ['blue', 'red'] # ------------------------- # Section 2: Proxy datasets # ------------------------- #proxies = 'PAGES2kv1' proxies = 'LMRdb' # Assign symbol to proxy types for plotting: dependent on proxy database used. if proxies == 'PAGES2kv1': # PAGES2kv1 proxies proxy_verif = {\ 'Tree ring_Width' :'o',\ 'Tree ring_Density' :'s',\ 'Ice core_d18O' :'v',\ 'Ice core_d2H' :'^',\ 'Ice core_Accumulation' :'D',\ 'Coral_d18O' :'p',\ 'Coral_Luminescence' :'8',\ 'Lake sediment_All' :'<',\ 'Marine sediment_All' :'>',\ 'Speleothem_All' :'h',\ } elif proxies == 'LMRdb': # LMRdb proxies proxy_verif = {\ 'Tree Rings_WoodDensity' :'s',\ 'Tree Rings_WidthPages' :'o',\ 'Tree Rings_WidthPages2' :'o',\ 'Tree Rings_WidthBreit' :'o',\ 'Tree Rings_Isotopes' :'*',\ 'Corals and Sclerosponges_d18O' :'p',\ 'Corals and Sclerosponges_SrCa' :'h',\ 'Corals and Sclerosponges_Rates':'D',\ 'Ice Cores_d18O' :'v',\ 'Ice Cores_dD' :'^',\ 'Ice Cores_Accumulation' :'D',\ 'Ice Cores_MeltFeature' :'d',\ 'Lake Cores_Varve' :'<',\ 'Lake Cores_Misc' :'>',\ 'Lake Cores_BioMarkers' :'>',\ 'Lake Cores_GeoChem' :'^',\ 'Marine Cores_d18O' :'H',\ 'Bivalve_d18O' :'8',\ 'Speleothems_d18O' :'h',\ } else: raise SystemExit('ERROR in the especification of the proxy dataset to be considered. Exiting!') # Only keep proxy sites for which the linear PSM has a correlation >= than this value r_crit = 0.0 #r_crit = 0.2 # ------------------------------------ # Section 3: Directories & experiments # ------------------------------------ #datadir_input = '/home/disk/ekman4/rtardif/LMR/output' datadir_input = '/home/disk/kalman3/rtardif/LMR/output' #datadir_input = '/home/disk/kalman3/rtardif/LMR/output/verification_production_runs' #nexp = 'production_gis_ccsm4_pagesall_0.75' #nexp = 'production_mlost_ccsm4_pagesall_0.75' nexp = 'test_py3' #verif_period = [[1880,2000],[0,1879]] verif_period = [[1900,2000],[1800,1899]] # Output directory, where the figs will be dumped. #datadir_output = datadir_input # if want to keep things tidy datadir_output = '.' # if want local plots # ========================================================================================= # END: set user parameters here # ========================================================================================= # ============================================================================= # <<<<<<<<<<<<<<<<<<<<<<<<<<<<< Main code >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # ============================================================================= def main(): begin_time = time() # ============================= # Loading the verification data # ============================= vtype = {'assim': 'Assimilated proxies', 'verif':'Non-assimilated proxies'} nbperiods = len(verif_period) assim_dict = [dict() for x in range(nbperiods)] verif_dict = [dict() for x in range(nbperiods)] # loop over verification periods & load data in dictionaries for p in range(nbperiods): # Read the pickle files containing summary stats fname_assim = datadir_input+'/'+nexp+'/'+'verifProxy_'+str(verif_period[p][0])+'to'+str(verif_period[p][1])+\ '/reconstruction_eval_assimilated_proxy_summary.pckl' fname_verif = datadir_input+'/'+nexp+'/'+'verifProxy_'+str(verif_period[p][0])+'to'+str(verif_period[p][1])+\ '/reconstruction_eval_withheld_proxy_summary.pckl' infile_assim = open(fname_assim,'rb') assim_dict[p] = pickle.load(infile_assim) infile_assim.close() if os.path.isfile(fname_verif): infile_verif = open(fname_verif,'rb') verif_dict[p] = pickle.load(infile_verif) infile_verif.close() verif_data = True else: verif_data = False # get list of all proxy types in the assimilated/withheld data lst = [] for p in range(nbperiods): a_sites = list(assim_dict[p].keys()) lst = lst + list(set([item[0] for item in a_sites])) if verif_data: v_sites = list(verif_dict[p].keys()) lst = lst + list(set([item[0] for item in v_sites])) master_proxy_types = list(set([item for item in lst])) master_proxy_types.insert(0,'All') # ================== # Now creating plots # ================== if datadir_output != '.': figdir = datadir_output+'/VerifFigs' if not os.path.isdir(figdir): os.system('mkdir %s' % figdir) else: figdir = '.' # ============================================================================================================ # 1) Histograms of (recon, proxy) CORRELATION, CE across grand ensemble for all proxy types and per proxy type # ============================================================================================================ if make_plots_hist: # loop over proxy types for proxy in master_proxy_types: print('Proxies: %s' %proxy) fig = plt.figure(figsize=(12,8)) irow = 1 for v in list(vtype.keys()): # "assim" & "verif" proxies if v == 'verif' and not verif_data: break ax_master = fig.add_subplot(2,1,irow) # Turn off axis lines and ticks of the big subplot ax_master.tick_params(labelcolor=(1.,1.,1., 0.0), top='off', bottom='off', left='off', right='off') # Removes the white frame ax_master._frameon = False ax_master.set_title("%s\n" % vtype[v], fontsize=16, fontweight='bold') facecolor = fcolor[0] if v == 'assim': pos = [1,2,3] else: pos = [4,5,6] bins_corr = np.arange(-1.-binwidth/2, 1.+binwidth/2, binwidth) bins_ce = np.arange(-2.-binwidth/2, 1.+binwidth/2, binwidth) # 1) --- Correlation --- ax = fig.add_subplot(2,3,pos[0]) mean_stat = np.zeros([nbperiods]) std_stat = np.zeros([nbperiods]) prior_tmp = [] stat_comp = [] for p in range(nbperiods): # pick right dict and associate to "workdict" dname = v+'_dict' workdict = eval(dname) sitetag = list(workdict[p].keys()) if proxy == 'All': proxy_types = list(set([item[0] for item in sitetag])) else: proxy_types = proxy tmp = [workdict[p][k]['MCensCorr'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] stat = [item for sublist in tmp for item in sublist] # flatten list of lists nbdata = len(stat) mean_stat[p] = np.mean(stat) std_stat[p] = np.std(stat) results, edges = np.histogram(stat, bins=bins_corr, normed=True) plt.bar(edges[:-1]+binwidth/2,results,binwidth,color=fcolor[p],alpha=alpha,linewidth=0,align="center") # kernel density estimation statv = np.asarray(stat) kde = sm.nonparametric.KDEUnivariate(statv) nbpts, = statv.shape if nbpts > 0: kde.fit(kernel='gau') plt.plot(kde.support,kde.density,color=fcolor[p],lw=2,label=str(verif_period[p][0])+' to '+str(verif_period[p][1])) stat_comp.append(stat) # Accumulate prior stat tmp = [workdict[p][k]['PriorMCensCorr'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] prior_tmp.append([item for sublist in tmp for item in sublist]) # flatten list of lists # Kolmogorov-Smirnov significance testing of difference between distributions from both tested periods nbdist = len(stat_comp) if nbdist > 1: dist_test = stats.ks_2samp(stat_comp[0],stat_comp[1]) #print('Corr: %f %f' %(dist_test.statistic, dist_test.pvalue)) xmind,xmaxd,ymind,ymaxd = plt.axis() prior_corr = [item for sublist in prior_tmp for item in sublist] results, edges = np.histogram(prior_corr, bins=bins_corr, normed=True) plt.plot(edges[:-1]+binwidth,results,linewidth=1,ls='steps',color='black',label='Prior') plt.xlabel("Correlation",fontweight='bold') plt.ylabel("Probability density",fontweight='bold') ymin = 0.0 #ymax = 0.04; nbins = 4 #ymax = 0.05; nbins = 5 # for r_crit = 0.2 #ymax = 0.1; nbins = 5 #ymax = 2.0; nbins = 5 if proxy == 'All': ymax = 2.0; nbins = 5 else: ymax = ymaxd plt.axis((CORRrange[0],CORRrange[1],ymin,ymax)) plt.locator_params(axis = 'y', nbins = nbins) plt.legend(loc=2,fontsize=9,frameon=False,handlelength=1.2) xmin,xmax,ymin,ymax = plt.axis() xpos = xmin+0.025*(xmax-xmin) ypos = ymin+0.5*(ymax-ymin) for p in range(nbperiods): plt.text(xpos,ypos,'Mean = %s' %"{:.2f}".format(mean_stat[p]),fontsize=10,fontweight='bold',color=fcolor[p]) ypos = ypos-0.075*(ymax-ymin) if nbdist > 1: plt.text(xpos,ypos,' p-value = %s' %"{:.3f}".format(dist_test.pvalue),fontsize=9,fontweight='bold') ypos = ypos-0.075*(ymax-ymin) plt.text(xpos,ypos,'Mean = %s' %"{:.2f}".format(np.mean(prior_corr)),fontsize=10,fontweight='bold') # 2) --- CE --- ax = fig.add_subplot(2,3,pos[1]) mean_stat = np.zeros([nbperiods]) std_stat = np.zeros([nbperiods]) prior_tmp = [] stat_comp = [] for p in range(nbperiods): # pick right dict and associate to "workdict" dname = v+'_dict' workdict = eval(dname) sitetag = list(workdict[p].keys()) if proxy == 'All': proxy_types = list(set([item[0] for item in sitetag])) else: proxy_types = proxy tmp = [workdict[p][k]['MCensCE'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] stat = [item for sublist in tmp for item in sublist] # flatten list of lists nbdata = len(stat) mean_stat[p] = np.mean(stat) std_stat[p] = np.std(stat) # Since CE is not bounded at the lower end, assign values smaller than 1st bin to value of 1st bin #stat = [bins[0] if x<bins[0] else x for x in stat] results, edges = np.histogram(stat, bins=bins_ce, normed=True) plt.bar(edges[:-1],results,binwidth,color=fcolor[p],alpha=alpha,linewidth=0) # kernel density estimation statv = np.asarray(stat) kde = sm.nonparametric.KDEUnivariate(statv) nbpts, = statv.shape if nbpts > 0: kde.fit(kernel='gau') plt.plot(kde.support,kde.density,color=fcolor[p],lw=2,label=str(verif_period[p][0])+' to '+str(verif_period[p][1])) stat_comp.append(stat) # Accumulate prior stat tmp = [workdict[p][k]['PriorMCensCE'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] prior_tmp.append([item for sublist in tmp for item in sublist]) # flatten list of lists # Kolmogorov-Smirnov significance testing of difference between distributions from both tested periods nbdist = len(stat_comp) if nbdist > 1: dist_test = stats.ks_2samp(stat_comp[0],stat_comp[1]) #print('CE: %f %f' %(dist_test.statistic, dist_test.pvalue)) prior_ce = [item for sublist in prior_tmp for item in sublist] # Since CE is not bounded at the lower end, assign values smaller than 1st bin to value of 1st bin prior_ce = [bins_ce[0] if x<bins_ce[0] else x for x in prior_ce] results, edges = np.histogram(prior_ce, bins=bins_ce, normed=True) plt.plot(edges[:-1]+binwidth,results,linewidth=1,ls='steps',color='black',label='Prior') plt.xlabel("Coefficient of efficiency",fontweight='bold') plt.ylabel("Probability density",fontweight='bold') xmin,xmax,ymin,ymax = plt.axis() ymin = 0.0 #ymax = 0.45 #ymax = 0.1 # for r_crit = 0.2 #ymax = 0.5; nbins = 5 ymax = 12.0; nbins = 6 plt.axis((CErange[0],CErange[1],ymin,ymax)) plt.legend(loc=2,fontsize=9,frameon=False,handlelength=1.2) xmin,xmax,ymin,ymax = plt.axis() xpos = xmin+0.025*(xmax-xmin) ypos = ymin+0.5*(ymax-ymin) for p in range(nbperiods): plt.text(xpos,ypos,'Mean = %s' %"{:.2f}".format(mean_stat[p]),fontsize=10,fontweight='bold',color=fcolor[p]) ypos = ypos-0.075*(ymax-ymin) if nbdist > 1: plt.text(xpos,ypos,' p-value = %s' %"{:.3f}".format(dist_test.pvalue),fontsize=9,fontweight='bold') ypos = ypos-0.075*(ymax-ymin) plt.text(xpos,ypos,'Mean = %s' %"{:.2f}".format(np.mean(prior_ce)),fontsize=10,fontweight='bold') # 3) --- Change in CE from prior to posterior --- ax = fig.add_subplot(2,3,pos[2]) prior_tmp = [] stat_comp = [] for p in range(nbperiods): # pick right dict and associate to "workdict" dname = v+'_dict' workdict = eval(dname) sitetag = list(workdict[p].keys()) if proxy == 'All': proxy_types = list(set([item[0] for item in sitetag])) else: proxy_types = proxy tmpPost = [workdict[p][k]['MCensCE'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] tmpPrior = [workdict[p][k]['PriorMCensCE'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] statPost = [item for sublist in tmpPost for item in sublist] # flatten list of lists statPrior = [item for sublist in tmpPrior for item in sublist] # flatten list of lists # difference stat = [statPost[i]-statPrior[i] for i in range(len(statPost))] nbdata = len(stat) mean_stat = np.mean(stat) std_stat =
np.std(stat)
numpy.std
from vergeml.command import command, CommandPlugin from vergeml.option import option from vergeml.plots import load_labels import os.path import csv from vergeml.utils import VergeMLError import numpy as np @command('confusion-matrix', descr="Plot a confusion matrix.") @option('@AI') @option('normalize', type='bool', default=False, descr="When true normalize the confusion matrix.", short="n", flag=True) class ConfusionMatrixPlot(CommandPlugin): def __call__(self, args, env): # Plotting a confusion matrix needs the model to follow the convention # - labels.txt in checkpoints # - predictions.csv in stats import itertools import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix from vergeml.plots import load_labels, load_predictions try: labels = load_labels(env) except FileNotFoundError: raise VergeMLError("Can't plot confusion matrix - not supported by model.") nclasses = len(labels) try: y_test, y_score = load_predictions(env, nclasses) except FileNotFoundError: raise VergeMLError("Can't plot confusion matrix - not supported by model.") # From: # https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py def plot_confusion_matrix(cm, classes, AI, normalize=False, cmap=plt.cm.Blues): # pylint: disable=E1101 """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] plt.title(f"Confusion matrix for @{AI} (normalized)") else: plt.title(f'Confusion matrix for @{AI}') plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout() y_test =
np.argmax(y_test, axis=1)
numpy.argmax
import threading import time import cv2 import numpy as np import serial import sys, getopt import paho.mqtt from PIL import Image import paho.mqtt.client as mqtt from paho.mqtt import publish from video import create_capture import Adafruit_CharLCD as LCD import Adafruit_GPIO as GPIO lcd_rs = 25 lcd_en = 24 lcd_d4 = 23 lcd_d5 = 17 lcd_d6 = 18 lcd_d7 = 22 lcd_backlight = 2 # Define LCD column and row size for 16x2 LCD. lcd_columns = 16 lcd_rows = 2 lcd = LCD.Adafruit_CharLCD(lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6, lcd_d7, lcd_columns, lcd_rows, lcd_backlight) ser = serial.Serial( "/dev/ttyAMA0", baudrate=115200, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, writeTimeout=1, timeout=10, rtscts=False, dsrdtr=False, xonxoff=False) serLock = threading.Lock() # --------------------------------------------------------MQTT----------------------------------------------------------# def on_connect_cart(client, obj, flags, rc): if rc == 0: print("Cart connected with result code " + str(rc)) client.subscribe("cart/room/starting_room_number") client.subscribe("cart/room/destination_room_number") client.subscribe("cart/parking") else: print("Bad connection returned code = ", rc) def on_message_cart(client, obj, msg): # print("Cart new message: " + msg.topic + " " + str(msg.payload)) roomNumber = str(msg.payload) if msg.topic == "cart/room/starting_room_number": if roomNumber == "331": # pass a value to micom for scenario 1 serLock.acquire() try: ser.write('!') finally: serLock.release() # print("2 unlock") print(roomNumber) else: print("Unknown roomNumber") print(roomNumber) elif msg.topic == "cart/room/destination_room_number": if roomNumber == "323-1": # pass a value to micom for scenario 2 serLock.acquire() try: ser.write('@') finally: serLock.release() # print("2 unlock") print(roomNumber) elif roomNumber == "250": # pass a value to micom for scenario 3 serLock.acquire() try: ser.write('#') finally: serLock.release() # print("2 unlock") print(roomNumber) else: print("Unknown roomNumber") print(roomNumber) elif msg.topic == "cart/parking": if roomNumber == "0": # pass a vale to micom for parking scenario, which is not yet decided print(roomNumber) else: print("Unknown roomNumber") print(roomNumber) else: print("Unknown topic") def on_publish_cart(client, obj, mid): print("mid: " + str(mid)) def on_subscribe_cart(client, obj, mid, granted_qos): print("Subscribed: " + str(mid) + " " + str(granted_qos)) def on_log_cart(client, obj, level, string): print(string) # The below lines will be used to publish the topics # publish.single("elevator/starting_floor_number", "3", hostname="172.16.17.32", port=1883) # publish.single("elevator/destination_floor_number", "2", hostname="172.16.17.32", port=1883) # ---------------------------------------------------------------------------------------------------------------------# # ------------------------------------------Hallway detction------------------------------------------------------------# class Line(): def __init__(self): # was the line detected in the last iteration? self.detected = False # smoothing span self.n_avg = 10 # x values of the last n_avg fits of the line self.recent_xfitted = [] #average x values of the fitted line over the last n iterations self.bestx = None #polynomial coefficients averaged over the last n iterations self.best_fit = None self.i = 0 def add(self, recent_xfitted, ploty): # add in line self.detected = True self.recent_xfitted.append(recent_xfitted) # smooth out last n fits # keep only n_avg values if len(self.recent_xfitted) > self.n_avg: self.recent_xfitted = self.recent_xfitted[(len(self.recent_xfitted) - self.n_avg):] self.bestx = np.mean(self.recent_xfitted, axis=0) # find polynomial co-efficients of averaged x values self.best_fit = np.polyfit(ploty, self.bestx, 2) def perspective_transform(img, src, dst): h = img.shape[0] w = img.shape[1] M = cv2.getPerspectiveTransform(src, dst) #Minv = cv2.getPerspectiveTransform(dst, src) warped = cv2.warpPerspective(img, M, (w,h)) return warped, M def find_lanes_sliding_window(binary_warped, draw_rect=False): # Assuming you have created a warped binary image called "binary_warped" # Take a histogram of the bottom half of the image histogram = np.sum(binary_warped[int(binary_warped.shape[0]/2):,:], axis=0) # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint = np.int(histogram.shape[0]/2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base =
np.argmax(histogram[midpoint:])
numpy.argmax
from __future__ import print_function, division import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from geotnf.point_tnf import PointTnf class TransformedGridLoss(nn.Module): def __init__(self, geometric_model='affine', use_cuda=True, grid_size=20): super(TransformedGridLoss, self).__init__() self.geometric_model = geometric_model # define virtual grid of points to be transformed axis_coords = np.linspace(-1,1,grid_size) self.N = grid_size*grid_size X,Y = np.meshgrid(axis_coords,axis_coords) X = np.reshape(X,(1,1,self.N)) Y = np.reshape(Y,(1,1,self.N)) P =
np.concatenate((X,Y),1)
numpy.concatenate
# neural network functions and classes import numpy as np import random import json import cma from es import SimpleGA, CMAES, PEPG, OpenES from env import make_env def sigmoid(x): return 1 / (1 + np.exp(-x)) def relu(x): return np.maximum(x, 0) def passthru(x): return x # useful for discrete actions def softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0) # useful for discrete actions def sample(p): return np.argmax(np.random.multinomial(1, p)) """ learning the model """ class RNNCell: def __init__(self, input_size, weight, bias): self.input_size=input_size self.weight = weight self.bias = bias def __call__(self, x, h): concat = np.concatenate((x, h), axis=1) hidden = np.matmul(concat, self.weight)+self.bias return
np.tanh(hidden)
numpy.tanh
#!/usr/bin/python3 ''' DoomScenario.py Authors: <NAME> Last Updated: 3/26/17 ''' """ This script defines the instance of Vizdoom used to train and test Reinforcement Learning Models. """ from vizdoom import DoomGame, Mode, ScreenResolution import itertools as it import numpy as np np.seterr(divide='ignore', invalid='ignore') from tqdm import tqdm def softmax(x, t): ''' Method defines softmax function ''' e_x = np.exp(x - np.max(x))/t return e_x / e_x.sum(axis=0) class DoomScenario: """ DoomScenario class runs instances of Vizdoom according to scenario configuration (.cfg) files. Scenario Configuration files for this project are located in the /src/configs/ folder. """ def __init__(self, config_filename): ''' Method initiates Vizdoom with desired configuration file. ''' self.config_filename = config_filename self.game = DoomGame() self.game.load_config("configs/" + config_filename) self.game.set_window_visible(False) self.game.init() self.res = (self.game.get_screen_height(), self.game.get_screen_width()) self.actions = [list(a) for a in it.product([0, 1], repeat=self.game.get_available_buttons_size())] self.pbar = None self.game.new_episode() def play(self, action, tics): ''' Method advances state with desired action for a number of tics. ''' self.game.set_action(action) self.game.advance_action(tics, True) if self.pbar: self.pbar.update(int(tics)) def get_processed_state(self, depth_radius, depth_contrast): ''' Method processes the Vizdoom RGB and depth buffer into a composite one channel image that can be used by the Models. depth_radius defines how far the depth buffer sees with 1.0 being as far as ViZDoom allows. depth_contrast defines how much of the depth buffer is in the final processed image as compared to the greyscaled RGB buffer. **processed = (1-depth_contrast)* grey_buffer + depth_contrast*depth_buffer ''' state = self.game.get_state() screen_buffer = np.array(state.screen_buffer).astype('float32')/255 try: # Grey Scaling grey_buffer = np.dot(np.transpose(screen_buffer, (1, 2, 0)), [0.21, 0.72, 0.07]) # Depth Radius depth_buffer = np.array(state.depth_buffer).astype('float32')/255 depth_buffer[(depth_buffer > depth_radius)] = depth_radius #Effects depth radius depth_buffer_filtered = (depth_buffer - np.amin(depth_buffer))/ (np.amax(depth_buffer) - np.amin(depth_buffer)) # Depth Contrast processed_buffer = ((1 - depth_contrast) * grey_buffer) + (depth_contrast* (1- depth_buffer)) processed_buffer = (processed_buffer - np.amin(processed_buffer))/ (
np.amax(processed_buffer)
numpy.amax
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for the Hamiltonian class. """ import numpy as np import pytest import pennylane as qml from pennylane import numpy as pnp # Make test data in different interfaces, if installed COEFFS_PARAM_INTERFACE = [ ([-0.05, 0.17], 1.7, "autograd"), (np.array([-0.05, 0.17]), np.array(1.7), "autograd"), (pnp.array([-0.05, 0.17], requires_grad=True), pnp.array(1.7, requires_grad=True), "autograd"), ] try: from jax import numpy as jnp COEFFS_PARAM_INTERFACE.append((jnp.array([-0.05, 0.17]), jnp.array(1.7), "jax")) except ImportError: pass try: import tf COEFFS_PARAM_INTERFACE.append( (tf.Variable([-0.05, 0.17], dtype=tf.double), tf.Variable(1.7, dtype=tf.double), "tf") ) except ImportError: pass try: import torch COEFFS_PARAM_INTERFACE.append((torch.tensor([-0.05, 0.17]), torch.tensor([1.7]), "torch")) except ImportError: pass H_ONE_QUBIT = np.array([[1.0, 0.5j], [-0.5j, 2.5]]) H_TWO_QUBITS = np.array( [[0.5, 1.0j, 0.0, -3j], [-1.0j, -1.1, 0.0, -0.1], [0.0, 0.0, -0.9, 12.0], [3j, -0.1, 12.0, 0.0]] ) COEFFS = [(0.5, 1.2, -0.7), (2.2, -0.2, 0.0), (0.33,)] OBSERVABLES = [ (qml.PauliZ(0), qml.PauliY(0), qml.PauliZ(1)), (qml.PauliX(0) @ qml.PauliZ(1), qml.PauliY(0) @ qml.PauliZ(1), qml.PauliZ(1)), (qml.Hermitian(H_TWO_QUBITS, [0, 1]),), ] valid_hamiltonians = [ ((1.0,), (qml.Hermitian(H_TWO_QUBITS, [0, 1]),)), ((-0.8,), (qml.PauliZ(0),)), ((0.6,), (qml.PauliX(0) @ qml.PauliX(1),)), ((0.5, -1.6), (qml.PauliX(0), qml.PauliY(1))), ((0.5, -1.6), (qml.PauliX(1), qml.PauliY(1))), ((0.5, -1.6), (qml.PauliX("a"), qml.PauliY("b"))), ((1.1, -0.4, 0.333), (qml.PauliX(0), qml.Hermitian(H_ONE_QUBIT, 2), qml.PauliZ(2))), ((-0.4, 0.15), (qml.Hermitian(H_TWO_QUBITS, [0, 2]), qml.PauliZ(1))), ([1.5, 2.0], [qml.PauliZ(0), qml.PauliY(2)]), (np.array([-0.1, 0.5]), [qml.Hermitian(H_TWO_QUBITS, [0, 1]), qml.PauliY(0)]), ((0.5, 1.2), (qml.PauliX(0), qml.PauliX(0) @ qml.PauliX(1))), ] valid_hamiltonians_str = [ " (1.0) [Hermitian0,1]", " (-0.8) [Z0]", " (0.6) [X0 X1]", " (-1.6) [Y1]\n+ (0.5) [X0]", " (-1.6) [Y1]\n+ (0.5) [X1]", " (-1.6) [Yb]\n+ (0.5) [Xa]", " (-0.4) [Hermitian2]\n+ (0.333) [Z2]\n+ (1.1) [X0]", " (0.15) [Z1]\n+ (-0.4) [Hermitian0,2]", " (1.5) [Z0]\n+ (2.0) [Y2]", " (0.5) [Y0]\n+ (-0.1) [Hermitian0,1]", " (0.5) [X0]\n+ (1.2) [X0 X1]", ] valid_hamiltonians_repr = [ "<Hamiltonian: terms=1, wires=[0, 1]>", "<Hamiltonian: terms=1, wires=[0]>", "<Hamiltonian: terms=1, wires=[0, 1]>", "<Hamiltonian: terms=2, wires=[0, 1]>", "<Hamiltonian: terms=2, wires=[1]>", "<Hamiltonian: terms=2, wires=['a', 'b']>", "<Hamiltonian: terms=3, wires=[0, 2]>", "<Hamiltonian: terms=2, wires=[0, 1, 2]>", "<Hamiltonian: terms=2, wires=[0, 2]>", "<Hamiltonian: terms=2, wires=[0, 1]>", "<Hamiltonian: terms=2, wires=[0, 1]>", ] invalid_hamiltonians = [ ((), (qml.PauliZ(0),)), ((), (qml.PauliZ(0), qml.PauliY(1))), ((3.5,), ()), ((1.2, -0.4), ()), ((0.5, 1.2), (qml.PauliZ(0),)), ((1.0,), (qml.PauliZ(0), qml.PauliY(0))), ] simplify_hamiltonians = [ ( qml.Hamiltonian([1, 1, 1], [qml.PauliX(0) @ qml.Identity(1), qml.PauliX(0), qml.PauliX(1)]), qml.Hamiltonian([2, 1], [qml.PauliX(0), qml.PauliX(1)]), ), ( qml.Hamiltonian( [-1, 1, 1], [qml.PauliX(0) @ qml.Identity(1), qml.PauliX(0), qml.PauliX(1)] ), qml.Hamiltonian([1], [qml.PauliX(1)]), ), ( qml.Hamiltonian( [1, 0.5], [qml.PauliX(0) @ qml.PauliY(1), qml.PauliY(1) @ qml.Identity(2) @ qml.PauliX(0)], ), qml.Hamiltonian([1.5], [qml.PauliX(0) @ qml.PauliY(1)]), ), ( qml.Hamiltonian( [1, 1, 0.5], [ qml.Hermitian(np.array([[1, 0], [0, -1]]), "a"), qml.PauliX("b") @ qml.PauliY(1.3), qml.PauliY(1.3) @ qml.Identity(-0.9) @ qml.PauliX("b"), ], ), qml.Hamiltonian( [1, 1.5], [qml.Hermitian(np.array([[1, 0], [0, -1]]), "a"), qml.PauliX("b") @ qml.PauliY(1.3)], ), ), # Simplifies to zero Hamiltonian ( qml.Hamiltonian( [1, -0.5, -0.5], [qml.PauliX(0) @ qml.Identity(1), qml.PauliX(0), qml.PauliX(0)] ), qml.Hamiltonian([], []), ), ( qml.Hamiltonian( [1, -1], [qml.PauliX(4) @ qml.Identity(0) @ qml.PauliX(1), qml.PauliX(4) @ qml.PauliX(1)], ), qml.Hamiltonian([], []), ), ( qml.Hamiltonian([0], [qml.Identity(0)]), qml.Hamiltonian([0], [qml.Identity(0)]), ), ] equal_hamiltonians = [ ( qml.Hamiltonian([1, 1], [qml.PauliX(0) @ qml.Identity(1), qml.PauliZ(0)]), qml.Hamiltonian([1, 1], [qml.PauliX(0), qml.PauliZ(0)]), True, ), ( qml.Hamiltonian([1, 1], [qml.PauliX(0) @ qml.Identity(1), qml.PauliY(2) @ qml.PauliZ(0)]), qml.Hamiltonian([1, 1], [qml.PauliX(0), qml.PauliZ(0) @ qml.PauliY(2) @ qml.Identity(1)]), True, ), ( qml.Hamiltonian( [1, 1, 1], [qml.PauliX(0) @ qml.Identity(1), qml.PauliZ(0), qml.Identity(1)] ), qml.Hamiltonian([1, 1], [qml.PauliX(0), qml.PauliZ(0)]), False, ), (qml.Hamiltonian([1], [qml.PauliZ(0) @ qml.PauliX(1)]), qml.PauliZ(0) @ qml.PauliX(1), True), (qml.Hamiltonian([1], [qml.PauliZ(0)]), qml.PauliZ(0), True), ( qml.Hamiltonian( [1, 1, 1], [ qml.Hermitian(np.array([[1, 0], [0, -1]]), "b") @ qml.Identity(7), qml.PauliZ(3), qml.Identity(1.2), ], ), qml.Hamiltonian( [1, 1, 1], [qml.Hermitian(np.array([[1, 0], [0, -1]]), "b"), qml.PauliZ(3), qml.Identity(1.2)], ), True, ), ( qml.Hamiltonian([1, 1], [qml.PauliZ(3) @ qml.Identity(1.2), qml.PauliZ(3)]), qml.Hamiltonian([2], [qml.PauliZ(3)]), True, ), ] add_hamiltonians = [ ( qml.Hamiltonian([1, 1.2, 0.1], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2)]), qml.Hamiltonian([0.5, 0.3, 1], [qml.PauliX(0), qml.PauliX(1), qml.PauliX(2)]), qml.Hamiltonian( [1.5, 1.2, 1.1, 0.3], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2), qml.PauliX(1)] ), ), ( qml.Hamiltonian( [1.3, 0.2, 0.7], [qml.PauliX(0) @ qml.PauliX(1), qml.Hadamard(1), qml.PauliX(2)] ), qml.Hamiltonian( [0.5, 0.3, 1.6], [qml.PauliX(0), qml.PauliX(1) @ qml.PauliX(0), qml.PauliX(2)] ), qml.Hamiltonian( [1.6, 0.2, 2.3, 0.5], [qml.PauliX(0) @ qml.PauliX(1), qml.Hadamard(1), qml.PauliX(2), qml.PauliX(0)], ), ), ( qml.Hamiltonian([1, 1], [qml.PauliX(0), qml.Hermitian(np.array([[1, 0], [0, -1]]), 0)]), qml.Hamiltonian([0.5, 0.5], [qml.PauliX(0), qml.Hermitian(np.array([[1, 0], [0, -1]]), 0)]), qml.Hamiltonian([1.5, 1.5], [qml.PauliX(0), qml.Hermitian(np.array([[1, 0], [0, -1]]), 0)]), ), ( qml.Hamiltonian([1, 1.2, 0.1], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2)]), qml.PauliX(0) @ qml.Identity(1), qml.Hamiltonian([2, 1.2, 0.1], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2)]), ), ( qml.Hamiltonian( [1.3, 0.2, 0.7], [qml.PauliX(0) @ qml.PauliX(1), qml.Hadamard(1), qml.PauliX(2)] ), qml.Hadamard(1), qml.Hamiltonian( [1.3, 1.2, 0.7], [qml.PauliX(0) @ qml.PauliX(1), qml.Hadamard(1), qml.PauliX(2)] ), ), ( qml.Hamiltonian([1, 1.2, 0.1], [qml.PauliX("b"), qml.PauliZ(3.1), qml.PauliX(1.6)]), qml.PauliX("b") @ qml.Identity(5), qml.Hamiltonian([2, 1.2, 0.1], [qml.PauliX("b"), qml.PauliZ(3.1), qml.PauliX(1.6)]), ), # Case where arguments coeffs and ops to the Hamiltonian are iterables other than lists ( qml.Hamiltonian((1, 1.2, 0.1), (qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2))), qml.Hamiltonian( np.array([0.5, 0.3, 1]), np.array([qml.PauliX(0), qml.PauliX(1), qml.PauliX(2)]) ), qml.Hamiltonian( (1.5, 1.2, 1.1, 0.3), np.array([qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2), qml.PauliX(1)]), ), ), ] sub_hamiltonians = [ ( qml.Hamiltonian([1, 1.2, 0.1], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2)]), qml.Hamiltonian([0.5, 0.3, 1.6], [qml.PauliX(0), qml.PauliX(1), qml.PauliX(2)]), qml.Hamiltonian( [0.5, 1.2, -1.5, -0.3], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2), qml.PauliX(1)] ), ), ( qml.Hamiltonian( [1.3, 0.2, 1], [qml.PauliX(0) @ qml.PauliX(1), qml.Hadamard(1), qml.PauliX(2)] ), qml.Hamiltonian( [0.5, 0.3, 1], [qml.PauliX(0), qml.PauliX(1) @ qml.PauliX(0), qml.PauliX(2)] ), qml.Hamiltonian( [1, 0.2, -0.5], [qml.PauliX(0) @ qml.PauliX(1), qml.Hadamard(1), qml.PauliX(0)] ), ), ( qml.Hamiltonian([1, 1], [qml.PauliX(0), qml.Hermitian(np.array([[1, 0], [0, -1]]), 0)]), qml.Hamiltonian([0.5, 0.5], [qml.PauliX(0), qml.Hermitian(np.array([[1, 0], [0, -1]]), 0)]), qml.Hamiltonian([0.5, 0.5], [qml.PauliX(0), qml.Hermitian(np.array([[1, 0], [0, -1]]), 0)]), ), ( qml.Hamiltonian([1, 1.2, 0.1], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2)]), qml.PauliX(0) @ qml.Identity(1), qml.Hamiltonian([1.2, 0.1], [qml.PauliZ(1), qml.PauliX(2)]), ), ( qml.Hamiltonian( [1.3, 0.2, 0.7], [qml.PauliX(0) @ qml.PauliX(1), qml.Hadamard(1), qml.PauliX(2)] ), qml.Hadamard(1), qml.Hamiltonian( [1.3, -0.8, 0.7], [qml.PauliX(0) @ qml.PauliX(1), qml.Hadamard(1), qml.PauliX(2)] ), ), ( qml.Hamiltonian([1, 1.2, 0.1], [qml.PauliX("b"), qml.PauliZ(3.1), qml.PauliX(1.6)]), qml.PauliX("b") @ qml.Identity(1), qml.Hamiltonian([1.2, 0.1], [qml.PauliZ(3.1), qml.PauliX(1.6)]), ), # The result is the zero Hamiltonian ( qml.Hamiltonian([1, 1.2, 0.1], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2)]), qml.Hamiltonian([1, 1.2, 0.1], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2)]), qml.Hamiltonian([], []), ), ( qml.Hamiltonian([1, 2], [qml.PauliX(4), qml.PauliZ(2)]), qml.Hamiltonian([1, 2], [qml.PauliX(4), qml.PauliZ(2)]), qml.Hamiltonian([], []), ), # Case where arguments coeffs and ops to the Hamiltonian are iterables other than lists ( qml.Hamiltonian((1, 1.2, 0.1), (qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2))), qml.Hamiltonian( np.array([0.5, 0.3, 1.6]), np.array([qml.PauliX(0), qml.PauliX(1), qml.PauliX(2)]) ), qml.Hamiltonian( (0.5, 1.2, -1.5, -0.3), np.array([qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2), qml.PauliX(1)]), ), ), ] mul_hamiltonians = [ ( 3, qml.Hamiltonian([1.5, 0.5], [qml.PauliX(0), qml.PauliZ(1)]), qml.Hamiltonian([4.5, 1.5], [qml.PauliX(0), qml.PauliZ(1)]), ), ( -1.3, qml.Hamiltonian([1, -0.3], [qml.PauliX(0), qml.PauliZ(1) @ qml.PauliZ(2)]), qml.Hamiltonian([-1.3, 0.39], [qml.PauliX(0), qml.PauliZ(1) @ qml.PauliZ(2)]), ), ( -1.3, qml.Hamiltonian( [1, -0.3], [qml.Hermitian(np.array([[1, 0], [0, -1]]), "b"), qml.PauliZ(23) @ qml.PauliZ(0)], ), qml.Hamiltonian( [-1.3, 0.39], [qml.Hermitian(np.array([[1, 0], [0, -1]]), "b"), qml.PauliZ(23) @ qml.PauliZ(0)], ), ), # The result is the zero Hamiltonian ( 0, qml.Hamiltonian([1], [qml.PauliX(0)]), qml.Hamiltonian([0], [qml.PauliX(0)]), ), ( 0, qml.Hamiltonian([1, 1.2, 0.1], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2)]), qml.Hamiltonian([0, 0, 0], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(2)]), ), # Case where arguments coeffs and ops to the Hamiltonian are iterables other than lists ( 3, qml.Hamiltonian((1.5, 0.5), (qml.PauliX(0), qml.PauliZ(1))), qml.Hamiltonian(np.array([4.5, 1.5]), np.array([qml.PauliX(0), qml.PauliZ(1)])), ), ] matmul_hamiltonians = [ ( qml.Hamiltonian([1, 1], [qml.PauliX(0), qml.PauliZ(1)]), qml.Hamiltonian([0.5, 0.5], [qml.PauliZ(2), qml.PauliZ(3)]), qml.Hamiltonian( [0.5, 0.5, 0.5, 0.5], [ qml.PauliX(0) @ qml.PauliZ(2), qml.PauliX(0) @ qml.PauliZ(3), qml.PauliZ(1) @ qml.PauliZ(2), qml.PauliZ(1) @ qml.PauliZ(3), ], ), ), ( qml.Hamiltonian([0.5, 0.25], [qml.PauliX(0) @ qml.PauliX(1), qml.PauliZ(0)]), qml.Hamiltonian([1, 1], [qml.PauliX(3) @ qml.PauliZ(2), qml.PauliZ(2)]), qml.Hamiltonian( [0.5, 0.5, 0.25, 0.25], [ qml.PauliX(0) @ qml.PauliX(1) @ qml.PauliX(3) @ qml.PauliZ(2), qml.PauliX(0) @ qml.PauliX(1) @ qml.PauliZ(2), qml.PauliZ(0) @ qml.PauliX(3) @ qml.PauliZ(2), qml.PauliZ(0) @ qml.PauliZ(2), ], ), ), ( qml.Hamiltonian([1, 1], [qml.PauliX("b"), qml.Hermitian(np.array([[1, 0], [0, -1]]), 0)]), qml.Hamiltonian([2, 2], [qml.PauliZ(1.2), qml.PauliY("c")]), qml.Hamiltonian( [2, 2, 2, 2], [ qml.PauliX("b") @ qml.PauliZ(1.2), qml.PauliX("b") @ qml.PauliY("c"), qml.Hermitian(np.array([[1, 0], [0, -1]]), 0) @ qml.PauliZ(1.2), qml.Hermitian(np.array([[1, 0], [0, -1]]), 0) @ qml.PauliY("c"), ], ), ), ( qml.Hamiltonian([1, 1], [qml.PauliX(0), qml.PauliZ(1)]), qml.PauliX(2), qml.Hamiltonian([1, 1], [qml.PauliX(0) @ qml.PauliX(2), qml.PauliZ(1) @ qml.PauliX(2)]), ), # Case where arguments coeffs and ops to the Hamiltonian are iterables other than lists ( qml.Hamiltonian((1, 1), (qml.PauliX(0), qml.PauliZ(1))), qml.Hamiltonian(np.array([0.5, 0.5]), np.array([qml.PauliZ(2), qml.PauliZ(3)])), qml.Hamiltonian( (0.5, 0.5, 0.5, 0.5), np.array( [ qml.PauliX(0) @ qml.PauliZ(2), qml.PauliX(0) @ qml.PauliZ(3), qml.PauliZ(1) @ qml.PauliZ(2), qml.PauliZ(1) @ qml.PauliZ(3), ] ), ), ), ] big_hamiltonian_coeffs = np.array( [ -0.04207898, 0.17771287, 0.17771287, -0.24274281, -0.24274281, 0.17059738, 0.04475014, -0.04475014, -0.04475014, 0.04475014, 0.12293305, 0.16768319, 0.16768319, 0.12293305, 0.17627641, ] ) big_hamiltonian_ops = [ qml.Identity(wires=[0]), qml.PauliZ(wires=[0]), qml.PauliZ(wires=[1]), qml.PauliZ(wires=[2]), qml.PauliZ(wires=[3]), qml.PauliZ(wires=[0]) @ qml.PauliZ(wires=[1]), qml.PauliY(wires=[0]) @ qml.PauliX(wires=[1]) @ qml.PauliX(wires=[2]) @ qml.PauliY(wires=[3]), qml.PauliY(wires=[0]) @ qml.PauliY(wires=[1]) @ qml.PauliX(wires=[2]) @ qml.PauliX(wires=[3]), qml.PauliX(wires=[0]) @ qml.PauliX(wires=[1]) @ qml.PauliY(wires=[2]) @ qml.PauliY(wires=[3]), qml.PauliX(wires=[0]) @ qml.PauliY(wires=[1]) @ qml.PauliY(wires=[2]) @ qml.PauliX(wires=[3]), qml.PauliZ(wires=[0]) @ qml.PauliZ(wires=[2]), qml.PauliZ(wires=[0]) @ qml.PauliZ(wires=[3]), qml.PauliZ(wires=[1]) @ qml.PauliZ(wires=[2]), qml.PauliZ(wires=[1]) @ qml.PauliZ(wires=[3]), qml.PauliZ(wires=[2]) @ qml.PauliZ(wires=[3]), ] big_hamiltonian = qml.Hamiltonian(big_hamiltonian_coeffs, big_hamiltonian_ops) big_hamiltonian_grad = ( np.array( [ [ [6.52084595e-18, -2.11464420e-02, -1.16576858e-02], [-8.22589330e-18, -5.20597922e-02, -1.85365365e-02], [-2.73850768e-17, 1.14202988e-01, -5.45041403e-03], [-1.27514307e-17, -1.10465531e-01, 5.19489457e-02], ], [ [-2.45428288e-02, 8.38921555e-02, -2.00641818e-17], [-2.21085973e-02, 7.39332741e-04, -1.25580654e-17], [9.62058625e-03, -1.51398765e-01, 2.02129847e-03], [1.10020832e-03, -3.49066271e-01, 2.13669117e-03], ], ] ), ) def circuit1(param): """First Pauli subcircuit""" qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval(qml.PauliX(0)) def circuit2(param): """Second Pauli subcircuit""" qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval(qml.PauliZ(0)) dev = qml.device("default.qubit", wires=2) class TestHamiltonian: """Test the Hamiltonian class""" @pytest.mark.parametrize("coeffs, ops", valid_hamiltonians) def test_hamiltonian_valid_init(self, coeffs, ops): """Tests that the Hamiltonian object is created with the correct attributes""" H = qml.Hamiltonian(coeffs, ops) assert np.allclose(H.terms[0], coeffs) assert H.terms[1] == list(ops) @pytest.mark.parametrize("coeffs, ops", invalid_hamiltonians) def test_hamiltonian_invalid_init_exception(self, coeffs, ops): """Tests that an exception is raised when giving an invalid combination of coefficients and ops""" with pytest.raises(ValueError, match="number of coefficients and operators does not match"): H = qml.Hamiltonian(coeffs, ops) @pytest.mark.parametrize( "obs", [[qml.PauliX(0), qml.CNOT(wires=[0, 1])], [qml.PauliZ, qml.PauliZ(0)]] ) def test_hamiltonian_invalid_observables(self, obs): """Tests that an exception is raised when a complex Hamiltonian is given""" coeffs = [0.1, 0.2] with pytest.raises(ValueError, match="observables are not valid"): qml.Hamiltonian(coeffs, obs) @pytest.mark.parametrize("coeffs, ops", valid_hamiltonians) def test_hamiltonian_wires(self, coeffs, ops): """Tests that the Hamiltonian object has correct wires.""" H = qml.Hamiltonian(coeffs, ops) assert set(H.wires) == set([w for op in H.ops for w in op.wires]) @pytest.mark.parametrize("terms, string", zip(valid_hamiltonians, valid_hamiltonians_str)) def test_hamiltonian_str(self, terms, string): """Tests that the __str__ function for printing is correct""" H = qml.Hamiltonian(*terms) assert H.__str__() == string @pytest.mark.parametrize("terms, string", zip(valid_hamiltonians, valid_hamiltonians_repr)) def test_hamiltonian_repr(self, terms, string): """Tests that the __repr__ function for printing is correct""" H = qml.Hamiltonian(*terms) assert H.__repr__() == string def test_hamiltonian_name(self): """Tests the name property of the Hamiltonian class""" H = qml.Hamiltonian([], []) assert H.name == "Hamiltonian" @pytest.mark.parametrize(("old_H", "new_H"), simplify_hamiltonians) def test_simplify(self, old_H, new_H): """Tests the simplify method""" old_H.simplify() assert old_H.compare(new_H) def test_simplify_while_queueing(self): """Tests that simplifying a Hamiltonian in a tape context queues the simplified Hamiltonian.""" with qml.tape.QuantumTape() as tape: a = qml.PauliX(wires=0) b = qml.PauliY(wires=1) c = qml.Identity(wires=2) d = b @ c H = qml.Hamiltonian([1.0, 2.0], [a, d]) H.simplify() # check that H is simplified assert H.ops == [a, b] # check that the simplified Hamiltonian is in the queue assert H in tape._queue def test_data(self): """Tests the obs_data method""" H = qml.Hamiltonian( [1, 1, 0.5], [qml.PauliZ(0), qml.PauliZ(0) @ qml.PauliX(1), qml.PauliX(2) @ qml.Identity(1)], ) data = H._obs_data() assert data == { (1, frozenset([("PauliZ", qml.wires.Wires(0), ())])), ( 1, frozenset([("PauliZ", qml.wires.Wires(0), ()), ("PauliX", qml.wires.Wires(1), ())]), ), (0.5, frozenset([("PauliX", qml.wires.Wires(2), ())])), } def test_hamiltonian_equal_error(self): """Tests that the correct error is raised when compare() is called on invalid type""" H = qml.Hamiltonian([1], [qml.PauliZ(0)]) with pytest.raises( ValueError, match=r"Can only compare a Hamiltonian, and a Hamiltonian/Observable/Tensor.", ): H.compare([[1, 0], [0, -1]]) @pytest.mark.parametrize(("H1", "H2", "res"), equal_hamiltonians) def test_hamiltonian_equal(self, H1, H2, res): """Tests that equality can be checked between Hamiltonians""" assert H1.compare(H2) == res @pytest.mark.parametrize(("H1", "H2", "H"), add_hamiltonians) def test_hamiltonian_add(self, H1, H2, H): """Tests that Hamiltonians are added correctly""" assert H.compare(H1 + H2) @pytest.mark.parametrize(("coeff", "H", "res"), mul_hamiltonians) def test_hamiltonian_mul(self, coeff, H, res): """Tests that scalars and Hamiltonians are multiplied correctly""" assert res.compare(coeff * H) assert res.compare(H * coeff) @pytest.mark.parametrize(("H1", "H2", "H"), sub_hamiltonians) def test_hamiltonian_sub(self, H1, H2, H): """Tests that Hamiltonians are subtracted correctly""" assert H.compare(H1 - H2) @pytest.mark.parametrize(("H1", "H2", "H"), matmul_hamiltonians) def test_hamiltonian_matmul(self, H1, H2, H): """Tests that Hamiltonians are tensored correctly""" assert H.compare(H1 @ H2) def test_hamiltonian_same_wires(self): """Test if a ValueError is raised when multiplication between Hamiltonians acting on the same wires is attempted""" h1 = qml.Hamiltonian([1, 1], [qml.PauliZ(0), qml.PauliZ(1)]) with pytest.raises(ValueError, match="Hamiltonians can only be multiplied together if"): h1 @ h1 @pytest.mark.parametrize(("H1", "H2", "H"), add_hamiltonians) def test_hamiltonian_iadd(self, H1, H2, H): """Tests that Hamiltonians are added inline correctly""" H1 += H2 assert H.compare(H1) @pytest.mark.parametrize(("coeff", "H", "res"), mul_hamiltonians) def test_hamiltonian_imul(self, coeff, H, res): """Tests that scalars and Hamiltonians are multiplied inline correctly""" H *= coeff assert res.compare(H) @pytest.mark.parametrize(("H1", "H2", "H"), sub_hamiltonians) def test_hamiltonian_isub(self, H1, H2, H): """Tests that Hamiltonians are subtracted inline correctly""" H1 -= H2 assert H.compare(H1) def test_arithmetic_errors(self): """Tests that the arithmetic operations thrown the correct errors""" H = qml.Hamiltonian([1], [qml.PauliZ(0)]) A = [[1, 0], [0, -1]] with pytest.raises(ValueError, match="Cannot tensor product Hamiltonian"): H @ A with pytest.raises(ValueError, match="Cannot add Hamiltonian"): H + A with pytest.raises(ValueError, match="Cannot multiply Hamiltonian"): H * A with pytest.raises(ValueError, match="Cannot subtract"): H - A with pytest.raises(ValueError, match="Cannot add Hamiltonian"): H += A with pytest.raises(ValueError, match="Cannot multiply Hamiltonian"): H *= A with pytest.raises(ValueError, match="Cannot subtract"): H -= A def test_hamiltonian_queue(self): """Tests that Hamiltonian are queued correctly""" # Outside of tape queue = [ qml.Hadamard(wires=1), qml.PauliX(wires=0), qml.PauliZ(0), qml.PauliZ(2), qml.PauliZ(0) @ qml.PauliZ(2), qml.PauliX(1), qml.PauliZ(1), qml.Hamiltonian( [1, 3, 1], [qml.PauliX(1), qml.PauliZ(0) @ qml.PauliZ(2), qml.PauliZ(1)] ), ] H = qml.PauliX(1) + 3 * qml.PauliZ(0) @ qml.PauliZ(2) + qml.PauliZ(1) with qml.tape.QuantumTape() as tape: qml.Hadamard(wires=1) qml.PauliX(wires=0) qml.expval(H) assert np.all([q1.compare(q2) for q1, q2 in zip(tape.queue, queue)]) # Inside of tape queue = [ qml.Hadamard(wires=1), qml.PauliX(wires=0), qml.PauliX(1), qml.PauliZ(0), qml.PauliZ(2), qml.PauliZ(0) @ qml.PauliZ(2), qml.PauliZ(1), qml.Hamiltonian( [1, 3, 1], [qml.PauliX(1), qml.PauliZ(0) @ qml.PauliZ(2), qml.PauliZ(1)] ), ] with qml.tape.QuantumTape() as tape: qml.Hadamard(wires=1) qml.PauliX(wires=0) qml.expval( qml.Hamiltonian( [1, 3, 1], [qml.PauliX(1), qml.PauliZ(0) @ qml.PauliZ(2), qml.PauliZ(1)] ) ) assert np.all([q1.compare(q2) for q1, q2 in zip(tape.queue, queue)]) class TestHamiltonianCoefficients: """Test the creation of a Hamiltonian""" @pytest.mark.parametrize("coeffs", [el[0] for el in COEFFS_PARAM_INTERFACE]) def test_creation_different_coeff_types(self, coeffs): """Check that Hamiltonian's coefficients and data attributes are set correctly.""" H = qml.Hamiltonian(coeffs, [qml.PauliX(0), qml.PauliZ(0)]) assert np.allclose(coeffs, H.coeffs) assert np.allclose([coeffs[i] for i in range(qml.math.shape(coeffs)[0])], H.data) @pytest.mark.parametrize("coeffs", [el[0] for el in COEFFS_PARAM_INTERFACE]) def test_simplify(self, coeffs): """Test that simplify works with different coefficient types.""" H1 = qml.Hamiltonian(coeffs, [qml.PauliX(0), qml.PauliZ(1)]) H2 = qml.Hamiltonian(coeffs, [qml.PauliX(0), qml.Identity(0) @ qml.PauliZ(1)]) H2.simplify() assert H1.compare(H2) assert H1.data == H2.data class TestHamiltonianArithmeticTF: """Tests creation of Hamiltonians using arithmetic operations with TensorFlow tensor coefficients.""" def test_hamiltonian_equal(self): """Tests equality""" tf = pytest.importorskip("tensorflow") coeffs = tf.Variable([0.5, -1.6]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = tf.Variable([-1.6, 0.5]) obs2 = [qml.PauliY(1), qml.PauliX(0)] H2 = qml.Hamiltonian(coeffs2, obs2) assert H1.compare(H2) def test_hamiltonian_add(self): """Tests that Hamiltonians are added correctly""" tf = pytest.importorskip("tensorflow") coeffs = tf.Variable([0.5, -1.6]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = tf.Variable([0.5, -0.4]) H2 = qml.Hamiltonian(coeffs2, obs) coeffs_expected = tf.Variable([1.0, -2.0]) H = qml.Hamiltonian(coeffs_expected, obs) assert H.compare(H1 + H2) H1 += H2 assert H.compare(H1) def test_hamiltonian_sub(self): """Tests that Hamiltonians are subtracted correctly""" tf = pytest.importorskip("tensorflow") coeffs = tf.Variable([1.0, -2.0]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = tf.Variable([0.5, -0.4]) H2 = qml.Hamiltonian(coeffs2, obs) coeffs_expected = tf.Variable([0.5, -1.6]) H = qml.Hamiltonian(coeffs_expected, obs) assert H.compare(H1 - H2) H1 -= H2 assert H.compare(H1) def test_hamiltonian_matmul(self): """Tests that Hamiltonians are tensored correctly""" tf = pytest.importorskip("tensorflow") coeffs = tf.Variable([1.0, 2.0]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = tf.Variable([-1.0, -2.0]) obs2 = [qml.PauliX(2), qml.PauliY(3)] H2 = qml.Hamiltonian(coeffs2, obs2) coeffs_expected = tf.Variable([-4.0, -2.0, -2.0, -1.0]) obs_expected = [ qml.PauliY(1) @ qml.PauliY(3), qml.PauliX(0) @ qml.PauliY(3), qml.PauliX(2) @ qml.PauliY(1), qml.PauliX(0) @ qml.PauliX(2), ] H = qml.Hamiltonian(coeffs_expected, obs_expected) assert H.compare(H1 @ H2) class TestHamiltonianArithmeticTorch: """Tests creation of Hamiltonians using arithmetic operations with torch tensor coefficients.""" def test_hamiltonian_equal(self): """Tests equality""" torch = pytest.importorskip("torch") coeffs = torch.tensor([0.5, -1.6]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = torch.tensor([-1.6, 0.5]) obs2 = [qml.PauliY(1), qml.PauliX(0)] H2 = qml.Hamiltonian(coeffs2, obs2) assert H1.compare(H2) def test_hamiltonian_add(self): """Tests that Hamiltonians are added correctly""" torch = pytest.importorskip("torch") coeffs = torch.tensor([0.5, -1.6]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = torch.tensor([0.5, -0.4]) H2 = qml.Hamiltonian(coeffs2, obs) coeffs_expected = torch.tensor([1.0, -2.0]) H = qml.Hamiltonian(coeffs_expected, obs) assert H.compare(H1 + H2) H1 += H2 assert H.compare(H1) def test_hamiltonian_sub(self): """Tests that Hamiltonians are subtracted correctly""" torch = pytest.importorskip("torch") coeffs = torch.tensor([1.0, -2.0]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = torch.tensor([0.5, -0.4]) H2 = qml.Hamiltonian(coeffs2, obs) coeffs_expected = torch.tensor([0.5, -1.6]) H = qml.Hamiltonian(coeffs_expected, obs) assert H.compare(H1 - H2) H1 -= H2 assert H.compare(H1) def test_hamiltonian_matmul(self): """Tests that Hamiltonians are tensored correctly""" torch = pytest.importorskip("torch") coeffs = torch.tensor([1.0, 2.0]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = torch.tensor([-1.0, -2.0]) obs2 = [qml.PauliX(2), qml.PauliY(3)] H2 = qml.Hamiltonian(coeffs2, obs2) coeffs_expected = torch.tensor([-4.0, -2.0, -2.0, -1.0]) obs_expected = [ qml.PauliY(1) @ qml.PauliY(3), qml.PauliX(0) @ qml.PauliY(3), qml.PauliX(2) @ qml.PauliY(1), qml.PauliX(0) @ qml.PauliX(2), ] H = qml.Hamiltonian(coeffs_expected, obs_expected) assert H.compare(H1 @ H2) class TestHamiltonianArithmeticAutograd: """Tests creation of Hamiltonians using arithmetic operations with autograd tensor coefficients.""" def test_hamiltonian_equal(self): """Tests equality""" coeffs = pnp.array([0.5, -1.6]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = pnp.array([-1.6, 0.5]) obs2 = [qml.PauliY(1), qml.PauliX(0)] H2 = qml.Hamiltonian(coeffs2, obs2) assert H1.compare(H2) def test_hamiltonian_add(self): """Tests that Hamiltonians are added correctly""" coeffs = pnp.array([0.5, -1.6]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = pnp.array([0.5, -0.4]) H2 = qml.Hamiltonian(coeffs2, obs) coeffs_expected = pnp.array([1.0, -2.0]) H = qml.Hamiltonian(coeffs_expected, obs) assert H.compare(H1 + H2) H1 += H2 assert H.compare(H1) def test_hamiltonian_sub(self): """Tests that Hamiltonians are subtracted correctly""" coeffs = pnp.array([1.0, -2.0]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = pnp.array([0.5, -0.4]) H2 = qml.Hamiltonian(coeffs2, obs) coeffs_expected = pnp.array([0.5, -1.6]) H = qml.Hamiltonian(coeffs_expected, obs) assert H.compare(H1 - H2) H1 -= H2 assert H.compare(H1) def test_hamiltonian_matmul(self): """Tests that Hamiltonians are tensored correctly""" coeffs = pnp.array([1.0, 2.0]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = pnp.array([-1.0, -2.0]) obs2 = [qml.PauliX(2), qml.PauliY(3)] H2 = qml.Hamiltonian(coeffs2, obs2) coeffs_expected = pnp.array([-4.0, -2.0, -2.0, -1.0]) obs_expected = [ qml.PauliY(1) @ qml.PauliY(3), qml.PauliX(0) @ qml.PauliY(3), qml.PauliX(2) @ qml.PauliY(1), qml.PauliX(0) @ qml.PauliX(2), ] H = qml.Hamiltonian(coeffs_expected, obs_expected) assert H.compare(H1 @ H2) class TestHamiltonianArithmeticJax: """Tests creation of Hamiltonians using arithmetic operations with jax tensor coefficients.""" def test_hamiltonian_equal(self): """Tests equality""" jax = pytest.importorskip("jax") from jax import numpy as jnp coeffs = jnp.array([0.5, -1.6]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = jnp.array([-1.6, 0.5]) obs2 = [qml.PauliY(1), qml.PauliX(0)] H2 = qml.Hamiltonian(coeffs2, obs2) assert H1.compare(H2) def test_hamiltonian_add(self): """Tests that Hamiltonians are added correctly""" jax = pytest.importorskip("jax") from jax import numpy as jnp coeffs = jnp.array([0.5, -1.6]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = jnp.array([0.5, -0.4]) H2 = qml.Hamiltonian(coeffs2, obs) coeffs_expected = jnp.array([1.0, -2.0]) H = qml.Hamiltonian(coeffs_expected, obs) assert H.compare(H1 + H2) H1 += H2 assert H.compare(H1) def test_hamiltonian_sub(self): """Tests that Hamiltonians are subtracted correctly""" jax = pytest.importorskip("jax") from jax import numpy as jnp coeffs = jnp.array([1.0, -2.0]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = jnp.array([0.5, -0.4]) H2 = qml.Hamiltonian(coeffs2, obs) coeffs_expected = jnp.array([0.5, -1.6]) H = qml.Hamiltonian(coeffs_expected, obs) assert H.compare(H1 - H2) H1 -= H2 assert H.compare(H1) def test_hamiltonian_matmul(self): """Tests that Hamiltonians are tensored correctly""" jax = pytest.importorskip("jax") from jax import numpy as jnp coeffs = jnp.array([1.0, 2.0]) obs = [qml.PauliX(0), qml.PauliY(1)] H1 = qml.Hamiltonian(coeffs, obs) coeffs2 = jnp.array([-1.0, -2.0]) obs2 = [qml.PauliX(2), qml.PauliY(3)] H2 = qml.Hamiltonian(coeffs2, obs2) coeffs_expected = jnp.array([-4.0, -2.0, -2.0, -1.0]) obs_expected = [ qml.PauliY(1) @ qml.PauliY(3), qml.PauliX(0) @ qml.PauliY(3), qml.PauliX(2) @ qml.PauliY(1), qml.PauliX(0) @ qml.PauliX(2), ] H = qml.Hamiltonian(coeffs_expected, obs_expected) assert H.compare(H1 @ H2) class TestGrouping: """Tests for the grouping functionality""" def test_grouping_is_correct_kwarg(self): """Basic test checking that grouping with a kwarg works as expected""" a = qml.PauliX(0) b = qml.PauliX(1) c = qml.PauliZ(0) obs = [a, b, c] coeffs = [1.0, 2.0, 3.0] H = qml.Hamiltonian(coeffs, obs, grouping_type="qwc") assert H.grouping_indices == [[0, 1], [2]] def test_grouping_is_correct_compute_grouping(self): """Basic test checking that grouping with compute_grouping works as expected""" a = qml.PauliX(0) b = qml.PauliX(1) c = qml.PauliZ(0) obs = [a, b, c] coeffs = [1.0, 2.0, 3.0] H = qml.Hamiltonian(coeffs, obs, grouping_type="qwc") H.compute_grouping() assert H.grouping_indices == [[0, 1], [2]] def test_grouping_for_non_groupable_hamiltonians(self): """Test that grouping is computed correctly, even if no observables commute""" a = qml.PauliX(0) b = qml.PauliY(0) c = qml.PauliZ(0) obs = [a, b, c] coeffs = [1.0, 2.0, 3.0] H = qml.Hamiltonian(coeffs, obs, grouping_type="qwc") assert H.grouping_indices == [[0], [1], [2]] def test_grouping_is_reset_when_simplifying(self): """Tests that calling simplify() resets the grouping""" obs = [qml.PauliX(0), qml.PauliX(1), qml.PauliZ(0)] coeffs = [1.0, 2.0, 3.0] H = qml.Hamiltonian(coeffs, obs, grouping_type="qwc") assert H.grouping_indices is not None H.simplify() assert H.grouping_indices is None def test_grouping_does_not_alter_queue(self): """Tests that grouping is invisible to the queue.""" a = qml.PauliX(0) b = qml.PauliX(1) c = qml.PauliZ(0) obs = [a, b, c] coeffs = [1.0, 2.0, 3.0] with qml.tape.QuantumTape() as tape: H = qml.Hamiltonian(coeffs, obs, grouping_type="qwc") assert tape.queue == [a, b, c, H] def test_grouping_method_can_be_set(self): r"""Tests that the grouping method can be controlled by kwargs. This is done by changing from default to 'rlf' and checking the result.""" a = qml.PauliX(0) b = qml.PauliX(1) c = qml.PauliZ(0) obs = [a, b, c] coeffs = [1.0, 2.0, 3.0] # compute grouping during construction H2 = qml.Hamiltonian(coeffs, obs, grouping_type="qwc", method="lf") assert H2.grouping_indices == [[2, 1], [0]] # compute grouping separately H3 = qml.Hamiltonian(coeffs, obs, grouping_type=None) H3.compute_grouping(method="lf") assert H3.grouping_indices == [[2, 1], [0]] class TestHamiltonianEvaluation: """Test the usage of a Hamiltonian as an observable""" @pytest.mark.parametrize("coeffs, param, interface", COEFFS_PARAM_INTERFACE) def test_vqe_forward_different_coeff_types(self, coeffs, param, interface): """Check that manually splitting a Hamiltonian expectation has the same result as passing the Hamiltonian as an observable""" dev = qml.device("default.qubit", wires=2) H = qml.Hamiltonian(coeffs, [qml.PauliX(0), qml.PauliZ(0)]) @qml.qnode(dev, interface=interface) def circuit(): qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval(H) @qml.qnode(dev, interface=interface) def circuit1(): qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval(qml.PauliX(0)) @qml.qnode(dev, interface=interface) def circuit2(): qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval(qml.PauliZ(0)) res = circuit() res_expected = coeffs[0] * circuit1() + coeffs[1] * circuit2() assert np.isclose(res, res_expected) def test_simplify_reduces_tape_parameters(self): """Test that simplifying a Hamiltonian reduces the number of parameters on a tape""" dev = qml.device("default.qubit", wires=2) @qml.qnode(dev) def circuit(): qml.RY(0.1, wires=0) return qml.expval( qml.Hamiltonian([1.0, 2.0], [qml.PauliX(1), qml.PauliX(1)], simplify=True) ) circuit() pars = circuit.qtape.get_parameters(trainable_only=False) # simplify worked and added 1. and 2. assert pars == [0.1, 3.0] @pytest.mark.parametrize("simplify", [True, False]) @pytest.mark.parametrize("group", [None, "qwc"]) class TestHamiltonianDifferentiation: """Test that the Hamiltonian coefficients are differentiable""" def test_vqe_differentiation_paramshift(self, simplify, group): """Test the parameter-shift method by comparing the differentiation of linearly combined subcircuits with the differentiation of a Hamiltonian expectation""" coeffs = np.array([-0.05, 0.17]) param = np.array(1.7) # differentiating a circuit with measurement expval(H) @qml.qnode(dev, diff_method="parameter-shift") def circuit(coeffs, param): qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval( qml.Hamiltonian( coeffs, [qml.PauliX(0), qml.PauliZ(0)], simplify=simplify, grouping_type=group, ) ) grad_fn = qml.grad(circuit) grad = grad_fn(coeffs, param) # differentiating a cost that combines circuits with # measurements expval(Pauli) half1 = qml.QNode(circuit1, dev, diff_method="parameter-shift") half2 = qml.QNode(circuit2, dev, diff_method="parameter-shift") def combine(coeffs, param): return coeffs[0] * half1(param) + coeffs[1] * half2(param) grad_fn_expected = qml.grad(combine) grad_expected = grad_fn_expected(coeffs, param) assert np.allclose(grad[0], grad_expected[0]) assert np.allclose(grad[1], grad_expected[1]) def test_vqe_differentiation_autograd(self, simplify, group): """Test the autograd interface by comparing the differentiation of linearly combined subcircuits with the differentiation of a Hamiltonian expectation""" coeffs = pnp.array([-0.05, 0.17], requires_grad=True) param = pnp.array(1.7, requires_grad=True) # differentiating a circuit with measurement expval(H) @qml.qnode(dev, interface="autograd") def circuit(coeffs, param): qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval( qml.Hamiltonian( coeffs, [qml.PauliX(0), qml.PauliZ(0)], simplify=simplify, grouping_type=group, ) ) grad_fn = qml.grad(circuit) grad = grad_fn(coeffs, param) # differentiating a cost that combines circuits with # measurements expval(Pauli) half1 = qml.QNode(circuit1, dev, interface="autograd") half2 = qml.QNode(circuit2, dev, interface="autograd") def combine(coeffs, param): return coeffs[0] * half1(param) + coeffs[1] * half2(param) grad_fn_expected = qml.grad(combine) grad_expected = grad_fn_expected(coeffs, param) assert np.allclose(grad[0], grad_expected[0]) assert np.allclose(grad[1], grad_expected[1]) def test_vqe_differentiation_jax(self, simplify, group): """Test the jax interface by comparing the differentiation of linearly combined subcircuits with the differentiation of a Hamiltonian expectation""" jax = pytest.importorskip("jax") jnp = pytest.importorskip("jax.numpy") coeffs = jnp.array([-0.05, 0.17]) param = jnp.array(1.7) # differentiating a circuit with measurement expval(H) @qml.qnode(dev, interface="jax", diff_method="backprop") def circuit(coeffs, param): qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval( qml.Hamiltonian( coeffs, [qml.PauliX(0), qml.PauliZ(0)], simplify=simplify, grouping_type=group, ) ) grad_fn = jax.grad(circuit) grad = grad_fn(coeffs, param) # differentiating a cost that combines circuits with # measurements expval(Pauli) half1 = qml.QNode(circuit1, dev, interface="jax", diff_method="backprop") half2 = qml.QNode(circuit2, dev, interface="jax", diff_method="backprop") def combine(coeffs, param): return coeffs[0] * half1(param) + coeffs[1] * half2(param) grad_fn_expected = jax.grad(combine) grad_expected = grad_fn_expected(coeffs, param) assert
np.allclose(grad[0], grad_expected[0])
numpy.allclose
''' Created on Nov. 11, 2019 Mosaik interface for the Distribution State Estimation. @file simulator_dse.py @author <NAME> @date 2019.11.11 @version 0.1 @company University of Alberta - Computing Science ''' import mosaik_api import numpy as np import pandas as pd import os import sys import csv from ast import literal_eval import scipy.io as spio import math from pathlib import Path META = { 'models': { 'Estimator': { 'public': True, 'params': ['idt', 'ymat_file', 'devs_file', 'acc_period', 'max_iter', 'threshold', 'baseS', 'baseV', 'baseNode', 'basePF', 'se_period', 'se_result', 'pseudo_loads', 'verbose'], 'attrs': ['v', 't'], }, }, } class DSESim(mosaik_api.Simulator): def __init__(self): super().__init__(META) self.entities = {} self.next = {} self.instances = {} self.devParams = {} self.data = {} def init(self, sid, eid_prefix=None, step_size=1, verbose=0): if eid_prefix is not None: self.eid_prefix = eid_prefix self.sid = sid self.step_size = step_size self.verbose = verbose self.cktState = {} self.MsgCount = 0 return self.meta def create(self, num, model, idt, ymat_file, devs_file, acc_period, max_iter, threshold, baseS, baseV, baseNode, basePF, se_period, pseudo_loads, se_result): if (self.verbose > 0): print('simulator_dse::create', num, model, idt) eid = '%s%s' % (self.eid_prefix, idt) self.entities[eid] = {} self.entities[eid]['ymat_file'] = ymat_file self.entities[eid]['devs_file'] = devs_file self.entities[eid]['acc_period'] = acc_period self.entities[eid]['max_iter'] = max_iter self.entities[eid]['threshold'] = threshold self.entities[eid]['type'] = model self.entities[eid]['baseS'] = baseS self.entities[eid]['baseV'] = baseV self.entities[eid]['baseI'] = baseS/baseV self.entities[eid]['baseY'] = baseS/np.power(baseV,2) self.entities[eid]['baseNode'] = baseNode self.entities[eid]['basePF'] = basePF self.entities[eid]['se_period'] = se_period self.entities[eid]['pseudo_loads'] = pseudo_loads self.entities[eid]['se_result'] = se_result self.entities[eid]['vecZ'] = {} self.entities[eid]['nodes'] = 0 self.entities[eid]['df_devs'] = pd.DataFrame({}) ''' read ymat_file and get number of nodes ''' self.entities[eid]['ymat_data'] = np.load(ymat_file) self.entities[eid]['nodes'] = len(self.entities[eid]['ymat_data']) self.entities[eid]['ymat_data'] = self.entities[eid]['ymat_data'] / self.entities[eid]['baseY'] if (self.verbose > 0): print('DSESim::create Nodes YMat:', self.entities[eid]['nodes']) ''' get device list ''' self.entities[eid]['df_devs'] = pd.read_csv(devs_file, delimiter = ',', index_col = 'idn') self.entities[eid]['df_devs']= pd.concat([self.entities[eid]['df_devs'], pd.DataFrame({'SPA':[], # true power phase A 'SQA':[], # reactive power phase A 'SPB':[], # true power phase B 'SQB':[], # reactive power phase B 'SPC':[], # true power phase C 'SQC':[], # reactive power phase C 'VMA':[], # voltage magnitude phase A 'VAA':[], # voltage angle phase A 'VMB':[], # voltage magnitude phase B 'VAB':[], # voltage angle phase B 'VMC':[], # voltage magnitude phase C 'VAC':[], # voltage angle phase C 'IMA':[], # current magnitude phase A 'IAA':[], # current angle phase A 'IMB':[], # current magnitude phase B 'IAB':[], # current angle phase B 'IMC':[], # current magnitude phase C 'IAC':[], # current angle phase C 'TS':[]})] # last time stamp , sort=False) if (self.verbose > 1): print('DSESim::create Entities:') print(self.entities[eid]['df_devs']) ''' create vecZ and vecZType ''' df_devs = self.entities[eid]['df_devs'] nr_phasors = (df_devs[df_devs['type'] == 'phasor']).shape[0] self.entities[eid]['vecZ'] = np.zeros((int(self.entities[eid]['nodes']) - 3) + # P values (int(self.entities[eid]['nodes']) - 3) + # Q values (nr_phasors*3 ) + # Voltage magnitude (nr_phasors*3 - 1), # Voltage angles np.float64) entities = [] self.data[eid] = {} self.data[eid]['v'] = 0 self.data[eid]['t'] = 0 entities.append({'eid': eid, 'type': model}) return entities def step(self, time, inputs): if (self.verbose > 5): print('simulator_dse::step INPUT', time, inputs) next_step = time + self.step_size ''' prepare data to be used in get_data ''' #self.data = {} ''' prepare data to be used in get_data and calculate system state ''' ''' for each instance ''' for dse_eid, attrs in inputs.items(): attr_v = attrs['v'] df_devs = self.entities[dse_eid]['df_devs'] ''' for each smartmeter/phasor ''' for dev_instance, param in attr_v.items(): if (param != None and param != 'null' and param != "None"): self.MsgCount += 1 ''' change to dict because NS-3 need to transmit string ''' if isinstance(param, str): param = literal_eval(param) dev_idn = (param['IDT']).split("_")[1] dev_type = param['TYPE'] dev_name = dev_instance.split(".")[1] ''' store values already per-unit ''' if (self.verbose > 1): print('simulator_dse::step INPUT PROCESSED: ', 'TIME:', time, 'TIME_Sent:', param['TS'], 'IDN:', dev_idn, 'TYPE:', dev_type, 'NAME:', dev_name, 'PARMS:', param) for dev_param_key in param.keys(): if dev_param_key == 'VA' and dev_type == 'Phasor': df_devs.at[int(dev_idn), 'VMA'] = param['VA'][0] / self.entities[dse_eid]['baseV'] df_devs.at[int(dev_idn), 'VAA'] = param['VA'][1] elif dev_param_key == 'VB' and dev_type == 'Phasor': df_devs.at[int(dev_idn), 'VMB'] = param['VB'][0] / self.entities[dse_eid]['baseV'] df_devs.at[int(dev_idn), 'VAB'] = param['VB'][1] elif dev_param_key == 'VC' and dev_type == 'Phasor': df_devs.at[int(dev_idn), 'VMC'] = param['VC'][0] / self.entities[dse_eid]['baseV'] df_devs.at[int(dev_idn), 'VAC'] = param['VC'][1] elif dev_param_key == 'IA': df_devs.at[int(dev_idn), 'IMA'] = param['IA'][0] / self.entities[dse_eid]['baseI'] df_devs.at[int(dev_idn), 'IAA'] = param['IA'][1] elif dev_param_key == 'IB': df_devs.at[int(dev_idn), 'IMB'] = param['IB'][0] / self.entities[dse_eid]['baseI'] df_devs.at[int(dev_idn), 'IAB'] = param['IB'][1] elif dev_param_key == 'IC': df_devs.at[int(dev_idn), 'IMC'] = param['IC'][0] / self.entities[dse_eid]['baseI'] df_devs.at[int(dev_idn), 'IAC'] = param['IC'][1] elif dev_param_key == 'SPA': df_devs.at[int(dev_idn), 'SPA'] = param['SPA'] / (self.entities[dse_eid]['baseS']*1000) df_devs.at[int(dev_idn), 'SQA'] = df_devs.at[int(dev_idn), 'SPA'] * np.tan(np.arccos(self.entities[dse_eid]['basePF'] )) elif dev_param_key == 'SPB': df_devs.at[int(dev_idn), 'SPB'] = param['SPB'] / (self.entities[dse_eid]['baseS']*1000) df_devs.at[int(dev_idn), 'SQB'] = df_devs.at[int(dev_idn), 'SPB'] * np.tan(np.arccos(self.entities[dse_eid]['basePF'] )) elif dev_param_key == 'SPC': df_devs.at[int(dev_idn), 'SPC'] = param['SPC'] / (self.entities[dse_eid]['baseS']*1000) df_devs.at[int(dev_idn), 'SQC'] = df_devs.at[int(dev_idn), 'SPC'] * np.tan(np.arccos(self.entities[dse_eid]['basePF'] )) elif dev_param_key == 'TS': df_devs.at[int(dev_idn), 'TS'] = param['TS'] elif ((dev_param_key == 'VA') or (dev_param_key == 'VB') or (dev_param_key == 'VC')) and (dev_type != 'Phasor'): pass elif (dev_param_key == 'IDT') or (dev_param_key == 'TYPE'): pass else: raise Exception('dev_param_key value unknown:', dev_param_key, "Device:", dev_name) if (0 == time % self.entities[dse_eid]['acc_period']): self.data[dse_eid]['v'] = self.MsgCount self.data[dse_eid]['t'] = time self.MsgCount = 0 #(self.entities[dse_eid]['vecZ'], _) = self.createZVectors(dse_eid, len(self.entities[dse_eid]['vecZ'])) # se_period = 1000 # if next_step == 500: # print("Check the phasors!") if time > 0 and time % self.entities[dse_eid]['se_period'] == 0: # if time % se_period == 0: z, ztype, error_cov = self.get_measurements(df_devs, time) stop_counter = 0 while stop_counter < 5: v_wls, iter_number = self.state_estimation(self.entities[dse_eid]['ymat_data'], z, ztype, error_cov, self.entities[dse_eid]['max_iter'], self.entities[dse_eid]['threshold']) if iter_number > 1 & iter_number < 10: stop_counter = 5 else: stop_counter += 1 # array_name = 'v_wls_{}'.format(int(time / self.entities[dse_eid]['se_period'])) array_name = 'v_wls' # if Path('C:/OpenDSS/DSSE33DetailedMultiPhase/wls_results.mat').is_file(): if time / self.entities[dse_eid]['se_period'] > 1: mat = spio.loadmat(self.entities[dse_eid]['se_result'], squeeze_me=True) mat[array_name] = np.vstack((mat[array_name], v_wls)) spio.savemat(self.entities[dse_eid]['se_result'], mat) else: spio.savemat(self.entities[dse_eid]['se_result'], {array_name: v_wls}) return next_step def state_estimation(self, ybus, z, ztype, err_cov, iter_max, threshold): ztype= np.array(ztype) n = len(ybus) # number of single phase nodes g = np.real(ybus) # real part of the admittance matrix b = np.imag(ybus) # imaginary art of the admittance matrix x = np.concatenate( ([-2 * math.pi / 3, -4 * math.pi / 3], np.tile([0, -2 * math.pi / 3, -4 * math.pi / 3], math.floor(n / 3) - 1), np.ones(n) * (1 + .000001 * np.random.randn(n)))) # our initial guess fot the voltage phasors # x = np.concatenate((np.angle(vtrue[1:]), np.abs(vtrue))) k = 0 cont = True while k < iter_max and cont: v = x[n - 1:] # voltage magnitudes th = np.concatenate(([0], x[0: n - 1])) # voltage angles. we add a 0 for the reference bus # calculating the measurement functions h(x) h = np.zeros(len(z)) for m in range(0, len(z)): if ztype[m, 0] == 2: # Pi active load demand at node i i = ztype[m, 1] - 1 for jj in range(n): h[m] += v[i] * v[jj] * ( g[i, jj] * math.cos(th[i] - th[jj]) + b[i, jj] * math.sin(th[i] - th[jj])) elif ztype[m, 0] == 4: # Qi reactive load demand at node i i = ztype[m, 1] - 1 for jj in range(n): h[m] += v[i] * v[jj] * ( g[i, jj] * math.sin(th[i] - th[jj]) - b[i, jj] * math.cos(th[i] - th[jj])) elif ztype[m, 0] == 5: # |Vi| voltage phasor magnitude at bus i i = ztype[m, 1] - 1 h[m] = v[i] elif ztype[m, 0] == 6: # Theta Vi voltage phasor phase angle at bus i i = ztype[m, 1] - 1 h[m] = th[i] elif ztype[m, 0] == 7 or ztype[m, 0] == 8: i = ztype[m, 1] - 1 # sending node jj = ztype[m, 2] - 1 # receiving node ph = ztype[m, 3] - 1 # phase a1, b1, c1 = 3 * i + [0, 1, 2] a2, b2, c2 = 3 * jj + [0, 1, 2] yline = -ybus[np.array([a1, b1, c1])[:, None], np.array([a2, b2, c2])] gline = np.real(yline) bline = np.imag(yline) if ztype[m, 0] == 7: # real part of Iij phasor h[m] = gline[ph, 0] * (v[a1] * math.cos(th[a1]) - v[a2] * math.cos(th[a2])) - \ bline[ph, 0] * (v[a1] * math.sin(th[a1]) - v[a2] * math.sin(th[a2])) + \ gline[ph, 1] * (v[b1] * math.cos(th[b1]) - v[b2] * math.cos(th[b2])) - \ bline[ph, 1] * (v[b1] * math.sin(th[b1]) - v[b2] * math.sin(th[b2])) + \ gline[ph, 2] * (v[c1] * math.cos(th[c1]) - v[c2] * math.cos(th[c2])) - \ bline[ph, 2] * (v[c1] * math.sin(th[c1]) - v[c2] * math.sin(th[c2])) else: # imaginary part of Iij phasor h[m] = gline[ph, 0] * (v[a1] * math.sin(th[a1]) - v[a2] * math.sin(th[a2])) + \ bline[ph, 0] * (v[a1] * math.cos(th[a1]) - v[a2] * math.cos(th[a2])) + \ gline[ph, 1] * (v[b1] * math.sin(th[b1]) - v[b2] * math.sin(th[b2])) + \ bline[ph, 1] * (v[b1] * math.cos(th[b1]) - v[b2] * math.cos(th[b2])) + \ gline[ph, 2] * (v[c1] * math.sin(th[c1]) - v[c2] * math.sin(th[c2])) + \ bline[ph, 2] * (v[c1] * math.cos(th[c1]) - v[c2] * math.cos(th[c2])) else: print("Measurement type not defined!") # print(h-z) # calculating the jacobian of h h_jacob = np.zeros([len(z), len(x)]) for m in range(0, len(z)): if ztype[m, 0] == 2: # Pi active load demand at node i i = ztype[m, 1] - 1 for jj in range(n): if jj != i: if jj > 0: h_jacob[m, jj - 1] = v[i] * v[jj] * (g[i, jj] * math.sin(th[i] - th[jj]) - b[i, jj] * math.cos(th[i] - th[jj])) h_jacob[m, jj + n - 1] = v[i] * (g[i, jj] * math.cos(th[i] - th[jj]) + b[i, jj] * math.sin(th[i] - th[jj])) if i > 0: h_jacob[m, i - 1] = -v[i] ** 2 * b[i, i] for jj in range(n): h_jacob[m, i - 1] += v[i] * v[jj] * (-g[i, jj] * math.sin(th[i] - th[jj]) + b[i, jj] * math.cos(th[i] - th[jj])) h_jacob[m, i + n - 1] = v[i] * g[i, i] for jj in range(n): h_jacob[m, i + n - 1] += v[jj] * (g[i, jj] * math.cos(th[i] - th[jj]) + b[i, jj] * math.sin(th[i] - th[jj])) elif ztype[m, 0] == 4: # Qi reactive load demand at node i i = ztype[m, 1] - 1 for jj in range(n): if jj != i: if jj > 0: h_jacob[m, jj - 1] = v[i] * v[jj] * (-g[i, jj] * math.cos(th[i] - th[jj]) - b[i, jj] * math.sin(th[i] - th[jj])) h_jacob[m, jj + n - 1] = v[i] * (g[i, jj] * math.sin(th[i] - th[jj]) - b[i, jj] * math.cos(th[i] - th[jj])) if i > 0: h_jacob[m, i - 1] = -v[i] ** 2 * g[i, i] for jj in range(n): h_jacob[m, i - 1] += v[i] * v[jj] * (g[i, jj] * math.cos(th[i] - th[jj]) + b[i, jj] * math.sin(th[i] - th[jj])) h_jacob[m, i + n - 1] = -v[i] * b[i, i] for jj in range(n): h_jacob[m, i + n - 1] += v[jj] * (g[i, jj] * math.sin(th[i] - th[jj]) - b[i, jj] * math.cos(th[i] - th[jj])) elif ztype[m, 0] == 5: # |Vi| voltage phasor magnitude at bus i i = ztype[m, 1] - 1 h_jacob[m, i + n - 1] = 1 elif ztype[m, 0] == 6: # Theta Vi voltage phasor phase angle at bus i i = ztype[m, 1] - 1 h_jacob[m, i - 1] = 1 elif ztype[m, 0] == 7 or ztype[m, 0] == 8: i = ztype[m, 1] - 1 # sending node jj = ztype[m, 2] - 1 # receiving node ph = ztype[m, 3] - 1 # phase a1, b1, c1 = 3 * i + [0, 1, 2] a2, b2, c2 = 3 * jj + [0, 1, 2] yline = -ybus[np.array([a1, b1, c1])[:, None], np.array([a2, b2, c2])] gline = np.real(yline) bline = np.imag(yline) if ztype[m, 0] == 7: # real part of Iij phasor # derivatives with respect to voltage phase angles if a1 > 0: h_jacob[m, a1 - 1] = -gline[ph, 0] * v[a1] * math.sin(th[a1]) - bline[ph, 0] * v[ a1] * math.cos(th[a1]) h_jacob[m, b1 - 1] = -gline[ph, 1] * v[b1] * math.sin(th[b1]) - bline[ph, 1] * v[b1] * math.cos( th[b1]) h_jacob[m, c1 - 1] = -gline[ph, 2] * v[c1] * math.sin(th[c1]) - bline[ph, 2] * v[c1] * math.cos( th[c1]) h_jacob[m, a2 - 1] = gline[ph, 0] * v[a2] * math.sin(th[a2]) + bline[ph, 0] * v[a2] * math.cos( th[a2]) h_jacob[m, b2 - 1] = gline[ph, 1] * v[b2] * math.sin(th[b2]) + bline[ph, 1] * v[b2] * math.cos( th[b2]) h_jacob[m, c2 - 1] = gline[ph, 2] * v[c2] * math.sin(th[c2]) + bline[ph, 2] * v[c2] * math.cos( th[c2]) # derivatives with respect to voltage magnitudes h_jacob[m, a1 + n - 1] = gline[ph, 0] * math.cos(th[a1]) - bline[ph, 0] * math.sin(th[a1]) h_jacob[m, b1 + n - 1] = gline[ph, 1] * math.cos(th[b1]) - bline[ph, 1] * math.sin(th[b1]) h_jacob[m, c1 + n - 1] = gline[ph, 2] * math.cos(th[c1]) - bline[ph, 2] * math.sin(th[c1]) h_jacob[m, a2 + n - 1] = -gline[ph, 0] * math.cos(th[a2]) + bline[ph, 0] * math.sin(th[a2]) h_jacob[m, b2 + n - 1] = -gline[ph, 1] * math.cos(th[b2]) + bline[ph, 1] * math.sin(th[b2]) h_jacob[m, c2 + n - 1] = -gline[ph, 2] * math.cos(th[c2]) + bline[ph, 2] * math.sin(th[c2]) else: # imaginary part of Iij phasor if a1 > 0: h_jacob[m, a1 - 1] = gline[ph, 0] * v[a1] * math.cos(th[a1]) - bline[ph, 0] * v[ a1] * math.sin(th[a1]) h_jacob[m, b1 - 1] = gline[ph, 1] * v[b1] * math.cos(th[b1]) - bline[ph, 1] * v[b1] * math.sin( th[b1]) h_jacob[m, c1 - 1] = gline[ph, 2] * v[c1] * math.cos(th[c1]) - bline[ph, 2] * v[c1] * math.sin( th[c1]) h_jacob[m, a2 - 1] = -gline[ph, 0] * v[a2] * math.cos(th[a2]) + bline[ph, 0] * v[a2] * math.sin( th[a2]) h_jacob[m, b2 - 1] = -gline[ph, 1] * v[b2] * math.cos(th[b2]) + bline[ph, 1] * v[b2] * math.sin( th[b2]) h_jacob[m, c2 - 1] = -gline[ph, 2] * v[c2] * math.cos(th[c2]) + bline[ph, 2] * v[c2] * math.sin( th[c2]) # derivatives with respect to voltage magnitudes h_jacob[m, a1 + n - 1] = gline[ph, 0] * math.sin(th[a1]) + bline[ph, 0] * math.cos(th[a1]) h_jacob[m, b1 + n - 1] = gline[ph, 1] * math.sin(th[b1]) + bline[ph, 1] * math.cos(th[b1]) h_jacob[m, c1 + n - 1] = gline[ph, 2] * math.sin(th[c1]) + bline[ph, 2] * math.cos(th[c1]) h_jacob[m, a2 + n - 1] = -gline[ph, 0] * math.sin(th[a2]) - bline[ph, 0] * math.cos(th[a2]) h_jacob[m, b2 + n - 1] = -gline[ph, 1] * math.sin(th[b2]) - bline[ph, 1] * math.cos(th[b2]) h_jacob[m, c2 + n - 1] = -gline[ph, 2] * math.sin(th[c2]) - bline[ph, 2] * math.cos(th[c2]) else: print("Measurement type not defined!") # the right hand side of the equation rhs = h_jacob.transpose() @ np.linalg.inv(err_cov) @ (z - h) # d1 = h_jacob.transpose() @ np.linalg.inv(err_cov) # d2 = np.linalg.inv(err_cov) @ (z-h) # saving to mat file # scipy.io.savemat('C:/Users/<NAME>/Desktop/testArrays.mat', {'d11': d1, 'd22': d2}) # print("Array saved") # the gain matrix gain = h_jacob.transpose() @ np.linalg.inv(err_cov) @ h_jacob delta_x = np.linalg.solve(gain, rhs) x += delta_x if np.max(
np.absolute(delta_x)
numpy.absolute
import sys try: from StringIO import StringIO except ImportError: from io import StringIO import numpy as np from numpy.testing import (assert_, assert_array_equal, assert_allclose, assert_equal) from pytest import raises as assert_raises from scipy.sparse import coo_matrix from scipy.special import erf from scipy.integrate._bvp import (modify_mesh, estimate_fun_jac, estimate_bc_jac, compute_jac_indices, construct_global_jac, solve_bvp) def exp_fun(x, y): return np.vstack((y[1], y[0])) def exp_fun_jac(x, y): df_dy = np.empty((2, 2, x.shape[0])) df_dy[0, 0] = 0 df_dy[0, 1] = 1 df_dy[1, 0] = 1 df_dy[1, 1] = 0 return df_dy def exp_bc(ya, yb): return
np.hstack((ya[0] - 1, yb[0]))
numpy.hstack
import os import bisect import warnings from astropy.timeseries import periodograms from pkg_resources import resource_stream import numpy as np from numpy import sqrt, sum import matplotlib.pyplot as plt from astropy.io import fits from cached_property import cached_property from .iCCF import Indicators from .gaussian import gaussfit, RV, RVerror, FWHM, FWHMerror from .keywords import getRV, getRVarray from .utils import find_myself # from .utils import get_orders_mean_wavelength def read_spectral_format(): sf_red_stream = resource_stream(__name__, 'data/spectral_format_red.dat') red = np.loadtxt(sf_red_stream) sf_blue_stream = resource_stream(__name__, 'data/spectral_format_blue.dat') blue = np.loadtxt(sf_blue_stream) col_start_wave = 7 col_end_wave = 8 order_wave_range = {} for i, order in enumerate(blue[::-1]): order_range = [order[col_start_wave], order[col_end_wave]] order_wave_range[i] = order_range for i, order in enumerate(red[::-1], start=i+1): order_range = [order[col_start_wave], order[col_end_wave]] order_wave_range[i] = order_range return order_wave_range class chromaticRV(): def __init__(self, indicators): """ indicators : Indicators or list Instance or list of instances of iCCF.Indicators """ self.order_wave_range = read_spectral_format() self.wave_starts = [v[0] for v in self.order_wave_range.values()] self.wave_ends = [v[1] for v in self.order_wave_range.values()] self._blue_wave_limits = (440, 570) self._mid_wave_limits = (570, 690) self._red_wave_limits = (730, 790) self._slice_policy = 0 # by default use both slices self.blue_orders = self._find_orders(self._blue_wave_limits) self.mid_orders = self._find_orders(self._mid_wave_limits) self.red_orders = self._find_orders(self._red_wave_limits) self._blueRV = None self._midRV = None self._redRV = None self._blueRVerror = None self._midRVerror = None self._redRVerror = None self.n = len(indicators) if self.n == 1: indicators = [indicators, ] self.I = self.indicators = indicators # store all but the last CCF for each of the Indicators instances self.ccfs = [i.HDU[i._hdu_number].data[:-1] for i in self.I] # store the last CCFs separately self.ccf = [i.HDU[i._hdu_number].data[-1] for i in self.I] # try storing the CCF uncertainties as well self.eccfs = [] for i in self.I: try: self.eccfs.append(i.HDU[2].data[:-1]) except IndexError: self.eccfs.append(None) def __repr__(self): bands = ', '.join(map(repr, self.bands)) nb = len(self.bands) return f'chromaticRV({self.n} CCFs; {nb} bands: {bands} nm)' @property def blue_wave_limits(self): """ Wavelength limits for the blue RV calculations [nm] """ return self._blue_wave_limits @blue_wave_limits.setter def blue_wave_limits(self, vals): assert len(vals) == 2, 'provide two wavelengths (start and end) in nm' self.blue_orders = self._find_orders(vals) self._blue_wave_limits = vals self._blueRV, self._midRV, self._redRV = None, None, None @property def mid_wave_limits(self): """ Wavelength limits for the mid RV calculations [nm] """ return self._mid_wave_limits @mid_wave_limits.setter def mid_wave_limits(self, vals): assert len(vals) == 2, 'provide two wavelengths (start and end) in nm' self.mid_orders = self._find_orders(vals) self._mid_wave_limits = vals self._blueRV, self._midRV, self._redRV = None, None, None @property def red_wave_limits(self): """ Wavelength limits for the red RV calculations [nm] """ return self._red_wave_limits @red_wave_limits.setter def red_wave_limits(self, vals): assert len(vals) == 2, 'provide two wavelengths (start and end) in nm' self.red_orders = self._find_orders(vals) self._red_wave_limits = vals self._blueRV, self._midRV, self._redRV = None, None, None @property def slice_policy(self): """ How to deal with the two order slices. 0: use both slices by adding the corresponding CCFs (default) 1: use only the first slice 2: use only the second slice """ return self._slice_policy @slice_policy.setter def slice_policy(self, val): self._slice_policy = val self.blue_orders = self._find_orders(self._blue_wave_limits) self.mid_orders = self._find_orders(self._mid_wave_limits) self.red_orders = self._find_orders(self._red_wave_limits) self._blueRV, self._midRV, self._redRV = None, None, None def _find_orders(self, wave_limits): order_start = bisect.bisect(self.wave_starts, wave_limits[0]) order_end = bisect.bisect(self.wave_ends, wave_limits[1]) order_start = order_start * 2 order_end = order_end * 2 + 1 if self.slice_policy == 0: # using both order slices step = 1 return slice(order_start, order_end+1, step) elif self.slice_policy == 1: # using first slice only step = 2 return slice(order_start, order_end+1, step) elif self.slice_policy == 2: # using second slice only step = 2 return slice(order_start+1, order_end+1, step) def get_rv(self, orders): """ Get radial velocity, FWHM and uncertainties for specific orders orders : int, slice, tuple, array The CCFs of these orders will be summed to calculate the RV. If int, only the CCF at that index will be used. If slice, orders in the slice's range will be used. If tuple, should have length 2 or 3 and correspond to minimum index, maximum index and possibly step, for which orders to use If array, should contain indices of orders to use """ if isinstance(orders, int): orders = slice(orders, orders + 1) elif isinstance(orders, tuple): orders = slice(*orders) rv, rve = [], [] fwhm, fwhme = [], [] for i, full_ccf, full_eccf in zip(self.I, self.ccfs, self.eccfs): # create the CCF ccf = full_ccf[orders].sum(axis=0) if full_eccf is not None: eccf = np.sqrt(np.square(full_eccf[orders]).sum(axis=0)) else: eccf = None # calculate RV and RV error rv.append(RV(i.rv, ccf, eccf)) rve.append(RVerror(i.rv, ccf, eccf)) # rve.append(np.nan) # calculate FWHM and FWHM error fwhm.append(FWHM(i.rv, ccf)) fwhme.append(FWHMerror(i.rv, ccf, eccf)) # if not has_errors: # warnings.warn( # 'Cannot access CCF uncertainties to calculate RV error') # return np.array(rv), None # else: return map(np.array, (rv, rve, fwhm, fwhme)) @property def bands(self): """ Wavelength limits of blue, mid, and red bands """ b = self.blue_wave_limits, self.mid_wave_limits, self.red_wave_limits return b @cached_property def time(self): """ BJD of observations """ return np.fromiter((i.bjd for i in self.I), np.float, self.n) @property def blueRV(self): if self._blueRV is None: out = self.get_rv(self.blue_orders) self._blueRV, self._blueRVerror, self._blueFWHM, self._blueFWHMerror = out return self._blueRV @property def midRV(self): if self._midRV is None: out = self.get_rv(self.mid_orders) self._midRV, self._midRVerror, self._midFWHM, self._midFWHMerror = out return self._midRV @property def redRV(self): if self._redRV is None: out = self.get_rv(self.red_orders) self._redRV, self._redRVerror, self._redFWHM, self._redFWHMerror = out return self._redRV @property def fullRV(self): return np.fromiter((i.RV for i in self.I), np.float, self.n) @property def fullRVerror(self): return np.fromiter((i.RVerror for i in self.I), np.float, self.n) def bin(self, night_indices): u = np.unique(night_indices) ccfs = np.array(self.ccfs) # shape: (Nobs, Norders, Nrv) ccfsb = [ccfs[night_indices == i].mean(axis=0) for i in u] ccfsb = np.array(ccfsb) # shape: (Nobs_binned, Norders, Nrv) self.ccfs = ccfsb eccfs = np.array(self.eccfs) # shape: (Nobs, Norders, Nrv) eccfsb = [sqrt(sum(eccfs[night_indices == i]**2, axis=0)) for i in u] eccfsb = np.array(eccfsb) # shape: (Nobs_binned, Norders, Nrv) self.eccfs = eccfsb ccf = np.array(self.ccf) # shape: (Nobs, Nrv) ccfb = [ccf[night_indices == i].mean(axis=0) for i in u] ccfb = np.array(ccfb) # shape: (Nobs_binned, Nrv) self.ccf = ccfb rv = self.I[0].rv self.indicators = [Indicators(rv, ccf.sum(axis=0)) for ccf in ccfsb] self.I = self.indicators self.n = len(self.I) def plot(self, periodogram=False, mask=None, obs=None): ncols = 2 if periodogram else 1 fig, axs = plt.subplots(3 + 1, ncols, constrained_layout=True) axs = axs.ravel() if periodogram: indices_plots = np.arange(0, 8, 2) indices_pers = np.arange(1, 8, 2) for ax in axs[indices_pers[1:]]: ax.sharex(axs[indices_pers[0]]) ax.sharey(axs[indices_pers[0]]) else: indices_plots = np.arange(0, 4) for ax in axs[indices_plots[1:]]: ax.sharex(axs[indices_plots[0]]) ax.sharey(axs[indices_plots[0]]) kw = dict(fmt='o', ms=2) if mask is None: mask =
np.ones_like(self.time, dtype=bool)
numpy.ones_like
# ****************************************************************************** # Copyright (c) 2020, Intel Corporation # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Intel Corporation nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ****************************************************************************** import pytest import numpy as np from numpy.testing import (assert_allclose, assert_equal, assert_almost_equal) from skipp.transform import AffineTransform from skipp.transform import resize from skipp.transform import rotate from skipp.transform import warp # Used acronyms # Intel(R) Integrated Performance Primitives (Intel(R) IPP) def test_invalid_input(): with pytest.raises(ValueError): AffineTransform(np.zeros((2, 3))) with pytest.raises(ValueError): AffineTransform(matrix=
np.zeros((2, 3))
numpy.zeros
from src.AutomaticDifferentiation.AutomaticDifferentiation import AutoDiff from src.AutomaticDifferentiation.AutomaticDifferentiation import ForwardFunctions import pytest import numpy as np from numpy.testing import assert_almost_equal class TestFunctions: ########################################## # __init__, float def test_init_value(self): """check that variables can be initialized correctly""" value = 2.0 derivative = 1.0 label = 'x' x = AutoDiff(value, der=derivative, label=label) assert x.val == value def test_init_der(self): """check that variables can be initialized correctly""" value = 2.0 derivative = 1.0 label = 'x' x = AutoDiff(value, der=derivative, label=label) assert x.der == derivative def test_init_der_list(self): """check that variables can be initialized correctly""" value = 2.0 derivative = [1.0] label = 'x' x = AutoDiff(value, der=derivative, label=label) assert x.der == derivative def test_init_der_array(self): """check that variables can be initialized correctly""" value = 2.0 derivative = np.array([1.0]) label = 'x' x = AutoDiff(value, der=derivative, label=label) assert x.der == derivative def test_init_label(self): """check that variables can be initialized correctly""" value = 2.0 derivative = 1.0 label = 'x' x = AutoDiff(value, der=derivative, label=label) assert x.label == [label] def test_init_label_list(self): """check that variables can be initialized correctly""" value = 2.0 derivative = 1.0 label = ['x'] x = AutoDiff(value, der=derivative, label=label) assert x.label == label ########################################## # __init__, array def test_init_value_array(self): """check that variables can be initialized correctly""" value = np.array([1,2,3]) derivative = [1.0, 1.0, 1.0] label = ['x','y','z'] x = AutoDiff(value, der=derivative, label=label) assert np.array_equal(x.val, value.reshape(value.shape[0],1)) def test_init_der_2array(self): """check that variables can be initialized correctly""" value = np.array([2.0, 1.0]) derivative = np.array([1.0, 1.0]) label = ['x', 'y'] x = AutoDiff(value, der=derivative, label=label) assert np.array_equal(x.der, np.array(derivative, dtype=np.float64)) def test_init_der_narray(self): """check that variables can be initialized correctly""" value = np.array([1,2,3]) derivative = [1.0, 1.0, 1.0] label = ['x','y','z'] x = AutoDiff(value, der=derivative, label=label) assert np.array_equal(x.der, np.array(derivative, dtype=np.float64)) def test_init_label_array(self): """check that variables can be initialized correctly""" value = np.array([1,2,3]) derivative = [1.0, 1.0, 1.0] label = ['x','y','z'] x = AutoDiff(value, der=derivative, label=label) assert x.label == label ########################################## # function def test_init_function_label(self): """check that functions can be created correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x.sqrt(), y.sqrt()]) assert f.labels == ['x','y'] def test_init_function_value(self): """check that functions can be created correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x.sqrt(), y.sqrt()]) assert f.values == [[np.sqrt(2)],[np.sqrt(3)]] def test_init_function_der(self): """check that functions can be created correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x.sqrt(), y.sqrt()]) assert f.jacobians == [[x.sqrt().der[0][0],0],[0, y.sqrt().der[0][0]]] #TODO: write tests for exceptions in this section ########################################## # Addition def test_add_val(self): """check that __add__ has been overwritten correctly""" x = AutoDiff(2.0, der=1, label="x") y = AutoDiff(3.0, der=1, label="y") z = AutoDiff(4.0, der=1, label="z") f = ForwardFunctions([x + y, y + z]) assert f.values == [[5.0],[7.0]] def test_add_der(self): """check that __add__ has been overwritten correctly""" x = AutoDiff(2.0, der=1, label="x") y = AutoDiff(3.0, der=1, label="y") z = AutoDiff(4.0, der=1, label="z") f = ForwardFunctions([x + y, y + z]) assert f.jacobians == [[1.0,1.0,0],[0, 1.0, 1.0]] def test_add_label(self): """check that __add__ has been overwritten correctly""" x = AutoDiff(2.0, der=1, label="x") y = AutoDiff(3.0, der=1, label="y") z = AutoDiff(4.0, der=1, label="z") f = ForwardFunctions([x + y, y + z]) assert f.labels == ['x','y','z'] def test_radd_val(self): """check that __radd__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([3.0 + x, x + y]) assert f.values == [[5.0],[5.0]] def test_radd_der(self): """check that __radd__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([3.0 + x, x + y]) assert f.jacobians == [[1.0,0],[1.0,1.0]] def test_radd_label(self): """check that __radd__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([3.0 + x, x + y]) assert f.labels == ['x','y'] ########################################## # Subtraction def test_sub_val(self): """check that __add__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x - 3.0, x + y]) assert f.values == [[-1.0], [5.0]] def test_sub_der(self): """check that __add__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x - 3.0, x + y]) assert f.jacobians == [[1.0,0], [1.0, 1.0]] def test_sub_label(self): """check that __add__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x - 3.0, x + y]) assert f.labels == ['x','y'] def test_rsub_val(self): """check that __radd__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([3.0 - x, x + y]) assert f.values == [[1.0], [5.0]] def test_rsub_der(self): """check that __radd__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([3.0 - x, x + y]) assert f.jacobians == [[-1.0,0], [1.0, 1.0]] def test_rsub_label(self): """check that __radd__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([3.0 - x, x + y]) assert f.labels == ['x', 'y'] ########################################## # multiplication def test_mul_val(self): """check that __mul__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x * 3, x * y, y * x]) assert f.values == [[6.0],[6.0],[6.0]] def test_mul_der(self): """check that __mul__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x * 3, x * y, y * x]) assert f.jacobians == [[3.0,0],[3.0,2.0],[3.0, 2.0]] def test_mul_label(self): """check that __mul__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x * 3, x * y, y * x]) assert f.labels == ['x','y'] def test_mul_array(self): """check that __mul__ has been overwritten correctly""" X = AutoDiff(np.array([2,2]), der=[1,1], label=["x1","x2"]) Y = AutoDiff(np.array([1,3]), der=[1,1], label=["y1","y2"]) f = ForwardFunctions([X * 3, Y * 4]) assert f.values == [[6.0],[4.0]] def test_rmul_val(self): """check that __rmul__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([3 * x, x * y, y * x]) assert f.values == [[6.0],[6.0],[6.0]] def test_rmul_der(self): """check that __rmul__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([3 * x, x * y, y * x]) assert f.jacobians == [[3.0,0],[3.0,2.0],[3.0, 2.0]] def test_rmul_label(self): """check that __rmul__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([3 * x, x * y, y * x]) assert f.labels == ['x','y'] ########################################## # true division def test_truediv_val(self): """check that __truediv__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(4, der=1, label="y") f = ForwardFunctions([x / 2, x / y]) assert f.values == [[1.0],[0.5]] def test_truediv_der(self): """check that __truediv__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(4, der=1, label="y") f = ForwardFunctions([x / 2, x / y]) assert f.jacobians == [[0.5, 0],[0.25, -0.125]] def test_truediv_label(self): """check that __truediv__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(4, der=1, label="y") f = ForwardFunctions([x / 2, x / y]) assert f.labels == ['x','y'] def test_rtruediv_val(self): """check that __rtruediv__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([2 / x, x + y]) assert f.values == [[1.0],[5.0]] def test_rtruediv_der(self): """check that __rtruediv__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([2 / x, x + y]) assert f.jacobians == [[-0.5,0],[1.0, 1.0]] def test_rtruediv_label(self): """check that __rtruediv__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([2 / x, x + y]) assert f.labels == ['x','y'] ########################################## # negation def test_neg_val(self): """check that __truediv__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") z = AutoDiff(2, der=1, label="z") f = ForwardFunctions([-x / z, x / z]) assert f.values == [[-1.0], [1.0]] def test_neg_der(self): """check that __truediv__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") z = AutoDiff(2, der=1, label="z") f = ForwardFunctions([-x / z, x / z]) assert f.jacobians == [[-0.5, 0.5], [0.5, -0.5]] def test_neg_label(self): """check that __truediv__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") z = AutoDiff(2, der=1, label="z") f = ForwardFunctions([-x / z, x / z]) assert f.labels == ['x','z'] ########################################## # power def test_pow_val(self): """check that __mul__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x ** 2, y ** x]) assert f.values == [[4.0],[9.0]] def test_pow_der(self): """check that __mul__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(1, der=1, label="y") f = ForwardFunctions([x ** 2, y ** x]) assert f.jacobians == [[4.0,0],[0.0, 2.0]] def test_pow_label(self): """check that __mul__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(1, der=1, label="y") f = ForwardFunctions([x ** 2, y ** x]) assert f.labels == ['x','y'] def test_rpow_val(self): """check that __rmul__ has been overwritten correctly""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([2 ** x, 2 ** (x + y)]) assert f.values == [[4.0],[32.0]] def test_rpow_der(self): """check that __rmul__ has been overwritten correctly""" x = AutoDiff(1, der=1, label="x") y = AutoDiff(1, der=1, label="y") f = ForwardFunctions([2 ** x, 2 ** (x + y)]) assert f.jacobians == [[np.log(2)*2*1,0],[np.log(2)*4*1.0,np.log(2)*4*1.0]] def test_rpow_label(self): """check that __rmul__ has been overwritten correctly""" x = AutoDiff(1, der=1, label="x") y = AutoDiff(1, der=1, label="y") f = ForwardFunctions([2 ** x, 2 ** (x + y)]) assert f.labels == ['x','y'] ########################################## # sin def test_sin_val(self): """check that sin function has been correctly implemented""" x = AutoDiff(np.pi / 2, der=1, label="x") y = AutoDiff(np.pi / 2, der=1, label="y") f = ForwardFunctions([x.sin(), (x + y).sin()]) e = 1e-8 assert f.values[0] == [1.0] and f.values[1][0] < e def test_sin_der(self): """check that sin function has been correctly implemented""" x = AutoDiff(np.pi / 2, der=1, label="x") y = AutoDiff(np.pi / 2, der=1, label="y") f = ForwardFunctions([x.sin(), (x + y).sin()]) assert_almost_equal(f.jacobians,[[0,0],[-1,-1]]) def test_sin_label(self): """check that sin function has been correctly implemented""" x = AutoDiff(np.pi / 2, der=1, label="x") y = AutoDiff(np.pi / 2, der=1, label="y") f = ForwardFunctions([x.sin(), (x + y).sin()]) assert f.labels == ['x','y'] ########################################## # cos def test_cos_val(self): """check that cos function has been correctly implemented""" x = AutoDiff(np.pi / 2, der=1, label="x") y = AutoDiff(np.pi / 2, der=1, label="y") f = ForwardFunctions([x.cos(), (x + y).cos()]) assert_almost_equal(f.values,[[0],[-1]]) def test_cos_der(self): """check that cos function has been correctly implemented""" x = AutoDiff(np.pi / 2, der=1, label="x") y = AutoDiff(np.pi / 2, der=1, label="y") f = ForwardFunctions([x.cos(), (x + y).cos()]) assert_almost_equal(f.jacobians,[[-1,0],[0,0]]) def test_cos_label(self): """check that cos function has been correctly implemented""" x = AutoDiff(np.pi / 2, der=1, label="x") y = AutoDiff(np.pi / 2, der=1, label="y") f = ForwardFunctions([x.cos(), (x + y).cos()]) assert f.labels == ['x','y'] ########################################## # tan def test_tan_val(self): """check that tan function has been correctly implemented""" x = AutoDiff(np.pi, der=1, label="x") y = AutoDiff(np.pi, der=1, label="y") f = ForwardFunctions([x.tan(), (x + y).tan()]) assert_almost_equal(f.values, [[0],[0]]) def test_tan_der(self): """check that tan function has been correctly implemented""" x = AutoDiff(np.pi, der=1, label="x") y = AutoDiff(np.pi, der=1, label="y") f = ForwardFunctions([x.tan(), (x + y).tan()]) assert_almost_equal(f.jacobians,[[1,0],[1,1]]) def test_tan_label(self): """check that tan function has been correctly implemented""" x = AutoDiff(np.pi, der=1, label="x") y = AutoDiff(np.pi, der=1, label="y") f = ForwardFunctions([x.tan(), (x + y).tan()]) assert f.labels == ['x','y'] ########################################## # sinh def test_sinh_val(self): """check that sinh function has been correctly implemented""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x.sinh(), y.sinh()]) assert_almost_equal(f.values, [np.sinh(x.val).tolist()[0],np.sinh(y.val).tolist()[0]]) def test_sinh_der(self): """check that sinh function has been correctly implemented""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x.sinh(), y.sinh()]) xder = np.cosh(x.val).tolist()[0][0] yder = np.cosh(y.val).tolist()[0][0] assert_almost_equal(f.jacobians,[[xder,0],[0,yder]]) def test_sinh_label(self): """check that sinh function has been correctly implemented""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x.sinh(), y.sinh()]) assert f.labels == ['x','y'] ########################################## # cosh def test_cosh_val(self): """check that cosh function has been correctly implemented""" x = AutoDiff(2, der=1, label="x") y = AutoDiff(3, der=1, label="y") f = ForwardFunctions([x.cosh(), y.cosh()]) assert_almost_equal(f.values, [np.cosh(x.val).tolist()[0],
np.cosh(y.val)
numpy.cosh
import pydicom as dicom import numpy as np from numpy import interp import os import cv2 from skimage import morphology,restoration,transform from torch.utils.data import DataLoader,Dataset from torchvision import * from sklearn.model_selection import train_test_split as tts from progress.bar import IncrementalBar from PIL import Image from keras_preprocessing.image import img_to_array print("packages imported") class Progress: """ Class to print progress bar instead of printing n times """ def __init__(self, value, end,buffer, title='Preprocessing'): self.title = title #when calling in a for loop it doesn't include the last number self.end = end -1 self.buffer = buffer self.value = value self.progress() def progress(self): maped = int(interp(self.value, [0, self.end], [0, self.buffer])) print(f'{self.title}: [{"#"*maped}{"-"*(self.buffer - maped)}]{self.value}/{self.end} {((self.value/self.end)*100):.2f}%', end='\r') class data_preprocessing(): """ Class containing all functions used for preprocessing the binary numpy objects obtained from the dicom files """ def image_preprocessor(self,path_): """ Takes all dicom files in a directory, preprocesses the files by performing morphological transformations and returns the images in a numpy array. """ count=0 processed_array=[] ## loading the normalised images saved as npy file ## norm_images=np.load(path_,allow_pickle=True) print("Images loaded from npy,beginning preprocessing now......") bar=IncrementalBar('Preprocessing',max=norm_images.shape[0]) ## iterating through the images to perform operations on each image ## for i in range(norm_images.shape[0]): ## defining a mask ## norm_images[i] = norm_images[i] * (np.max(norm_images[i]) - np.min(norm_images[i])) + np.min(norm_images[i]) mask=morphology.opening(norm_images[i],
np.ones((5, 5))
numpy.ones
import numpy as np import os NUM_LABELS = {'ENZYMES':3, 'COLLAB':0, 'IMDBBINARY':0, 'IMDBMULTI':0, 'MUTAG':7, 'NCI1':37, 'NCI109':38, 'PROTEINS':3, 'PTC':22, 'DD':89} BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def load_dataset(ds_name): """ construct graphs and labels from dataset text in data folder :param ds_name: name of data set you want to load :return: two numpy arrays of shape (num_of_graphs). the graphs array contains in each entry a ndarray represent adjacency matrix of a graph of shape (num_vertex, num_vertex, num_vertex_labels) the labels array in index i represent the class of graphs[i] """ directory = BASE_DIR + "/data/benchmark_graphs/{0}/{0}.txt".format(ds_name) graphs = [] labels = [] with open(directory, "r") as data: num_graphs = int(data.readline().rstrip().split(" ")[0]) for i in range(num_graphs): graph_meta = data.readline().rstrip().split(" ") num_vertex = int(graph_meta[0]) curr_graph = np.zeros(shape=(num_vertex, num_vertex, NUM_LABELS[ds_name]+1), dtype=np.float32) labels.append(int(graph_meta[1])) for j in range(num_vertex): vertex = data.readline().rstrip().split(" ") if NUM_LABELS[ds_name] != 0: curr_graph[j, j, int(vertex[0])+1]= 1. for k in range(2,len(vertex)): curr_graph[j, int(vertex[k]), 0] = 1. curr_graph = noramlize_graph(curr_graph) graphs.append(curr_graph) graphs = np.array(graphs) for i in range(graphs.shape[0]): graphs[i] = np.transpose(graphs[i], [2,0,1]) return graphs, np.array(labels) def get_train_val_indexes(num_val, ds_name): """ reads the indexes of a specific split to train and validation sets from data folder :param num_val: number of the split :param ds_name: name of data set :return: indexes of the train and test graphs """ directory = BASE_DIR + "/data/benchmark_graphs/{0}/10fold_idx".format(ds_name) train_file = "train_idx-{0}.txt".format(num_val) train_idx=[] with open(os.path.join(directory, train_file), 'r') as file: for line in file: train_idx.append(int(line.rstrip())) test_file = "test_idx-{0}.txt".format(num_val) test_idx = [] with open(os.path.join(directory, test_file), 'r') as file: for line in file: test_idx.append(int(line.rstrip())) return train_idx, test_idx def get_parameter_split(ds_name): """ reads the indexes of a specific split to train and validation sets from data folder :param ds_name: name of data set :return: indexes of the train and test graphs """ directory = BASE_DIR + "/data/benchmark_graphs/{0}/".format(ds_name) train_file = "tests_train_split.txt" train_idx=[] with open(os.path.join(directory, train_file), 'r') as file: for line in file: train_idx.append(int(line.rstrip())) test_file = "tests_val_split.txt" test_idx = [] with open(os.path.join(directory, test_file), 'r') as file: for line in file: test_idx.append(int(line.rstrip())) return train_idx, test_idx def group_same_size(graphs, labels): """ group graphs of same size to same array :param graphs: numpy array of shape (num_of_graphs) of numpy arrays of graphs adjacency matrix :param labels: numpy array of labels :return: two numpy arrays. graphs arrays in the shape (num of different size graphs) where each entry is a numpy array in the shape (number of graphs with this size, num vertex, num. vertex, num vertex labels) the second arrayy is labels with correspons shape """ sizes = list(map(lambda t: t.shape[1], graphs)) indexes = np.argsort(sizes) graphs = graphs[indexes] labels = labels[indexes] r_graphs = [] r_labels = [] one_size = [] start = 0 size = graphs[0].shape[1] for i in range(len(graphs)): if graphs[i].shape[1] == size: one_size.append(np.expand_dims(graphs[i], axis=0)) else: r_graphs.append(np.concatenate(one_size, axis=0)) r_labels.append(np.array(labels[start:i])) start = i one_size = [] size = graphs[i].shape[1] one_size.append(np.expand_dims(graphs[i], axis=0)) r_graphs.append(np.concatenate(one_size, axis=0)) r_labels.append(np.array(labels[start:])) return r_graphs, r_labels # helper method to shuffle each same size graphs array def shuffle_same_size(graphs, labels): r_graphs, r_labels = [], [] for i in range(len(labels)): curr_graph, curr_labels = shuffle(graphs[i], labels[i]) r_graphs.append(curr_graph) r_labels.append(curr_labels) return r_graphs, r_labels def split_to_batches(graphs, labels, size): """ split the same size graphs array to batches of specified size last batch is in size num_of_graphs_this_size % size :param graphs: array of arrays of same size graphs :param labels: the corresponding labels of the graphs :param size: batch size :return: two arrays. graphs array of arrays in size (batch, num vertex, num vertex. num vertex labels) corresponds labels """ r_graphs = [] r_labels = [] for k in range(len(graphs)): r_graphs = r_graphs + np.split(graphs[k], [j for j in range(size, graphs[k].shape[0], size)]) r_labels = r_labels + np.split(labels[k], [j for j in range(size, labels[k].shape[0], size)]) return np.array(r_graphs), np.array(r_labels) # helper method to shuffle the same way graphs and labels arrays def shuffle(graphs, labels): shf = np.arange(labels.shape[0], dtype=np.int32) np.random.shuffle(shf) return np.array(graphs)[shf], labels[shf] def noramlize_graph(curr_graph): split = np.split(curr_graph, [1], axis=2) adj = np.squeeze(split[0], axis=2) deg = np.sqrt(np.sum(adj, 0)) deg = np.divide(1., deg, out=np.zeros_like(deg), where=deg!=0) normal = np.diag(deg) norm_adj = np.expand_dims(np.matmul(np.matmul(normal, adj), normal), axis=2) ones = np.ones(shape=(curr_graph.shape[0], curr_graph.shape[1], curr_graph.shape[2]), dtype=np.float32) spred_adj = np.multiply(ones, norm_adj) labels= np.append(np.zeros(shape=(curr_graph.shape[0], curr_graph.shape[1], 1)), split[1], axis=2) return np.add(spred_adj, labels) if __name__ == '__main__': graphs, labels = load_dataset("MUTAG") a, b = get_train_val_indexes(1, "MUTAG") print(
np.transpose(graphs[a[0]], [1, 2, 0])
numpy.transpose
""" Utility functions for atmospheric retrieval with ``petitRADTRANS``. This module was put together many contributions by <NAME> (MPIA). """ import copy import sys from typing import Dict, List, Optional, Tuple, Union import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import interp1d, PchipInterpolator from scipy.ndimage import gaussian_filter from typeguard import typechecked from species.core import constants @typechecked def get_line_species() -> List[str]: """ Function to get the list of the molecular and atomic line species. This function is not used anywhere so could be removed. Returns ------- list(str) List with the line species. """ return [ "CH4", "CO", "CO_all_iso", "CO_all_iso_HITEMP", "CO_all_iso_Chubb", "CO2", "H2O", "H2O_HITEMP", "H2S", "HCN", "K", "K_lor_cut", "K_allard", "K_burrows", "NH3", "Na", "Na_lor_cut", "Na_allard", "Na_burrows", "OH", "PH3", "TiO", "TiO_all_Exomol", "TiO_all_Plez", "VO", "VO_Plez", "FeH", "H2O_main_iso", "CH4_main_iso", ] @typechecked def pt_ret_model( temp_3: Optional[np.ndarray], delta: float, alpha: float, tint: float, press: np.ndarray, metallicity: float, c_o_ratio: float, conv: bool = True, ) -> Tuple[Optional[np.ndarray], Optional[float], Optional[float]]: """ Pressure-temperature profile for a self-luminous atmosphere (see Mollière et al. 2020). Parameters ---------- temp_3 : np.ndarray, None Array with three temperature points that are added on top of the radiative Eddington structure (i.e. above tau = 0.1). The temperature nodes are connected with a spline interpolation and a prior is used such that t1 < t2 < t3 < t_connect. The three temperature points are not used if set to ``None``. delta : float Proportionality factor in tau = delta * press_cgs**alpha. alpha : float Power law index in :math:`\\tau = \\delta * P_\\mathrm{cgs}**\\alpha`. For the tau model: use the proximity to the :math:`\\kappa_\\mathrm{rosseland}` photosphere as prior. tint : float Internal temperature for the Eddington model. press : np.ndarray Pressure profile (bar). metallicity : float Metallicity [Fe/H]. Required for the ``nabla_ad`` interpolation. c_o_ratio : float Carbon-to-oxygen ratio. Required for the ``nabla_ad`` interpolation. conv : bool Enforce a convective adiabat. Returns ------- np.ndarray Temperature profile (K) for ``press``. float Pressure (bar) where the optical depth is 1. float, None Pressure (bar) at the radiative-convective boundary. """ # Convert pressures from bar to cgs units press_cgs = press * 1e6 # Calculate the optical depth tau = delta * press_cgs ** alpha # Calculate the Eddington temperature tedd = (3.0 / 4.0 * tint ** 4.0 * (2.0 / 3.0 + tau)) ** 0.25 # Import interpol_abundances here because it slows down importing # species otherwise. Importing interpol_abundances is only slow # the first time, which occurs at the start of the run_multinest # method of AtmosphericRetrieval if "poor_mans_nonequ_chem" in sys.modules: from poor_mans_nonequ_chem.poor_mans_nonequ_chem import interpol_abundances else: from petitRADTRANS.poor_mans_nonequ_chem.poor_mans_nonequ_chem import interpol_abundances ab = interpol_abundances( np.full(tedd.shape[0], c_o_ratio), np.full(tedd.shape[0], metallicity), tedd, press, ) nabla_ad = ab["nabla_ad"] # Enforce convective adiabat if conv: # Calculate the current, radiative temperature gradient nab_rad = np.diff(np.log(tedd)) / np.diff(np.log(press_cgs)) # Extend to array of same length as pressure structure nabla_rad = np.ones_like(tedd) nabla_rad[0] = nab_rad[0] nabla_rad[-1] = nab_rad[-1] nabla_rad[1:-1] = (nab_rad[1:] + nab_rad[:-1]) / 2.0 # Where is the atmosphere convectively unstable? conv_index = nabla_rad > nabla_ad if np.argwhere(conv_index).size == 0: conv_press = None else: conv_bound = np.amin(np.argwhere(conv_index)) conv_press = press[conv_bound] tfinal = None for i in range(10): if i == 0: t_take = copy.copy(tedd) else: t_take = copy.copy(tfinal) ab = interpol_abundances( np.full(t_take.shape[0], c_o_ratio), np.full(t_take.shape[0], metallicity), t_take, press, ) nabla_ad = ab["nabla_ad"] # Calculate the average nabla_ad between the layers nabla_ad_mean = nabla_ad nabla_ad_mean[1:] = (nabla_ad[1:] + nabla_ad[:-1]) / 2.0 # What are the increments in temperature due to convection tnew = nabla_ad_mean[conv_index] * np.mean(np.diff(np.log(press_cgs))) # What is the last radiative temperature? tstart = np.log(t_take[~conv_index][-1]) # Integrate and translate to temperature # from log(temperature) tnew = np.exp(np.cumsum(tnew) + tstart) # Add upper radiative and lower covective # part into one single array tfinal = copy.copy(t_take) tfinal[conv_index] = tnew if np.max(np.abs(t_take - tfinal) / t_take) < 0.01: # print('n_ad', 1./(1.-nabla_ad[conv_index])) break else: tfinal = tedd conv_press = None # Add the three temperature-point P-T description above tau = 0.1 @typechecked def press_tau(tau: float) -> float: """ Function to return the pressure in cgs units at a given optical depth. Parameters ---------- tau : float Optical depth. Returns ------- float Pressure (cgs) at optical depth ``tau``. """ return (tau / delta) ** (1.0 / alpha) # Where is the uppermost pressure of the # Eddington radiative structure? p_bot_spline = press_tau(0.1) if temp_3 is None: tret = tfinal else: for i_intp in range(2): if i_intp == 0: # Create the pressure coordinates for the spline # support nodes at low pressure support_points_low = np.logspace( np.log10(press_cgs[0]), np.log10(p_bot_spline), 4 ) # Create the pressure coordinates for the spline # support nodes at high pressure, the corresponding # temperatures for these nodes will be taken from # the radiative-convective solution support_points_high = 10.0 ** np.arange( np.log10(p_bot_spline), np.log10(press_cgs[-1]), np.diff(np.log10(support_points_low))[0], ) # Combine into one support node array, don't add # the p_bot_spline point twice. support_points = np.zeros( len(support_points_low) + len(support_points_high) - 1 ) support_points[:4] = support_points_low support_points[4:] = support_points_high[1:] else: # Create the pressure coordinates for the spline # support nodes at low pressure support_points_low = np.logspace( np.log10(press_cgs[0]), np.log10(p_bot_spline), 7 ) # Create the pressure coordinates for the spline # support nodes at high pressure, the corresponding # temperatures for these nodes will be taken from # the radiative-convective solution support_points_high = np.logspace( np.log10(p_bot_spline), np.log10(press_cgs[-1]), 7 ) # Combine into one support node array, don't add # the p_bot_spline point twice. support_points = np.zeros( len(support_points_low) + len(support_points_high) - 1 ) support_points[:7] = support_points_low support_points[7:] = support_points_high[1:] # Define the temperature values at the node points t_support = np.zeros_like(support_points) if i_intp == 0: tfintp = interp1d(press_cgs, tfinal) # The temperature at p_bot_spline (from the # radiative-convective solution) t_support[len(support_points_low) - 1] = tfintp(p_bot_spline) # if temp_3 is not None: # The temperature at pressures below # p_bot_spline (free parameters) t_support[: len(support_points_low) - 1] = temp_3 # else: # t_support[:3] = tfintp(support_points_low[:3]) # The temperature at pressures above p_bot_spline # (from the radiative-convective solution) t_support[len(support_points_low) :] = tfintp( support_points[len(support_points_low) :] ) else: tfintp1 = interp1d(press_cgs, tret) t_support[: len(support_points_low) - 1] = tfintp1( support_points[: len(support_points_low) - 1] ) tfintp = interp1d(press_cgs, tfinal) # The temperature at p_bot_spline (from # the radiative-convective solution) t_support[len(support_points_low) - 1] = tfintp(p_bot_spline) # print('diff', t_connect_calc - tfintp(p_bot_spline)) try: t_support[len(support_points_low) :] = tfintp( support_points[len(support_points_low) :] ) except ValueError: return None, None, None # Make the temperature spline interpolation to be returned # to the user tret = spline(np.log10(support_points), # t_support, np.log10(press_cgs), order = 3) cs = PchipInterpolator(np.log10(support_points), t_support) tret = cs(np.log10(press_cgs)) # Return the temperature, the pressure at tau = 1 # The temperature at the connection point: tfintp(p_bot_spline) # The last two are needed for the priors on the P-T profile. return tret, press_tau(1.0) / 1e6, conv_press @typechecked def pt_spline_interp( knot_press: np.ndarray, knot_temp: np.ndarray, pressure: np.ndarray, pt_smooth: float = 0.3, ) -> np.ndarray: """ Function for interpolating the P-T nodes with a PCHIP 1-D monotonic cubic interpolation. The interpolated temperature is smoothed with a Gaussian kernel of width 0.3 dex in pressure (see Piette & Madhusudhan 2020). Parameters ---------- knot_press : np.ndarray Pressure knots (bar). knot_temp : np.ndarray Temperature knots (K). pressure : np.ndarray Pressure points (bar) at which the temperatures is interpolated. pt_smooth : float, dict Standard deviation of the Gaussian kernel that is used for smoothing the P-T profile, after the temperature nodes have been interpolated to a higher pressure resolution. The argument should be given as :math:`\\log10{P/\\mathrm{bar}}`, with the default value set to 0.3 dex. Returns ------- np.ndarray Interpolated, smoothed temperature points (K). """ pt_interp = PchipInterpolator(np.log10(knot_press), knot_temp) temp_interp = pt_interp(np.log10(pressure)) log_press = np.log10(pressure) log_diff = np.mean(np.diff(log_press)) if np.std(np.diff(log_press)) / log_diff > 1e-6: raise ValueError("Expecting equally spaced pressures in log space.") temp_interp = gaussian_filter( temp_interp, sigma=pt_smooth / log_diff, mode="nearest" ) return temp_interp @typechecked def create_pt_profile( cube, cube_index: Dict[str, float], pt_profile: str, pressure: np.ndarray, knot_press: Optional[np.ndarray], metallicity: float, c_o_ratio: float, pt_smooth: Union[float, Dict[str, float]] = 0.3, ) -> Tuple[np.ndarray, Optional[np.ndarray], Optional[float], Optional[float]]: """ Function for creating the P-T profile. Parameters ---------- cube : LP_c_double Unit cube. cube_index : dict Dictionary with the index of each parameter in the ``cube``. pt_profile : str The parametrization for the pressure-temperature profile ('molliere', 'free', 'monotonic', 'eddington'). pressure : np.ndarray Pressure points (bar) at which the temperatures is interpolated. knot_press : np.ndarray, None Pressure knots (bar), which are required when the argument of ``pt_profile`` is either 'free' or 'monotonic'. metallicity : float Metallicity [Fe/H]. c_o_ratio : float Carbon-to-oxgen ratio. pt_smooth : float, dict Standard deviation of the Gaussian kernel that is used for smoothing the P-T profile, after the temperature nodes have been interpolated to a higher pressure resolution. The argument should be given as :math:`\\log10{P/\\mathrm{bar}}`, with the default value set to 0.3 dex. Returns ------- np.ndarray Temperatures (K). np.ndarray, None Temperature at the knots (K). A ``None`` is returned if ``pt_profile`` is set to 'molliere' or 'eddington'. float Pressure (bar) where the optical depth is 1. float, None Pressure (bar) at the radiative-convective boundary. """ knot_temp = None if pt_profile == "molliere": temp, phot_press, conv_press = pt_ret_model( np.array( [cube[cube_index["t1"]], cube[cube_index["t2"]], cube[cube_index["t3"]]] ), 10.0 ** cube[cube_index["log_delta"]], cube[cube_index["alpha"]], cube[cube_index["tint"]], pressure, metallicity, c_o_ratio, ) elif pt_profile == "mod-molliere": temp, phot_press, conv_press = pt_ret_model( None, 10.0 ** cube[cube_index["log_delta"]], cube[cube_index["alpha"]], cube[cube_index["tint"]], pressure, metallicity, c_o_ratio, ) elif pt_profile in ["free", "monotonic"]: knot_temp = [] for i in range(knot_press.shape[0]): knot_temp.append(cube[cube_index[f"t{i}"]]) knot_temp = np.asarray(knot_temp) temp = pt_spline_interp(knot_press, knot_temp, pressure, pt_smooth) phot_press = None conv_press = None elif pt_profile == "eddington": # Eddington approximation # delta = kappa_ir/gravity tau = pressure * 1e6 * 10.0 ** cube[cube_index["log_delta"]] temp = (0.75 * cube[cube_index["tint"]] ** 4.0 * (2.0 / 3.0 + tau)) ** 0.25 phot_press = None conv_press = None return temp, knot_temp, phot_press, conv_press @typechecked def make_half_pressure_better( p_base: Dict[str, float], pressure: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: """ Function for reducing the number of pressure layers from 1440 to ~100 (depending on the number of cloud species) with a refinement around the cloud decks. Parameters ---------- p_base : dict Dictionary with the base of the cloud deck for all cloud species. The keys in the dictionary are included for example as MgSiO3(c). pressure : np.ndarray Pressures (bar) at high resolution (1440 points). Returns ------- np.ndarray Pressures (bar) at lower resolution (60 points) but with a refinement around the position of the cloud decks. np.ndarray, None The indices of the pressures that have been selected from the input array ``pressure``. """ press_plus_index = np.zeros(len(pressure) * 2).reshape(len(pressure), 2) press_plus_index[:, 0] = pressure press_plus_index[:, 1] = range(len(pressure)) press_small = press_plus_index[::24, :] press_plus_index = press_plus_index[::2, :] indexes_small = press_small[:, 0] > 0.0 indexes = press_plus_index[:, 0] > 0.0 for key, P_cloud in p_base.items(): indexes_small = indexes_small & ( (np.log10(press_small[:, 0] / P_cloud) > 0.05) | (np.log10(press_small[:, 0] / P_cloud) < -0.3) ) indexes = indexes & ( (np.log10(press_plus_index[:, 0] / P_cloud) > 0.05) | (np.log10(press_plus_index[:, 0] / P_cloud) < -0.3) ) press_cut = press_plus_index[~indexes, :] press_small_cut = press_small[indexes_small, :] press_out = np.zeros((len(press_cut) + len(press_small_cut)) * 2).reshape( (len(press_cut) + len(press_small_cut)), 2 ) press_out[: len(press_small_cut), :] = press_small_cut press_out[len(press_small_cut) :, :] = press_cut press_out = np.sort(press_out, axis=0) return press_out[:, 0], press_out[:, 1].astype("int") @typechecked def create_abund_dict( abund_in: dict, line_species: list, chemistry: str, pressure_grid: str = "smaller", indices: Optional[np.array] = None, ) -> dict: """ Function to update the names in the abundance dictionary. Parameters ---------- abund_in : dict Dictionary with the mass fractions. line_species : list List with the line species. chemistry : str Chemistry type ('equilibrium' or 'free'). pressure_grid : str The type of pressure grid that is used for the radiative transfer. Either 'standard', to use 180 layers both for the atmospheric structure (e.g. when interpolating the abundances) and 180 layers with the radiative transfer, or 'smaller' to use 60 (instead of 180) with the radiative transfer, or 'clouds' to start with 1440 layers but resample to ~100 layers (depending on the number of cloud species) with a refinement around the cloud decks. For cloudless atmospheres it is recommended to use 'smaller', which runs faster than 'standard' and provides sufficient accuracy. For cloudy atmosphere, one can test with 'smaller' but it is recommended to use 'clouds' for improved accuracy fluxes. indices : np.ndarray, None Pressure indices from the adaptive refinement in a cloudy atmosphere. Only required with ``pressure_grid='clouds'``. Otherwise, the argument can be set to ``None``. Returns ------- dict Dictionary with the updated names of the abundances. """ # create a dictionary with the updated abundance names abund_out = {} if indices is not None: for item in line_species: if chemistry == "equilibrium": item_replace = item.replace("_R_10", "") item_replace = item_replace.replace("_R_30", "") item_replace = item_replace.replace("_all_iso_HITEMP", "") item_replace = item_replace.replace("_all_iso_Chubb", "") item_replace = item_replace.replace("_all_iso", "") item_replace = item_replace.replace("_HITEMP", "") item_replace = item_replace.replace("_main_iso", "") item_replace = item_replace.replace("_lor_cut", "") item_replace = item_replace.replace("_allard", "") item_replace = item_replace.replace("_burrows", "") item_replace = item_replace.replace("_all_Plez", "") item_replace = item_replace.replace("_all_Exomol", "") item_replace = item_replace.replace("_Plez", "") abund_out[item] = abund_in[item_replace][indices] elif chemistry == "free": abund_out[item] = abund_in[item][indices] if "Fe(c)" in abund_in: abund_out["Fe(c)"] = abund_in["Fe(c)"][indices] if "MgSiO3(c)" in abund_in: abund_out["MgSiO3(c)"] = abund_in["MgSiO3(c)"][indices] if "Al2O3(c)" in abund_in: abund_out["Al2O3(c)"] = abund_in["Al2O3(c)"][indices] if "Na2S(c)" in abund_in: abund_out["Na2S(c)"] = abund_in["Na2S(c)"][indices] if "KCL(c)" in abund_in: abund_out["KCL(c)"] = abund_in["KCL(c)"][indices] abund_out["H2"] = abund_in["H2"][indices] abund_out["He"] = abund_in["He"][indices] elif pressure_grid == "smaller": for item in line_species: if chemistry == "equilibrium": item_replace = item.replace("_R_10", "") item_replace = item_replace.replace("_R_30", "") item_replace = item_replace.replace("_all_iso_HITEMP", "") item_replace = item_replace.replace("_all_iso_Chubb", "") item_replace = item_replace.replace("_all_iso", "") item_replace = item_replace.replace("_HITEMP", "") item_replace = item_replace.replace("_main_iso", "") item_replace = item_replace.replace("_lor_cut", "") item_replace = item_replace.replace("_allard", "") item_replace = item_replace.replace("_burrows", "") item_replace = item_replace.replace("_all_Plez", "") item_replace = item_replace.replace("_all_Exomol", "") item_replace = item_replace.replace("_Plez", "") abund_out[item] = abund_in[item_replace][::3] elif chemistry == "free": abund_out[item] = abund_in[item][::3] if "Fe(c)" in abund_in: abund_out["Fe(c)"] = abund_in["Fe(c)"][::3] if "MgSiO3(c)" in abund_in: abund_out["MgSiO3(c)"] = abund_in["MgSiO3(c)"][::3] if "Al2O3(c)" in abund_in: abund_out["Al2O3(c)"] = abund_in["Al2O3(c)"][::3] if "Na2S(c)" in abund_in: abund_out["Na2S(c)"] = abund_in["Na2S(c)"][::3] if "KCL(c)" in abund_in: abund_out["KCL(c)"] = abund_in["KCL(c)"][::3] abund_out["H2"] = abund_in["H2"][::3] abund_out["He"] = abund_in["He"][::3] else: for item in line_species: if chemistry == "equilibrium": item_replace = item.replace("_R_10", "") item_replace = item_replace.replace("_R_30", "") item_replace = item_replace.replace("_all_iso_HITEMP", "") item_replace = item_replace.replace("_all_iso_Chubb", "") item_replace = item_replace.replace("_all_iso", "") item_replace = item_replace.replace("_HITEMP", "") item_replace = item_replace.replace("_main_iso", "") item_replace = item_replace.replace("_lor_cut", "") item_replace = item_replace.replace("_allard", "") item_replace = item_replace.replace("_burrows", "") item_replace = item_replace.replace("_all_Plez", "") item_replace = item_replace.replace("_all_Exomol", "") item_replace = item_replace.replace("_Plez", "") abund_out[item] = abund_in[item_replace] elif chemistry == "free": abund_out[item] = abund_in[item] if "Fe(c)" in abund_in: abund_out["Fe(c)"] = abund_in["Fe(c)"] if "MgSiO3(c)" in abund_in: abund_out["MgSiO3(c)"] = abund_in["MgSiO3(c)"] if "Al2O3(c)" in abund_in: abund_out["Al2O3(c)"] = abund_in["Al2O3(c)"] if "Na2S(c)" in abund_in: abund_out["Na2S(c)"] = abund_in["Na2S(c)"] if "KCL(c)" in abund_in: abund_out["KCL(c)"] = abund_in["KCL(c)"] abund_out["H2"] = abund_in["H2"] abund_out["He"] = abund_in["He"] # Correction for the nuclear spin degeneracy that was not included # in the partition function. See Charnay et al. (2018) if "FeH" in abund_out: abund_out["FeH"] = abund_out["FeH"] / 2.0 return abund_out @typechecked def calc_spectrum_clear( rt_object, pressure: np.ndarray, temperature: np.ndarray, log_g: float, c_o_ratio: Optional[float], metallicity: Optional[float], p_quench: Optional[float], log_x_abund: Optional[dict], chemistry: str, pressure_grid: str = "smaller", contribution: bool = False, ) -> Tuple[np.ndarray, np.ndarray, Optional[np.ndarray]]: """ Function to simulate an emission spectrum of a clear atmosphere. The function supports both equilibrium chemistry (``chemistry='equilibrium'``) and free abundances (``chemistry='free'``). rt_object : petitRADTRANS.radtrans.Radtrans Instance of ``Radtrans``. pressure : np.ndarray Array with the pressure points (bar). temperature : np.ndarray Array with the temperature points (K) corresponding to ``pressure``. log_g : float Log10 of the surface gravity (cm s-2). c_o_ratio : float, None Carbon-to-oxygen ratio. metallicity : float, None Metallicity. p_quench : float, None Quenching pressure (bar). log_x_abund : dict, None Dictionary with the log10 of the abundances. Only required when ``chemistry='free'``. chemistry : str Chemistry type (``'equilibrium'`` or ``'free'``). pressure_grid : str The type of pressure grid that is used for the radiative transfer. Either 'standard', to use 180 layers both for the atmospheric structure (e.g. when interpolating the abundances) and 180 layers with the radiative transfer, or 'smaller' to use 60 (instead of 180) with the radiative transfer, or 'clouds' to start with 1440 layers but resample to ~100 layers (depending on the number of cloud species) with a refinement around the cloud decks. For cloudless atmospheres it is recommended to use 'smaller', which runs faster than 'standard' and provides sufficient accuracy. For cloudy atmosphere, one can test with 'smaller' but it is recommended to use 'clouds' for improved accuracy fluxes. contribution : bool Calculate the emission contribution. Returns ------- np.ndarray Wavelength (um). np.ndarray Flux (W m-2 um-1). np.ndarray, None Emission contribution. """ # Import interpol_abundances here because it slows down importing # species otherwise. Importing interpol_abundances is only slow the # first time, which occurs at the start of the run_multinest method # of AtmosphericRetrieval if "poor_mans_nonequ_chem" in sys.modules: from poor_mans_nonequ_chem.poor_mans_nonequ_chem import interpol_abundances else: from petitRADTRANS.poor_mans_nonequ_chem.poor_mans_nonequ_chem import interpol_abundances if chemistry == "equilibrium": # Chemical equilibrium abund_in = interpol_abundances( np.full(pressure.shape, c_o_ratio), np.full(pressure.shape, metallicity), temperature, pressure, Pquench_carbon=p_quench, ) # Mean molecular weight mmw = abund_in["MMW"] elif chemistry == "free": # Free abundances # Create a dictionary with all mass fractions abund_in = mass_fractions(log_x_abund) # Mean molecular weight mmw = mean_molecular_weight(abund_in) # Create arrays of constant atmosphere abundance for item in abund_in: abund_in[item] *= np.ones_like(pressure) # Create an array of a constant mean molecular weight mmw *= np.ones_like(pressure) # Extract every three levels when pressure_grid is set to 'smaller' if pressure_grid == "smaller": temperature = temperature[::3] pressure = pressure[::3] mmw = mmw[::3] abundances = create_abund_dict( abund_in, rt_object.line_species, chemistry, pressure_grid=pressure_grid, indices=None, ) # calculate the emission spectrum rt_object.calc_flux( temperature, abundances, 10.0 ** log_g, mmw, contribution=contribution ) # convert frequency (Hz) to wavelength (cm) wavel = constants.LIGHT * 1e2 / rt_object.freq # optionally return the emission contribution if contribution: contr_em = rt_object.contr_em else: contr_em = None # return wavelength (micron), flux (W m-2 um-1), # and emission contribution return ( 1e4 * wavel, 1e-7 * rt_object.flux * constants.LIGHT * 1e2 / wavel ** 2.0, contr_em, ) @typechecked def calc_spectrum_clouds( rt_object, pressure: np.ndarray, temperature: np.ndarray, c_o_ratio: float, metallicity: float, p_quench: Optional[float], log_x_abund: Optional[dict], log_x_base: Optional[dict], cloud_dict: Dict[str, Optional[float]], log_g: float, chemistry: str, pressure_grid: str = "smaller", plotting: bool = False, contribution: bool = False, tau_cloud: Optional[float] = None, cloud_wavel: Optional[Tuple[float, float]] = None, ) -> Tuple[ Optional[np.ndarray], Optional[np.ndarray], Optional[np.ndarray], np.ndarray ]: """ Function to simulate an emission spectrum of a cloudy atmosphere. Parameters ---------- rt_object : petitRADTRANS.radtrans.Radtrans Instance of ``Radtrans``. pressure : np.ndarray Array with the pressure points (bar). temperature : np.ndarray Array with the temperature points (K) corresponding to ``pressure``. c_o_ratio : float Carbon-to-oxygen ratio. metallicity : float Metallicity. p_quench : float, None Quenching pressure (bar). log_x_abund : dict, None Dictionary with the log10 of the abundances. Only required when ``chemistry='free'``. log_x_base : dict, None Dictionary with the log10 of the mass fractions at the cloud base. Only required when the ``cloud_dict`` contains ``fsed``, ``log_kzz``, and ``sigma_lnorm``. cloud_dict : dict Dictionary with the cloud parameters. log_g : float Log10 of the surface gravity (cm s-2). chemistry : str Chemistry type (only ``'equilibrium'`` is supported). pressure_grid : str The type of pressure grid that is used for the radiative transfer. Either 'standard', to use 180 layers both for the atmospheric structure (e.g. when interpolating the abundances) and 180 layers with the radiative transfer, or 'smaller' to use 60 (instead of 180) with the radiative transfer, or 'clouds' to start with 1440 layers but resample to ~100 layers (depending on the number of cloud species) with a refinement around the cloud decks. For cloudless atmospheres it is recommended to use 'smaller', which runs faster than 'standard' and provides sufficient accuracy. For cloudy atmosphere, one can test with 'smaller' but it is recommended to use 'clouds' for improved accuracy fluxes. plotting : bool Create plots. contribution : bool Calculate the emission contribution. tau_cloud : float, None Total cloud optical that will be used for scaling the cloud mass fractions. The mass fractions will not be scaled if the parameter is set to ``None``. cloud_wavel : tuple(float, float), None Tuple with the wavelength range (um) that is used for calculating the median optical depth of the clouds at the gas-only photosphere and then scaling the cloud optical depth to the value of ``log_tau_cloud``. The range of ``cloud_wavel`` should be encompassed by the range of ``wavel_range``. The full wavelength range (i.e. ``wavel_range``) is used if the argument is set to ``None``. Returns ------- np.ndarray, None Wavelength (um). np.ndarray, None Flux (W m-2 um-1). np.ndarray, None Emission contribution. np.ndarray Array with mean molecular weight. """ if chemistry == "equilibrium": # Import interpol_abundances here because it slows down # importing species otherwise. Importing interpol_abundances # is only slow the first time, which occurs at the start # of the run_multinest method of AtmosphericRetrieval if "poor_mans_nonequ_chem" in sys.modules: from poor_mans_nonequ_chem.poor_mans_nonequ_chem import interpol_abundances else: from petitRADTRANS.poor_mans_nonequ_chem.poor_mans_nonequ_chem import interpol_abundances # Interpolate the abundances, following chemical equilibrium abund_in = interpol_abundances( np.full(pressure.shape, c_o_ratio), np.full(pressure.shape, metallicity), temperature, pressure, Pquench_carbon=p_quench, ) # Extract the mean molecular weight mmw = abund_in["MMW"] elif chemistry == "free": # Free abundances # Create a dictionary with all mass fractions abund_in = mass_fractions(log_x_abund) # Mean molecular weight mmw = mean_molecular_weight(abund_in) # Create arrays of constant atmosphere abundance for item in abund_in: abund_in[item] *= np.ones_like(pressure) # Create an array of a constant mean molecular weight mmw *= np.ones_like(pressure) if log_x_base is not None: p_base = {} for item in log_x_base: p_base_item = find_cloud_deck( item, pressure, temperature, metallicity, c_o_ratio, mmw=np.mean(mmw), plotting=plotting, ) abund_in[f"{item}(c)"] = np.zeros_like(temperature) abund_in[f"{item}(c)"][pressure < p_base_item] = ( 10.0 ** log_x_base[item] * (pressure[pressure <= p_base_item] / p_base_item) ** cloud_dict["fsed"] ) p_base[f"{item}(c)"] = p_base_item # Adaptive pressure refinement around the cloud base if pressure_grid == "clouds": _, indices = make_half_pressure_better(p_base, pressure) else: indices = None abundances = create_abund_dict( abund_in, rt_object.line_species, chemistry, pressure_grid=pressure_grid, indices=indices, ) # Create dictionary with sedimentation parameters # Use the same value for all cloud species fseds = {} for item in rt_object.cloud_species: # The item has the form of e.g. MgSiO3(c) # For parametrized cloud opacities, # then number of cloud_species is zero # so the fseds dictionary remains empty fseds[item] = cloud_dict["fsed"] # Create an array with a constant eddy diffusion coefficient (cm2 s-1) if "log_kzz" in cloud_dict: Kzz_use = np.full(pressure.shape, 10.0 ** cloud_dict["log_kzz"]) else: Kzz_use = None # Adjust number of atmospheric levels if pressure_grid == "smaller": temperature = temperature[::3] pressure = pressure[::3] mmw = mmw[::3] if "log_kzz" in cloud_dict: Kzz_use = Kzz_use[::3] elif pressure_grid == "clouds": temperature = temperature[indices] pressure = pressure[indices] mmw = mmw[indices] if "log_kzz" in cloud_dict: Kzz_use = Kzz_use[indices] # Optionally plot the cloud properties if ( plotting and Kzz_use is not None and ( rt_object.wlen_bords_micron[0] != 0.5 and rt_object.wlen_bords_micron[1] != 30.0 ) ): if "CO_all_iso" in abundances: plt.plot(abundances["CO_all_iso"], pressure, label="CO") if "CO_all_iso_HITEMP" in abundances: plt.plot(abundances["CO_all_iso_HITEMP"], pressure, label="CO") if "CO_all_iso_Chubb" in abundances: plt.plot(abundances["CO_all_iso_Chubb"], pressure, label="CO") if "CH4" in abundances: plt.plot(abundances["CH4"], pressure, label="CH4") if "H2O" in abundances: plt.plot(abundances["H2O"], pressure, label="H2O") if "H2O_HITEMP" in abundances: plt.plot(abundances["H2O_HITEMP"], pressure, label="H2O") plt.xlim(1e-10, 1.0) plt.ylim(pressure[-1], pressure[0]) plt.yscale("log") plt.xscale("log") plt.xlabel("Mass fraction") plt.ylabel("Pressure (bar)") if p_quench is not None: plt.axhline(p_quench, ls="--", color="black") plt.legend(loc="best") plt.savefig("abundances.pdf", bbox_inches="tight") plt.clf() plt.plot(temperature, pressure, "o", ls="none", ms=2.0) for item in log_x_base: plt.axhline( p_base[f"{item}(c)"], label=f"Cloud deck {item}", ls="--", color="black" ) plt.yscale("log") plt.ylim(1e3, 1e-6) plt.xlim(0.0, 4000.0) plt.savefig("pt_cloud_deck.pdf", bbox_inches="tight") plt.clf() for item in log_x_base: plt.plot(abundances[f"{item}(c)"], pressure) plt.axhline(p_base[f"{item}(c)"]) plt.yscale("log") if np.count_nonzero(abundances[f"{item}(c)"]) > 0: plt.xscale("log") plt.ylim(1e3, 1e-6) plt.xlim(1e-10, 1.0) log_x_base_item = log_x_base[item] fsed = cloud_dict["fsed"] log_kzz = cloud_dict["log_kzz"] plt.title( f"fsed = {fsed:.2f}, log(Kzz) = {log_kzz:.2f}, " + f"X_b = {log_x_base_item:.2f}" ) plt.savefig(f"{item.lower()}_clouds.pdf", bbox_inches="tight") plt.clf() # Turn clouds off # abundances['MgSiO3(c)'] = np.zeros_like(pressure) # abundances['Fe(c)'] = np.zeros_like(pressure) # Reinitiate the pressure layers after make_half_pressure_better if pressure_grid == "clouds": rt_object.setup_opa_structure(pressure) # Width of cloud particle distribution if "sigma_lnorm" in cloud_dict: sigma_lnorm = cloud_dict["sigma_lnorm"] else: sigma_lnorm = None if "log_kappa_0" in cloud_dict: # Cloud model 2 @typechecked def kappa_abs(wavel_micron: np.ndarray, press_bar: np.ndarray) -> np.ndarray: p_base = 10.0 ** cloud_dict["log_p_base"] # (bar) kappa_0 = 10.0 ** cloud_dict["log_kappa_0"] # (cm2 g-1) # Opacity at 1 um (cm2 g-1) as function of pressure (bar) # See Eq. 5 in Mollière et al. 2020 kappa_p = kappa_0 * (press_bar / p_base) ** cloud_dict["fsed"] # Opacity (cm2 g-1) as function of wavelength (um) # See Eq. 4 in Mollière et al. 2020 kappa_grid, wavel_grid = np.meshgrid(kappa_p, wavel_micron, sparse=True) kappa_tot = kappa_grid * wavel_grid ** cloud_dict["opa_index"] kappa_tot[:, press_bar > p_base] = 0.0 # if ( # cloud_dict["opa_knee"] > wavel_micron[0] # and cloud_dict["opa_knee"] < wavel_micron[-1] # ): # indices = np.where(wavel_micron > cloud_dict["opa_knee"])[0] # for i in range(press_bar.size): # kappa_tot[indices, i] = ( # kappa_tot[indices[0], i] # * (wavel_micron[indices] / wavel_micron[indices[0]]) ** -4.0 # ) return (1.0 - cloud_dict["albedo"]) * kappa_tot @typechecked def kappa_scat(wavel_micron: np.ndarray, press_bar: np.ndarray): p_base = 10.0 ** cloud_dict["log_p_base"] # (bar) kappa_0 = 10.0 ** cloud_dict["log_kappa_0"] # (cm2 g-1) # Opacity at 1 um (cm2 g-1) as function of pressure (bar) # See Eq. 5 in Mollière et al. 2020 kappa_p = kappa_0 * (press_bar / p_base) ** cloud_dict["fsed"] # Opacity (cm2 g-1) as function of wavelength (um) # See Eq. 4 in Mollière et al. 2020 kappa_grid, wavel_grid = np.meshgrid(kappa_p, wavel_micron, sparse=True) kappa_tot = kappa_grid * wavel_grid ** cloud_dict["opa_index"] kappa_tot[:, press_bar > p_base] = 0.0 # if ( # cloud_dict["opa_knee"] > wavel_micron[0] # and cloud_dict["opa_knee"] < wavel_micron[-1] # ): # indices = np.where(wavel_micron > cloud_dict["opa_knee"])[0] # for i in range(press_bar.size): # kappa_tot[indices, i] = ( # kappa_tot[indices[0], i] # * (wavel_micron[indices] / wavel_micron[indices[0]]) ** -4.0 # ) return cloud_dict["albedo"] * kappa_tot elif "log_kappa_abs" in cloud_dict: # Powerlaw absorption and scattering opacities @typechecked def kappa_abs(wavel_micron: np.ndarray, press_bar: np.ndarray) -> np.ndarray: p_base = 10.0 ** cloud_dict["log_p_base"] # (bar) kappa_0 = 10.0 ** cloud_dict["log_kappa_abs"] # (cm2 g-1) # Opacity at 1 um (cm2 g-1) as function of pressure (bar) kappa_p = kappa_0 * (press_bar / p_base) ** cloud_dict["fsed"] # Opacity (cm2 g-1) as function of wavelength (um) kappa_grid, wavel_grid = np.meshgrid(kappa_p, wavel_micron, sparse=True) kappa_abs = kappa_grid * wavel_grid ** cloud_dict["opa_abs_index"] kappa_abs[:, press_bar > p_base] = 0.0 return kappa_abs @typechecked def kappa_scat(wavel_micron: np.ndarray, press_bar: np.ndarray): p_base = 10.0 ** cloud_dict["log_p_base"] # (bar) kappa_0 = 10.0 ** cloud_dict["log_kappa_sca"] # (cm2 g-1) # Opacity at 1 um (cm2 g-1) as function of pressure (bar) kappa_p = kappa_0 * (press_bar / p_base) ** cloud_dict["fsed"] # Opacity (cm2 g-1) as function of wavelength (um) kappa_grid, wavel_grid = np.meshgrid(kappa_p, wavel_micron, sparse=True) kappa_sca = kappa_grid * wavel_grid ** cloud_dict["opa_sca_index"] kappa_sca[:, press_bar > p_base] = 0.0 if ( cloud_dict["lambda_ray"] > wavel_micron[0] and cloud_dict["lambda_ray"] < wavel_micron[-1] ): indices = np.where(wavel_micron > cloud_dict["lambda_ray"])[0] for i in range(press_bar.size): kappa_sca[indices, i] = ( kappa_sca[indices[0], i] * (wavel_micron[indices] / wavel_micron[indices[0]]) ** -4.0 ) return kappa_sca elif "log_kappa_gray" in cloud_dict: # Gray clouds with cloud top @typechecked def kappa_abs(wavel_micron: np.ndarray, press_bar: np.ndarray) -> np.ndarray: p_top = 10.0 ** cloud_dict["log_cloud_top"] # (bar) kappa_gray = 10.0 ** cloud_dict["log_kappa_gray"] # (cm2 g-1) opa_abs = np.full((wavel_micron.size, press_bar.size), kappa_gray) opa_abs[:, press_bar < p_top] = 0.0 return opa_abs # Add optional scattering opacity if "albedo" in cloud_dict: @typechecked def kappa_scat(wavel_micron: np.ndarray, press_bar: np.ndarray) -> np.ndarray: # Absorption opacity (cm2 g-1) opa_abs = kappa_abs(wavel_micron, press_bar) # Scattering opacity (cm2 g-1) opa_scat = cloud_dict["albedo"] * opa_abs / (1. - cloud_dict["albedo"]) return opa_scat else: kappa_scat = None else: kappa_abs = None kappa_scat = None # Calculate the emission spectrum rt_object.calc_flux( temperature, abundances, 10.0 ** log_g, mmw, sigma_lnorm=sigma_lnorm, Kzz=Kzz_use, fsed=fseds, radius=None, contribution=contribution, gray_opacity=None, Pcloud=None, kappa_zero=None, gamma_scat=None, add_cloud_scat_as_abs=False, hack_cloud_photospheric_tau=tau_cloud, give_absorption_opacity=kappa_abs, give_scattering_opacity=kappa_scat, cloud_wlen=cloud_wavel, ) # if ( # hasattr(rt_object, "scaling_physicality") # and rt_object.scaling_physicality > 1.0 # ): # # cloud_scaling_factor > 2 * (fsed + 1) # # Set to None such that -inf will be returned as ln_like # wavel = None # f_lambda = None # contr_em = None # # else: # wavel = 1e6 * constants.LIGHT / rt_object.freq # (um) # # # (erg s-1 cm-2 Hz-1) -> (erg s-1 m-2 Hz-1) # f_lambda = 1e4 * rt_object.flux # # # (erg s-1 m-2 Hz-1) -> (erg s-1 m-2 m-1) # f_lambda *= constants.LIGHT / (1e-6 * wavel) ** 2.0 # # # (erg s-1 m-2 m-1) -> (erg s-1 m-2 um-1) # f_lambda *= 1e-6 # # # (erg s-1 m-2 um-1) -> (W m-2 um-1) # f_lambda *= 1e-7 # # # Optionally return the emission contribution # if contribution: # contr_em = rt_object.contr_em # else: # contr_em = None if rt_object.flux is None: wavel = None f_lambda = None contr_em = None else: wavel = 1e6 * constants.LIGHT / rt_object.freq # (um) # (erg s-1 cm-2 Hz-1) -> (erg s-1 m-2 Hz-1) f_lambda = 1e4 * rt_object.flux # (erg s-1 m-2 Hz-1) -> (erg s-1 m-2 m-1) f_lambda *= constants.LIGHT / (1e-6 * wavel) ** 2.0 # (erg s-1 m-2 m-1) -> (erg s-1 m-2 um-1) f_lambda *= 1e-6 # (erg s-1 m-2 um-1) -> (W m-2 um-1) f_lambda *= 1e-7 # Optionally return the emission contribution if contribution: contr_em = rt_object.contr_em else: contr_em = None # if ( # plotting # and Kzz_use is None # and hasattr(rt_object, "continuum_opa") # ): # plt.plot(wavel, rt_object.continuum_opa[:, 0], label="Total continuum opacity") # # plt.plot(wavel, rt_object.continuum_opa[:, 0] - rt_object.continuum_opa_scat[:, 0], label="Absorption continuum opacity") # # plt.plot(wavel, rt_object.continuum_opa_scat[:, 0], label="Scattering continuum opacity") # plt.xlabel(r"Wavelength ($\mu$m)") # plt.ylabel("Opacity at smallest pressure") # plt.yscale("log") # plt.legend(loc="best") # plt.savefig("continuum_opacity.pdf", bbox_inches="tight") # plt.clf() return wavel, f_lambda, contr_em, mmw @typechecked def mass_fractions(log_x_abund: dict) -> dict: """ Function to return a dictionary with the mass fractions of all species. Parameters ---------- log_x_abund : dict Dictionary with the log10 of the mass fractions of metals. Returns ------- dict Dictionary with the mass fractions of all species. """ # initiate abundance dictionary abund = {} # initiate the total mass fraction of the metals metal_sum = 0.0 for item in log_x_abund: # add the mass fraction to the dictionary abund[item] = 10.0 ** log_x_abund[item] # update the total mass fraction of the metals metal_sum += abund[item] # mass fraction of H2 and He ab_h2_he = 1.0 - metal_sum # add H2 and He mass fraction to the dictionary abund["H2"] = ab_h2_he * 0.75 abund["He"] = ab_h2_he * 0.25 return abund @typechecked def calc_metal_ratio(log_x_abund: Dict[str, float]) -> Tuple[float, float, float]: """ Function for calculating [C/H], [O/H], and C/O for a given set of abundances. Parameters ---------- log_x_abund : dict Dictionary with the log10 mass fractions. Returns ------- float Carbon-to-hydrogen ratio, relative to solar. float Oxygen-to-hydrogen ratio, relative to solar. float Carbon-to-oxygen ratio. """ # Solar C/H from Asplund et al. (2009) c_h_solar = 10.0 ** (8.43 - 12.0) # Solar O/H from Asplund et al. (2009) o_h_solar = 10.0 ** (8.69 - 12.0) # Get the atomic masses masses = atomic_masses() # Create a dictionary with all mass fractions abund = mass_fractions(log_x_abund) # Calculate the mean molecular weight from the input mass fractions mmw = mean_molecular_weight(abund) # Initiate the C, H, and O abundance c_abund = 0.0 o_abund = 0.0 h_abund = 0.0 # Calculate the total C abundance if "CO" in abund: c_abund += abund["CO"] * mmw / masses["CO"] if "CO_all_iso" in abund: c_abund += abund["CO_all_iso"] * mmw / masses["CO"] if "CO_all_iso_HITEMP" in abund: c_abund += abund["CO_all_iso_HITEMP"] * mmw / masses["CO"] if "CO_all_iso_Chubb" in abund: c_abund += abund["CO_all_iso_Chubb"] * mmw / masses["CO"] if "CO2" in abund: c_abund += abund["CO2"] * mmw / masses["CO2"] if "CO2_main_iso" in abund: c_abund += abund["CO2_main_iso"] * mmw / masses["CO2"] if "CH4" in abund: c_abund += abund["CH4"] * mmw / masses["CH4"] if "CH4_main_iso" in abund: c_abund += abund["CH4_main_iso"] * mmw / masses["CH4"] # Calculate the total O abundance if "CO" in abund: o_abund += abund["CO"] * mmw / masses["CO"] if "CO_all_iso" in abund: o_abund += abund["CO_all_iso"] * mmw / masses["CO"] if "CO_all_iso_HITEMP" in abund: o_abund += abund["CO_all_iso_HITEMP"] * mmw / masses["CO"] if "CO_all_iso_Chubb" in abund: o_abund += abund["CO_all_iso_Chubb"] * mmw / masses["CO"] if "CO2" in abund: o_abund += 2.0 * abund["CO2"] * mmw / masses["CO2"] if "CO2_main_iso" in abund: o_abund += 2.0 * abund["CO2_main_iso"] * mmw / masses["CO2"] if "H2O" in abund: o_abund += abund["H2O"] * mmw / masses["H2O"] if "H2O_HITEMP" in abund: o_abund += abund["H2O_HITEMP"] * mmw / masses["H2O"] if "H2O_main_iso" in abund: o_abund += abund["H2O_main_iso"] * mmw / masses["H2O"] # Calculate the total H abundance h_abund += 2.0 * abund["H2"] * mmw / masses["H2"] if "CH4" in abund: h_abund += 4.0 * abund["CH4"] * mmw / masses["CH4"] if "CH4_main_iso" in abund: h_abund += 4.0 * abund["CH4_main_iso"] * mmw / masses["CH4"] if "H2O" in abund: h_abund += 2.0 * abund["H2O"] * mmw / masses["H2O"] if "H2O_HITEMP" in abund: h_abund += 2.0 * abund["H2O_HITEMP"] * mmw / masses["H2O"] if "H2O_main_iso" in abund: h_abund += 2.0 * abund["H2O_main_iso"] * mmw / masses["H2O"] if "NH3" in abund: h_abund += 3.0 * abund["NH3"] * mmw / masses["NH3"] if "NH3_main_iso" in abund: h_abund += 3.0 * abund["NH3_main_iso"] * mmw / masses["NH3"] if "H2S" in abund: h_abund += 2.0 * abund["H2S"] * mmw / masses["H2S"] if "H2S_main_iso" in abund: h_abund += 2.0 * abund["H2S_main_iso"] * mmw / masses["H2S"] return ( np.log10(c_abund / h_abund / c_h_solar), np.log10(o_abund / h_abund / o_h_solar), c_abund / o_abund, ) @typechecked def mean_molecular_weight(abundances: dict) -> float: """ Function to calculate the mean molecular weight from the abundances. Parameters ---------- abundances : dict Dictionary with the mass fraction of each species. Returns ------- float Mean molecular weight in atomic mass units. """ masses = atomic_masses() mmw = 0.0 for key in abundances: if key in ["CO_all_iso", "CO_all_iso_HITEMP", "CO_all_iso_Chubb"]: mmw += abundances[key] / masses["CO"] elif key in ["Na_lor_cut", "Na_allard", "Na_burrows"]: mmw += abundances[key] / masses["Na"] elif key in ["K_lor_cut", "K_allard", "K_burrows"]: mmw += abundances[key] / masses["K"] elif key == "CH4_main_iso": mmw += abundances[key] / masses["CH4"] elif key in ["H2O_main_iso", "H2O_HITEMP"]: mmw += abundances[key] / masses["H2O"] else: mmw += abundances[key] / masses[key] return 1.0 / mmw @typechecked def potassium_abundance(log_x_abund: dict) -> float: """ Function to calculate the mass fraction of potassium at a solar ratio of the sodium and potassium abundances. Parameters ---------- log_x_abund : dict Dictionary with the log10 of the mass fractions. Returns ------- float Log10 of the mass fraction of potassium. """ # solar volume mixing ratios of Na and K (Asplund et al. 2009) n_na_solar = 1.60008694353205e-06 n_k_solar = 9.86605611925677e-08 # get the atomic masses masses = atomic_masses() # create a dictionary with all mass fractions x_abund = mass_fractions(log_x_abund) # calculate the mean molecular weight from the input mass fractions mmw = mean_molecular_weight(x_abund) # volume mixing ratio of sodium if "Na" in log_x_abund: n_na_abund = x_abund["Na"] * mmw / masses["Na"] elif "Na_lor_cut" in log_x_abund: n_na_abund = x_abund["Na_lor_cut"] * mmw / masses["Na"] elif "Na_allard" in log_x_abund: n_na_abund = x_abund["Na_allard"] * mmw / masses["Na"] elif "Na_burrows" in log_x_abund: n_na_abund = x_abund["Na_burrows"] * mmw / masses["Na"] # volume mixing ratio of potassium n_k_abund = n_na_abund * n_k_solar / n_na_solar return np.log10(n_k_abund * masses["K"] / mmw) @typechecked def log_x_cloud_base( c_o_ratio: float, metallicity: float, cloud_fractions: dict ) -> dict: """ Function for returning a dictionary with the log10 mass fractions at the cloud base. Parameters ---------- c_o_ratio : float C/O ratio. metallicity : float Metallicity, [Fe/H]. cloud_fractions : dict Dictionary with the log10 mass fractions at the cloud base, relative to the maximum values allowed from elemental abundances. The dictionary keys are the cloud species without the structure and shape index (e.g. Na2S(c) instead of Na2S(c)_cd). Returns ------- dict Dictionary with the log10 mass fractions at the cloud base. Compared to the keys of ``cloud_fractions``, the keys in the returned dictionary are provided without ``(c)`` (e.g. Na2S instead of Na2S(c)). """ log_x_base = {} for item in cloud_fractions: # Mass fraction x_cloud = cloud_mass_fraction(f"{item[:-3]}", metallicity, c_o_ratio) # Log10 of the mass fraction at the cloud base log_x_base[f"{item[:-3]}"] = np.log10(10.0 ** cloud_fractions[item] * x_cloud) return log_x_base @typechecked def solar_mixing_ratios() -> dict: """ Function which returns the volume mixing ratios for solar elemental abundances (i.e. [Fe/H] = 0); adopted from Asplund et al. (2009). Returns ------- dict Dictionary with the solar number fractions (i.e. volume mixing ratios). """ n_fracs = {} n_fracs["H"] = 0.9207539305 n_fracs["He"] = 0.0783688694 n_fracs["C"] = 0.0002478241 n_fracs["N"] = 6.22506056949881e-05 n_fracs["O"] = 0.0004509658 n_fracs["Na"] = 1.60008694353205e-06 n_fracs["Mg"] = 3.66558742055362e-05 n_fracs["Al"] = 2.595e-06 n_fracs["Si"] = 2.9795e-05 n_fracs["P"] = 2.36670201997668e-07 n_fracs["S"] = 1.2137900734604e-05 n_fracs["Cl"] = 2.91167958499589e-07 n_fracs["K"] = 9.86605611925677e-08 n_fracs["Ca"] = 2.01439011429255e-06 n_fracs["Ti"] = 8.20622804366359e-08 n_fracs["V"] = 7.83688694089992e-09 n_fracs["Fe"] = 2.91167958499589e-05 n_fracs["Ni"] = 1.52807116806281e-06 return n_fracs @typechecked def atomic_masses() -> dict: """ Function which returns the atomic and molecular masses. Returns ------- dict Dictionary with the atomic and molecular masses. """ masses = {} # Atoms masses["H"] = 1.0 masses["He"] = 4.0 masses["C"] = 12.0 masses["N"] = 14.0 masses["O"] = 16.0 masses["Na"] = 23.0 masses["Na_lor_cur"] = 23.0 masses["Na_allard"] = 23.0 masses["Na_burrows"] = 23.0 masses["Mg"] = 24.3 masses["Al"] = 27.0 masses["Si"] = 28.0 masses["P"] = 31.0 masses["S"] = 32.0 masses["Cl"] = 35.45 masses["K"] = 39.1 masses["K_lor_cut"] = 39.1 masses["K_allard"] = 39.1 masses["K_burrows"] = 39.1 masses["Ca"] = 40.0 masses["Ti"] = 47.9 masses["V"] = 51.0 masses["Fe"] = 55.8 masses["Ni"] = 58.7 # Molecules masses["H2"] = 2.0 masses["H2O"] = 18.0 masses["H2O_HITEMP"] = 18.0 masses["H2O_main_iso"] = 18.0 masses["CH4"] = 16.0 masses["CH4_main_iso"] = 16.0 masses["CO2"] = 44.0 masses["CO2_main_iso"] = 44.0 masses["CO"] = 28.0 masses["CO_all_iso"] = 28.0 masses["CO_all_iso_Chubb"] = 28.0 masses["CO_all_iso_HITEMP"] = 28.0 masses["NH3"] = 17.0 masses["NH3_main_iso"] = 17.0 masses["HCN"] = 27.0 masses["C2H2,acetylene"] = 26.0 masses["PH3"] = 34.0 masses["PH3_main_iso"] = 34.0 masses["H2S"] = 34.0 masses["H2S_main_iso"] = 34.0 masses["VO"] = 67.0 masses["VO_Plez"] = 67.0 masses["TiO"] = 64.0 masses["TiO_all_Exomol"] = 64.0 masses["TiO_all_Plez"] = 64.0 masses["FeH"] = 57.0 masses["FeH_main_iso"] = 57.0 masses["OH"] = 17.0 return masses @typechecked def cloud_mass_fraction( composition: str, metallicity: float, c_o_ratio: float ) -> float: """ Function to calculate the mass fraction for a cloud species. Parameters ---------- composition : str Cloud composition ('Fe', 'MgSiO3', 'Al2O3', 'Na2S', or 'KCL'). metallicity : float Metallicity [Fe/H]. c_o_ratio : float Carbon-to-oxygen ratio. Returns ------- float Mass fraction. """ # Solar fractional number densities (i.e. volume mixing ratios; VMR) nfracs = solar_mixing_ratios() # Atomic masses masses = atomic_masses() # Make a copy of the dictionary with the solar number densities nfracs_use = copy.copy(nfracs) # Scale the solar number densities by the [Fe/H], except H and He for item in nfracs: if item != "H" and item != "He": nfracs_use[item] = nfracs[item] * 10.0 ** metallicity # Adjust the VMR of O with the C/O ratio nfracs_use["O"] = nfracs_use["C"] / c_o_ratio if composition == "Fe": nfrac_cloud = nfracs_use["Fe"] mass_cloud = masses["Fe"] elif composition == "MgSiO3": nfrac_cloud = np.min( [nfracs_use["Mg"], nfracs_use["Si"], nfracs_use["O"] / 3.0] ) mass_cloud = masses["Mg"] + masses["Si"] + 3.0 * masses["O"] elif composition == "Al2O3": nfrac_cloud = np.min([nfracs_use["Al"] / 2.0, nfracs_use["O"] / 3.0]) mass_cloud = 2.0 * masses["Al"] + 3.0 * masses["O"] elif composition == "Na2S": nfrac_cloud = np.min([nfracs_use["Na"] / 2.0, nfracs_use["S"]]) mass_cloud = 2.0 * masses["Na"] + masses["S"] elif composition == "KCL": nfrac_cloud = np.min([nfracs_use["K"], nfracs_use["Cl"]]) mass_cloud = masses["K"] + masses["Cl"] # Cloud mass fraction x_cloud = mass_cloud * nfrac_cloud mass_norm = 0.0 for item in nfracs_use: # Sum up the mass fractions of all species mass_norm += masses[item] * nfracs_use[item] # Normalize the cloud mass fraction by the total mass fraction return x_cloud / mass_norm @typechecked def find_cloud_deck( composition: str, press: np.ndarray, temp: np.ndarray, metallicity: float, c_o_ratio: float, mmw: float = 2.33, plotting: bool = False, ) -> float: """ Function to find the base of the cloud deck by intersecting the P-T profile with the saturation vapor pressure. Parameters ---------- composition : str Cloud composition ('Fe', 'MgSiO3', 'Al2O3', 'Na2S', or 'KCL'). press : np.ndarray Pressures (bar). temp : np.ndarray Temperatures (K). metallicity : float Metallicity [Fe/H]. c_o_ratio : float Carbon-to-oxygen ratio. mmw : float Mean molecular weight. plotting : bool Create a plot. Returns ------- float Pressure (bar) at the base of the cloud deck. """ if composition == "Fe": Pc, Tc = return_T_cond_Fe_comb(metallicity, c_o_ratio, mmw) elif composition == "MgSiO3": Pc, Tc = return_T_cond_MgSiO3(metallicity, c_o_ratio, mmw) elif composition == "Al2O3": Pc, Tc = return_T_cond_Al2O3(metallicity, c_o_ratio, mmw) elif composition == "Na2S": Pc, Tc = return_T_cond_Na2S(metallicity, c_o_ratio, mmw) elif composition == "KCL": Pc, Tc = return_T_cond_KCl(metallicity, c_o_ratio, mmw) else: raise ValueError( f"The '{composition}' composition is not supported by find_cloud_deck." ) index = (Pc > 1e-8) & (Pc < 1e5) Pc, Tc = Pc[index], Tc[index] tcond_p = interp1d(Pc, Tc) Tcond_on_input_grid = tcond_p(press) Tdiff = Tcond_on_input_grid - temp diff_vec = Tdiff[1:] * Tdiff[:-1] ind_cdf = diff_vec < 0.0 if len(diff_vec[ind_cdf]) > 0: P_clouds = (press[1:] + press[:-1])[ind_cdf] / 2.0 P_cloud = float(P_clouds[-1]) else: P_cloud = 1e-8 if plotting: plt.plot(temp, press) plt.plot(Tcond_on_input_grid, press) plt.axhline(P_cloud, color="red", linestyle="--") plt.yscale("log") plt.xlim(0.0, 3000.0) plt.ylim(1e2, 1e-6) plt.savefig(f"{composition.lower()}_clouds_cdf.pdf", bbox_inches="tight") plt.clf() return P_cloud @typechecked def scale_cloud_abund( params: Dict[str, float], rt_object, pressure: np.ndarray, temperature: np.ndarray, mmw: np.ndarray, chemistry: str, abund_in: Dict[str, np.ndarray], composition: str, tau_cloud: float, pressure_grid: str, ) -> float: """ Function to scale the mass fraction of a cloud species to the requested optical depth. Parameters ---------- params : dict Dictionary with the model parameters. rt_object : petitRADTRANS.radtrans.Radtrans Instance of ``Radtrans``. pressure : np.ndarray Array with the pressure points (bar). temperature : np.ndarray Array with the temperature points (K) corresponding to ``pressure``. mmw : np.ndarray Array with the mean molecular weights corresponding to ``pressure``. chemistry : str Chemistry type (only ``'equilibrium'`` is supported). abund_in : dict Dictionary with arrays that contain the pressure-dependent, equilibrium mass fractions of the line species. composition : sr Cloud composition ('Fe(c)', 'MgSiO3(c)', 'Al2O3(c)', 'Na2S(c)', 'KCl(c)'). tau_cloud : float Optical depth of the clouds. The returned mass fraction is scaled such that the optical depth at the shortest wavelength is equal to ``tau_cloud``. pressure_grid : str The type of pressure grid that is used for the radiative transfer. Either 'standard', to use 180 layers both for the atmospheric structure (e.g. when interpolating the abundances) and 180 layers with the radiative transfer, or 'smaller' to use 60 (instead of 180) with the radiative transfer, or 'clouds' to start with 1440 layers but resample to ~100 layers (depending on the number of cloud species) with a refinement around the cloud decks. For cloudless atmospheres it is recommended to use 'smaller', which runs faster than 'standard' and provides sufficient accuracy. For cloudy atmosphere, one can test with 'smaller' but it is recommended to use 'clouds' for improved accuracy fluxes. Returns ------- float Mass fraction relative to the maximum value allowed from elemental abundances. The value has been scaled to the requested optical depth ``tau_cloud`` (at the shortest wavelength). """ # Dictionary with the requested cloud composition and setting the # log10 of the mass fraction (relative to the maximum value # allowed from elemental abundances) equal to zero cloud_fractions = {composition: 0.0} # Create a dictionary with the log10 of # the mass fraction at the cloud base log_x_base = log_x_cloud_base( params["c_o_ratio"], params["metallicity"], cloud_fractions ) # Get the pressure (bar) of the cloud base p_base = find_cloud_deck( composition[:-3], pressure, temperature, params["metallicity"], params["c_o_ratio"], mmw=np.mean(mmw), plotting=False, ) # Initialize the cloud abundance in # the dictionary with mass fractions abund_in[composition] = np.zeros_like(temperature) # Set the cloud abundances by scaling # from the base with the f_sed parameter abund_in[composition][pressure < p_base] = ( 10.0 ** log_x_base[composition[:-3]] * (pressure[pressure <= p_base] / p_base) ** params["fsed"] ) # Adaptive pressure refinement around the cloud base if pressure_grid == "clouds": _, indices = make_half_pressure_better({composition: p_base}, pressure) else: indices = None # Update the abundance dictionary abundances = create_abund_dict( abund_in, rt_object.line_species, chemistry, pressure_grid=pressure_grid, indices=indices, ) # Interpolate the line opacities to the temperature structure if pressure_grid == "standard": rt_object.interpolate_species_opa(temperature) mmw_select = mmw.copy() if "log_kzz" in params: kzz_select = np.full(pressure.size, 10.0 ** params["log_kzz"]) else: # Backward compatibility kzz_select = np.full(pressure.size, 10.0 ** params["kzz"]) elif pressure_grid == "smaller": rt_object.interpolate_species_opa(temperature[::3]) mmw_select = mmw[::3] if "log_kzz" in params: kzz_select = np.full(pressure[::3].size, 10.0 ** params["log_kzz"]) else: # Backward compatibility kzz_select = np.full(pressure[::3].size, 10.0 ** params["kzz"]) elif pressure_grid == "clouds": # Reinitiate the pressure structure # after make_half_pressure_better rt_object.setup_opa_structure(pressure[indices]) rt_object.interpolate_species_opa(temperature[indices]) mmw_select = mmw[indices] if "log_kzz" in params: kzz_select = np.full(pressure[indices].size, 10.0 ** params["log_kzz"]) else: # Backward compatibility kzz_select = np.full(pressure[indices].size, 10.0 ** params["kzz"]) # Set the continuum opacities to zero because # calc_cloud_opacity adds to existing opacities rt_object.continuum_opa = np.zeros_like(rt_object.continuum_opa) rt_object.continuum_opa_scat = np.zeros_like(rt_object.continuum_opa_scat) rt_object.continuum_opa_scat_emis = np.zeros_like(rt_object.continuum_opa_scat_emis) # Calculate the cloud opacities for # the defined atmospheric structure rt_object.calc_cloud_opacity( abundances, mmw_select, 10.0 ** params["logg"], params["sigma_lnorm"], fsed=params["fsed"], Kzz=kzz_select, radius=None, add_cloud_scat_as_abs=False, ) # Calculate the cloud optical depth and set the tau_cloud attribute rt_object.calc_tau_cloud(10.0 ** params["logg"]) # Extract the wavelength-averaged optical # depth at the largest pressure tau_current = np.mean(rt_object.tau_cloud[0, :, 0, -1]) # Set the continuum opacities again to zero rt_object.continuum_opa = np.zeros_like(rt_object.continuum_opa) rt_object.continuum_opa_scat = np.zeros_like(rt_object.continuum_opa_scat) rt_object.continuum_opa_scat_emis = np.zeros_like(rt_object.continuum_opa_scat_emis) if tau_current > 0.0: # Scale the mass fraction log_x_scaled = np.log10(tau_cloud / tau_current) else: log_x_scaled = 100.0 return log_x_scaled @typechecked def cube_to_dict(cube, cube_index: Dict[str, float]) -> Dict[str, float]: """ Function to convert the parameter cube into a dictionary. Parameters ---------- cube : LP_c_double Cube with the parameters. cube_index : dict Dictionary with the index of each parameter in the ``cube``. Returns ------- dict Dictionary with the parameters. """ params = {} for key, value in cube_index.items(): params[key] = cube[value] return params @typechecked def list_to_dict(param_list: List[str], sample_val: np.ndarray) -> Dict[str, float]: """ Function to convert the parameter cube into a dictionary. Parameters ---------- param_list : list(str) List with the parameter labels. sample_val : np.ndarray Array with the parameter values, in the same order as ``param_list``. Returns ------- dict Dictionary with the parameters. """ sample_dict = {} for item in param_list: sample_dict[item] = sample_val[param_list.index(item)] return sample_dict @typechecked def return_T_cond_Fe( FeH: float, CO: float, MMW: float = 2.33 ) -> Tuple[np.ndarray, np.ndarray]: """ Function for calculating the saturation pressure for solid Fe. Parameters ---------- FeH : float Metallicity. CO : float Carbon-to-oxygen ratio. MMW : float Mean molecular weight. Returns ------- np.ndarray Saturation pressure (bar). np.ndarray Temperature (K). """ masses = atomic_masses() T = np.linspace(100.0, 10000.0, 1000) # Taken from Ackerman & Marley (2001) # including erratum (P_vap is in bar, not cgs!) P_vap = lambda x: np.exp(15.71 - 47664.0 / x) XFe = cloud_mass_fraction("Fe", FeH, CO) return P_vap(T) / (XFe * MMW / masses["Fe"]), T @typechecked def return_T_cond_Fe_l( FeH: float, CO: float, MMW: float = 2.33 ) -> Tuple[np.ndarray, np.ndarray]: """ Function for calculating the saturation pressure for liquid Fe. Parameters ---------- FeH : float Metallicity. CO : float Carbon-to-oxygen ratio. MMW : float Mean molecular weight. Returns ------- np.ndarray Saturation pressure (bar). np.ndarray Temperature (K). """ masses = atomic_masses() T = np.linspace(100.0, 10000.0, 1000) # Taken from Ackerman & Marley (2001) # including erratum (P_vap is in bar, not cgs!) P_vap = lambda x:
np.exp(9.86 - 37120.0 / x)
numpy.exp
import utm as UTM import unittest import numpy as np class UTMTestCase(unittest.TestCase): def assert_utm_equal(self, a, b): self.assertTrue(np.allclose(a[0], b[0])) self.assertTrue(np.allclose(a[1], b[1])) self.assertEqual(a[2], b[2]) self.assertEqual(a[3].upper(), b[3].upper()) def assert_latlon_equal(self, a, b): self.assertTrue(np.allclose(a[0], b[0], rtol=1e-4, atol=1e-4)) self.assertTrue(np.allclose(a[1], b[1], rtol=1e-4, atol=1e-4)) class KnownValues(UTMTestCase): known_values = [ # Aachen, Germany ( (50.77535, 6.08389), (294409, 5628898, 32, 'U'), {'northern': True}, ), # New York, USA ( (40.71435, -74.00597), (583960, 4507523, 18, 'T'), {'northern': True}, ), # Wellington, New Zealand ( (-41.28646, 174.77624), (313784, 5427057, 60, 'G'), {'northern': False}, ), # Capetown, South Africa ( (-33.92487, 18.42406), (261878, 6243186, 34, 'H'), {'northern': False}, ), # Mendoza, Argentina ( (-32.89018, -68.84405), (514586, 6360877, 19, 'h'), {'northern': False}, ), # Fairbanks, Alaska, USA ( (64.83778, -147.71639), (466013, 7190568, 6, 'W'), {'northern': True}, ), # <NAME>, Scotland, UK ( (56.79680, -5.00601), (377486, 6296562, 30, 'V'), {'northern': True}, ), # Latitude 84 ( (84, -5.00601), (476594, 9328501, 30, 'X'), {'northern': True}, ), ] def test_from_latlon(self): lats = np.array([0.0, 3.0, 6.0]) lons = np.array([0.0, 1.0, 3.4]) result = UTM.from_latlon(lats, lons) self.assert_utm_equal((np.array([166021.44317933032, 277707.83075574087, 544268.12794623]), np.array([0.0, 331796.29167519242, 663220.7198366751]), 31, 'N'), result) for latlon, utm, _ in self.known_values: result = UTM.from_latlon(*[np.array([x]) for x in latlon]) self.assert_utm_equal(utm, result) def test_to_latlon(self): result = UTM.to_latlon(np.array([166021.44317933032, 277707.83075574087, 544268.12794623]), np.array([0.0, 331796.29167519242, 663220.7198366751]), 31, 'N') self.assert_latlon_equal((np.array([0.0, 3.0, 6.0]), np.array([0.0, 1.0, 3.4])), result) for latlon, utm, utm_kw in self.known_values: utm = [np.array([x]) for x in utm[:2]] + list(utm[2:]) result = UTM.to_latlon(*utm) self.assert_latlon_equal(latlon, result) class BadInput(UTMTestCase): def test_from_latlon_range_checks(self): '''from_latlon should fail with out-of-bounds input''' self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(-100), np.array(0)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(-80.1), np.array(0)) for i in range(-8000, 8400): UTM.from_latlon(np.array(i / 100.0), np.array(0)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(84.1), np.array(0)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(100), np.array(0)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(0), np.array(-300)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(0), np.array(-180.1)) for i in range(-18000, 18000): UTM.from_latlon(np.array(0), np.array(i / 100.0)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(0), np.array(180.1)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon, np.array(0), np.array(300)) self.assertRaises(UTM.OutOfRangeError, UTM.from_latlon,
np.array(-100)
numpy.array
# -*- coding: utf-8 -*- """ Created on Wed Aug 3 11:31:57 2016 @author: cpkmanchee beam_profile.py contains methods for dealing with beam profile images. All definitions, usages, and calculations are consisten with ISO standard 11146 (generally dealing with D4sigma beamwidths). """ import numpy as np import scipy.optimize as opt import uncertainties as un import glob import time from beamtools.constants import h,c,pi from beamtools.common import normalize from beamtools.import_data_file import import_data_file as _import #import matplotlib.pyplot as plt #from mpl_toolkits.mplot3d import Axes3D #from matplotlib.gridspec import GridSpec __all__ = ['gaussian_beamwaist','fitM2', 'get_roi','calculate_beamwidths','flattenrgb', 'calculate_2D_moments','pix2um'] BITS = 8 #image channel intensity resolution SATLIM = 0.001 #fraction of non-zero pixels allowed to be saturated PIXSIZE = 1.745 #pixel size in um, measured def _stop(string = 'error'): raise Exception(string) def gaussian_beamwaist(z,z0,d0,M2=1,const=0,wl=1.030): '''Generate gaussian beam profile w(z), along optical axis. w(z) = w0*(1+((z-z0)/zR)^2)^(1/2) where zR is the Rayleigh length given by zR = pi*w0^2/wl Units for waist and wavelength is um. Units for optical axis positon is mm. Inputs: z = array of position along optical axis in mm z0 = position of beam waist (focus) in mm d0 = beam waist in um (diameter) M2 = beam parameter M^2, unitless wl = wavelenth in um, default to 1030nm (1.03um) Outputs: w = w(z) position dependent beam waist in um. Same size as 'z' ''' z = 1000*np.asarray(z).astype(float) z0 = 1000*z0 w0 = d0/2 w = (w0**2 + M2**2*(wl/(np.pi*w0))**2*(z-z0)**2)**(1/2) + const return w def fitM2(dz, z, wl=1.03E-6): '''Fit series of beamwaists to gaussian beamwaist. Follows ISO standard 11146 for fitting. Returns gaussian beam paramters with uncertainties. Inputs: z, position aling optical axis in mm dz, beamwidth in um, = 2*w, i.e. dz is beam diameter wl, (optional) wavelength, default = 1030nm a,b, and c are fit parameters Outputs: z0,d0,M2,theta,zR and associated uncertainties. ''' dz = dz*1E-6 z = z*1E-3 #initial paramters for fit di = np.min(dz) zi = z[np.argmin(dz)] ci = (wl/(np.pi*di))**2 bi = -2*zi*ci ai = di**2 + ci*zi**2 #fit limits c_lim = np.array([0, np.inf]) b_lim = np.array([-np.inf,np.inf]) a_lim = np.array([0, np.inf]) p0 = [ai, bi, ci] limits = ([i.min() for i in [a_lim,b_lim,c_lim]], [i.max() for i in [a_lim,b_lim,c_lim]]) f = lambda z,a,b,c: (a + b*z + c*z**2)**(1/2) popt,pcov = opt.curve_fit(f,z,dz,p0,bounds=limits) [a,b,c] = [un.ufloat(popt[i], np.sqrt(pcov[i,i])) for i in range(3)] z0 = (1E3)*(-b/(2*c)) d0 = (1E6)*((4*a*c-b**2)**(1/2))*(1/(2*c**(1/2))) M2 = (np.pi/(8*wl))*((4*a*c-b**2)**(1/2)) theta = c**(1/2) zR = (1E3)*((4*a*c-b**2)**(1/2))*(1/(2*c)) value = [x.nominal_value for x in [z0,d0,M2,theta,zR]] std = [x.std_dev for x in [z0,d0,M2,theta,zR]] return value, std def flattenrgb(im, bits=8, satlim=0.001): '''Flattens rbg array, excluding saturated channels ''' sat_det = np.zeros(im.shape[2]) Nnnz = np.zeros(im.shape[2]) Nsat = np.zeros(im.shape[2]) data = np.zeros(im[...,0].shape, dtype = 'uint32') for i in range(im.shape[2]): Nnnz[i] = (im[:,:,i] != 0).sum() Nsat[i] = (im[:,:,i] >= 2**bits-1).sum() if Nsat[i]/Nnnz[i] <= satlim: data += im[:,:,i] else: sat_det[i] = 1 output = normalize(data.astype(float)) return output, sat_det def calculate_beamwidths(data, error_limit=1E-4, it_limit=5): '''Calculate beam profile parameters, ISO standard 11146 data = image matrix data,x,y all same dimensions ''' errx = 1 erry = 1 itN = 0 d0x = data.shape[1] d0y = data.shape[0] roi_new = [d0x/2,d0x,d0y/2,d0y] full_data = data while any([i>error_limit for i in [errx,erry]]): roi = roi_new data = get_roi(full_data,roi) moments = calculate_2D_moments(data) dx = 4*np.sqrt(moments[2]) dy = 4*np.sqrt(moments[3]) errx = np.abs(dx-d0x)/d0x erry = np.abs(dy-d0y)/d0y d0x = dx d0y = dy roi_new = [moments[0]+roi[0]-roi[1]/2,3*dx,moments[1]+roi[2]-roi[3]/2,3*dy] #[centrex,width,centrey,height] itN += 1 if itN >= it_limit: print('exceeded iteration in calculating moments') break pixel_scale = [pix2um(1)]*2+ [pix2um(1)**2]*3 moments = pixel_scale*moments [ax,ay,s2x,s2y,s2xy] = moments g = np.sign(s2x-s2y) dx = 2*np.sqrt(2)*((s2x+s2y) + g*((s2x-s2y)**2 + 4*s2xy**2)**(1/2))**(1/2) dy = 2*np.sqrt(2)*((s2x+s2y) - g*((s2x-s2y)**2 + 4*s2xy**2)**(1/2))**(1/2) if s2x == s2y: phi = (np.pi/4)*np.sign(s2xy) else: phi = (1/2)*np.arctan(2*s2xy/(s2x-s2y)) beamwidths = [dx,dy,phi] return beamwidths,roi,moments def calculate_2D_moments(data, axes_scale=[1,1], calc_2nd_moments = True): ''' data = 2D data axes_scale = (optional) scaling factor for x and y returns first and second moments first moments are averages in each direction second moments are variences in x, y and diagonal ''' x = axes_scale[0]*(np.arange(data.shape[1])) y = axes_scale[1]*(np.arange(data.shape[0])) dx,dy = np.meshgrid(np.gradient(x),np.gradient(y)) x,y = np.meshgrid(x,y) A = np.sum(data*dx*dy) #first moments (averages) avgx = np.sum(data*x*dx*dy)/A avgy =
np.sum(data*y*dx*dy)
numpy.sum
import math import numpy as np import random class Task(object): def __init__(self, robot=None): """Init of the Task Args: desired_velocity: velocity that will achieve the maximum reward max_desired_velocity: maximum desired velocity """ self.starting_command = np.array([1., 0., 0.]) self.sample = Sample_Command() self.reset(robot) self.desired_lv = 0.25 self.angle = 0 self.foot_position = np.zeros((3,12)) self.idx = -1 self.r_lv = 0 self.r_av = 0 self.r_s = 0 self.r_br = 0 self.r_bp = 0 self.r_t = 0 def reset(self, robot, command_mode=1): """Initializes a new instance of the robot and resets the desired velocity""" self.robot = robot self.command = self.starting_command # self.command[0] = random.uniform(0,1) # self.command[1] = random.uniform(-1.0, 1.0) # print(self.command) # self.sample.reset(command_mode) # 3 conditioned def set_desired_yaw_rate(self, yaw_rate): """Sets a new desired yaw rate""" self.command[1] = yaw_rate def change_desired_yaw_rate(self, change): self.command[1] += change self.command[1] = min(max(self.command[1],-1),1) # print(self.command[2]) def change_desired_forward_velocity(self, change): self.command[0] += change self.command[0] = min(max(self.command[0],0),1) def enable_command(self): self.stop_command = False def get_desired_velocities_and_yaw_rate(self): """Get desired direction of the robot CoM and yaw rate""" # self.command = self.sample.sample_command( # self.robot.get_base_position()[:2], # self.robot.get_base_roll_pitch_yaw()[2], # 1) # print(self.command) return self.command def stop(self, bool): self.stop_command = bool def get_reward_distribution(self): r_lv, r_av, r_s, r_br, r_bp, r_t = self.r_lv, self.r_av, self.r_s, self.r_br, self.r_bp, self.r_t self.r_lv, self.r_av, self.r_s, self.r_br, self.r_bp, self.r_t = 0, 0, 0, 0, 0, 0 return r_lv, r_av, r_s, r_br, r_bp, r_t # MY REWARD def get_reward(self, measurements, action): """Get the reward for the current time step Args: measurements: The robot's current filtered x,y velocity, roll rate, pitch rate, and yaw rate. Returns: float: reward obtained in the current time step """ # print(self.command) # MY LINEAR VELOCITY v_pr = np.dot(measurements[0], self.command[0]) if v_pr > self.desired_lv: r_lv = 1 else: r_lv = 0.5*math.exp(-15*((measurements[0]-self.command[0]*self.desired_lv)**2))+\ 0.5*math.exp(-15*((measurements[1]-self.command[1]*self.desired_lv)**2)) # MY ANGULAR REWARD v_ar = np.dot(measurements[4], self.command[2]) if v_ar > 0.3: r_av = 1 else: r_av = math.exp(-15*((measurements[4]-self.command[2]*0.3)**2)) # TARGET SMOOTHNESS self.idx = (self.idx + 1)%3 self.foot_position[self.idx, :] = action r_s = - np.linalg.norm(self.foot_position[self.idx,:] -2*self.foot_position[self.idx-1,:] + self.foot_position[self.idx-2,:], ord=2) # BASE MOTION REWARD (Roll rate and pitch rate) r_br = math.exp(-2*(abs(measurements[2]))) r_bp = math.exp(-2*(abs(measurements[3]))) # TORQUE PENALTY r_t = -self.robot.get_torques() # PLOTTING # self.r_lv += 0.07*r_lv # self.r_av += 0.02*r_av # self.r_br += 0.005*r_br # self.r_bp += 0.01*r_bp # self.r_t -= 0.00002*r_t # self.r_s -= 0.025*r_s return 0.05*r_lv + 0.05*r_av + 0.025*r_s + 0.005*r_br + 0.01*r_bp + 0.00002*r_t def get_num_commands(self): return self.command.shape[0] def check_default_terminal_condition(self): """Returns true if the robot is in a position that should terminate the episode, false otherwise""" roll, pitch, _ = self.robot.get_base_roll_pitch_yaw() pos = self.robot.get_base_position() # return False return abs(roll) > 1 or abs(pitch) > 1 #or pos[2] < 0.22 class Sample_Command(): # Used to train x,y,yaw command conditioned. def __init__(self): self.reset() self._goal_position = np.array([100,0]) def sample_command(self, robot_position, heading_angle, command_mode=0): dist = self._goal_position - robot_position direction = np.arctan2(dist[1], dist[0]) direction_body_frame = direction - heading_angle self._command[0] = math.cos(direction_body_frame) self._command[1] = math.sin(direction_body_frame) # self._command[2] = max(min(self._command[2]+0.01*self.desired_yaw, # 1), -1) return self._command def reset(self, command_mode=0): self._command =
np.array([0., 0., 0.])
numpy.array
""" Tools to process galaxy spectra .fits files from SDSS-II Legacy survey. Authored by <NAME> 02/13/16 """ # TODO: add parameter descriptions to SpecProcessor, normalize, and process_fits from __future__ import absolute_import, print_function, division import numpy as np from scipy import interp import time import sys from .io import FitsData class SpecProcessor(object): """ Perform basic processing of raw spectra. Attributes ---------- loglam_grid: ndarray Nsamples: integer galaxy_params: numpy record array filenames: string, list, or ndarray spectra_directory: string Nspectra: integer """ def __init__(self, filenames, galaxy_params, spectra_directory=None, n_samples=5000, loglam_grid=None): if len(galaxy_params) != len(filenames): sys.exit('filenames and galaxy_params must be same length') self.galaxy_params = galaxy_params self.filenames = filenames self.Nspectra = len(self.filenames) self.spectra_directory = spectra_directory if loglam_grid: self.loglam_grid = loglam_grid self.Nsamples = len(loglam_grid) else: self.loglam_grid = 3.5 + 0.0001 * np.arange(n_samples) self.Nsamples = n_samples @staticmethod def k(wavelength, r_v=3.1): """ Calculate A_wavelength/A_V using CCM 1989 extincton law. Parameters ---------- wavelength: float or ndarray Wavelength(s) at which to compute the reddening correction. r_v: float (default=3.1) R_V value assumed in reddening law. Returns ------- k: float or ndarray Value(s) of k(lambda) at the specified wavelength(s). """ x = 1. / (wavelength / 10000.) """ Valid for 1.1 < x < 3.3 - all wavelengths in this code are between 1.35 and 2.7. """ y = x - 1.82 a = 1. + 0.17699 * y - 0.50447 * (y ** 2) - 0.02427 * (y ** 3) + 0.72085 * (y ** 4) + 0.01979 * ( y ** 5) - 0.77530 * (y ** 6) + 0.32999 * (y ** 7) b = 1.41338 * y + 2.28305 * (y ** 2) + 1.07233 * (y ** 3) - 5.38434 * (y ** 4) - 0.62251 * ( y ** 5) + 5.30260 * (y ** 6) - 2.09002 * (y ** 7) return a + b / r_v def deredden(self, log_wavelength, flux, ebv): """ Correct flux at specified wavelength(s) for reddening using CCM 1989 extinction law. Parameters ---------- log_wavelength: float or ndarray Wavelength(s) at which to compute the reddening correction. flux: float or array-like Uncorrected flux(es). ebv: float Value of E(B-V). Returns ------- flux_corr: float or ndarray Flux(es) corrected for reddening. """ return flux * 10 ** (0.4 * self.k(10 ** log_wavelength) * ebv) def normalize(self, spectra, weights): """ Normalize the array of spectra to mean value of each spectrum between 4400 and 4450 A Multiply inverse variances by the square of the normalization Parameters ---------- spectra: ndarray weights: ndarray Returns ------- spectra: ndarray weights: ndarray """ # TODO: check that mean flux in this window is nonzero! norm = np.mean(spectra[:, (10 ** self.loglam_grid > 4400.) * (10 ** self.loglam_grid < 4450.)], axis=1) spectra /= norm[:, None] weights *= norm[:, None] ** 2 return spectra, weights def process_fits(self, normalize=False, mask=False, return_id=False, indices=None): """ Iterate over all .fits filenames, read in and process spectra. Check that redshift in header matches redshift in parameters file. Parameters ---------- normalize: boolean (default=False) mask: boolean (default=False) indices: integer, list, or ndarray (default=None) return_id: boolean (default=False) Returns ------- spectra: ndarray weights: ndarray id_dict: dictionary Only returned if return_id=True. """ start_time = time.time() counter = 0 spectra = np.zeros((self.Nspectra, self.Nsamples)) weights = np.zeros((self.Nspectra, self.Nsamples)) redshifts = [] plates = [] mjds = [] fibers = [] if indices is not None: index_list = indices else: index_list =
np.arange(self.Nspectra)
numpy.arange
from redback.constants import * from redback.transient_models.magnetar_models import magnetar_only, basic_magnetar, _evolving_gw_and_em_magnetar import numpy as np from astropy.cosmology import Planck18 as cosmo # noqa from scipy.interpolate import interp1d from collections import namedtuple import astropy.units as uu # noqa import astropy.constants as cc # noqa from redback.utils import calc_kcorrected_properties, interpolated_barnes_and_kasen_thermalisation_efficiency, \ electron_fraction_from_kappa, citation_wrapper from redback.sed import blackbody_to_flux_density def _ejecta_dynamics_and_interaction(time, mej, beta, ejecta_radius, kappa, n_ism, magnetar_luminosity, pair_cascade_switch, use_gamma_ray_opacity, **kwargs): """ :param time: time in source frame :param mej: ejecta mass in solar masses :param beta: initial ejecta velocity in c :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param magnetar_luminosity: evaluated magnetar luminosity in source frame :param pair_cascade_switch: whether to account for pair cascade losses :param use_gamma_ray_opacity: whether to use gamma ray opacity to calculate thermalisation efficiency :param kwargs: Additional parameters :param kappa_gamma: Gamma-ray opacity for leakage efficiency, only used if use_gamma_ray_opacity = True :param thermalisation_efficiency: magnetar thermalisation efficiency only used if use_gamma_ray_opacity = False :param ejecta albedo: ejecta albedo; default is 0.5 :param pair_cascade_fraction: fraction of magnetar luminosity lost to pair cascades; default is 0.05 :return: named tuple with 'lorentz_factor', 'bolometric_luminosity', 'comoving_temperature', 'radius', 'doppler_factor', 'tau', 'time', 'kinetic_energy', 'erad_total', 'thermalisation_efficiency' """ mag_lum = magnetar_luminosity ejecta_albedo = kwargs.get('ejecta_albedo', 0.5) pair_cascade_fraction = kwargs.get('pair_cascade_fraction', 0.05) mej = mej * solar_mass lorentz_factor = [] radius = [] doppler_factor = [] lbol_ejecta = [] lbol_rest = [] comoving_temperature = [] tau = [] teff = [] internal_energy = 0.5 * beta ** 2 * mej * speed_of_light ** 2 comoving_volume = (4 / 3) * np.pi * ejecta_radius ** 3 gamma = 1 / np.sqrt(1 - beta ** 2) t0_comoving = 1.3 tsigma_comoving = 0.11 for i in range(len(time)): beta = np.sqrt(1 - 1 / gamma ** 2) doppler_factor_temp = 1 / (gamma * (1 - beta)) if i > 0: dt = time[i] - time[i - 1] gamma = gamma + dgamma_dt * dt ejecta_radius = ejecta_radius + drdt * dt comoving_volume = comoving_volume + dcomoving_volume_dt * dt internal_energy = internal_energy + dinternal_energy_dt * dt swept_mass = (4 / 3) * np.pi * ejecta_radius ** 3 * n_ism * proton_mass comoving_pressure = internal_energy / (3 * comoving_volume) comoving_time = doppler_factor_temp * time[i] comoving_dvdt = 4 * np.pi * ejecta_radius ** 2 * beta * speed_of_light rad_denom = (1 / 2) - (1 / 3.141592654) * np.arctan((comoving_time - t0_comoving) / tsigma_comoving) comoving_radiative_luminosity = (4 * 10 ** 49 * (mej / (2 * 10 ** 33) * 10 ** 2) * rad_denom ** 1.3) tau_temp = kappa * (mej / comoving_volume) * (ejecta_radius / gamma) if tau_temp <= 1: comoving_emitted_luminosity = (internal_energy * speed_of_light) / (ejecta_radius / gamma) comoving_temp_temperature = (internal_energy / (radiation_constant * comoving_volume)) ** (1./4.) else: comoving_emitted_luminosity = (internal_energy * speed_of_light) / (tau_temp * ejecta_radius / gamma) comoving_temp_temperature = (internal_energy / (radiation_constant * comoving_volume * tau_temp)) ** (1./4.) emitted_luminosity = comoving_emitted_luminosity * doppler_factor_temp ** 2 vej = ((1 / gamma) ** 2 + 1) ** 0.5 * speed_of_light if use_gamma_ray_opacity: kappa_gamma = kwargs["kappa_gamma"] prefactor = 3 * kappa_gamma * mej / (4 * np.pi * vej**2) thermalisation_efficiency = 1 - np.exp(-prefactor * time[i] ** -2) else: thermalisation_efficiency = kwargs["thermalisation_efficiency"] drdt = (beta * speed_of_light) / (1 - beta) dswept_mass_dt = 4 * np.pi * ejecta_radius ** 2 * n_ism * proton_mass * drdt dedt = thermalisation_efficiency * mag_lum[ i] + doppler_factor_temp ** 2 * comoving_radiative_luminosity - doppler_factor_temp ** 2 * comoving_emitted_luminosity comoving_dinternal_energydt = thermalisation_efficiency * doppler_factor_temp ** (-2) * mag_lum[ i] + comoving_radiative_luminosity - comoving_emitted_luminosity - comoving_pressure * comoving_dvdt dcomoving_volume_dt = comoving_dvdt * doppler_factor_temp dinternal_energy_dt = comoving_dinternal_energydt * doppler_factor_temp dgamma_dt = (dedt - gamma * doppler_factor_temp * comoving_dinternal_energydt - ( gamma ** 2 - 1) * speed_of_light ** 2 * dswept_mass_dt) / ( mej * speed_of_light ** 2 + internal_energy + 2 * gamma * swept_mass * speed_of_light ** 2) lorentz_factor.append(gamma) lbol_ejecta.append(comoving_emitted_luminosity) lbol_rest.append(emitted_luminosity) comoving_temperature.append(comoving_temp_temperature) radius.append(ejecta_radius) tau.append(tau_temp) doppler_factor.append(doppler_factor_temp) teff.append(thermalisation_efficiency) lorentz_factor = np.array(lorentz_factor) v0 = ((1/lorentz_factor)**2 + 1)**0.5 * speed_of_light bolometric_luminosity = np.array(lbol_rest) radius = np.array(radius) if pair_cascade_switch: tlife_t = (0.6/(1 - ejecta_albedo))*(pair_cascade_fraction/0.1)**0.5 * (mag_lum/1.0e45)**0.5 \ * (v0/(0.3*speed_of_light))**(0.5) * (time/86400)**(-0.5) bolometric_luminosity = bolometric_luminosity / (1.0 + tlife_t) comoving_temperature = (bolometric_luminosity / (4.0 * np.pi * np.array(radius) ** (2.0) * sigma_sb)) ** (0.25) dynamics_output = namedtuple('dynamics_output', ['lorentz_factor', 'bolometric_luminosity', 'comoving_temperature', 'radius', 'doppler_factor', 'tau', 'time', 'kinetic_energy', 'erad_total', 'thermalisation_efficiency']) dynamics_output.lorentz_factor = lorentz_factor dynamics_output.bolometric_luminosity = bolometric_luminosity dynamics_output.comoving_temperature = np.array(comoving_temperature) dynamics_output.radius = radius dynamics_output.doppler_factor = np.array(doppler_factor) dynamics_output.tau = tau dynamics_output.time = time dynamics_output.kinetic_energy = (lorentz_factor - 1)*mej*speed_of_light**2 dynamics_output.erad_total = np.trapz(bolometric_luminosity, x=time) dynamics_output.thermalisation_efficiency = teff return dynamics_output def _comoving_blackbody_to_flux_density(dl, frequency, radius, temperature, doppler_factor): """ :param dl: luminosity distance in cm :param frequency: frequency to calculate in Hz - Must be same length as time array or a single number :param radius: ejecta radius in cm :param temperature: comoving temperature in K :param doppler_factor: doppler_factor :return: flux_density """ ## adding units back in to ensure dimensions are correct frequency = frequency * uu.Hz radius = radius * uu.cm dl = dl * uu.cm temperature = temperature * uu.K planck = cc.h.cgs speed_of_light = cc.c.cgs boltzmann_constant = cc.k_B.cgs num = 2 * np.pi * planck * frequency ** 3 * radius ** 2 denom = dl ** 2 * speed_of_light ** 2 * doppler_factor ** 2 frac = 1. / (np.exp((planck * frequency) / (boltzmann_constant * temperature * doppler_factor)) - 1) flux_density = num / denom * frac return flux_density def _comoving_blackbody_to_luminosity(frequency, radius, temperature, doppler_factor): """ :param frequency: frequency to calculate in Hz - Must be same length as time array or a single number :param radius: ejecta radius in cm :param temperature: comoving temperature in K :param doppler_factor: doppler_factor :return: luminosity """ ## adding units back in to ensure dimensions are correct frequency = frequency * uu.Hz radius = radius * uu.cm temperature = temperature * uu.K planck = cc.h.cgs speed_of_light = cc.c.cgs boltzmann_constant = cc.k_B.cgs num = 8 * np.pi ** 2 * planck * frequency ** 4 * radius ** 2 denom = speed_of_light ** 2 * doppler_factor ** 2 frac = 1. / (np.exp((planck * frequency) / (boltzmann_constant * temperature * doppler_factor)) - 1) luminosity = num / denom * frac return luminosity @citation_wrapper('https://ui.adsabs.harvard.edu/abs/2013ApJ...776L..40Y/abstract') def basic_mergernova(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, p0, logbp, mass_ns, theta_pb, thermalisation_efficiency, **kwargs): """ :param time: time in observer frame in days :param redshift: redshift :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param p0: initial spin period in seconds :param bp: polar magnetic field strength in Gauss :param mass_ns: mass of neutron star in solar masses :param theta_pb: angle between spin and magnetic field axes :param thermalisation_efficiency: magnetar thermalisation efficiency :param kwargs: Additional parameters :param pair_cascade_switch: whether to account for pair cascade losses, default is False :param output_format: whether to output flux density or AB magnitude :param frequency: (frequency to calculate - Must be same length as time array or a single number) :return: flux density or AB magnitude """ pair_cascade_switch = kwargs.get('pair_cascade_switch', False) frequency = kwargs['frequency'] time_temp = np.geomspace(1e-4, 1e8, 1000, endpoint=True) dl = cosmo.luminosity_distance(redshift).cgs.value bp = 10**logbp magnetar_luminosity = basic_magnetar(time=time_temp, p0=p0, bp=bp, mass_ns=mass_ns, theta_pb=theta_pb) output = _ejecta_dynamics_and_interaction(time=time_temp, mej=mej, beta=beta, ejecta_radius=ejecta_radius, kappa=kappa, n_ism=n_ism, magnetar_luminosity=magnetar_luminosity, thermalisation_efficiency=thermalisation_efficiency, pair_cascade_switch=pair_cascade_switch, use_gamma_ray_opacity=False, **kwargs) temp_func = interp1d(time_temp, y=output.comoving_temperature) rad_func = interp1d(time_temp, y=output.radius) d_func = interp1d(time_temp, y=output.doppler_factor) # convert to source frame time and frequency time = time * day_to_s frequency, time = calc_kcorrected_properties(frequency=frequency, redshift=redshift, time=time) temp = temp_func(time) rad = rad_func(time) df = d_func(time) flux_density = _comoving_blackbody_to_flux_density(dl=dl, frequency=frequency, radius=rad, temperature=temp, doppler_factor=df) if kwargs['output_format'] == 'flux_density': return flux_density.to(uu.mJy).value elif kwargs['output_format'] == 'magnitude': return flux_density.to(uu.ABmag).value @citation_wrapper('Sarin et al. in prep.') def general_mergernova(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, thermalisation_efficiency, **kwargs): """ :param time: time in observer frame in days :param redshift: redshift :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param l0: initial magnetar X-ray luminosity :param tau_sd: magnetar spin down damping timescale :param nn: braking index :param thermalisation_efficiency: magnetar thermalisation efficiency :param kwargs: Additional parameters :param pair_cascade_switch: whether to account for pair cascade losses, default is True :param ejecta albedo: ejecta albedo; default is 0.5 :param pair_cascade_fraction: fraction of magnetar luminosity lost to pair cascades; default is 0.05 :param output_format: whether to output flux density or AB magnitude :param frequency: (frequency to calculate - Must be same length as time array or a single number) :return: flux density or AB magnitude """ frequency = kwargs['frequency'] pair_cascade_switch = kwargs.get('pair_cascade_switch', True) time_temp = np.geomspace(1e-4, 1e8, 1000, endpoint=True) dl = cosmo.luminosity_distance(redshift).cgs.value magnetar_luminosity = magnetar_only(time=time_temp, l0=l0, tau=tau_sd, nn=nn) output = _ejecta_dynamics_and_interaction(time=time_temp, mej=mej, beta=beta, ejecta_radius=ejecta_radius, kappa=kappa, n_ism=n_ism, magnetar_luminosity=magnetar_luminosity, thermalisation_efficiency=thermalisation_efficiency, pair_cascade_switch=pair_cascade_switch, use_gamma_ray_opacity=False, **kwargs) temp_func = interp1d(time_temp, y=output.comoving_temperature) rad_func = interp1d(time_temp, y=output.radius) d_func = interp1d(time_temp, y=output.doppler_factor) # convert to source frame time and frequency time = time * day_to_s frequency, time = calc_kcorrected_properties(frequency=frequency, redshift=redshift, time=time) temp = temp_func(time) rad = rad_func(time) df = d_func(time) flux_density = _comoving_blackbody_to_flux_density(dl=dl, frequency=frequency, radius=rad, temperature=temp, doppler_factor=df) if kwargs['output_format'] == 'flux_density': return flux_density.to(uu.mJy).value elif kwargs['output_format'] == 'magnitude': return flux_density.to(uu.ABmag).value @citation_wrapper('Sarin et al. in prep.') def general_mergernova_thermalisation(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, kappa_gamma, **kwargs): """ :param time: time in observer frame in days :param redshift: redshift :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param l0: initial magnetar X-ray luminosity :param tau_sd: magnetar spin down damping timescale :param nn: braking index :param kappa_gamma: gamma-ray opacity used to calculate magnetar thermalisation efficiency :param kwargs: Additional parameters :param pair_cascade_switch: whether to account for pair cascade losses, default is True :param ejecta albedo: ejecta albedo; default is 0.5 :param pair_cascade_fraction: fraction of magnetar luminosity lost to pair cascades; default is 0.05 :param output_format: whether to output flux density or AB magnitude :param frequency: (frequency to calculate - Must be same length as time array or a single number) :return: flux density or AB magnitude """ frequency = kwargs['frequency'] pair_cascade_switch = kwargs.get('pair_cascade_switch', True) time_temp = np.geomspace(1e-4, 1e8, 1000, endpoint=True) dl = cosmo.luminosity_distance(redshift).cgs.value magnetar_luminosity = magnetar_only(time=time_temp, l0=l0, tau=tau_sd, nn=nn) output = _ejecta_dynamics_and_interaction(time=time_temp, mej=mej, beta=beta, ejecta_radius=ejecta_radius, kappa=kappa, n_ism=n_ism, magnetar_luminosity=magnetar_luminosity, kappa_gamma=kappa_gamma, pair_cascade_switch=pair_cascade_switch, use_gamma_ray_opacity=True, **kwargs) temp_func = interp1d(time_temp, y=output.comoving_temperature) rad_func = interp1d(time_temp, y=output.radius) d_func = interp1d(time_temp, y=output.doppler_factor) # convert to source frame time and frequency time = time * day_to_s frequency, time = calc_kcorrected_properties(frequency=frequency, redshift=redshift, time=time) temp = temp_func(time) rad = rad_func(time) df = d_func(time) flux_density = _comoving_blackbody_to_flux_density(dl=dl, frequency=frequency, radius=rad, temperature=temp, doppler_factor=df) if kwargs['output_format'] == 'flux_density': return flux_density.to(uu.mJy).value elif kwargs['output_format'] == 'magnitude': return flux_density.to(uu.ABmag).value @citation_wrapper('Sarin et al. in prep.') def general_mergernova_evolution(time, redshift, mej, beta, ejecta_radius, kappa, n_ism, logbint, logbext, p0, chi0, radius, logmoi, kappa_gamma, **kwargs): """ :param time: time in observer frame in days :param redshift: redshift :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param logbint: log10 internal magnetic field in G :param logbext: log10 external magnetic field in G :param p0: spin period in s :param chi0: initial inclination angle :param radius: radius of NS in KM :param logmoi: log10 moment of inertia of NS :param kappa_gamma: gamma-ray opacity used to calculate magnetar thermalisation efficiency :param kwargs: Additional parameters :param pair_cascade_switch: whether to account for pair cascade losses, default is True :param ejecta albedo: ejecta albedo; default is 0.5 :param pair_cascade_fraction: fraction of magnetar luminosity lost to pair cascades; default is 0.05 :param output_format: whether to output flux density or AB magnitude :param frequency: (frequency to calculate - Must be same length as time array or a single number) :return: flux density or AB magnitude """ frequency = kwargs['frequency'] pair_cascade_switch = kwargs.get('pair_cascade_switch', True) time_temp = np.geomspace(1e-4, 1e8, 1000, endpoint=True) dl = cosmo.luminosity_distance(redshift).cgs.value bint = 10 ** logbint bext = 10 ** logbext radius = radius * km_cgs moi = 10 ** logmoi output = _evolving_gw_and_em_magnetar(time=time_temp, bint=bint, bext=bext, p0=p0, chi0=chi0, radius=radius, moi=moi) magnetar_luminosity = output.Edot_d output = _ejecta_dynamics_and_interaction(time=time_temp, mej=mej, beta=beta, ejecta_radius=ejecta_radius, kappa=kappa, n_ism=n_ism, magnetar_luminosity=magnetar_luminosity, kappa_gamma=kappa_gamma, pair_cascade_switch=pair_cascade_switch, use_gamma_ray_opacity=True, **kwargs) temp_func = interp1d(time_temp, y=output.comoving_temperature) rad_func = interp1d(time_temp, y=output.radius) d_func = interp1d(time_temp, y=output.doppler_factor) # convert to source frame time and frequency time = time * day_to_s frequency, time = calc_kcorrected_properties(frequency=frequency, redshift=redshift, time=time) temp = temp_func(time) rad = rad_func(time) df = d_func(time) flux_density = _comoving_blackbody_to_flux_density(dl=dl, frequency=frequency, radius=rad, temperature=temp, doppler_factor=df) if kwargs['output_format'] == 'flux_density': return flux_density.to(uu.mJy).value elif kwargs['output_format'] == 'magnitude': return flux_density.to(uu.ABmag).value def _trapped_magnetar_lum(time, mej, beta, ejecta_radius, kappa, n_ism, l0, tau_sd, nn, thermalisation_efficiency, **kwargs): """ :param time: time in source frame :param mej: ejecta mass in solar units :param beta: initial ejecta velocity :param ejecta_radius: initial ejecta radius :param kappa: opacity :param n_ism: ism number density :param l0: initial magnetar X-ray luminosity :param tau_sd: magnetar spin down damping timescale :param nn: braking index :param thermalisation_efficiency: magnetar thermalisation efficiency :param kwargs: 'output_format' - whether to output flux density or AB magnitude :param kwargs: 'frequency' in Hertz to evaluate the mergernova emission - use a typical X-ray frequency :return: luminosity """ time_temp = np.geomspace(1e-4, 1e8, 1000, endpoint=True) magnetar_luminosity = magnetar_only(time=time_temp, l0=l0, tau=tau_sd, nn=nn) output = _ejecta_dynamics_and_interaction(time=time_temp, mej=mej, beta=beta, ejecta_radius=ejecta_radius, kappa=kappa, n_ism=n_ism, magnetar_luminosity=magnetar_luminosity, thermalisation_efficiency=thermalisation_efficiency, pair_cascade_switch=False, use_gamma_ray_opacity=False) temp_func = interp1d(time_temp, y=output.comoving_temperature) rad_func = interp1d(time_temp, y=output.radius) d_func = interp1d(time_temp, y=output.doppler_factor) tau_func = interp1d(time_temp, y=output.tau) temp = temp_func(time) rad = rad_func(time) df = d_func(time) optical_depth = tau_func(time) frequency = kwargs['frequency'] trapped_ejecta_lum = _comoving_blackbody_to_luminosity(frequency=frequency, radius=rad, temperature=temp, doppler_factor=df) lsd = magnetar_only(time, l0=l0, tau=tau_sd, nn=nn) lum =
np.exp(-optical_depth)
numpy.exp
import enum import struct import numpy as np import logging logging = logging.getLogger(__name__) class ViolationOrigin(enum.Enum): # If the violation is caused by local vector outside the safe zone. SafeZone = 0 # If the violation is caused by local vector outside the domain. Domain = 1 # Faulty safe zone violations indicates the node detected violation that indicates a problem with the local constraints. # In that case, the coordinator should perform full sync to update the reference point, thresholds, and local constraints. FaultySafeZone = 2 class MessageType(enum.Enum): Violation = 0 # violation_origin (FaultySafe, Domain, or FaultySafeZone), local_vector GetLocalVector = 1 # the last constraint version that the coordinator sent to this node LocalVectorInfo = 2 # constraint version of the node, local_vector Sync = 3 # Common: global_vector, node_slack, l_thresh, u_thresh. AutoMon: global_vector, node_slack, l_thresh, u_thresh, neighborhood_size, dc_type, dc_argument, g_func_grad_at_x0, h_func_grad_at_x0 LazySync = 4 # node_slack DataUpdate = 5 # Single data point # Message header format: (message_type:unsigned long, node_idx:long, payload_len:unsigned long) messages_header_format = struct.Struct('! L l L') # This function is called only by the coordinator which can get multiple messages at once (violations and local vectors) during simulation. def message_to_message_list(messages: bytes): message_list = [] unique_message_type = None message = messages while len(message) > 0: message_type, node_idx, payload_len = parse_message_header(message) payload = message[messages_header_format.size: messages_header_format.size + payload_len] # All messages must be of the same type if unique_message_type is None: unique_message_type = message_type # Initialize unique_message_type with the first message in the list else: assert message_type == unique_message_type message_list.append((node_idx, payload)) message = message[messages_header_format.size + payload_len:] return unique_message_type, message_list def prepare_message_header(message_type: MessageType, node_idx: int, payload_len: int) -> bytes: # Do not print log message for DataUpdate messages as it floods the log if message_type != MessageType.DataUpdate: logging.debug("Sending message type: " + str(message_type) + " node index: " + str(node_idx) + " payload_len: " + str(payload_len)) header = (message_type.value, node_idx, payload_len) return messages_header_format.pack(*header) def parse_message_header(message: bytes): message_type, node_idx, payload_len = messages_header_format.unpack(message[:messages_header_format.size]) message_type = MessageType(message_type) # Do not print log message for DataUpdate messages as it floods the log if message_type != MessageType.DataUpdate: logging.debug("Received message type: " + str(message_type) + " node index: " + str(node_idx) + " payload_len: " + str(payload_len)) return message_type, node_idx, payload_len def prepare_message_violation(node_idx: int, constraint_version: int, violation_origin: ViolationOrigin, local_vector: np.ndarray) -> bytes: payload = (constraint_version, violation_origin.value, *local_vector) messages_payload_format = struct.Struct('! L L %dd' % local_vector.shape[0]) message = prepare_message_header(MessageType.Violation, node_idx, messages_payload_format.size) + messages_payload_format.pack(*payload) return message def prepare_message_get_local_vector(node_idx: int, constraint_version: int) -> bytes: payload = (constraint_version,) messages_payload_format = struct.Struct('! L') message = prepare_message_header(MessageType.GetLocalVector, node_idx, messages_payload_format.size) + messages_payload_format.pack(*payload) return message def prepare_message_local_vector_info(node_idx: int, constraint_version: int, local_vector: np.ndarray) -> bytes: payload = (constraint_version, *local_vector) messages_payload_format = struct.Struct('! L %dd' % local_vector.shape[0]) message = prepare_message_header(MessageType.LocalVectorInfo, node_idx, messages_payload_format.size) + messages_payload_format.pack(*payload) return message def prepare_message_sync(node_idx: int, constraint_version: int, global_vector: np.ndarray, node_slack: np.ndarray, l_thresh: float, u_thresh: float) -> bytes: x_len = global_vector.shape[0] payload = (constraint_version, *global_vector, *node_slack, l_thresh, u_thresh) messages_payload_format = struct.Struct('! L %dd %dd d d' % (x_len, x_len)) message = prepare_message_header(MessageType.Sync, node_idx, messages_payload_format.size) + messages_payload_format.pack(*payload) return message def prepare_message_lazy_sync(node_idx: int, constraint_version: int, node_slack: np.ndarray) -> bytes: payload = (constraint_version, *node_slack) messages_payload_format = struct.Struct('! L %dd' % node_slack.shape[0]) message = prepare_message_header(MessageType.LazySync, node_idx, messages_payload_format.size) + messages_payload_format.pack(*payload) return message def prepare_message_data_update(node_idx: int, data_point: np.ndarray) -> bytes: payload = (*data_point,) messages_payload_format = struct.Struct('! %dd' % data_point.shape[0]) message = prepare_message_header(MessageType.DataUpdate, node_idx, messages_payload_format.size) + messages_payload_format.pack(*payload) return message def parse_message_violation(payload: bytes, d: int): messages_payload_format = struct.Struct('! L L %dd' % d) unpacked_payload = messages_payload_format.unpack(payload) constraint_version = unpacked_payload[0] violation_origin = ViolationOrigin(unpacked_payload[1]) local_vector = np.array(unpacked_payload[2:]) return constraint_version, violation_origin, local_vector def parse_message_get_local_vector(payload: bytes): messages_payload_format = struct.Struct('! L') unpacked_payload = messages_payload_format.unpack(payload) constraint_version = unpacked_payload[0] return constraint_version def parse_message_local_vector_info(payload: bytes, d: int): messages_payload_format = struct.Struct('! L %dd' % d) unpacked_payload = messages_payload_format.unpack(payload) constraint_version = unpacked_payload[0] local_vector = np.array(unpacked_payload[1:]) return constraint_version, local_vector def parse_message_sync(payload: bytes, d: int): messages_payload_format = struct.Struct('! L %dd %dd d d' % (d, d)) unpacked_payload = messages_payload_format.unpack(payload) constraint_version = unpacked_payload[0] global_vector = np.array(unpacked_payload[1:d + 1]) node_slack = np.array(unpacked_payload[d + 1:2 * d + 1]) l_thresh, u_thresh = unpacked_payload[-2], unpacked_payload[-1] return constraint_version, global_vector, node_slack, l_thresh, u_thresh def parse_message_lazy_sync(payload: bytes, d: int): messages_payload_format = struct.Struct('! L %dd' % d) unpacked_payload = messages_payload_format.unpack(payload) constraint_version = unpacked_payload[0] node_slack = np.array(unpacked_payload[1:]) return constraint_version, node_slack def parse_message_data_update(payload: bytes, data_point_len: int): messages_payload_format = struct.Struct('! %dd' % data_point_len) unpacked_payload = messages_payload_format.unpack(payload) data_point = np.array(unpacked_payload) return data_point if __name__ == "__main__": input_vector = np.random.randn(4) node_slack_org = np.random.randn(4) # MessageType.Violation message = prepare_message_violation(7, 35, ViolationOrigin.Domain, input_vector) message_type, node_idx, _ = parse_message_header(message) payload = message[messages_header_format.size:] assert node_idx == 7 and message_type == MessageType.Violation constraint_version, violation_origin, local_vector = parse_message_violation(payload, input_vector.shape[0]) assert constraint_version == 35 assert np.allclose(input_vector, local_vector) assert violation_origin == ViolationOrigin.Domain # MessageType.GetLocalVector constraint_version_org = 10 message = prepare_message_get_local_vector(5, constraint_version_org) message_type, node_idx, _ = parse_message_header(message) payload = message[messages_header_format.size:] assert node_idx == 5 and message_type == MessageType.GetLocalVector constraint_version = parse_message_get_local_vector(payload) assert constraint_version == constraint_version_org # MessageType.LocalVectorInfo constraint_version_org = 20 message = prepare_message_local_vector_info(1, constraint_version_org, input_vector) message_type, node_idx, _ = parse_message_header(message) payload = message[messages_header_format.size:] assert node_idx == 1 and message_type == MessageType.LocalVectorInfo constraint_version, local_vector = parse_message_local_vector_info(payload, input_vector.shape[0]) assert np.allclose(input_vector, local_vector) assert constraint_version == constraint_version_org # MessageType.Sync l_thresh_org, u_thresh_org = 6.47, 18.46782 message = prepare_message_sync(9, 106, input_vector, node_slack_org, l_thresh_org, u_thresh_org) message_type, node_idx, _ = parse_message_header(message) payload = message[messages_header_format.size:] assert node_idx == 9 and message_type == MessageType.Sync constraint_version, global_vector, node_slack, l_thresh, u_thresh = parse_message_sync(payload, input_vector.shape[0]) assert constraint_version == 106 assert np.allclose(input_vector, global_vector) assert np.allclose(node_slack_org, node_slack) assert np.allclose(l_thresh_org, l_thresh) assert np.allclose(u_thresh_org, u_thresh) # MessageType.LazySync message = prepare_message_lazy_sync(3, 208, node_slack_org) message_type, node_idx, _ = parse_message_header(message) payload = message[messages_header_format.size:] assert node_idx == 3 and message_type == MessageType.LazySync constraint_version, node_slack = parse_message_lazy_sync(payload, input_vector.shape[0]) assert constraint_version == 208 assert np.allclose(node_slack_org, node_slack) # MessageType.DataUpdate data_point_org = np.random.randn(5) message = prepare_message_data_update(2, data_point_org) message_type, node_idx, _ = parse_message_header(message) payload = message[messages_header_format.size:] assert node_idx == 2 and message_type == MessageType.DataUpdate data_point = parse_message_data_update(payload, data_point_org.shape[0]) assert
np.allclose(data_point_org, data_point)
numpy.allclose
# =============================================================================== # Copyright 2016 dgketchum # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance # with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # =================================IMPORTS======================================= import os from numpy import linspace, array, insert, ones, divide from pandas import DataFrame from ogr import Open from datetime import datetime from recharge.time_series_manager import get_etrm_time_series from recharge.etrm_processes import Processes # Set start datetime object SIMULATION_PERIOD = datetime(2000, 1, 1), datetime(2013, 12, 31) FACTORS = ['Temperature', 'Precipitation', 'Reference ET', 'Total Available Water (TAW)', 'Vegetation Density (NDVI)', 'Soil Ksat'] def round_to_value(number, roundto): return round(number / roundto) * roundto def get_sensitivity_analysis(extracts, points, statics, initials, pickle=None): temps = range(-5, 6) all_pct = [x * 0.1 for x in range(5, 16)] ndvi_range = linspace(0.9, 1.7, 11) ndvi_range = array([round_to_value(x, 0.05) for x in ndvi_range]) var_arrs = [] y = 0 for x in range(0, 6): ones_ = ones((5, 11), dtype=float) zeros = [x * 0.0 for x in range(5, 16)] norm_ndvi = array([1.25 for x in zeros]) if y == 0: arr = insert(ones_, y, temps, axis=0) arr = insert(arr, 4, norm_ndvi, axis=0) arr = arr[0:6] var_arrs.append(arr) arr = [] elif y == 4: arr = insert(ones_, 0, zeros, axis=0) arr = insert(arr, y, ndvi_range, axis=0) arr = arr[0:6] var_arrs.append(arr) print('shape arr: {}'.format(arr.shape)) arr = [] elif y == 5: arr = insert(ones_, 0, zeros, axis=0) arr = insert(arr, 4, norm_ndvi, axis=0) arr = arr[0:5] arr = insert(arr, y, all_pct, axis=0) var_arrs.append(arr) arr = [] else: arr = insert(ones_, 0, zeros, axis=0) arr = insert(arr, y, all_pct, axis=0) arr =
insert(arr, 4, norm_ndvi, axis=0)
numpy.insert
import os import warnings import re import datetime import json import random from collections import Counter import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import scipy.stats as stats from utils import import_data, save_figure from ipm_paper_part_1 import details_temporal_evolution, plot_one_group, calculate_confidence_interval warnings.filterwarnings("ignore") def import_crowdtangle_group_data(): posts_wi_date_df = import_data(folder="crowdtangle_group", file_name="posts_self_declared_wi_date.csv") print('\nThere are {} Facebook pages with the last strike date visible on the screenshot.'.\ format(posts_wi_date_df.account_id.nunique())) posts_wo_date_df = import_data(folder="crowdtangle_group", file_name="posts_self_declared_wo_date.csv") list_wo_name = [ 'Artists For A Free World', '<NAME>', '<NAME>', '<NAME>', 'New Independence Network', 'Pruden POD & Post', 'PR Conservative', 'Org of Conservative Trump Americans', 'Con Ciencia Indigena', 'Republican Party of Lafayette County', 'The Daily Perspective Podcast', 'Freedom Memes', 'White Dragon Society', 'Robertson Family Values' ] posts_wo_date_df = posts_wo_date_df[~posts_wo_date_df['account_name'].isin(list_wo_name)] print('There are {} Facebook pages without the last strike date visible on the screenshot.'.\ format(posts_wo_date_df.account_id.nunique())) posts_df = pd.concat([posts_wi_date_df, posts_wo_date_df]) posts_df['date'] = pd.to_datetime(posts_df['date']) return posts_df def save_figure_4(posts_df, pages_df): account_name = '<NAME>' account_id = posts_df[posts_df['account_name']==account_name].account_id.unique()[0] reduced_distribution_date = pages_df[pages_df['page_name'] == account_name]['date'].values[0] plt.figure(figsize=(10, 4)) ax = plt.subplot() plt.title("Engagement metrics for one 'reduced distribution' page ('" + account_name + "')", size="x-large") plot_one_group(ax, posts_df, account_id, fake_news_dates=[]) xticks = [np.datetime64('2019-01-01'), np.datetime64('2019-03-01'), np.datetime64('2019-05-01'), np.datetime64('2019-07-01'), np.datetime64('2019-09-01'), np.datetime64('2019-11-01'), np.datetime64('2020-01-01'), np.datetime64('2020-03-01'), np.datetime64('2020-07-01'), np.datetime64('2020-09-01'), np.datetime64('2020-11-01'), np.datetime64(reduced_distribution_date) ] plt.xticks(xticks, rotation=30, ha='right') plt.gca().get_xticklabels()[-1].set_color('red') plt.axvline(x=np.datetime64(reduced_distribution_date), color='C3', linestyle='--', linewidth=2) plt.legend() plt.tight_layout() save_figure('figure_4', folder='ip&m', dpi=100) def save_supplementary_figure_2(posts_df, pages_df): accounts_to_plot = [ '<NAME>', 'Normals Are Pissed', 'Botanica Health', '<NAME>', 'The PROOF Blog', "The Rational Capitalist", '<NAME>', 'POVnow', "Tell The USA to DUMP Trump", 'Florida Boys TV' ] fig = plt.figure(figsize=(10, 12)) for idx in range(len(accounts_to_plot)): ax = plt.subplot(5, 2, idx + 1) plt.title(accounts_to_plot[idx]) account_id = posts_df[posts_df['account_name']==accounts_to_plot[idx]].account_id.unique()[0] reduced_distribution_date = pages_df[pages_df['page_name'] == accounts_to_plot[idx]]['date'].values[0] plot_one_group(ax, posts_df, account_id, fake_news_dates=[]) xticks = [np.datetime64('2019-01-01'), np.datetime64('2019-05-01'), np.datetime64('2019-09-01'), np.datetime64('2020-01-01'), np.datetime64('2020-05-01'), np.datetime64('2020-09-01'), np.datetime64(reduced_distribution_date)] plt.xticks(xticks, rotation=30, ha='right') plt.gca().get_xticklabels()[-1].set_color('red') plt.axvline(x=np.datetime64(reduced_distribution_date), color='C3', linestyle='--', linewidth=2) if idx == 0: plt.legend() plt.tight_layout() save_figure('supplementary_figure_3', folder='ip&m', dpi=100) def compute_periods_average(posts_df, pages_df, period_length=7): before_date = { 'reaction': [], 'share': [], 'comment': [], 'post_nb': [] } after_date = { 'reaction': [], 'share': [], 'comment': [], 'post_nb': [] } for account_id in posts_df['account_id'].unique(): account_name = posts_df[posts_df['account_id']==account_id].account_name.unique()[0] reduced_distribution_date = pages_df[pages_df['page_name'] == account_name]['date'].values[0] reduced_distribution_date = datetime.datetime.strptime(str(reduced_distribution_date)[:10], '%Y-%m-%d') posts_df_group = posts_df[posts_df["account_id"] == account_id] posts_df_group_before = posts_df_group[ (posts_df_group['date'] > reduced_distribution_date - datetime.timedelta(days=period_length)) & (posts_df_group['date'] < reduced_distribution_date) ] posts_df_group_after = posts_df_group[ (posts_df_group['date'] > reduced_distribution_date) & (posts_df_group['date'] < reduced_distribution_date + datetime.timedelta(days=period_length)) ] if (len(posts_df_group_before) > 0) & (len(posts_df_group_after) > 0): before_date['reaction'].append(np.mean(posts_df_group_before['reaction'])) after_date['reaction'].append(np.mean(posts_df_group_after['reaction'])) before_date['share'].append(np.mean(posts_df_group_before['share'])) after_date['share'].append(np.mean(posts_df_group_after['share'])) before_date['comment'].append(np.mean(posts_df_group_before['comment'])) after_date['comment'].append(np.mean(posts_df_group_after['comment'])) before_date['post_nb'].append(len(posts_df_group_before)/period_length) after_date['post_nb'].append(len(posts_df_group_after)/period_length) return before_date, after_date def print_before_after_statistics(before_date, after_date): w, p = stats.wilcoxon(before_date['reaction'], after_date['reaction']) print('\nWilcoxon test between the reactions: w =', w, ', p =', p) w, p = stats.wilcoxon(before_date['share'], after_date['share']) print('\nWilcoxon test between the shares: w =', w, ', p =', p) w, p = stats.wilcoxon(before_date['comment'], after_date['comment']) print('\nWilcoxon test between the comments: w =', w, ', p =', p) w, p = stats.wilcoxon(before_date['post_nb'], after_date['post_nb']) print('\nWilcoxon test between the number of posts: w =', w, ', p =', p) print(np.mean(before_date['post_nb']), np.mean(after_date['post_nb'])) def details_bar_plot(ax): ax.tick_params(axis='x', which='both', length=0) ax.grid(axis="y", zorder=0) plt.locator_params(axis='y', nbins=8) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['top'].set_visible(False) def plot_before_after_bars(before_date, after_date, period_length): fig = plt.figure(figsize=(10, 4)) gs = fig.add_gridspec(1, 4) ## ENGAGEMENT METRICS ax = fig.add_subplot(gs[0, 0:3]) width = .25 labels = ['Reactions', 'Shares', 'Comments'] x = np.arange(len(labels)) # Plot the bars plt.bar(x - width/2, [np.mean(before_date['reaction']), np.mean(before_date['share']), np.mean(before_date['comment'])], width, label="{} days before the reduced distribution start date".format(period_length), color='paleturquoise', edgecolor=[.2, .2, .2], zorder=3) plt.bar(x + width/2, [np.mean(after_date['reaction']), np.mean(after_date['share']), np.mean(after_date['comment'])], width, label="{} days after the reduced distribution start date".format(period_length), color='navajowhite', edgecolor=[.2, .2, .2], zorder=3) # Add the error bars idx = 0 for metric in ['reaction', 'share', 'comment']: low, high = calculate_confidence_interval(before_date[metric]) plt.errorbar(idx - width/2, np.mean(before_date[metric]), yerr=[[np.mean(before_date[metric]) - low], [high - np.mean(before_date[metric])]], color=[.2, .2, .2], zorder=4, linestyle='') low, high = calculate_confidence_interval(after_date[metric]) plt.errorbar(idx + width/2, np.mean(after_date[metric]), yerr=[[np.mean(after_date[metric]) - low], [high - np.mean(after_date[metric])]], color=[.2, .2, .2], zorder=4, linestyle='') idx += 1 # details plt.legend(framealpha=1) plt.title("Averages over {} 'reduced distribution' accounts"\ .format(len(before_date['reaction'])), loc='right', size="x-large") plt.xticks(x, labels, fontsize='large',) plt.xlim([-.5, 2.5]) details_bar_plot(ax) ## NUMBER OF POSTS ax = fig.add_subplot(gs[0, 3]) plt.bar(-width/2, np.mean(before_date['post_nb']), width, label="{} days before the reduced distribution start date".format(period_length), color='paleturquoise', edgecolor=[.2, .2, .2], zorder=3) plt.bar(width/2, np.mean(after_date['post_nb']), width, label="{} days after the reduced distribution start date".format(period_length), color='navajowhite', edgecolor=[.2, .2, .2], zorder=3) low, high = calculate_confidence_interval(before_date['post_nb']) plt.errorbar(-width/2, np.mean(before_date['post_nb']), yerr=[[np.mean(before_date['post_nb']) - low], [high - np.mean(before_date['post_nb'])]], color=[.2, .2, .2], zorder=4, linestyle='') low, high = calculate_confidence_interval(after_date['post_nb']) plt.errorbar(width/2, np.mean(after_date['post_nb']), yerr=[[np.mean(after_date['post_nb']) - low], [high - np.mean(after_date['post_nb'])]], color=[.2, .2, .2], zorder=4, linestyle='') plt.xticks([0], ['Number of daily posts'], fontsize='large',) plt.xlim([-.5, .5]) details_bar_plot(ax) plt.tight_layout() if period_length == 7: save_figure('figure_5', folder='ip&m', dpi=100) else: save_figure('supplementary_figure_4', folder='ip&m', dpi=100) def save_figure_5(posts_df, pages_df, period_length=7): before_date, after_date = compute_periods_average(posts_df, pages_df, period_length=period_length) print_before_after_statistics(before_date, after_date) plot_before_after_bars(before_date, after_date, period_length=period_length) def print_statistics_screenshot_posts(screenshot_df): print('\n\nOVERPERFORMING SCORE STATISTICS') print('The average score is {}.'.format(np.nanmean(screenshot_df['score'].values))) print('Only {} posts have a positive score.'.format(len(screenshot_df[screenshot_df['score'] > 0]))) w, p = stats.wilcoxon(screenshot_df['score'].values, alternative="less") print('Wilcoxon test of the overperfoming scores against zero: w =', w, ', p =', p) def save_all_groups_figures(posts_df, pages_df): group_index = 0 for account_id in posts_df['account_id'].unique(): if group_index % 10 == 0: plt.figure(figsize=(12, 14)) ax = plt.subplot(5, 2, group_index % 10 + 1) account_name = posts_df[posts_df['account_id']==account_id].account_name.unique()[0] plt.title(account_name, size="x-large") reduced_distribution_date = pages_df[pages_df['page_name'] == account_name]['date'].values[0] plot_one_group(ax, posts_df, account_id, fake_news_dates=[]) xticks = [np.datetime64('2019-01-01'),
np.datetime64('2019-05-01')
numpy.datetime64
# -*- coding: utf-8 -*- """ Created on Wed Apr 17 16:20:02 2019 @author: lmassoul032513 """ import pytest import pandas as pd import numpy as np from copy import deepcopy from sklearn.utils import check_random_state from aikit.datasets.datasets import load_dataset, DatasetEnum from aikit.enums import TypeOfProblem, TypeOfVariables, StepCategories from aikit.ml_machine.ml_machine import ( AutoMlConfig, JobConfig, RandomModelGenerator, AutoMlResultReader, MlJobManager, MlJobRunner, _create_all_combinations, random_list_generator, ) from aikit.ml_machine.model_graph import convert_graph_to_code from aikit.model_definition import sklearn_model_from_param from aikit.ml_machine.ml_machine_guider import AutoMlModelGuider from aikit.ml_machine.data_persister import FolderDataPersister from aikit.tools.graph_helper import get_terminal_nodes def loader(num_only=False): if num_only: np.random.seed(123) dfX = pd.DataFrame(np.random.randn(100, 10), columns=["COL_%d" % d for d in range(10)]) y = 1 * (np.random.randn(100) > 0) return dfX, y else: dfX, y, _, _, _ = load_dataset(DatasetEnum.titanic) return dfX, y def get_automl_config(num_only): dfX, y = loader(num_only) auto_ml_config = AutoMlConfig(dfX, y) auto_ml_config.guess_everything() return dfX, y, auto_ml_config def test_AutoMlConfig_raise_if_wrong_nb_oberservations(): dfX = pd.DataFrame({"a": [0, 1, 2, 3, 4, 5], "b": [0, 10, 20, 30, 40, 50]}) y = np.array([0, 0, 0, 1, 1, 1]) auto_ml_config = AutoMlConfig(dfX, y[0:3]) with pytest.raises(ValueError): auto_ml_config.guess_everything() # raise because y doesn't have the correct number of observations def test_AutoMlConfig_raise_multioutput(): dfX = pd.DataFrame({"a": [0, 1, 2, 3, 4, 5], "b": [0, 10, 20, 30, 40, 50]}) y = np.array([0, 0, 0, 1, 1, 1]) y2d =
np.concatenate((y[:, np.newaxis], y[:, np.newaxis]), axis=1)
numpy.concatenate
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 12 20:10:00 2020 @author: thorius """ import os import sys from queue import Queue import numpy as np import logging import pyaudio import time from tflite_runtime.interpreter import Interpreter import collections from scipy import signal class StreamControl(): def __init__(self, path_model = './model/E2E_1stage_v8/tflite_non_stream', name_model = 'non_stream.tflite', sample_rate = 16000, chunk_duration = 0.25, feed_duration = 1.0, channels = 1, threshold = 0.5, time_out = 8): self.logger = logging.getLogger() self.logger.setLevel(logging.INFO) argumentList = sys.argv self.path_model = path_model self.name_model = name_model self.sample_rate = sample_rate #chunk_duration -- time in second of a chunk if(len(argumentList) == 2): self.chunk_duration = float(sys.argv[1]) self.threshold = threshold elif(len(argumentList) == 3): self.chunk_duration = float(sys.argv[1]) self.threshold = float(sys.argv[2]) else: self.chunk_duration = chunk_duration self.threshold = threshold # times for ru # chanels of audio self.channels = channels #feed_duration -- time in second of the input to model self.feed_duration = feed_duration self.device_sample_rate = 44100 self.chunk_samples = int(self.device_sample_rate * self.chunk_duration) self.feed_samples = int(self.device_sample_rate * self.feed_duration) # Queue to communiate between the audio callback and main thread self.q = Queue() # Data buffer for the input wavform self.data = np.zeros(self.feed_samples, dtype='int16') with open(os.path.join(path_model, 'labels.txt'), 'r') as fd: labels_txt = fd.read() self.labels = labels_txt.split() assert float(self.feed_duration/self.chunk_duration) == float(self.feed_duration/self.chunk_duration) self.stream = True def run(self): # callback method def audio_callback(in_data, frame_count, time_info, status): data0 =
np.frombuffer(in_data, dtype='int16')
numpy.frombuffer
import sys,os import torch import numpy as np #sys.path.append(os.path.abspath(__file__).replace('evaluation/eval_ds_utils.py','')) #import config #from config import args #import constants def cmup_evaluation_act_wise(results,imgpaths,action_names): actions = [] action_results = [] for imgpath in imgpaths: actions.append(os.path.basename(imgpath).split('-')[0].split('_')[1]) for action_name in action_names: action_idx = np.where(np.array(actions)==action_name)[0] action_results.append('{:.2f}'.format(results[action_idx].mean())) return action_results def h36m_evaluation_act_wise(results,imgpaths,action_names): actions = [] action_results = [] for imgpath in imgpaths: actions.append(os.path.basename(imgpath).split('.jpg')[0].split('_')[1].split(' ')[0]) for action_name in action_names: action_idx = np.where(np.array(actions)==action_name)[0] action_results.append('{:.2f}'.format(results[action_idx].mean())) return action_results def pp_evaluation_cam_wise(results,imgpaths): cam_ids = [] cam_results = [] for imgpath in imgpaths: cam_ids.append(int(os.path.basename(imgpath).split('_')[1])) #22 is missing for camid in list(range(21))+list(range(22,31)): cam_idx = np.where(np.array(cam_ids)==camid)[0] cam_results.append('{:.2f}'.format(results[cam_idx].mean())) return cam_results def determ_worst_best(VIS_IDX,top_n=2): sellected_ids, sellected_errors = [], [] if VIS_IDX is not None: for ds_type in VIS_IDX: for error, idx in zip(VIS_IDX[ds_type]['error'], VIS_IDX[ds_type]['idx']): if torch.is_tensor(error): error, idx = error.cpu().numpy(), idx.cpu().numpy() worst_id = np.argsort(error)[-top_n:] sellected_ids.append(idx[worst_id]); sellected_errors.append(error[worst_id]) best_id = np.argsort(error)[:top_n] sellected_ids.append(idx[best_id]); sellected_errors.append(error[best_id]) if len(sellected_ids)>0 and len(sellected_errors)>0: sellected_ids = np.concatenate(sellected_ids).tolist() sellected_errors = np.concatenate(sellected_errors).tolist() else: sellected_ids, sellected_errors = [0], [0] return sellected_ids, sellected_errors def reorganize_vis_info(vis_ids, vis_errors, org_imgpath, new_imgpath): vis_ids_new, vis_errors_new = [], [] org_imgpath_dict = {} for vis_id, vis_error in zip(vis_ids, vis_errors): imgpath = org_imgpath[vis_id] if imgpath not in org_imgpath_dict: org_imgpath_dict[imgpath] = [] org_imgpath_dict[imgpath].append(vis_error) new_imgpath =
np.array(new_imgpath)
numpy.array
#!/usr/bin/env python """Carry out standard MBAR analysis on 1D REMC simulation output. The exchange variable is assumed to be temperature. """ import argparse import numpy as np from scipy import interpolate from origamipy import conditions from origamipy import biases from origamipy import files from origamipy import outputs from origamipy import decorrelate from origamipy import mbar_wrapper from origamipy import utility def main(): args = parse_args() system_file = files.JSONStructInpFile(args.system_filename) staple_lengths = utility.calc_staple_lengths(system_file) staple_types = utility.calc_num_staple_types(system_file) num_scaffold_domains = utility.calc_num_scaffold_domains(system_file) inp_filebase = f'{args.outs_dir}/{args.filebase}' fileformatter = construct_fileformatter() all_conditions = conditions.construct_remc_conditions( args.temps, args.staple_m, fileformatter, staple_lengths) sim_collections = [] for rep in range(args.reps): rep_sim_collections = outputs.create_sim_collections( inp_filebase, all_conditions, rep) sim_collections.append(rep_sim_collections) decor_outs = decorrelate.DecorrelatedOutputs( sim_collections, all_conditions=all_conditions, rep_conditions_equal=True) decor_outs.read_decors_from_files() mbarw = mbar_wrapper.MBARWrapper(decor_outs) mbarw.perform_mbar() # Calculate expectations and LFEs for simulations temperatures all_se_tags = decor_outs.all_series_tags if args.tags == None: se_tags = all_se_tags else: se_tags = args.tags out_filebase = f'{args.analysis_dir}/{args.filebase}' mbarw.calc_all_expectations(out_filebase, all_se_tags, all_conditions) lfes_filebase = f'{out_filebase}_lfes' mbarw.calc_all_1d_lfes(lfes_filebase, se_tags, all_conditions) # Estimate melting temperature guess_temp = estimate_halfway_temp( mbarw, args.tag, all_conditions, args.assembled_op) if args.guess_temp is not None: guess_temp = args.guess_temp print('Guess temperature: {:.3f} K'.format( np.around(guess_temp, decimals=3))) conds = conditions.SimConditions( {'temp': guess_temp, 'staple_m': args.staple_m, 'bias': biases.NoBias()}, fileformatter, staple_lengths) bias = biases.NoBias() melting_temp = est_melting_temp_and_barrier( mbarw, fileformatter, staple_lengths, conds, bias, guess_temp, args.staple_m) conds = conditions.SimConditions( {'temp': melting_temp, 'staple_m': args.staple_m, 'bias': biases.NoBias()}, fileformatter, staple_lengths) # Calculate expectations and LFEs for melting temperature exps_filebase = f'{out_filebase}-melting' lfes_filebase = f'{out_filebase}_lfes-melting' mbarw.calc_all_1d_lfes(lfes_filebase, se_tags, [conds]) mbarw.calc_all_expectations(exps_filebase, all_se_tags, [conds]) # Calculate expectations along OP slices mbarws = [] all_decor_outs = [] sampled_ops = [] for i in range(1, args.assembled_op + 1): sim_collections = [] for rep in range(args.reps): rep_sim_collections = outputs.create_sim_collections( inp_filebase, all_conditions, rep) sim_collections.append(rep_sim_collections) decor_outs = decorrelate.DecorrelatedOutputs( sim_collections, all_conditions=all_conditions, rep_conditions_equal=True) decor_outs.read_decors_from_files(data_only=True) filtered_count = decor_outs.filter_collections(args.tag, i) if filtered_count == 0: continue sampled_ops.append(i) all_decor_outs.append(decor_outs) mbarw = mbar_wrapper.MBARWrapper(decor_outs) mbarw.perform_mbar() mbarws.append(mbarw) all_tags = [] for i in range(1, staple_types + 1): all_tags.append(f'staples{i}') all_tags.append(f'staplestates{i}') for i in range(num_scaffold_domains): all_tags.append(f'domainstate{i}') aves, stds = calc_reduced_expectations( conds, mbarws, all_decor_outs, all_tags) aves = np.concatenate([[sampled_ops],
np.array(aves)
numpy.array
# Modules normally used import numpy as np import cv2 def CreateFrame(img, krad, color): # Frame (trick to avoid out-of-bounds access) height, width, depth = img.shape if color == "white": frm = np.ones((height + krad * 2, width + krad * 2, depth)) else: frm = np.zeros((height + krad * 2, width + krad * 2, depth)) frm[krad:-krad, krad:-krad] = img return frm def MedianFilter(img, size): radius = int(size / 2) # Effect Radius # Frame (trick to avoid out-of-bounds access) framed = CreateFrame(img, radius, "black") shape = img.shape height = shape[0] width = shape[1] fil = np.zeros(img.shape) #Apply Filter for i in range (0, height): for j in range (0, width): sub = framed[i:i+size, j:j+size] b = np.median(sub[:, :, 0]) g = np.median(sub[:, :, 1]) r = np.median(sub[:, :, 2]) fil[i, j] = (b, g, r) return fil def BilateralFilter(img, tex, sigma_s, sigma_r): r = int(np.ceil(3 * sigma_s)) # Image padding if img.ndim == 3: img_height = img.shape[0] img_width = img.shape[1] I = np.pad(img, ((r, r), (r, r), (0, 0)), 'symmetric').astype(np.float32) elif img.ndim == 2: img_height = img.shape[0] img_width = img.shape[1] I = np.pad(img, ((r, r), (r, r)), 'symmetric').astype(np.float32) # Check texture size and do padding if tex.ndim == 3: tex_height = tex.shape[0] tex_width = tex.shape[1] if tex_height != img_height or tex_width != img_width: print('The guidance image is not aligned with input image!') return img T = np.pad(tex, ((r, r), (r, r), (0, 0)), 'symmetric').astype(np.int32) elif tex.ndim == 2: tex_height = tex.shape[0] tex_width = tex.shape[1] if tex_height != img_height or tex_width != img_width: print('The guidance image is not aligned with input image!') return img T = np.pad(tex, ((r, r), (r, r)), 'symmetric').astype(np.int32) # Pre-compute output = np.zeros_like(img) scaleFactor_s = 1 / (2 * sigma_s * sigma_s) scaleFactor_r = 1 / (2 * sigma_r * sigma_r) # A lookup table for range kernel LUT = np.exp(-np.arange(256) * np.arange(256) * scaleFactor_r) # Generate a spatial Gaussian function x, y = np.meshgrid(
np.arange(2 * r + 1)
numpy.arange
""" Test the tracking utilities """ # Standard lib import unittest # 3rd party import numpy as np # Our own imports from deep_hipsc_tracking import tracking class TestCorrelateArrays(unittest.TestCase): def test_matches_identical_centered_complete(self): src_img = np.random.rand(129, 130) src_count = np.ones_like(src_img, dtype=np.uint32) match_img = src_img[1:-1, 1:-1] search_step = 1 # 1x1 search window blend_x = -1 # Complete matching in x blend_y = -1 # Complete matching in y # Correct start window yst, yed = 1, 128 xst, xed = 1, 129 rows, cols = match_img.shape comp_rows, comp_cols = src_img.shape assert (yed - yst) == rows assert (xed - xst) == cols res_y, res_x = tracking.correlate_arrays( src_img, src_count, match_img, search_step, blend_x, blend_y, xst, xed, yst, yed, rows, cols, comp_rows, comp_cols) # best_yst1, best_yed1, best_yst2, best_yed2 exp_y = (1, 128, 0, 127) # best_xst1, best_xed1, best_xst2, best_xed2 exp_x = (1, 129, 0, 128) self.assertEqual(res_y, exp_y) self.assertEqual(res_x, exp_x) np.testing.assert_almost_equal(src_img[res_y[0]:res_y[1], res_x[0]:res_x[1]], match_img[res_y[2]:res_y[3], res_x[2]:res_x[3]]) def test_matches_identical_centered_partial(self): src_img = np.random.rand(129, 130) src_count = np.ones_like(src_img, dtype=np.uint32) match_img = src_img[1:-1, 1:-1] search_step = 1 blend_x = 5 # Only match the top 5 columns in x blend_y = 5 # Only match the top 5 rows in y # Correct start window yst, yed = 1, 128 xst, xed = 1, 129 rows, cols = match_img.shape comp_rows, comp_cols = src_img.shape assert (yed - yst) == rows assert (xed - xst) == cols res_y, res_x = tracking.correlate_arrays( src_img, src_count, match_img, search_step, blend_x, blend_y, xst, xed, yst, yed, rows, cols, comp_rows, comp_cols) # best_yst1, best_yed1, best_yst2, best_yed2 exp_y = (1, 128, 0, 127) # best_xst1, best_xed1, best_xst2, best_xed2 exp_x = (1, 129, 0, 128) self.assertEqual(res_y, exp_y) self.assertEqual(res_x, exp_x) np.testing.assert_almost_equal(src_img[res_y[0]:res_y[1], res_x[0]:res_x[1]], match_img[res_y[2]:res_y[3], res_x[2]:res_x[3]]) def test_matches_identical_uncentered_partial(self): src_img = np.random.rand(129, 130) src_count = np.ones_like(src_img, dtype=np.uint32) match_img = src_img[2:-2, 2:-2] search_step = 1 blend_x = 5 blend_y = 5 # Inorrect start window yst, yed = 1, 126 xst, xed = 1, 127 rows, cols = match_img.shape comp_rows, comp_cols = src_img.shape assert (yed - yst) == rows assert (xed - xst) == cols res_y, res_x = tracking.correlate_arrays( src_img, src_count, match_img, search_step, blend_x, blend_y, xst, xed, yst, yed, rows, cols, comp_rows, comp_cols) # best_yst1, best_yed1, best_yst2, best_yed2 exp_y = (2, 127, 0, 125) # best_xst1, best_xed1, best_xst2, best_xed2 exp_x = (2, 128, 0, 126) self.assertEqual(res_y, exp_y) self.assertEqual(res_x, exp_x) np.testing.assert_almost_equal(src_img[res_y[0]:res_y[1], res_x[0]:res_x[1]], match_img[res_y[2]:res_y[3], res_x[2]:res_x[3]]) def test_matches_identical_left_right(self): src_img = np.random.rand(256, 130) src_count = np.zeros_like(src_img, dtype=np.uint32) # Only take the first half of the source image src_count[0:128, 0:130] = 1 # Match with the second half of the image match_img = src_img[120:247, 1:-1] search_step = 10 blend_x = 10 blend_y = 10 yst, yed = 116, 243 xst, xed = 0, 128 rows, cols = match_img.shape comp_rows, comp_cols = src_img.shape assert (yed - yst) == rows assert (xed - xst) == cols res_y, res_x = tracking.correlate_arrays( src_img, src_count, match_img, search_step, blend_x, blend_y, xst, xed, yst, yed, rows, cols, comp_rows, comp_cols) # best_yst1, best_yed1, best_yst2, best_yed2 exp_y = (120, 247, 0, 127) # best_xst1, best_xed1, best_xst2, best_xed2 exp_x = (1, 129, 0, 128) self.assertEqual(res_y, exp_y) self.assertEqual(res_x, exp_x) class TestSmoothVelocity(unittest.TestCase): def test_linear_smooth_with_resample(self): tt = np.linspace(1, 10, 10) xx = np.linspace(-10, 10, tt.shape[0]) yy =
np.linspace(-5, 15, tt.shape[0])
numpy.linspace
import logging logging.basicConfig(level=logging.INFO) import argparse import torch import numpy as np import cv2 import time from scipy import spatial from pytorch3d import transforms import json import open3d as o3d def parseargs(): parser = argparse.ArgumentParser() parser.add_argument('-r', '--resolution', default=800, type=int, help="View window resolution") parser.add_argument('-l', '--trajectory-length', default=500, type=int, help="Generated trajectory key-frame count.") parser.add_argument('-m', '--trajectory-momentum', default=0.95, type=float, help="Generated trajectory movement momentum.") parser.add_argument('--trajectory-acceleration', default=0.8, type=float, help="Generated trajectory acceleration standard deviation.") parser.add_argument('--point-distance', default=10, type=float, help="Point to camera distance standard deviation.") parser.add_argument('--points-per-camera', default=15, type=float, help="Point generated per camera.") parser.add_argument('--point-visibility-falloff', default=8, type=float, help="How distant cameras see the point.") parser.add_argument('--view-noise', default=0.02, type=float, help="Point location error in radians. (points projected to camera)") parser.add_argument('--cam-noise', default=100, type=float, help="Initial camera position noise.") parser.add_argument('--point-noise', default=100, type=float, help="Initial point position noise.") parser.add_argument('--world-shift', default=10, type=float, help="Initial shift in world position estimate.") parser.add_argument('--learning-rate', default=5, type=float, help="ADAM learning rate.") parser.add_argument('--cam-dist-weight', default=0.25, type=float, help="Mutual camera distance cost weight.") parser.add_argument('--cam-dir-weight', default=0.25, type=float, help="Horizontal camera alinment cost weight.") parser.add_argument('--json-recording', help='Read viewing directions from json file.') args = parser.parse_args() return args def range_coeff(x, distance, range): return np.exp(-np.log2(distance / x) ** 2 / range) def generate_cam_trajectory(length=30, momentum=0.94, acc_sdev=0.6, acc2_sdev=0.0): positions =
np.zeros([length, 3], dtype=np.float32)
numpy.zeros
import numpy import Shadow import Shadow.ShadowLibExtensions as sd import sys import inspect import os try: import matplotlib.pylab as plt from matplotlib import collections except ImportError: print(sys.exc_info()[1]) pass #TODO: remove ShadowToolsPrivate import Shadow.ShadowToolsPrivate as stp from Shadow.ShadowToolsPrivate import Histo1_Ticket as Histo1_Ticket from Shadow.ShadowToolsPrivate import plotxy_Ticket as plotxy_Ticket #A2EV = 50676.89919462 codata_h = numpy.array(6.62606957e-34) codata_ec = numpy.array(1.602176565e-19) codata_c = numpy.array(299792458.0) A2EV = 2.0*numpy.pi/(codata_h*codata_c/codata_ec*1e2) #TODO: delete. Implemented for beam object def getshonecol(beam,col): ''' Extract a column from a shadow file (eg. begin.dat) or a Shadow.Beam instance. The column are numbered in the fortran convention, i.e. starting from 1. It returns a numpy.array filled with the values of the chosen column. Inumpy.ts: beam : str instance with the name of the shadow file to be loaded. OR Shadow.Beam initialized instance. col : int for the chosen columns. Outputs: numpy.array 1-D with length numpy.INT. Error: if an error occurs an ArgsError is raised. Possible choice for col are: 1 X spatial coordinate [user's unit] 2 Y spatial coordinate [user's unit] 3 Z spatial coordinate [user's unit] 4 Xp direction or divergence [rads] 5 Yp direction or divergence [rads] 6 Zp direction or divergence [rads] 7 X component of the electromagnetic vector (s-polariz) 8 Y component of the electromagnetic vector (s-polariz) 9 Z component of the electromagnetic vector (s-polariz) 10 Lost ray flag 11 Energy [eV] 12 Ray index 13 Optical path length 14 Phase (s-polarization) 15 Phase (p-polarization) 16 X component of the electromagnetic vector (p-polariz) 17 Y component of the electromagnetic vector (p-polariz) 18 Z component of the electromagnetic vector (p-polariz) 19 Wavelength [A] 20 R= SQRT(X^2+Y^2+Z^2) 21 angle from Y axis 22 the magnituse of the Electromagnetic vector 23 |E|^2 (total intensity) 24 total intensity for s-polarization 25 total intensity for p-polarization 26 K = 2 pi / lambda [A^-1] 27 K = 2 pi / lambda * col4 [A^-1] 28 K = 2 pi / lambda * col5 [A^-1] 29 K = 2 pi / lambda * col6 [A^-1] 30 S0-stokes = |Es|^2 + |Ep|^2 31 S1-stokes = |Es|^2 - |Ep|^2 32 S2-stokes = 2 |Es| |Ep| cos(phase_s-phase_p) 33 S3-stokes = 2 |Es| |Ep| sin(phase_s-phase_p) ''' try: stp.getshonecol_CheckArg(beam,col) except stp.ArgsError as e: raise e col=col-1 if isinstance(beam,sd.Beam): ray = beam.rays else: bm = sd.Beam() bm.load(beam) ray = bm.rays if col>=0 and col<18 and col!=10: column = ray[:,col] if col==10: column = ray[:,col]/A2EV if col==18: column = 2*numpy.pi*1.0e8/ray[:,10] if col==19: column = numpy.sqrt(ray[:,0]*ray[:,0]+ray[:,1]*ray[:,1]+ray[:,2]*ray[:,2]) if col==20: column = numpy.arccos(ray[:,4]) if col==21: column = numpy.sqrt(numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [6,7,8,15,16,17] ]),axis=0)) if col==22: column = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [6,7,8,15,16,17] ]),axis=0) if col==23: column = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [6,7,8] ]),axis=0) if col==24: column = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [15,16,17] ]),axis=0) if col==25: column = ray[:,10]*1.0e8 if col==26: column = ray[:,3]*ray[:,10]*1.0e8 if col==27: column = ray[:,4]*ray[:,10]*1.0e8 if col==28: column = ray[:,5]*ray[:,10]*1.0e8 if col==29: E2s = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [6,7,8] ]),axis=0) E2p = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [15,16,17] ]),axis=0) column = E2p+E2s if col==30: E2s = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [6,7,8] ]),axis=0) E2p = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [15,16,17] ]),axis=0) column = E2p-E2s if col==31: E2s = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [6,7,8] ]),axis=0) E2p = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [15,16,17] ]),axis=0) Cos = numpy.cos(ray[:,13]-ray[:,14]) column = 2*E2s*E2p*Cos if col==32: E2s = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [6,7,8] ]),axis=0) E2p = numpy.sum(numpy.array([ ray[:,i]*ray[:,i] for i in [15,16,17] ]),axis=0) Sin = numpy.sin(ray[:,13]-ray[:,14]) column = 2*E2s*E2p*Sin return column #TODO: delete. Implemented for beam object def getshcol(beam,col): ''' Extract multiple columns from a shadow file (eg.'begin.dat') or a Shadow.Beam instance. The column are numbered in the fortran convention, i.e. starting from 1. It returns a numpy.array filled with the values of the chosen column. Inumpy.ts: beam : str instance with the name of the shadow file to be loaded. OR Shadow.Beam initialized instance. col : tuple or list instance of int with the number of columns chosen. Outputs: numpy.array 2-D with dimension R x numpy.INT. Where R is the total number of column chosen Error: if an error occurs an ArgsError is raised. Possible choice for col are: 1 X spatial coordinate [user's unit] 2 Y spatial coordinate [user's unit] 3 Z spatial coordinate [user's unit] 4 X' direction or divergence [rads] 5 Y' direction or divergence [rads] 6 Z' direction or divergence [rads] 7 X component of the electromagnetic vector (s-polariz) 8 Y component of the electromagnetic vector (s-polariz) 9 Z component of the electromagnetic vector (s-polariz) 10 Lost ray flag 11 Energy [eV] 12 Ray index 13 Optical path length 14 Phase (s-polarization) 15 Phase (p-polarization) 16 X component of the electromagnetic vector (p-polariz) 17 Y component of the electromagnetic vector (p-polariz) 18 Z component of the electromagnetic vector (p-polariz) 19 Wavelength [A] 20 R= SQRT(X^2+Y^2+Z^2) 21 angle from Y axis 22 the magnituse of the Electromagnetic vector 23 |E|^2 (total intensity) 24 total intensity for s-polarization 25 total intensity for p-polarization 26 K = 2 pi / lambda [A^-1] 27 K = 2 pi / lambda * col4 [A^-1] 28 K = 2 pi / lambda * col5 [A^-1] 29 K = 2 pi / lambda * col6 [A^-1] 30 S0-stokes = |Es|^2 + |Ep|^2 31 S1-stokes = |Es|^2 - |Ep|^2 32 S2-stokes = 2 |Es| |Ep| cos(phase_s-phase_p) 33 S3-stokes = 2 |Es| |Ep| sin(phase_s-phase_p) ''' try: stp.getshcol_CheckArg(beam,col) except stp.ArgsError as e: raise e if isinstance(beam,sd.Beam): bm = beam else: bm = sd.Beam() bm.load(beam) ret = [] if isinstance(col, int): return getshonecol(bm,col) for c in col: ret.append(getshonecol(bm,c)) return tuple(ret) def histo1(beam, col, notitle=0, nofwhm=0, bar=0, **kwargs): """ Plot the histogram of a column, as calculated by Shadow.Beam.histo1 using matplotlib NOTE: This will replaces the old histo1 still available as histo1_old :param beam: a Shadow.Beam() instance, or a file name with Shadow binary file :param col: the Shadow column number (start from 1) :param notitle: set to 1 to avoid displaying title :param nofwhm: set to 1 to avoid labeling FWHM value :param bar: 1=bar plot, 0=line plot :param kwargs: keywords accepted by Shadow.Beam.histo1() :return: the dictionary returned by Shadow.beam.histo1() with some keys added. """ title = "histo1" if isinstance(beam,str): beam1 = sd.Beam() beam1.load(beam) title += " - file: "+beam beam = beam1 tk2 = beam.histo1(col, **kwargs) h = tk2["histogram"] bins = tk2["bin_left"] xrange = tk2["xrange"] yrange = [0,1.1*numpy.max(h)] fwhm = tk2["fwhm"] xtitle = "column %d"%tk2["col"] ytitle = "counts (" if tk2["nolost"] == 0: ytitle += " all rays" if tk2["nolost"] == 1: ytitle += " good rays" if tk2["nolost"] == 2: ytitle += " lost rays" if tk2["ref"] == 0: ytitle += " = weight: number of rays" else: if tk2["ref"] == 23: ytitle += " - weight: intensity" else: ytitle += " - weight column: %d"%(tk2["ref"]) ytitle += ")" if fwhm != None: print ("fwhm = %g" % fwhm) fig0 = plt.figure() ax = fig0.add_subplot(111) ax.set_xlabel(xtitle) ax.set_ylabel(ytitle) if notitle != 1: ax.set_title(title) ax.set_xlim(xrange[0],xrange[1]) ax.set_ylim(yrange[0],yrange[1]) ax.grid(True) if bar: l = ax.bar(bins, h, 1.0*(bins[1]-bins[0]),color='blue') #,error_kw=dict(elinewidth=2,ecolor='red')) else: l = plt.plot(tk2["bin_path"], tk2["histogram_path"], color='blue') #,error_kw=dict(elinewidth=2,ecolor='red')) if tk2["fwhm"] != None: hh = 0.5*numpy.max(tk2["histogram"]) lines = [ [ (tk2["fwhm_coordinates"][0],hh), \ (tk2["fwhm_coordinates"][1],hh) ]] lc = collections.LineCollection(lines,color='red',linewidths=2) ax.add_collection(lc) if nofwhm != 1: if tk2["fwhm_coordinates"][0] < 0: shift1 = 0.9 else: shift1 = 1.0 ax.annotate('FWHM=%f'%tk2["fwhm"], xy=(shift1*tk2["fwhm_coordinates"][0],1.01*tk2["fwhm_coordinates"][0])) plt.show() return tk2 #TODO: delete. Reimplemented using Shadow.beam.histo1() def histo1_old(beam,col,xrange=None,yrange=None,nbins=50,nolost=0,ref=0,write=0,title='HISTO1',xtitle=None,ytitle=None,calfwhm=0,noplot=0): ''' Plot the histogram of a column, simply counting the rays, or weighting with the intensity. It returns a ShadowTools.Histo1_Ticket which contains the histogram data, and the figure. Inumpy.ts: beam : str instance with the name of the shadow file to be loaded, or a Shadow.Beam initialized instance. col : int for the chosen column. Optional Inumpy.ts: xrange : tuple or list of length 2 describing the interval of interest for x, the data read from the chosen column. yrange : tuple or list of length 2 describing the interval of interest for y, counts or intensity depending on ref. nbins : number of bins of the histogram. nolost : 0 All rays 1 Only good rays 2 Only lost rays ref : 0, None, "no", "NO" or "No": only count the rays 23, "Yes", "YES" or "yes": weight with intensity (look at col=23 |E|^2 total intensity) other value: use that column as weight write : 0 don't write any file 1 write the histogram into the file 'HISTO1'. title : title of the figure, it will appear on top of the window. xtitle : label for the x axis. ytitle : label for the y axis. calfwhm : 0 don't compute the fwhm 1 compute the fwhm noplot : 0 plot the histogram 1 don't plot the histogram orientation : 'vertical' x axis for data, y for intensity 'horizontal' y axis for data, x for intensity plotxy : 0 standalone version 1 to use within plotxy Outputs: ShadowTools.Histo1_Ticket instance. Error: if an error occurs an ArgsError is raised. Possible choice for col are: 1 X spatial coordinate [user's unit] 2 Y spatial coordinate [user's unit] 3 Z spatial coordinate [user's unit] 4 X' direction or divergence [rads] 5 Y' direction or divergence [rads] 6 Z' direction or divergence [rads] 7 X component of the electromagnetic vector (s-polariz) 8 Y component of the electromagnetic vector (s-polariz) 9 Z component of the electromagnetic vector (s-polariz) 10 Lost ray flag 11 Energy [eV] 12 Ray index 13 Optical path length 14 Phase (s-polarization) 15 Phase (p-polarization) 16 X component of the electromagnetic vector (p-polariz) 17 Y component of the electromagnetic vector (p-polariz) 18 Z component of the electromagnetic vector (p-polariz) 19 Wavelength [A] 20 R= SQRT(X^2+Y^2+Z^2) 21 angle from Y axis 22 the magnituse of the Electromagnetic vector 23 |E|^2 (total intensity) 24 total intensity for s-polarization 25 total intensity for p-polarization 26 K = 2 pi / lambda [A^-1] 27 K = 2 pi / lambda * col4 [A^-1] 28 K = 2 pi / lambda * col5 [A^-1] 29 K = 2 pi / lambda * col6 [A^-1] 30 S0-stokes = |Es|^2 + |Ep|^2 31 S1-stokes = |Es|^2 - |Ep|^2 32 S2-stokes = 2 |Es| |Ep| cos(phase_s-phase_p) 33 S3-stokes = 2 |Es| |Ep| sin(phase_s-phase_p) ''' try: stp.Histo1_CheckArg(beam,col,xrange,yrange,nbins,nolost,ref,write,title,xtitle,ytitle,calfwhm,noplot) except stp.ArgsError as e: raise e col=col-1 if ref==1: ref = 23 #plot_nicc.ioff() plt.ioff() figure = plt.figure() axHist = figure.add_axes([0.1,0.1,0.8,0.8]) if ytitle!=None: ytitlesave=ytitle else: ytitlesave=None if ref == None: ref = 0 if ref == "No": ref = 0 if ref == "NO": ref = 0 if ref == "no": ref = 0 if ref == "Yes": ref = 23 if ref == "YES": ref = 23 if ref == "yes": ref = 23 if ref == 1: print("Shadow.ShadowTools.histo1_old: Warning: weighting with column 1 (X) [not with intensity as may happen in old versions]") if ref==0: x, a = getshcol(beam,(col+1,10)) w = numpy.ones(len(x)) else: x, a, w = getshcol(beam,(col+1,10,ref)) if nolost==0: t = numpy.where(a!=-3299) ytitle = 'All rays' if nolost==1: t = numpy.where(a==1.0) ytitle = 'Good rays' if nolost==2: t = numpy.where(a!=1.0) ytitle = 'Lost rays' if len(t[0])==0: print ("no rays match the selection, the histogram will not be plotted") return if ref==0: ytitle = 'counts ' + ytitle h,bins,patches = axHist.hist(x[t],bins=nbins,range=xrange,histtype='step',alpha=0.5) if yrange==None: yrange = [0.0, numpy.max(h)] hw=h if ref>=22: ytitle = (stp.getLabel(ref-1))[0] + ' ' + ytitle h,bins = numpy.histogram(x[t],range=xrange,bins=nbins) hw,bins,patches = axHist.hist(x[t],range=xrange, bins=nbins,histtype='step',alpha=0.5,weights=w[t]) if yrange==None: yrange = [0.0, numpy.max(hw)] fwhm = None if calfwhm==1: fwhm, tf, ti = stp.calcFWHM(hw,bins[1]-bins[0]) axHist.plot([bins[ti],bins[tf+1]],[max(h)*0.5,max(h)*0.5],'x-') print ("fwhm = %g" % fwhm) if write==1: stp.Histo1_write(title,bins,h,hw,col,beam,ref-1) if xtitle==None: xtitle=(stp.getLabel(col))[0] axHist.set_xlabel(xtitle) if ytitlesave!=None: axHist.set_ylabel(ytitlesave) else: axHist.set_ylabel(ytitle) if title!=None: axHist.set_title(title) if xrange!=None: axHist.set_xlim(xrange) if yrange!=None: axHist.set_ylim(yrange) if noplot==0: plt.show() ticket = Histo1_Ticket() ticket.histogram = hw ticket.bin_center = bins[:-1]+(bins[1]-bins[0])*0.5 ticket.bin_left = bins[:-1] ticket.figure = figure ticket.xrange = xrange ticket.yrange = yrange ticket.xtitle = xtitle ticket.ytitle = ytitle ticket.title = title ticket.fwhm = fwhm ticket.intensity = w[t].sum() return ticket def plotxy_gnuplot(beam,col_h,col_v,execute=1,ps=0,pdf=0,title="",viewer='okular',**kwargs): """ A plotxy implemented for gnuplot. It uses Shadow.beam.histo2() for calculations. It creates files for gnuplot (plotxy.gpl and plotxy_*.dat) It can run gnuplot (system call) and display ps or pdf outputs :param beam: it can be a SHADOW binary file, an instance of Shadow.Beam() or a dictionary from Shadow.Beam.histo2 :param col_h: the H column for the plot. Irrelevant if beam is a dictionary :param col_v: the V column for the plot. Irrelevant if beam is a dictionary :param execute: set to 1 to make a system call to execute gnuplot (default=1) :param ps: set to 1 to get postscript output (irrelevant if pdf=1 :param pdf: set to 1 for pdf output (prioritaire over ps) :param viewer: set to the ps or pdf viewer (default='okular') :param kwargs: keywords to be passed to Shadow.beam.histo2() :return: the dictionary produced by Shadow.beam.histo2 with some keys added """ if title == "": title = "plotxy" if isinstance(beam,dict): tkt = beam col_h = tkt["col_h"] col_v = tkt["col_v"] else: if isinstance(beam,str): beam1 = sd.Beam() beam1.load(beam) title += " - file: "+beam beam = beam1 tkt = beam.histo2(col_h,col_v,**kwargs) f = open("plotxy_histtop.dat",'w') for i in range(tkt["nbins_h"]): f.write("%12.5f %12.5f \n"%( tkt["bin_h_left"][i], tkt["histogram_h"][i] )) f.write("%12.5f %12.5f \n"%( tkt["bin_h_right"][i], tkt["histogram_h"][i] )) f.close() print("File written to disk: plotxy_histside.dat") f = open("plotxy_histside.dat",'w') for i in range(tkt["nbins_v"]): f.write("%12.5f %12.5f \n"%( tkt["histogram_v"][i], tkt["bin_v_left"][i] )) f.write("%12.5f %12.5f \n"%( tkt["histogram_v"][i], tkt["bin_v_right"][i] )) f.close() print("File written to disk: plotxy_histtop.dat") f = open("plotxy_grid.dat",'w') f.write(" # plotxy grid data for plotxy.gpl\n") f.write(" # Xbin Ybin Weight\n") for i in range(tkt["nbins_h"]): for j in range(tkt["nbins_v"]): f.write("%25.20f %25.20f %25.20f\n"%(tkt["bin_h_center"][i],tkt["bin_v_center"][j], tkt["histogram"][i,j] )) f.write("\n") f.close() print("File written to disk: plotxy_grid.dat") txt = """ #GnuPlot command file for PLOTXY #Minimum version: gnuplot 4.2 patchlevel 6 # {set_terminal} set multiplot # # top histogram # set lmargin screen 0.2125 set rmargin screen 0.70 set bmargin screen 0.75 set tmargin screen 0.90 unset xtics unset x2tics unset ytics unset y2tics unset key unset xlabel unset ylabel unset x2label unset y2label set x2tics mirror set x2label " {title} " set xrange[ {xrange[0]} : {xrange[1]} ] set yrange[*:*] plot "plotxy_histtop.dat" u 1:2 w lines lt -1 notitle # # side histogram # set lmargin screen 0.10 set rmargin screen 0.2125 set bmargin screen 0.10 set tmargin screen 0.75 unset xtics unset x2tics unset ytics unset y2tics unset key unset xlabel unset ylabel unset x2label unset y2label set ytics set ylabel "Column {col_v}" set xrange[*:*] set yrange[ {yrange[0]} : {yrange[1]} ] plot "plotxy_histside.dat" u (-$1):2 w lines lt -1 notitle # # scattered/contour plot # set lmargin screen 0.2125 set rmargin screen 0.70 set bmargin screen 0.10 set tmargin screen 0.75 unset xtics unset x2tics unset ytics unset y2tics unset key unset xlabel unset ylabel unset x2label unset y2label set xlabel "Column {col_h}" set xrange[ {xrange[0]} : {xrange[1]} ] set yrange[ {yrange[0]} : {yrange[1]} ] # # IF PIXEL UNCOMMENT THIS # set pm3d map set palette gray splot "./plotxy_grid.dat" u 1:2:3 notitle # # info column # set obj 10 rect from graph 1.20, graph 1 to graph 1.61, graph 0 set label "{label_id}" at graph 1.21, graph 0.9 set label "{label_good}" at graph 1.21, graph 0.5 set label "TOT = {nrays}" at graph 1.21, graph 0.30 set label "LOST = {lost_rays}" at graph 1.21, graph 0.25 set label "GOOD = {good_rays}" at graph 1.21, graph 0.20 set label "INTENS = {intensity}" at graph 1.21, graph 0.15 set label "{label_weight}" at graph 1.21, graph 0.10 replot unset multiplot {set_pause} """ #add kws to dictionnary to be used in the template tkt["set_terminal"] = "set terminal x11 size 900,600" tkt["set_pause"] = "pause -1 'Press <Enter> to end graphic '" if ps: tkt["set_terminal"] = "set terminal postscript \n set output 'plotxy.ps' " tkt["set_pause"] = "" if pdf: tkt["set_terminal"] = "set terminal pdf \n set output 'plotxy.pdf' " tkt["set_pause"] = "" tkt["title"] = title tkt["lost_rays"] = tkt["nrays"] - tkt["good_rays"] tkt["label_id"] = "" if os.getenv("USER") is None: pass else: tkt["label_id"] += os.getenv("USER") if os.getenv("HOST") is None: pass else: tkt["label_id"] += "@"+os.getenv("HOST") if tkt["ref"] == 0: tkt["label_weight"] = "WEIGHT: RAYS" else: if tkt["ref"] == 1 or tkt["ref"] == 23: tkt["label_weight"] = "WEIGHT: INTENSITY" else: tkt["label_weight"] = "WEIGHT: COLUMN %d"%(tkt["ref"]) if tkt["nolost"] == 0: tkt["label_good"] = "--ALL RAYS" elif tkt["nolost"] == 1: tkt["label_good"] = "--GOOD ONLY" else: tkt["label_good"] = "--ONLY LOSSES" txt2 = txt.format_map(tkt) f = open("plotxy.gpl",'w') f.write(txt2) f.close() print("File written to disk: plotxy.gpl") if execute: os.system("gnuplot plotxy.gpl") if ps: os.system(viewer+" plotxy.ps") if pdf: os.system(viewer+" plotxy.pdf") return tkt def plotxy(beam,col_h,col_v, nofwhm=1, title="", **kwargs): """ plotxy implementation using matplotlib. Calculations are done using Shadow.beam.histo2() :param beam: it can be a SHADOW binary file, an instance of Shadow.Beam() or a dictionary from Shadow.Beam.histo2 :param col_h: The column for the H coordinate in the plot (irrelevant of beam is a dictionary) :param col_v: The column for the H coordinate in the plot (irrelevant of beam is a dictionary) :param nofwhm: set to 0 to label the FWHM value in the plot (default do not label) :param kwargs: keywrods passed to Shadow.Beam.histo2 :return: the dictionary returned by Shadow.beam.histo2() with some added keys. """ if title == "": title = "plotxy" if isinstance(beam,dict): tkt = beam col_h = tkt["col_h"] col_v = tkt["col_v"] else: if isinstance(beam,str): beam1 = sd.Beam() beam1.load(beam) title += " - file: "+beam beam = beam1 tkt = beam.histo2(col_h,col_v,**kwargs) xtitle = "Column %d"%tkt["col_h"] ytitle = "Column %d"%tkt["col_v"] figure = plt.figure(figsize=(12,8),dpi=96) ratio = 8.0/12.0 rect_scatter = [0.10*ratio, 0.10, 0.65*ratio, 0.65] rect_histx = [0.10*ratio, 0.77, 0.65*ratio, 0.20] rect_histy = [0.77*ratio, 0.10, 0.20*ratio, 0.65] rect_text = [1.00*ratio, 0.10, 1.20*ratio, 0.65] # #main plot # axScatter = figure.add_axes(rect_scatter) axScatter.set_xlabel(xtitle) axScatter.set_ylabel(ytitle) # axScatter.set_xlim(tkt["xrange"]) # axScatter.set_ylim(tkt["yrange"]) axScatter.axis(xmin=tkt["xrange"][0],xmax=tkt["xrange"][1]) axScatter.axis(ymin=tkt["yrange"][0],ymax=tkt["yrange"][1]) #axScatter.pcolor(tkt["bin_h_edges"], tkt["bin_v_edges"], tkt["histogram"].T) axScatter.pcolormesh(tkt["bin_h_edges"], tkt["bin_v_edges"], tkt["histogram"].T) for tt in axScatter.get_xticklabels(): tt.set_size('x-small') for tt in axScatter.get_yticklabels(): tt.set_size('x-small') # #histograms # axHistx = figure.add_axes(rect_histx, sharex=axScatter) axHisty = figure.add_axes(rect_histy, sharey=axScatter) #for practical purposes, writes the full histogram path tmp_h_b = [] tmp_h_h = [] for s,t,v in zip(tkt["bin_h_left"],tkt["bin_h_right"],tkt["histogram_h"]): tmp_h_b.append(s) tmp_h_h.append(v) tmp_h_b.append(t) tmp_h_h.append(v) tmp_v_b = [] tmp_v_h = [] for s,t,v in zip(tkt["bin_v_left"],tkt["bin_v_right"],tkt["histogram_v"]): tmp_v_b.append(s) tmp_v_h.append(v) tmp_v_b.append(t) tmp_v_h.append(v) axHistx.plot(tmp_h_b,tmp_h_h) axHisty.plot(tmp_v_h,tmp_v_b) for tl in axHistx.get_xticklabels(): tl.set_visible(False) for tl in axHisty.get_yticklabels(): tl.set_visible(False) for tt in axHisty.get_xticklabels(): tt.set_rotation(270) tt.set_size('x-small') for tt in axHistx.get_yticklabels(): tt.set_size('x-small') if tkt["fwhm_h"] != None: hh = 0.5*numpy.max(tkt["histogram_h"]) lines = [ [ (tkt["fwhm_coordinates_h"][0],hh), \ (tkt["fwhm_coordinates_h"][1],hh) ]] lc = collections.LineCollection(lines,color='red',linewidths=2) axHistx.add_collection(lc) if nofwhm != 1: if tkt["fwhm_coordinates_h"][0] < 0: shift1 = 0.9 else: shift1 = 1.0 axHistx.annotate('FWHM=%f'%tkt["fwhm_h"], xy=(shift1*tkt["fwhm_coordinates_h"][0],1.01*hh)) if tkt["fwhm_v"] != None: hh = 0.5*numpy.max(tkt["histogram_v"]) lines = [ [ (hh,tkt["fwhm_coordinates_v"][0]), \ (hh,tkt["fwhm_coordinates_v"][1]) ]] lc = collections.LineCollection(lines,color='green',linewidths=2) axHisty.add_collection(lc) if nofwhm != 1: if tkt["fwhm_coordinates_v"][0] < 0: shift1 = 0.9 else: shift1 = 1.0 axHisty.annotate('FWHM=%f'%tkt["fwhm_v"], xy=(shift1*tkt["fwhm_coordinates_v"][0],1.01*hh)) if title!=None: axHistx.set_title(title) axText = figure.add_axes(rect_text) if tkt["nolost"] == 0: axText.text(0.0,0.8,"ALL RAYS") if tkt["nolost"] == 1: axText.text(0.0,0.8,"GOOD RAYS") if tkt["nolost"] == 2: axText.text(0.0,0.8,"LOST RAYS") #tmps = "intensity: %f"%(tkt["intensity"]) axText.text(0.0,0.7,"intensity: %8.2f"%(tkt["intensity"])) axText.text(0.0,0.6,"total number of rays: "+str(tkt["nrays"])) axText.text(0.0,0.5,"total good rays: "+str(tkt["good_rays"])) axText.text(0.0,0.4,"total lost rays: "+str(tkt["nrays"]-tkt["good_rays"])) calfwhm = 1 if tkt["fwhm_h"] != None: axText.text(0.0,0.3,"fwhm H: "+str(tkt["fwhm_h"])) if tkt["fwhm_v"] != None: axText.text(0.0,0.2,"fwhm V: "+str(tkt["fwhm_v"])) if isinstance(beam,str): axText.text(0.0,0.1,"FILE: "+beam) if isinstance(beam,sd.Beam): axText.text(0.0,0.1,"from Shadow.Beam instance") if tkt["ref"] == 0: axText.text(0.0,0.0,"WEIGHT: RAYS") else: axText.text(0.0,0.0,"WEIGHT: INTENSITY") axText.set_axis_off() plt.show() return tkt #TODO: delete. Reimplemented using Shadow.Beam.histo2() def plotxy_old(beam,cols1,cols2,nbins=25,nbins_h=None,level=5,xrange=None,yrange=None,nolost=0,title='PLOTXY',xtitle=None,ytitle=None,noplot=0,calfwhm=0,contour=0): ''' Draw the scatter or contour or pixel-like plot of two columns of a Shadow.Beam instance or of a given shadow file, along with histograms for the intensity on the top and right side. Inumpy.ts: beam : str instance with the name of the shadow file to be loaded, or a Shadow.Beam initialized instance. cols1 : first column. cols2 : second column. Optional Inumpy.ts: nbins : int for the size of the grid (nbins x nbins). It will affect the plot only if non scatter. nbins_h : int for the number of bins for the histograms level : int number of level to be drawn. It will affect the plot only if contour. xrange : tuple or list of length 2 describing the interval of interest for x, the data read from the chosen column. yrange : tuple or list of length 2 describing the interval of interest for y, counts or intensity depending on ref. nolost : 0 All rays 1 Only good rays 2 Only lost rays title : title of the figure, it will appear on top of the window. xtitle : label for the x axis. ytitle : label for the y axis. noplot : 0 plot the histogram 1 don't plot the histogram calfwhm : 0 don't compute the fwhm 1 compute the fwhm and draw it 2 in addition to calfwhm=1, it computes now the intensity in a slit of FWHM_h x FWHM_v contour : 0 scatter plot 1 contour, black & white, only counts (without intensity) 2 contour, black & white, with intensity. 3 contour, colored, only counts (without intensity) 4 contour, colored, with intensity. 5 pixelized, colored, only counts (without intensity) 6 pixelized, colored, with intensity. Outputs: ShadowTools.Histo1_Ticket instance. Error: if an error occurs an ArgsError is raised. Possible choice for col are: 1 X spatial coordinate [user's unit] 2 Y spatial coordinate [user's unit] 3 Z spatial coordinate [user's unit] 4 X' direction or divergence [rads] 5 Y' direction or divergence [rads] 6 Z' direction or divergence [rads] 7 X component of the electromagnetic vector (s-polariz) 8 Y component of the electromagnetic vector (s-polariz) 9 Z component of the electromagnetic vector (s-polariz) 10 Lost ray flag 11 Energy [eV] 12 Ray index 13 Optical path length 14 Phase (s-polarization) 15 Phase (p-polarization) 16 X component of the electromagnetic vector (p-polariz) 17 Y component of the electromagnetic vector (p-polariz) 18 Z component of the electromagnetic vector (p-polariz) 19 Wavelength [A] 20 R= SQRT(X^2+Y^2+Z^2) 21 angle from Y axis 22 the magnituse of the Electromagnetic vector 23 |E|^2 (total intensity) 24 total intensity for s-polarization 25 total intensity for p-polarization 26 K = 2 pi / lambda [A^-1] 27 K = 2 pi / lambda * col4 [A^-1] 28 K = 2 pi / lambda * col5 [A^-1] 29 K = 2 pi / lambda * col6 [A^-1] 30 S0-stokes = |Es|^2 + |Ep|^2 31 S1-stokes = |Es|^2 - |Ep|^2 32 S2-stokes = 2 |Es| |Ep| cos(phase_s-phase_p) 33 S3-stokes = 2 |Es| |Ep| sin(phase_s-phase_p) ''' if nbins_h==None: nbins_h=nbins+1 try: stp.plotxy_CheckArg(beam,cols1,cols2,nbins,nbins_h,level,xrange,yrange,nolost,title,xtitle,ytitle,noplot,calfwhm,contour) except stp.ArgsError as e: raise e #plot_nicc.ioff() plt.ioff() col1,col2,col3,col4 = getshcol(beam,(cols1,cols2,10,23,)) nbins=nbins+1 if xtitle==None: xtitle=(stp.getLabel(cols1-1))[0] if ytitle==None: ytitle=(stp.getLabel(cols2-1))[0] if nolost==0: t = numpy.where(col3!=-3299) if nolost==1: t = numpy.where(col3==1.0) if nolost==2: t = numpy.where(col3!=1.0) if xrange==None: xrange = stp.setGoodRange(col1[t]) if yrange==None: yrange = stp.setGoodRange(col2[t]) #print xrange #print yrange tx = numpy.where((col1>xrange[0])&(col1<xrange[1])) ty = numpy.where((col2>yrange[0])&(col2<yrange[1])) tf = set(list(t[0])) & set(list(tx[0])) & set(list(ty[0])) t = (numpy.array(sorted(list(tf))),) if len(t[0])==0: print ("no point selected") return None #figure = pylab.plt.figure(figsize=(12,8),dpi=96) figure = plt.figure(figsize=(12,8),dpi=96) ratio = 8.0/12.0 left, width = 0.1*ratio, 0.65*ratio bottom, height = 0.1, 0.65 bottom_h = bottom+height+0.02 left_h = left+width+0.02*ratio rect_scatter = [0.10*ratio, 0.10, 0.65*ratio, 0.65] rect_histx = [0.10*ratio, 0.77, 0.65*ratio, 0.20] rect_histy = [0.77*ratio, 0.10, 0.20*ratio, 0.65] rect_text = [1.00*ratio, 0.10, 1.20*ratio, 0.65] axScatter = figure.add_axes(rect_scatter) axScatter.set_xlabel(xtitle) axScatter.set_ylabel(ytitle) if contour==0: axScatter.scatter(col1[t],col2[t],s=0.5) if contour>0 and contour<7: if contour==1 or contour==3 or contour==5: w = numpy.ones( len(col1) ) if contour==2 or contour==4 or contour==6: w = col4 grid = numpy.zeros(nbins*nbins).reshape(nbins,nbins) for i in t[0]: indX = stp.findIndex(col1[i],nbins,xrange[0],xrange[1]) indY = stp.findIndex(col2[i],nbins,yrange[0],yrange[1]) try: grid[indX][indY] = grid[indX][indY] + w[i] except IndexError: pass X, Y = numpy.mgrid[xrange[0]:xrange[1]:nbins*1.0j,yrange[0]:yrange[1]:nbins*1.0j] L = numpy.linspace(numpy.amin(grid),numpy.amax(grid),level) if contour==1 or contour==2: axScatter.contour(X, Y, grid, colors='k', levels=L) if contour==3 or contour==4: axScatter.contour(X, Y, grid, levels=L) if contour==5 or contour==6: axScatter.pcolor(X, Y, grid) #axScatter.set_xlim(xrange) #axScatter.set_ylim(yrange) #axScatter.axis(xmin=xrange[0],xmax=xrange[1]) #axScatter.axis(ymin=yrange[0],ymax=yrange[1]) for tt in axScatter.get_xticklabels(): tt.set_size('x-small') for tt in axScatter.get_yticklabels(): tt.set_size('x-small') #if ref==0: col4 = numpy.ones(len(col4),dtype=float) axHistx = figure.add_axes(rect_histx, sharex=axScatter) axHisty = figure.add_axes(rect_histy, sharey=axScatter) binx = numpy.linspace(xrange[0],xrange[1],nbins_h) biny = numpy.linspace(yrange[0],yrange[1],nbins_h) if contour==0 or contour==1 or contour==3 or contour==5: hx, binx, patchx = axHistx.hist(col1[t],bins=binx,range=xrange,histtype='step',color='k') hy, biny, patchy = axHisty.hist(col2[t],bins=biny,range=yrange,orientation='horizontal',histtype='step',color='k') if contour==2 or contour==4 or contour==6: hx, binx, patchx = axHistx.hist(col1[t],bins=binx,range=xrange,weights=col4[t],histtype='step',color='b') hy, biny, patchy = axHisty.hist(col2[t],bins=biny,range=yrange,weights=col4[t],orientation='horizontal',histtype='step',color='b') for tl in axHistx.get_xticklabels(): tl.set_visible(False) for tl in axHisty.get_yticklabels(): tl.set_visible(False) for tt in axHisty.get_xticklabels(): tt.set_rotation(270) tt.set_size('x-small') for tt in axHistx.get_yticklabels(): tt.set_size('x-small') intensityinslit = 0.0 if calfwhm>=1: fwhmx,txf, txi = stp.calcFWHM(hx,binx[1]-binx[0]) fwhmy,tyf, tyi = stp.calcFWHM(hy,biny[1]-biny[0]) axHistx.plot([binx[txi],binx[txf+1]],[max(hx)*0.5,max(hx)*0.5],'x-') axHisty.plot([max(hy)*0.5,max(hy)*0.5],[biny[tyi],biny[tyf+1]],'x-') print ("fwhm horizontal: %g" % fwhmx) print ("fwhm vertical: %g" % fwhmy) if calfwhm>=2: xx1 = binx[txi] xx2 = binx[txf+1] yy1 = biny[tyi] yy2 = biny[tyf+1] print ("limits horizontal: %g %g " % (binx[txi],binx[txf+1])) print ("limits vertical: %g %g " % (biny[tyi],biny[tyf+1])) axScatter.plot([xx1,xx2,xx2,xx1,xx1],[yy1,yy1,yy2,yy2,yy1]) #fwhmx,txf, txi = stp.calcFWHM(hx,binx[1]-binx[0]) #fwhmy,tyf, tyi = stp.calcFWHM(hy,biny[1]-biny[0]) #calculate intensity in slit if nolost==0: tt = numpy.where(col3!=-3299) if nolost==1: tt = numpy.where(col3==1.0) if nolost==2: tt = numpy.where(col3!=1.0) ttx = numpy.where((col1>=xx1)&(col1<=xx2)) tty = numpy.where((col2>=yy1)&(col2<=yy2)) ttf = set(list(tt[0])) & set(list(ttx[0])) & set(list(tty[0])) tt = (numpy.array(sorted(list(ttf))),) if len(tt[0])>0: intensityinslit = col4[tt].sum() print ("Intensity in slit: %g ",intensityinslit) if title!=None: axHistx.set_title(title) axText = figure.add_axes(rect_text) ntot = len(numpy.where(col3!=3299)[0]) ngood = len(numpy.where(col3==1)[0]) nbad = ntot - ngood if nolost==0: axText.text(0.0,0.8,"ALL RAYS") if nolost==1: axText.text(0.0,0.8,"GOOD RAYS") if nolost==2: axText.text(0.0,0.8,"LOST RAYS") tmps = "intensity: "+str(col4[t].sum()) if calfwhm == 2: tmps=tmps+" (in slit:"+str(intensityinslit)+") " axText.text(0.0,0.7,tmps) axText.text(0.0,0.6,"total number of rays: "+str(ntot)) axText.text(0.0,0.5,"total good rays: "+str(ngood)) axText.text(0.0,0.4,"total lost rays: "+str(ntot-ngood)) if calfwhm>=1: axText.text(0.0,0.3,"fwhm H: "+str(fwhmx)) axText.text(0.0,0.2,"fwhm V: "+str(fwhmy)) if isinstance(beam,str): axText.text(0.0,0.1,"FILE: "+beam) if isinstance(beam,sd.Beam): axText.text(0.0,0.1,"from Shadow3 Beam instance") axText.text(0.0,0.0,"DIR: "+os.getcwd()) axText.set_axis_off() #pylab.plt.draw() plt.draw() if noplot==0: figure.show() ticket = plotxy_Ticket() ticket.figure = figure ticket.xrange = xrange ticket.yrange = yrange ticket.xtitle = xtitle ticket.ytitle = ytitle ticket.title = title if calfwhm>=1: ticket.fwhmx = fwhmx ticket.fwhmy = fwhmy ticket.intensity = col4[t].sum() ticket.averagex = numpy.average( col1[t] ) ticket.averagey = numpy.average( col2[t] ) ticket.intensityinslit = intensityinslit return ticket # #focnew # def focnew(beam,nolost=1,mode=0,center=[0.0,0.0]): """ Implements SHADOW's focnew utility For scanning the RMS around the focal position, use focnew_scan with focnew results :param beam: a file name or an instance of Shadow.Beam :param nolost: 0=all rays, 1=good only, 2=lost only :param mode: 0=center at origin, 1-Center at baricenter, 2=External center (please define) :param center: [x0,y0] the center coordinates, if mode=2 :return: a python dictionary (ticket) with: ticket['nolost'] # input flag ticket['mode'] # input flag ticket['center_at'] # text of mode: 'Origin','Baricenter' or 'External' ticket['AX'] # \ ticket['AZ'] # focnew coefficients (to be used by focnew_scan) ticket['AT'] # / ticket['x_waist'] # position of waist X ticket['z_waist'] # position of waist Z ticket['t_waist'] # position of waist T (averaged) ticket['text'] = txt # a text with focnew info """ NMODE = ['Origin','Baricenter','External'] if isinstance(beam,str): beam1 = Shadow.Beam() beam1.load(beam) else: beam1 = beam # get focnew coefficients ray = numpy.array(beam1.getshcol([1,2,3,4,5,6],nolost=nolost)) #ray = numpy.array(self.getshcol([1,2,3,4,5,6],nolost=nolost)) if mode == 2: ray[:,0] -= center[0] ray[:,2] -= center[1] AX,AZ,AT = _focnew_coeffs(ray,nolost=nolost,mode=mode,center=center) # store versors ZBAR = AZ[3] VZBAR = AZ[5] # XBAR = AX[3] VXBAR = AX[5] # TBAR = ZBAR + XBAR VTBAR = VZBAR + VXBAR #reset coeffs if mode != 1: AZ[3] = 0.0 AZ[4] = 0.0 AZ[5] = 0.0 AX[3] = 0.0 AX[4] = 0.0 AX[5] = 0.0 AT[3] = 0.0 AT[4] = 0.0 AT[5] = 0.0 #get Y coordinate of the three waists if numpy.abs(AZ[0]-AZ[5]) > 1e-30: TPARZ = (AZ[4] - AZ[1]) / (AZ[0] - AZ[5]) else: TPARZ = 0.0 if numpy.abs(AX[0]-AX[5]) > 1e-30: TPARX = (AX[4] - AX[1]) / (AX[0] - AX[5]) else: TPARX = 0.0 if numpy.abs(AT[0]-AX[5]) > 1e-30: TPART = (AT[4] - AT[1]) / (AT[0] - AT[5]) else: TPART = 0.0 #prepare text output txt = "" txt += '-----------------------------------------------------------------------------\n' txt += 'Center at : %s\n'%(NMODE[mode]) txt += 'X = %f Z = %f\n'%(center[0],center[1]) txt += '-----------------------------------------------------------------------------\n' SIGX = numpy.sqrt(numpy.abs( AX[0] * TPARX**2 + 2.0 * AX[1] * TPARX + AX[2] - ( AX[3] + 2.0 * AX[4] * TPARX + AX[5] * TPARX**2))) SIGZ = numpy.sqrt(numpy.abs( AZ[0] * TPARZ**2 + 2.0 * AZ[1] * TPARZ + AZ[2] - ( AZ[3] + 2.0 * AZ[4] * TPARZ + AZ[5] * TPARZ**2))) SIGT = numpy.sqrt(numpy.abs( AT[0] * TPART**2 + 2.0 * AT[1] * TPART + AT[2] - ( AT[3] + 2.0 * AT[4] * TPART + AT[5] * TPART**2))) SIGX0 = numpy.sqrt(numpy.abs(AX[2] - AX[3])) SIGZ0 = numpy.sqrt(numpy.abs(AZ[2] - AZ[3])) SIGT0 = numpy.sqrt(numpy.abs(AT[2] - AT[3])) # txt += '............. S A G I T T A L ............\n' txt += '............. X AXIS (column 1) ............\n' txt += 'X coefficients : %g %g %g\n'%(AX[0],AX[1],AX[2]) txt += 'Center : %g Average versor : %g\n'%(numpy.sqrt(numpy.abs(XBAR)),numpy.sqrt(numpy.abs(VXBAR))) txt += 'Focus along X at : %g\n'%(TPARX) txt += 'Waist size at best focus (rms) : %g\n'%(SIGX) txt += 'Waist size at origin : %g\n'%(SIGX0) # txt += '............. T A N G E N T I A L .............\n' txt += '............. Z AXIS (column 3) ............\n' txt += 'Z coefficients : %g %g %g\n'%(AZ[0],AZ[1],AZ[2]) txt += 'Center : %g Average versor : %g\n'%(numpy.sqrt(numpy.abs(ZBAR)),numpy.sqrt(numpy.abs(VZBAR))) txt += 'Focus along Z at : %g\n'%(TPARZ) txt += 'Waist size at best focus (rms) : %g\n'%(SIGZ) txt += 'Waist size at origin : %g\n'%(SIGZ0) txt += '............. L E A S T C O N F U S I O N ...............\n' txt += 'XZ coefficients : %g %g %g\n'%(AT[0],AT[1],AT[2]) txt += 'Center : %g Average versor : %g\n'%(numpy.sqrt(numpy.abs(TBAR)),numpy.sqrt(numpy.abs(VTBAR))) txt += 'Circle of least confusion : %g\n'%(TPART) txt += 'Waist size at best focus (rms) : %g\n'%(SIGT) txt += 'Waist size at origin : %g\n'%(SIGT0) #store all outputs ticket = {} # copy the inputs ticket['nolost'] = nolost ticket['mode'] = mode ticket['center_at'] = NMODE[mode] # coefficients ticket['AX'] = AX ticket['AZ'] = AZ ticket['AT'] = AT # position of waists ticket['x_waist'] = TPARX ticket['z_waist'] = TPARZ ticket['t_waist'] = TPART # text output ticket['text'] = txt return ticket def focnew_scan(A,x): """ Scans the RMS of the beam size using the focnew coefficients Example: tkt = focnew("star.02") try: import matplotlib.pylab as plt except: raise Exception("Cannot load matplotlib") f2 = plt.figure(2) y = numpy.linespace(-10.,10.,101) plt.plot(y,2.35*focnew_scan(tkt["AX"],y),label="x (column 1)") plt.plot(y,2.35*focnew_scan(tkt["AZ"],y),label="z (column 3)") plt.plot(y,2.35*focnew_scan(tkt["AT"],y),label="combined x,z") plt.legend() plt.title("FOCNEW SCAN") plt.xlabel("Y [cm]") plt.ylabel("2.35*<Z> [cm]") plt.show() :param A: array of 6 coefficients :param x: the abscissas array :return: the array with RMS values """ x1 = numpy.array(x) y = numpy.sqrt(numpy.abs( A[0] * x1**2 + 2.0 * A[1] * x1 + A[2] - (A[3] + 2.0 * A[4] * x1 + A[5] * x1**2))) return y def _focnew_coeffs(ray,nolost=1,mode=0,center=[0.0,0.0]): """ Internal use of focnew: calculate the 6 CHI-Square coefficients for that data array referred to the origin e.g., for x we have d = Vy/Vx the 6 coeffs are: <d**2>, <x d>, <x**2>, <x>**2, <x><d>, <d>**2 This is a translatiopn of FINDOUT in shadow_kernel.F90 Note that mode=0 and mode=1 give the same output :param ray: numpy array with ray coordinates and directions :param nolost: :param mode: 0=center at origin, 1-Center at baricenter, 2=External center (please define) :param center: [x0,y0] the center coordinates, if mode=2 :return: AX,AZ,AT 6 coeffs arrays for X, Z and AVERAGE directions, respectively """ # for col=3 AZ = numpy.zeros(6) DVECTOR = ray[5,:]/ray[4,:] ### RAY(KOL+3,I)/RAY(5,I) AZ[0] = (DVECTOR**2).sum() # A1 = A1 + DVECTOR**2 AZ[1] = (ray[2,:]*DVECTOR).sum() # A2 = A2 + RAY(KOL,I)*DVECTOR AZ[2] = (ray[2,:]**2).sum() # A3 = A3 + RAY(KOL,I)**2 AZ[3] = (ray[2,:]).sum() # A4 = A4 + RAY(KOL,I) AZ[5] = DVECTOR.sum() # A6 = A6 + DVECTOR AZ[0] = AZ[0] / ray.shape[1] # A1 = A1/K AZ[1] = AZ[1] / ray.shape[1] # A2 = A2/K AZ[2] = AZ[2] / ray.shape[1] # A3 = A3/K AZ[3] = AZ[3] / ray.shape[1] # A4 = A4/K AZ[5] = AZ[5] / ray.shape[1] # A6 = A6/K AZ[4] = AZ[5] * AZ[3] # A5 = A6*A4 AZ[3] = AZ[3]**2 # A4 = A4**2 AZ[5] = AZ[5]**2 # A6 = A6**2 # for col=1 AX = numpy.zeros(6) DVECTOR = ray[3,:]/ray[4,:] # RAY(KOL+3,I)/RAY(5,I) AX[0] = (DVECTOR**2).sum() # A1 = A1 + DVECTOR**2 AX[1] = (ray[0,:]*DVECTOR).sum() # A2 = A2 + RAY(KOL,I)*DVECTOR AX[2] = (ray[0,:]**2).sum() # A3 = A3 + RAY(KOL,I)**2 AX[3] = (ray[0,:]).sum() # A4 = A4 + RAY(KOL,I) AX[5] = DVECTOR.sum() # A6 = A6 + DVECTOR AX[0] = AX[0] / ray.shape[1] # A1 = A1/K AX[1] = AX[1] / ray.shape[1] # A2 = A2/K AX[2] = AX[2] / ray.shape[1] # A3 = A3/K AX[3] = AX[3] / ray.shape[1] # A4 = A4/K AX[5] = AX[5] / ray.shape[1] # A6 = A6/K AX[4] = AX[5] * AX[3] # A5 = A6*A4 AX[3] = AX[3]**2 # A4 = A4**2 AX[5] = AX[5]**2 # A6 = A6**2 # for T AT = numpy.zeros(6) AT[0] = AX[0] + AZ[0] AT[1] = AX[1] + AZ[1] AT[2] = AX[2] + AZ[2] AT[3] = AX[3] + AZ[3] AT[4] = AX[4] + AZ[4] AT[5] = AX[5] + AZ[5] return AX,AZ,AT def ray_prop(beam,nolost=1,ypoints=21,ymin=-1.0,ymax=1.0,xrange=None,zrange=None,xbins=0,zbins=0): """ :param beam: a file name or an instance of Shadow.Beam :param nolost: 0=all rays, 1=good only, 2=lost only :param ypoints: number of points (planes) where to propagate the beam :param ymin: minumum coordinate y (along the beam) :param ymax: maximum coordinate y (along the beam) :param xrange: [xmin,xmax] limits in X (for the histograms, i.e. xbins > 0) :param zrange: [zmin,zmax] limits in Z (for the histograms, i.e. zbins > 0) :param xbins: number of bins for histograms in X direction. If xbins=0 (default) do not make X histograms :param zbins: number of bins for histograms in Z direction. If zbins=0 (default) do not make Z histograms :return: a python dictionary (ticket) with: ticket['ypoints'] # input ticket['ymin'] # input ticket['ymax'] # input ticket['xbins'] # input ticket['zbins'] # input ticket['y'] # array (ypoints) with y values ticket['x'] # array (ypoints,NRAYS) with x values ticket['z'] # array (ypoints,NRAYS) with z values ticket['x_mean'] # array(ypoints) with X mean ticket['z_mean'] # array(ypoints) with Z mean ticket['x_wmean'] # array(ypoints) with X weighted (with intensity) mean ticket['z_wmean'] # array(ypoints) with Z weighted (with intensity) mean ticket['x_sd'] # array(ypoints) with X standard deviations ticket['z_sd'] # array(ypoints) with Z standard deviations ticket['x_wsd'] # array(ypoints) with X standard deviations (rays weighted with intensty) ticket['z_wsd'] # array(ypoints) with Z standard deviations (rays weighted with intensty) ticket['x_fwhm'] # if xbins>0 array(ypoints) with FWHM for X ticket['x_wfwhm'] # if xbins>0 array(ypoints) with FWHM (rays weighted with intensity) for X ticket['x_bins'] # if xbins>0 array(ypoinys,xbins) with X histograms abscissas (at bin center) ticket['x_h'] # if xbins>0 array(ypoinys,xbins) with X histogram counts ticket['x_wh'] # if xbins>0 array(ypoinys,xbins) with X histogram counts (weighted with intensity) ticket['z_fwhm'] # if zbins>0 array(ypoints) with FWHM for Z ticket['z_wfwhm'] # if zbins>0 array(ypoints) with FWHM (rays weighted with intensity) for Z ticket['z_bins'] # if zbins>0 array(ypoinys,zbins) with Z histograms abscissas (at bin center) ticket['z_h'] # if zbins>0 array(ypoinys,zbins) with Z histogram counts ticket['z_wh'] # if zbins>0 array(ypoinys,zbins) with Z histogram counts (weighted with intensity) """ if isinstance(beam,str): beam1 = Shadow.Beam() beam1.load(beam) else: beam1 = beam rays = beam1.getshcol((1,2,3,4,5,6),nolost=nolost) rays = numpy.array(rays).T weights = beam1.getshcol(23,nolost=nolost) weights = numpy.array(weights) weights_sum = weights.sum() s = rays.shape #define output variables y = numpy.linspace(ymin,ymax,ypoints) x_mean = y.copy() z_mean = y.copy() x_sd = y.copy() z_sd = y.copy() x_wmean = y.copy() z_wmean = y.copy() x_wsd = y.copy() z_wsd = y.copy() x = numpy.zeros((y.size,s[0])) z = numpy.zeros((y.size,s[0])) for i,yi in enumerate(y): tof = (-rays[:,1].flatten() + yi)/rays[:,4].flatten() xi = rays[:,0].flatten() + tof*rays[:,3].flatten() zi = rays[:,2].flatten() + tof*rays[:,5].flatten() # out[0,i,:] = xi # out[1,i,:] = zi x[i,:] = xi z[i,:] = zi x_mean[i] = (xi).mean() z_mean[i] = (zi).mean() x_sd[i] = xi.std() z_sd[i] = zi.std() x_wmean[i] = (xi*weights).sum() / weights_sum z_wmean[i] = (zi*weights).sum() / weights_sum x_wsd[i] = numpy.sqrt( ((xi*weights-x_wmean[i])**2).sum() / weights_sum) z_wsd[i] = numpy.sqrt( ((zi*weights-z_wmean[i])**2).sum() / weights_sum) # now the histograms if xrange is None: xrange = [x.min(),x.max()] if zrange is None: zrange = [z.min(),z.max()] # first histograms fo X if xbins > 0: x_fwhm = numpy.zeros(ypoints) x_wfwhm =
numpy.zeros(ypoints)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Sat May 14 17:10:46 2016 @author: castaned """ import numpy as np import main_modules as mmod def xi(i,r1,theta,dr,phi,tstp): global dth,dr_arr,alambda dx1 = np.sin(np.deg2rad(i)) # dy1 = 0. dz1 = np.cos(np.deg2rad(i)) x1 = r1*np.sin(np.deg2rad(theta))*np.cos(np.deg2rad(phi)) y1 = r1*np.sin(np.deg2rad(theta))*np.sin(np.deg2rad(phi)) z1 = r1*np.cos(np.deg2rad(theta)) pert = 0.1*r1 alambda = dr/(r1*np.deg2rad(tstp)) r3 = pert*np.tan(alambda) r2 = np.sqrt((r1+pert)**2+r3**2) psi = np.rad2deg(np.arcsin(r3/r2)) th2 = theta-psi x2 = r2*np.sin(np.deg2rad(th2))*np.cos(np.deg2rad(phi)) y2 = r2*np.sin(np.deg2rad(th2))*np.sin(
np.deg2rad(phi)
numpy.deg2rad
""" The Pshpere module contains a class named PShpere which allows the user to generate synthetic porous media, and to get information about that porous media A user can instantiate and use the PSphere() object as follows: >>> from lb_colloids import PSphere >>> img = Psphere(dimension=200, radius=20, porosity=0.375, sensitivity=0.01) >>> # hydraulic radius can be calculated >>> rh = img.calculate_hydraulic_radius(resolution=1e-06) >>> # to get a copy of the porous media use >>> matrix = img.matrix >>> # save the image >>> img.save("test_image.png") """ import numpy as np import random import math from PIL import Image import matplotlib.pyplot as plt class PSphere(object): """ Pshpere is a class that allows for the automated generation of synthetic porous media in two-dimensions. This approach can be expanded to three dimensions with some effort. Parameters: ---------- :param int radius: grain size radius :param float porosity: target porosity for porous media :param int dimension: the x and y dimension in pixels for the domain :param float sensitivity: a porosity sensitivity target. This is the allowable range of error for PShpere """ def __init__(self, radius=20, porosity=0.5, dimension=256, sensitivity=0.08): self.radius = radius self.porosity = porosity self.sensitivity = sensitivity self.dimension = dimension self.matrix = np.ones((dimension, dimension), dtype=bool) self.matrix_porosity = 0. self.matrix_rh = 0. self.particle_space = False self.pore_space = True self.percolates = False good = False while not good: self.generate_plane() self.check_percolation() self.check_porosity() print(self.matrix_porosity) if abs(self.matrix_porosity - self.porosity) <= self.sensitivity: if self.percolates: good = True else: print("Regenerating porous media") self.matrix = np.ones((dimension, dimension), dtype=bool) # self.percolates = False def get_matrix(self): matrix = np.invert(self.matrix) return matrix.astype(bool) def generate_plane(self): """ Main method used to generate a porous media plane by PSphere, this should not be called by the user """ porosity = self.porosity slice_location = self.dimension / 2 low_bound = slice_location - int(self.radius) up_bound = slice_location + int(self.radius) if low_bound <= 0 or up_bound > self.dimension: raise AssertionError("Radius to large or slice location incorrect") relative_radius = self.radius / float(self.dimension) number_of_spheres = self.iround(-3.0 * np.log(self.porosity) / (4 * np.pi * relative_radius ** 3)) for i in range(number_of_spheres): z = 1 + random.uniform(0, self.dimension) if up_bound > z > low_bound: x = 1 + int(random.uniform(0, self.dimension)) y = 1 + int(random.uniform(0, self.dimension)) slice_distance = abs(z - slice_location) slice_radius =
np.sqrt(self.radius ** 2 - slice_distance ** 2)
numpy.sqrt
import os import keras from keras.layers import concatenate from sklearn.metrics import cohen_kappa_score import scipy.io import math import random from keras import optimizers import numpy as np import scipy.io as spio from sklearn.metrics import f1_score, accuracy_score np.random.seed(0) from keras.preprocessing import sequence from keras.utils import np_utils from keras.models import Sequential from keras.layers import Layer,Dense, Dropout, Input, Activation, TimeDistributed, Reshape from keras.layers import GRU, Bidirectional from keras.layers import Conv1D, Conv2D, MaxPooling2D, Flatten, BatchNormalization, LSTM, ZeroPadding2D from keras.callbacks import History from keras.models import Model from keras.layers.noise import GaussianNoise from collections import Counter from sklearn.utils import class_weight from myModel import build_model from os import listdir from os.path import isfile, join import sys sys.path.append("../..") from loadData import * from utils import * out_dir = './pred/' data_dir = './../../data/files/' f_set = './../../data/file_sets.mat' files_val = [] files_test = [] files_train = [] mat = spio.loadmat(f_set) tmp = mat['files_val'] for i in range(len(tmp)): file = [str(''.join(l)) for la in tmp[i] for l in la] files_val.extend(file) tmp = mat['files_test'] for i in range(len(tmp)): file = [str(''.join(l)) for la in tmp[i] for l in la] files_test.extend(file) batch_size = 200 n_ep = 4 fs = 200; w_len = 1*fs; data_dim = w_len*2 half_prec = 0.5 prec = 1 n_cl = 4 print("=====================") print("Reading dataset to predict:") ( data_val, targets_val, N_samples_val) = load_data(data_dir,files_val, w_len) ( data_test, targets_test, N_samples_test) = load_data(data_dir,files_test, w_len) ordering = 'tf'; keras.backend.common.set_image_dim_ordering(ordering) sample_list_val = [] for i in range(len(targets_val)): sample_list_val.append([]) for j in range(len(targets_val[i][0])): mid = j*prec # we add the padding size mid += w_len wnd_begin = mid-w_len wnd_end = mid+w_len-1 sample_list_val[i].append([i,j,wnd_begin, wnd_end, 0 ]) sample_list_val2 = [] for i in range(len(targets_val)): sample_list_val2.append([]) for j in range(len(targets_val[i][1])): mid = j*prec # we add the padding size mid += w_len wnd_begin = mid-w_len wnd_end = mid+w_len-1 sample_list_val2[i].append([i,j,wnd_begin, wnd_end, 1 ]) sample_list_test = [] for i in range(len(targets_test)): sample_list_test.append([]) for j in range(len(targets_test[i][0])): mid = j*prec # we add the padding size mid += w_len wnd_begin = mid-w_len wnd_end = mid+w_len-1 sample_list_test[i].append([i,j,wnd_begin, wnd_end, 0 ]) sample_list_test2 = [] for i in range(len(targets_test)): sample_list_test2.append([]) for j in range(len(targets_test[i][1])): mid = j*prec # we add the padding size mid += w_len wnd_begin = mid-w_len wnd_end = mid+w_len-1 sample_list_test2[i].append([i,j,wnd_begin, wnd_end, 1 ]) n_channels = 3 def my_generator(data_train, targets_train, sample_list, shuffle = True): if shuffle: random.shuffle(sample_list) while True: for batch in batch_generator(sample_list, batch_size): batch_data1 = [] batch_data2 = [] batch_targets = [] for sample in batch: [f, s, b, e, c] = sample sample_label = targets_train[f][c][s] sample_x1 = data_train[f][c][b:e+1] sample_x2 = data_train[f][2][b:e+1] sample_x = np.concatenate( ( sample_x1, sample_x2 ), axis = 2 ) batch_data1.append(sample_x) batch_targets.append(sample_label) batch_data1 = np.stack(batch_data1, axis=0) batch_targets = np.array(batch_targets) batch_targets = np_utils.to_categorical(batch_targets, n_cl) batch_data1 = (batch_data1 )/100 batch_data1 = np.clip(batch_data1, -1, 1) yield [ batch_data1 ], batch_targets def val_data_to_batch(data, targets): batch_data = [] batch_targets = [] for j in range(len(targets)): mid = j*prec # we add the padding size mid += w_len wnd_begin = mid-w_len wnd_end = mid+w_len-1 b = wnd_begin e = wnd_end sample_label = targets[j] sample_x = data[b:e+1] batch_data.append(sample_x) batch_targets.append(sample_label) batch_data = np.stack(batch_data, axis=0) batch_targets = np_utils.to_categorical(batch_targets, n_cl) batch_data = (batch_data )/100 #- np.mean(batch_data, axis=1) np.clip(batch_data, -1, 1) return batch_data, batch_targets [cnn_eeg, model] = build_model(data_dim, n_channels, n_cl) Nadam = optimizers.Nadam( ) model.compile(optimizer=Nadam, loss='categorical_crossentropy', metrics=['accuracy'], sample_weight_mode=None) model.load_weights('./model.h5') y_ = [] y = [] O2y_ = [] O2y = [] y_p = [] O2y_p = [] f_list = files_val for j in range(0,len(f_list)): f = f_list[j] generator_val = my_generator(data_val, targets_val, sample_list_val[j], shuffle = False) scores = model.evaluate_generator( generator_val, int(math.ceil((len(sample_list_val[j],)+0.0)/batch_size)), workers=1) generator_val = my_generator(data_val, targets_val, sample_list_val[j], shuffle = False) y_pred = model.predict_generator( generator_val, int(math.ceil((len(sample_list_val[j],)+0.0)/batch_size)), workers=1) print(y_pred.shape) y_ =
np.argmax(y_pred, axis=1)
numpy.argmax
#!/usr/bin/env python3 """<NAME> 2019 reads in TGSS and NVSS datapoints in a 5° patch of sky and computes positional matches within 5', saves feature vectors (individuals and pairs) as .csv """ import pandas as pd import numpy as np from astropy.io import fits from tqdm import tqdm_notebook as tqdm PATCH_SIZE = 5 SEPARATION_LIMIT = 5*1/60 # these five functions could be imported from positional_catalogue.py def geodesic_dist(p1,p2): """arguments are two points on the unit sphere, with ra and dec given in radians; returns their geodesic distance, see: https://en.wikipedia.org/wiki/Great-circle_distance#Formulae""" ra1,dec1,ra2,dec2 = p1[0],p1[1],p2[0],p2[1] decdiff = (dec1-dec2)/2 radiff = (ra1-ra2)/2 better_circle = 2*np.arcsin(np.sqrt(np.sin(decdiff)**2 + np.cos(dec1)*np.cos(dec2) * np.sin(radiff)**2)) r = 1 return better_circle*r def degdist(p1,p2): """calls geodesic_dist on two points, with ra and dec given in degrees; returns their separation in degrees""" return 180/np.pi*geodesic_dist([x*np.pi/180 for x in p1], [x*np.pi/180 for x in p2]) def deci_deg_to_deg_min_sec(deci_deg): """https://stackoverflow.com/questions/2579535\ /convert-dd-decimal-degrees-to-dms-degrees-minutes-seconds-in-python""" is_positive = (deci_deg >= 0) deci_deg = abs(deci_deg) # divmod returns quotient and remainder minutes,seconds = divmod(deci_deg*3600,60) degrees,minutes = divmod(minutes,60) degrees = degrees if is_positive else -degrees return (degrees,minutes,seconds) def deci_deg_to_hr_min_sec(deci_deg): """assume deci_deg +ve""" deci_hours = deci_deg/15. schminutes,schmeconds = divmod(deci_hours*3600,60) hours,schminutes = divmod(schminutes,60) return (hours,schminutes,schmeconds) def iau_designation(ra,dec): """generate NVSS names as per: https://heasarc.gsfc.nasa.gov/W3Browse/all/nvss.html There are four cases where there are pairs of sources which are so close together that their names would be identical according to this schema (see below), and the HEASARC has added suffixes of 'a' (for the source with smaller RA) and 'b' (for the source with the larger RA) in such cases in order to differentate them. It was easier just to hard-code this in, should really check if designation alreadys exists and compare """ hr,schmin,schmec = deci_deg_to_hr_min_sec(ra) rhh = str(int(hr)).zfill(2) rmm = str(int(schmin)).zfill(2) rss = str(int(schmec - schmec%1)).zfill(2) deg,minu,sec = deci_deg_to_deg_min_sec(dec) sgn = '+' if deg>=0 else '-' ddd = str(int(abs(deg))).zfill(2) dmm = str(int(minu)).zfill(2) dss = str(int(sec - sec%1)).zfill(2) designation = ''.join(('NVSS J',rhh,rmm,rss,sgn,ddd,dmm,dss)) close_pairs = {'NVSS J093731-102001':144.382, 'NVSS J133156-121336':202.987, 'NVSS J160612+000027':241.553, 'NVSS J215552+380029':328.968} if designation in close_pairs: if ra < close_pairs[designation]: designation = ''.join((designation,'a')) else: designation = ''.join((designation,'b')) return designation def main(): """this should really be broken up into separate functions""" PATCH_DEC = -35 PATCH_RA = 149 def df_in_patch(df_ra,df_dec,): in_patch = ((PATCH_RA < df_ra) & (df_ra < PATCH_RA+PATCH_SIZE) & (PATCH_DEC < df_dec) & (df_dec < PATCH_DEC+PATCH_SIZE)) return in_patch # import TGSS tgss_df = pd.read_csv('TGSSADR1_7sigma_catalog.tsv',delimiter='\t', index_col=0,usecols=(0,1,3,5,7,9,11,13)) tgss_df = tgss_df.sort_values(by=['DEC']) tgss_df['Total_flux'] = tgss_df['Total_flux']*1e-3 tgss_df['Peak_flux'] = tgss_df['Peak_flux']*1e-3 tgss_df = tgss_df[df_in_patch(tgss_df['RA'],tgss_df['DEC'])] tgss_df.index.names = ['name_TGSS'] tgss_df.columns = ['ra_TGSS','dec_TGSS','integrated_TGSS','peak_TGSS', 'major_ax_TGSS','minor_ax_TGSS','posangle_TGSS'] tgss_df.to_csv('tgss.csv') # import NVSS with fits.open('CATALOG.FIT') as hdulist: data = hdulist[1].data nvss_data = np.column_stack((data['RA(2000)'],data['DEC(2000)'],data['PEAK INT'], data['MAJOR AX'],data['MINOR AX'],data['POSANGLE'], data['Q CENTER'],data['U CENTER'],data['P FLUX'], data['RES PEAK'],data['RES FLUX'])) nvss_columns = ['RA(2000)','DEC(2000)','PEAK INT','MAJOR AX','MINOR AX','POSANGLE', 'Q CENTER','U CENTER','P FLUX','RES PEAK','RES FLUX'] nvss_df = pd.DataFrame(data = nvss_data, columns = nvss_columns) nvss_df = nvss_df.sort_values(by=['DEC(2000)']).reset_index(drop = True) nvss_df = nvss_df[df_in_patch(nvss_df['RA(2000)'],nvss_df['DEC(2000)'])] nvss_labels = np.array([iau_designation(p[0],p[1]) for p in nvss_df[['RA(2000)','DEC(2000)']].values]) nvss_df['name_NVSS'] = nvss_labels nvss_df.set_index('name_NVSS',inplace=True) nvss_df.columns = ['ra_NVSS','dec_NVSS','peak_NVSS','major_ax_NVSS','minor_ax_NVSS','posangle_NVSS', 'q_centre_NVSS','u_centre_NVSS','polarised_NVSS','res_peak_NVSS','res_flux_NVSS'] nvss_df.to_csv('nvss.csv') # positional matching, a la positional_catalogue.py tgss = tgss_df[['ra_TGSS','dec_TGSS']].values nvss = nvss_df[['ra_NVSS','dec_NVSS']].values nvss_dec_min = round(nvss[:,1].min(),1) nvss_dec_max = round(nvss[:,1].max(),1) patch_matches = [] tqdmbar = tqdm(total=len(tgss)) for i1,p1 in enumerate(tgss): for i2,p2 in enumerate(nvss): if (abs((p1[0]-p2[0])*np.cos(p1[1]*np.pi/180)) < SEPARATION_LIMIT and abs(p1[1]-p2[1]) < SEPARATION_LIMIT): patch_matches.append((i1,i2)) tqdmbar.postfix = 'matches = {}'.format(len(patch_matches)) tqdmbar.update(1) patch_matches = np.array(patch_matches) tmp_patch_matches = [] for i1,i2 in tqdm(patch_matches): p1,p2 = tgss[i1],nvss[i2] d = degdist(p1,p2) if d < SEPARATION_LIMIT: tmp_patch_matches.append([i1,i2]) patch_matches = np.array(tmp_patch_matches) patch_cat_columns = np.concatenate((tgss_df.reset_index().columns.values, nvss_df.reset_index().columns.values)) patch_cat = pd.DataFrame(columns=patch_cat_columns) FREQ_TGSS,FREQ_NVSS = 150e6,1.4e9 for i1,i2 in tqdm(patch_matches): obj_t = tgss_df.reset_index().iloc[i1] obj_n = nvss_df.reset_index().iloc[i2] match_row = {**obj_t,**obj_n} sepa = degdist((obj_t['ra_TGSS'],obj_t['dec_TGSS']), (obj_n['ra_NVSS'],obj_n['dec_NVSS'])) match_row['separation'] = sepa alpha = np.log(obj_t['peak_TGSS']/obj_n['peak_NVSS'])/
np.log(FREQ_NVSS/FREQ_TGSS)
numpy.log
import pyspark from pyspark import SparkConf, SparkContext import matplotlib as plt import os import argparse import numpy as np import png from PIL import Image import scipy import re import binascii import matplotlib.image as mpimg import matplotlib as plt from sklearn.model_selection import train_test_split import keras import tensorflow as tf from keras.utils import to_categorical from keras.datasets import fashion_mnist from keras.models import Sequential,Input,Model from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import LeakyReLU from sklearn.metrics import classification_report from keras.models import load_model from sklearn.metrics import classification_report #-----spark configuration----- conf = SparkConf().setAppName("MlvClassification") conf = (conf.setMaster('local[*]') .set('spark.executor.memory', '4g') .set('spark.driver.memory', '4G') .set('spark.driver.maxResultSize', '10G')) sc = SparkContext(conf=conf) #-----functions------- #----assigning each filename its corresponding label---- def fname_label_assign(fnames, labels): filename_label_dict = {} for filename, label in zip(fnames.value, labels.value): filename_label_dict[filename] = label return filename_label_dict #----making the list of words form byte files---- def pre_process(x, fname_label_dict): fname = x[0].split('/')[-1][:-6] label = int(fname_label_dict.value[fname]) word_list = list(filter(lambda x: len(x)==2 and x!='??' and x!='00' and x!='CC', re.split('\r\n| ', x[1]))) return ((fname,label), word_list) #----making image out of byte files---- def makeImage(rdd, input_type): img_w = 448 img_h = 448 row = 0 col = 0 image = [] image.append([]) for i in rdd[1]: intrdd = int(i, 16) if col <= img_w-1: image[row].append(intrdd) col += 1 else: row += 1 col = 0 image.append([]) image[row].append(intrdd) col += 1 if col <= img_w-1: for j in range(col, img_w): image[row].append('0') #------This part save the byte files as gray scale images----- # image_output = Image.fromarray(np.asarray(image).astype(np.uint8)) # if input_type == 'train': # imagefile = ('images/train/'+rdd[0][0]+'_'+str(rdd[0][1])+'.png') # else: # imagefile = ('images/test/'+rdd[0][0]+'_'+str(rdd[0][1])+'.png') # image_output.save(imagefile) #----making all images the same size (640x750), reshape and normalize---- image_np = np.array(image).astype(np.float32) image_np.resize(img_w,img_h) image_np.reshape(img_w,img_h) image_np = image_np.reshape(img_w, img_h, 1) image_np = image_np/255 new_labels = [] return (image_np, int(rdd[0][1])-1) #----loading file names and their corresponding labels----- train_fnames = open('dataset/files/X_train.txt').read().split('\n') train_labels = open('dataset/files/y_train.txt').read().split('\n') test_fnames = open('dataset/files/X_small_train.txt').read().split('\n') test_labels = open('dataset/files/y_small_train.txt').read().split('\n') #----Broadcasting the file names and labels train_fnames_broad = sc.broadcast(train_fnames) train_labels_broad = sc.broadcast(train_labels) train_fname_label_dict = fname_label_assign(train_fnames_broad, train_labels_broad) train_fname_label_dict_broad = sc.broadcast(train_fname_label_dict) test_fnames_broad = sc.broadcast(test_fnames) test_labels_broad = sc.broadcast(test_labels) test_fname_label_dict = fname_label_assign(test_fnames_broad, test_labels_broad) test_fname_label_dict_broad = sc.broadcast(test_fname_label_dict) train_rdd_files = sc.wholeTextFiles("/run/media/afarahani/dataset/train").repartition(30) test_rdd_files = sc.wholeTextFiles("dataset/bytes/train").repartition(30) train_bag_of_docs = train_rdd_files.map(lambda x: pre_process(x, train_fname_label_dict_broad)) test_bag_of_docs = test_rdd_files.map(lambda x: pre_process(x ,test_fname_label_dict_broad)) train_rdd_image = train_bag_of_docs.map(lambda x: makeImage(x, 'train')) test_rdd_image = test_bag_of_docs.map(lambda x: makeImage(x, 'test')) train_x =train_rdd_image.map(lambda x: x[0]) train_rdd_image.map(lambda x: (x[0], tuple(np.array(_) for _ in zip(*x[1:])))) train_x =train_rdd_image.map(lambda x: x[0]) test_x = test_rdd_image.map(lambda x: x[0]) train_x = np.array(train_x.collect()) test_x = np.array(test_x.collect()) train_labels = train_rdd_image.map(lambda x: x[1]) test_labels= test_rdd_image.map(lambda x: x[1]) train_labels = np.array(train_labels.collect()) test_labels = np.array(test_labels.collect()) #----Convolutional model --------- classes = np.unique(
np.array(train_labels)
numpy.array
import os import pickle import numpy as np import random as rnd import tensorflow as tf import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.mlab as mlab import seaborn from PIL import Image, ImageColor from collections import namedtuple # def download_model_weights(): # from pathlib import Path # import urllib.request # cwd = os.path.dirname(os.path.abspath(__file__)) # for k in ['model-29.data-00000-of-00001','model-29.index','model-29.meta','translation.pkl']: # download_dir = Path(cwd)/'handwritten_model/' # download_dir.mkdir(exist_ok=True,parents=True) # if (download_dir/f'{k}').exists(): continue # print(f'file {k} not found, downloading from git repo..') # urllib.request.urlretrieve( # f'https://raw.github.com/Belval/TextRecognitionDataGenerator/master/trdg/handwritten_model/{k}', # download_dir/f'{k}') # print(f'file {k} saved to disk') # return cwd def _sample(e, mu1, mu2, std1, std2, rho): cov = np.array([[std1 * std1, std1 * std2 * rho], [std1 * std2 * rho, std2 * std2]]) mean = np.array([mu1, mu2]) x, y = np.random.multivariate_normal(mean, cov) end = np.random.binomial(1, e) return np.array([x, y, end]) def _split_strokes(points): points = np.array(points) strokes = [] b = 0 for e in range(len(points)): if points[e, 2] == 1.0: strokes += [points[b : e + 1, :2].copy()] b = e + 1 return strokes def _cumsum(points): sums =
np.cumsum(points[:, :2], axis=0)
numpy.cumsum
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.patches as mpatches from .utils import A_to_P, P_to_A N_times = 500 # Colors C0 = 'C0' C1 = 'C1' def func_Roche_radius(M1, M2, A): """ Get Roche lobe radius (Eggleton 1983) Parameters ---------- M1 : float Primary mass (Msun) M2 : float Secondary mass (Msun) A : float Orbital separation (any unit) Returns ------- Roche radius : float in units of input, A """ q = M1 / M2 return A * 0.49*q**(2.0/3.0) / (0.6*q**(2.0/3.0) + np.log(1.0 + q**(1.0/3.0))) def evolve_binary(evolve, M1_in, M2_in, P_orb_in, ecc, t_min, t_max, v1_kick=(0.0, 0.0, 0.0, 0.0), v2_kick=(0.0, 0.0, 0.0, 0.0), metallicity=0.02, verbose_output=False, model_kwargs={}): times = np.linspace(t_min, t_max, N_times) R1_out =
np.array([])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Create plots for Figure 4. """ # import packages import numpy as np import matplotlib.pyplot as plt import os import sklearn.linear_model as lm ####################### # SET DIRECTORY ####################### loaddir = 'data/fig4/' savdir = 'figures/fig4/' if not os.path.exists(savdir): os.mkdir(savdir) ####################### # LOAD SIMULATION DATA ####################### # load main data dictionaries data = np.load(loaddir+'relearning_results.npy',allow_pickle=True).item() data0 = np.load(loaddir+'experiment_results.npy',allow_pickle=True).item() # load parameters manifold_trials = data0['params']['manifold_trials'] stimulus = data0['stimulus'] target = data0['target'] reduced_dim = data0['decoding']['reduced_dim'] T = data['perturbations']['T'] T_within = data['perturbations']['T_within'] T_outside = data['perturbations']['T_outside'] feedback_within = data['relearning']['feedback_within'] feedback_outside = data['relearning']['feedback_outside'] # load weights w00 = np.load(loaddir+'W_initial.npy') w0 = np.load(loaddir+'W_stabilized.npy') w1w =
np.load(loaddir+'W_within.npy')
numpy.load
import inspect import os import random from typing import Tuple import numpy as np import tensorflow as tf from scipy import stats from tensorflow.contrib import layers from divisivenormalization.regularizers import ( smoothness_regularizer_2d, group_sparsity_regularizer_2d, smoothness_regularizer_1d, ) def inv_elu(x): """Inverse elu function.""" y = x.copy() idx = y < 1.0 y[idx] = np.log(y[idx]) + 1.0 return y def lin_step(x, a, b): return tf.minimum(tf.constant(b - a, dtype=tf.float32), tf.nn.relu(x - tf.constant(a, dtype=tf.float32))) / (b - a) def tent(x, a, b): z = tf.constant(0, dtype=tf.float32) d = tf.constant(2 * (b - a), dtype=tf.float32) a = tf.constant(a, dtype=tf.float32) return tf.minimum(tf.maximum(x - a, z), tf.maximum(a + d - x, z)) / (b - a) def output_nonlinearity(x, num_neurons, vmin=-3.0, vmax=6.0, num_bins=10, alpha=0, scope="output_nonlinearity"): with tf.variable_scope(scope): elu = tf.nn.elu(x - 1.0) + 1.0 if alpha == -1: tf.add_to_collection("output_nonlinearity", 0) return elu _, neurons = x.get_shape().as_list() k = int(num_bins / 2) num_bins = 2 * k bins = np.linspace(vmin, vmax, num_bins + 1, endpoint=True) segments = [tent(x, a, b) for a, b in zip(bins[:-2], bins[1:-1])] + [lin_step(x, bins[-2], bins[-1])] reg = lambda w: smoothness_regularizer_1d(w, weight=alpha, order=2) a = tf.get_variable( "weights", shape=[neurons, num_bins, 1], dtype=tf.float32, initializer=tf.constant_initializer(0), regularizer=reg, ) a = tf.exp(a) tf.add_to_collection("output_nonlinearity", a) v = tf.transpose(tf.concat([tf.reshape(s, [-1, neurons, 1]) for s in segments], axis=2), [1, 0, 2]) multiplier = tf.transpose(tf.reshape(tf.matmul(v, a), [neurons, -1])) return multiplier * elu class Net: """Abstract class to be inherited by models.""" def __init__( self, data=None, log_dir=None, log_hash=None, global_step=None, obs_noise_model="poisson", eval_batches=None ): self.data = data log_dir_ = os.path.dirname(os.path.dirname(inspect.stack()[0][1])) self.log_dir_wo_hash = os.path.join(log_dir_, "train_logs", "tmp") if log_dir is None else log_dir if log_hash == None: log_hash = "%010x" % random.getrandbits(40) self.log_dir = os.path.join(self.log_dir_wo_hash, log_hash) self.log_hash = log_hash self.global_step = 0 if global_step == None else global_step self.session = None self.obs_noise_model = obs_noise_model self.best_loss = 1e100 self.val_iter_loss = [] self.eval_batches = eval_batches # placeholders if data is None: return with tf.Graph().as_default() as self.graph: self.is_training = tf.placeholder(tf.bool) self.learning_rate = tf.placeholder(tf.float32) self.images = tf.placeholder(tf.float32, shape=[None, data.px_y, data.px_x, 1]) self.responses = tf.placeholder(tf.float32, shape=[None, data.num_neurons]) self.real_responses = tf.placeholder(tf.float32, shape=[None, data.num_neurons]) def initialize(self): self.summaries = tf.summary.merge_all() if self.session is None: self.session = tf.Session(graph=self.graph) self.session.run(tf.global_variables_initializer()) self.saver = tf.train.Saver(max_to_keep=100) self.saver_best = tf.train.Saver(max_to_keep=1) self.writer = tf.summary.FileWriter(self.log_dir, max_queue=0, flush_secs=0.1) def __del__(self): try: if not self.session == None: self.session.close() self.writer.close() except: pass def close(self): self.session.close() def save(self, step=None): if step == None: step = self.global_step chkp_file = os.path.join(self.log_dir, "model.ckpt") self.saver.save(self.session, chkp_file, global_step=step) def save_best(self): self.saver_best.save(self.session, os.path.join(self.log_dir, "best.ckpt")) def load(self, log_hash=None, omit_var_by_name=None): """Load model. Args: log_hash (str, optional): Checkpoint hash. Defaults to None. omit_var_by_name (list[str], optional): Variables that should not be loaded. Defaults to None. Example: ["conv0/weights"] """ if log_hash is None: print("WARNING: Restored same model. (specified log hash to load from was None)") ckpt_path = os.path.join(self.log_dir, "model.ckpt") else: ckpt_path = os.path.join(self.log_dir_wo_hash, log_hash, "model.ckpt") ckpt_var_list = tf.train.list_variables(ckpt_path) var_list = [] for v in ckpt_var_list: if omit_var_by_name is not None and v[0] in omit_var_by_name: continue var_list.append(self.graph.get_tensor_by_name(v[0] + ":0")) self.trainable_var_saver = tf.train.Saver(var_list=var_list) self.trainable_var_saver.restore(self.session, ckpt_path) def load_best(self): ckpt_path = os.path.join(self.log_dir, "best.ckpt") ckpt_var_list = tf.train.list_variables(ckpt_path) var_list = [] for v in ckpt_var_list: var_list.append(self.graph.get_tensor_by_name(v[0] + ":0")) print("load", v[0] + ":0") self.saver_best = tf.train.Saver(var_list=var_list) self.saver_best.restore(self.session, ckpt_path) def train( self, max_iter=5000, learning_rate=3e-4, batch_size=256, val_steps=100, save_steps=1000, early_stopping_steps=5, learning_rule_updates=3, eval_batches=None, ): self.eval_batches = eval_batches with self.graph.as_default(): update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) imgs_val, res_val, real_resp_val = self.data.val() not_improved = 0 num_lr_updates = 0 for i in range(self.global_step + 1, self.global_step + max_iter + 1): # training step imgs_batch, res_batch, real_batch = self.data.minibatch(batch_size) self.global_step = i feed_dict = { self.images: imgs_batch, self.responses: res_batch, self.real_responses: real_batch, self.is_training: True, self.learning_rate: learning_rate, } self.session.run([self.train_step, update_ops], feed_dict) # validate/save periodically if not i % save_steps: self.save(i) if not i % val_steps: result = self.eval( images=imgs_val, responses=res_val, real_responses=real_resp_val, with_summaries=False, global_step=i, learning_rate=learning_rate, ) if result[0] < self.best_loss: self.best_loss = result[0] self.save_best() not_improved = 0 else: not_improved += 1 if not_improved == early_stopping_steps: self.global_step -= early_stopping_steps * val_steps self.load_best() not_improved = 0 learning_rate /= 3 print("reducing learning rate to {}".format(learning_rate)) num_lr_updates += 1 if num_lr_updates == learning_rule_updates: self.load_best() break yield (i, result) def eval( self, with_summaries=False, keep_record_loss=True, images=None, responses=None, real_responses=None, global_step=None, learning_rate=None, ): """Returns result, where last entry are the predictions.""" if (images is None) or (responses is None): images, responses, real_responses = self.data.test() nrep, nim, nneu = responses.shape images = np.tile(images, [nrep, 1, 1, 1]) responses = responses.reshape([nim * nrep, nneu]) real_responses = real_responses.reshape([nim * nrep, nneu]) if with_summaries: raise NotImplementedError ops = self.get_test_ops() if self.eval_batches is not None: batches = self.eval_batches numpts = images.shape[0] numbatch = int(np.ceil(numpts / batches)) pred_val = [] result = 0 for batch_idx in range(0, numbatch): if batches * (batch_idx + 1) > numpts: idx = (batch_idx * batches) + np.arange(0, numpts - (batch_idx * batches)) else: idx = (batch_idx * batches) + np.arange(0, batches) feed_dict = { self.images: images[idx], self.responses: responses[idx], self.real_responses: real_responses[idx], self.is_training: False, } res = self.session.run(ops, feed_dict) pred_val.append(res[-1]) result += np.array([r * len(idx) for r in res[:-1]]) result = [np.float32(r / numpts) for r in result] pred_val = np.concatenate(pred_val) result.append(pred_val) else: feed_dict = { self.images: images, self.responses: responses, self.real_responses: real_responses, self.is_training: False, } result = self.session.run(ops, feed_dict) if keep_record_loss: self.val_iter_loss.append(result[0]) return result def compute_log_likelihoods(self, prediction, response, real_responses): self.poisson = tf.reduce_mean( tf.reduce_sum((prediction - response * tf.log(prediction + 1e-9)) * real_responses, axis=0) / tf.reduce_sum(real_responses, axis=0) ) def get_log_likelihood(self): if self.obs_noise_model == "poisson": return self.poisson else: raise NotImplementedError def get_test_ops(self): return [self.get_log_likelihood(), self.total_loss, self.prediction] def evaluate_corr_vals(self): """Computes and returns a vector of correlations between prediction and labels of all neurons on the validation set.""" im, res, real_res = self.data.val() result = self.eval(images=im, responses=res, real_responses=real_res) pred = result[-1] corrs = [] for i in range(self.data.num_neurons): # keep only entries corresponding to real_res r = res[:, i] p = pred[:, i] b = real_res[:, i].astype(np.bool) r = np.compress(b, r) p = np.compress(b, p) corr = stats.pearsonr(r, p)[0] if np.isnan(corr): print("INFO: corr for neuron " + str(i) + " is nan - replaced by 0") corr = 0 corrs.append(corr) return corrs def evaluate_avg_corr_val(self): """Prediction correlation averaged across neurons on validation set.""" avg_corr = np.mean(self.evaluate_corr_vals()) return avg_corr def evaluate_ve_testset_per_neuron(self): """Computes variance explained and explainable variance on the test set per neuron.""" images_test, responses_test, real_responses_test = self.data.test() nrep, nim, nneu = responses_test.shape predictions_test = self.prediction.eval( session=self.session, feed_dict={self.images: images_test, self.is_training: False} ) predictions_test =
np.tile(predictions_test.T, 4)
numpy.tile
import copy from GTac_Data import gtac_data from data_gen import raw_data_byts_checkout_2, collect_DataPoints # from data_collect_fingers_five import COLUMNS_RAW_FINGER_DATA, MAG_NUM, COL_INDEX from gtac_config import COLUMNS_RAW_FINGER_DATA, MAG_NUM, COL_INDEX # from Handover import collect_DataPoints, find_location, find_mat_value # from Stably_Gentle_Grasping import find_mat_sum_sec, reactive_pinch from draw_bubbles_py_3 import setup_scatter_ax, plot_fingertip_2 # from draw_lines2 import update_vals import serial import time import pandas as pd import numpy as np import argparse import matplotlib # matplotlib.use('TkAgg') from matplotlib import pyplot as plt from matplotlib.animation import FuncAnimation # from GTac_Hand import gtac_hand window_length = 200 x = np.linspace(0, 199, 200) y = np.zeros(len(x)) mag_x = [] mag_y = [] mag_z = [] mat_x_0 = [4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] mat_y_0 = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4] mat_x = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4] mat_y = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] press_location_r = 2.5 press_location_r_list = [] press_location_c = 2.5 press_location_c_list = [] sum_value = 0 sum_value_list = [] mat_sz = np.zeros(16) mat_amp_index = 10 pressing_loc_amp_index = 2 mat_loc_index = 0.001 def update_vals(data_frame_array, finger=1, sec=2, window_len=200): tri_index = finger * 9 + (2 - sec) * 3 sum_r = 0 sum_c = 0 global mag_x, mag_y, mag_z, sum_value, press_location_r, press_location_c, \ sum_value_list, press_location_r_list, press_location_c_list sum_value = 0 # update magnetic and resistive signals for GTac Bubbles for i in range(len(mat_x)): r = i // 4 c = i % 4 index, value = gtac_data.find_mat_value(data_frame_array, finger, sec, r, c) if value > 20: # threshold to remove noise for obtaining pressing location sum_r += (r + 1) * value sum_c += (c + 1) * value sum_value += value mat_sz[i] = abs(value * mat_amp_index) else: mat_sz[i] = 0 mat_x[i] = c + 1 + data_frame_array[tri_index] * mat_loc_index mat_y[i] = r + 1 + data_frame_array[tri_index + 1] * mat_loc_index # update pressing locations if sum_value != 0: press_location_r = round(sum_r / sum_value, 1) press_location_c = round(sum_c / sum_value, 1) # update magnetic signals mag_x.append(data_frame_array[tri_index]) mag_y.append(data_frame_array[tri_index + 1]) mag_z.append(abs(data_frame_array[tri_index + 2])) sum_value_list.append(sum_value) press_location_r_list.append(press_location_r - 1) press_location_c_list.append(press_location_c - 1) if len(mag_x) > window_len: mag_x = mag_x[-window_len:] mag_y = mag_y[-window_len:] mag_z = mag_z[-window_len:] sum_value_list = sum_value_list[-window_len:] press_location_r_list = press_location_r_list[-window_len:] press_location_c_list = press_location_c_list[-window_len:] print('r:{};c:{}'.format(press_location_r, press_location_c)) # update vals for plot gaussian # zarray = gaus2d(x=x_mesh, y=y_mesh, # mx=press_location_r, # my=press_location_c, # sx=1, # sy=1) # define normalized 2D gaussian def gaus2d(x=0, y=0, mx=0, my=0, sx=1, sy=1): return 1. / (2. * np.pi * sx * sy) * np.exp(-((x - mx)**2. / (2. * sx**2.) + (y - my)**2. / (2. * sy**2.))) def plot_pressing_loc(scat, press_location_r, press_location_c, sec_sum): scat.set_offsets(np.array([press_location_c, press_location_r])) scat.set_sizes([sec_sum * pressing_loc_amp_index]) def set_data_sec(f4_ax1_scat_tri_mat, f4_ax1_scat_pre_loc, f4_ax2_magx, f4_ax2_magy, f4_ax3_magz, f4_ax3_mat_sum, f4_ax4_center_x, f4_ax4_center_y): plot_fingertip_2(f4_ax1_scat_tri_mat, mat_x, mat_y, mat_sz) plot_pressing_loc(f4_ax1_scat_pre_loc, press_location_r, press_location_c, sum_value) if len(mag_y) == window_length: # print(len(mag_x),len(mag_y),len(mag_z),len(sum_value_list),len(press_location_c_list),len(press_location_r_list)) f4_ax2_magx.set_ydata(mag_x) f4_ax2_magy.set_ydata(mag_y) f4_ax3_magz.set_ydata(mag_z) f4_ax3_mat_sum.set_ydata(sum_value_list) f4_ax4_center_x.set_ydata(press_location_c_list) f4_ax4_center_y.set_ydata(press_location_r_list) def setup_scatter_ax2(ax): # rect is the box edge rect = plt.Rectangle((-1, -1), 5, 5, ec='none', lw=2, fc='none') ax.add_patch(rect) ax.axes.xaxis.set_visible(False) ax.axes.yaxis.set_visible(False) scat_base = ax.scatter(mat_x_0, mat_y_0, s=1500, alpha=0.4) scat_tri_mat = ax.scatter(mat_x, mat_y, s=150, alpha=1) scat_pre_loc = ax.scatter(press_location_c, press_location_r, s=150, alpha=1) return scat_tri_mat, scat_pre_loc def setup_figures(): # prepare the figure fig4 = plt.figure(figsize=(9, 5), constrained_layout=True) gs = fig4.add_gridspec(3, 5) f4_ax1 = fig4.add_subplot(gs[:, :-2], aspect='equal', autoscale_on=False, xlim=(0, 5), ylim=(0, 5)) f4_ax1.set_title('GTac Bubbles') f4_ax1_scat_tri_mat, f4_ax1_scat_pre_loc = setup_scatter_ax2(f4_ax1) f4_ax2 = fig4.add_subplot(gs[0, -2:]) f4_ax2.set_title('Shear Force Signals (uT)') f4_ax2.set_ylim([-500, 500]) f4_ax2_magx = f4_ax2.plot(np.zeros(window_length), label='SA-II x')[0] f4_ax2_magy = f4_ax2.plot(np.zeros(window_length), label='SA-II y')[0] # f4_ax3_magz = f4_ax2.plot(np.zeros(window_length), label='mag-z')[0] f4_ax2.legend(loc=0) f4_ax3 = fig4.add_subplot(gs[1, -2:]) f4_ax3.set_title('Normal Force Signals') f4_ax3.set_ylim([0, 2000]) f4_ax3_mat_sum = f4_ax3.plot(np.zeros(window_length), label='FA-I Sum')[0] f4_ax3_magz = f4_ax3.plot(
np.zeros(window_length)
numpy.zeros